ETH Price: $3,710.18 (+3.10%)

Contract

0xB2C5139BEa2aA72E3D5814aAd90Cc003B4Ff5abc
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Redeem197853322024-05-02 22:11:35212 days ago1714687895IN
0xB2C5139B...3B4Ff5abc
0 ETH0.000360885.83998155
Redeem197563602024-04-28 21:01:11216 days ago1714338071IN
0xB2C5139B...3B4Ff5abc
0 ETH0.000334125.40693123
Redeem196883862024-04-19 8:46:59225 days ago1713516419IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0006385210.33301739
Redeem196642172024-04-15 23:35:35228 days ago1713224135IN
0xB2C5139B...3B4Ff5abc
0 ETH0.000511468.27672155
Redeem195605992024-04-01 11:12:11243 days ago1711969931IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0011299718.2858102
Redeem195464072024-03-30 11:15:11245 days ago1711797311IN
0xB2C5139B...3B4Ff5abc
0 ETH0.001369722.16528148
Redeem194341562024-03-14 15:33:59261 days ago1710430439IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0036284858.71817793
Redeem194326332024-03-14 10:23:35261 days ago1710411815IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0030539249.4202368
Redeem194260072024-03-13 11:59:11262 days ago1710331151IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0038443162.2108108
Redeem194255312024-03-13 10:23:35262 days ago1710325415IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0047854277.44028607
Redeem194251022024-03-13 8:56:59262 days ago1710320219IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0031269650.60215849
Redeem194248192024-03-13 7:59:59262 days ago1710316799IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0026174242.35662444
Redeem194248092024-03-13 7:57:59262 days ago1710316679IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0028133145.52654907
Redeem194247312024-03-13 7:42:23262 days ago1710315743IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0027768244.93610732
Redeem194241822024-03-13 5:52:11262 days ago1710309131IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0024139
Redeem194239682024-03-13 5:09:11262 days ago1710306551IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0026893343.52027526
Redeem194237422024-03-13 4:23:11262 days ago1710303791IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0027262844.11818867
Redeem194229452024-03-13 1:41:59262 days ago1710294119IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0027901145.15106763
Redeem194223972024-03-12 23:51:47262 days ago1710287507IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0027559544.5983676
Redeem194202232024-03-12 16:34:47263 days ago1710261287IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0051244382.9263667
Redeem194201412024-03-12 16:18:11263 days ago1710260291IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0046693475.56192923
Redeem194197492024-03-12 14:59:11263 days ago1710255551IN
0xB2C5139B...3B4Ff5abc
0 ETH0.004400771.21462413
Redeem194179602024-03-12 8:59:23263 days ago1710233963IN
0xB2C5139B...3B4Ff5abc
0 ETH0.00315150.99118968
Redeem194143392024-03-11 20:49:11264 days ago1710190151IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0043332970.13728374
Redeem194143142024-03-11 20:44:11264 days ago1710189851IN
0xB2C5139B...3B4Ff5abc
0 ETH0.0042764669.2039949
View all transactions

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
191093572024-01-29 2:59:23306 days ago1706497163  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x81a89a3c934b688f93368b07d1210c7d669e27bc

Contract Name:
LiquidityBootstrapPool

Compiler Version
v0.8.21+commit.d9974bed

Optimization Enabled:
Yes with 1000 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 53 : LiquidityBootstrapPool.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity =0.8.21;

import "weighted-math-lib/WeightedMathLib.sol";

import "solady/src/utils/SafeTransferLib.sol";
import "solady/src/utils/MerkleProofLib.sol";
import "solady/src/utils/LibString.sol";
import "solady/src/utils/Clone.sol";

import { ISablierV2LockupLinear } from "v2-core/src/interfaces/ISablierV2LockupLinear.sol";
import { Broker, LockupLinear } from "v2-core/src/types/DataTypes.sol";
import { ud60x18 } from "v2-core/src/types/Math.sol";
import { IERC20 } from "v2-core/src/types/Tokens.sol";

import "openzeppelin-contracts/contracts/security/ReentrancyGuard.sol";

import "src/utils/LiquidityBootstrapLib.sol";
import "src/utils/Pausable.sol";
import "./Treasury.sol";

contract LiquidityBootstrapPool is Pausable, Clone, ReentrancyGuard {
    /// -----------------------------------------------------------------------
    /// Dependencies
    /// -----------------------------------------------------------------------

    using LiquidityBootstrapLib for *;

    using FixedPointMathLib for *;

    using SafeTransferLib for *;

    using WeightedMathLib for *;

    using MerkleProofLib for *;

    using LibString for *;

    /// -----------------------------------------------------------------------
    /// Custom Errors
    /// -----------------------------------------------------------------------

    /// @dev Error thrown when the whitelist proof verification fails.
    error WhitelistProof();

    /// @dev Error thrown when the maximum allowed assets in are exceeded.
    error AssetsInExceeded();

    /// @dev Error thrown when the maximum allowed shares out are exceeded.
    error SharesOutExceeded();

    /// @dev Error thrown when the slippage limit is exceeded.
    error SlippageExceeded();

    /// @dev Error thrown when selling is disallowed.
    error SellingDisallowed();

    /// @dev Error thrown when trading is disallowed.
    error TradingDisallowed();

    /// @dev Error thrown when closing is disallowed.
    error ClosingDisallowed();

    /// @dev Error thrown when redeeming is disallowed.
    error RedeemingDisallowed();

    /// @dev Error thrown when an address is not allowed to call a function.
    error CallerDisallowed();

    /// -----------------------------------------------------------------------
    /// Events
    /// -----------------------------------------------------------------------

    /// @dev Emitted when assets are swapped for shares.
    /// @param caller The address of the caller initiating the swap.
    /// @param assets The amount of assets being swapped.
    /// @param shares The amount of shares received in the swap.
    /// @param swapFee The amount of fee charged in the swap.
    event Buy(address indexed caller, uint256 assets, uint256 shares, uint256 swapFee);

    /// @dev Emitted when shares are swapped for assets.
    /// @param caller The address of the caller initiating the swap.
    /// @param shares The amount of shares being swapped.
    /// @param assets The amount of assets received in the swap.
    /// @param swapFee The amount of fee charged in the swap.
    event Sell(address indexed caller, uint256 shares, uint256 assets, uint256 swapFee);

    /// @dev Emitted when shares are redeemed.
    /// @param caller The address of the caller initiating the redemption.
    /// @param shares The amount of shares being redeemed.
    event Redeem(address indexed caller, uint256 indexed streamID, uint256 shares);

    /// @dev Emitted when the liquidity pool is closed.
    /// @param assets The amount of assets transferred out during the pool closure.
    event Close(uint256 assets, uint256 platformFees, uint256 swapFeesAsset, uint256 swapFeesShare);

    /// -----------------------------------------------------------------------
    /// Mutable Storage
    /// -----------------------------------------------------------------------

    /// @notice Mapping to track the purchased shares for each address.
    mapping(address => uint256) public purchasedShares;

    /// @notice Mapping to track the assets referred by each address.
    mapping(address => uint256) public referredAssets;

    /// @notice Mapping to track the redeemed shares for each address.
    mapping(address => uint256) public redeemedShares;

    /// @notice The total number of purchased shares in the pool.
    uint256 public totalPurchased;

    /// @notice The total amount of assets referred in the pool.
    uint256 public totalReferred;

    /// @notice The total swap fee amount in asset charged to users.
    uint256 public totalSwapFeesAsset;

    /// @notice The total swap fee amount in lbp token charged to users.
    uint256 public totalSwapFeesShare;

    /// @notice Flag to indicate if the liquidity pool is closed.
    bool public closed;

    /// -----------------------------------------------------------------------
    /// Immutable Storage
    /// -----------------------------------------------------------------------

    /// @notice The address of the asset token.
    /// @dev This is the ERC20 token representing the asset in the pool.
    /// @return The address of the asset token.
    function asset() public pure virtual returns (address) {
        return _getArgAddress(0);
    }

    /// @notice The address of the share token.
    /// @dev This is the ERC20 token representing the shares in the pool.
    /// @return The address of the share token.
    function share() public pure virtual returns (address) {
        return _getArgAddress(20);
    }

    /// @notice The address of the platform where fees are collected.
    /// @dev This is the address where fees are collected.
    /// @return The address of the platform.
    function platform() public pure virtual returns (address) {
        return _getArgAddress(40);
    }

    /// @notice The address of the manager who controls the pool.
    /// @dev This is the address who has control over the pool's privledged operations.
    /// @return The address of the manager.
    function manager() public pure virtual returns (address) {
        return _getArgAddress(60);
    }

    /// @notice The virtual assets value.
    /// @dev This value represents the virtual assets in the pool.
    /// @return The virtual assets value.
    function virtualAssets() public pure virtual returns (uint256) {
        return _getArgUint88(80);
    }

    /// @notice The virtual shares value.
    /// @dev This value represents the virtual shares in the pool.
    /// @return The virtual shares value.
    function virtualShares() public pure virtual returns (uint256) {
        return _getArgUint88(91);
    }

    /// @notice The maximum share price value.
    /// @dev This value represents the maximum price at which shares can be sold.
    /// @return The maximum share price value.
    function maxSharePrice() public pure virtual returns (uint256) {
        return _getArgUint88(102);
    }

    /// @notice The maximum total shares out value.
    /// @dev This value represents the maximum number of shares that can be sold.
    /// @return The maximum total shares out value.
    function maxTotalSharesOut() public pure virtual returns (uint256) {
        return _getArgUint88(113);
    }

    /// @notice The maximum total assets in value.
    /// @dev This value represents the maximum amount of assets that can be added to the pool.
    /// @return The maximum total assets in value.
    function maxTotalAssetsIn() public pure virtual returns (uint256) {
        return _getArgUint88(124);
    }

