ETH Price: $3,435.74 (+4.10%)

Contract

0x7d648a11AE84487526b7474b6A2BC0BE3a299BBb
 

Overview

ETH Balance

0.000027159447685472 ETH

Eth Value

$0.09 (@ $3,435.74/ETH)
Transaction Hash
Method
Block
From
To
Execute182890532023-10-06 4:23:47414 days ago1696566227IN
0x7d648a11...E3a299BBb
0.00016221 ETH0.000230185.10351829
Execute179778142023-08-23 13:50:11458 days ago1692798611IN
0x7d648a11...E3a299BBb
0.00002735 ETH0.0010422826.05773793
Execute179687882023-08-22 7:33:35459 days ago1692689615IN
0x7d648a11...E3a299BBb
0 ETH0.0010884124.33889632
Execute179261032023-08-16 8:08:59465 days ago1692173339IN
0x7d648a11...E3a299BBb
0.00016437 ETH0.0056023516.95685815
Execute179258782023-08-16 7:23:35465 days ago1692170615IN
0x7d648a11...E3a299BBb
0.00008232 ETH0.0051230615.62867484
Execute179258332023-08-16 7:14:23465 days ago1692170063IN
0x7d648a11...E3a299BBb
0.0001644 ETH0.0065410419.79802533
Execute179239312023-08-16 0:51:11465 days ago1692147071IN
0x7d648a11...E3a299BBb
0.00002734 ETH0.0066420920.10385594
Execute179237892023-08-16 0:22:47465 days ago1692145367IN
0x7d648a11...E3a299BBb
0.00016405 ETH0.0068358120.69020582
Execute179234962023-08-15 23:23:47465 days ago1692141827IN
0x7d648a11...E3a299BBb
0.00002735 ETH0.0068639820.77547846
Execute179221492023-08-15 18:52:59465 days ago1692125579IN
0x7d648a11...E3a299BBb
0.00002718 ETH0.0147877244.75851629
Execute179212862023-08-15 15:59:11466 days ago1692115151IN
0x7d648a11...E3a299BBb
0.00016323 ETH0.0104544331.64281129
Execute179208242023-08-15 14:25:59466 days ago1692109559IN
0x7d648a11...E3a299BBb
0.00008146 ETH0.0097544529.27605039
Execute179187882023-08-15 7:35:35466 days ago1692084935IN
0x7d648a11...E3a299BBb
0.0001631 ETH0.0051895915.70809509
Execute179184202023-08-15 6:21:35466 days ago1692080495IN
0x7d648a11...E3a299BBb
0.00002716 ETH0.005529316.73575051
Execute179183002023-08-15 5:56:59466 days ago1692079019IN
0x7d648a11...E3a299BBb
0.00002718 ETH0.0042119612.74850826
Execute179182802023-08-15 5:52:59466 days ago1692078779IN
0x7d648a11...E3a299BBb
0.00002718 ETH0.0044467713.45920035
Execute179180342023-08-15 5:03:23466 days ago1692075803IN
0x7d648a11...E3a299BBb
0.000163 ETH0.0040050712.0208591
Execute179180272023-08-15 5:01:59466 days ago1692075719IN
0x7d648a11...E3a299BBb
0.00008149 ETH0.0038978511.69862644
Execute179180042023-08-15 4:57:23466 days ago1692075443IN
0x7d648a11...E3a299BBb
0.00002716 ETH0.0039616311.9912679
Execute179177592023-08-15 4:08:11466 days ago1692072491IN
0x7d648a11...E3a299BBb
0.00016284 ETH0.0044095613.34657876
Execute179177042023-08-15 3:57:11466 days ago1692071831IN
0x7d648a11...E3a299BBb
0.00016286 ETH0.0042624713.11533391
Execute179177002023-08-15 3:56:23466 days ago1692071783IN
