More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 2,498 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Redeem | 20105677 | 159 days ago | IN | 0 ETH | 0.00037114 | ||||
Redeem | 19723356 | 213 days ago | IN | 0 ETH | 0.00054324 | ||||
Redeem | 19715559 | 214 days ago | IN | 0 ETH | 0.00044409 | ||||
Redeem | 19709950 | 215 days ago | IN | 0 ETH | 0.0005663 | ||||
Redeem | 19704564 | 216 days ago | IN | 0 ETH | 0.00060278 | ||||
Redeem | 19695709 | 217 days ago | IN | 0 ETH | 0.00053606 | ||||
Redeem | 19695127 | 217 days ago | IN | 0 ETH | 0.0005423 | ||||
Redeem | 19692516 | 217 days ago | IN | 0 ETH | 0.00049061 | ||||
Redeem | 19690838 | 217 days ago | IN | 0 ETH | 0.00089742 | ||||
Redeem | 19683481 | 218 days ago | IN | 0 ETH | 0.0010067 | ||||
Redeem | 19678181 | 219 days ago | IN | 0 ETH | 0.00066362 | ||||
Redeem | 19677905 | 219 days ago | IN | 0 ETH | 0.00077026 | ||||
Redeem | 19669488 | 220 days ago | IN | 0 ETH | 0.00100397 | ||||
Redeem | 19662177 | 221 days ago | IN | 0 ETH | 0.00147419 | ||||
Redeem | 19661951 | 221 days ago | IN | 0 ETH | 0.00109942 | ||||
Redeem | 19661903 | 221 days ago | IN | 0 ETH | 0.00120483 | ||||
Redeem | 19656292 | 222 days ago | IN | 0 ETH | 0.00066464 | ||||
Redeem | 19649284 | 223 days ago | IN | 0 ETH | 0.01110763 | ||||
Redeem | 19640366 | 225 days ago | IN | 0 ETH | 0.00203191 | ||||
Redeem | 19639023 | 225 days ago | IN | 0 ETH | 0.00089861 | ||||
Redeem | 19632362 | 226 days ago | IN | 0 ETH | 0.00210877 | ||||
Redeem | 19632330 | 226 days ago | IN | 0 ETH | 0.00245855 | ||||
Redeem | 19628598 | 226 days ago | IN | 0 ETH | 0.0008923 | ||||
Redeem | 19626014 | 227 days ago | IN | 0 ETH | 0.00219652 | ||||
Redeem | 19623760 | 227 days ago | IN | 0 ETH | 0.00087887 |
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
19530112 | 240 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0x81a89a3c934b688f93368b07d1210c7d669e27bc
Contract Name:
LiquidityBootstrapPool
Compiler Version
v0.8.21+commit.d9974bed
Optimization Enabled:
Yes with 1000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity =0.8.21; import "weighted-math-lib/WeightedMathLib.sol"; import "solady/src/utils/SafeTransferLib.sol"; import "solady/src/utils/MerkleProofLib.sol"; import "solady/src/utils/LibString.sol"; import "solady/src/utils/Clone.sol"; import { ISablierV2LockupLinear } from "v2-core/src/interfaces/ISablierV2LockupLinear.sol"; import { Broker, LockupLinear } from "v2-core/src/types/DataTypes.sol"; import { ud60x18 } from "v2-core/src/types/Math.sol"; import { IERC20 } from "v2-core/src/types/Tokens.sol"; import "openzeppelin-contracts/contracts/security/ReentrancyGuard.sol"; import "src/utils/LiquidityBootstrapLib.sol"; import "src/utils/Pausable.sol"; import "./Treasury.sol"; contract LiquidityBootstrapPool is Pausable, Clone, ReentrancyGuard { /// ----------------------------------------------------------------------- /// Dependencies /// ----------------------------------------------------------------------- using LiquidityBootstrapLib for *; using FixedPointMathLib for *; using SafeTransferLib for *; using WeightedMathLib for *; using MerkleProofLib for *; using LibString for *; /// ----------------------------------------------------------------------- /// Custom Errors /// ----------------------------------------------------------------------- /// @dev Error thrown when the whitelist proof verification fails. error WhitelistProof(); /// @dev Error thrown when the maximum allowed assets in are exceeded. error AssetsInExceeded(); /// @dev Error thrown when the maximum allowed shares out are exceeded. error SharesOutExceeded(); /// @dev Error thrown when the slippage limit is exceeded. error SlippageExceeded(); /// @dev Error thrown when selling is disallowed. error SellingDisallowed(); /// @dev Error thrown when trading is disallowed. error TradingDisallowed(); /// @dev Error thrown when closing is disallowed. error ClosingDisallowed(); /// @dev Error thrown when redeeming is disallowed. error RedeemingDisallowed(); /// @dev Error thrown when an address is not allowed to call a function. error CallerDisallowed(); /// ----------------------------------------------------------------------- /// Events /// ----------------------------------------------------------------------- /// @dev Emitted when assets are swapped for shares. /// @param caller The address of the caller initiating the swap. /// @param assets The amount of assets being swapped. /// @param shares The amount of shares received in the swap. /// @param swapFee The amount of fee charged in the swap. event Buy(address indexed caller, uint256 assets, uint256 shares, uint256 swapFee); /// @dev Emitted when shares are swapped for assets. /// @param caller The address of the caller initiating the swap. /// @param shares The amount of shares being swapped. /// @param assets The amount of assets received in the swap. /// @param swapFee The amount of fee charged in the swap. event Sell(address indexed caller, uint256 shares, uint256 assets, uint256 swapFee); /// @dev Emitted when shares are redeemed. /// @param caller The address of the caller initiating the redemption. /// @param shares The amount of shares being redeemed. event Redeem(address indexed caller, uint256 indexed streamID, uint256 shares); /// @dev Emitted when the liquidity pool is closed. /// @param assets The amount of assets transferred out during the pool closure. event Close(uint256 assets, uint256 platformFees, uint256 swapFeesAsset, uint256 swapFeesShare); /// ----------------------------------------------------------------------- /// Mutable Storage /// ----------------------------------------------------------------------- /// @notice Mapping to track the purchased shares for each address. mapping(address => uint256) public purchasedShares; /// @notice Mapping to track the assets referred by each address. mapping(address => uint256) public referredAssets; /// @notice Mapping to track the redeemed shares for each address. mapping(address => uint256) public redeemedShares; /// @notice The total number of purchased shares in the pool. uint256 public totalPurchased; /// @notice The total amount of assets referred in the pool. uint256 public totalReferred; /// @notice The total swap fee amount in asset charged to users. uint256 public totalSwapFeesAsset; /// @notice The total swap fee amount in lbp token charged to users. uint256 public totalSwapFeesShare; /// @notice Flag to indicate if the liquidity pool is closed. bool public closed; /// ----------------------------------------------------------------------- /// Immutable Storage /// ----------------------------------------------------------------------- /// @notice The address of the asset token. /// @dev This is the ERC20 token representing the asset in the pool. /// @return The address of the asset token. function asset() public pure virtual returns (address) { return _getArgAddress(0); } /// @notice The address of the share token. /// @dev This is the ERC20 token representing the shares in the pool. /// @return The address of the share token. function share() public pure virtual returns (address) { return _getArgAddress(20); } /// @notice The address of the platform where fees are collected. /// @dev This is the address where fees are collected. /// @return The address of the platform. function platform() public pure virtual returns (address) { return _getArgAddress(40); } /// @notice The address of the manager who controls the pool. /// @dev This is the address who has control over the pool's privledged operations. /// @return The address of the manager. function manager() public pure virtual returns (address) { return _getArgAddress(60); } /// @notice The virtual assets value. /// @dev This value represents the virtual assets in the pool. /// @return The virtual assets value. function virtualAssets() public pure virtual returns (uint256) { return _getArgUint88(80); } /// @notice The virtual shares value. /// @dev This value represents the virtual shares in the pool. /// @return The virtual shares value. function virtualShares() public pure virtual returns (uint256) { return _getArgUint88(91); } /// @notice The maximum share price value. /// @dev This value represents the maximum price at which shares can be sold. /// @return The maximum share price value. function maxSharePrice() public pure virtual returns (uint256) { return _getArgUint88(102); } /// @notice The maximum total shares out value. /// @dev This value represents the maximum number of shares that can be sold. /// @return The maximum total shares out value. function maxTotalSharesOut() public pure virtual returns (uint256) { return _getArgUint88(113); } /// @notice The maximum total assets in value. /// @dev This value represents the maximum amount of assets that can be added to the pool. /// @return The maximum total assets in value. function maxTotalAssetsIn() public pure virtual returns (uint256) { return _getArgUint88(124); } /// @notice The platform fee percentage. /// @dev This percentage represents the fee collected by the platform on transactions. /// @return The platform fee percentage. function platformFee() public pure virtual returns (uint256) { return _getArgUint64(135); } /// @notice The referrer fee percentage. /// @dev This percentage represents the fee collected by referrers on transactions. /// @return The referrer fee percentage. function referrerFee() public pure virtual returns (uint256) { return _getArgUint64(143); } /// @notice The weight start value. /// @dev This value represents the starting weight for assets in the pool. /// @return The weight start value. function weightStart() public pure virtual returns (uint256) { return _getArgUint64(151); } /// @notice The weight end value. /// @dev This value represents the ending weight for assets in the pool. /// @return The weight end value. function weightEnd() public pure virtual returns (uint256) { return _getArgUint64(159); } /// @notice The sale start timestamp. /// @dev This timestamp represents when the sale of shares in the pool starts. /// @return The sale start timestamp. function saleStart() public pure virtual returns (uint256) { return _getArgUint40(167); } /// @notice The sale end timestamp. /// @dev This timestamp represents when the sale of shares in the pool ends. /// @return The sale end timestamp. function saleEnd() public pure virtual returns (uint256) { return _getArgUint40(172); } /// @notice The vesting cliff timestamp. /// @dev This timestamp represents the cliff time for vesting shares. /// @return The vesting cliff timestamp. function vestCliff() public pure virtual returns (uint40) { return _getArgUint40(177); } /// @notice The vesting end timestamp. /// @dev This timestamp represents the end time for vesting shares. /// @return The vesting end timestamp. function vestEnd() public pure virtual returns (uint40) { return _getArgUint40(182); } /// @notice The swap fee percentage. /// @dev This percentage represents the fee collected by swaps on transactions. /// @return The swap fee percentage. function swapFee() public pure virtual returns (uint256) { return _getArgUint64(187); } /// @notice Check if vesting shares is enabled. /// @dev This flag indicates whether vesting of shares is enabled. /// @return True if vesting shares are enabled, false otherwise. function vestShares() public pure virtual returns (bool) { return saleEnd() < vestEnd(); } /// @notice Check if selling is allowed. /// @dev This flag indicates whether selling of shares is allowed. /// @return True if selling is allowed, false otherwise. function sellingAllowed() public pure virtual returns (bool) { return _getArgUint8(195) != 0; } /// @notice The Merkle root for the whitelist. /// @dev This is the Merkle root used for whitelisting addresses. /// @return The Merkle root for the whitelist. function whitelistMerkleRoot() public pure virtual returns (bytes32) { return _getArgBytes32(196); } /// @notice Check if the whitelist is enabled. /// @dev This flag indicates whether the whitelist is enabled. /// @return True if the whitelist is enabled, false otherwise. function whitelisted() public pure virtual returns (bool) { return whitelistMerkleRoot() != 0; } ISablierV2LockupLinear public immutable SABLIER; /// ----------------------------------------------------------------------- /// Modifiers /// ----------------------------------------------------------------------- /// @notice Modifier to restrict access to whitelisted addresses. /// @dev This modifier checks if the caller's address is whitelisted using a Merkle proof. modifier onlyWhitelisted(bytes32[] memory proof) virtual { if (whitelisted()) { if (!proof.verify(whitelistMerkleRoot(), keccak256(abi.encodePacked(msg.sender)))) { revert WhitelistProof(); } } _; } /// @notice Modifier to check if the sale is active. /// @dev This modifier checks if the current timestamp is within the sale period. modifier whenSaleActive() virtual { if (block.timestamp < saleStart() || block.timestamp >= saleEnd()) { revert TradingDisallowed(); } _; } /// @notice Modifier to check if selling is allowed. /// @dev This modifier checks if selling of shares is allowed. modifier whenSellingAllowed() virtual { if (!sellingAllowed()) { revert SellingDisallowed(); } _; } /** * * CONSTRUCTOR & INITIALIZATION * */ /** * @notice Initializes the contract with immutable variables * @param _sablier is the Sablier contract */ constructor(address _sablier) { require(_sablier != address(0)); SABLIER = ISablierV2LockupLinear(_sablier); } /// ----------------------------------------------------------------------- /// Buy Logic /// ----------------------------------------------------------------------- /// @notice Swap a specific amount of assets for a minimum number of shares. /// @dev This function allows users to exchange a certain amount of assets for shares, /// ensuring that they receive at least the specified minimum number of shares. /// @param assetsIn The amount of assets to be exchanged for shares. /// @param minSharesOut The minimum number of shares expected to be received. /// @param recipient The address to receive the shares. /// @return sharesOut The actual number of shares received. function swapExactAssetsForShares( uint256 assetsIn, uint256 minSharesOut, address recipient ) external virtual returns (uint256 sharesOut) { return swapExactAssetsForShares( assetsIn, minSharesOut, recipient, address(0), MerkleProofLib.emptyProof() ); } /// @notice Swap a specific number of shares for a maximum amount of assets. /// @dev This function allows users to exchange a certain number of shares for assets, /// ensuring that they receive no more than the specified maximum amount of assets. /// @param sharesOut The number of shares to be exchanged for assets. /// @param maxAssetsIn The maximum amount of assets allowed to be used for the exchange. /// @param recipient The address to receive the assets. /// @return assetsIn The actual amount of assets used for the exchange. function swapAssetsForExactShares( uint256 sharesOut, uint256 maxAssetsIn, address recipient ) external virtual returns (uint256 assetsIn) { return swapAssetsForExactShares( sharesOut, maxAssetsIn, recipient, address(0), MerkleProofLib.emptyProof() ); } /// @notice Swap a specific amount of assets for a minimum number of shares with a referrer. /// @dev This function allows users to exchange a certain amount of assets for shares /// while specifying a referrer, ensuring that they receive at least the specified minimum /// number of shares. /// @param assetsIn The amount of assets to be exchanged for shares. /// @param minSharesOut The minimum number of shares expected to be received. /// @param recipient The address to receive the shares. /// @param referrer The referrer's address for potential rewards. /// @return sharesOut The actual number of shares received. function swapExactAssetsForShares( uint256 assetsIn, uint256 minSharesOut, address recipient, address referrer ) external virtual returns (uint256 sharesOut) { return swapExactAssetsForShares( assetsIn, minSharesOut, recipient, referrer, MerkleProofLib.emptyProof() ); } /// @notice Swap a specific number of shares for a maximum amount of assets with a referrer. /// @dev This function allows users to exchange a certain number of shares for assets /// while specifying a referrer, ensuring that they receive no more than the specified maximum /// amount of assets. /// @param sharesOut The number of shares to be exchanged for assets. /// @param maxAssetsIn The maximum amount of assets allowed to be used for the exchange. /// @param recipient The address to receive the assets. /// @param referrer The referrer's address for potential rewards. /// @return assetsIn The actual amount of assets used for the exchange. function swapAssetsForExactShares( uint256 sharesOut, uint256 maxAssetsIn, address recipient, address referrer ) external virtual returns (uint256 assetsIn) { return swapAssetsForExactShares( sharesOut, maxAssetsIn, recipient, referrer, MerkleProofLib.emptyProof() ); } /// @notice Swap a specific amount of assets for a minimum number of shares with a referrer and Merkle proof. /// @dev This function allows users to exchange a certain amount of assets for shares /// while specifying a referrer, ensuring that they receive at least the specified minimum /// number of shares. It also requires a Merkle proof for whitelisting. /// @param assetsIn The amount of assets to be exchanged for shares. /// @param minSharesOut The minimum number of shares expected to be received. /// @param recipient The address to receive the shares. /// @param referrer The referrer's address for potential rewards. /// @param proof The Merkle proof for whitelisting. /// @return sharesOut The actual number of shares received. function swapExactAssetsForShares( uint256 assetsIn, uint256 minSharesOut, address recipient, address referrer, bytes32[] memory proof ) public virtual whenNotPaused whenSaleActive onlyWhitelisted(proof) nonReentrant returns (uint256 sharesOut) { Pool memory pool = args(); uint256 swapFees = assetsIn.mulWad(swapFee()); totalSwapFeesAsset += swapFees; sharesOut = pool.previewSharesOut(assetsIn.rawSub(swapFees)); if (sharesOut < minSharesOut) revert SlippageExceeded(); _swapAssetsForShares( recipient, referrer, assetsIn, sharesOut, pool.assets, pool.shares, swapFees ); } /// @notice Swap a specific number of shares for a maximum amount of assets with a referrer and Merkle proof. /// @dev This function allows users to exchange a certain number of shares for assets /// while specifying a referrer, ensuring that they receive no more than the specified maximum /// amount of assets. It also requires a Merkle proof for whitelisting. /// @param sharesOut The number of shares to be exchanged for assets. /// @param maxAssetsIn The maximum amount of assets allowed to be used for the exchange. /// @param recipient The address to receive the assets. /// @param referrer The referrer's address for potential rewards. /// @param proof The Merkle proof for whitelisting. /// @return assetsIn The actual amount of assets used for the exchange. function swapAssetsForExactShares( uint256 sharesOut, uint256 maxAssetsIn, address recipient, address referrer, bytes32[] memory proof ) public virtual whenNotPaused whenSaleActive onlyWhitelisted(proof) nonReentrant returns (uint256 assetsIn) { Pool memory pool = args(); assetsIn = pool.previewAssetsIn(sharesOut); uint256 swapFees = assetsIn.mulWad(swapFee()); assetsIn = assetsIn.rawAdd(swapFees); totalSwapFeesAsset += swapFees; if (assetsIn > maxAssetsIn) revert SlippageExceeded(); _swapAssetsForShares( recipient, referrer, assetsIn, sharesOut, pool.assets, pool.shares, swapFees ); } function _swapAssetsForShares( address recipient, address referrer, uint256 assetsIn, uint256 sharesOut, uint256 assets, uint256 shares, uint256 swapFees ) internal virtual { if (assets + assetsIn - swapFees >= maxTotalAssetsIn()) { revert AssetsInExceeded(); } asset().safeTransferFrom(msg.sender, address(this), assetsIn); uint256 totalPurchasedAfter = totalPurchased + sharesOut; if (totalPurchasedAfter >= maxTotalSharesOut() || totalPurchasedAfter >= shares) { revert SharesOutExceeded(); } totalPurchased = totalPurchasedAfter; purchasedShares[recipient] = purchasedShares[recipient].rawAdd(sharesOut); if (referrer != address(0) && referrerFee() != 0) { uint256 assetsReferred = assetsIn.mulWad(referrerFee()); totalReferred += assetsReferred; referredAssets[referrer] = referredAssets[referrer].rawAdd(assetsReferred); } emit Buy(msg.sender, assetsIn, sharesOut, swapFees); } /// ----------------------------------------------------------------------- /// Sell Logic /// ----------------------------------------------------------------------- /// @notice Swap a specific number of shares for a minimum amount of assets. /// @dev This function allows users to exchange a certain number of shares for assets, /// ensuring that they receive at least the specified minimum amount of assets. /// @param sharesIn The number of shares to be exchanged for assets. /// @param minAssetsOut The minimum amount of assets expected to be received. /// @param recipient The address to receive the assets. /// @return assetsOut The actual amount of assets received. function swapExactSharesForAssets( uint256 sharesIn, uint256 minAssetsOut, address recipient ) external virtual returns (uint256 assetsOut) { return swapExactSharesForAssets(sharesIn, minAssetsOut, recipient, MerkleProofLib.emptyProof()); } /// @notice Swap a specific number of shares for a maximum amount of assets. /// @dev This function allows users to exchange a certain number of shares for assets, /// ensuring that they receive no more than the specified maximum amount of assets. /// @param assetsOut The maximum amount of assets allowed to be received. /// @param maxSharesIn The number of shares to be exchanged for assets. /// @param recipient The address to receive the assets. /// @return sharesIn The actual number of shares used for the exchange. function swapSharesForExactAssets( uint256 assetsOut, uint256 maxSharesIn, address recipient ) external virtual returns (uint256 sharesIn) { return swapSharesForExactAssets(assetsOut, maxSharesIn, recipient, MerkleProofLib.emptyProof()); } /// @notice Swap a specific number of shares for a minimum amount of assets. /// @dev This function allows users to exchange a certain number of shares for assets, /// ensuring that they receive at least the specified minimum amount of assets. /// @param sharesIn The number of shares to be exchanged for assets. /// @param minAssetsOut The minimum amount of assets expected to be received. /// @param recipient The address to receive the assets. /// @param proof The Merkle proof for whitelisting. /// @return assetsOut The actual amount of assets received. function swapExactSharesForAssets( uint256 sharesIn, uint256 minAssetsOut, address recipient, bytes32[] memory proof ) public virtual whenNotPaused whenSellingAllowed onlyWhitelisted(proof) whenSaleActive nonReentrant returns (uint256 assetsOut) { Pool memory pool = args(); uint256 swapFees = sharesIn.mulWad(swapFee()); totalSwapFeesShare += swapFees; assetsOut = pool.previewAssetsOut(sharesIn.rawSub(swapFees)); if (assetsOut < minAssetsOut) revert SlippageExceeded(); _swapSharesForAssets(recipient, assetsOut, sharesIn, pool.assets, pool.shares, swapFees); } /// @notice Swap a specific number of shares for a maximum amount of assets. /// @dev This function allows users to exchange a certain number of shares for assets, /// ensuring that they receive no more than the specified maximum amount of assets. /// @param assetsOut The maximum amount of assets allowed to be received. /// @param maxSharesIn The number of shares to be exchanged for assets. /// @param recipient The address to receive the assets. /// @param proof The Merkle proof for whitelisting. /// @return sharesIn The actual number of shares used for the exchange. function swapSharesForExactAssets( uint256 assetsOut, uint256 maxSharesIn, address recipient, bytes32[] memory proof ) public virtual whenNotPaused whenSellingAllowed onlyWhitelisted(proof) whenSaleActive nonReentrant returns (uint256 sharesIn) { Pool memory pool = args(); sharesIn = pool.previewSharesIn(assetsOut); uint256 swapFees = sharesIn.mulWad(swapFee()); sharesIn += swapFees; totalSwapFeesShare += swapFees; if (sharesIn > maxSharesIn) revert SlippageExceeded(); _swapSharesForAssets(recipient, assetsOut, sharesIn, pool.assets, pool.shares, swapFees); } function _swapSharesForAssets( address recipient, uint256 assetsOut, uint256 sharesIn, uint256 assets, uint256 shares, uint256 swapFees ) internal virtual { if (assets >= maxTotalAssetsIn()) { revert AssetsInExceeded(); } uint256 totalPurchasedBefore = totalPurchased; if (totalPurchasedBefore >= maxTotalSharesOut() || totalPurchasedBefore >= shares) { revert SharesOutExceeded(); } purchasedShares[msg.sender] -= sharesIn; totalPurchased = totalPurchasedBefore.rawSub(sharesIn); asset().safeTransfer(recipient, assetsOut); emit Sell(msg.sender, sharesIn, assetsOut, swapFees); } /// ----------------------------------------------------------------------- /// Close Logic /// ----------------------------------------------------------------------- /// @notice Close the pool and distribute assets and shares accordingly. /// @dev This function closes the pool after the sale has ended and distributes /// assets to the platform fee and the manager, and shares to the manager for /// any unsold shares. Once closed, the pool cannot be used for further transactions. function close() external virtual { if (closed) revert ClosingDisallowed(); if (block.timestamp < saleEnd()) revert ClosingDisallowed(); uint256 totalAssets = asset().balanceOf(address(this)).rawSub(totalSwapFeesAsset); uint256 platformFees = totalAssets.mulWad(platformFee()); uint256 totalAssetsMinusFees = totalAssets.rawSub(platformFees).rawSub(totalReferred); if (totalAssets != 0) { // Transfer and distribute fees asset().safeTransfer(platform(), platformFees + totalSwapFeesAsset); share().safeTransfer(platform(), totalSwapFeesShare); Treasury(platform()).distributeFee( asset(), platformFees, totalSwapFeesAsset, share(), totalSwapFeesShare ); // Transfer asset asset().safeTransfer(manager(), totalAssetsMinusFees); } uint256 totalShares = share().balanceOf(address(this)); uint256 unsoldShares = totalShares.rawSub(totalPurchased); if (totalShares != 0) { share().safeTransfer(manager(), unsoldShares); } closed = true; share().safeApprove(address(SABLIER), totalShares); emit Close(totalAssetsMinusFees, platformFees, totalSwapFeesAsset, totalSwapFeesShare); } /// ----------------------------------------------------------------------- /// Redeem Logic /// ----------------------------------------------------------------------- /// @notice Redeem shares and, if referred, assets. /// @dev This function allows users to redeem their shares and, if they /// have been referred, receive assets. If vesting is enabled, shares will /// vest over a certain period, and the user can redeem a portion of their /// vested shares at any time. Once shares are fully vested, the user can /// redeem all of them. /// @param recipient The address to receive redeemed shares and assets. /// @param referred A boolean indicating whether the user has been referred. /// @return shares The number of shares redeemed. function redeem(address recipient, bool referred) external virtual returns (uint256 shares) { if (!closed) revert RedeemingDisallowed(); uint256 streamID; if (vestShares() && vestEnd() > block.timestamp) { shares = purchasedShares[msg.sender]; delete purchasedShares[msg.sender]; LockupLinear.CreateWithRange memory params; params.sender = manager(); params.recipient = msg.sender; params.totalAmount = uint128(shares); params.asset = IERC20(share()); params.cancelable = false; params.range = LockupLinear.Range({ start: uint40(saleEnd()), cliff: vestCliff(), end: vestEnd() }); params.broker = Broker(address(0), ud60x18(0)); streamID = SABLIER.createWithRange(params); } else { shares = purchasedShares[msg.sender]; delete purchasedShares[msg.sender]; share().safeTransfer(msg.sender, shares); } if (referred && referrerFee() != 0) { uint256 assets = referredAssets[msg.sender]; delete referredAssets[msg.sender]; asset().safeTransfer(recipient, assets); } if (shares != 0) { emit Redeem(msg.sender, streamID, shares); } } /// ----------------------------------------------------------------------- /// Management /// ----------------------------------------------------------------------- /// @notice Toggle the pause state of the pool. /// @dev This function allows the manager to pause and unpause the pool. /// When the pool is paused, no new swaps can be executed. function togglePause() external virtual { if (msg.sender != manager()) { revert CallerDisallowed(); } _togglePause(); } /// ----------------------------------------------------------------------- /// Swap Helper Logic /// ----------------------------------------------------------------------- /// @notice Get the pool arguments including reserves, weights, and other parameters. /// @dev This function returns the current pool configuration including asset /// and share reserves, weights, and other parameters. /// @return pool A struct containing the pool configuration. function args() public view virtual returns (Pool memory) { return Pool( asset(), share(), asset().balanceOf(address(this)).rawSub(totalSwapFeesAsset), share().balanceOf(address(this)).rawSub(totalSwapFeesShare), virtualAssets(), virtualShares(), weightStart(), weightEnd(), saleStart(), saleEnd(), totalPurchased, maxSharePrice() ); } /// @notice Get the reserves and weights of the pool. /// @dev This function returns the current asset and share reserves, as well /// as the asset and share weights. /// @return assetReserve The current asset reserve. /// @return shareReserve The current share reserve. /// @return assetWeight The asset weight. /// @return shareWeight The share weight. function reservesAndWeights() external view virtual returns ( uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight ) { return args().computeReservesAndWeights(); } /// @notice Preview the amount of assets required to receive a specific number of shares. /// @dev This function calculates the amount of assets needed to obtain a certain /// number of shares based on the current pool configuration. /// @param sharesOut The number of shares desired. /// @return assetsIn The amount of assets required. function previewAssetsIn(uint256 sharesOut) external view virtual returns (uint256 assetsIn) { return args().previewAssetsIn(sharesOut).mulWad(1e18 + swapFee()); } /// @notice Preview the number of shares that will be received for a specific amount of assets. /// @dev This function calculates the number of shares that will be received for a /// given amount of assets based on the current pool configuration. /// @param assetsIn The amount of assets used. /// @return sharesOut The number of shares received. function previewSharesOut(uint256 assetsIn) external view virtual returns (uint256 sharesOut) { return args().previewSharesOut(assetsIn.mulWad(1e18 - swapFee())); } /// @notice Preview the number of shares that need to be used to obtain a specific amount of assets. /// @dev This function calculates the number of shares required to obtain a certain /// amount of assets based on the current pool configuration. /// @param assetsOut The amount of assets desired. /// @return sharesIn The number of shares required. function previewSharesIn(uint256 assetsOut) external view virtual returns (uint256 sharesIn) { return args().previewSharesIn(assetsOut).mulWad(1e18 + swapFee()); } /// @notice Preview the amount of assets that will be received for a specific number of shares. /// @dev This function calculates the amount of assets that will be received for a /// given number of shares based on the current pool configuration. /// @param sharesIn The number of shares used. /// @return assetsOut The amount of assets received. function previewAssetsOut(uint256 sharesIn) external view virtual returns (uint256 assetsOut) { return args().previewAssetsOut(sharesIn.mulWad(1e18 - swapFee())); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.21; import "solady/src/utils/FixedPointMathLib.sol"; import "solady/src/utils/SafeCastLib.sol"; library WeightedMathLib { /// ----------------------------------------------------------------------- /// Dependencies /// ----------------------------------------------------------------------- using SafeCastLib for *; using FixedPointMathLib for *; /// ----------------------------------------------------------------------- /// Errors /// ----------------------------------------------------------------------- /// @dev Thrown when `amountIn` exceeds `MAX_PERCENTAGE_IN`, which is imposed by balancer. error AmountInTooLarge(); /// @dev Thrown when `amountOut` exceeds `MAX_PERCENTAGE_OUT`, which is imposed by balancer. error AmountOutTooLarge(); /// ----------------------------------------------------------------------- /// Constants /// ----------------------------------------------------------------------- /// @dev Maximum relative error allowed for fixed-point math operations (10^(-14)). uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; /// @dev Maximum percentage of reserveIn allowed to be swapped in when using `getAmountOut` (30%). uint256 internal constant MAX_PERCENTAGE_IN = 0.3 ether; /// @dev Maximum percentage of reserveOut allowed to be swapped out when using `getAmountIn` (30%). uint256 internal constant MAX_PERCENTAGE_OUT = 0.3 ether; /// ----------------------------------------------------------------------- /// Weighted Arithmetic /// ----------------------------------------------------------------------- /// @notice Calculate the spot price given reserves and weights of two assets in a pool. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getSpotPrice( uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256) { // ----------------------------------------------------------------------- // (reserveIn / weightIn) / (reserveOut / weightOut) // ----------------------------------------------------------------------- return reserveIn.divWad(weightIn).divWad(reserveOut.divWad(weightOut)); } /// @notice Calculate the invariant of a weighted pool given reserves and weights of the assets. /// @param reserves An array of reserves for all the assets in the pool. /// @param weights An array of weights for all the assets in the pool. function getInvariant(uint256[] memory reserves, uint256[] memory weights) internal pure returns (uint256 invariant) { // ----------------------------------------------------------------------- // ____ // ⎟⎟ weight // ⎟⎟ reserve ^ = i // n = totalAssets // ----------------------------------------------------------------------- invariant = 1e18; uint256 n = weights.length; for (uint256 i; i < n; i = i.rawAdd(1)) { invariant = invariant.mulWad(int256(reserves[i]).powWad(int256(weights[i])).toUint256()); } } /// @notice Calculate the invariant of a weighted pool given two reserves and weights. /// @dev Optimized for pools that contain exactly two assets. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getInvariant( uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256 invariant) { // ----------------------------------------------------------------------- // ____ // ⎟⎟ weight // ⎟⎟ reserve ^ = i // n = 2 // ----------------------------------------------------------------------- invariant = 1e18.mulWad(powWad(reserveIn, weightIn)).mulWad(powWad(reserveOut, weightOut)); } /// @notice Calculate the amount of input asset required to get a specific amount of output asset from the pool. /// @param amountOut The desired amount of output asset. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getAmountIn( uint256 amountOut, uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256) { unchecked { // ----------------------------------------------------------------------- // // ⎛ ⎛weightIn ⎞ ⎞ // ⎜ ───────── ⎟ // ⎜ ⎝weightOut⎠ ⎟ // ⎜⎛ reserveOut ⎞ ⎟ // reserveIn ⋅ ───────────────────── - 1 // ⎝⎝reserveOut - amountIn⎠ ⎠ // ----------------------------------------------------------------------- // Assert `amountOut` cannot exceed `MAX_PERCENTAGE_OUT`. if (amountOut > reserveOut.mulWad(MAX_PERCENTAGE_OUT)) { revert AmountOutTooLarge(); } // `MAX_PERCENTAGE_OUT` check ensures `amountOut` is always less than `reserveOut`. return reserveIn.mulWadUp( powWadUp( reserveOut.divWadUp(reserveOut.rawSub(amountOut)), weightOut.divWadUp(weightIn) ) - 1 ether ); } } /// @notice Calculate the amount of output asset received by providing a specific amount of input asset to the pool. /// @param amountIn The amount of input asset provided. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getAmountOut( uint256 amountIn, uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256) { // ----------------------------------------------------------------------- // // ⎛ ⎛weightIn ⎞⎞ // ⎜ ───────── ⎟ // ⎜ ⎝weightOut⎠⎟ // ⎜ ⎛ reserveIn ⎞ ⎟ // reserveOut ⋅ 1 - ──────────────────── // ⎝ ⎝reserveIn + amountIn⎠ ⎠ // ----------------------------------------------------------------------- // Assert `amountIn` cannot exceed `MAX_PERCENTAGE_IN`. if (amountIn > reserveIn.mulWad(MAX_PERCENTAGE_IN)) { revert AmountInTooLarge(); } return reserveOut.mulWad( 1e18.rawSub( powWadUp(reserveIn.divWadUp(reserveIn + amountIn), weightIn.divWad(weightOut)) ) ); } function linearInterpolation(uint256 x, uint256 y, uint256 i, uint256 n) internal pure returns (uint256) { // ----------------------------------------------------------------------- // // ⎛ |x - y| ⎞ // x ± i ⋅ ───────── // ⎝ n ⎠ // ----------------------------------------------------------------------- return x > y ? x.rawSub(x.rawSub(y).mulDiv(i.min(n), n)) : x.rawAdd(y.rawSub(x).mulDiv(i.min(n), n)); } /// ----------------------------------------------------------------------- /// Fixed-point Arithmetic /// ----------------------------------------------------------------------- function powWad(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 1 ether) { return x; } else if (y == 2 ether) { return x.mulWad(x); } else if (y == 4 ether) { uint256 square = x.mulWad(x); return square.mulWad(square); } return int256(x).powWad(int256(y)).toUint256(); } function powWadUp(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 1 ether) { return x; } else if (y == 2 ether) { return x.mulWadUp(x); } else if (y == 4 ether) { uint256 square = x.mulWadUp(x); return square.mulWadUp(square); } uint256 power = int256(x).powWad(int256(y)).toUint256(); return power + power.mulWadUp(MAX_POW_RELATIVE_ERROR) + 1; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// /// @dev Note: /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection. /// - For ERC20s, this implementation won't check that a token has code, /// responsibility is delegated to the caller. library SafeTransferLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /// @dev The ERC20 `transferFrom` has failed. error TransferFromFailed(); /// @dev The ERC20 `transfer` has failed. error TransferFailed(); /// @dev The ERC20 `approve` has failed. error ApproveFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes. uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300; /// @dev Suggested gas stipend for contract receiving ETH to perform a few /// storage reads and writes, but low enough to prevent griefing. uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ETH OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants. // // The regular variants: // - Forwards all remaining gas to the target. // - Reverts if the target reverts. // - Reverts if the current contract has insufficient balance. // // The force variants: // - Forwards with an optional gas stipend // (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases). // - If the target reverts, or if the gas stipend is exhausted, // creates a temporary contract to force send the ETH via `SELFDESTRUCT`. // Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758. // - Reverts if the current contract has insufficient balance. // // The try variants: // - Forwards with a mandatory gas stipend. // - Instead of reverting, returns whether the transfer succeeded. /// @dev Sends `amount` (in wei) ETH to `to`. function safeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Sends all the ETH in the current contract to `to`. function safeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // Transfer all the ETH and check if it succeeded or not. if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`. function forceSafeTransferAllETH(address to, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00) } } /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`. function trySafeTransferAllETH(address to, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for /// the current contract to manage. function safeTransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends all of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have their entire balance approved for /// the current contract to manage. function safeTransferAllFrom(address token, address from, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`. amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransfer(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sends all of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransferAll(address token, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`. mstore(0x20, address()) // Store the address of the current contract. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x14, to) // Store the `to` argument. amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// Reverts upon failure. function safeApprove(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// If the initial attempt to approve fails, attempts to reset the approved amount to zero, /// then retries the approval again (some tokens, e.g. USDT, requires this). /// Reverts upon failure. function safeApproveWithRetry(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, retrying upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x34, 0) // Store 0 for the `amount`. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval. mstore(0x34, amount) // Store back the original `amount`. // Retry the approval, reverting upon failure. if iszero( and( or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Returns the amount of ERC20 `token` owned by `account`. /// Returns zero if the `token` does not exist. function balanceOf(address token, address account) internal view returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x14, account) // Store the `account` argument. mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`. amount := mul( mload(0x20), and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20) ) ) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Gas optimized verification of proof of inclusion for a leaf in a Merkle tree. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol) library MerkleProofLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MERKLE PROOF VERIFICATION OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`. function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool isValid) { /// @solidity memory-safe-assembly assembly { if mload(proof) { // Initialize `offset` to the offset of `proof` elements in memory. let offset := add(proof, 0x20) // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(offset, shl(5, mload(proof))) // Iterate over proof elements to compute root hash. for {} 1 {} { // Slot of `leaf` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(leaf, mload(offset))) // Store elements to hash contiguously in scratch space. // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes. mstore(scratch, leaf) mstore(xor(scratch, 0x20), mload(offset)) // Reuse `leaf` to store the hash to reduce stack operations. leaf := keccak256(0x00, 0x40) offset := add(offset, 0x20) if iszero(lt(offset, end)) { break } } } isValid := eq(leaf, root) } } /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`. function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool isValid) { /// @solidity memory-safe-assembly assembly { if proof.length { // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(proof.offset, shl(5, proof.length)) // Initialize `offset` to the offset of `proof` in the calldata. let offset := proof.offset // Iterate over proof elements to compute root hash. for {} 1 {} { // Slot of `leaf` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(leaf, calldataload(offset))) // Store elements to hash contiguously in scratch space. // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes. mstore(scratch, leaf) mstore(xor(scratch, 0x20), calldataload(offset)) // Reuse `leaf` to store the hash to reduce stack operations. leaf := keccak256(0x00, 0x40) offset := add(offset, 0x20) if iszero(lt(offset, end)) { break } } } isValid := eq(leaf, root) } } /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`, /// given `proof` and `flags`. /// /// Note: /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length` /// will always return false. /// - The sum of the lengths of `proof` and `leaves` must never overflow. /// - Any non-zero word in the `flags` array is treated as true. /// - The memory offset of `proof` must be non-zero /// (i.e. `proof` is not pointing to the scratch space). function verifyMultiProof( bytes32[] memory proof, bytes32 root, bytes32[] memory leaves, bool[] memory flags ) internal pure returns (bool isValid) { // Rebuilds the root by consuming and producing values on a queue. // The queue starts with the `leaves` array, and goes into a `hashes` array. // After the process, the last element on the queue is verified // to be equal to the `root`. // // The `flags` array denotes whether the sibling // should be popped from the queue (`flag == true`), or // should be popped from the `proof` (`flag == false`). /// @solidity memory-safe-assembly assembly { // Cache the lengths of the arrays. let leavesLength := mload(leaves) let proofLength := mload(proof) let flagsLength := mload(flags) // Advance the pointers of the arrays to point to the data. leaves := add(0x20, leaves) proof := add(0x20, proof) flags := add(0x20, flags) // If the number of flags is correct. for {} eq(add(leavesLength, proofLength), add(flagsLength, 1)) {} { // For the case where `proof.length + leaves.length == 1`. if iszero(flagsLength) { // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`. isValid := eq(mload(xor(leaves, mul(xor(proof, leaves), proofLength))), root) break } // The required final proof offset if `flagsLength` is not zero, otherwise zero. let proofEnd := add(proof, shl(5, proofLength)) // We can use the free memory space for the queue. // We don't need to allocate, since the queue is temporary. let hashesFront := mload(0x40) // Copy the leaves into the hashes. // Sometimes, a little memory expansion costs less than branching. // Should cost less, even with a high free memory offset of 0x7d00. leavesLength := shl(5, leavesLength) for { let i := 0 } iszero(eq(i, leavesLength)) { i := add(i, 0x20) } { mstore(add(hashesFront, i), mload(add(leaves, i))) } // Compute the back of the hashes. let hashesBack := add(hashesFront, leavesLength) // This is the end of the memory for the queue. // We recycle `flagsLength` to save on stack variables (sometimes save gas). flagsLength := add(hashesBack, shl(5, flagsLength)) for {} 1 {} { // Pop from `hashes`. let a := mload(hashesFront) // Pop from `hashes`. let b := mload(add(hashesFront, 0x20)) hashesFront := add(hashesFront, 0x40) // If the flag is false, load the next proof, // else, pops from the queue. if iszero(mload(flags)) { // Loads the next proof. b := mload(proof) proof := add(proof, 0x20) // Unpop from `hashes`. hashesFront := sub(hashesFront, 0x20) } // Advance to the next flag. flags := add(flags, 0x20) // Slot of `a` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(a, b)) // Hash the scratch space and push the result onto the queue. mstore(scratch, a) mstore(xor(scratch, 0x20), b) mstore(hashesBack, keccak256(0x00, 0x40)) hashesBack := add(hashesBack, 0x20) if iszero(lt(hashesBack, flagsLength)) { break } } isValid := and( // Checks if the last value in the queue is same as the root. eq(mload(sub(hashesBack, 0x20)), root), // And whether all the proofs are used, if required. eq(proofEnd, proof) ) break } } } /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`, /// given `proof` and `flags`. /// /// Note: /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length` /// will always return false. /// - Any non-zero word in the `flags` array is treated as true. /// - The calldata offset of `proof` must be non-zero /// (i.e. `proof` is from a regular Solidity function with a 4-byte selector). function verifyMultiProofCalldata( bytes32[] calldata proof, bytes32 root, bytes32[] calldata leaves, bool[] calldata flags ) internal pure returns (bool isValid) { // Rebuilds the root by consuming and producing values on a queue. // The queue starts with the `leaves` array, and goes into a `hashes` array. // After the process, the last element on the queue is verified // to be equal to the `root`. // // The `flags` array denotes whether the sibling // should be popped from the queue (`flag == true`), or // should be popped from the `proof` (`flag == false`). /// @solidity memory-safe-assembly assembly { // If the number of flags is correct. for {} eq(add(leaves.length, proof.length), add(flags.length, 1)) {} { // For the case where `proof.length + leaves.length == 1`. if iszero(flags.length) { // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`. // forgefmt: disable-next-item isValid := eq( calldataload( xor(leaves.offset, mul(xor(proof.offset, leaves.offset), proof.length)) ), root ) break } // The required final proof offset if `flagsLength` is not zero, otherwise zero. let proofEnd := add(proof.offset, shl(5, proof.length)) // We can use the free memory space for the queue. // We don't need to allocate, since the queue is temporary. let hashesFront := mload(0x40) // Copy the leaves into the hashes. // Sometimes, a little memory expansion costs less than branching. // Should cost less, even with a high free memory offset of 0x7d00. calldatacopy(hashesFront, leaves.offset, shl(5, leaves.length)) // Compute the back of the hashes. let hashesBack := add(hashesFront, shl(5, leaves.length)) // This is the end of the memory for the queue. // We recycle `flagsLength` to save on stack variables (sometimes save gas). flags.length := add(hashesBack, shl(5, flags.length)) // We don't need to make a copy of `proof.offset` or `flags.offset`, // as they are pass-by-value (this trick may not always save gas). for {} 1 {} { // Pop from `hashes`. let a := mload(hashesFront) // Pop from `hashes`. let b := mload(add(hashesFront, 0x20)) hashesFront := add(hashesFront, 0x40) // If the flag is false, load the next proof, // else, pops from the queue. if iszero(calldataload(flags.offset)) { // Loads the next proof. b := calldataload(proof.offset) proof.offset := add(proof.offset, 0x20) // Unpop from `hashes`. hashesFront := sub(hashesFront, 0x20) } // Advance to the next flag offset. flags.offset := add(flags.offset, 0x20) // Slot of `a` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(a, b)) // Hash the scratch space and push the result onto the queue. mstore(scratch, a) mstore(xor(scratch, 0x20), b) mstore(hashesBack, keccak256(0x00, 0x40)) hashesBack := add(hashesBack, 0x20) if iszero(lt(hashesBack, flags.length)) { break } } isValid := and( // Checks if the last value in the queue is same as the root. eq(mload(sub(hashesBack, 0x20)), root), // And whether all the proofs are used, if required. eq(proofEnd, proof.offset) ) break } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EMPTY CALLDATA HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an empty calldata bytes32 array. function emptyProof() internal pure returns (bytes32[] calldata proof) { /// @solidity memory-safe-assembly assembly { proof.length := 0 } } /// @dev Returns an empty calldata bytes32 array. function emptyLeaves() internal pure returns (bytes32[] calldata leaves) { /// @solidity memory-safe-assembly assembly { leaves.length := 0 } } /// @dev Returns an empty calldata bool array. function emptyFlags() internal pure returns (bool[] calldata flags) { /// @solidity memory-safe-assembly assembly { flags.length := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The `length` of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. str := add(mload(0x40), 0x80) // Update the free memory pointer to allocate. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str let w := not(0) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 1)`. // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /// @dev Returns the base 10 decimal representation of `value`. function toString(int256 value) internal pure returns (string memory str) { if (value >= 0) { return toString(uint256(value)); } unchecked { str = toString(uint256(-value)); } /// @solidity memory-safe-assembly assembly { // We still have some spare memory space on the left, // as we have allocated 3 words (96 bytes) for up to 78 digits. let length := mload(str) // Load the string length. mstore(str, 0x2d) // Store the '-' character. str := sub(str, 1) // Move back the string pointer by a byte. mstore(str, add(length, 1)) // Update the string length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2 + 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) { str = toHexStringNoPrefix(value, length); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f))) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let start := sub(str, add(length, length)) let w := not(1) // Tsk. let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(xor(str, start)) { break } } if temp { // Store the function selector of `HexLengthInsufficient()`. mstore(0x00, 0x2194895a) // Revert with (offset, size). revert(0x1c, 0x04) } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x". /// The output excludes leading "0" from the `toHexString` output. /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`. function toMinimalHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := add(mload(str), 2) // Compute the length. mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero. str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output excludes leading "0" from the `toHexStringNoPrefix` output. /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`. function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := mload(str) // Get the length. str := add(str, o) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. str := add(mload(0x40), 0x80) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let w := not(1) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksummed(address value) internal pure returns (string memory str) { str = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(str, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { str := mload(0x40) // Allocate the memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(str, 0x80)) // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) str := add(str, 2) mstore(str, 40) let o := add(str, 0x20) mstore(add(o, 40), 0) value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexString(bytes memory raw) internal pure returns (string memory str) { str = toHexStringNoPrefix(raw); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { let length := mload(raw) str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix. mstore(str, add(length, length)) // Store the length of the output. // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let o := add(str, 0x20) let end := add(raw, length) for {} iszero(eq(raw, end)) {} { raw := add(raw, 1) mstore8(add(o, 1), mload(and(mload(raw), 15))) mstore8(o, mload(and(shr(4, mload(raw)), 15))) o := add(o, 2) } mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate the memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /// @dev Returns if this string is a 7-bit ASCII string. /// (i.e. all characters codes are in [0..127]) function is7BitASCII(string memory s) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let mask := shl(7, div(not(0), 255)) result := 1 let n := mload(s) if n { let o := add(s, 0x20) let end := add(o, n) let last := mload(end) mstore(end, 0) for {} 1 {} { if and(mask, mload(o)) { result := 0 break } o := add(o, 0x20) if iszero(lt(o, end)) { break } } mstore(end, last) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, all indices of the following operations // are byte (ASCII) offsets, not UTF character offsets. /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`. function replace(string memory subject, string memory search, string memory replacement) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) let replacementLength := mload(replacement) subject := add(subject, 0x20) search := add(search, 0x20) replacement := add(replacement, 0x20) result := add(mload(0x40), 0x20) let subjectEnd := add(subject, subjectLength) if iszero(gt(searchLength, subjectLength)) { let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let o := 0 } 1 {} { mstore(add(result, o), mload(add(replacement, o))) o := add(o, 0x20) if iszero(lt(o, replacementLength)) { break } } result := add(result, replacementLength) subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } } let resultRemainder := result result := add(mload(0x40), 0x20) let k := add(sub(resultRemainder, result), sub(subjectEnd, subject)) // Copy the rest of the string one word at a time. for {} lt(subject, subjectEnd) {} { mstore(resultRemainder, mload(subject)) resultRemainder := add(resultRemainder, 0x20) subject := add(subject, 0x20) } result := sub(result, 0x20) let last := add(add(result, 0x20), k) // Zeroize the slot after the string. mstore(last, 0) mstore(0x40, add(last, 0x20)) // Allocate the memory. mstore(result, k) // Store the length. } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for { let subjectLength := mload(subject) } 1 {} { if iszero(mload(search)) { if iszero(gt(from, subjectLength)) { result := from break } result := subjectLength break } let searchLength := mload(search) let subjectStart := add(subject, 0x20) result := not(0) // Initialize to `NOT_FOUND`. subject := add(subjectStart, from) let end := add(sub(add(subjectStart, subjectLength), searchLength), 1) let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(add(search, 0x20)) if iszero(and(lt(subject, end), lt(from, subjectLength))) { break } if iszero(lt(searchLength, 0x20)) { for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, searchLength), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = indexOf(subject, search, 0); } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := not(0) // Initialize to `NOT_FOUND`. let searchLength := mload(search) if gt(searchLength, mload(subject)) { break } let w := result let fromMax := sub(mload(subject), searchLength) if iszero(gt(fromMax, from)) { from := fromMax } let end := add(add(subject, 0x20), w) subject := add(add(subject, 0x20), from) if iszero(gt(subject, end)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if eq(keccak256(subject, searchLength), h) { result := sub(subject, add(end, 1)) break } subject := add(subject, w) // `sub(subject, 1)`. if iszero(gt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = lastIndexOf(subject, search, uint256(int256(-1))); } /// @dev Returns whether `subject` starts with `search`. function startsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( iszero(gt(searchLength, mload(subject))), eq( keccak256(add(subject, 0x20), searchLength), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns whether `subject` ends with `search`. function endsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) let subjectLength := mload(subject) // Whether `search` is not longer than `subject`. let withinRange := iszero(gt(searchLength, subjectLength)) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( withinRange, eq( keccak256( // `subject + 0x20 + max(subjectLength - searchLength, 0)`. add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))), searchLength ), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(or(iszero(times), iszero(subjectLength))) { subject := add(subject, 0x20) result := mload(0x40) let output := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let o := 0 } 1 {} { mstore(add(output, o), mload(add(subject, o))) o := add(o, 0x20) if iszero(lt(o, subjectLength)) { break } } output := add(output, subjectLength) times := sub(times, 1) if iszero(times) { break } } mstore(output, 0) // Zeroize the