    /// @notice The platform fee percentage.
    /// @dev This percentage represents the fee collected by the platform on transactions.
    /// @return The platform fee percentage.
    function platformFee() public pure virtual returns (uint256) {
        return _getArgUint64(135);
    }

    /// @notice The referrer fee percentage.
    /// @dev This percentage represents the fee collected by referrers on transactions.
    /// @return The referrer fee percentage.
    function referrerFee() public pure virtual returns (uint256) {
        return _getArgUint64(143);
    }

    /// @notice The weight start value.
    /// @dev This value represents the starting weight for assets in the pool.
    /// @return The weight start value.
    function weightStart() public pure virtual returns (uint256) {
        return _getArgUint64(151);
    }

    /// @notice The weight end value.
    /// @dev This value represents the ending weight for assets in the pool.
    /// @return The weight end value.
    function weightEnd() public pure virtual returns (uint256) {
        return _getArgUint64(159);
    }

    /// @notice The sale start timestamp.
    /// @dev This timestamp represents when the sale of shares in the pool starts.
    /// @return The sale start timestamp.
    function saleStart() public pure virtual returns (uint256) {
        return _getArgUint40(167);
    }

    /// @notice The sale end timestamp.
    /// @dev This timestamp represents when the sale of shares in the pool ends.
    /// @return The sale end timestamp.
    function saleEnd() public pure virtual returns (uint256) {
        return _getArgUint40(172);
    }

    /// @notice The vesting cliff timestamp.
    /// @dev This timestamp represents the cliff time for vesting shares.
    /// @return The vesting cliff timestamp.
    function vestCliff() public pure virtual returns (uint40) {
        return _getArgUint40(177);
    }

    /// @notice The vesting end timestamp.
    /// @dev This timestamp represents the end time for vesting shares.
    /// @return The vesting end timestamp.
    function vestEnd() public pure virtual returns (uint40) {
        return _getArgUint40(182);
    }

    /// @notice The swap fee percentage.
    /// @dev This percentage represents the fee collected by swaps on transactions.
    /// @return The swap fee percentage.
    function swapFee() public pure virtual returns (uint256) {
        return _getArgUint64(187);
    }

    /// @notice Check if vesting shares is enabled.
    /// @dev This flag indicates whether vesting of shares is enabled.
    /// @return True if vesting shares are enabled, false otherwise.
    function vestShares() public pure virtual returns (bool) {
        return saleEnd() < vestEnd();
    }

    /// @notice Check if selling is allowed.
    /// @dev This flag indicates whether selling of shares is allowed.
    /// @return True if selling is allowed, false otherwise.
    function sellingAllowed() public pure virtual returns (bool) {
        return _getArgUint8(195) != 0;
    }

    /// @notice The Merkle root for the whitelist.
    /// @dev This is the Merkle root used for whitelisting addresses.
    /// @return The Merkle root for the whitelist.
    function whitelistMerkleRoot() public pure virtual returns (bytes32) {
        return _getArgBytes32(196);
    }

    /// @notice Check if the whitelist is enabled.
    /// @dev This flag indicates whether the whitelist is enabled.
    /// @return True if the whitelist is enabled, false otherwise.
    function whitelisted() public pure virtual returns (bool) {
        return whitelistMerkleRoot() != 0;
    }

    ISablierV2LockupLinear public immutable SABLIER;

    /// -----------------------------------------------------------------------
    /// Modifiers
    /// -----------------------------------------------------------------------

    /// @notice Modifier to restrict access to whitelisted addresses.
    /// @dev This modifier checks if the caller's address is whitelisted using a Merkle proof.
    modifier onlyWhitelisted(bytes32[] memory proof) virtual {
        if (whitelisted()) {
            if (!proof.verify(whitelistMerkleRoot(), keccak256(abi.encodePacked(msg.sender)))) {
                revert WhitelistProof();
            }
        }
        _;
    }

    /// @notice Modifier to check if the sale is active.
    /// @dev This modifier checks if the current timestamp is within the sale period.
    modifier whenSaleActive() virtual {
        if (block.timestamp < saleStart() || block.timestamp >= saleEnd()) {
            revert TradingDisallowed();
        }
        _;
    }

    /// @notice Modifier to check if selling is allowed.
    /// @dev This modifier checks if selling of shares is allowed.
    modifier whenSellingAllowed() virtual {
        if (!sellingAllowed()) {
            revert SellingDisallowed();
        }
        _;
    }

    /**
     *
     *  CONSTRUCTOR & INITIALIZATION
     *
     */

    /**
     * @notice Initializes the contract with immutable variables
     * @param _sablier is the Sablier contract
     */
    constructor(address _sablier) {
        require(_sablier != address(0));

        SABLIER = ISablierV2LockupLinear(_sablier);
    }

    /// -----------------------------------------------------------------------
    /// Buy Logic
    /// -----------------------------------------------------------------------

    /// @notice Swap a specific amount of assets for a minimum number of shares.
    /// @dev This function allows users to exchange a certain amount of assets for shares,
    /// ensuring that they receive at least the specified minimum number of shares.
    /// @param assetsIn The amount of assets to be exchanged for shares.
    /// @param minSharesOut The minimum number of shares expected to be received.
    /// @param recipient The address to receive the shares.
    /// @return sharesOut The actual number of shares received.
    function swapExactAssetsForShares(
        uint256 assetsIn,
        uint256 minSharesOut,
        address recipient
    )
        external
        virtual
        returns (uint256 sharesOut)
    {
        return swapExactAssetsForShares(
            assetsIn, minSharesOut, recipient, address(0), MerkleProofLib.emptyProof()
        );
    }

    /// @notice Swap a specific number of shares for a maximum amount of assets.
    /// @dev This function allows users to exchange a certain number of shares for assets,
    /// ensuring that they receive no more than the specified maximum amount of assets.
    /// @param sharesOut The number of shares to be exchanged for assets.
    /// @param maxAssetsIn The maximum amount of assets allowed to be used for the exchange.
    /// @param recipient The address to receive the assets.
    /// @return assetsIn The actual amount of assets used for the exchange.
    function swapAssetsForExactShares(
        uint256 sharesOut,
        uint256 maxAssetsIn,
        address recipient
    )
        external
        virtual
        returns (uint256 assetsIn)
    {
        return swapAssetsForExactShares(
            sharesOut, maxAssetsIn, recipient, address(0), MerkleProofLib.emptyProof()
        );
    }

    /// @notice Swap a specific amount of assets for a minimum number of shares with a referrer.
    /// @dev This function allows users to exchange a certain amount of assets for shares
    /// while specifying a referrer, ensuring that they receive at least the specified minimum
    /// number of shares.
    /// @param assetsIn The amount of assets to be exchanged for shares.
    /// @param minSharesOut The minimum number of shares expected to be received.
    /// @param recipient The address to receive the shares.
    /// @param referrer The referrer's address for potential rewards.
    /// @return sharesOut The actual number of shares received.
    function swapExactAssetsForShares(
        uint256 assetsIn,
        uint256 minSharesOut,
        address recipient,
        address referrer
    )
        external
        virtual
        returns (uint256 sharesOut)
    {
        return swapExactAssetsForShares(
            assetsIn, minSharesOut, recipient, referrer, MerkleProofLib.emptyProof()
        );
    }

    /// @notice Swap a specific number of shares for a maximum amount of assets with a referrer.
    /// @dev This function allows users to exchange a certain number of shares for assets
    /// while specifying a referrer, ensuring that they receive no more than the specified maximum
    /// amount of assets.
    /// @param sharesOut The number of shares to be exchanged for assets.
    /// @param maxAssetsIn The maximum amount of assets allowed to be used for the exchange.
    /// @param recipient The address to receive the assets.
    /// @param referrer The referrer's address for potential rewards.
    /// @return assetsIn The actual amount of assets used for the exchange.
    function swapAssetsForExactShares(
        uint256 sharesOut,
        uint256 maxAssetsIn,
        address recipient,
        address referrer
    )
        external
        virtual
        returns (uint256 assetsIn)
    {
        return swapAssetsForExactShares(
            sharesOut, maxAssetsIn, recipient, referrer, MerkleProofLib.emptyProof()
        );
    }

    /// @notice Swap a specific amount of assets for a minimum number of shares with a referrer and Merkle proof.
    /// @dev This function allows users to exchange a certain amount of assets for shares
    /// while specifying a referrer, ensuring that they receive at least the specified minimum
    /// number of shares. It also requires a Merkle proof for whitelisting.
    /// @param assetsIn The amount of assets to be exchanged for shares.
    /// @param minSharesOut The minimum number of shares expected to be received.
    /// @param recipient The address to receive the shares.
    /// @param referrer The referrer's address for potential rewards.
    /// @param proof The Merkle proof for whitelisting.
    /// @return sharesOut The actual number of shares received.
    function swapExactAssetsForShares(
        uint256 assetsIn,
        uint256 minSharesOut,
        address recipient,
        address referrer,
        bytes32[] memory proof
    )
        public
        virtual
        whenNotPaused
        whenSaleActive
        onlyWhitelisted(proof)
        nonReentrant
        returns (uint256 sharesOut)
    {
        Pool memory pool = args();

        uint256 swapFees = assetsIn.mulWad(swapFee());
        totalSwapFeesAsset += swapFees;

        sharesOut = pool.previewSharesOut(assetsIn.rawSub(swapFees));

        if (sharesOut < minSharesOut) revert SlippageExceeded();

        _swapAssetsForShares(
            recipient, referrer, assetsIn, sharesOut, pool.assets, pool.shares, swapFees
        );
    }

