ETH Price: $3,350.23 (-0.51%)

Contract

0x4bBA9B6B49f3dFA6615f079E9d66B0AA68B04A4d
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
0x61026061157048672022-10-08 17:28:35776 days ago1665250115IN
 Create: Math
0 ETH0.0021272511.52150938

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Math

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 20 runs

Other Settings:
default evmVersion
File 1 of 2 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;

import "abdk-libraries-solidity/ABDKMath64x64.sol";

library Math {
    function min(uint256 a, uint256 b) external pure returns (uint256) {
        if (a > b) return b;
        return a;
    }

    function max(uint256 a, uint256 b) external pure returns (uint256) {
        if (a > b) return a;
        return b;
    }

    function logX64(uint256 x) external pure returns (int128) {
        return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
    }
}

File 2 of 2 : ABDKMath64x64.sol
// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.8.0;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library ABDKMath64x64 {
  /*
   * Minimum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

  /*
   * Maximum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

  /**
   * Convert signed 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromInt (int256 x) internal pure returns (int128) {
    unchecked {
      require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (x << 64);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 64-bit integer number
   * rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64-bit integer number
   */
  function toInt (int128 x) internal pure returns (int64) {
    unchecked {
      return int64 (x >> 64);
    }
  }

  /**
   * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromUInt (uint256 x) internal pure returns (int128) {
    unchecked {
      require (x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (int256 (x << 64));
    }
  }

  /**
   * Convert signed 64.64 fixed point number into unsigned 64-bit integer
   * number rounding down.  Revert on underflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return unsigned 64-bit integer number
   */
  function toUInt (int128 x) internal pure returns (uint64) {
    unchecked {
      require (x >= 0);
      return uint64 (uint128 (x >> 64));
    }
  }

  /**
   * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
   * number rounding down.  Revert on overflow.
   *
   * @param x signed 128.128-bin fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function from128x128 (int256 x) internal pure returns (int128) {
    unchecked {
      int256 result = x >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 128.128 fixed point
   * number.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 128.128 fixed point number
   */
  function to128x128 (int128 x) internal pure returns (int256) {
    unchecked {
      return int256 (x) << 64;
    }
  }

  /**
   * Calculate x + y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function add (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) + y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x - y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sub (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) - y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding down.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function mul (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) * y >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
   * number and y is signed 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y signed 256-bit integer number
   * @return signed 256-bit integer number
   */
  function muli (int128 x, int256 y) internal pure returns (int256) {
    unchecked {
      if (x == MIN_64x64) {
        require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
          y <= 0x1000000000000000000000000000000000000000000000000);
        return -y << 63;
      } else {
        bool negativeResult = false;
        if (x < 0) {
          x = -x;
          negativeResult = true;
        }
        if (y < 0) {
          y = -y; // We rely on overflow behavior here
          negativeResult = !negativeResult;
        }
        uint256 absoluteResult = mulu (x, uint256 (y));
        if (negativeResult) {
          require (absoluteResult <=
            0x8000000000000000000000000000000000000000000000000000000000000000);
          return -int256 (absoluteResult); // We rely on overflow behavior here
        } else {
          require (absoluteResult <=
            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          return int256 (absoluteResult);
        }
      }
    }
  }

  /**
   * Calculate x * y rounding down, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y unsigned 256-bit integer number
   * @return unsigned 256-bit integer number
   */
  function mulu (int128 x, uint256 y) internal pure returns (uint256) {
    unchecked {
      if (y == 0) return 0;

      require (x >= 0);

      uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
      uint256 hi = uint256 (int256 (x)) * (y >> 128);

      require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      hi <<= 64;

      require (hi <=
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
      return hi + lo;
    }
  }

