Overview
ETH Balance
0.000027159447685472 ETH
Eth Value
$0.09 (@ $3,435.74/ETH)More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 1,272 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Execute | 18289053 | 414 days ago | IN | 0.00016221 ETH | 0.00023018 | ||||
Execute | 17977814 | 458 days ago | IN | 0.00002735 ETH | 0.00104228 | ||||
Execute | 17968788 | 459 days ago | IN | 0 ETH | 0.00108841 | ||||
Execute | 17926103 | 465 days ago | IN | 0.00016437 ETH | 0.00560235 | ||||
Execute | 17925878 | 465 days ago | IN | 0.00008232 ETH | 0.00512306 | ||||
Execute | 17925833 | 465 days ago | IN | 0.0001644 ETH | 0.00654104 | ||||
Execute | 17923931 | 465 days ago | IN | 0.00002734 ETH | 0.00664209 | ||||
Execute | 17923789 | 465 days ago | IN | 0.00016405 ETH | 0.00683581 | ||||
Execute | 17923496 | 465 days ago | IN | 0.00002735 ETH | 0.00686398 | ||||
Execute | 17922149 | 465 days ago | IN | 0.00002718 ETH | 0.01478772 | ||||
Execute | 17921286 | 466 days ago | IN | 0.00016323 ETH | 0.01045443 | ||||
Execute | 17920824 | 466 days ago | IN | 0.00008146 ETH | 0.00975445 | ||||
Execute | 17918788 | 466 days ago | IN | 0.0001631 ETH | 0.00518959 | ||||
Execute | 17918420 | 466 days ago | IN | 0.00002716 ETH | 0.0055293 | ||||
Execute | 17918300 | 466 days ago | IN | 0.00002718 ETH | 0.00421196 | ||||
Execute | 17918280 | 466 days ago | IN | 0.00002718 ETH | 0.00444677 | ||||
Execute | 17918034 | 466 days ago | IN | 0.000163 ETH | 0.00400507 | ||||
Execute | 17918027 | 466 days ago | IN | 0.00008149 ETH | 0.00389785 | ||||
Execute | 17918004 | 466 days ago | IN | 0.00002716 ETH | 0.00396163 | ||||
Execute | 17917759 | 466 days ago | IN | 0.00016284 ETH | 0.00440956 | ||||
Execute | 17917704 | 466 days ago | IN | 0.00016286 ETH | 0.00426247 | ||||
Execute | 17917700 | 466 days ago | IN | 0.00002714 ETH | 0.00461173 | ||||
Execute | 17917698 | 466 days ago | IN | 0.00016286 ETH | 0.00446357 | ||||
Execute | 17917537 | 466 days ago | IN | 0.00002714 ETH | 0.00484356 | ||||
Execute | 17917323 | 466 days ago | IN | 0.00016275 ETH | 0.00617817 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
17926103 | 465 days ago | 0.00016437 ETH | ||||
17925878 | 465 days ago | 0.00008232 ETH | ||||
17925833 | 465 days ago | 0.0001644 ETH | ||||
17923931 | 465 days ago | 0.00002734 ETH | ||||
17923789 | 465 days ago | 0.00016405 ETH | ||||
17923496 | 465 days ago | 0.00002735 ETH | ||||
17922149 | 465 days ago | 0.00002718 ETH | ||||
17921286 | 466 days ago | 0.00016323 ETH | ||||
17920824 | 466 days ago | 0.00008146 ETH | ||||
17918788 | 466 days ago | 0.0001631 ETH | ||||
17918420 | 466 days ago | 0.00002716 ETH | ||||
17918300 | 466 days ago | 0.00002718 ETH | ||||
17918280 | 466 days ago | 0.00002718 ETH | ||||
17918034 | 466 days ago | 0.000163 ETH | ||||
17918027 | 466 days ago | 0.00008149 ETH | ||||
17918004 | 466 days ago | 0.00002716 ETH | ||||
17917759 | 466 days ago | 0.00016284 ETH | ||||
17917704 | 466 days ago | 0.00016286 ETH | ||||
17917700 | 466 days ago | 0.00002714 ETH | ||||
17917698 | 466 days ago | 0.00016286 ETH | ||||
17917537 | 466 days ago | 0.00002714 ETH | ||||
17917323 | 466 days ago | 0.00016275 ETH | ||||
17917017 | 466 days ago | 0.00016261 ETH | ||||
17916893 | 466 days ago | 0.00016257 ETH | ||||
17916719 | 466 days ago | 0.00016267 ETH |
Loading...
