Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 1,066 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Redeem | 21082135 | 23 days ago | IN | 0 ETH | 0.0003053 | ||||
Redeem | 20991923 | 35 days ago | IN | 0 ETH | 0.00055854 | ||||
Redeem | 20307439 | 131 days ago | IN | 0 ETH | 0.00196243 | ||||
Redeem | 20305404 | 131 days ago | IN | 0 ETH | 0.00220281 | ||||
Redeem | 20301054 | 132 days ago | IN | 0 ETH | 0.00341084 | ||||
Redeem | 20300067 | 132 days ago | IN | 0 ETH | 0.00126013 | ||||
Redeem | 20297148 | 132 days ago | IN | 0 ETH | 0.00042081 | ||||
Redeem | 20294941 | 133 days ago | IN | 0 ETH | 0.00067023 | ||||
Redeem | 20294932 | 133 days ago | IN | 0 ETH | 0.00056794 | ||||
Redeem | 20294925 | 133 days ago | IN | 0 ETH | 0.00057272 | ||||
Redeem | 20294916 | 133 days ago | IN | 0 ETH | 0.00054732 | ||||
Redeem | 20294909 | 133 days ago | IN | 0 ETH | 0.00060111 | ||||
Redeem | 20294900 | 133 days ago | IN | 0 ETH | 0.00061019 | ||||
Redeem | 20294895 | 133 days ago | IN | 0 ETH | 0.00054763 | ||||
Redeem | 20294889 | 133 days ago | IN | 0 ETH | 0.00052423 | ||||
Redeem | 20294882 | 133 days ago | IN | 0 ETH | 0.00054828 | ||||
Redeem | 20294873 | 133 days ago | IN | 0 ETH | 0.00050761 | ||||
Redeem | 20294860 | 133 days ago | IN | 0 ETH | 0.00051465 | ||||
Redeem | 20292766 | 133 days ago | IN | 0 ETH | 0.00126862 | ||||
Redeem | 20285771 | 134 days ago | IN | 0 ETH | 0.00163927 | ||||
Redeem | 20268692 | 136 days ago | IN | 0 ETH | 0.00041577 | ||||
Redeem | 20268675 | 136 days ago | IN | 0 ETH | 0.00079386 | ||||
Redeem | 20259464 | 138 days ago | IN | 0 ETH | 0.00042456 | ||||
Redeem | 20256693 | 138 days ago | IN | 0 ETH | 0.00045027 | ||||
Redeem | 20256614 | 138 days ago | IN | 0 ETH | 0.00042816 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
Airdrop
Compiler Version
v0.8.22+commit.4fc1097e
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.22 <0.9.0; import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import { VestingPoolManager } from "./VestingPoolManager.sol"; import { ShutterToken } from "./ShutterToken.sol"; /// @title Airdrop contract /// original contract: https://github.com/safe-global/safe-token/blob/main/contracts/Airdrop.sol /// @author Daniel Dimitrov - @compojoom, Fred Lührs - @fredo contract Airdrop { event RedeemedVesting(bytes32 indexed id, address indexed user); // Root of the Merkle tree bytes32 public root; // Time until which the airdrop can be redeemed uint64 public immutable redeemDeadline; // Instance of the VestingPoolManager contract VestingPoolManager public vestingPoolManager; // Instance of the ShutterToken contract ShutterToken public immutable token; // Address of the airdrop manager address public immutable airdropManager; modifier onlyAirdropManager() { require( msg.sender == airdropManager, "Can only be called by pool manager" ); _; } /// @notice Creates the airdrop for the token at address `_token` and `_manager` as the manager. The airdrop can be redeemed until `_redeemDeadline`. /// @param _token The token that should be used for the airdrop /// @param _manager The manager of this airdrop (e.g. the address that can call `initializeRoot`) /// @param _redeemDeadline The deadline until when the airdrop could be redeemed (if initialized). This needs to be a date in the future. /// @param _vestingPoolManager The address of the VestingPoolManager contract /// @param _root The Merkle root of the merkle drop constructor( address _token, address _manager, uint64 _redeemDeadline, address _vestingPoolManager, bytes32 _root ) { require( _redeemDeadline > block.timestamp, "Redeem deadline should be in the future" ); require(_root != bytes32(0), "State root should be set"); redeemDeadline = _redeemDeadline; token = ShutterToken(_token); airdropManager = _manager; vestingPoolManager = VestingPoolManager(_vestingPoolManager); root = _root; } /// @notice Creates a vesting authorized by the Merkle proof. /// @dev It is required that the pool has enough tokens available /// @dev Vesting will be created for msg.sender /// @param curveType Type of the curve that should be used for the vesting /// @param durationWeeks The duration of the vesting in weeks /// @param startDate The date when the vesting should be started (can be in the past) /// @param amount Amount of tokens that should be vested in atoms /// @param proof Proof to redeem tokens function redeem( uint8 curveType, uint16 durationWeeks, uint64 startDate, uint128 amount, uint128 initialUnlock, bytes32[] calldata proof, bool requiresSPT ) public virtual { require( block.timestamp <= redeemDeadline, "Deadline to redeem vesting has been exceeded" ); address spender = address(vestingPoolManager); if (token.paused()) { spender = airdropManager; } token.approve(spender, amount); // This call will fail if the vesting was already created bytes32 vestingId = vestingPoolManager.addVesting( msg.sender, curveType, false, durationWeeks, startDate, amount, initialUnlock, requiresSPT ); emit RedeemedVesting(vestingId, msg.sender); // fail if the vestingId is not in the merkle root require( MerkleProof.verify(proof, root, vestingId), "Invalid merkle proof" ); } /// @notice Claims all tokens that have not been redeemed before `redeemDeadline` /// @dev Can only be called after `redeemDeadline` has been reached. /// @param beneficiary Account that should receive the claimed tokens function claimUnusedTokens( address beneficiary ) external onlyAirdropManager { require( block.timestamp > redeemDeadline, "Tokens can still be redeemed" ); uint256 unusedTokens = token.balanceOf(address(this)); require(unusedTokens > 0, "No tokens to claim"); require( token.transfer(beneficiary, unusedTokens), "Token transfer failed" ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol) pragma solidity ^0.8.20; /** * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts. */ interface IVotes { /** * @dev The signature used has expired. */ error VotesExpiredSignature(uint256 expiry); /** * @dev Emitted when an account changes their delegate. */ event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /** * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units. */ event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes); /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) external view returns (uint256); /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. */ function getPastVotes(address account, uint256 timepoint) external view returns (uint256); /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. */ function getPastTotalSupply(uint256 timepoint) external view returns (uint256); /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) external view returns (address); /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) external; /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol) pragma solidity ^0.8.20; import {IERC5805} from "../../interfaces/IERC5805.sol"; import {Context} from "../../utils/Context.sol"; import {Nonces} from "../../utils/Nonces.sol"; import {EIP712} from "../../utils/cryptography/EIP712.sol"; import {Checkpoints} from "../../utils/structs/Checkpoints.sol"; import {SafeCast} from "../../utils/math/SafeCast.sol"; import {ECDSA} from "../../utils/cryptography/ECDSA.sol"; import {Time} from "../../utils/types/Time.sol"; /** * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of * "representative" that will pool delegated voting units from different accounts and can then use it to vote in * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative. * * This contract is often combined with a token contract such that voting units correspond to token units. For an * example, see {ERC721Votes}. * * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the * cost of this history tracking optional. * * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the * previous example, it would be included in {ERC721-_update}). */ abstract contract Votes is Context, EIP712, Nonces, IERC5805 { using Checkpoints for Checkpoints.Trace208; bytes32 private constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); mapping(address