slot after the string. let resultLength := sub(output, add(result, 0x20)) mstore(result, resultLength) // Store the length. // Allocate the memory. mstore(0x40, add(result, add(resultLength, 0x20))) } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(gt(subjectLength, end)) { end := subjectLength } if iszero(gt(subjectLength, start)) { start := subjectLength } if lt(start, end) { result := mload(0x40) let resultLength := sub(end, start) mstore(result, resultLength) subject := add(subject, start) let w := not(0x1f) // Copy the `subject` one word at a time, backwards. for { let o := and(add(resultLength, 0x1f), w) } 1 {} { mstore(add(result, o), mload(add(subject, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(result, 0x20), resultLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(result, and(add(resultLength, 0x3f), w))) } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory result) { result = slice(subject, start, uint256(int256(-1))); } /// @dev Returns all the indices of `search` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory search) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) if iszero(gt(searchLength, subjectLength)) { subject := add(subject, 0x20) search := add(search, 0x20) result := add(mload(0x40), 0x20) let subjectStart := subject let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Append to `result`. mstore(result, sub(subject, subjectStart)) result := add(result, 0x20) // Advance `subject` by `searchLength`. subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } let resultEnd := result // Assign `result` to the free memory pointer. result := mload(0x40) // Store the length of `result`. mstore(result, shr(5, sub(resultEnd, add(result, 0x20)))) // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(resultEnd, 0x20)) } } } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) let prevIndex := 0 for {} 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let elementLength := sub(index, prevIndex) mstore(element, elementLength) // Copy the `subject` one word at a time, backwards. for { let o := and(add(elementLength, 0x1f), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(element, 0x20), elementLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(element, and(add(elementLength, 0x3f), w))) // Store the `element` into the array. mstore(indexPtr, element) } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let w := not(0x1f) result := mload(0x40) let aLength := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(aLength, 0x20), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLength := mload(b) let output := add(result, aLength) // Copy `b` one word at a time, backwards. for { let o := and(add(bLength, 0x20), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLength := add(aLength, bLength) let last := add(add(result, 0x20), totalLength) // Zeroize the slot after the string. mstore(last, 0) // Stores the length. mstore(result, totalLength) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 0x1f), w)) } } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. /// WARNING! This function is only compatible with 7-bit ASCII strings. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let length := mload(subject) if length { result := add(mload(0x40), 0x20) subject := add(subject, 1) let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff) let w := not(0) for { let o := length } 1 {} { o := add(o, w) let b := and(0xff, mload(add(subject, o))) mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20))) if iszero(o) { break } } result := mload(0x40) mstore(result, length) // Store the length. let last := add(add(result, 0x20), length) mstore(last, 0) // Zeroize the slot after the string. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } } /// @dev Returns a string from a small bytes32 string. /// `smallString` must be null terminated, or behavior will be undefined. function fromSmallString(bytes32 smallString) internal pure returns (string memory result) { if (smallString == bytes32(0)) return result; /// @solidity memory-safe-assembly assembly { result := mload(0x40) let n := 0 for {} 1 {} { n := add(n, 1) if iszero(byte(n, smallString)) { break } // Scan for '\0'. } mstore(result, n) let o := add(result, 0x20) mstore(o, smallString) mstore(add(o, n), 0) mstore(0x40, add(result, 0x40)) } } /// @dev Returns a lowercased copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(result, c) result := add(result, 1) continue } let t := shr(248, mload(c)) mstore(result, mload(and(t, 0x1f))) result := add(result, shr(5, t)) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes. function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(result, c) result := add(result, 1) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), c) result := add(result, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(result, mload(0x19)) // "\\u00XX". result := add(result, 6) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), mload(add(c, 8))) result := add(result, 2) } if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { result = escapeJSON(s, false); } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`. For small strings up to 32 bytes. /// `b` must be null terminated, or behavior will be undefined. function eqs(string memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let x := and(b, add(not(b), 1)) let r := or(shl(8, iszero(b)), shl(7, iszero(iszero(shr(128, x))))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) result := gt(eq(mload(a), sub(32, shr(3, r))), shr(r, xor(b, mload(add(a, 0x20))))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behavior is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. result := mload(0x40) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(0x40, add(result, 0x40)) // Zeroize the length slot. mstore(result, 0) // Store the length and bytes. mstore(add(result, 0x1f), packed) // Right pad with zeroes. mstore(add(add(result, 0x20), mload(result)), 0) } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLength := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes of `a` and `b`. or( shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))), mload(sub(add(b, 0x1e), aLength)) ), // `totalLength != 0 && totalLength < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLength, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behavior is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. resultA := mload(0x40) resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retSize), 0) // Store the return offset. mstore(retStart, 0x20) // End the transaction, returning the string. return(retStart, retSize) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Class with helper read functions for clone with immutable args. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Clone.sol) /// @author Adapted from clones with immutable args by zefram.eth, Saw-mon & Natalie /// (https://github.com/Saw-mon-and-Natalie/clones-with-immutable-args) abstract contract Clone { /// @dev Reads all of the immutable args. function _getArgBytes() internal pure returns (bytes memory arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := mload(0x40) let length := sub(calldatasize(), add(2, offset)) // 2 bytes are used for the length. mstore(arg, length) // Store the length. calldatacopy(add(arg, 0x20), offset, length) let o := add(add(arg, 0x20), length) mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate the memory. } } /// @dev Reads an immutable arg with type bytes. function _getArgBytes(uint256 argOffset, uint256 length) internal pure returns (bytes memory arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := mload(0x40) mstore(arg, length) // Store the length. calldatacopy(add(arg, 0x20), add(offset, argOffset), length) let o := add(add(arg, 0x20), length) mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate the memory. } } /// @dev Reads an immutable arg with type address. function _getArgAddress(uint256 argOffset) internal pure returns (address arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(96, calldataload(add(offset, argOffset))) } } /// @dev Reads a uint256 array stored in the immutable args. function _getArgUint256Array(uint256 argOffset, uint256 length) internal pure returns (uint256[] memory arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := mload(0x40) mstore(arg, length) // Store the length. calldatacopy(add(arg, 0x20), add(offset, argOffset), shl(5, length)) mstore(0x40, add(add(arg, 0x20), shl(5, length))) // Allocate the memory. } } /// @dev Reads a bytes32 array stored in the immutable args. function _getArgBytes32Array(uint256 argOffset, uint256 length) internal pure returns (bytes32[] memory arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := mload(0x40) mstore(arg, length) // Store the length. calldatacopy(add(arg, 0x20), add(offset, argOffset), shl(5, length)) mstore(0x40, add(add(arg, 0x20), shl(5, length))) // Allocate the memory. } } /// @dev Reads an immutable arg with type bytes32. function _getArgBytes32(uint256 argOffset) internal pure returns (bytes32 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := calldataload(add(offset, argOffset)) } } /// @dev Reads an immutable arg with type uint256. function _getArgUint256(uint256 argOffset) internal pure returns (uint256 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := calldataload(add(offset, argOffset)) } } /// @dev Reads an immutable arg with type uint248. function _getArgUint248(uint256 argOffset) internal pure returns (uint248 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(8, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint240. function _getArgUint240(uint256 argOffset) internal pure returns (uint240 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(16, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint232. function _getArgUint232(uint256 argOffset) internal pure returns (uint232 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(24, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint224. function _getArgUint224(uint256 argOffset) internal pure returns (uint224 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(0x20, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint216. function _getArgUint216(uint256 argOffset) internal pure returns (uint216 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(40, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint208. function _getArgUint208(uint256 argOffset) internal pure returns (uint208 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(48, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint200. function _getArgUint200(uint256 argOffset) internal pure returns (uint200 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(56, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint192. function _getArgUint192(uint256 argOffset) internal pure returns (uint192 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(64, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint184. function _getArgUint184(uint256 argOffset) internal pure returns (uint184 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(72, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint176. function _getArgUint176(uint256 argOffset) internal pure returns (uint176 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(80, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint168. function _getArgUint168(uint256 argOffset) internal pure returns (uint168 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(88, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint160. function _getArgUint160(uint256 argOffset) internal pure returns (uint160 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(96, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint152. function _getArgUint152(uint256 argOffset) internal pure returns (uint152 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(104, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint144. function _getArgUint144(uint256 argOffset) internal pure returns (uint144 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(112, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint136. function _getArgUint136(uint256 argOffset) internal pure returns (uint136 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(120, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint128. function _getArgUint128(uint256 argOffset) internal pure returns (uint128 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(128, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint120. function _getArgUint120(uint256 argOffset) internal pure returns (uint120 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(136, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint112. function _getArgUint112(uint256 argOffset) internal pure returns (uint112 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(144, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint104. function _getArgUint104(uint256 argOffset) internal pure returns (uint104 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(152, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint96. function _getArgUint96(uint256 argOffset) internal pure returns (uint96 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(160, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint88. function _getArgUint88(uint256 argOffset) internal pure returns (uint88 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(168, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint80. function _getArgUint80(uint256 argOffset) internal pure returns (uint80 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(176, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint72. function _getArgUint72(uint256 argOffset) internal pure returns (uint72 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(184, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint64. function _getArgUint64(uint256 argOffset) internal pure returns (uint64 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(192, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint56. function _getArgUint56(uint256 argOffset) internal pure returns (uint56 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(200, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint48. function _getArgUint48(uint256 argOffset) internal pure returns (uint48 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(208, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint40. function _getArgUint40(uint256 argOffset) internal pure returns (uint40 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(216, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint32. function _getArgUint32(uint256 argOffset) internal pure returns (uint32 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(224, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint24. function _getArgUint24(uint256 argOffset) internal pure returns (uint24 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(232, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint16. function _getArgUint16(uint256 argOffset) internal pure returns (uint16 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(240, calldataload(add(offset, argOffset))) } } /// @dev Reads an immutable arg with type uint8. function _getArgUint8(uint256 argOffset) internal pure returns (uint8 arg) { uint256 offset = _getImmutableArgsOffset(); /// @solidity memory-safe-assembly assembly { arg := shr(248, calldataload(add(offset, argOffset))) } } /// @return offset The offset of the packed immutable args in calldata. function _getImmutableArgsOffset() internal pure returns (uint256 offset) { /// @solidity memory-safe-assembly assembly { offset := sub(calldatasize(), shr(240, calldataload(sub(calldatasize(), 2)))) } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { Lockup, LockupLinear } from "../types/DataTypes.sol"; import { ISablierV2Lockup } from "./ISablierV2Lockup.sol"; /// @title ISablierV2LockupLinear /// @notice Creates and manages lockup streams with a linear streaming function. interface ISablierV2LockupLinear is ISablierV2Lockup { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when a stream is created. /// @param streamId The id of the newly created stream. /// @param funder The address which funded the stream. /// @param sender The address streaming the assets, with the ability to cancel the stream. /// @param recipient The address receiving the assets. /// @param amounts Struct containing (i) the deposit amount, (ii) the protocol fee amount, and (iii) the /// broker fee amount, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Boolean indicating whether the stream will be cancelable or not. /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix /// timestamps. /// @param broker The address of the broker who has helped create the stream, e.g. a front-end website. event CreateLockupLinearStream( uint256 streamId, address funder, address indexed sender, address indexed recipient, Lockup.CreateAmounts amounts, IERC20 indexed asset, bool cancelable, LockupLinear.Range range, address broker ); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the stream's cliff time, which is a Unix timestamp. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getCliffTime(uint256 streamId) external view returns (uint40 cliffTime); /// @notice Retrieves the stream's range, which is a struct containing (i) the stream's start time, (ii) cliff /// time, and (iii) end time, all as Unix timestamps. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getRange(uint256 streamId) external view returns (LockupLinear.Range memory range); /// @notice Retrieves the stream entity. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getStream(uint256 streamId) external view returns (LockupLinear.Stream memory stream); /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals. /// /// When the stream is warm, the streaming function is: /// /// $$ /// f(x) = x * d + c /// $$ /// /// Where: /// /// - $x$ is the elapsed time divided by the stream's total duration. /// - $d$ is the deposited amount. /// - $c$ is the cliff amount. /// /// Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited /// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent /// to the total amount withdrawn. /// /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to /// the sum of `block.timestamp` and `params.durations.total. The stream is funded by `msg.sender` and is wrapped /// in an ERC-721 NFT. /// /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event. /// /// Requirements: /// - All requirements in {createWithRange} must be met for the calculated parameters. /// /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}. /// @return streamId The id of the newly created stream. function createWithDurations(LockupLinear.CreateWithDurations calldata params) external returns (uint256 streamId); /// @notice Creates a stream with the provided start time and end time as the range. The stream is /// funded by `msg.sender` and is wrapped in an ERC-721 NFT. /// /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event. /// /// Notes: /// - As long as the times are ordered, it is not an error for the start or the cliff time to be in the past. /// /// Requirements: /// - Must not be delegate called. /// - `params.totalAmount` must be greater than zero. /// - If set, `params.broker.fee` must not be greater than `MAX_FEE`. /// - `params.range.start` must be less than or equal to `params.range.cliff`. /// - `params.range.cliff` must be less than `params.range.end`. /// - `params.range.end` must be in the future. /// - `params.recipient` must not be the zero address. /// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets. /// /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}. /// @return streamId The id of the newly created stream. function createWithRange(LockupLinear.CreateWithRange calldata params) external returns (uint256 streamId); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { UD2x18 } from "@prb/math/src/UD2x18.