    /// @notice Swap a specific number of shares for a maximum amount of assets with a referrer and Merkle proof.
    /// @dev This function allows users to exchange a certain number of shares for assets
    /// while specifying a referrer, ensuring that they receive no more than the specified maximum
    /// amount of assets. It also requires a Merkle proof for whitelisting.
    /// @param sharesOut The number of shares to be exchanged for assets.
    /// @param maxAssetsIn The maximum amount of assets allowed to be used for the exchange.
    /// @param recipient The address to receive the assets.
    /// @param referrer The referrer's address for potential rewards.
    /// @param proof The Merkle proof for whitelisting.
    /// @return assetsIn The actual amount of assets used for the exchange.
    function swapAssetsForExactShares(
        uint256 sharesOut,
        uint256 maxAssetsIn,
        address recipient,
        address referrer,
        bytes32[] memory proof
    )
        public
        virtual
        whenNotPaused
        whenSaleActive
        onlyWhitelisted(proof)
        nonReentrant
        returns (uint256 assetsIn)
    {
        Pool memory pool = args();

        assetsIn = pool.previewAssetsIn(sharesOut);
        uint256 swapFees = assetsIn.mulWad(swapFee());
        assetsIn = assetsIn.rawAdd(swapFees);
        totalSwapFeesAsset += swapFees;

        if (assetsIn > maxAssetsIn) revert SlippageExceeded();

        _swapAssetsForShares(
            recipient, referrer, assetsIn, sharesOut, pool.assets, pool.shares, swapFees
        );
    }

    function _swapAssetsForShares(
        address recipient,
        address referrer,
        uint256 assetsIn,
        uint256 sharesOut,
        uint256 assets,
        uint256 shares,
        uint256 swapFees
    )
        internal
        virtual
    {
        if (assets + assetsIn - swapFees >= maxTotalAssetsIn()) {
            revert AssetsInExceeded();
        }

        asset().safeTransferFrom(msg.sender, address(this), assetsIn);

        uint256 totalPurchasedAfter = totalPurchased + sharesOut;

        if (totalPurchasedAfter >= maxTotalSharesOut() || totalPurchasedAfter >= shares) {
            revert SharesOutExceeded();
        }

        totalPurchased = totalPurchasedAfter;

        purchasedShares[recipient] = purchasedShares[recipient].rawAdd(sharesOut);

        if (referrer != address(0) && referrerFee() != 0) {
            uint256 assetsReferred = assetsIn.mulWad(referrerFee());

            totalReferred += assetsReferred;

            referredAssets[referrer] = referredAssets[referrer].rawAdd(assetsReferred);
        }

        emit Buy(msg.sender, assetsIn, sharesOut, swapFees);
    }

    /// -----------------------------------------------------------------------
    /// Sell Logic
    /// -----------------------------------------------------------------------

    /// @notice Swap a specific number of shares for a minimum amount of assets.
    /// @dev This function allows users to exchange a certain number of shares for assets,
    /// ensuring that they receive at least the specified minimum amount of assets.
    /// @param sharesIn The number of shares to be exchanged for assets.
    /// @param minAssetsOut The minimum amount of assets expected to be received.
    /// @param recipient The address to receive the assets.
    /// @return assetsOut The actual amount of assets received.
    function swapExactSharesForAssets(
        uint256 sharesIn,
        uint256 minAssetsOut,
        address recipient
    )
        external
        virtual
        returns (uint256 assetsOut)
    {
        return
            swapExactSharesForAssets(sharesIn, minAssetsOut, recipient, MerkleProofLib.emptyProof());
    }

    /// @notice Swap a specific number of shares for a maximum amount of assets.
    /// @dev This function allows users to exchange a certain number of shares for assets,
    /// ensuring that they receive no more than the specified maximum amount of assets.
    /// @param assetsOut The maximum amount of assets allowed to be received.
    /// @param maxSharesIn The number of shares to be exchanged for assets.
    /// @param recipient The address to receive the assets.
    /// @return sharesIn The actual number of shares used for the exchange.
    function swapSharesForExactAssets(
        uint256 assetsOut,
        uint256 maxSharesIn,
        address recipient
    )
        external
        virtual
        returns (uint256 sharesIn)
    {
        return
            swapSharesForExactAssets(assetsOut, maxSharesIn, recipient, MerkleProofLib.emptyProof());
    }

    /// @notice Swap a specific number of shares for a minimum amount of assets.
    /// @dev This function allows users to exchange a certain number of shares for assets,
    /// ensuring that they receive at least the specified minimum amount of assets.
    /// @param sharesIn The number of shares to be exchanged for assets.
    /// @param minAssetsOut The minimum amount of assets expected to be received.
    /// @param recipient The address to receive the assets.
    /// @param proof The Merkle proof for whitelisting.
    /// @return assetsOut The actual amount of assets received.
    function swapExactSharesForAssets(
        uint256 sharesIn,
        uint256 minAssetsOut,
        address recipient,
        bytes32[] memory proof
    )
        public
        virtual
        whenNotPaused
        whenSellingAllowed
        onlyWhitelisted(proof)
        whenSaleActive
        nonReentrant
        returns (uint256 assetsOut)
    {
        Pool memory pool = args();

        uint256 swapFees = sharesIn.mulWad(swapFee());
        totalSwapFeesShare += swapFees;

        assetsOut = pool.previewAssetsOut(sharesIn.rawSub(swapFees));

        if (assetsOut < minAssetsOut) revert SlippageExceeded();

        _swapSharesForAssets(recipient, assetsOut, sharesIn, pool.assets, pool.shares, swapFees);
    }

    /// @notice Swap a specific number of shares for a maximum amount of assets.
    /// @dev This function allows users to exchange a certain number of shares for assets,
    /// ensuring that they receive no more than the specified maximum amount of assets.
    /// @param assetsOut The maximum amount of assets allowed to be received.
    /// @param maxSharesIn The number of shares to be exchanged for assets.
    /// @param recipient The address to receive the assets.
    /// @param proof The Merkle proof for whitelisting.
    /// @return sharesIn The actual number of shares used for the exchange.
    function swapSharesForExactAssets(
        uint256 assetsOut,
        uint256 maxSharesIn,
        address recipient,
        bytes32[] memory proof
    )
        public
        virtual
        whenNotPaused
        whenSellingAllowed
        onlyWhitelisted(proof)
        whenSaleActive
        nonReentrant
        returns (uint256 sharesIn)
    {
        Pool memory pool = args();

        sharesIn = pool.previewSharesIn(assetsOut);
        uint256 swapFees = sharesIn.mulWad(swapFee());
        sharesIn += swapFees;
        totalSwapFeesShare += swapFees;

        if (sharesIn > maxSharesIn) revert SlippageExceeded();

        _swapSharesForAssets(recipient, assetsOut, sharesIn, pool.assets, pool.shares, swapFees);
    }

    function _swapSharesForAssets(
        address recipient,
        uint256 assetsOut,
        uint256 sharesIn,
        uint256 assets,
        uint256 shares,
        uint256 swapFees
    )
        internal
        virtual
    {
        if (assets >= maxTotalAssetsIn()) {
            revert AssetsInExceeded();
        }

        uint256 totalPurchasedBefore = totalPurchased;

        if (totalPurchasedBefore >= maxTotalSharesOut() || totalPurchasedBefore >= shares) {
            revert SharesOutExceeded();
        }

        purchasedShares[msg.sender] -= sharesIn;

        totalPurchased = totalPurchasedBefore.rawSub(sharesIn);

        asset().safeTransfer(recipient, assetsOut);

        emit Sell(msg.sender, sharesIn, assetsOut, swapFees);
    }

    /// -----------------------------------------------------------------------
    /// Close Logic
    /// -----------------------------------------------------------------------

    /// @notice Close the pool and distribute assets and shares accordingly.
    /// @dev This function closes the pool after the sale has ended and distributes
    /// assets to the platform fee and the manager, and shares to the manager for
    /// any unsold shares. Once closed, the pool cannot be used for further transactions.
    function close() external virtual {
        if (closed) revert ClosingDisallowed();
        if (block.timestamp < saleEnd()) revert ClosingDisallowed();

        uint256 totalAssets = asset().balanceOf(address(this)).rawSub(totalSwapFeesAsset);
        uint256 platformFees = totalAssets.mulWad(platformFee());
        uint256 totalAssetsMinusFees = totalAssets.rawSub(platformFees).rawSub(totalReferred);

        if (totalAssets != 0) {
            // Transfer and distribute fees
            asset().safeTransfer(platform(), platformFees + totalSwapFeesAsset);
            share().safeTransfer(platform(), totalSwapFeesShare);
            Treasury(platform()).distributeFee(
                asset(), platformFees, totalSwapFeesAsset, share(), totalSwapFeesShare
            );

            // Transfer asset
            asset().safeTransfer(manager(), totalAssetsMinusFees);
        }

        uint256 totalShares = share().balanceOf(address(this));
        uint256 unsoldShares = totalShares.rawSub(totalPurchased);

        if (totalShares != 0) {
            share().safeTransfer(manager(), unsoldShares);
        }

        closed = true;

        share().safeApprove(address(SABLIER), totalShares);

        emit Close(totalAssetsMinusFees, platformFees, totalSwapFeesAsset, totalSwapFeesShare);
    }

    /// -----------------------------------------------------------------------
    /// Redeem Logic
    /// -----------------------------------------------------------------------

    /// @notice Redeem shares and, if referred, assets.
    /// @dev This function allows users to redeem their shares and, if they
    /// have been referred, receive assets. If vesting is enabled, shares will
    /// vest over a certain period, and the user can redeem a portion of their
    /// vested shares at any time. Once shares are fully vested, the user can
    /// redeem all of them.
    /// @param recipient The address to receive redeemed shares and assets.
    /// @param referred A boolean indicating whether the user has been referred.
    /// @return shares The number of shares redeemed.
    function redeem(address recipient, bool referred) external virtual returns (uint256 shares) {
        if (!closed) revert RedeemingDisallowed();

        uint256 streamID;

        if (vestShares() && vestEnd() > block.timestamp) {
            shares = purchasedShares[msg.sender];
            delete purchasedShares[msg.sender];