  /**
   * Calculate x / y rounding towards zero.  Revert on overflow or when y is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function div (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      int256 result = (int256 (x) << 64) / y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are signed 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x signed 256-bit integer number
   * @param y signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divi (int256 x, int256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);

      bool negativeResult = false;
      if (x < 0) {
        x = -x; // We rely on overflow behavior here
        negativeResult = true;
      }
      if (y < 0) {
        y = -y; // We rely on overflow behavior here
        negativeResult = !negativeResult;
      }
      uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
      if (negativeResult) {
        require (absoluteResult <= 0x80000000000000000000000000000000);
        return -int128 (absoluteResult); // We rely on overflow behavior here
      } else {
        require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int128 (absoluteResult); // We rely on overflow behavior here
      }
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divu (uint256 x, uint256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      uint128 result = divuu (x, y);
      require (result <= uint128 (MAX_64x64));
      return int128 (result);
    }
  }

  /**
   * Calculate -x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function neg (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return -x;
    }
  }

  /**
   * Calculate |x|.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function abs (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return x < 0 ? -x : x;
    }
  }

  /**
   * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function inv (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != 0);
      int256 result = int256 (0x100000000000000000000000000000000) / x;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function avg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      return int128 ((int256 (x) + int256 (y)) >> 1);
    }
  }

  /**
   * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
   * Revert on overflow or in case x * y is negative.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function gavg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 m = int256 (x) * int256 (y);
      require (m >= 0);
      require (m <
          0x4000000000000000000000000000000000000000000000000000000000000000);
      return int128 (sqrtu (uint256 (m)));
    }
  }

  /**
   * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y uint256 value
   * @return signed 64.64-bit fixed point number
   */
  function pow (int128 x, uint256 y) internal pure returns (int128) {
    unchecked {
      bool negative = x < 0 && y & 1 == 1;

      uint256 absX = uint128 (x < 0 ? -x : x);
      uint256 absResult;
      absResult = 0x100000000000000000000000000000000;

      if (absX <= 0x10000000000000000) {
        absX <<= 63;
        while (y != 0) {
          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x2 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x4 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x8 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          y >>= 4;
        }

        absResult >>= 64;
      } else {
        uint256 absXShift = 63;
        if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
        if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
        if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
        if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
        if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
        if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }

        uint256 resultShift = 0;
        while (y != 0) {
          require (absXShift < 64);

          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
            resultShift += absXShift;
            if (absResult > 0x100000000000000000000000000000000) {
              absResult >>= 1;
              resultShift += 1;
            }
          }
          absX = absX * absX >> 127;
          absXShift <<= 1;
          if (absX >= 0x100000000000000000000000000000000) {
              absX >>= 1;
              absXShift += 1;
          }

          y >>= 1;
        }

        require (resultShift < 64);
        absResult >>= 64 - resultShift;
      }
      int256 result = negative ? -int256 (absResult) : int256 (absResult);
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down.  Revert if x < 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sqrt (int128 x) internal pure returns (int128) {
    unchecked {
      require (x >= 0);
      return int128 (sqrtu (uint256 (int256 (x)) << 64));
    }
  }

  /**
   * Calculate binary logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function log_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      int256 msb = 0;
      int256 xc = x;
      if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
      if (xc >= 0x100) { xc >>= 8; msb += 8; }
      if (xc >= 0x10) { xc >>= 4; msb += 4; }
      if (xc >= 0x4) { xc >>= 2; msb += 2; }
      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

      int256 result = msb - 64 << 64;
      uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
      for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
        ux *= ux;
        uint256 b = ux >> 255;
        ux >>= 127 + b;
        result += bit * int256 (b);
      }

      return int128 (result);
    }
  }

  /**
   * Calculate natural logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function ln (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      return int128 (int256 (
          uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
    }
  }