Loading
Contract Name:
FlexibleNonceForwarder
Compiler Version
v0.8.9+commit.e5eed63a
Optimization Enabled:
Yes with 100 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.9; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import {Address} from "@openzeppelin/contracts/utils/Address.sol"; import {IForwarder} from "./interfaces/IForwarder.sol"; contract FlexibleNonceForwarder is IForwarder, EIP712, ReentrancyGuard { using ECDSA for bytes32; using Address for address payable; struct SigsForNonce { mapping(bytes => bool) sigs; } struct FlexibleNonce { uint256 currentNonce; uint256 block; // when this nonce was first used - used to age transactions mapping(uint256 => SigsForNonce) sigsForNonce; } bytes32 private constant _TYPEHASH = keccak256("ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data)"); mapping(address => FlexibleNonce) private _nonces; uint256 private immutable _blockAgeTolerance; event ForwardResult(bool); /// The tx to be forwarded is not signed by the request sender. error FlexibleNonceForwarder__InvalidSigner(address signer, address expectedSigner); /// The tx to be forwarded has already been seen. error FlexibleNonceForwarder__TxAlreadySeen(); /// The tx to be forwarded is too old. error FlexibleNonceForwarder__TxTooOld(uint256 blockNumber, uint256 blockAgeTolerance); constructor(uint256 blockAgeTolerance) EIP712("FlexibleNonceForwarder", "0.0.1") { _blockAgeTolerance = blockAgeTolerance; } function execute( ForwardRequest calldata req, bytes calldata signature ) external payable nonReentrant returns (bool, bytes memory) { _verifyFlexibleNonce(req, signature); _refundExcessValue(req); (bool success, bytes memory returndata) = req.to.call{gas: req.gas, value: req.value}( abi.encodePacked(req.data, req.from) ); // Validate that the relayer has sent enough gas for the call. // See https://ronan.eth.limo/blog/ethereum-gas-dangers/ if (gasleft() <= req.gas / 63) { // We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since // neither revert or assert consume all gas since Solidity 0.8.0 // https://docs.soliditylang.org/en/v0.8.0/control-structures.html#panic-via-assert-and-error-via-require // solhint-disable-next-line no-inline-assembly assembly { invalid() } } emit ForwardResult(success); return (success, returndata); } function getNonce(address from) external view returns (uint256) { return _nonces[from].currentNonce; } function _verifyFlexibleNonce(ForwardRequest calldata req, bytes calldata signature) internal { address signer = _hashTypedDataV4( keccak256(abi.encode(_TYPEHASH, req.from, req.to, req.value, req.gas, req.nonce, keccak256(req.data))) ).recover(signature); if (signer != req.from) { revert FlexibleNonceForwarder__InvalidSigner(signer, req.from); } if (_nonces[req.from].currentNonce == req.nonce) { // request nonce is expected next nonce - increment the nonce, and we are done _nonces[req.from].currentNonce = req.nonce + 1; _nonces[req.from].block = block.number; } else { // request nonce is not expected next nonce - check if we have seen this signature before if (_nonces[req.from].sigsForNonce[req.nonce].sigs[signature]) { revert FlexibleNonceForwarder__TxAlreadySeen(); } // check if the nonce is too old if (_nonces[req.from].block + _blockAgeTolerance < block.number) { revert FlexibleNonceForwarder__TxTooOld(_nonces[req.from].block, _blockAgeTolerance); } } // store the signature for this nonce to ensure no replay attacks _nonces[req.from].sigsForNonce[req.nonce].sigs[signature] = true; } function _refundExcessValue(ForwardRequest calldata req) internal { // Refund the excess value sent to the forwarder if the value inside the request is less than the value sent. if (msg.value > req.value) { payable(msg.sender).sendValue(msg.value - req.value); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.0; import "./ECDSA.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _CACHED_DOMAIN_SEPARATOR; uint256 private immutable _CACHED_CHAIN_ID; address private immutable _CACHED_THIS; bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { bytes32 hashedName = keccak256(bytes(name)); bytes32 hashedVersion = keccak256(bytes(version)); bytes32 typeHash = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion); _CACHED_THIS = address(this); _TYPE_HASH = typeHash; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) { return _CACHED_DOMAIN_SEPARATOR; } else { return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION); } } function _buildDomainSeparator( bytes32 typeHash, bytes32 nameHash, bytes32 versionHash ) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.9; pragma experimental ABIEncoderV2; interface IForwarder { struct ForwardRequest { address from; address to; uint256 value; uint256 gas; uint256 nonce; bytes data; } function execute( ForwardRequest calldata req, bytes calldata signature ) external payable returns (bool, bytes memory); function getNonce(address from) external view returns (uint256); }