            LockupLinear.CreateWithRange memory params;

            params.sender = manager();
            params.recipient = msg.sender;
            params.totalAmount = uint128(shares);
            params.asset = IERC20(share());
            params.cancelable = false;
            params.range =
                LockupLinear.Range({ start: uint40(saleEnd()), cliff: vestCliff(), end: vestEnd() });
            params.broker = Broker(address(0), ud60x18(0));

            streamID = SABLIER.createWithRange(params);
        } else {
            shares = purchasedShares[msg.sender];

            delete purchasedShares[msg.sender];

            share().safeTransfer(msg.sender, shares);
        }

        if (referred && referrerFee() != 0) {
            uint256 assets = referredAssets[msg.sender];

            delete referredAssets[msg.sender];

            asset().safeTransfer(recipient, assets);
        }

        if (shares != 0) {
            emit Redeem(msg.sender, streamID, shares);
        }
    }

    /// -----------------------------------------------------------------------
    /// Management
    /// -----------------------------------------------------------------------

    /// @notice Toggle the pause state of the pool.
    /// @dev This function allows the manager to pause and unpause the pool.
    /// When the pool is paused, no new swaps can be executed.
    function togglePause() external virtual {
        if (msg.sender != manager()) {
            revert CallerDisallowed();
        }

        _togglePause();
    }

    /// -----------------------------------------------------------------------
    /// Swap Helper Logic
    /// -----------------------------------------------------------------------

    /// @notice Get the pool arguments including reserves, weights, and other parameters.
    /// @dev This function returns the current pool configuration including asset
    /// and share reserves, weights, and other parameters.
    /// @return pool A struct containing the pool configuration.
    function args() public view virtual returns (Pool memory) {
        return Pool(
            asset(),
            share(),
            asset().balanceOf(address(this)).rawSub(totalSwapFeesAsset),
            share().balanceOf(address(this)).rawSub(totalSwapFeesShare),
            virtualAssets(),
            virtualShares(),
            weightStart(),
            weightEnd(),
            saleStart(),
            saleEnd(),
            totalPurchased,
            maxSharePrice()
        );
    }

    /// @notice Get the reserves and weights of the pool.
    /// @dev This function returns the current asset and share reserves, as well
    /// as the asset and share weights.
    /// @return assetReserve The current asset reserve.
    /// @return shareReserve The current share reserve.
    /// @return assetWeight The asset weight.
    /// @return shareWeight The share weight.
    function reservesAndWeights()
        external
        view
        virtual
        returns (
            uint256 assetReserve,
            uint256 shareReserve,
            uint256 assetWeight,
            uint256 shareWeight
        )
    {
        return args().computeReservesAndWeights();
    }

    /// @notice Preview the amount of assets required to receive a specific number of shares.
    /// @dev This function calculates the amount of assets needed to obtain a certain
    /// number of shares based on the current pool configuration.
    /// @param sharesOut The number of shares desired.
    /// @return assetsIn The amount of assets required.
    function previewAssetsIn(uint256 sharesOut) external view virtual returns (uint256 assetsIn) {
        return args().previewAssetsIn(sharesOut).mulWad(1e18 + swapFee());
    }

    /// @notice Preview the number of shares that will be received for a specific amount of assets.
    /// @dev This function calculates the number of shares that will be received for a
    /// given amount of assets based on the current pool configuration.
    /// @param assetsIn The amount of assets used.
    /// @return sharesOut The number of shares received.
    function previewSharesOut(uint256 assetsIn) external view virtual returns (uint256 sharesOut) {
        return args().previewSharesOut(assetsIn.mulWad(1e18 - swapFee()));
    }

    /// @notice Preview the number of shares that need to be used to obtain a specific amount of assets.
    /// @dev This function calculates the number of shares required to obtain a certain
    /// amount of assets based on the current pool configuration.
    /// @param assetsOut The amount of assets desired.
    /// @return sharesIn The number of shares required.
    function previewSharesIn(uint256 assetsOut) external view virtual returns (uint256 sharesIn) {
        return args().previewSharesIn(assetsOut).mulWad(1e18 + swapFee());
    }

    /// @notice Preview the amount of assets that will be received for a specific number of shares.
    /// @dev This function calculates the amount of assets that will be received for a
    /// given number of shares based on the current pool configuration.
    /// @param sharesIn The number of shares used.
    /// @return assetsOut The amount of assets received.
    function previewAssetsOut(uint256 sharesIn) external view virtual returns (uint256 assetsOut) {
        return args().previewAssetsOut(sharesIn.mulWad(1e18 - swapFee()));
    }
}

File 2 of 53 : WeightedMathLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.21;

import "solady/src/utils/FixedPointMathLib.sol";
import "solady/src/utils/SafeCastLib.sol";

library WeightedMathLib {
    /// -----------------------------------------------------------------------
    /// Dependencies
    /// -----------------------------------------------------------------------

    using SafeCastLib for *;

    using FixedPointMathLib for *;

    /// -----------------------------------------------------------------------
    /// Errors
    /// -----------------------------------------------------------------------

    /// @dev Thrown when `amountIn` exceeds `MAX_PERCENTAGE_IN`, which is imposed by balancer.
    error AmountInTooLarge();

    /// @dev Thrown when `amountOut` exceeds `MAX_PERCENTAGE_OUT`, which is imposed by balancer.
    error AmountOutTooLarge();

    /// -----------------------------------------------------------------------
    /// Constants
    /// -----------------------------------------------------------------------

    /// @dev Maximum relative error allowed for fixed-point math operations (10^(-14)).
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000;

    /// @dev Maximum percentage of reserveIn allowed to be swapped in when using `getAmountOut` (30%).
    uint256 internal constant MAX_PERCENTAGE_IN = 0.3 ether;

    /// @dev Maximum percentage of reserveOut allowed to be swapped out when using `getAmountIn` (30%).
    uint256 internal constant MAX_PERCENTAGE_OUT = 0.3 ether;

    /// -----------------------------------------------------------------------
    ///  Weighted Arithmetic
    /// -----------------------------------------------------------------------

    /// @notice Calculate the spot price given reserves and weights of two assets in a pool.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getSpotPrice(
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256) {
        // -----------------------------------------------------------------------
        // (reserveIn / weightIn) / (reserveOut / weightOut)
        // -----------------------------------------------------------------------

        return reserveIn.divWad(weightIn).divWad(reserveOut.divWad(weightOut));
    }

    /// @notice Calculate the invariant of a weighted pool given reserves and weights of the assets.
    /// @param reserves An array of reserves for all the assets in the pool.
    /// @param weights An array of weights for all the assets in the pool.
    function getInvariant(uint256[] memory reserves, uint256[] memory weights)
        internal
        pure
        returns (uint256 invariant)
    {
        // -----------------------------------------------------------------------
        //   ____
        //   ⎟⎟          weight
        //   ⎟⎟  reserve ^     = i
        //   n = totalAssets
        // -----------------------------------------------------------------------

        invariant = 1e18;

        uint256 n = weights.length;

        for (uint256 i; i < n; i = i.rawAdd(1)) {
            invariant = invariant.mulWad(int256(reserves[i]).powWad(int256(weights[i])).toUint256());
        }
    }

    /// @notice Calculate the invariant of a weighted pool given two reserves and weights.
    /// @dev Optimized for pools that contain exactly two assets.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getInvariant(
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256 invariant) {
        // -----------------------------------------------------------------------
        //   ____
        //   ⎟⎟          weight
        //   ⎟⎟  reserve ^     = i
        //   n = 2
        // -----------------------------------------------------------------------

        invariant = 1e18.mulWad(powWad(reserveIn, weightIn)).mulWad(powWad(reserveOut, weightOut));
    }

    /// @notice Calculate the amount of input asset required to get a specific amount of output asset from the pool.
    /// @param amountOut The desired amount of output asset.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getAmountIn(
        uint256 amountOut,
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256) {
        unchecked {
            // -----------------------------------------------------------------------
            //
            //             ⎛                       ⎛weightIn ⎞    ⎞
            //             ⎜                        ─────────      ⎟
            //             ⎜                       ⎝weightOut⎠    ⎟
            //             ⎜⎛     reserveOut      ⎞               ⎟
            // reserveIn ⋅    ─────────────────────             - 1
            //             ⎝⎝reserveOut - amountIn⎠               ⎠
            // -----------------------------------------------------------------------

            // Assert `amountOut` cannot exceed `MAX_PERCENTAGE_OUT`.
            if (amountOut > reserveOut.mulWad(MAX_PERCENTAGE_OUT)) {
                revert AmountOutTooLarge();
            }

            // `MAX_PERCENTAGE_OUT` check ensures `amountOut` is always less than `reserveOut`.
            return reserveIn.mulWadUp(
                powWadUp(
                    reserveOut.divWadUp(reserveOut.rawSub(amountOut)), weightOut.divWadUp(weightIn)
                ) - 1 ether
            );
        }
    }

    /// @notice Calculate the amount of output asset received by providing a specific amount of input asset to the pool.
    /// @param amountIn The amount of input asset provided.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getAmountOut(
        uint256 amountIn,
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256) {
        // -----------------------------------------------------------------------
        //
        //             ⎛                          ⎛weightIn ⎞⎞
        //             ⎜                           ─────────  ⎟
        //             ⎜                          ⎝weightOut⎠⎟
        //             ⎜    ⎛      reserveIn     ⎞           ⎟
        // reserveOut ⋅  1 -  ────────────────────
        //             ⎝    ⎝reserveIn + amountIn⎠           ⎠
        // -----------------------------------------------------------------------