account => address) private _delegatee; mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints; Checkpoints.Trace208 private _totalCheckpoints; /** * @dev The clock was incorrectly modified. */ error ERC6372InconsistentClock(); /** * @dev Lookup to future votes is not available. */ error ERC5805FutureLookup(uint256 timepoint, uint48 clock); /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match. */ function clock() public view virtual returns (uint48) { return Time.blockNumber(); } /** * @dev Machine-readable description of the clock as specified in EIP-6372. */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() public view virtual returns (string memory) { // Check that the clock was not modified if (clock() != Time.blockNumber()) { revert ERC6372InconsistentClock(); } return "mode=blocknumber&from=default"; } /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) public view virtual returns (uint256) { return _delegateCheckpoints[account].latest(); } /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) { uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) { uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the current total supply of votes. */ function _getTotalSupply() internal view virtual returns (uint256) { return _totalCheckpoints.latest(); } /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) public view virtual returns (address) { return _delegatee[account]; } /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) public virtual { address account = _msgSender(); _delegate(account, delegatee); } /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > expiry) { revert VotesExpiredSignature(expiry); } address signer = ECDSA.recover( _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))), v, r, s ); _useCheckedNonce(signer, nonce); _delegate(signer, delegatee); } /** * @dev Delegate all of `account`'s voting units to `delegatee`. * * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}. */ function _delegate(address account, address delegatee) internal virtual { address oldDelegate = delegates(account); _delegatee[account] = delegatee; emit DelegateChanged(account, oldDelegate, delegatee); _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account)); } /** * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to` * should be zero. Total supply of voting units will be adjusted with mints and burns. */ function _transferVotingUnits(address from, address to, uint256 amount) internal virtual { if (from == address(0)) { _push(_totalCheckpoints, _add, SafeCast.toUint208(amount)); } if (to == address(0)) { _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount)); } _moveDelegateVotes(delegates(from), delegates(to), amount); } /** * @dev Moves delegated votes from one delegate to another. */ function _moveDelegateVotes(address from, address to, uint256 amount) private { if (from != to && amount > 0) { if (from != address(0)) { (uint256 oldValue, uint256 newValue) = _push( _delegateCheckpoints[from], _subtract, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(from, oldValue, newValue); } if (to != address(0)) { (uint256 oldValue, uint256 newValue) = _push( _delegateCheckpoints[to], _add, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(to, oldValue, newValue); } } } /** * @dev Get number of checkpoints for `account`. */ function _numCheckpoints(address account) internal view virtual returns (uint32) { return SafeCast.toUint32(_delegateCheckpoints[account].length()); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function _checkpoints( address account, uint32 pos ) internal view virtual returns (Checkpoints.Checkpoint208 memory) { return _delegateCheckpoints[account].at(pos); } function _push( Checkpoints.Trace208 storage store, function(uint208, uint208) view returns (uint208) op, uint208 delta ) private returns (uint208, uint208) { return store.push(clock(), op(store.latest(), delta)); } function _add(uint208 a, uint208 b) private pure returns (uint208) { return a + b; } function _subtract(uint208 a, uint208 b) private pure returns (uint208) { return a - b; } /** * @dev Must return the voting units held by an account. */ function _getVotingUnits(address) internal view virtual returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol) pragma solidity ^0.8.20; import {IVotes} from "../governance/utils/IVotes.sol"; import {IERC6372} from "./IERC6372.sol"; interface IERC5805 is IERC6372, IVotes {}
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol) pragma solidity ^0.8.20; interface IERC6372 { /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting). */ function clock() external view returns (uint48); /** * @dev Description of the clock */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol) pragma solidity ^0.8.20; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { /** * @dev A clone instance deployment failed. */ error ERC1167FailedCreateClone(); /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(0, 0x09, 0x37) } if (instance == address(0)) { revert ERC1167FailedCreateClone(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(0, 0x09, 0x37, salt) } if (instance == address(0)) { revert ERC1167FailedCreateClone(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := keccak256(add(ptr, 0x43), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol) pragma solidity ^0.8.20; import {ERC20} from "../ERC20.sol"; import {Votes} from "../../../governance/utils/Votes.sol"; import {Checkpoints} from "../../../utils/structs/Checkpoints.sol"; /** * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's, * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1. * * NOTE: This contract does not provide interface compatibility with Compound's COMP token. * * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting * power can be queried through the public accessors {getVotes} and {getPastVotes}. * * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked. */ abstract contract ERC20Votes is ERC20, Votes { /** * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing. */ error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap); /** * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1). * * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256, * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if * additional logic requires it. When resolving override conflicts on this function, the minimum should be * returned. */ function _maxSupply() internal view virtual returns (uint256) { return type(uint208).max; } /** * @dev Move voting power when tokens are transferred. * * Emits a {IVotes-DelegateVotesChanged} event. */ function _update(address from, address to, uint256 value) internal virtual override { super._update(from, to, value); if (from == address(0)) { uint256 supply = totalSupply(); uint256 cap = _maxSupply(); if (supply > cap) { revert ERC20ExceededSafeSupply(supply, cap); } } _transferVotingUnits(from, to, value); } /** * @dev Returns the voting units of an `account`. * * WARNING: Overriding this function may compromise the internal vote accounting. * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change. */ function _getVotingUnits(address account) internal view virtual override returns (uint256) { return balanceOf(account); } /** * @dev Get number of checkpoints for `account`. */ function numCheckpoints(address account) public view virtual returns (uint32) { return _numCheckpoints(account); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) { return _checkpoints(account, pos); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { bool private _paused; /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.20; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Sorts the pair (a, b) and hashes the result. */ function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol) // This file was procedurally generated from scripts/generate/templates/Checkpoints.js. pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; /** * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in * time, and later looking up past values by block number. See {Votes} as