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; // DataTypes.sol // // This file defines all structs used in V2 Core, most of which are organized under three namespaces: // // - Lockup // - LockupDynamic // - LockupLinear // // You will notice that some structs contain "slot" annotations - they are used to indicate the // storage layout of the struct. It is more gas efficient to group small data types together so // that they fit in a single 32-byte slot. /// @notice Struct encapsulating the broker parameters passed to the create functions. Both can be set to zero. /// @param account The address receiving the broker's fee. /// @param fee The broker's percentage fee from the total amount, denoted as a fixed-point number where 1e18 is 100%. struct Broker { address account; UD60x18 fee; } /// @notice Namespace for the structs used in both {SablierV2LockupLinear} and {SablierV2LockupDynamic}. library Lockup { /// @notice Struct encapsulating the deposit, withdrawn, and refunded amounts, all denoted in units /// of the asset's decimals. /// @dev Because the deposited and the withdrawn amount are often read together, declaring them in /// the same slot saves gas. /// @param deposited The initial amount deposited in the stream, net of fees. /// @param withdrawn The cumulative amount withdrawn from the stream. /// @param refunded The amount refunded to the sender. Unless the stream was canceled, this is always zero. struct Amounts { // slot 0 uint128 deposited; uint128 withdrawn; // slot 1 uint128 refunded; } /// @notice Struct encapsulating the deposit amount, the protocol fee amount, and the broker fee amount, /// all denoted in units of the asset's decimals. /// @param deposit The amount to deposit in the stream. /// @param protocolFee The protocol fee amount. /// @param brokerFee The broker fee amount. struct CreateAmounts { uint128 deposit; uint128 protocolFee; uint128 brokerFee; } /// @notice Enum representing the different statuses of a stream. /// @custom:value PENDING Stream created but not started; assets are in a pending state. /// @custom:value STREAMING Active stream where assets are currently being streamed. /// @custom:value SETTLED All assets have been streamed; recipient is due to withdraw them. /// @custom:value CANCELED Canceled stream; remaining assets await recipient's withdrawal. /// @custom:value DEPLETED Depleted stream; all assets have been withdrawn and/or refunded. enum Status { PENDING, // value 0 STREAMING, // value 1 SETTLED, // value 2 CANCELED, // value 3 DEPLETED // value 4 } } /// @notice Namespace for the structs used in {SablierV2LockupDynamic}. library LockupDynamic { /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithDeltas} function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Indicates if the stream is cancelable. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. /// @param segments Segments with deltas used to compose the custom streaming curve. Milestones are calculated by /// starting from `block.timestamp` and adding each delta to the previous milestone. struct CreateWithDeltas { address sender; bool cancelable; address recipient; uint128 totalAmount; IERC20 asset; Broker broker; SegmentWithDelta[] segments; } /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithMilestones} /// function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param startTime The Unix timestamp indicating the stream's start. /// @param cancelable Indicates if the stream is cancelable. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. /// @param segments Segments used to compose the custom streaming curve. struct CreateWithMilestones { address sender; uint40 startTime; bool cancelable; address recipient; uint128 totalAmount; IERC20 asset; Broker broker; Segment[] segments; } /// @notice Struct encapsulating the time range. /// @param start The Unix timestamp indicating the stream's start. /// @param end The Unix timestamp indicating the stream's end. struct Range { uint40 start; uint40 end; } /// @notice Segment struct used in the Lockup Dynamic stream. /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals. /// @param exponent The exponent of this segment, denoted as a fixed-point number. /// @param milestone The Unix timestamp indicating this segment's end. struct Segment { // slot 0 uint128 amount; UD2x18 exponent; uint40 milestone; } /// @notice Segment struct used at runtime in {SablierV2LockupDynamic.createWithDeltas}. /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals. /// @param exponent The exponent of this segment, denoted as a fixed-point number. /// @param delta The time difference in seconds between this segment and the previous one. struct SegmentWithDelta { uint128 amount; UD2x18 exponent; uint40 delta; } /// @notice Lockup Dynamic stream. /// @dev The fields are arranged like this to save gas via tight variable packing. /// @param sender The address streaming the assets, with the ability to cancel the stream. /// @param startTime The Unix timestamp indicating the stream's start. /// @param endTime The Unix timestamp indicating the stream's end. /// @param isCancelable Boolean indicating if the stream is cancelable. /// @param wasCanceled Boolean indicating if the stream was canceled. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param isDepleted Boolean indicating if the stream is depleted. /// @param isStream Boolean indicating if the struct entity exists. /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the /// asset's decimals. /// @param segments Segments used to compose the custom streaming curve. struct Stream { // slot 0 address sender; uint40 startTime; uint40 endTime; bool isCancelable; bool wasCanceled; // slot 1 IERC20 asset; bool isDepleted; bool isStream; // slot 2 and 3 Lockup.Amounts amounts; // slots [4..n] Segment[] segments; } } /// @notice Namespace for the structs used in {SablierV2LockupLinear}. library LockupLinear { /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithDurations} function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Indicates if the stream is cancelable. /// @param durations Struct containing (i) cliff period duration and (ii) total stream duration, both in seconds. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. struct CreateWithDurations { address sender; address recipient; uint128 totalAmount; IERC20 asset; bool cancelable; Durations durations; Broker broker; } /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithRange} function. /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the /// same as `msg.sender`. /// @param recipient The address receiving the assets. /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential /// fees, all denoted in units of the asset's decimals. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param cancelable Indicates if the stream is cancelable. /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix /// timestamps. /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero. struct CreateWithRange { address sender; address recipient; uint128 totalAmount; IERC20 asset; bool cancelable; Range range; Broker broker; } /// @notice Struct encapsulating the cliff duration and the total duration. /// @param cliff The cliff duration in seconds. /// @param total The total duration in seconds. struct Durations { uint40 cliff; uint40 total; } /// @notice Struct encapsulating the time range. /// @param start The Unix timestamp for the stream's start. /// @param cliff The Unix timestamp for the cliff period's end. /// @param end The Unix timestamp for the stream's end. struct Range { uint40 start; uint40 cliff; uint40 end; } /// @notice Lockup Linear stream. /// @dev The fields are arranged like this to save gas via tight variable packing. /// @param sender The address streaming the assets, with the ability to cancel the stream. /// @param startTime The Unix timestamp indicating the stream's start. /// @param cliffTime The Unix timestamp indicating the cliff period's end. /// @param isCancelable Boolean indicating if the stream is cancelable. /// @param wasCanceled Boolean indicating if the stream was canceled. /// @param asset The contract address of the ERC-20 asset used for streaming. /// @param endTime The Unix timestamp indicating the stream's end. /// @param isDepleted Boolean indicating if the stream is depleted. /// @param isStream Boolean indicating if the struct entity exists. /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the /// asset's decimals. struct Stream { // slot 0 address sender; uint40 startTime; uint40 cliffTime; bool isCancelable; bool wasCanceled; // slot 1 IERC20 asset; uint40 endTime; bool isDepleted; bool isStream; // slot 2 and 3 Lockup.Amounts amounts; } }
// SPDX-License-Identifier: GPL-3.0-or-later // solhint-disable no-unused-import pragma solidity >=0.8.19; // Math.sol // // This file re-exports all PRBMath types used in V2 Core. It is provided for convenience so // that users don't have to install PRBMath separately. import { SD59x18, sd, sd59x18 } from "@prb/math/src/SD59x18.sol"; import { UD2x18, ud2x18 } from "@prb/math/src/UD2x18.sol"; import { UD60x18, ud, ud60x18 } from "@prb/math/src/UD60x18.sol";
// SPDX-License-Identifier: GPL-3.0-or-later // solhint-disable no-unused-import pragma solidity >=0.8.19; // Tokens.sol // // This file re-exports all token interfaces used in V2 Core. It is provided for convenience so // that users don't have to install OpenZeppelin separately. import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity =0.8.21; import "weighted-math-lib/WeightedMathLib.sol"; import "solady/src/tokens/ERC20.sol"; struct Pool { address asset; address share; uint256 assets; uint256 shares; uint256 virtualAssets; uint256 virtualShares; uint256 weightStart; uint256 weightEnd; uint256 saleStart; uint256 saleEnd; uint256 totalPurchased; uint256 maxSharePrice; } library LiquidityBootstrapLib { /// ----------------------------------------------------------------------- /// Dependencies /// ----------------------------------------------------------------------- using WeightedMathLib for *; using FixedPointMathLib for *; /// ----------------------------------------------------------------------- /// Swap Helpers /// ----------------------------------------------------------------------- function computeReservesAndWeights(Pool memory args) internal view returns ( uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight ) { assetReserve = args.assets + args.virtualAssets; shareReserve = args.shares + args.virtualShares - args.totalPurchased; uint256 totalSeconds = args.saleEnd - args.saleStart; uint256 secondsElapsed = 0; if (block.timestamp > args.saleStart) { secondsElapsed = block.timestamp - args.saleStart; } assetWeight = WeightedMathLib.linearInterpolation({ x: args.weightStart, y: args.weightEnd, i: secondsElapsed, n: totalSeconds }); shareWeight = uint256(1e18).rawSub(assetWeight); } function previewAssetsIn( Pool memory args, uint256 sharesOut ) internal view returns (uint256 assetsIn) { (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) = computeReservesAndWeights(args); (uint256 assetReserveScaled, uint256 shareReserveScaled) = scaledReserves(args, assetReserve, shareReserve); uint256 sharesOutScaled = scaleTokenBefore(args.share, sharesOut); assetsIn = sharesOutScaled.getAmountIn( assetReserveScaled, shareReserveScaled, assetWeight, shareWeight ); if (assetsIn.divWad(sharesOutScaled) > args.maxSharePrice) { assetsIn = sharesOutScaled.divWad(args.maxSharePrice); } assetsIn = scaleTokenAfter(args.asset, assetsIn); } function previewSharesOut( Pool memory args, uint256 assetsIn ) internal view returns (uint256 sharesOut) { (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) = computeReservesAndWeights(args); (uint256 assetReserveScaled, uint256 shareReserveScaled) = scaledReserves(args, assetReserve, shareReserve); uint256 assetsInScaled = scaleTokenBefore(args.asset, assetsIn); sharesOut = assetsInScaled.getAmountOut( assetReserveScaled, shareReserveScaled, assetWeight, shareWeight ); if (assetsInScaled.divWad(sharesOut) > args.maxSharePrice) { sharesOut = assetsInScaled.mulWad(args.maxSharePrice); } sharesOut = scaleTokenAfter(args.share, sharesOut); } function previewSharesIn( Pool memory args, uint256 assetsOut ) internal view returns (uint256 sharesIn) { (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) = computeReservesAndWeights(args); (uint256 assetReserveScaled, uint256 shareReserveScaled) = scaledReserves(args, assetReserve, shareReserve); uint256 assetsOutScaled = scaleTokenBefore(args.asset, assetsOut); sharesIn = assetsOutScaled.getAmountIn( shareReserveScaled, assetReserveScaled, shareWeight, assetWeight ); if (assetsOutScaled.divWad(sharesIn) > args.maxSharePrice) { sharesIn = assetsOutScaled.divWad(args.maxSharePrice); } sharesIn = scaleTokenAfter(args.share, sharesIn); } function previewAssetsOut( Pool memory args, uint256 sharesIn ) internal view returns (uint256 assetsOut) { (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) = computeReservesAndWeights(args); (uint256 assetReserveScaled, uint256 shareReserveScaled) = scaledReserves(args, assetReserve, shareReserve); uint256 sharesInScaled = scaleTokenBefore(args.share, sharesIn); assetsOut = sharesInScaled.getAmountOut( shareReserveScaled, assetReserveScaled, shareWeight, assetWeight ); if (assetsOut.divWad(sharesInScaled) > args.maxSharePrice) { assetsOut = sharesInScaled.mulWad(args.maxSharePrice); } assetsOut = scaleTokenAfter(args.asset, assetsOut); } function scaledReserves( Pool memory args, uint256 assetReserve, uint256 shareReserve ) internal view returns (uint256, uint256) { return (scaleTokenBefore(args.asset, assetReserve), scaleTokenBefore(args.share, shareReserve)); } function scaleTokenBefore( address token, uint256 amount ) internal view returns (uint256 scaledAmount) { uint8 decimals = ERC20(token).decimals(); scaledAmount = amount; if (decimals < 18) { uint256 decDiff = uint256(18).rawSub(uint256(decimals)); scaledAmount = amount * (10 ** decDiff); } else if (decimals > 18) { uint256 decDiff = uint256(decimals).rawSub(uint256(18)); scaledAmount = amount / (10 ** decDiff); } } function scaleTokenAfter( address token, uint256 amount ) internal view returns (uint256 scaledAmount) { uint8 decimals = ERC20(token).decimals(); scaledAmount = amount; if (decimals < 18) { uint256 decDiff = uint256(18).rawSub(uint256(decimals)); scaledAmount = amount / (10 ** decDiff); } else if (decimals > 18) { uint256 decDiff = uint256(decimals).rawSub(uint256(18)); scaledAmount = amount * (10 ** decDiff); } } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity =0.8.21; abstract contract Pausable { /// ----------------------------------------------------------------------- /// Events /// ----------------------------------------------------------------------- event Paused(bool); /// ----------------------------------------------------------------------- /// Custom Errors /// ----------------------------------------------------------------------- error EnforcedPause(); /// ----------------------------------------------------------------------- /// Mutable Storage /// ----------------------------------------------------------------------- bool public paused; /// ----------------------------------------------------------------------- /// Modifiers /// ----------------------------------------------------------------------- modifier whenNotPaused() { if (paused) revert EnforcedPause(); _; } /// ----------------------------------------------------------------------- /// Internal Logic /// ----------------------------------------------------------------------- function _togglePause() internal virtual { emit Paused(paused = !paused); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity =0.8.21; import "solady/src/auth/Ownable.sol"; import "solady/src/utils/SafeTransferLib.sol"; import "weighted-math-lib/WeightedMathLib.sol"; contract Treasury is Ownable { /// ----------------------------------------------------------------------- /// Dependencies /// ----------------------------------------------------------------------- using FixedPointMathLib for *; using SafeTransferLib for address; /// ----------------------------------------------------------------------- /// Events /// ----------------------------------------------------------------------- /// @dev Emitted when the fee recipient is updated. /// @param recipient The new fee recipient address. /// @param percentage The new fee recipient percentage. event FeeRecipientUpdated(address recipient, uint256 percentage); /// ----------------------------------------------------------------------- /// Custom Errors /// ----------------------------------------------------------------------- /// @dev Error thrown when the input lenght is not same for recipients and percentages. error InvalidInput(); /// @dev Error thrown when the percentage sum is not 100. error InvalidPercentageSum(); /// @dev Error thrown when the address is 0x. error ZeroAddress(); /// ----------------------------------------------------------------------- /// Mutable Storage /// ----------------------------------------------------------------------- /// @notice Mapping to track fee percentage for each address. mapping(address => uint256) private feePercents; /// @notice List of addresses of fee recipients. address[] private recipients; /// @notice Address of swap fee recipient. address private swapFeeRecipient; /// ----------------------------------------------------------------------- /// Constructor /// ----------------------------------------------------------------------- /// @param _owner The owner of the factory contract. constructor(address _owner) { // Initialize the owner and implementation address. _initializeOwner(_owner); // Set the initial recipientes here. recipients.push(_owner); feePercents[_owner] = 1 ether; swapFeeRecipient = _owner; } /** * @notice Update fee recipients and percentages. * @param _recipients List of addresses to be added as fee recipients. */ function updateRecipients( address[] calldata _recipients, uint256[] calldata _percentages ) public onlyOwner { if (_recipients.length != _percentages.length) revert InvalidInput(); delete recipients; uint256 totalPercentage; for (uint8 i = 0; i < _recipients.length;) { if (_recipients[i] == address(0)) revert ZeroAddress(); recipients.push(_recipients[i]); feePercents[_recipients[i]] = _percentages[i]; totalPercentage += _percentages[i]; emit FeeRecipientUpdated(_recipients[i], _percentages[i]); unchecked { ++i; } } if (totalPercentage != 1 ether) revert InvalidPercentageSum(); } function updateSwapFeeRecipient(address _sfr) public onlyOwner { if (_sfr == address(0)) revert ZeroAddress(); swapFeeRecipient = _sfr; emit FeeRecipientUpdated(_sfr, 0); } /** * @notice Distriburte the fee to the recipients. * @param asset Address of the asset that will be distrubuted. * @param amount Total amount of fees that will be distributed. */ function distributeFee( address asset, uint256 amount, uint256 swapFeesAsset, address share, uint256 swapFeesShare ) external { for (uint8 i = 0; i < recipients.length;) { uint256 feeP = feePercents[recipients[i]]; uint256 feeShare = amount.mulWad(feeP); asset.safeTransfer(recipients[i], feeShare); unchecked { ++i; } } share.safeTransfer(swapFeeRecipient, swapFeesShare); asset.safeTransfer(swapFeeRecipient, swapFeesAsset); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, either due to a /// multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The multiply-divide operation failed, either due to a /// multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return r; /// @solidity memory-safe-assembly assembly { // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. function lnWad(int256 x) internal pure returns (int256 r) { unchecked { /// @solidity memory-safe-assembly assembly { if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } } // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Compute k = log2(x) - 96, t = 159 - k = 255 - log2(x) = 255 ^ log2(x). int256 t; /// @solidity memory-safe-assembly assembly { t := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) t := or(t, shl(6, lt(0xffffffffffffffff, shr(t, x)))) t := or(t, shl(5, lt(0xffffffff, shr(t, x)))) t := or(t, shl(4, lt(0xffff, shr(t, x)))) t := or(t, shl(3, lt(0xff, shr(t, x)))) // forgefmt: disable-next-item t := xor(t, byte(and(0x1f, shr(shr(t, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) } // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x = int256(uint256(x << uint256(t)) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * (159 - t); // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Calculates `floor(a * b / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Least significant 256 bits of the product. let p0 := mul(x, y) let mm := mulmod(x, y, not(0)) // Most significant 256 bits of the product. let p1 := sub(mm, add(p0, lt(mm, p0))) // Handle non-overflow cases, 256 by 256 division. if iszero(p1) { if iszero(d) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } result := div(p0, d) break } // Make sure the result is less than `2**256`. Also prevents `d == 0`. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. // Compute remainder using mulmod. let r := mulmod(x, y, d) // `t` is the least significant bit of `d`. // Always greater or equal to 1. let t := and(d, sub(0, d)) // Divide `d` by `t`, which is a power of two. d := div(d, t) // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(mul(3, d), 2) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 result := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or(mul(sub(p1, gt(r, p0)), add(div(sub(0, t), t), 1)), div(sub(p0, r), t)), // inverse mod 2**256 mul(inv, sub(2, mul(d, inv))) ) break } } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { result = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { result := add(result, 1) if iszero(result) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d)) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if iszero(iszero(x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 9; if (x <= type(uint256).max / 10 ** 36 - 1) { x *= 10 ** 18; z = 1; } z *= sqrt(x); } } /// @dev Returns the cube root of `x`, denominated in `WAD`. function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 12; if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) { if (x >= type(uint256).max / 10 ** 36) { x *= 10 ** 18; z = 10 ** 6; } else { x *= 10 ** 36; z = 1; } } z *= cbrt(x); } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the average of `x` and `y`. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (((x & 1) + (y & 1)) >> 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(sub(0, shr(255, x)), add(sub(0, shr(255, x)), x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe integer casting library that reverts on overflow. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol) library SafeCastLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ error Overflow(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* UNSIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toUint8(uint256 x) internal pure returns (uint8) { if (x >= 1 << 8) _revertOverflow(); return uint8(x); } function toUint16(uint256 x) internal pure returns (uint16) { if (x >= 1 << 16) _revertOverflow(); return uint16(x); } function toUint24(uint256 x) internal pure returns (uint24) { if (x >= 1 << 24) _revertOverflow(); return uint24(x); } function toUint32(uint256 x) internal pure returns (uint32) { if (x >= 1 << 32) _revertOverflow(); return uint32(x); } function toUint40(uint256 x) internal pure returns (uint40) { if (x >= 1 << 40) _revertOverflow(); return uint40(x); } function toUint48(uint256 x) internal pure returns (uint48) { if (x >= 1 << 48) _revertOverflow(); return uint48(x); } function toUint56(uint256 x) internal pure returns (uint56) { if (x >= 1 << 56) _revertOverflow(); return uint56(x); } function toUint64(uint256 x) internal pure returns (uint64) { if (x >= 1 << 64) _revertOverflow(); return uint64(x); } function toUint72(uint256 x) internal pure returns (uint72) { if (x >= 1 << 72) _revertOverflow(); return uint72(x); } function toUint80(uint256 x) internal pure returns (uint80) { if (x >= 1 << 80) _revertOverflow(); return uint80(x); } function toUint88(uint256 x) internal pure returns (uint88) { if (x >= 1 << 88) _revertOverflow(); return uint88(x); } function toUint96(uint256 x) internal pure returns (uint96) { if (x >= 1 << 96) _revertOverflow(); return uint96(x); } function toUint104(uint256 x) internal pure returns (uint104) { if (x >= 1 << 104) _revertOverflow(); return uint104(x); } function toUint112(uint256 x) internal pure returns (uint112) { if (x >= 1 << 112) _revertOverflow(); return uint112(x); } function toUint120(uint256 x) internal pure returns (uint120) { if (x >= 1 << 120) _revertOverflow(); return uint120(x); } function toUint128(uint256 x) internal pure returns (uint128) { if (x >= 1 << 128) _revertOverflow(); return uint128(x); } function toUint136(uint256 x) internal pure returns (uint136) { if (x >= 1 << 136) _revertOverflow(); return uint136(x); } function toUint144(uint256 x) internal pure returns (uint144) { if (x >= 1 << 144) _revertOverflow(); return uint144(x); } function toUint152(uint256 x) internal pure returns (uint152) { if (x >= 1 << 152) _revertOverflow(); return uint152(x); } function toUint160(uint256 x) internal pure returns (uint160) { if (x >= 1 << 160) _revertOverflow(); return uint160(x); } function toUint168(uint256 x) internal pure returns (uint168) { if (x >= 1 << 168) _revertOverflow(); return uint168(x); } function toUint176(uint256 x) internal pure returns (uint176) { if (x >= 1 << 176) _revertOverflow(); return uint176(x); } function toUint184(uint256 x) internal pure returns (uint184) { if (x >= 1 << 184) _revertOverflow(); return uint184(x); } function toUint192(uint256 x) internal pure returns (uint192) { if (x >= 1 << 192) _revertOverflow(); return uint192(x); } function toUint200(uint256 x) internal pure returns (uint200) { if (x >= 1 << 200) _revertOverflow(); return uint200(x); } function toUint208(uint256 x) internal pure returns (uint208) { if (x >= 1 << 208) _revertOverflow(); return uint208(x); } function toUint216(uint256 x) internal pure returns (uint216) { if (x >= 1 << 216) _revertOverflow(); return uint216(x); } function toUint224(uint256 x) internal pure returns (uint224) { if (x >= 1 << 224) _revertOverflow(); return uint224(x); } function toUint232(uint256 x) internal pure returns (uint232) { if (x >= 1 << 232) _revertOverflow(); return uint232(x); } function toUint240(uint256 x) internal pure returns (uint240) { if (x >= 1 << 240) _revertOverflow(); return uint240(x); } function toUint248(uint256 x) internal pure returns (uint248) { if (x >= 1 << 248) _revertOverflow(); return uint248(x); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toInt8(int256 x) internal pure returns (int8) { int8 y = int8(x); if (x != y) _revertOverflow(); return y; } function toInt16(int256 x) internal pure returns (int16) { int16 y = int16(x); if (x != y) _revertOverflow(); return y; } function toInt24(int256 x) internal pure returns (int24) { int24 y = int24(x); if (x != y) _revertOverflow(); return y; } function toInt32(int256 x) internal pure returns (int32) { int32 y = int32(x); if (x != y) _revertOverflow(); return y; } function toInt40(int256 x) internal pure returns (int40) { int40 y = int40(x); if (x != y) _revertOverflow(); return y; } function toInt48(int256 x) internal pure returns (int48) { int48 y = int48(x); if (x != y) _revertOverflow(); return y; } function toInt56(int256 x) internal pure returns (int56) { int56 y = int56(x); if (x != y) _revertOverflow(); return y; } function toInt64(int256 x) internal pure returns (int64) { int64 y = int64(x); if (x != y) _revertOverflow(); return y; } function toInt72(int256 x) internal pure returns (int72) { int72 y = int72(x); if (x != y) _revertOverflow(); return y; } function toInt80(int256 x) internal pure returns (int80) { int80 y = int80(x); if (x != y) _revertOverflow(); return y; } function toInt88(int256 x) internal pure returns (int88) { int88 y = int88(x); if (x != y) _revertOverflow(); return y; } function toInt96(int256 x) internal pure returns (int96) { int96 y = int96(x); if (x != y) _revertOverflow(); return y; } function toInt104(int256 x) internal pure returns (int104) { int104 y = int104(x); if (x != y) _revertOverflow(); return y; } function toInt112(int256 x) internal pure returns (int112) { int112 y = int112(x); if (x != y) _revertOverflow(); return y; } function toInt120(int256 x) internal pure returns (int120) { int120 y = int120(x); if (x != y) _revertOverflow(); return y; } function toInt128(int256 x) internal pure returns (int128) { int128 y = int128(x); if (x != y) _revertOverflow(); return y; } function toInt136(int256 x) internal pure returns (int136) { int136 y = int136(x); if (x != y) _revertOverflow(); return y; } function toInt144(int256 x) internal pure returns (int144) { int144 y = int144(x); if (x != y) _revertOverflow(); return y; } function toInt152(int256 x) internal pure returns (int152) { int152 y = int152(x); if (x != y) _revertOverflow(); return y; } function toInt160(int256 x) internal pure returns (int160) { int160 y = int160(x); if (x != y) _revertOverflow(); return y; } function toInt168(int256 x) internal pure returns (int168) { int168 y = int168(x); if (x != y) _revertOverflow(); return y; } function toInt176(int256 x) internal pure returns (int176) { int176 y = int176(x); if (x != y) _revertOverflow(); return y; } function toInt184(int256 x) internal pure returns (int184) { int184 y = int184(x); if (x != y) _revertOverflow(); return y; } function toInt192(int256 x) internal pure returns (int192) { int192 y = int192(x); if (x != y) _revertOverflow(); return y; } function toInt200(int256 x) internal pure returns (int200) { int200 y = int200(x); if (x != y) _revertOverflow(); return y; } function toInt208(int256 x) internal pure returns (int208) { int208 y = int208(x); if (x != y) _revertOverflow(); return y; } function toInt216(int256 x) internal pure returns (int216) { int216 y = int216(x); if (x != y) _revertOverflow(); return y; } function toInt224(int256 x) internal pure returns (int224) { int224 y = int224(x); if (x != y) _revertOverflow(); return y; } function toInt232(int256 x) internal pure returns (int232) { int232 y = int232(x); if (x != y) _revertOverflow(); return y; } function toInt240(int256 x) internal pure returns (int240) { int240 y = int240(x); if (x != y) _revertOverflow(); return y; } function toInt248(int256 x) internal pure returns (int248) { int248 y = int248(x); if (x != y) _revertOverflow(); return y; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* OTHER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toInt256(uint256 x) internal pure returns (int256) { if (x >= 1 << 255) _revertOverflow(); return int256(x); } function toUint256(int256 x) internal pure returns (uint256) { if (x < 0) _revertOverflow(); return uint256(x); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function _revertOverflow() private pure { /// @solidity memory-safe-assembly assembly { // Store the function selector of `Overflow()`. mstore(0x00, 0x35278d12) // Revert with (offset, size). revert(0x1c, 0x04) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol"; import { Lockup } from "../types/DataTypes.sol"; import { ISablierV2Base } from "./ISablierV2Base.sol"; import { ISablierV2NFTDescriptor } from "./ISablierV2NFTDescriptor.sol"; /// @title ISablierV2Lockup /// @notice Common logic between all Sablier V2 lockup streaming contracts. interface ISablierV2Lockup is ISablierV2Base, // 1 inherited component IERC721Metadata // 2 inherited components { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when a stream is canceled. /// @param streamId The id of the stream. /// @param sender The address of the stream's sender. /// @param recipient The address of the stream's recipient. /// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's /// decimals. /// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of the /// asset's decimals. event CancelLockupStream( uint256 indexed streamId, address indexed sender, address indexed recipient, uint128 senderAmount, uint128 recipientAmount ); /// @notice Emitted when a sender gives up the right to cancel a stream. /// @param streamId The id of the stream. event RenounceLockupStream(uint256 indexed streamId); /// @notice Emitted when the admin sets a new NFT descriptor contract. /// @param admin The address of the current contract admin. /// @param oldNFTDescriptor The address of the old NFT descriptor contract. /// @param newNFTDescriptor The address of the new NFT descriptor contract. event SetNFTDescriptor( address indexed admin, ISablierV2NFTDescriptor oldNFTDescriptor, ISablierV2NFTDescriptor newNFTDescriptor ); /// @notice Emitted when assets are withdrawn from a stream. /// @param streamId The id of the stream. /// @param to The address that has received the withdrawn assets. /// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals. event WithdrawFromLockupStream(uint256 indexed streamId, address indexed to, uint128 amount); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the address of the ERC-20 asset used for streaming. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getAsset(uint256 streamId) external view returns (IERC20 asset); /// @notice Retrieves the amount deposited in the stream, denoted in units of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getDepositedAmount(uint256 streamId) external view returns (uint128 depositedAmount); /// @notice Retrieves the stream's end time, which is a Unix timestamp. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getEndTime(uint256 streamId) external view returns (uint40 endTime); /// @notice Retrieves the stream's recipient. /// @dev Reverts if the NFT has been burned. /// @param streamId The stream id for the query. function getRecipient(uint256 streamId) external view returns (address recipient); /// @notice Retrieves the amount refunded to the sender after a cancellation, denoted in units of the asset's /// decimals. This amount is always zero unless the stream was canceled. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getRefundedAmount(uint256 streamId) external view returns (uint128 refundedAmount); /// @notice Retrieves the stream's sender. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getSender(uint256 streamId) external view returns (address sender); /// @notice Retrieves the stream's start time, which is a Unix timestamp. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getStartTime(uint256 streamId) external view returns (uint40 startTime); /// @notice Retrieves the amount withdrawn from the stream, denoted in units of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function getWithdrawnAmount(uint256 streamId) external view returns (uint128 withdrawnAmount); /// @notice Retrieves a flag indicating whether the stream can be canceled. When the stream is cold, this /// flag is always `false`. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isCancelable(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream is cold, i.e. settled, canceled, or depleted. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isCold(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream is depleted. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isDepleted(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream exists. /// @dev Does not revert if `streamId` references a null stream. /// @param streamId The stream id for the query. function isStream(uint256 streamId) external view returns (bool result); /// @notice Retrieves a flag indicating whether the stream is warm, i.e. either pending or streaming. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function isWarm(uint256 streamId) external view returns (bool result); /// @notice Counter for stream ids, used in the create functions. function nextStreamId() external view returns (uint256); /// @notice Calculates the amount that the sender would be refunded if the stream were canceled, denoted in units /// of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function refundableAmountOf(uint256 streamId) external view returns (uint128 refundableAmount); /// @notice Retrieves the stream's status. /// @param streamId The stream id for the query. function statusOf(uint256 streamId) external view returns (Lockup.Status status); /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount); /// @notice Retrieves a flag indicating whether the stream was canceled. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function wasCanceled(uint256 streamId) external view returns (bool result); /// @notice Calculates the amount that the recipient can withdraw from the stream, denoted in units of the asset's /// decimals. /// @dev Reverts if `streamId` references a null stream. /// @param streamId The stream id for the query. function withdrawableAmountOf(uint256 streamId) external view returns (uint128 withdrawableAmount); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Burns the NFT associated with the stream. /// /// @dev Emits a {Transfer} event. /// /// Requirements: /// - Must not be delegate called. /// - `streamId` must reference a depleted stream. /// - The NFT must exist. /// - `msg.sender` must be either the NFT owner or an approved third party. /// /// @param streamId The id of the stream NFT to burn. function burn(uint256 streamId) external; /// @notice Cancels the stream and refunds any remaining assets to the sender. /// /// @dev Emits a {Transfer}, {CancelLockupStream}, and {MetadataUpdate} event. /// /// Notes: /// - If there any assets left for the recipient to withdraw, the stream is marked as canceled. Otherwise, the /// stream is marked as depleted. /// - This function attempts to invoke a hook on either the sender or the recipient, depending on who `msg.sender` /// is, and if the resolved address is a contract. /// /// Requirements: /// - Must not be delegate called. /// - The stream must be warm and cancelable. /// - `msg.sender` must be either the stream's sender or the stream's recipient (i.e. the NFT owner). /// /// @param streamId The id of the stream to cancel. function cancel(uint256 streamId) external; /// @notice Cancels multiple streams and refunds any remaining assets to the sender. /// /// @dev Emits multiple {Transfer}, {CancelLockupStream}, and {MetadataUpdate} events. /// /// Notes: /// - Refer to the notes in {cancel}. /// /// Requirements: /// - All requirements from {cancel} must be met for each stream. /// /// @param streamIds The ids of the streams to cancel. function cancelMultiple(uint256[] calldata streamIds) external; /// @notice Removes the right of the stream's sender to cancel the stream. /// /// @dev Emits a {RenounceLockupStream} and {MetadataUpdate} event. /// /// Notes: /// - This is an irreversible operation. /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract. /// /// Requirements: /// - Must not be delegate called. /// - `streamId` must reference a warm stream. /// - `msg.sender` must be the stream's sender. /// - The stream must be cancelable. /// /// @param streamId The id of the stream to renounce. function renounce(uint256 streamId) external; /// @notice Sets a new NFT descriptor contract, which produces the URI describing the Sablier stream NFTs. /// /// @dev Emits a {SetNFTDescriptor} and {BatchMetadataUpdate} event. /// /// Notes: /// - Does not revert if the NFT descriptor is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newNFTDescriptor The address of the new NFT descriptor contract. function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external; /// @notice Withdraws the provided amount of assets from the stream to the `to` address. /// /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event. /// /// Notes: /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract /// and `msg.sender` is either the sender or an approved operator. /// /// Requirements: /// - Must not be delegate called. /// - `streamId` must not reference a null or depleted stream. /// - `msg.sender` must be the stream's sender, the stream's recipient or an approved third party. /// - `to` must be the recipient if `msg.sender` is the stream's sender. /// - `to` must not be the zero address. /// - `amount` must be greater than zero and must not exceed the withdrawable amount. /// /// @param streamId The id of the stream to withdraw from. /// @param to The address receiving the withdrawn assets. /// @param amount The amount to withdraw, denoted in units of the asset's decimals. function withdraw(uint256 streamId, address to, uint128 amount) external; /// @notice Withdraws the maximum withdrawable amount from the stream to the provided address `to`. /// /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event. /// /// Notes: /// - Refer to the notes in {withdraw}. /// /// Requirements: /// - Refer to the requirements in {withdraw}. /// /// @param streamId The id of the stream to withdraw from. /// @param to The address receiving the withdrawn assets. function withdrawMax(uint256 streamId, address to) external; /// @notice Withdraws the maximum withdrawable amount from the stream to the current recipient, and transfers the /// NFT to `newRecipient`. /// /// @dev Emits a {WithdrawFromLockupStream} and a {Transfer} event. /// /// Notes: /// - If the withdrawable amount is zero, the withdrawal is skipped. /// - Refer to the notes in {withdraw}. /// /// Requirements: /// - `msg.sender` must be the stream's recipient. /// - Refer to the requirements in {withdraw}. /// - Refer to the requirements in {IERC721.transferFrom}. /// /// @param streamId The id of the stream NFT to transfer. /// @param newRecipient The address of the new owner of the stream NFT. function withdrawMaxAndTransfer(uint256 streamId, address newRecipient) external; /// @notice Withdraws assets from streams to the provided address `to`. /// /// @dev Emits multiple {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} events. /// /// Notes: /// - This function attempts to call a hook on the recipient of each stream, unless `msg.sender` is the recipient. /// /// Requirements: /// - All requirements from {withdraw} must be met for each stream. /// - There must be an equal number of `streamIds` and `amounts`. /// /// @param streamIds The ids of the streams to withdraw from. /// @param to The address receiving the withdrawn assets. /// @param amounts The amounts to withdraw, denoted in units of the asset's decimals. function withdrawMultiple(uint256[] calldata streamIds, address to, uint128[] calldata amounts) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══╝ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud2x18/Casting.sol"; import "./ud2x18/Constants.sol"; import "./ud2x18/Errors.sol"; import "./ud2x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ███████╗██████╗ ███████╗ █████╗ ██╗ ██╗ ██╗ █████╗ ██╔════╝██╔══██╗██╔════╝██╔══██╗╚██╗██╔╝███║██╔══██╗ ███████╗██║ ██║███████╗╚██████║ ╚███╔╝ ╚██║╚█████╔╝ ╚════██║██║ ██║╚════██║ ╚═══██║ ██╔██╗ ██║██╔══██╗ ███████║██████╔╝███████║ █████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚══════╝╚═════╝ ╚══════╝ ╚════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./sd59x18/Casting.sol"; import "./sd59x18/Constants.sol"; import "./sd59x18/Conversions.sol"; import "./sd59x18/Errors.sol"; import "./sd59x18/Helpers.sol"; import "./sd59x18/Math.sol"; import "./sd59x18/ValueType.