        // Assert `amountIn` cannot exceed `MAX_PERCENTAGE_IN`.
        if (amountIn > reserveIn.mulWad(MAX_PERCENTAGE_IN)) {
            revert AmountInTooLarge();
        }

        return reserveOut.mulWad(
            1e18.rawSub(
                powWadUp(reserveIn.divWadUp(reserveIn + amountIn), weightIn.divWad(weightOut))
            )
        );
    }

    function linearInterpolation(uint256 x, uint256 y, uint256 i, uint256 n)
        internal
        pure
        returns (uint256)
    {
        // -----------------------------------------------------------------------
        //
        //         ⎛ |x - y| ⎞
        // x ± i ⋅   ─────────
        //         ⎝    n    ⎠
        // -----------------------------------------------------------------------

        return x > y
            ? x.rawSub(x.rawSub(y).mulDiv(i.min(n), n))
            : x.rawAdd(y.rawSub(x).mulDiv(i.min(n), n));
    }

    /// -----------------------------------------------------------------------
    /// Fixed-point Arithmetic
    /// -----------------------------------------------------------------------

    function powWad(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 1 ether) {
            return x;
        } else if (y == 2 ether) {
            return x.mulWad(x);
        } else if (y == 4 ether) {
            uint256 square = x.mulWad(x);
            return square.mulWad(square);
        }

        return int256(x).powWad(int256(y)).toUint256();
    }

    function powWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 1 ether) {
            return x;
        } else if (y == 2 ether) {
            return x.mulWadUp(x);
        } else if (y == 4 ether) {
            uint256 square = x.mulWadUp(x);
            return square.mulWadUp(square);
        }

        uint256 power = int256(x).powWad(int256(y)).toUint256();

        return power + power.mulWadUp(MAX_POW_RELATIVE_ERROR) + 1;
    }
}

File 3 of 53 : SafeTransferLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
/// - For ERC20s, this implementation won't check that a token has code,
///   responsibility is delegated to the caller.
library SafeTransferLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /// @dev The ERC20 `transferFrom` has failed.
    error TransferFromFailed();

    /// @dev The ERC20 `transfer` has failed.
    error TransferFailed();

    /// @dev The ERC20 `approve` has failed.
    error ApproveFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;

    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
    /// storage reads and writes, but low enough to prevent griefing.
    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ETH OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
    //
    // The regular variants:
    // - Forwards all remaining gas to the target.
    // - Reverts if the target reverts.
    // - Reverts if the current contract has insufficient balance.
    //
    // The force variants:
    // - Forwards with an optional gas stipend
    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
    // - If the target reverts, or if the gas stipend is exhausted,
    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
    // - Reverts if the current contract has insufficient balance.
    //
    // The try variants:
    // - Forwards with a mandatory gas stipend.
    // - Instead of reverting, returns whether the transfer succeeded.

    /// @dev Sends `amount` (in wei) ETH to `to`.
    function safeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`.
    function safeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer all the ETH and check if it succeeded or not.
            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function trySafeTransferAllETH(address to, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ERC20 OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for
    /// the current contract to manage.
    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends all of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have their entire balance approved for
    /// the current contract to manage.
    function safeTransferAllFrom(address token, address from, address to)
        internal
        returns (uint256 amount)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransfer(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
            mstore(0x20, address()) // Store the address of the current contract.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x14, to) // Store the `to` argument.
            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// Reverts upon failure.
    function safeApprove(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
    /// then retries the approval again (some tokens, e.g. USDT, requires this).
    /// Reverts upon failure.
    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, retrying upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x34, 0) // Store 0 for the `amount`.
                mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                mstore(0x34, amount) // Store back the original `amount`.
                // Retry the approval, reverting upon failure.
                if iszero(
                    and(
                        or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                        call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                    )
                ) {
                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Returns the amount of ERC20 `token` owned by `account`.
    /// Returns zero if the `token` does not exist.
    function balanceOf(address token, address account) internal view returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, account) // Store the `account` argument.
            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            amount :=
                mul(
                    mload(0x20),
                    and( // The arguments of `and` are evaluated from right to left.
                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                    )
                )
        }
    }
}

File 4 of 53 : MerkleProofLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Gas optimized verification of proof of inclusion for a leaf in a Merkle tree.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol)
library MerkleProofLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*            MERKLE PROOF VERIFICATION OPERATIONS            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf)
        internal
        pure
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(proof) {
                // Initialize `offset` to the offset of `proof` elements in memory.
                let offset := add(proof, 0x20)
                // Left shift by 5 is equivalent to multiplying by 0x20.
                let end := add(offset, shl(5, mload(proof)))
                // Iterate over proof elements to compute root hash.
                for {} 1 {} {
                    // Slot of `leaf` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(leaf, mload(offset)))
                    // Store elements to hash contiguously in scratch space.
                    // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
                    mstore(scratch, leaf)
                    mstore(xor(scratch, 0x20), mload(offset))
                    // Reuse `leaf` to store the hash to reduce stack operations.
                    leaf := keccak256(0x00, 0x40)
                    offset := add(offset, 0x20)
                    if iszero(lt(offset, end)) { break }
                }
            }
            isValid := eq(leaf, root)
        }
    }

    /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf)
        internal
        pure
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            if proof.length {
                // Left shift by 5 is equivalent to multiplying by 0x20.
                let end := add(proof.offset, shl(5, proof.length))
                // Initialize `offset` to the offset of `proof` in the calldata.
                let offset := proof.offset
                // Iterate over proof elements to compute root hash.
                for {} 1 {} {
                    // Slot of `leaf` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(leaf, calldataload(offset)))
                    // Store elements to hash contiguously in scratch space.
                    // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
                    mstore(scratch, leaf)
                    mstore(xor(scratch, 0x20), calldataload(offset))
                    // Reuse `leaf` to store the hash to reduce stack operations.
                    leaf := keccak256(0x00, 0x40)
                    offset := add(offset, 0x20)
                    if iszero(lt(offset, end)) { break }
                }
            }
            isValid := eq(leaf, root)
        }
    }

    /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`,
    /// given `proof` and `flags`.
    ///
    /// Note:
    /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length`
    ///   will always return false.
    /// - The sum of the lengths of `proof` and `leaves` must never overflow.
    /// - Any non-zero word in the `flags` array is treated as true.
    /// - The memory offset of `proof` must be non-zero
    ///   (i.e. `proof` is not pointing to the scratch space).
    function verifyMultiProof(
        bytes32[] memory proof,
        bytes32 root,
        bytes32[] memory leaves,
        bool[] memory flags
    ) internal pure returns (bool isValid) {
        // Rebuilds the root by consuming and producing values on a queue.
        // The queue starts with the `leaves` array, and goes into a `hashes` array.
        // After the process, the last element on the queue is verified
        // to be equal to the `root`.
        //
        // The `flags` array denotes whether the sibling
        // should be popped from the queue (`flag == true`), or
        // should be popped from the `proof` (`flag == false`).
        /// @solidity memory-safe-assembly
        assembly {
            // Cache the lengths of the arrays.
            let leavesLength := mload(leaves)
            let proofLength := mload(proof)
            let flagsLength := mload(flags)

            // Advance the pointers of the arrays to point to the data.
            leaves := add(0x20, leaves)
            proof := add(0x20, proof)
            flags := add(0x20, flags)

            // If the number of flags is correct.
            for {} eq(add(leavesLength, proofLength), add(flagsLength, 1)) {} {
                // For the case where `proof.length + leaves.length == 1`.
                if iszero(flagsLength) {
                    // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`.
                    isValid := eq(mload(xor(leaves, mul(xor(proof, leaves), proofLength))), root)
                    break
                }

                // The required final proof offset if `flagsLength` is not zero, otherwise zero.
                let proofEnd := add(proof, shl(5, proofLength))
                // We can use the free memory space for the queue.
                // We don't need to allocate, since the queue is temporary.
                let hashesFront := mload(0x40)
                // Copy the leaves into the hashes.
                // Sometimes, a little memory expansion costs less than branching.
                // Should cost less, even with a high free memory offset of 0x7d00.
                leavesLength := shl(5, leavesLength)
                for { let i := 0 } iszero(eq(i, leavesLength)) { i := add(i, 0x20) } {
                    mstore(add(hashesFront, i), mload(add(leaves, i)))
                }
                // Compute the back of the hashes.
                let hashesBack := add(hashesFront, leavesLength)
                // This is the end of the memory for the queue.
                // We recycle `flagsLength` to save on stack variables (sometimes save gas).
                flagsLength := add(hashesBack, shl(5, flagsLength))

                for {} 1 {} {
                    // Pop from `hashes`.
                    let a := mload(hashesFront)
                    // Pop from `hashes`.
                    let b := mload(add(hashesFront, 0x20))
                    hashesFront := add(hashesFront, 0x40)

                    // If the flag is false, load the next proof,
                    // else, pops from the queue.
                    if iszero(mload(flags)) {
                        // Loads the next proof.
                        b := mload(proof)
                        proof := add(proof, 0x20)
                        // Unpop from `hashes`.
                        hashesFront := sub(hashesFront, 0x20)
                    }

                    // Advance to the next flag.
                    flags := add(flags, 0x20)

                    // Slot of `a` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(a, b))
                    // Hash the scratch space and push the result onto the queue.
                    mstore(scratch, a)
                    mstore(xor(scratch, 0x20), b)
                    mstore(hashesBack, keccak256(0x00, 0x40))
                    hashesBack := add(hashesBack, 0x20)
                    if iszero(lt(hashesBack, flagsLength)) { break }
                }
                isValid :=
                    and(
                        // Checks if the last value in the queue is same as the root.
                        eq(mload(sub(hashesBack, 0x20)), root),
                        // And whether all the proofs are used, if required.
                        eq(proofEnd, proof)
                    )
                break
            }
        }
    }