an example. * * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new * checkpoint for the current transaction block using the {push} function. */ library Checkpoints { /** * @dev A value was attempted to be inserted on a past checkpoint. */ error CheckpointUnorderedInsertion(); struct Trace224 { Checkpoint224[] _checkpoints; } struct Checkpoint224 { uint32 _key; uint224 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the * library. */ function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace224 storage self) internal view returns (uint224) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace224 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint224 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint224({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint224({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint224[] storage self, uint256 pos ) private pure returns (Checkpoint224 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace208 { Checkpoint208[] _checkpoints; } struct Checkpoint208 { uint48 _key; uint208 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the * library. */ function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace208 storage self) internal view returns (uint208) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace208 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint208 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint208({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint208({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint208[] storage self, uint256 pos ) private pure returns (Checkpoint208 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace160 { Checkpoint160[] _checkpoints; } struct Checkpoint160 { uint96 _key; uint160 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the * library. */ function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace160 storage self) internal view returns (uint160) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace160 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint160 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint160({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint160({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint160[] storage self, uint256 pos ) private pure returns (Checkpoint160 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.22 <0.9.0; import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { ERC20Votes } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol"; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { Pausable } from "@openzeppelin/contracts/utils/Pausable.sol"; /// @title Shutter Token contract /// @author Daniel Dimitrov - @compojoom, Fred Lührs - @fredo contract ShutterToken is ERC20Votes, Pausable, Ownable { // Custom errors error NotPaused(); error TransferToTokenContract(); error TransferWhilePaused(); error AlreadyInitialized(); error NotInitialized(); bool private initialized = false; /// @dev Will mint 1 billion tokens to the owner and pause the contract constructor( address owner ) ERC20("Shutter Token", "SHU") EIP712("ShutterToken", "1.0.0") Ownable(owner) { // Contract is paused by default _pause(); } function initialize( address newOwner, address airdropContract, uint airdropContractBalance ) public virtual onlyOwner { if (initialized) revert AlreadyInitialized(); initialized = true; // "ether" is used here to get 18 decimals uint256 tokensForDeployer = 100_000 ether; uint256 tokensForAirdropContract = airdropContractBalance; uint256 tokensForNewOwner = _maxSupply() - tokensForDeployer - tokensForAirdropContract; _mint(newOwner, tokensForNewOwner); _mint(airdropContract, tokensForAirdropContract); // Give deployer some tokens _mint(msg.sender, tokensForDeployer); // Transfer ownership _transferOwnership(newOwner); } function _maxSupply() internal pure override returns (uint256) { return 1_000_000_000 ether; } /// @notice Unpauses all token transfers. function unpause() public virtual onlyOwner { if (!initialized) revert NotInitialized(); if (!paused()) revert NotPaused(); _unpause(); } /// @dev See {ERC20-_update} /// @param from The account that is sending the tokens /// @param to The account that should receive the tokens /// @param amount Amount of tokens that should be transferred function _update( address from, address to, uint256 amount ) internal virtual override(ERC20Votes) { super._update(from, to, amount); if (to == address(this)) revert TransferToTokenContract(); if (paused() && owner() != _msgSender()) revert TransferWhilePaused(); } }
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.22 <0.9.0; import { ERC20Votes } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol"; import { VestingLibrary } from "./libraries/VestingLibrary.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /// @title Vesting contract for single account /// Original contract - https://github.com/safe-global/safe-token/blob/main/contracts/VestingPool.sol /// @author Daniel Dimitrov - @compojoom, Fred Lührs - @fredo contract VestingPool { event AddedVesting(bytes32 indexed id); event ClaimedVesting(bytes32 indexed id, address indexed beneficiary); event PausedVesting(bytes32 indexed id); event UnpausedVesting(bytes32 indexed id); event CancelledVesting(bytes32 indexed id); bool public initialised; address public owner; address public token; address public immutable sptToken; address public poolManager; uint256 public totalTokensInVesting; mapping(bytes32 => VestingLibrary.Vesting) public vestings; modifier onlyPoolManager() { require( msg.sender == poolManager, "Can only be called by pool manager" ); _; } modifier onlyOwner() { require(msg.sender == owner, "Can only be claimed by vesting owner"); _; } // solhint-disable-next-line no-empty-blocks constructor(address _sptToken) { sptToken = _sptToken; // don't do anything else here to allow usage of proxy contracts. } /// @notice Initialize the vesting pool /// @dev This can only be called once /// @param _token The token that should be used for the vesting /// @param _poolManager The manager of this vesting pool (e.g. the address that can call `addVesting`) /// @param _owner The owner of this vesting pool (e.g. the address that can call `delegateTokens`) function initialize( address _token, address _poolManager, address _owner ) public { require(!initialised, "The contract has already been initialised."); require(_token != address(0), "Invalid token account"); require(_poolManager != address(0), "Invalid pool manager account"); require(_owner != address(0), "Invalid account"); initialised = true; token = _token; poolManager = _poolManager; owner = _owner; } function delegateTokens(address delegatee) external onlyOwner { ERC20Votes(token).delegate(delegatee); } /// @notice Create a vesting on this pool for `account`. /// @dev This can only be called by the pool manager /// @dev It is required that the pool has enough tokens available /// @param curveType Type of the curve that should be used for the vesting /// @param managed Boolean that indicates if the vesting can be managed by the pool manager /// @param durationWeeks The duration of the vesting in weeks /// @param startDate The date when the vesting should be started (can be in the past) /// @param amount Amount of tokens that should be vested in atoms /// @param initialUnlock Amount of tokens that should be unlocked immediately /// @return vestingId The id of the created vesting function addVesting( uint8 curveType, bool managed, uint16 durationWeeks, uint64 startDate, uint128 amount, uint128 initialUnlock, bool requiresSPT ) public virtual onlyPoolManager returns (bytes32) { return _addVesting( curveType, managed, durationWeeks, startDate, amount, initialUnlock, requiresSPT ); } /// @notice Calculate the amount of tokens available for new vestings. /// @dev This value changes when more tokens are deposited to this contract /// @return Amount of tokens that can be used for new vestings. function tokensAvailableForVesting() public view virtual returns (uint256) { return ERC20Votes(token).balanceOf(address(this)) - totalTokensInVesting; } /// @notice