0x7d648a11...E3a299BBb
0.00002714 ETH0.0046117313.9585014
Execute179176982023-08-15 3:55:59466 days ago1692071759IN
0x7d648a11...E3a299BBb
0.00016286 ETH0.0044635713.51054808
Execute179175372023-08-15 3:23:23466 days ago1692069803IN
0x7d648a11...E3a299BBb
0.00002714 ETH0.0048435614.6607174
Execute179173232023-08-15 2:40:23466 days ago1692067223IN
0x7d648a11...E3a299BBb
0.00016275 ETH0.0061781718.69969397
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
179261032023-08-16 8:08:59465 days ago1692173339
0x7d648a11...E3a299BBb
0.00016437 ETH
179258782023-08-16 7:23:35465 days ago1692170615
0x7d648a11...E3a299BBb
0.00008232 ETH
179258332023-08-16 7:14:23465 days ago1692170063
0x7d648a11...E3a299BBb
0.0001644 ETH
179239312023-08-16 0:51:11465 days ago1692147071
0x7d648a11...E3a299BBb
0.00002734 ETH
179237892023-08-16 0:22:47465 days ago1692145367
0x7d648a11...E3a299BBb
0.00016405 ETH
179234962023-08-15 23:23:47465 days ago1692141827
0x7d648a11...E3a299BBb
0.00002735 ETH
179221492023-08-15 18:52:59465 days ago1692125579
0x7d648a11...E3a299BBb
0.00002718 ETH
179212862023-08-15 15:59:11466 days ago1692115151
0x7d648a11...E3a299BBb
0.00016323 ETH
179208242023-08-15 14:25:59466 days ago1692109559
0x7d648a11...E3a299BBb
0.00008146 ETH
179187882023-08-15 7:35:35466 days ago1692084935
0x7d648a11...E3a299BBb
0.0001631 ETH
179184202023-08-15 6:21:35466 days ago1692080495
0x7d648a11...E3a299BBb
0.00002716 ETH
179183002023-08-15 5:56:59466 days ago1692079019
0x7d648a11...E3a299BBb
0.00002718 ETH
179182802023-08-15 5:52:59466 days ago1692078779
0x7d648a11...E3a299BBb
0.00002718 ETH
179180342023-08-15 5:03:23466 days ago1692075803
0x7d648a11...E3a299BBb
0.000163 ETH
179180272023-08-15 5:01:59466 days ago1692075719
0x7d648a11...E3a299BBb
0.00008149 ETH
179180042023-08-15 4:57:23466 days ago1692075443
0x7d648a11...E3a299BBb
0.00002716 ETH
179177592023-08-15 4:08:11466 days ago1692072491
0x7d648a11...E3a299BBb
0.00016284 ETH
179177042023-08-15 3:57:11466 days ago1692071831
0x7d648a11...E3a299BBb
0.00016286 ETH
179177002023-08-15 3:56:23466 days ago1692071783
0x7d648a11...E3a299BBb
0.00002714 ETH
179176982023-08-15 3:55:59466 days ago1692071759
0x7d648a11...E3a299BBb
0.00016286 ETH
179175372023-08-15 3:23:23466 days ago1692069803
0x7d648a11...E3a299BBb
0.00002714 ETH
179173232023-08-15 2:40:23466 days ago1692067223
0x7d648a11...E3a299BBb
0.00016275 ETH
179170172023-08-15 1:38:35466 days ago1692063515
0x7d648a11...E3a299BBb
0.00016261 ETH
179168932023-08-15 1:13:47466 days ago1692062027
0x7d648a11...E3a299BBb
0.00016257 ETH
179167192023-08-15 0:38:59466 days ago1692059939
0x7d648a11...E3a299BBb
0.00016267 ETH
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
FlexibleNonceForwarder