{ "optimizer": { "enabled": true, "runs": 100 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"uint256","name":"blockAgeTolerance","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"expectedSigner","type":"address"}],"name":"FlexibleNonceForwarder__InvalidSigner","type":"error"},{"inputs":[],"name":"FlexibleNonceForwarder__TxAlreadySeen","type":"error"},{"inputs":[{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"uint256","name":"blockAgeTolerance","type":"uint256"}],"name":"FlexibleNonceForwarder__TxTooOld","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"","type":"bool"}],"name":"ForwardResult","type":"event"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
61016060405234801561001157600080fd5b50604051610fac380380610fac83398101604081905261003091610143565b604080518082018252601681527f466c657869626c654e6f6e6365466f7277617264657200000000000000000000602080830191825283518085019094526005845264302e302e3160d81b908401528151902060e08190527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc1991638118856101008190524660a0529192917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101268184846040805160208101859052908101839052606081018290524660808201523060a082015260009060c0016040516020818303038152906040528051906020012090509392505050565b6080523060c052610120525050600160005550506101405261015c565b60006020828403121561015557600080fd5b5051919050565b60805160a05160c05160e051610100516101205161014051610def6101bd600039600081816104db015261057601526000610882015260006108d1015260006108ac015260006108050152600061082f015260006108590152610def6000f3fe6080604052600436106100295760003560e01c80632d0335ab1461002e57806347153f8214610077575b600080fd5b34801561003a57600080fd5b50610064610049366004610b68565b6001600160a01b031660009081526001602052604090205490565b6040519081526020015b60405180910390f35b61008a610085366004610b98565b610098565b60405161006e929190610c67565b600060606100a46101d0565b6100af85858561022f565b6100b88561063b565b6000806100cb6040880160208901610b68565b6001600160a01b0316606088013560408901356100eb60a08b018b610ca3565b6100f860208d018d610b68565b60405160200161010a93929190610cea565b60408051601f198184030181529082905261012491610d10565b600060405180830381858888f193505050503d8060008114610162576040519150601f19603f3d011682016040523d82523d6000602084013e610167565b606091505b50909250905061017c603f6060890135610d42565b5a1161018457fe5b60405182151581527fed0603e97c834a591ced7b3c6ce727a087f9d1748098dc815b12a2516993d68c9060200160405180910390a190925090506101c86001600055565b935093915050565b600260005414156102285760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b6002600055565b600061034183838080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061033b92507fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48915061029e90506020890189610b68565b6102ae60408a0160208b01610b68565b60408a013560608b013560808c01356102ca60a08e018e610ca3565b6040516102d8929190610d64565b6040805191829003822060208301989098526001600160a01b0396871690820152949093166060850152608084019190915260a083015260c082015260e08101919091526101000160405160208183030381529060405280519060200120610662565b906106b6565b90506103506020850185610b68565b6001600160a01b0316816001600160a01b0316146103a257806103766020860186610b68565b604051635e4cf60960e11b81526001600160a01b0392831660048201529116602482015260440161021f565b6080840135600160006103b86020880188610b68565b6001600160a01b03168152602081019190915260400160002054141561044b576103e760808501356001610d74565b600160006103f86020880188610b68565b6001600160a01b03168152602080820192909252604001600090812092909255439160019161042990880188610b68565b6001600160a01b031681526020810191909152604001600020600101556105b8565b6001600061045c6020870187610b68565b6001600160a01b03166001600160a01b0316815260200190815260200160002060020160008560800135815260200190815260200160002060000183836040516104a7929190610d64565b9081526040519081900360200190205460ff16156104d857604051630c3294e760e41b815260040160405180910390fd5b437f00000000000000000000000000000000000000000000000000000000000000006001600061050b6020890189610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101546105399190610d74565b10156105b857600160006105506020870187610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101547f00000000000000000000000000000000000000000000000000000000000000006040516264f5c360e21b815260040161021f929190918252602082015260400190565b60018060006105ca6020880188610b68565b6001600160a01b03166001600160a01b031681526020019081526020016000206002016000866080013581526020019081526020016000206000018484604051610615929190610d64565b908152604051908190036020019020805491151560ff1990921691909117905550505050565b806040013534111561065f5761065f610658604083013534610d8c565b33906106da565b50565b60006106b061066f6107f8565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b92915050565b60008060006106c5858561091f565b915091506106d281610965565b509392505050565b8047101561072a5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e6365000000604482015260640161021f565b6000826