Create a vesting on this pool for `account`. /// @dev It is required that the pool has enough tokens available /// @dev Account cannot be zero address /// @param curveType Type of the curve that should be used for the vesting /// @param managed Boolean that indicates if the vesting can be managed by the pool manager /// @param durationWeeks The duration of the vesting in weeks /// @param startDate The date when the vesting should be started (can be in the past) /// @param amount Amount of tokens that should be vested in atoms /// @param vestingId The id of the created vesting function _addVesting( uint8 curveType, bool managed, uint16 durationWeeks, uint64 startDate, uint128 amount, uint128 initialUnlock, bool requiresSPT ) internal returns (bytes32 vestingId) { require(curveType < 2, "Invalid vesting curve"); vestingId = VestingLibrary.vestingHash( owner, curveType, managed, durationWeeks, startDate, amount, initialUnlock, requiresSPT ); require(vestings[vestingId].amount == 0, "Vesting id already used"); // Check that enough tokens are available for the new vesting uint256 availableTokens = tokensAvailableForVesting(); require(availableTokens >= amount, "Not enough tokens available"); // Mark tokens for this vesting in use totalTokensInVesting += amount; vestings[vestingId] = VestingLibrary.Vesting({ curveType: curveType, managed: managed, durationWeeks: durationWeeks, startDate: startDate, amount: amount, amountClaimed: 0, pausingDate: 0, cancelled: false, initialUnlock: initialUnlock, requiresSPT: requiresSPT }); emit AddedVesting(vestingId); } /// @notice Claim `tokensToClaim` tokens from vesting `vestingId` and transfer them to the `beneficiary`. /// @dev This can only be called by the owner of the vesting /// @dev Beneficiary cannot be the 0-address /// @dev This will trigger a transfer of tokens /// @param vestingId Id of the vesting from which the tokens should be claimed /// @param beneficiary Account that should receive the claimed tokens /// @param tokensToClaim Amount of tokens to claim in atoms or max uint128 to claim all available function claimVestedTokens( bytes32 vestingId, address beneficiary, uint128 tokensToClaim ) public { VestingLibrary.Vesting storage vesting = vestings[vestingId]; require(vesting.amount != 0, "Vesting not found"); uint128 tokensClaimed = updateClaimedTokens( vestingId, beneficiary, tokensToClaim ); if(vesting.requiresSPT) { require( IERC20(sptToken).transferFrom(msg.sender, address(this), tokensClaimed), "SPT transfer failed" ); } require( ERC20Votes(token).transfer(beneficiary, tokensClaimed), "Token transfer failed" ); } /// @notice Update `amountClaimed` on vesting `vestingId` by `tokensToClaim` tokens. /// @dev This can only be called by the owner of the vesting /// @dev Beneficiary cannot be the 0-address /// @dev This will only update the internal state and NOT trigger the transfer of tokens. /// @param vestingId Id of the vesting from which the tokens should be claimed /// @param beneficiary Account that should receive the claimed tokens /// @param tokensToClaim Amount of tokens to claim in atoms or max uint128 to claim all available /// @param tokensClaimed Amount of tokens that have been newly claimed by calling this method function updateClaimedTokens( bytes32 vestingId, address beneficiary, uint128 tokensToClaim ) internal onlyOwner returns (uint128 tokensClaimed) { require(beneficiary != address(0), "Cannot claim to 0-address"); VestingLibrary.Vesting storage vesting = vestings[vestingId]; // Calculate how many tokens can be claimed uint128 availableClaim = _calculateVestedAmount(vesting) - vesting.amountClaimed; // If max uint128 is used, claim all available tokens. tokensClaimed = tokensToClaim == type(uint128).max ? availableClaim : tokensToClaim; require( tokensClaimed <= availableClaim, "Trying to claim too many tokens" ); // Adjust how many tokens are locked in vesting totalTokensInVesting -= tokensClaimed; vesting.amountClaimed += tokensClaimed; emit ClaimedVesting(vestingId, beneficiary); } /// @notice Cancel vesting `vestingId`. /// @dev This can only be called by the pool manager /// @dev Only manageable vestings can be cancelled /// @param vestingId Id of the vesting that should be cancelled function cancelVesting(bytes32 vestingId) public onlyPoolManager { VestingLibrary.Vesting storage vesting = vestings[vestingId]; require(vesting.amount != 0, "Vesting not found"); require(vesting.managed, "Only managed vestings can be cancelled"); require(!vesting.cancelled, "Vesting already cancelled"); bool isFutureVesting = block.timestamp <= vesting.startDate; // If vesting is not already paused it will be paused // Pausing date should not be reset else tokens of the initial pause can be claimed if (vesting.pausingDate == 0) { // pausingDate should always be larger or equal to startDate vesting.pausingDate = isFutureVesting ? vesting.startDate : uint64(block.timestamp); } // Vesting is cancelled, therefore tokens that are not vested yet, will be added back to the pool uint128 unusedToken = isFutureVesting ? vesting.amount : vesting.amount - _calculateVestedAmount(vesting); totalTokensInVesting -= unusedToken; // Vesting is set to cancelled and therefore disallows unpausing vesting.cancelled = true; emit CancelledVesting(vestingId); } /// @notice Pause vesting `vestingId`. /// @dev This can only be called by the pool manager /// @dev Only manageable vestings can be paused /// @param vestingId Id of the vesting that should be paused function pauseVesting(bytes32 vestingId) public onlyPoolManager { VestingLibrary.Vesting storage vesting = vestings[vestingId]; require(vesting.amount != 0, "Vesting not found"); require(vesting.managed, "Only managed vestings can be paused"); require(vesting.pausingDate == 0, "Vesting already paused"); // pausingDate should always be larger or equal to startDate vesting.pausingDate = block.timestamp <= vesting.startDate ? vesting.startDate : uint64(block.timestamp); emit PausedVesting(vestingId); } /// @notice Unpause vesting `vestingId`. /// @dev This can only be called by the pool manager /// @dev Only vestings that have not been cancelled can be unpaused /// @param vestingId Id of the vesting that should be unpaused function unpauseVesting(bytes32 vestingId) public onlyPoolManager { VestingLibrary.Vesting storage vesting = vestings[vestingId]; require(vesting.amount != 0, "Vesting not found"); require(vesting.pausingDate != 0, "Vesting is not paused"); require( !vesting.cancelled, "Vesting has been cancelled and cannot be unpaused" ); // Calculate the time the vesting was paused // If vesting has not started yet, then pausing date might be in the future uint64 timePaused = block.timestamp <= vesting.pausingDate ? 0 : uint64(block.timestamp) - vesting.pausingDate; // Offset the start date to create the effect of pausing vesting.startDate = vesting.startDate + timePaused; vesting.pausingDate = 0; emit UnpausedVesting(vestingId); } /// @notice Calculate vested and claimed token amounts for vesting `vestingId`. /// @dev This will revert if the vesting has not been started yet /// @param vestingId Id of the vesting for which to calculate the amounts /// @return vestedAmount The amount in atoms of tokens vested /// @return claimedAmount The amount in atoms of tokens claimed function calculateVestedAmount( bytes32 vestingId ) external view returns (uint128 vestedAmount, uint128 claimedAmount) { VestingLibrary.Vesting storage vesting = vestings[vestingId]; require(vesting.amount != 0, "Vesting not found"); vestedAmount = _calculateVestedAmount(vesting); claimedAmount = vesting.amountClaimed; } /// @notice Calculate vested token amount for vesting `vesting`. /// @dev This will revert if the vesting has not been started yet /// @param vesting The vesting for which to calculate the amounts /// @return vestedAmount The amount in atoms of tokens vested function _calculateVestedAmount( VestingLibrary.Vesting storage vesting ) internal view returns (uint128 vestedAmount) { require(vesting.startDate <= block.timestamp, "Vesting