Compiler Version
v0.8.9+commit.e5eed63a

Optimization Enabled:
Yes with 100 runs

Other Settings:
default evmVersion
File 1 of 8 : FlexibleNonceForwarder.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {IForwarder} from "./interfaces/IForwarder.sol";

contract FlexibleNonceForwarder is IForwarder, EIP712, ReentrancyGuard {
    using ECDSA for bytes32;
    using Address for address payable;

    struct SigsForNonce {
        mapping(bytes => bool) sigs;
    }

    struct FlexibleNonce {
        uint256 currentNonce;
        uint256 block; // when this nonce was first used - used to age transactions
        mapping(uint256 => SigsForNonce) sigsForNonce;
    }

    bytes32 private constant _TYPEHASH =
        keccak256("ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data)");

    mapping(address => FlexibleNonce) private _nonces;

    uint256 private immutable _blockAgeTolerance;

    event ForwardResult(bool);

    /// The tx to be forwarded is not signed by the request sender.
    error FlexibleNonceForwarder__InvalidSigner(address signer, address expectedSigner);

    /// The tx to be forwarded has already been seen.
    error FlexibleNonceForwarder__TxAlreadySeen();

    /// The tx to be forwarded is too old.
    error FlexibleNonceForwarder__TxTooOld(uint256 blockNumber, uint256 blockAgeTolerance);

    constructor(uint256 blockAgeTolerance) EIP712("FlexibleNonceForwarder", "0.0.1") {
        _blockAgeTolerance = blockAgeTolerance;
    }

    function execute(
        ForwardRequest calldata req,
        bytes calldata signature
    ) external payable nonReentrant returns (bool, bytes memory) {
        _verifyFlexibleNonce(req, signature);
        _refundExcessValue(req);

        (bool success, bytes memory returndata) = req.to.call{gas: req.gas, value: req.value}(
            abi.encodePacked(req.data, req.from)
        );

        // Validate that the relayer has sent enough gas for the call.
        // See https://ronan.eth.limo/blog/ethereum-gas-dangers/
        if (gasleft() <= req.gas / 63) {
            // We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since
            // neither revert or assert consume all gas since Solidity 0.8.0
            // https://docs.soliditylang.org/en/v0.8.0/control-structures.html#panic-via-assert-and-error-via-require
            // solhint-disable-next-line no-inline-assembly
            assembly {
                invalid()
            }
        }

        emit ForwardResult(success);

        return (success, returndata);
    }

    function getNonce(address from) external view returns (uint256) {
        return _nonces[from].currentNonce;
    }

    function _verifyFlexibleNonce(ForwardRequest calldata req, bytes calldata signature) internal {
        address signer = _hashTypedDataV4(
            keccak256(abi.encode(_TYPEHASH, req.from, req.to, req.value, req.gas, req.nonce, keccak256(req.data)))
        ).recover(signature);

        if (signer != req.from) {
            revert FlexibleNonceForwarder__InvalidSigner(signer, req.from);
        }

        if (_nonces[req.from].currentNonce == req.nonce) {
            // request nonce is expected next nonce - increment the nonce, and we are done
            _nonces[req.from].currentNonce = req.nonce + 1;
            _nonces[req.from].block = block.number;
        } else {
            // request nonce is not expected next nonce - check if we have seen this signature before
            if (_nonces[req.from].sigsForNonce[req.nonce].sigs[signature]) {
                revert FlexibleNonceForwarder__TxAlreadySeen();
            }

            // check if the nonce is too old
            if (_nonces[req.from].block + _blockAgeTolerance < block.number) {
                revert FlexibleNonceForwarder__TxTooOld(_nonces[req.from].block, _blockAgeTolerance);
            }
        }

        // store the signature for this nonce to ensure no replay attacks
        _nonces[req.from].sigsForNonce[req.nonce].sigs[signature] = true;
    }

    function _refundExcessValue(ForwardRequest calldata req) internal {
        // Refund the excess value sent to the forwarder if the value inside the request is less than the value sent.
        if (msg.value > req.value) {
            payable(msg.sender).sendValue(msg.value - req.value);
        }
    }
}

File 2 of 8 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 3 of 8 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 4 of 8 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 5 of 8 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;
    address private immutable _CACHED_THIS;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        bytes32 hashedName = keccak256(bytes(name));
        bytes32 hashedVersion = keccak256(bytes(version));
        bytes32 typeHash = keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
        _CACHED_THIS = address(this);
        _TYPE_HASH = typeHash;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
        }
    }

    function _buildDomainSeparator(
        bytes32 typeHash,
        bytes32 nameHash,
        bytes32 versionHash
    ) private view returns (bytes32) {
        return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }
}

File 6 of 8 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

File 7 of 8 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 8 of 8 : IForwarder.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

pragma experimental ABIEncoderV2;

interface IForwarder {
    struct ForwardRequest {
        address from;
        address to;
        uint256 value;
        uint256 gas;
        uint256 nonce;
        bytes data;
    }

    function execute(
        ForwardRequest calldata req,
        bytes calldata signature
    ) external payable returns (bool, bytes memory);

    function getNonce(address from) external view returns (uint256);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 100
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"blockAgeTolerance","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"expectedSigner","type":"address"}],"name":"FlexibleNonceForwarder__InvalidSigner","type":"error"},{"inputs":[],"name":"FlexibleNonceForwarder__TxAlreadySeen","type":"error"},{"inputs":[{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"uint256","name":"blockAgeTolerance","type":"uint256"}],"name":"FlexibleNonceForwarder__TxTooOld","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"","type":"bool"}],"name":"ForwardResult","type":"event"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]