001600160a01b03168260405160006040518083038185875af1925050503d8060008114610777576040519150601f19603f3d011682016040523d82523d6000602084013e61077c565b606091505b50509050806107f35760405162461bcd60e51b815260206004820152603a60248201527f416464726573733a20756e61626c6520746f2073656e642076616c75652c207260448201527f6563697069656e74206d61792068617665207265766572746564000000000000606482015260840161021f565b505050565b6000306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561085157507f000000000000000000000000000000000000000000000000000000000000000046145b1561087b57507f000000000000000000000000000000000000000000000000000000000000000090565b50604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091527f0000000000000000000000000000000000000000000000000000000000000000828401527f000000000000000000000000000000000000000000000000000000000000000060608301524660808301523060a0808401919091528351808403909101815260c0909201909252805191012090565b6000808251604114156109565760208301516040840151606085015160001a61094a87828585610aae565b9450945050505061095e565b506000905060025b9250929050565b600081600481111561097957610979610da3565b14156109825750565b600181600481111561099657610996610da3565b14156109df5760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b604482015260640161021f565b60028160048111156109f3576109f3610da3565b1415610a415760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161021f565b6003816004811115610a5557610a55610da3565b141561065f5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161021f565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b03831115610adb5750600090506003610b5f565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610b2f573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610b5857600060019250925050610b5f565b9150600090505b94509492505050565b600060208284031215610b7a57600080fd5b81356001600160a01b0381168114610b9157600080fd5b9392505050565b600080600060408486031215610bad57600080fd5b833567ffffffffffffffff80821115610bc557600080fd5b9085019060c08288031215610bd957600080fd5b90935060208501359080821115610bef57600080fd5b818601915086601f830112610c0357600080fd5b813581811115610c1257600080fd5b876020828501011115610c2457600080fd5b6020830194508093505050509250925092565b60005b83811015610c52578181015183820152602001610c3a565b83811115610c61576000848401525b50505050565b82151581526040602082015260008251806040840152610c8e816060850160208701610c37565b601f01601f1916919091016060019392505050565b6000808335601e19843603018112610cba57600080fd5b83018035915067ffffffffffffffff821115610cd557600080fd5b60200191503681900382131561095e57600080fd5b8284823760609190911b6bffffffffffffffffffffffff19169101908152601401919050565b60008251610d22818460208701610c37565b9190910192915050565b634e487b7160e01b600052601160045260246000fd5b600082610d5f57634e487b7160e01b600052601260045260246000fd5b500490565b8183823760009101908152919050565b60008219821115610d8757610d87610d2c565b500190565b600082821015610d9e57610d9e610d2c565b500390565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220a166df2e44440aa1a32880ff36af2010b3d568c81eb4a2844743077ecc44384a64736f6c634300080900330000000000000000000000000000000000000000000000000000000000000064
Deployed Bytecode
0x6080604052600436106100295760003560e01c80632d0335ab1461002e57806347153f8214610077575b600080fd5b34801561003a57600080fd5b50610064610049366004610b68565b6001600160a01b031660009081526001602052604090205490565b6040519081526020015b60405180910390f35b61008a610085366004610b98565b610098565b60405161006e929190610c67565b600060606100a46101d0565b6100af85858561022f565b6100b88561063b565b6000806100cb6040880160208901610b68565b6001600160a01b0316606088013560408901356100eb60a08b018b610ca3565b6100f860208d018d610b68565b60405160200161010a93929190610cea565b60408051601f198184030181529082905261012491610d10565b600060405180830381858888f193505050503d8060008114610162576040519150601f19603f3d011682016040523d82523d6000602084013e610167565b606091505b50909250905061017c603f6060890135610d42565b5a1161018457fe5b60405182151581527fed0603e97c834a591ced7b3c6ce727a087f9d1748098dc815b12a2516993d68c9060200160405180910390a190925090506101c86001600055565b935093915050565b600260005414156102285760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b6002600055565b600061034183838080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061033b92507fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48915061029e90506020890189610b68565b6102ae60408a0160208b01610b68565b60408a013560608b013560808c01356102ca60a08e018e610ca3565b6040516102d8929190610d64565b6040805191829003822060208301989098526001600160a01b0396871690820152949093166060850152608084019190915260a083015260c082015260e08101919091526101000160405160208183030381529060405280519060200120610662565b906106b6565b90506103506020850185610b68565b6001600160a01b0316816001600160a01b0316146103a257806103766020860186610b68565b604051635e4cf60960e11b81526001600160a01b0392831660048201529116602482015260440161021f565b6080840135600160006103b86020880188610b68565b6001600160a01b03168152602081019190915