not active yet"); // Convert vesting duration to seconds uint64 durationSeconds = uint64(vesting.durationWeeks) * 7 * 24 * 60 * 60; // If contract is paused use the pausing date to calculate amount uint64 vestedSeconds = vesting.pausingDate > 0 ? vesting.pausingDate - vesting.startDate : uint64(block.timestamp) - vesting.startDate; if (vestedSeconds >= durationSeconds) { // If vesting time is longer than duration everything has been vested vestedAmount = vesting.amount; } else if (vesting.curveType == 0) { // Linear vesting vestedAmount = calculateLinear( vesting.amount - vesting.initialUnlock, vestedSeconds, durationSeconds ) + vesting.initialUnlock; } else if (vesting.curveType == 1) { // Exponential vesting vestedAmount = calculateExponential( vesting.amount - vesting.initialUnlock, vestedSeconds, durationSeconds ) + vesting.initialUnlock; } else { // This is unreachable because it is not possible to add a vesting with an invalid curve type revert("Invalid curve type"); } } /// @notice Calculate vested token amount on a linear curve. /// @dev Calculate vested amount on linear curve: targetAmount * elapsedTime / totalTime /// @param targetAmount Amount of tokens that is being vested /// @param elapsedTime Time that has elapsed for the vesting /// @param totalTime Duration of the vesting /// @return Tokens that have been vested on a linear curve function calculateLinear( uint128 targetAmount, uint64 elapsedTime, uint64 totalTime ) internal pure returns (uint128) { // Calculate vested amount on linear curve: targetAmount * elapsedTime / totalTime uint256 amount = (uint256(targetAmount) * uint256(elapsedTime)) / uint256(totalTime); require(amount <= type(uint128).max, "Overflow in curve calculation"); return uint128(amount); } /// @notice Calculate vested token amount on an exponential curve. /// @dev Calculate vested amount on exponential curve: targetAmount * elapsedTime^2 / totalTime^2 /// @param targetAmount Amount of tokens that is being vested /// @param elapsedTime Time that has elapsed for the vesting /// @param totalTime Duration of the vesting /// @return Tokens that have been vested on an exponential curve function calculateExponential( uint128 targetAmount, uint64 elapsedTime, uint64 totalTime ) internal pure returns (uint128) { // Calculate vested amount on exponential curve: targetAmount * elapsedTime^2 / totalTime^2 uint256 amount = (uint256(targetAmount) * uint256(elapsedTime) * uint256(elapsedTime)) / (uint256(totalTime) * uint256(totalTime)); require(amount <= type(uint128).max, "Overflow in curve calculation"); return uint128(amount); } }
/// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.22 <0.9.0; import { Clones } from "@openzeppelin/contracts/proxy/Clones.sol"; import { VestingPool } from "./VestingPool.sol"; import { ModuleManager } from "./interfaces/ModuleManager.sol"; import { ShutterToken } from "./ShutterToken.sol"; /// @title Vesting Pool Manager /// @author Daniel Dimitrov - @compojoom, Fred Lührs - @fredo contract VestingPoolManager { // Mapping of user address to vesting pool address mapping(address => address) private userToVestingPool; // Address of the vesting pool implementation address public immutable vestingPoolImplementation; ShutterToken public immutable token; address public immutable dao; modifier onlyDao() { require(msg.sender == dao, "Can only be called by pool manager"); _; } constructor( address _token, address _vestingPoolImplementation, address _dao ) { token = ShutterToken(_token); vestingPoolImplementation = _vestingPoolImplementation; dao = _dao; } /// @notice Creates a vesting pool for the user /// @param user The user for which the vesting pool should be created function addVestingPool(address user) private returns (address) { require(user != address(0), "Invalid user address"); require( userToVestingPool[user] == address(0), "Vesting pool already exists for the user" ); address vestingPool = Clones.clone(vestingPoolImplementation); VestingPool(vestingPool).initialize( address(token), address(this), user ); userToVestingPool[user] = vestingPool; return vestingPool; } /// @notice Get the vesting pool for the user or revert if it does not exist /// @param user The user for which the vesting pool address should be returned /// @return The vesting pool address for the user function getVestingPool(address user) public view returns (address) { address vestingPool = userToVestingPool[user]; require(vestingPool != address(0), "Vesting pool does not exist"); return vestingPool; } /// @notice Add a vesting to the vesting pool of the user /// @param account The user for which the vesting should be added /// @param curveType Type of the curve that should be used for the vesting /// @param managed Whether the vesting should be managed or not /// @param durationWeeks The duration of the vesting in weeks /// @param startDate The date when the vesting should be started (can be in the past) /// @param amount Amount of tokens that should be vested in wei /// @param initialUnlock Amount of tokens that should be unlocked initially in wei /// @return The id of the vesting that was created function addVesting( address account, uint8 curveType, bool managed, uint16 durationWeeks, uint64 startDate, uint128 amount, uint128 initialUnlock, bool requiresSPT ) external returns (bytes32) { address vestingPool = userToVestingPool[account]; if (vestingPool == address(0)) { vestingPool = addVestingPool(account); } if (token.paused()) { transferViaModule(account, amount); } else { token.transferFrom(msg.sender, vestingPool, amount); } return VestingPool(vestingPool).addVesting( curveType, managed, durationWeeks, startDate, amount, initialUnlock, requiresSPT ); } /// @notice If the token is paused, this will transfer the tokens via to the /// user's pool by using a Safe module transaction function transferViaModule(address account, uint128 amount) private { address vestingPool = getVestingPool(account); // Build transfer data to call token contract via the pool manager bytes memory transferData = abi.encodeWithSignature( "transferFrom(address,address,uint256)", msg.sender, vestingPool, amount ); // Trigger transfer of tokens from this pool to the beneficiary via the pool manager as a module transaction require( ModuleManager(dao).execTransactionFromModule( address(token), 0, transferData, 0 ), "Module transaction failed" ); } }
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.22 <0.9.0; interface ModuleManager { /// @notice Allows a module to execute a Safe transaction. /// @dev The implementation of the interface might require that the module is enabled (e.g. for the Safe contracts via enableModule) and could revert otherwise /// @param to Destination address of module transaction. /// @param value Ether value of module transaction. /// @param data Data payload of module transaction. /// @param operation Operation type of module transaction. /// @param success Indicates if the Safe transaction was executed successfully or not function execTransactionFromModule( address to, uint256 value, bytes memory data, uint8 operation ) external returns (bool success); }
/// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.22 <0.9.0; library VestingLibrary { bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = keccak256("EIP712Domain(string name,string version)"); bytes32 private constant VESTING_TYPEHASH = keccak256( "Vesting(address owner,uint8 curveType,bool managed,uint16 durationWeeks,uint64 startDate,uint128 amount,uint128 initialUnlock,bool requiresSPT)" ); // Sane limits based on: https://eips.ethereum.org/EIPS/eip-1985 // amountClaimed should always be equal to or less than amount // pausingDate should always be equal to or greater than startDate struct Vesting { // First storage slot uint128 initialUnlock; // 16 bytes -> Max 3.4e20 tokens (including decimals) uint8 curveType; // 1 byte -> Max 256 different curve types bool managed; // 1 byte uint16 durationWeeks; // 2 bytes -> Max 65536 weeks ~ 1260 years uint64 startDate; // 8 bytes -> Works until year 292278994, but not before 1970 // Second storage slot uint128 amount; // 16 bytes -> Max 3.4e20 tokens (including decimals) uint128 amountClaimed; // 16 bytes -> Max 3.4e20 tokens (including decimals) // Third storage slot uint64 pausingDate; // 8 bytes -> Works until year 292278994, but not before 1970 bool cancelled; // 1 byte bool requiresSPT; // 1 byte } /// @notice Calculate the id for a vesting based on its parameters. /// @param owner The owner for which the vesting was created /// @param curveType Type of the curve that is used for the vesting /// @param managed Indicator if the vesting is managed by the pool manager /// @param durationWeeks The duration of the vesting in weeks /// @param startDate The date when the vesting started (can be in the future) /// @param amount Amount of tokens that are vested in atoms /// @param initialUnlock Amount of tokens that are unlocked immediately in atoms /// @return vestingId Id of a vesting based on its parameters function vestingHash( address owner, uint8 curveType, bool managed, uint16 durationWeeks, uint64 startDate, uint128 amount, uint128 initialUnlock, bool requiresSPT ) external pure returns (bytes32 vestingId) { bytes32 domainSeparator = keccak256( abi.encode(DOMAIN_SEPARATOR_TYPEHASH, "VestingLibrary", "1.0") ); bytes32 vestingDataHash = keccak256( abi.encode( VESTING_TYPEHASH, owner, curveType, managed, durationWeeks, startDate, amount, initialUnlock, requiresSPT ) ); vestingId = keccak256( abi.encodePacked( bytes1(0x19), bytes1(0x01), domainSeparator, vestingDataHash ) ); } }
{ "evmVersion": "paris", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": false, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_manager","type":"address"},{"internalType":"uint64","name":"_redeemDeadline","type":"uint64"},{"internalType":"address","name":"_vestingPoolManager","type":"address"},{"internalType":"bytes32","name":"_root","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"id","type":"bytes32"},{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"RedeemedVesting","type":"event"},{"inputs":[],"name":"airdropManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"beneficiary","type":"address"}],"name":"claimUnusedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"curveType","type":"uint8"},{"internalType":"uint16","name":"durationWeeks","type":"uint16"},{"internalType":"uint64","name":"startDate","type":"uint64"},{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"initialUnlock","type":"uint128"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"bool","name":"requiresSPT","type":"bool"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"redeemDeadline","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"root","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract ShutterToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestingPoolManager","outputs":[{"internalType":"contract VestingPoolManager","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60e06040523480156200001157600080fd5b50604051620017213803806200172183398181016040528101906200003791906200028f565b428367ffffffffffffffff161162000086576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016200007d906200039e565b60405180910390fd5b6000801b8103620000ce576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620000c59062000410565b60405180910390fd5b8267ffffffffffffffff1660808167ffffffffffffffff16815250508473ffffffffffffffffffffffffffffffffffffffff1660a08173ffffffffffffffffffffffffffffffffffffffff16815250508373ffffffffffffffffffffffffffffffffffffffff1660c08173ffffffffffffffffffffffffffffffffffffffff168152505081600160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555080600081905550505050505062000432565b600080fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000620001d782620001aa565b9050919050565b620001e981620001ca565b8114620001f557600080fd5b50565b6000815190506200020981620001de565b92915050565b600067ffffffffffffffff82169050919050565b6200022e816200020f565b81146200023a57600080fd5b50565b6000815190506200024e8162000223565b92915050565b6000819050919050565b620002698162000254565b81146200027557600080fd5b50565b60008151905062000289816200025e565b92915050565b600080600080600060a08688031215620002ae57620002ad620001a5565b5b6000620002be88828901620001f8565b9550506020620002d188828901620001f8565b9450506040620002e4888289016200023d565b9350506060620002f788828901620001f8565b92505060806200030a8882890162000278565b9150509295509295909350565b600082825260208201905092915050565b7f52656465656d20646561646c696e652073686f756c6420626520696e2074686560008201527f2066757475726500000000000000000000000000000000000000000000000000602082015250565b60006200038660278362000317565b9150620003938262000328565b604082019050919050565b60006020820190508181036000830152620003b98162000377565b9050919050565b7f537461746520726f6f742073686f756c64206265207365740000000000000000600082015250565b6000620003f860188362000317565b91506200040582620003c0565b602082019050919050565b600060208201905081810360008301526200042b81620003e9565b9050919050565b60805160a05160c0516112876200049a6000396000818161027a015281816104cb01526105130152600081816101e60152818161029e0152818161060f015281816106ee01526107fb015260008181610152015281816104ef01526105a101526112876000f3fe608060405234801561001057600080fd5b506004361061007d5760003560e01c8063a27c7a021161005b578063a27c7a02146100da578063ebf0c717146100f6578063fb6adc8214610114578063fc0c546a146101325761007d565b80631ad043a714610082578063661c27a81461009e5780638899f311146100bc575b600080fd5b61009c60048036038101906100979190610a68565b610150565b005b6100a66104c9565b6040516100b39190610b6b565b60405180910390f35b6100c46104ed565b6040516100d19190610b95565b60405180910390f35b6100f460048036038101906100ef9190610bdc565b610511565b005b6100fe6107cd565b60405161010b9190610c22565b60405180910390f35b61011c6107d3565b6040516101299190610c9c565b60405180910390f35b61013a6107f9565b6040516101479190610cd8565b60405180910390f35b7f000000000000000000000000000000000000000000000000000000000000000067ffffffffffffffff164211156101bd576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016101b490610d76565b60405180910390fd5b6000600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16635c975abb6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561024f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102739190610dab565b1561029c577f000000000000000000000000000000000000000000000000000000000000000090505b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663095ea7b382886040518363ffffffff1660e01b81526004016102f7929190610e13565b6020604051808303816000875af1158015610316573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061033a9190610dab565b506000600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663321f67f1338c60008d8d8d8d8b6040518963ffffffff1660e01b81526004016103a7989796959493929190610e78565b6020604051808303816000875af11580156103c6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103ea9190610f22565b90503373ffffffffffffffffffffffffffffffffffffffff16817f7cd091e2ff3f9fb5d2af5b8ff0f594b6963db44e143fd471a132b649535f123660405160405180910390a361047e858580806020026020016040519081016040528093929190818152602001838360200280828437600081840152601f19601f820116905080830192505050505050506000548361081d565b6104bd576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104b490610f9b565b60405180910390fd5b50505050505050505050565b7f000000000000000000000000000000000000000000000000000000000000000081565b7f000000000000000000000000000000000000000000000000000000000000000081565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461059f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016105969061102d565b60405180910390fd5b7f000000000000000000000000000000000000000000000000000000000000000067ffffffffffffffff16421161060b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161060290611099565b60405180910390fd5b60007f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016106669190610b6b565b602060405180830381865afa158015610683573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106a791906110e5565b9050600081116106ec576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106e39061115e565b60405180910390fd5b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