  /**
   * Calculate binary exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      uint256 result = 0x80000000000000000000000000000000;

      if (x & 0x8000000000000000 > 0)
        result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
      if (x & 0x4000000000000000 > 0)
        result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
      if (x & 0x2000000000000000 > 0)
        result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
      if (x & 0x1000000000000000 > 0)
        result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
      if (x & 0x800000000000000 > 0)
        result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
      if (x & 0x400000000000000 > 0)
        result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
      if (x & 0x200000000000000 > 0)
        result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
      if (x & 0x100000000000000 > 0)
        result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
      if (x & 0x80000000000000 > 0)
        result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
      if (x & 0x40000000000000 > 0)
        result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
      if (x & 0x20000000000000 > 0)
        result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
      if (x & 0x10000000000000 > 0)
        result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
      if (x & 0x8000000000000 > 0)
        result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
      if (x & 0x4000000000000 > 0)
        result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
      if (x & 0x2000000000000 > 0)
        result = result * 0x1000162E525EE054754457D5995292026 >> 128;
      if (x & 0x1000000000000 > 0)
        result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
      if (x & 0x800000000000 > 0)
        result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
      if (x & 0x400000000000 > 0)
        result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
      if (x & 0x200000000000 > 0)
        result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
      if (x & 0x100000000000 > 0)
        result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
      if (x & 0x80000000000 > 0)
        result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
      if (x & 0x40000000000 > 0)
        result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
      if (x & 0x20000000000 > 0)
        result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
      if (x & 0x10000000000 > 0)
        result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
      if (x & 0x8000000000 > 0)
        result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
      if (x & 0x4000000000 > 0)
        result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
      if (x & 0x2000000000 > 0)
        result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
      if (x & 0x1000000000 > 0)
        result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
      if (x & 0x800000000 > 0)
        result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
      if (x & 0x400000000 > 0)
        result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
      if (x & 0x200000000 > 0)
        result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
      if (x & 0x100000000 > 0)
        result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
      if (x & 0x80000000 > 0)
        result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
      if (x & 0x40000000 > 0)
        result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
      if (x & 0x20000000 > 0)
        result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
      if (x & 0x10000000 > 0)
        result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
      if (x & 0x8000000 > 0)
        result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
      if (x & 0x4000000 > 0)
        result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
      if (x & 0x2000000 > 0)
        result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
      if (x & 0x1000000 > 0)
        result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
      if (x & 0x800000 > 0)
        result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
      if (x & 0x400000 > 0)
        result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
      if (x & 0x200000 > 0)
        result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
      if (x & 0x100000 > 0)
        result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
      if (x & 0x80000 > 0)
        result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
      if (x & 0x40000 > 0)
        result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
      if (x & 0x20000 > 0)
        result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
      if (x & 0x10000 > 0)
        result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
      if (x & 0x8000 > 0)
        result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
      if (x & 0x4000 > 0)
        result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
      if (x & 0x2000 > 0)
        result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
      if (x & 0x1000 > 0)
        result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
      if (x & 0x800 > 0)
        result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
      if (x & 0x400 > 0)
        result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
      if (x & 0x200 > 0)
        result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
      if (x & 0x100 > 0)
        result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
      if (x & 0x80 > 0)
        result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
      if (x & 0x40 > 0)
        result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
      if (x & 0x20 > 0)
        result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
      if (x & 0x10 > 0)
        result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
      if (x & 0x8 > 0)
        result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
      if (x & 0x4 > 0)
        result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
      if (x & 0x2 > 0)
        result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
      if (x & 0x1 > 0)
        result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;

      result >>= uint256 (int256 (63 - (x >> 64)));
      require (result <= uint256 (int256 (MAX_64x64)));

      return int128 (int256 (result));
    }
  }

  /**
   * Calculate natural exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      return exp_2 (
          int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return unsigned 64.64-bit fixed point number
   */
  function divuu (uint256 x, uint256 y) private pure returns (uint128) {
    unchecked {
      require (y != 0);

      uint256 result;

      if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        result = (x << 64) / y;
      else {
        uint256 msb = 192;
        uint256 xc = x >> 192;
        if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
        if (xc >= 0x10000) { xc >>= 16; msb += 16; }
        if (xc >= 0x100) { xc >>= 8; msb += 8; }
        if (xc >= 0x10) { xc >>= 4; msb += 4; }
        if (xc >= 0x4) { xc >>= 2; msb += 2; }
        if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

        result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
        require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 hi = result * (y >> 128);
        uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 xh = x >> 192;
        uint256 xl = x << 64;