61016060405234801561001157600080fd5b50604051610fac380380610fac83398101604081905261003091610143565b604080518082018252601681527f466c657869626c654e6f6e6365466f7277617264657200000000000000000000602080830191825283518085019094526005845264302e302e3160d81b908401528151902060e08190527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc1991638118856101008190524660a0529192917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101268184846040805160208101859052908101839052606081018290524660808201523060a082015260009060c0016040516020818303038152906040528051906020012090509392505050565b6080523060c052610120525050600160005550506101405261015c565b60006020828403121561015557600080fd5b5051919050565b60805160a05160c05160e051610100516101205161014051610def6101bd600039600081816104db015261057601526000610882015260006108d1015260006108ac015260006108050152600061082f015260006108590152610def6000f3fe6080604052600436106100295760003560e01c80632d0335ab1461002e57806347153f8214610077575b600080fd5b34801561003a57600080fd5b50610064610049366004610b68565b6001600160a01b031660009081526001602052604090205490565b6040519081526020015b60405180910390f35b61008a610085366004610b98565b610098565b60405161006e929190610c67565b600060606100a46101d0565b6100af85858561022f565b6100b88561063b565b6000806100cb6040880160208901610b68565b6001600160a01b0316606088013560408901356100eb60a08b018b610ca3565b6100f860208d018d610b68565b60405160200161010a93929190610cea565b60408051601f198184030181529082905261012491610d10565b600060405180830381858888f193505050503d8060008114610162576040519150601f19603f3d011682016040523d82523d6000602084013e610167565b606091505b50909250905061017c603f6060890135610d42565b5a1161018457fe5b60405182151581527fed0603e97c834a591ced7b3c6ce727a087f9d1748098dc815b12a2516993d68c9060200160405180910390a190925090506101c86001600055565b935093915050565b600260005414156102285760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b6002600055565b600061034183838080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061033b92507fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48915061029e90506020890189610b68565b6102ae60408a0160208b01610b68565b60408a013560608b013560808c01356102ca60a08e018e610ca3565b6040516102d8929190610d64565b6040805191829003822060208301989098526001600160a01b0396871690820152949093166060850152608084019190915260a083015260c082015260e08101919091526101000160405160208183030381529060405280519060200120610662565b906106b6565b90506103506020850185610b68565b6001600160a01b0316816001600160a01b0316146103a257806103766020860186610b68565b604051635e4cf60960e11b81526001600160a01b0392831660048201529116602482015260440161021f565b6080840135600160006103b86020880188610b68565b6001600160a01b03168152602081019190915260400160002054141561044b576103e760808501356001610d74565b600160006103f86020880188610b68565b6001600160a01b03168152602080820192909252604001600090812092909255439160019161042990880188610b68565b6001600160a01b031681526020810191909152604001600020600101556105b8565b6001600061045c6020870187610b68565b6001600160a01b03166001600160a01b0316815260200190815260200160002060020160008560800135815260200190815260200160002060000183836040516104a7929190610d64565b9081526040519081900360200190205460ff16156104d857604051630c3294e760e41b815260040160405180910390fd5b437f00000000000000000000000000000000000000000000000000000000000000006001600061050b6020890189610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101546105399190610d74565b10156105b857600160006105506020870187610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101547f00000000000000000000000000000000000000000000000000000000000000006040516264f5c360e21b815260040161021f929190918252602082015260400190565b60018060006105ca6020880188610b68565b6001600160a01b03166001