663a9059cbb83836040518363ffffffff1660e01b815260040161074792919061118d565b6020604051808303816000875af1158015610766573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061078a9190610dab565b6107c9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016107c090611202565b60405180910390fd5b5050565b60005481565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b7f000000000000000000000000000000000000000000000000000000000000000081565b60008261082a8584610834565b1490509392505050565b60008082905060005b84518110156108795761086a8286838151811061085d5761085c611222565b5b6020026020010151610884565b9150808060010191505061083d565b508091505092915050565b600081831061089c5761089782846108af565b6108a7565b6108a683836108af565b5b905092915050565b600082600052816020526040600020905092915050565b600080fd5b600080fd5b600060ff82169050919050565b6108e6816108d0565b81146108f157600080fd5b50565b600081359050610903816108dd565b92915050565b600061ffff82169050919050565b61092081610909565b811461092b57600080fd5b50565b60008135905061093d81610917565b92915050565b600067ffffffffffffffff82169050919050565b61096081610943565b811461096b57600080fd5b50565b60008135905061097d81610957565b92915050565b60006fffffffffffffffffffffffffffffffff82169050919050565b6109a881610983565b81146109b357600080fd5b50565b6000813590506109c58161099f565b92915050565b600080fd5b600080fd5b600080fd5b60008083601f8401126109f0576109ef6109cb565b5b8235905067ffffffffffffffff811115610a0d57610a0c6109d0565b5b602083019150836020820283011115610a2957610a286109d5565b5b9250929050565b60008115159050919050565b610a4581610a30565b8114610a5057600080fd5b50565b600081359050610a6281610a3c565b92915050565b60008060008060008060008060e0898b031215610a8857610a876108c6565b5b6000610a968b828c016108f4565b9850506020610aa78b828c0161092e565b9750506040610ab88b828c0161096e565b9650506060610ac98b828c016109b6565b9550506080610ada8b828c016109b6565b94505060a089013567ffffffffffffffff811115610afb57610afa6108cb565b5b610b078b828c016109da565b935093505060c0610b1a8b828c01610a53565b9150509295985092959890939650565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000610b5582610b2a565b9050919050565b610b6581610b4a565b82525050565b6000602082019050610b806000830184610b5c565b92915050565b610b8f81610943565b82525050565b6000602082019050610baa6000830184610b86565b92915050565b610bb981610b4a565b8114610bc457600080fd5b50565b600081359050610bd681610bb0565b92915050565b600060208284031215610bf257610bf16108c6565b5b6000610c0084828501610bc7565b91505092915050565b6000819050919050565b610c1c81610c09565b82525050565b6000602082019050610c376000830184610c13565b92915050565b6000819050919050565b6000610c62610c5d610c5884610b2a565b610c3d565b610b2a565b9050919050565b6000610c7482610c47565b9050919050565b6000610c8682610c69565b9050919050565b610c9681610c7b565b82525050565b6000602082019050610cb16000830184610c8d565b92915050565b6000610cc282610c69565b9050919050565b610cd281610cb7565b82525050565b6000602082019050610ced6000830184610cc9565b92915050565b600082825260208201905092915050565b7f446561646c696e6520746f2072656465656d2076657374696e6720686173206260008201527f65656e2065786365656465640000000000000000000000000000000000000000602082015250565b6000610d60602c83610cf3565b9150610d6b82610d04565b604082019050919050565b60006020820190508181036000830152610d8f81610d53565b9050919050565b600081519050610da581610a3c565b92915050565b600060208284031215610dc157610dc06108c6565b5b6000610dcf84828501610d96565b91505092915050565b6000819050919050565b6000610dfd610df8610df384610983565b610c3d565b610dd8565b9050919050565b610e0d81610de2565b82525050565b6000604082019050610e286000830185610b5c565b610e356020830184610e04565b9392505050565b610e45816108d0565b82525050565b610e5481610a30565b82525050565b610e6381610909565b82525050565b610e7281610983565b82525050565b600061010082019050610e8e600083018b610b5c565b610e9b602083018a610e3c565b610ea86040830189610e4b565b610eb56060830188610e5a565b610ec26080830187610b86565b610ecf60a0830186610e69565b610edc60c0830185610e69565b610ee960e0830184610e4b565b9998505050505050505050565b610eff81610c09565b8114610f0a57600080fd5b50565b600081519050610f1c81610ef6565b92915050565b600060208284031215610f3857610f376108c6565b5b6000610f4684828501610f0d565b91505092915050565b7f496e76616c6964206d65726b6c652070726f6f66000000000000000000000000600082015250565b6000610f85601483610cf3565b9150610f9082610f4f565b602082019050919050565b60006020820190508181036000830152610fb481610f78565b9050919050565b7f43616e206f6e6c792062652063616c6c656420627920706f6f6c206d616e616760008201527f6572000000000000000000000000000000000000000000000000000000000000602082015250565b6000611017602283610cf3565b915061102282610fbb565b604082019050919050565b600060208201905081810360008301526110468161100a565b9050919050565b7f546f6b656e732063616e207374696c6c2062652072656465656d656400000000600082015250565b6000611083601c83610cf3565b915061108e8261104d565b602082019050919050565b600060208201905081810360008301526110b281611076565b9050919050565b6110c281610dd8565b81146110cd57600080fd5b50565b6000815190506110df816110b9565b92915050565b6000602082840312156110fb576110fa6108c6565b5b6000611109848285016110d0565b91505092915050565b7f4e6f20746f6b656e7320746f20636c61696d0000000000000000000000000000600082015250565b6000611148601283610cf3565b915061115382611112565b602082019050919050565b600060208201905081810360008301526111778161113b565b9050919050565b61118781610dd8565b82525050565b60006040820190506111a26000830185610b5c565b6111af602083018461117e565b9392505050565b7f546f6b656e207472616e73666572206661696c65640000000000000000000000600082015250565b60006111ec601583610cf3565b91506111f7826111b6565b602082019050919050565b6000602082019050818103600083015261121b816111df565b9050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea264697066735822122051f1461315c031c9d6bcd674683cc5739b2d7ae3c8d7fc4a7a614a2084974bd864736f6c63430008160033000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd700000000000000000000000036bd3044ab68f600f6d3e081056f34f2a58432c40000000000000000000000000000000000000000000000000000000066946040000000000000000000000000d724dbe7e230e400fe7390885e16957ec246d71607ad1b3aa5ce0e596eeef606c53ba868ba435b052a6b11e7aa7a55a5b6f6b02a
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061007d5760003560e01c8063a27c7a021161005b578063a27c7a02146100da578063ebf0c717146100f6578063fb6adc8214610114578063fc0c546a146101325761007d565b80631ad043a714610082578063661c27a81461009e5780638899f311146100bc575b600080fd5b61009c60048036038101906100979190610a68565b610150565b005b6100a66104c9565b6040516100b39190610b6b565b60405180910390f35b6100c46104ed565b6040516100d19190610b95565b60405180910390f35b6100f460048036038101906100ef9190610bdc565b610511565b005b6100fe6107cd565b60405161010b9190610c22565b60405180910390f35b61011c6107d3565b6040516101299190610c9c565b60405180910390f35b61013a6107f9565b6040516101479190610cd8565b60405180910390f35b7f000000000000000000000000000000000000000000000000000000006694604067ffffffffffffffff164211156101bd576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016101b490610d76565b60405180910390fd5b6000600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690507f000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd773ffffffffffffffffffffffffffffffffffffffff16635c975abb6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561024f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102739190610dab565b1561029c577f00000000000000000000000036bd3044ab68f600f6d3e081056f34f2a58432c490505b7f000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd773ffffffffffffffffffffffffffffffffffffffff1663095ea7b382886040518363ffffffff1660e01b81526004016102f7929190610e13565b6020604051808303816000875af1158015610316573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061033a9190610dab565b506000600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663321f67f1338c60008d8d8d8d8b6040518963ffffffff1660e01b81526004016103a7989796959493929190610e78565b6020604051808303816000875af11580156103c6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103ea9190610f22565b90503373ffffffffffffffffffffffffffffffffffffffff16817f7cd091e2ff3f9fb5d2af5b8ff0f594b6963db44e143fd471a132b649535f123660405160405180910390a361047e858580806020026020016040519081016040528093929190818152602001838360200280828437600