    /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`,
    /// given `proof` and `flags`.
    ///
    /// Note:
    /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length`
    ///   will always return false.
    /// - Any non-zero word in the `flags` array is treated as true.
    /// - The calldata offset of `proof` must be non-zero
    ///   (i.e. `proof` is from a regular Solidity function with a 4-byte selector).
    function verifyMultiProofCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32[] calldata leaves,
        bool[] calldata flags
    ) internal pure returns (bool isValid) {
        // Rebuilds the root by consuming and producing values on a queue.
        // The queue starts with the `leaves` array, and goes into a `hashes` array.
        // After the process, the last element on the queue is verified
        // to be equal to the `root`.
        //
        // The `flags` array denotes whether the sibling
        // should be popped from the queue (`flag == true`), or
        // should be popped from the `proof` (`flag == false`).
        /// @solidity memory-safe-assembly
        assembly {
            // If the number of flags is correct.
            for {} eq(add(leaves.length, proof.length), add(flags.length, 1)) {} {
                // For the case where `proof.length + leaves.length == 1`.
                if iszero(flags.length) {
                    // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`.
                    // forgefmt: disable-next-item
                    isValid := eq(
                        calldataload(
                            xor(leaves.offset, mul(xor(proof.offset, leaves.offset), proof.length))
                        ),
                        root
                    )
                    break
                }

                // The required final proof offset if `flagsLength` is not zero, otherwise zero.
                let proofEnd := add(proof.offset, shl(5, proof.length))
                // We can use the free memory space for the queue.
                // We don't need to allocate, since the queue is temporary.
                let hashesFront := mload(0x40)
                // Copy the leaves into the hashes.
                // Sometimes, a little memory expansion costs less than branching.
                // Should cost less, even with a high free memory offset of 0x7d00.
                calldatacopy(hashesFront, leaves.offset, shl(5, leaves.length))
                // Compute the back of the hashes.
                let hashesBack := add(hashesFront, shl(5, leaves.length))
                // This is the end of the memory for the queue.
                // We recycle `flagsLength` to save on stack variables (sometimes save gas).
                flags.length := add(hashesBack, shl(5, flags.length))

                // We don't need to make a copy of `proof.offset` or `flags.offset`,
                // as they are pass-by-value (this trick may not always save gas).

                for {} 1 {} {
                    // Pop from `hashes`.
                    let a := mload(hashesFront)
                    // Pop from `hashes`.
                    let b := mload(add(hashesFront, 0x20))
                    hashesFront := add(hashesFront, 0x40)

                    // If the flag is false, load the next proof,
                    // else, pops from the queue.
                    if iszero(calldataload(flags.offset)) {
                        // Loads the next proof.
                        b := calldataload(proof.offset)
                        proof.offset := add(proof.offset, 0x20)
                        // Unpop from `hashes`.
                        hashesFront := sub(hashesFront, 0x20)
                    }

                    // Advance to the next flag offset.
                    flags.offset := add(flags.offset, 0x20)

                    // Slot of `a` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(a, b))
                    // Hash the scratch space and push the result onto the queue.
                    mstore(scratch, a)
                    mstore(xor(scratch, 0x20), b)
                    mstore(hashesBack, keccak256(0x00, 0x40))
                    hashesBack := add(hashesBack, 0x20)
                    if iszero(lt(hashesBack, flags.length)) { break }
                }
                isValid :=
                    and(
                        // Checks if the last value in the queue is same as the root.
                        eq(mload(sub(hashesBack, 0x20)), root),
                        // And whether all the proofs are used, if required.
                        eq(proofEnd, proof.offset)
                    )
                break
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   EMPTY CALLDATA HELPERS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an empty calldata bytes32 array.
    function emptyProof() internal pure returns (bytes32[] calldata proof) {
        /// @solidity memory-safe-assembly
        assembly {
            proof.length := 0
        }
    }

    /// @dev Returns an empty calldata bytes32 array.
    function emptyLeaves() internal pure returns (bytes32[] calldata leaves) {
        /// @solidity memory-safe-assembly
        assembly {
            leaves.length := 0
        }
    }

    /// @dev Returns an empty calldata bool array.
    function emptyFlags() internal pure returns (bool[] calldata flags) {
        /// @solidity memory-safe-assembly
        assembly {
            flags.length := 0
        }
    }
}

File 5 of 53 : LibString.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
library LibString {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The `length` of the output is too small to contain all the hex digits.
    error HexLengthInsufficient();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the string.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     DECIMAL OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits.
            str := add(mload(0x40), 0x80)
            // Update the free memory pointer to allocate.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            let w := not(0) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 1)`.
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(int256 value) internal pure returns (string memory str) {
        if (value >= 0) {
            return toString(uint256(value));
        }
        unchecked {
            str = toString(uint256(-value));
        }
        /// @solidity memory-safe-assembly
        assembly {
            // We still have some spare memory space on the left,
            // as we have allocated 3 words (96 bytes) for up to 78 digits.
            let length := mload(str) // Load the string length.
            mstore(str, 0x2d) // Store the '-' character.
            str := sub(str, 1) // Move back the string pointer by a byte.
            mstore(str, add(length, 1)) // Update the string length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   HEXADECIMAL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2 + 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value, length);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexStringNoPrefix(uint256 value, uint256 length)
        internal
        pure
        returns (string memory str)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
            // We add 0x20 to the total and round down to a multiple of 0x20.
            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
            str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let start := sub(str, add(length, length))
            let w := not(1) // Tsk.
            let temp := value
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for {} 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(xor(str, start)) { break }
            }

            if temp {
                // Store the function selector of `HexLengthInsufficient()`.
                mstore(0x00, 0x2194895a)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2 + 2` bytes.
    function toHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x".
    /// The output excludes leading "0" from the `toHexString` output.
    /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
    function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
            str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
    /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
    function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := mload(str) // Get the length.
            str := add(str, o) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2` bytes.
    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
            str := add(mload(0x40), 0x80)
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let w := not(1) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(temp) { break }
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
    /// and the alphabets are capitalized conditionally according to
    /// https://eips.ethereum.org/EIPS/eip-55
    function toHexStringChecksummed(address value) internal pure returns (string memory str) {
        str = toHexString(value);
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
            let o := add(str, 0x22)
            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
            let t := shl(240, 136) // `0b10001000 << 240`
            for { let i := 0 } 1 {} {
                mstore(add(i, i), mul(t, byte(i, hashed)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
            o := add(o, 0x20)
            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    function toHexString(address value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            str := mload(0x40)

            // Allocate the memory.
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
            mstore(0x40, add(str, 0x80))

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            str := add(str, 2)
            mstore(str, 40)

            let o := add(str, 0x20)
            mstore(add(o, 40), 0)

            value := shl(96, value)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let i := 0 } 1 {} {
                let p := add(o, add(i, i))
                let temp := byte(i, value)
                mstore8(add(p, 1), mload(and(temp, 15)))
                mstore8(p, mload(shr(4, temp)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexString(bytes memory raw) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(raw);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(raw)
            str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
            mstore(str, add(length, length)) // Store the length of the output.

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let o := add(str, 0x20)
            let end := add(raw, length)

            for {} iszero(eq(raw, end)) {} {
                raw := add(raw, 1)
                mstore8(add(o, 1), mload(and(mload(raw), 15)))
                mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                o := add(o, 2)
            }
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(0x40, add(o, 0x20)) // Allocate the memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RUNE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of UTF characters in the string.
    function runeCount(string memory s) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                mstore(0x00, div(not(0), 255))
                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for { result := 1 } 1 { result := add(result, 1) } {
                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                    if iszero(lt(o, end)) { break }
                }
            }
        }
    }

    /// @dev Returns if this string is a 7-bit ASCII string.
    /// (i.e. all characters codes are in [0..127])
    function is7BitASCII(string memory s) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(7, div(not(0), 255))
            result := 1
            let n := mload(s)
            if n {
                let o := add(s, 0x20)
                let end := add(o, n)
                let last := mload(end)
                mstore(end, 0)
                for {} 1 {} {
                    if and(mask, mload(o)) {
                        result := 0
                        break
                    }
                    o := add(o, 0x20)
                    if iszero(lt(o, end)) { break }
                }
                mstore(end, last)
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   BYTE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance and bytecode compactness, all indices of the following operations
    // are byte (ASCII) offsets, not UTF character offsets.