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple ERC20 + EIP-2612 implementation. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol) /// /// @dev Note: /// - The ERC20 standard allows minting and transferring to and from the zero address, /// minting and transferring zero tokens, as well as self-approvals. /// For performance, this implementation WILL NOT revert for such actions. /// Please add any checks with overrides if desired. /// - The `permit` function uses the ecrecover precompile (0x1). /// /// If you are overriding: /// - NEVER violate the ERC20 invariant: /// the total sum of all balances must be equal to `totalSupply()`. /// - Check that the overridden function is actually used in the function you want to /// change the behavior of. Much of the code has been manually inlined for performance. abstract contract ERC20 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The total supply has overflowed. error TotalSupplyOverflow(); /// @dev The allowance has overflowed. error AllowanceOverflow(); /// @dev The allowance has underflowed. error AllowanceUnderflow(); /// @dev Insufficient balance. error InsufficientBalance(); /// @dev Insufficient allowance. error InsufficientAllowance(); /// @dev The permit is invalid. error InvalidPermit(); /// @dev The permit has expired. error PermitExpired(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Emitted when `amount` tokens is transferred from `from` to `to`. event Transfer(address indexed from, address indexed to, uint256 amount); /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`. event Approval(address indexed owner, address indexed spender, uint256 amount); /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`. uint256 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`. uint256 private constant _APPROVAL_EVENT_SIGNATURE = 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The storage slot for the total supply. uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c; /// @dev The balance slot of `owner` is given by: /// ``` /// mstore(0x0c, _BALANCE_SLOT_SEED) /// mstore(0x00, owner) /// let balanceSlot := keccak256(0x0c, 0x20) /// ``` uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2; /// @dev The allowance slot of (`owner`, `spender`) is given by: /// ``` /// mstore(0x20, spender) /// mstore(0x0c, _ALLOWANCE_SLOT_SEED) /// mstore(0x00, owner) /// let allowanceSlot := keccak256(0x0c, 0x34) /// ``` uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20; /// @dev The nonce slot of `owner` is given by: /// ``` /// mstore(0x0c, _NONCES_SLOT_SEED) /// mstore(0x00, owner) /// let nonceSlot := keccak256(0x0c, 0x20) /// ``` uint256 private constant _NONCES_SLOT_SEED = 0x38377508; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`. uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901; /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`. bytes32 private constant _DOMAIN_TYPEHASH = 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f; /// @dev `keccak256("1")`. bytes32 private constant _VERSION_HASH = 0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6; /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`. bytes32 private constant _PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 METADATA */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the name of the token. function name() public view virtual returns (string memory); /// @dev Returns the symbol of the token. function symbol() public view virtual returns (string memory); /// @dev Returns the decimals places of the token. function decimals() public view virtual returns (uint8) { return 18; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the amount of tokens in existence. function totalSupply() public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := sload(_TOTAL_SUPPLY_SLOT) } } /// @dev Returns the amount of tokens owned by `owner`. function balanceOf(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x20)) } } /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`. function allowance(address owner, address spender) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x34)) } } /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens. /// /// Emits a {Approval} event. function approve(address spender, uint256 amount) public virtual returns (bool) { /// @solidity memory-safe-assembly assembly { // Compute the allowance slot and store the amount. mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x34), amount) // Emit the {Approval} event. mstore(0x00, amount) log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c))) } return true; } /// @dev Transfer `amount` tokens from the caller to `to`. /// /// Requirements: /// - `from` must at least have `amount`. /// /// Emits a {Transfer} event. function transfer(address to, uint256 amount) public virtual returns (bool) { _beforeTokenTransfer(msg.sender, to, amount); /// @solidity memory-safe-assembly assembly { // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, caller()) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c))) } _afterTokenTransfer(msg.sender, to, amount); return true; } /// @dev Transfers `amount` tokens from `from` to `to`. /// /// Note: Does not update the allowance if it is the maximum uint256 value. /// /// Requirements: /// - `from` must at least have `amount`. /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`. /// /// Emits a {Transfer} event. function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) { _beforeTokenTransfer(from, to, amount); /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) // Compute the allowance slot and load its value. mstore(0x20, caller()) mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED)) let allowanceSlot := keccak256(0x0c, 0x34) let allowance_ := sload(allowanceSlot) // If the allowance is not the maximum uint256 value. if add(allowance_, 1) { // Revert if the amount to be transferred exceeds the allowance. if gt(amount, allowance_) { mstore(0x00, 0x13be252b) // `InsufficientAllowance()`. revert(0x1c, 0x04) } // Subtract and store the updated allowance. sstore(allowanceSlot, sub(allowance_, amount)) } // Compute the balance slot and load its value. mstore(0x0c, or(from_, _BALANCE_SLOT_SEED)) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c))) } _afterTokenTransfer(from, to, amount); return true; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EIP-2612 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev For more performance, override to return the constant value /// of `keccak256(bytes(name()))` if `name()` will never change. function _constantNameHash() internal view virtual returns (bytes32 result) {} /// @dev Returns the current nonce for `owner`. /// This value is used to compute the signature for EIP-2612 permit. function nonces(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the nonce slot and load its value. mstore(0x0c, _NONCES_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x20)) } } /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`, /// authorized by a signed approval by `owner`. /// /// Emits a {Approval} event. function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { bytes32 nameHash = _constantNameHash(); // We simply calculate it on-the-fly to allow for cases where the `name` may change. if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name())); /// @solidity memory-safe-assembly assembly { // Revert if the block timestamp is greater than `deadline`. if gt(timestamp(), deadline) { mstore(0x00, 0x1a15a3cc) // `PermitExpired()`. revert(0x1c, 0x04) } let m := mload(0x40) // Grab the free memory pointer. // Clean the upper 96 bits. owner := shr(96, shl(96, owner)) spender := shr(96, shl(96, spender)) // Compute the nonce slot and load its value. mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX) mstore(0x00, owner) let nonceSlot := keccak256(0x0c, 0x20) let nonceValue := sload(nonceSlot) // Prepare the domain separator. mstore(m, _DOMAIN_TYPEHASH) mstore(add(m, 0x20), nameHash) mstore(add(m, 0x40), _VERSION_HASH) mstore(add(m, 0x60), chainid()) mstore(add(m, 0x80), address()) mstore(0x2e, keccak256(m, 0xa0)) // Prepare the struct hash. mstore(m, _PERMIT_TYPEHASH) mstore(add(m, 0x20), owner) mstore(add(m, 0x40), spender) mstore(add(m, 0x60), value) mstore(add(m, 0x80), nonceValue) mstore(add(m, 0xa0), deadline) mstore(0x4e, keccak256(m, 0xc0)) // Prepare the ecrecover calldata. mstore(0x00, keccak256(0x2c, 0x42)) mstore(0x20, and(0xff, v)) mstore(0x40, r) mstore(0x60, s) let t := staticcall(gas(), 1, 0, 0x80, 0x20, 0x20) // If the ecrecover fails, the returndatasize will be 0x00, // `owner` will be checked if it equals the hash at 0x00, // which evaluates to false (i.e. 0), and we will revert. // If the ecrecover succeeds, the returndatasize will be 0x20, // `owner` will be compared against the returned address at 0x20. if iszero(eq(mload(returndatasize()), owner)) { mstore(0x00, 0xddafbaef) // `InvalidPermit()`. revert(0x1c, 0x04) } // Increment and store the updated nonce. sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds. // Compute the allowance slot and store the value. // The `owner` is already at slot 0x20. mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender)) sstore(keccak256(0x2c, 0x34), value) // Emit the {Approval} event. log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender) mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero pointer. } } /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit. function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) { bytes32 nameHash = _constantNameHash(); // We simply calculate it on-the-fly to allow for cases where the `name` may change. if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name())); /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Grab the free memory pointer. mstore(m, _DOMAIN_TYPEHASH) mstore(add(m, 0x20), nameHash) mstore(add(m, 0x40), _VERSION_HASH) mstore(add(m, 0x60), chainid()) mstore(add(m, 0x80), address()) result := keccak256(m, 0xa0) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL MINT FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Mints `amount` tokens to `to`, increasing the total supply. /// /// Emits a {Transfer} event. function _mint(address to, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), to, amount); /// @solidity memory-safe-assembly assembly { let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT) let totalSupplyAfter := add(totalSupplyBefore, amount) // Revert if the total supply overflows. if lt(totalSupplyAfter, totalSupplyBefore) { mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`. revert(0x1c, 0x04) } // Store the updated total supply. sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter) // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c))) } _afterTokenTransfer(address(0), to, amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL BURN FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Burns `amount` tokens from `from`, reducing the total supply. /// /// Emits a {Transfer} event. function _burn(address from, uint256 amount) internal virtual { _beforeTokenTransfer(from, address(0), amount); /// @solidity memory-safe-assembly assembly { // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, from) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Subtract and store the updated total supply. sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount)) // Emit the {Transfer} event. mstore(0x00, amount) log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0) } _afterTokenTransfer(from, address(0), amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL TRANSFER FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Moves `amount` of tokens from `from` to `to`. function _transfer(address from, address to, uint256 amount) internal virtual { _beforeTokenTransfer(from, to, amount); /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) // Compute the balance slot and load its value. mstore(0x0c, or(from_, _BALANCE_SLOT_SEED)) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c))) } _afterTokenTransfer(from, to, amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL ALLOWANCE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`. function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { /// @solidity memory-safe-assembly assembly { // Compute the allowance slot and load its value. mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, owner) let allowanceSlot := keccak256(0x0c, 0x34) let allowance_ := sload(allowanceSlot) // If the allowance is not the maximum uint256 value. if add(allowance_, 1) { // Revert if the amount to be transferred exceeds the allowance. if gt(amount, allowance_) { mstore(0x00, 0x13be252b) // `InsufficientAllowance()`. revert(0x1c, 0x04) } // Subtract and store the updated allowance. sstore(allowanceSlot, sub(allowance_, amount)) } } } /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`. /// /// Emits a {Approval} event. function _approve(address owner, address spender, uint256 amount) internal virtual { /// @solidity memory-safe-assembly assembly { let owner_ := shl(96, owner) // Compute the allowance slot and store the amount. mstore(0x20, spender) mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED)) sstore(keccak256(0x0c, 0x34), amount) // Emit the {Approval} event. mstore(0x00, amount) log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c))) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HOOKS TO OVERRIDE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Hook that is called before any transfer of tokens. /// This includes minting and burning. function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /// @dev Hook that is called after any transfer of tokens. /// This includes minting and burning. function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple single owner authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol) /// /// @dev Note: /// This implementation does NOT auto-initialize the owner to `msg.sender`. /// You MUST call the `_initializeOwner` in the constructor / initializer. /// /// While the ownable portion follows /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility, /// the nomenclature for the 2-step ownership handover may be unique to this codebase. abstract contract Ownable { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The caller is not authorized to call the function. error Unauthorized(); /// @dev The `newOwner` cannot be the zero address. error NewOwnerIsZeroAddress(); /// @dev The `pendingOwner` does not have a valid handover request. error NoHandoverRequest(); /// @dev Cannot double-initialize. error AlreadyInitialized(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ownership is transferred from `oldOwner` to `newOwner`. /// This event is intentionally kept the same as OpenZeppelin's Ownable to be /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173), /// despite it not being as lightweight as a single argument event. event OwnershipTransferred(address indexed oldOwner, address indexed newOwner); /// @dev An ownership handover to `pendingOwner` has been requested. event OwnershipHandoverRequested(address indexed pendingOwner); /// @dev The ownership handover to `pendingOwner` has been canceled. event OwnershipHandoverCanceled(address indexed pendingOwner); /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`. uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE = 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0; /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE = 0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d; /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE = 0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The owner slot is given by: /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`. /// It is intentionally chosen to be a high value /// to avoid collision with lower slots. /// The choice of manual storage layout is to enable compatibility /// with both regular and upgradeable contracts. bytes32 internal constant _OWNER_SLOT = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927; /// The ownership handover slot of `newOwner` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED)) /// let handoverSlot := keccak256(0x00, 0x20) /// ``` /// It stores the expiry timestamp of the two-step ownership handover. uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Override to return true to make `_initializeOwner` prevent double-initialization. function _guardInitializeOwner() internal pure virtual returns (bool guard) {} /// @dev Initializes the owner directly without authorization guard. /// This function must be called upon initialization, /// regardless of whether the contract is upgradeable or not. /// This is to enable generalization to both regular and upgradeable contracts, /// and to save gas in case the initial owner is not the caller. /// For performance reasons, this function will not check if there /// is an existing owner. function _initializeOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT if sload(ownerSlot) { mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`. revert(0x1c, 0x04) } // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } else { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(_OWNER_SLOT, newOwner) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } } /// @dev Sets the owner directly without authorization guard. function _setOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) } } else { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, newOwner) } } } /// @dev Throws if the sender is not the owner. function _checkOwner() internal view virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner, revert. if iszero(eq(caller(), sload(_OWNER_SLOT))) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } /// @dev Returns how long a two-step ownership handover is valid for in seconds. /// Override to return a different value if needed. /// Made internal to conserve bytecode. Wrap it in a public function if needed. function _ownershipHandoverValidFor() internal view virtual returns (uint64) { return 48 * 3600; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Allows the owner to transfer the ownership to `newOwner`. function transferOwnership(address newOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { if iszero(shl(96, newOwner)) { mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`. revert(0x1c, 0x04) } } _setOwner(newOwner); } /// @dev Allows the owner to renounce their ownership. function renounceOwnership() public payable virtual onlyOwner { _setOwner(address(0)); } /// @dev Request a two-step ownership handover to the caller. /// The request will automatically expire in 48 hours (172800 seconds) by default. function requestOwnershipHandover() public payable virtual { unchecked { uint256 expires = block.timestamp + _ownershipHandoverValidFor(); /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to `expires`. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), expires) // Emit the {OwnershipHandoverRequested} event. log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller()) } } } /// @dev Cancels the two-step ownership handover to the caller, if any. function cancelOwnershipHandover() public payable virtual { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), 0) // Emit the {OwnershipHandoverCanceled} event. log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller()) } } /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`. /// Reverts if there is no existing ownership handover requested by `pendingOwner`. function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) let handoverSlot := keccak256(0x0c, 0x20) // If the handover does not exist, or has expired. if gt(timestamp(), sload(handoverSlot)) { mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`. revert(0x1c, 0x04) } // Set the handover slot to 0. sstore(handoverSlot, 0) } _setOwner(pendingOwner); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the owner of the contract. function owner() public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { result := sload(_OWNER_SLOT) } } /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`. function ownershipHandoverExpiresAt(address pendingOwner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the handover slot. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) // Load the handover slot. result := sload(keccak256(0x0c, 0x20)) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Marks a function as only callable by the owner. modifier onlyOwner() virtual { _checkOwner(); _; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; import { IAdminable } from "./IAdminable.sol"; import { ISablierV2Comptroller } from "./ISablierV2Comptroller.sol"; /// @title ISablierV2Base /// @notice Base logic for all Sablier V2 streaming contracts. interface ISablierV2Base is IAdminable { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when the admin claims all protocol revenues accrued for a particular ERC-20 asset. /// @param admin The address of the contract admin. /// @param asset The contract address of the ERC-20 asset the protocol revenues have been claimed for. /// @param protocolRevenues The amount of protocol revenues claimed, denoted in units of the asset's decimals. event ClaimProtocolRevenues(address indexed admin, IERC20 indexed asset, uint128 protocolRevenues); /// @notice Emitted when the admin sets a new comptroller contract. /// @param admin The address of the contract admin. /// @param oldComptroller The address of the old comptroller contract. /// @param newComptroller The address of the new comptroller contract. event SetComptroller( address indexed admin, ISablierV2Comptroller oldComptroller, ISablierV2Comptroller newComptroller ); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the maximum fee that can be charged by the protocol or a broker, denoted as a fixed-point /// number where 1e18 is 100%. /// @dev This value is hard coded as a constant. function MAX_FEE() external view returns (UD60x18); /// @notice Retrieves the address of the comptroller contract, responsible for the Sablier V2 protocol /// configuration. function comptroller() external view returns (ISablierV2Comptroller); /// @notice Retrieves the protocol revenues accrued for the provided ERC-20 asset, in units of the asset's /// decimals. /// @param asset The contract address of the ERC-20 asset to query. function protocolRevenues(IERC20 asset) external view returns (uint128 revenues); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Claims all accumulated protocol revenues for the provided ERC-20 asset. /// /// @dev Emits a {ClaimProtocolRevenues} event. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param asset The contract address of the ERC-20 asset for which to claim protocol revenues. function claimProtocolRevenues(IERC20 asset) external; /// @notice Assigns a new comptroller contract responsible for the protocol configuration. /// /// @dev Emits a {SetComptroller} event. /// /// Notes: /// - Does not revert if the comptroller is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newComptroller The address of the new comptroller contract. function setComptroller(ISablierV2Comptroller newComptroller) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol"; /// @title ISablierV2NFTDescriptor /// @notice This contract generates the URI describing the Sablier V2 stream NFTs. /// @dev Inspired by Uniswap V3 Positions NFTs. interface ISablierV2NFTDescriptor { /// @notice Produces the URI describing a particular stream NFT. /// @dev This is a data URI with the JSON contents directly inlined. /// @param sablier The address of the Sablier contract the stream was created in. /// @param streamId The id of the stream for which to produce a description. /// @return uri The URI of the ERC721-compliant metadata. function tokenURI(IERC721Metadata sablier, uint256 streamId) external view returns (string memory uri); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ // /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_SD59x18, uMIN_SD59x18, uUNIT } from "./Constants.sol"; import { PRBMath_SD59x18_Convert_Overflow, PRBMath_SD59x18_Convert_Underflow } from "./Errors.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Converts a simple integer to SD59x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be greater than or equal to `MIN_SD59x18 / UNIT`. /// - x must be less than or equal to `MAX_SD59x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to SD59x18. function convert(int256 x) pure returns (SD59x18 result) { if (x < uMIN_SD59x18 / uUNIT) { revert PRBMath_SD59x18_Convert_Underflow(x); } if (x > uMAX_SD59x18 / uUNIT) { revert PRBMath_SD59x18_Convert_Overflow(x); } unchecked { result = SD59x18.wrap(x * uUNIT); } } /// @notice Converts an SD59x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The SD59x18 number to convert. /// @return result The same number as a simple integer. function convert(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x) / uUNIT; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; /// @title IAdminable /// @notice Contract module that provides a basic access control mechanism, with an admin that can be /// granted exclusive access to specific functions. The inheriting contract must set the initial admin /// in the constructor. interface IAdminable { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when the admin is transferred. /// @param oldAdmin The address of the old admin. /// @param newAdmin The address of the new admin. event TransferAdmin(address indexed oldAdmin, address indexed newAdmin); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice The address of the admin account or contract. function admin() external view returns (address); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Transfers the contract admin to a new address. /// /// @dev Notes: /// - Does not revert if the admin is the same. /// - This function can potentially leave the contract without an admin, thereby removing any /// functionality that is only available to the admin. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newAdmin The address of the new admin. function transferAdmin(address newAdmin) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; import { IAdminable } from "./IAdminable.sol"; /// @title ISablierV2Controller /// @notice This contract is in charge of the Sablier V2 protocol configuration, handling such values as the /// protocol fees. interface ISablierV2Comptroller is IAdminable { /*////////////////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when the admin sets a new flash fee. /// @param admin The address of the contract admin. /// @param oldFlashFee The old flash fee, denoted as a fixed-point number. /// @param newFlashFee The new flash fee, denoted as a fixed-point number. event SetFlashFee(address indexed admin, UD60x18 oldFlashFee, UD60x18 newFlashFee); /// @notice Emitted when the admin sets a new protocol fee for the provided ERC-20 asset. /// @param admin The address of the contract admin. /// @param asset The contract address of the ERC-20 asset the new protocol fee has been set for. /// @param oldProtocolFee The old protocol fee, denoted as a fixed-point number. /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number. event SetProtocolFee(address indexed admin, IERC20 indexed asset, UD60x18 oldProtocolFee, UD60x18 newProtocolFee); /// @notice Emitted when the admin enables or disables an ERC-20 asset for flash loaning. /// @param admin The address of the contract admin. /// @param asset The contract address of the ERC-20 asset to toggle. /// @param newFlag Whether the ERC-20 asset can be flash loaned. event ToggleFlashAsset(address indexed admin, IERC20 indexed asset, bool newFlag); /*////////////////////////////////////////////////////////////////////////// CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Retrieves the global flash fee, denoted as a fixed-point number where 1e18 is 100%. /// /// @dev Notes: /// - This fee represents a percentage, not an amount. Do not confuse it with {IERC3156FlashLender.flashFee}, /// which calculates the fee amount for a specified flash loan amount. /// - Unlike the protocol fee, this is a global fee applied to all flash loans, not a per-asset fee. function flashFee() external view returns (UD60x18 fee); /// @notice Retrieves a flag indicating whether the provided ERC-20 asset can be flash loaned. /// @param token The contract address of the ERC-20 asset to check. function isFlashAsset(IERC20 token) external view returns (bool result); /// @notice Retrieves the protocol fee for all streams created with the provided ERC-20 asset. /// @param asset The contract address of the ERC-20 asset to query. /// @return fee The protocol fee denoted as a fixed-point number where 1e18 is 100%. function protocolFees(IERC20 asset) external view returns (UD60x18 fee); /*////////////////////////////////////////////////////////////////////////// NON-CONSTANT FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Updates the flash fee charged on all flash loans made with any ERC-20 asset. /// /// @dev Emits a {SetFlashFee} event. /// /// Notes: /// - Does not revert if the fee is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param newFlashFee The new flash fee to set, denoted as a fixed-point number where 1e18 is 100%. function setFlashFee(UD60x18 newFlashFee) external; /// @notice Sets a new protocol fee that will be charged on all streams created with the provided ERC-20 asset. /// /// @dev Emits a {SetProtocolFee} event. /// /// Notes: /// - The fee is not denoted in units of the asset's decimals; it is a fixed-point number. Refer to the /// PRBMath documentation for more detail on the logic of UD60x18. /// - Does not revert if the fee is the same. /// /// Requirements: /// - `msg.sender` must be the contract admin. /// /// @param asset The contract address of the ERC-20 asset to update the fee for. /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number where 1e18 is 100%. function setProtocolFee(IERC20 asset, UD60x18 newProtocolFee) external; /// @notice Toggles the flash loanability of an ERC-20 asset. /// /// @dev Emits a {ToggleFlashAsset} event. /// /// Requirements: /// - `msg.sender` must be the admin. /// /// @param asset The address of the ERC-20 asset to toggle. function toggleFlashAsset(IERC20 asset) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
{ "remappings": [ "@openzeppelin/contracts/=lib/v2-core/lib/openzeppelin-contracts/contracts/", "@prb/math/=lib/v2-core/lib/prb-math/", "@prb/test/=lib/v2-core/lib/prb-test/src/", "ds-test/=lib/solady/lib/ds-test/src/", "erc4626-tests/=lib/v2-core/lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "murky/=lib/murky/", "openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/", "openzeppelin/=lib/v2-core/lib/openzeppelin-contracts/contracts/", "prb-math/=lib/v2-core/lib/prb-math/src/", "prb-test/=lib/v2-core/lib/prb-test/src/", "solady/=lib/solady/", "solarray/=lib/v2-core/lib/solarray/src/", "solplot/=lib/weighted-math-lib/lib/solplot/src/", "v2-core/=lib/v2-core/", "weighted-math-lib/=lib/weighted-math-lib/src/", "lib/forge-std:ds-test/=lib/weighted-math-lib/lib/forge-std/lib/ds-test/src/", "lib/solady:ds-test/=lib/weighted-math-lib/lib/solady/lib/ds-test/src/", "lib/solady:forge-std/=lib/weighted-math-lib/lib/solady/test/utils/forge-std/" ], "optimizer": { "enabled": true, "runs": 1000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_sablier","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AmountInTooLarge","type":"error"},{"inputs":[],"name":"AmountOutTooLarge","type":"error"},{"inputs":[],"name":"AssetsInExceeded","type":"error"},{"inputs":[],"name":"CallerDisallowed","type":"error"},{"inputs":[],"name":"ClosingDisallowed","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"RedeemingDisallowed","type":"error"},{"inputs":[],"name":"SellingDisallowed","type":"error"},{"inputs":[],"name":"SharesOutExceeded","type":"error"},{"inputs":[],"name":"SlippageExceeded","type":"error"},{"inputs":[],"name":"TradingDisallowed","type":"error"},{"inputs":[],"name":"WhitelistProof","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFee","type":"uint256"}],"name":"Buy","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"platformFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFeesAsset","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFeesShare","type":"uint256"}],"name":"Close","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"","type":"bool"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"uint256","name":"streamID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFee","type":"uint256"}],"name":"Sell","type":"event"},{"inputs":[],"name":"SABLIER","outputs":[{"internalType":"contract ISablierV2LockupLinear","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"args","outputs":[{"components":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"share","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"virtualAssets","type":"uint256"},{"internalType":"uint256","name":"virtualShares","type":"uint256"},{"internalType":"uint256","name":"weightStart","type":"uint256"},{"internalType":"uint256","name":"weightEnd","type":"uint256"},{"internalType":"uint256","name":"saleStart","type":"uint256"},{"internalType":"uint256","name":"saleEnd","type":"uint256"},{"internalType":"uint256","name":"totalPurchased","type":"uint256"},{"internalType":"uint256","name":"maxSharePrice","type":"uint256"}],"internalType":"struct Pool","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"close","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"closed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"manager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"maxSharePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"maxTotalAssetsIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"maxTotalSharesOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"platform","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"platformFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"name":"previewAssetsIn","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"name":"previewAssetsOut","outputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"name":"previewSharesIn","outputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"name":"previewSharesOut","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"purchasedShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bool","name":"referred","type":"bool"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"redeemedShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"referredAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"referrerFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"reservesAndWeights","outputs":[{"internalType":"uint256","name":"assetReserve","type":"uint256"},{"internalType":"uint256","name":"shareReserve","type":"uint256"},{"internalType":"uint256","name":"assetWeight","type":"uint256"},{"internalType":"uint256","name":"shareWeight","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"saleStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"sellingAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"share","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"},{"internalType":"uint256","name":"maxAssetsIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapAssetsForExactShares","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"},{"internalType":"uint256","name":"maxAssetsIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapAssetsForExactShares","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"},{"internalType":"uint256","name":"maxAssetsIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"name":"swapAssetsForExactShares","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapExactAssetsForShares","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"name":"swapExactAssetsForShares","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapExactAssetsForShares","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"},{"internalType":"uint256","name":"minAssetsOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapExactSharesForAssets","outputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"},{"internalType":"uint256","name":"minAssetsOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapExactSharesForAssets","outputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"},{"internalType":"uint256","name":"maxSharesIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapSharesForExactAssets","outputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"},{"internalType":"uint256","name":"maxSharesIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapSharesForExactAssets","outputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"togglePause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalPurchased","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReferred","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSwapFeesAsset","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSwapFeesShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestCliff","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"vestEnd","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"vestShares","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"virtualAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"virtualShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"weightEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"weightStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"whitelistMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"whitelisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 100.00% | $0.032683 | 78,694.8782 | $2,572.02 |
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.