600160a01b031681526020019081526020016000206002016000866080013581526020019081526020016000206000018484604051610615929190610d64565b908152604051908190036020019020805491151560ff1990921691909117905550505050565b806040013534111561065f5761065f610658604083013534610d8c565b33906106da565b50565b60006106b061066f6107f8565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b92915050565b60008060006106c5858561091f565b915091506106d281610965565b509392505050565b8047101561072a5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e6365000000604482015260640161021f565b6000826001600160a01b03168260405160006040518083038185875af1925050503d8060008114610777576040519150601f19603f3d011682016040523d82523d6000602084013e61077c565b606091505b50509050806107f35760405162461bcd60e51b815260206004820152603a60248201527f416464726573733a20756e61626c6520746f2073656e642076616c75652c207260448201527f6563697069656e74206d61792068617665207265766572746564000000000000606482015260840161021f565b505050565b6000306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561085157507f000000000000000000000000000000000000000000000000000000000000000046145b1561087b57507f000000000000000000000000000000000000000000000000000000000000000090565b50604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091527f0000000000000000000000000000000000000000000000000000000000000000828401527f000000000000000000000000000000000000000000000000000000000000000060608301524660808301523060a0808401919091528351808403909101815260c0909201909252805191012090565b6000808251604114156109565760208301516040840151606085015160001a61094a87828585610aae565b9450945050505061095e565b506000905060025b9250929050565b600081600481111561097957610979610da3565b14156109825750565b600181600481111561099657610996610da3565b14156109df5760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b604482015260640161021f565b60028160048111156109f3576109f3610da3565b1415610a415760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161021f565b6003816004811115610a5557610a55610da3565b141561065f5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161021f565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b03831115610adb5750600090506003610b5f565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610b2f573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610b5857600060019250925050610b5f565b9150600090505b94509492505050565b600060208284031215610b7a57600080fd5b81356001600160a01b0381168114610b9157600080fd5b9392505050565b600080600060408486031215610bad57600080fd5b833567ffffffffffffffff80821115610bc557600080fd5b9085019060c08288031215610bd957600080fd5b90935060208501359080821115610bef57600080fd5b818601915086601f830112610c0357600080fd5b813581811115610c1257600080fd5b876020828501011115610c2457600080fd5b6020830194508093505050509250925092565b60005b83811015610c52578181015183820152602001610c3a565b83811115610c61576000848401525b50505050565b82151581526040602082015260008251806040840152610c8e816060850160208701610c37565b601f01601f1916919091016060019392505050565b6000808335601e19843603018112610cba57600080fd5b83018035915067ffffffffffffffff821115610cd557600080fd5b60200191503681900382131561095e57600080fd5b8284823760609190911b6bffffffffffffffffffffffff19169101908152601401919050565b60008251610d22818460208701610c37565b9190910192915050565b634e487b7160e01b600052601160045260246000fd5b600082610d5f57634e487b7160e01b600052601260045260246000fd5b500490565b8183823760009101908152919050565b60008219821115610d8757610d87610d2c565b500190565b600082821015610d9e57610d9e610d2c565b500390565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220a166df2e44440aa1a32880ff36af2010b3d568c81eb4a2844743077ecc44384a64736f6c634300080900330000000000000000000000000000000000000000000000000000000000000064