081840152601f19601f820116905080830192505050505050506000548361081d565b6104bd576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104b490610f9b565b60405180910390fd5b50505050505050505050565b7f00000000000000000000000036bd3044ab68f600f6d3e081056f34f2a58432c481565b7f000000000000000000000000000000000000000000000000000000006694604081565b7f00000000000000000000000036bd3044ab68f600f6d3e081056f34f2a58432c473ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461059f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016105969061102d565b60405180910390fd5b7f000000000000000000000000000000000000000000000000000000006694604067ffffffffffffffff16421161060b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161060290611099565b60405180910390fd5b60007f000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd773ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016106669190610b6b565b602060405180830381865afa158015610683573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106a791906110e5565b9050600081116106ec576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106e39061115e565b60405180910390fd5b7f000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd773ffffffffffffffffffffffffffffffffffffffff1663a9059cbb83836040518363ffffffff1660e01b815260040161074792919061118d565b6020604051808303816000875af1158015610766573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061078a9190610dab565b6107c9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016107c090611202565b60405180910390fd5b5050565b60005481565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b7f000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd781565b60008261082a8584610834565b1490509392505050565b60008082905060005b84518110156108795761086a8286838151811061085d5761085c611222565b5b6020026020010151610884565b9150808060010191505061083d565b508091505092915050565b600081831061089c5761089782846108af565b6108a7565b6108a683836108af565b5b905092915050565b600082600052816020526040600020905092915050565b600080fd5b600080fd5b600060ff82169050919050565b6108e6816108d0565b81146108f157600080fd5b50565b600081359050610903816108dd565b92915050565b600061ffff82169050919050565b61092081610909565b811461092b57600080fd5b50565b60008135905061093d81610917565b92915050565b600067ffffffffffffffff82169050919050565b61096081610943565b811461096b57600080fd5b50565b60008135905061097d81610957565b92915050565b60006fffffffffffffffffffffffffffffffff82169050919050565b6109a881610983565b81146109b357600080fd5b50565b6000813590506109c58161099f565b92915050565b600080fd5b600080fd5b600080fd5b60008083601f8401126109f0576109ef6109cb565b5b8235905067ffffffffffffffff811115610a0d57610a0c6109d0565b5b602083019150836020820283011115610a2957610a286109d5565b5b9250929050565b60008115159050919050565b610a4581610a30565b8114610a5057600080fd5b50565b600081359050610a6281610a3c565b92915050565b60008060008060008060008060e0898b031215610a8857610a876108c6565b5b6000610a968b828c016108f4565b9850506020610aa78b828c0161092e565b9750506040610ab88b828c0161096e565b9650506060610ac98b828c016109b6565b9550506080610ada8b828c016109b6565b94505060a089013567ffffffffffffffff811115610afb57610afa6108cb565b5b610b078b828c016109da565b935093505060c0610b1a8b828c01610a53565b9150509295985092959890939650565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000610b5582610b2a565b9050919050565b610b6581610b4a565b82525050565b6000602082019050610b806000830184610b5c565b92915050565b610b8f81610943565b82525050565b6000602082019050610baa6000830184610b86565b92915050565b610bb981610b4a565b8114610bc457600080fd5b50565b600081359050610bd681610bb0565b92915050565b600060208284031215610bf257610bf16108c6565b5b6000610c0084828501610bc7565b91505092915050565b6000819050919050565b610c1c81610c09565b82525050565b6000602082019050610c376000830184610c13565b92915050565b6000819050919050565b6000610c62610c5d610c5884610b2a565b610c3d565b610b2a565b9050919050565b6000610c7482610c47565b9050919050565b6000610c8682610c69565b9050919050565b610c9681610c7b565b82525050565b6000602082019050610cb16000830184610c8d565b92915050565b6000610cc282610c69565b9050919050565b610cd281610cb7565b82525050565b6000602082019050610ced6000830184610cc9565b92915050565b600082825260208201905092915050565b7f446561646c696e6520746f2072656465656d2076657374696e6720686173206260008201527f65656e2065786365656465640000000000000000000000000000000000000000602082015250565b6000610d60602c83610cf3565b9150610d6b82610d04565b604082019050919050565b60006020820190508181036000830152610d8f81610d53565b9050919050565b600081519050610da581610a3c565b92915050565b600060208284031215610dc157610dc06108c6565b5b6000610dcf84828501610d96565b91505092915050565b6000819050919050565b6000610dfd610df8610df384610983565b610c3d565b610dd8565b9050919050565b610e0d81610de2565b82525050565b6000604082019050610e286000830185610b5c565b610e356020830184610e04565b9392505050565b610e45816108d0565b82525050565b610e5481610a30565b82525050565b610e6381610909565b82525050565b610e7281610983565b82525050565b600061010082019050610e8e600083018b610b5c565b610e9b602083018a610e3c565b610ea86040830189610e4b565b610eb56060830188610e5a565b610ec26080830187610b86565b610ecf60a0830186610e69565b610edc60c0830185610e69565b610ee960e0830184610e4b565b9998505050505050505050565b610eff81610c09565b8114610f0a57600080fd5b50565b600081519050610f1c81610ef6565b92915050565b600060208284031215610f3857610f376108c6565b5b6000610f4684828501610f0d565b91505092915050565b7f496e76616c6964206d65726b6c652070726f6f66000000000000000000000000600082015250565b6000610f85601483610cf3565b9150610f9082610f4f565b602082019050919050565b60006020820190508181036000830152610fb481610f78565b9050919050565b7f43616e206f6e6c792062652063616c6c656420627920706f6f6c206d616e616760008201527f6572000000000000000000000000000000000000000000000000000000000000602082015250565b6000611017602283610cf3565b915061102282610fbb565b604082019050919050565b600060208201905081810360008301526110468161100a565b9050919050565b7f546f6b656e732063616e207374696c6c2062652072656465656d656400000000600082015250565b6000611083601c83610cf3565b915061108e8261104d565b602082019050919050565b600060208201905081810360008301526110b281611076565b9050919050565b6110c281610dd8565b81146110cd57600080fd5b50565b6000815190506110df816110b9565b92915050565b6000602082840312156110fb576110fa6108c6565b5b6000611109848285016110d0565b91505092915050565b7f4e6f20746f6b656e7320746f20636c61696d0000000000000000000000000000600082015250565b6000611148601283610cf3565b915061115382611112565b602082019050919050565b600060208201905081810360008301526111778161113b565b9050919050565b61118781610dd8565b82525050565b60006040820190506111a26000830185610b5c565b6111af602083018461117e565b9392505050565b7f546f6b656e207472616e73666572206661696c65640000000000000000000000600082015250565b60006111ec601583610cf3565b91506111f7826111b6565b602082019050919050565b6000602082019050818103600083015261121b816111df565b9050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea264697066735822122051f1461315c031c9d6bcd674683cc5739b2d7ae3c8d7fc4a7a614a2084974bd864736f6c63430008160033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd700000000000000000000000036bd3044ab68f600f6d3e081056f34f2a58432c40000000000000000000000000000000000000000000000000000000066946040000000000000000000000000d724dbe7e230e400fe7390885e16957ec246d71607ad1b3aa5ce0e596eeef606c53ba868ba435b052a6b11e7aa7a55a5b6f6b02a
-----Decoded View---------------
Arg [0] : _token (address): 0xe485E2f1bab389C08721B291f6b59780feC83Fd7
Arg [1] : _manager (address): 0x36bD3044ab68f600f6d3e081056F34f2a58432c4
Arg [2] : _redeemDeadline (uint64): 1721000000
Arg [3] : _vestingPoolManager (address): 0xD724DBe7e230E400fe7390885e16957Ec246d716
Arg [4] : _root (bytes32): 0x07ad1b3aa5ce0e596eeef606c53ba868ba435b052a6b11e7aa7a55a5b6f6b02a
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 000000000000000000000000e485e2f1bab389c08721b291f6b59780fec83fd7
Arg [1] : 00000000000000000000000036bd3044ab68f600f6d3e081056f34f2a58432c4
Arg [2] : 0000000000000000000000000000000000000000000000000000000066946040
Arg [3] : 000000000000000000000000d724dbe7e230e400fe7390885e16957ec246d716
Arg [4] : 07ad1b3aa5ce0e596eeef606c53ba868ba435b052a6b11e7aa7a55a5b6f6b02a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.