260400160002054141561044b576103e760808501356001610d74565b600160006103f86020880188610b68565b6001600160a01b03168152602080820192909252604001600090812092909255439160019161042990880188610b68565b6001600160a01b031681526020810191909152604001600020600101556105b8565b6001600061045c6020870187610b68565b6001600160a01b03166001600160a01b0316815260200190815260200160002060020160008560800135815260200190815260200160002060000183836040516104a7929190610d64565b9081526040519081900360200190205460ff16156104d857604051630c3294e760e41b815260040160405180910390fd5b437f00000000000000000000000000000000000000000000000000000000000000646001600061050b6020890189610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101546105399190610d74565b10156105b857600160006105506020870187610b68565b6001600160a01b03166001600160a01b03168152602001908152602001600020600101547f00000000000000000000000000000000000000000000000000000000000000646040516264f5c360e21b815260040161021f929190918252602082015260400190565b60018060006105ca6020880188610b68565b6001600160a01b03166001600160a01b031681526020019081526020016000206002016000866080013581526020019081526020016000206000018484604051610615929190610d64565b908152604051908190036020019020805491151560ff1990921691909117905550505050565b806040013534111561065f5761065f610658604083013534610d8c565b33906106da565b50565b60006106b061066f6107f8565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b92915050565b60008060006106c5858561091f565b915091506106d281610965565b509392505050565b8047101561072a5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e6365000000604482015260640161021f565b6000826001600160a01b03168260405160006040518083038185875af1925050503d8060008114610777576040519150601f19603f3d011682016040523d82523d6000602084013e61077c565b606091505b50509050806107f35760405162461bcd60e51b815260206004820152603a60248201527f416464726573733a20756e61626c6520746f2073656e642076616c75652c207260448201527f6563697069656e74206d61792068617665207265766572746564000000000000606482015260840161021f565b505050565b6000306001600160a01b037f0000000000000000000000007d648a11ae84487526b7474b6a2bc0be3a299bbb1614801561085157507f000000000000000000000000000000000000000000000000000000000000000146145b1561087b57507f9b92b7f43ecce1962bb3458d7411552d256dba0aab97468e83cabf5a2f932d4690565b50604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6020808301919091527f2a21b8fe1fc790149cfee97da04559e386c42eac4a692237c7facdce99714f24828401527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc19916381188560608301524660808301523060a0808401919091528351808403909101815260c0909201909252805191012090565b6000808251604114156109565760208301516040840151606085015160001a61094a87828585610aae565b9450945050505061095e565b506000905060025b9250929050565b600081600481111561097957610979610da3565b14156109825750565b600181600481111561099657610996610da3565b14156109df5760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b604482015260640161021f565b60028160048111156109f3576109f3610da3565b1415610a415760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161021f565b6003816004811115610a5557610a55610da3565b141561065f5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161021f565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b03831115610adb5750600090506003610b5f565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610b2f573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610b5857600060019250925050610b5f565b9150600090505b94509492505050565b600060208284031215610b7a57600080fd5b81356001600160a01b0381168114610b9157600080fd5b9392505050565b600080600060408486031215610bad57600080fd5b833567ffffffffffffffff80821115610bc557600080fd5b9085019060c08288031215610bd957600080fd5b90935060208501359080821115610bef57600080fd5b818601915086601f830112610c0357600080fd5b813581811115610c1257600080fd5b876020828501011115610c2457600080fd5b6020830194508093505050509250925092565b60005b83811015610c52578181015183820152602001610c3a565b83811115610c61576000848401525b50505050565b82151581526040602082015260008251806040840152610c8e816060850160208701610c37565b601f01601f1916919091016060019392505050565b6000808335601e19843603018112610cba57600080fd5b83018035915067ffffffffffffffff821115610cd557600080fd5b60200191503681900382131561095e57600080fd5b8284823760609190911b6bffffffffffffffffffffffff19169101908152601401919050565b60008251610d22818460208701610c37565b9190910192915050565b634e487b7160e01b600052601160045260246000fd5b600082610d5f57634e487b7160e01b600052601260045260246000fd5b500490565b8183823760009101908152919050565b60008219821115610d8757610d87610d2c565b500190565b600082821015610d9e57610d9e610d2c565b500390565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220a166df2e44440aa1a32880ff36af2010b3d568c81eb4a2844743077ecc44384a64736f6c63430008090033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000064
-----Decoded View---------------
Arg [0] : blockAgeTolerance (uint256): 100
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000064
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.