    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
    function replace(string memory subject, string memory search, string memory replacement)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)
            let replacementLength := mload(replacement)

            subject := add(subject, 0x20)
            search := add(search, 0x20)
            replacement := add(replacement, 0x20)
            result := add(mload(0x40), 0x20)

            let subjectEnd := add(subject, subjectLength)
            if iszero(gt(searchLength, subjectLength)) {
                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                mstore(result, t)
                                result := add(result, 1)
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Copy the `replacement` one word at a time.
                        for { let o := 0 } 1 {} {
                            mstore(add(result, o), mload(add(replacement, o)))
                            o := add(o, 0x20)
                            if iszero(lt(o, replacementLength)) { break }
                        }
                        result := add(result, replacementLength)
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    mstore(result, t)
                    result := add(result, 1)
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
            }

            let resultRemainder := result
            result := add(mload(0x40), 0x20)
            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
            // Copy the rest of the string one word at a time.
            for {} lt(subject, subjectEnd) {} {
                mstore(resultRemainder, mload(subject))
                resultRemainder := add(resultRemainder, 0x20)
                subject := add(subject, 0x20)
            }
            result := sub(result, 0x20)
            let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
            mstore(last, 0)
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
            mstore(result, k) // Store the length.
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let subjectLength := mload(subject) } 1 {} {
                if iszero(mload(search)) {
                    if iszero(gt(from, subjectLength)) {
                        result := from
                        break
                    }
                    result := subjectLength
                    break
                }
                let searchLength := mload(search)
                let subjectStart := add(subject, 0x20)

                result := not(0) // Initialize to `NOT_FOUND`.

                subject := add(subjectStart, from)
                let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)

                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(add(search, 0x20))

                if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }

                if iszero(lt(searchLength, 0x20)) {
                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                        if iszero(shr(m, xor(mload(subject), s))) {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, subjectStart)
                                break
                            }
                        }
                        subject := add(subject, 1)
                        if iszero(lt(subject, end)) { break }
                    }
                    break
                }
                for {} 1 {} {
                    if iszero(shr(m, xor(mload(subject), s))) {
                        result := sub(subject, subjectStart)
                        break
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = indexOf(subject, search, 0);
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                result := not(0) // Initialize to `NOT_FOUND`.
                let searchLength := mload(search)
                if gt(searchLength, mload(subject)) { break }
                let w := result

                let fromMax := sub(mload(subject), searchLength)
                if iszero(gt(fromMax, from)) { from := fromMax }

                let end := add(add(subject, 0x20), w)
                subject := add(add(subject, 0x20), from)
                if iszero(gt(subject, end)) { break }
                // As this function is not too often used,
                // we shall simply use keccak256 for smaller bytecode size.
                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                    if eq(keccak256(subject, searchLength), h) {
                        result := sub(subject, add(end, 1))
                        break
                    }
                    subject := add(subject, w) // `sub(subject, 1)`.
                    if iszero(gt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = lastIndexOf(subject, search, uint256(int256(-1)));
    }

    /// @dev Returns whether `subject` starts with `search`.
    function startsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                iszero(gt(searchLength, mload(subject))),
                eq(
                    keccak256(add(subject, 0x20), searchLength),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns whether `subject` ends with `search`.
    function endsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            let subjectLength := mload(subject)
            // Whether `search` is not longer than `subject`.
            let withinRange := iszero(gt(searchLength, subjectLength))
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                withinRange,
                eq(
                    keccak256(
                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                        searchLength
                    ),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(string memory subject, uint256 times)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(or(iszero(times), iszero(subjectLength))) {
                subject := add(subject, 0x20)
                result := mload(0x40)
                let output := add(result, 0x20)
                for {} 1 {} {
                    // Copy the `subject` one word at a time.
                    for { let o := 0 } 1 {} {
                        mstore(add(output, o), mload(add(subject, o)))
                        o := add(o, 0x20)
                        if iszero(lt(o, subjectLength)) { break }
                    }
                    output := add(output, subjectLength)
                    times := sub(times, 1)
                    if iszero(times) { break }
                }
                mstore(output, 0) // Zeroize the slot after the string.
                let resultLength := sub(output, add(result, 0x20))
                mstore(result, resultLength) // Store the length.
                // Allocate the memory.
                mstore(0x40, add(result, add(resultLength, 0x20)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(string memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(gt(subjectLength, end)) { end := subjectLength }
            if iszero(gt(subjectLength, start)) { start := subjectLength }
            if lt(start, end) {
                result := mload(0x40)
                let resultLength := sub(end, start)
                mstore(result, resultLength)
                subject := add(subject, start)
                let w := not(0x1f)
                // Copy the `subject` one word at a time, backwards.
                for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                    mstore(add(result, o), mload(add(subject, o)))
                    o := add(o, w) // `sub(o, 0x20)`.
                    if iszero(o) { break }
                }
                // Zeroize the slot after the string.
                mstore(add(add(result, 0x20), resultLength), 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
    /// `start` is a byte offset.
    function slice(string memory subject, uint256 start)
        internal
        pure
        returns (string memory result)
    {
        result = slice(subject, start, uint256(int256(-1)));
    }

    /// @dev Returns all the indices of `search` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256[] memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)

            if iszero(gt(searchLength, subjectLength)) {
                subject := add(subject, 0x20)
                search := add(search, 0x20)
                result := add(mload(0x40), 0x20)

                let subjectStart := subject
                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Append to `result`.
                        mstore(result, sub(subject, subjectStart))
                        result := add(result, 0x20)
                        // Advance `subject` by `searchLength`.
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                let resultEnd := result
                // Assign `result` to the free memory pointer.
                result := mload(0x40)
                // Store the length of `result`.
                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                // Allocate memory for result.
                // We allocate one more word, so this array can be recycled for {split}.
                mstore(0x40, add(resultEnd, 0x20))
            }
        }
    }

    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
    function split(string memory subject, string memory delimiter)
        internal
        pure
        returns (string[] memory result)
    {
        uint256[] memory indices = indicesOf(subject, delimiter);
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            let indexPtr := add(indices, 0x20)
            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
            mstore(add(indicesEnd, w), mload(subject))
            mstore(indices, add(mload(indices), 1))
            let prevIndex := 0
            for {} 1 {} {
                let index := mload(indexPtr)
                mstore(indexPtr, 0x60)
                if iszero(eq(index, prevIndex)) {
                    let element := mload(0x40)
                    let elementLength := sub(index, prevIndex)
                    mstore(element, elementLength)
                    // Copy the `subject` one word at a time, backwards.
                    for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    // Zeroize the slot after the string.
                    mstore(add(add(element, 0x20), elementLength), 0)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                    // Store the `element` into the array.
                    mstore(indexPtr, element)
                }
                prevIndex := add(index, mload(delimiter))
                indexPtr := add(indexPtr, 0x20)
                if iszero(lt(indexPtr, indicesEnd)) { break }
            }
            result := indices
            if iszero(mload(delimiter)) {
                result := add(indices, 0x20)
                mstore(result, sub(mload(indices), 2))
            }
        }
    }

    /// @dev Returns a concatenated string of `a` and `b`.
    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
    function concat(string memory a, string memory b)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            result := mload(0x40)
            let aLength := mload(a)
            // Copy `a` one word at a time, backwards.
            for { let o := and(add(aLength, 0x20), w) } 1 {} {
                mstore(add(result, o), mload(add(a, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let bLength := mload(b)
            let output := add(result, aLength)
            // Copy `b` one word at a time, backwards.
            for { let o := and(add(bLength, 0x20), w) } 1 {} {
                mstore(add(output, o), mload(add(b, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let totalLength := add(aLength, bLength)
            let last := add(add(result, 0x20), totalLength)
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Stores the length.
            mstore(result, totalLength)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 0x1f), w))
        }
    }

    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function toCase(string memory subject, bool toUpper)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(subject)
            if length {
                result := add(mload(0x40), 0x20)
                subject := add(subject, 1)
                let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                let w := not(0)
                for { let o := length } 1 {} {
                    o := add(o, w)
                    let b := and(0xff, mload(add(subject, o)))
                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                    if iszero(o) { break }
                }
                result := mload(0x40)
                mstore(result, length) // Store the length.
                let last := add(add(result, 0x20), length)
                mstore(last, 0) // Zeroize the slot after the string.
                mstore(0x40, add(last, 0x20)) // Allocate the memory.
            }
        }
    }

    /// @dev Returns a string from a small bytes32 string.
    /// `smallString` must be null terminated, or behavior will be undefined.
    function fromSmallString(bytes32 smallString) internal pure returns (string memory result) {
        if (smallString == bytes32(0)) return result;
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let n := 0
            for {} 1 {} {
                n := add(n, 1)
                if iszero(byte(n, smallString)) { break } // Scan for '\0'.
            }
            mstore(result, n)
            let o := add(result, 0x20)
            mstore(o, smallString)
            mstore(add(o, n), 0)
            mstore(0x40, add(result, 0x40))
        }
    }

    /// @dev Returns a lowercased copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function lower(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, false);
    }

    /// @dev Returns an UPPERCASED copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function upper(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, true);
    }

    /// @dev Escapes the string to be used within HTML tags.
    function escapeHTML(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            // Store the bytes of the packed offsets and strides into the scratch space.
            // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
            mstore(0x1f, 0x900094)
            mstore(0x08, 0xc0000000a6ab)
            // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
            mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // Not in `["\"","'","&","<",">"]`.
                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                    mstore8(result, c)
                    result := add(result, 1)
                    continue
                }
                let t := shr(248, mload(c))
                mstore(result, mload(and(t, 0x1f)))
                result := add(result, shr(5, t))
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
    function escapeJSON(string memory s, bool addDoubleQuotes)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            // Store "\\u0000" in scratch space.
            // Store "0123456789abcdef" in scratch space.
            // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
            // into the scratch space.
            mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
            // Bitmask for detecting `["\"","\\"]`.
            let e := or(shl(0x22, 1), shl(0x5c, 1))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                if iszero(lt(c, 0x20)) {
                    if iszero(and(shl(c, 1), e)) {
                        // Not in `["\"","\\"]`.
                        mstore8(result, c)
                        result := add(result, 1)
                        continue
                    }
                    mstore8(result, 0x5c) // "\\".
                    mstore8(add(result, 1), c)
                    result := add(result, 2)
                    continue
                }
                if iszero(and(shl(c, 1), 0x3700)) {
                    // Not in `["\b","\t","\n","\f","\d"]`.
                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                    mstore(result, mload(0x19)) // "\\u00XX".
                    result := add(result, 6)
                    continue
                }
                mstore8(result, 0x5c) // "\\".
                mstore8(add(result, 1), mload(add(c, 8)))
                result := add(result, 2)
            }
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    function escapeJSON(string memory s) internal pure returns (string memory result) {
        result = escapeJSON(s, false);
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(string memory a, string memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Returns whether `a` equals `b`. For small strings up to 32 bytes.
    /// `b` must be null terminated, or behavior will be undefined.
    function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // These should be evaluated on compile time, as far as possible.
            let x := and(b, add(not(b), 1))
            let r := or(shl(8, iszero(b)), shl(7, iszero(iszero(shr(128, x)))))
            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            result := gt(eq(mload(a), sub(32, shr(3, r))), shr(r, xor(b, mload(add(a, 0x20)))))
        }
    }