Deployed Bytecode

0x6080604052600436106100295760003560e01c80632d0335ab1461002e57806347153f8214610077575b600080fd5b34801561003a57600080fd5b50610064610049366004610b68565b6001600160a01b031660009081526001602052604090205490565b6040519081526020015b60405180910390f35b61008a610085366004610b98565b610098565b60405161006e929190610c67565b600060606100a46101d0565b6100af85858561022f565b6100b88561063b565b6000806100cb6040880160208901610b68565b6001600160a01b0316606088013560408901356100eb60a08b018b610ca3565b6100f860208d018d610b68565b60405160200161010a93929190610cea565b60408051601f198184030181529082905261012491610d10565b600060405180830381858888f193505050503d8060008114610162576040519150601f19603f3d011682016040523d82523d6000602084013e610167565b606091505b50909250905061017c603f6060890135610d42565b5a1161018457fe5b60405182151581527fed0603e97c834a591ced7b3c6ce727a087f9d1748098dc815b12a2516993d68c9060200160405180910390a190925090506101c86001600055565b935093915050565b600260005414156102285760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b6002600055565b600061034183838080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061033b92507fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48915061029e90506020890189610b68565b6102ae60408a0160208b01610b68565b60408a013560608b013560808c01356102ca60a08e018e610ca3565b6040516102d8929190610d64565b6040805191829003822060208301989098526001600160a01b0396871690820152949093166060850152608084019190915260a083015260c082015260e08101919091526101000160405160208183030381529060405280519060200120610662565b906106b6565b90506103506020850185610b68565b6001600160a01b0316816001600160a01b0316146103a257806103766020860186610b68565b604051635e4cf60960e11b81526001600160a01b0392831660048201529116602482015260440161021f565b6080840135600160006103b86020880188610b68565b6001600160a01b03168152602081019190915260400160002054141561044b576103e760808501356001610d74565b600160006103f86020880188610b68565b6001600160a01b03168152602080820192909252604001600090812092909255439160019161042990880188610b68565b6001600160a01b031681526020810191909152604001600020600101556105b8565b6001600061045c6020870187610b68565b6001600160a01b03166001600160a01b0316815260200190815260200160002060020160008560800135815260200190815260200160002060000183836040516104a7929190610d64565b9081526040519081900360200190205460ff16156104d857604051630c3294e760e41b815260040160405180910390fd5b437f00000000000000000000000000000000000000000000000000000000000000646001600061050b6020890189610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101546105399190610d74565b10156105b857600160006105506020870187610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101547f00000000000000000000000000000000000000000000000000000000000000646040516264f5c360e21b815260040161021f929190918252602082015260400190565b60018060006105ca6020880188610b68565b6001600160a01b03166001600160a01b031681526020019081526020016000206002016000866080013581526020019081526020016000206000018484604051610615929190610d64565b908152604051908190036020019020805491151560ff1990921691909117905550505050565b806040013534111561065f5761065f610658604083013534610d8c565b33906106da565b50565b60006106b061066f6107f8565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b92915050565b60008060006106c5858561091f565b915091506106d281610965565b509392505050565b8047101561072a5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e6365000000604482015260640161021f565b6000826001600160a01b03168260405160006040518083038185875af1925050503d8060008114610777576040519150601f19603f3d011682016040523d82523d6000602084013e61077c565b606091505b50509050806107f35760405162461bcd60e51b815260206004820152603a60248201527f416464726573733a20756e61626c6520746f2073656e642076616c75652c207260448201527f6563697069656e74206d61792068617665207265766572746564000000000000606482015260840161021f565b505050565b6000306001600160a01b037f0000000000000000000000007d648a11ae84487526b7474b6a2bc0be3a299bbb1614801561085157507f000000000000000000000000000000000000000000000000000000000000000146145b1561087b57507f9b92b7f43ecce1962bb3458d7411552d256dba0aab97468e83cabf5a2f932d4690565b50604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6020808301919091527f2a21b8fe1fc790149cfee97da04559e386c42eac4a692237c7facdce99714f24828401527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc19916381188560608301524660808301523060a0808401919091528351808403909101815260c0909201909252805191012090565b6000808251604114156109565760208301516040840151606085015160001a61094a87828585610aae565b9450945050505061095e565b506000905060025b9250929050565b600081600481111561097957610979610da3565b14156109825750565b600181600481111561099657610996610da3565b14156109df5760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b604482015260640161021f565b60028160048111156109f3576109f3610da3565b1415610a415760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161021f565b6003816004811115610a5557610a55610da3565b141561065f5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161021f565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b03831115610adb5750600090506003610b5f565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610b2f573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610b5857600060019250925050610b5f565b9150600090505b94509492505050565b600060208284031215610b7a57600080fd5b81356001600160a01b0381168114610b9157600080fd5b9392505050565b600080600060408486031215610bad57600080fd5b833567ffffffffffffffff80821115610bc557600080fd5b9085019060c08288031215610bd957600080fd5b90935060208501359080821115610bef57600080fd5b818601915086601f830112610c0357600080fd5b813581811115610c1257600080fd5b876020828501011115610c2457600080fd5b6020830194508093505050509250925092565b60005b83811015610c52578181015183820152602001610c3a565b83811115610c61576000848401525b50505050565b82151581526040602082015260008251806040840152610c8e816060850160208701610c37565b601f01601f1916919091016060019392505050565b6000808335601e19843603018112610cba57600080fd5b83018035915067ffffffffffffffff821115610cd557600080fd5b60200191503681900382131561095e57600080fd5b8284823760609190911b6bffffffffffffffffffffffff19169101908152601401919050565b60008251610d22818460208701610c37565b9190910192915050565b634e487b7160e01b600052601160045260246000fd5b600082610d5f57634e487b7160e01b600052601260045260246000fd5b500490565b8183823760009101908152919050565b60008219821115610d8757610d87610d2c565b500190565b600082821015610d9e57610d9e610d2c565b500390565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220a166df2e44440aa1a32880ff36af2010b3d568c81eb4a2844743077ecc44384a64736f6c63430008090033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000000000000000000000000000064

-----Decoded View---------------
Arg [0] : blockAgeTolerance (uint256): 100

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000064


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.