        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here
        lo = hi << 128;
        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here

        assert (xh == hi >> 128);

        result += xl / y;
      }

      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return uint128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
   * number.
   *
   * @param x unsigned 256-bit integer number
   * @return unsigned 128-bit integer number
   */
  function sqrtu (uint256 x) private pure returns (uint128) {
    unchecked {
      if (x == 0) return 0;
      else {
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
        if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
        if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
        if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
        if (xx >= 0x100) { xx >>= 8; r <<= 4; }
        if (xx >= 0x10) { xx >>= 4; r <<= 2; }
        if (xx >= 0x8) { r <<= 1; }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return uint128 (r < r1 ? r : r1);
      }
    }
  }
}

Settings
{
  "remappings": [],
  "optimizer": {
    "enabled": true,
    "runs": 20
  },
  "evmVersion": "london",
  "libraries": {},
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"logX64","outputs":[{"internalType":"int128","name":"","type":"int128"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"a","type":"uint256"},{"internalType":"uint256","name":"b","type":"uint256"}],"name":"max","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"a","type":"uint256"},{"internalType":"uint256","name":"b","type":"uint256"}],"name":"min","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"}]

61026061003a600b82828239805160001a60731461002d57634e487b7160e01b600052600060045260246000fd5b30600052607381538281f3fe730000000000000000000000000000000000000000301460806040526004361061004b5760003560e01c80634793dbab146100505780636d5433e61461007b5780637ae2b5c71461009c575b600080fd5b61006361005e3660046101ef565b6100af565b604051600f9190910b81526020015b60405180910390f35b61008e610089366004610208565b6100c8565b604051908152602001610072565b61008e6100aa366004610208565b6100df565b60006100c26100bd836100f7565b610115565b92915050565b6000818311156100d95750816100c2565b50919050565b6000818311156100f05750806100c2565b5090919050565b6000677fffffffffffffff82111561010e57600080fd5b5060401b90565b60008082600f0b1361012657600080fd5b6000600f83900b600160401b8112610140576040918201911d5b600160201b8112610153576020918201911d5b620100008112610165576010918201911d5b6101008112610176576008918201911d5b60108112610186576004918201911d5b60048112610196576002918201911d5b600281126101a5576001820191505b603f19820160401b600f85900b607f8490031b6001603f1b5b60008113156101e45790800260ff81901c8281029390930192607f011c9060011d6101be565b509095945050505050565b60006020828403121561020157600080fd5b5035919050565b6000806040838503121561021b57600080fd5b5050803592602090910135915056fea26469706673582212207419319e674b9b2537c5a65e512327beb1857bced82d9c8b58fff94bc0e8747664736f6c63430008110033

Deployed Bytecode

0x734bba9b6b49f3dfa6615f079e9d66b0aa68b04a4d301460806040526004361061004b5760003560e01c80634793dbab146100505780636d5433e61461007b5780637ae2b5c71461009c575b600080fd5b61006361005e3660046101ef565b6100af565b604051600f9190910b81526020015b60405180910390f35b61008e610089366004610208565b6100c8565b604051908152602001610072565b61008e6100aa366004610208565b6100df565b60006100c26100bd836100f7565b610115565b92915050565b6000818311156100d95750816100c2565b50919050565b6000818311156100f05750806100c2565b5090919050565b6000677fffffffffffffff82111561010e57600080fd5b5060401b90565b60008082600f0b1361012657600080fd5b6000600f83900b600160401b8112610140576040918201911d5b600160201b8112610153576020918201911d5b620100008112610165576010918201911d5b6101008112610176576008918201911d5b60108112610186576004918201911d5b60048112610196576002918201911d5b600281126101a5576001820191505b603f19820160401b600f85900b607f8490031b6001603f1b5b60008113156101e45790800260ff81901c8281029390930192607f011c9060011d6101be565b509095945050505050565b60006020828403121561020157600080fd5b5035919050565b6000806040838503121561021b57600080fd5b5050803592602090910135915056fea26469706673582212207419319e674b9b2537c5a65e512327beb1857bced82d9c8b58fff94bc0e8747664736f6c63430008110033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.