    /// @dev Packs a single string with its length into a single word.
    /// Returns `bytes32(0)` if the length is zero or greater than 31.
    function packOne(string memory a) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We don't need to zero right pad the string,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes.
                    mload(add(a, 0x1f)),
                    // `length != 0 && length < 32`. Abuses underflow.
                    // Assumes that the length is valid and within the block gas limit.
                    lt(sub(mload(a), 1), 0x1f)
                )
        }
    }

    /// @dev Unpacks a string packed using {packOne}.
    /// Returns the empty string if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packOne}, the output behavior is undefined.
    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            result := mload(0x40)
            // Allocate 2 words (1 for the length, 1 for the bytes).
            mstore(0x40, add(result, 0x40))
            // Zeroize the length slot.
            mstore(result, 0)
            // Store the length and bytes.
            mstore(add(result, 0x1f), packed)
            // Right pad with zeroes.
            mstore(add(add(result, 0x20), mload(result)), 0)
        }
    }

    /// @dev Packs two strings with their lengths into a single word.
    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLength := mload(a)
            // We don't need to zero right pad the strings,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes of `a` and `b`.
                    or(
                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                        mload(sub(add(b, 0x1e), aLength))
                    ),
                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                    // Assumes that the lengths are valid and within the block gas limit.
                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                )
        }
    }

    /// @dev Unpacks strings packed using {packTwo}.
    /// Returns the empty strings if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
    function unpackTwo(bytes32 packed)
        internal
        pure
        returns (string memory resultA, string memory resultB)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            resultA := mload(0x40)
            resultB := add(resultA, 0x40)
            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
            mstore(0x40, add(resultB, 0x40))
            // Zeroize the length slots.
            mstore(resultA, 0)
            mstore(resultB, 0)
            // Store the lengths and bytes.
            mstore(add(resultA, 0x1f), packed)
            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
            // Right pad with zeroes.
            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(string memory a) internal pure {
        assembly {
            // Assumes that the string does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the string is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retSize), 0)
            // Store the return offset.
            mstore(retStart, 0x20)
            // End the transaction, returning the string.
            return(retStart, retSize)
        }
    }
}

File 6 of 53 : Clone.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Class with helper read functions for clone with immutable args.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Clone.sol)
/// @author Adapted from clones with immutable args by zefram.eth, Saw-mon & Natalie
/// (https://github.com/Saw-mon-and-Natalie/clones-with-immutable-args)
abstract contract Clone {
    /// @dev Reads all of the immutable args.
    function _getArgBytes() internal pure returns (bytes memory arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := mload(0x40)
            let length := sub(calldatasize(), add(2, offset)) // 2 bytes are used for the length.
            mstore(arg, length) // Store the length.
            calldatacopy(add(arg, 0x20), offset, length)
            let o := add(add(arg, 0x20), length)
            mstore(o, 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(o, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Reads an immutable arg with type bytes.
    function _getArgBytes(uint256 argOffset, uint256 length)
        internal
        pure
        returns (bytes memory arg)
    {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := mload(0x40)
            mstore(arg, length) // Store the length.
            calldatacopy(add(arg, 0x20), add(offset, argOffset), length)
            let o := add(add(arg, 0x20), length)
            mstore(o, 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(o, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Reads an immutable arg with type address.
    function _getArgAddress(uint256 argOffset) internal pure returns (address arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(96, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads a uint256 array stored in the immutable args.
    function _getArgUint256Array(uint256 argOffset, uint256 length)
        internal
        pure
        returns (uint256[] memory arg)
    {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := mload(0x40)
            mstore(arg, length) // Store the length.
            calldatacopy(add(arg, 0x20), add(offset, argOffset), shl(5, length))
            mstore(0x40, add(add(arg, 0x20), shl(5, length))) // Allocate the memory.
        }
    }

    /// @dev Reads a bytes32 array stored in the immutable args.
    function _getArgBytes32Array(uint256 argOffset, uint256 length)
        internal
        pure
        returns (bytes32[] memory arg)
    {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := mload(0x40)
            mstore(arg, length) // Store the length.
            calldatacopy(add(arg, 0x20), add(offset, argOffset), shl(5, length))
            mstore(0x40, add(add(arg, 0x20), shl(5, length))) // Allocate the memory.
        }
    }

    /// @dev Reads an immutable arg with type bytes32.
    function _getArgBytes32(uint256 argOffset) internal pure returns (bytes32 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := calldataload(add(offset, argOffset))
        }
    }

    /// @dev Reads an immutable arg with type uint256.
    function _getArgUint256(uint256 argOffset) internal pure returns (uint256 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := calldataload(add(offset, argOffset))
        }
    }

    /// @dev Reads an immutable arg with type uint248.
    function _getArgUint248(uint256 argOffset) internal pure returns (uint248 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(8, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint240.
    function _getArgUint240(uint256 argOffset) internal pure returns (uint240 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(16, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint232.
    function _getArgUint232(uint256 argOffset) internal pure returns (uint232 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(24, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint224.
    function _getArgUint224(uint256 argOffset) internal pure returns (uint224 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(0x20, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint216.
    function _getArgUint216(uint256 argOffset) internal pure returns (uint216 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(40, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint208.
    function _getArgUint208(uint256 argOffset) internal pure returns (uint208 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(48, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint200.
    function _getArgUint200(uint256 argOffset) internal pure returns (uint200 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(56, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint192.
    function _getArgUint192(uint256 argOffset) internal pure returns (uint192 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(64, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint184.
    function _getArgUint184(uint256 argOffset) internal pure returns (uint184 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(72, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint176.
    function _getArgUint176(uint256 argOffset) internal pure returns (uint176 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(80, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint168.
    function _getArgUint168(uint256 argOffset) internal pure returns (uint168 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(88, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint160.
    function _getArgUint160(uint256 argOffset) internal pure returns (uint160 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(96, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint152.
    function _getArgUint152(uint256 argOffset) internal pure returns (uint152 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(104, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint144.
    function _getArgUint144(uint256 argOffset) internal pure returns (uint144 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(112, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint136.
    function _getArgUint136(uint256 argOffset) internal pure returns (uint136 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(120, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint128.
    function _getArgUint128(uint256 argOffset) internal pure returns (uint128 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(128, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint120.
    function _getArgUint120(uint256 argOffset) internal pure returns (uint120 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(136, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint112.
    function _getArgUint112(uint256 argOffset) internal pure returns (uint112 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(144, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint104.
    function _getArgUint104(uint256 argOffset) internal pure returns (uint104 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(152, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint96.
    function _getArgUint96(uint256 argOffset) internal pure returns (uint96 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(160, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint88.
    function _getArgUint88(uint256 argOffset) internal pure returns (uint88 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(168, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint80.
    function _getArgUint80(uint256 argOffset) internal pure returns (uint80 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(176, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint72.
    function _getArgUint72(uint256 argOffset) internal pure returns (uint72 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(184, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint64.
    function _getArgUint64(uint256 argOffset) internal pure returns (uint64 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(192, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint56.
    function _getArgUint56(uint256 argOffset) internal pure returns (uint56 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(200, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint48.
    function _getArgUint48(uint256 argOffset) internal pure returns (uint48 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(208, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint40.
    function _getArgUint40(uint256 argOffset) internal pure returns (uint40 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(216, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint32.
    function _getArgUint32(uint256 argOffset) internal pure returns (uint32 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(224, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint24.
    function _getArgUint24(uint256 argOffset) internal pure returns (uint24 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(232, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint16.
    function _getArgUint16(uint256 argOffset) internal pure returns (uint16 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(240, calldataload(add(offset, argOffset)))
        }
    }

    /// @dev Reads an immutable arg with type uint8.
    function _getArgUint8(uint256 argOffset) internal pure returns (uint8 arg) {
        uint256 offset = _getImmutableArgsOffset();
        /// @solidity memory-safe-assembly
        assembly {
            arg := shr(248, calldataload(add(offset, argOffset)))
        }
    }

    /// @return offset The offset of the packed immutable args in calldata.
    function _getImmutableArgsOffset() internal pure returns (uint256 offset) {
        /// @solidity memory-safe-assembly
        assembly {
            offset := sub(calldatasize(), shr(240, calldataload(sub(calldatasize(), 2))))
        }
    }
}

File 7 of 53 : ISablierV2LockupLinear.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { Lockup, LockupLinear } from "../types/DataTypes.sol";
import { ISablierV2Lockup } from "./ISablierV2Lockup.sol";

/// @title ISablierV2LockupLinear
/// @notice Creates and manages lockup streams with a linear streaming function.
interface ISablierV2LockupLinear is ISablierV2Lockup {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when a stream is created.
    /// @param streamId The id of the newly created stream.
    /// @param funder The address which funded the stream.
    /// @param sender The address streaming the assets, with the ability to cancel the stream.
    /// @param recipient The address receiving the assets.
    /// @param amounts Struct containing (i) the deposit amount, (ii) the protocol fee amount, and (iii) the
    /// broker fee amount, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Boolean indicating whether the stream will be cancelable or not.
    /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix
    /// timestamps.
    /// @param broker The address of the broker who has helped create the stream, e.g. a front-end website.
    event CreateLockupLinearStream(
        uint256 streamId,
        address funder,
        address indexed sender,
        address indexed recipient,
        Lockup.CreateAmounts amounts,
        IERC20 indexed asset,
        bool cancelable,
        LockupLinear.Range range,
        address broker
    );

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the stream's cliff time, which is a Unix timestamp.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getCliffTime(uint256 streamId) external view returns (uint40 cliffTime);

    /// @notice Retrieves the stream's range, which is a struct containing (i) the stream's start time, (ii) cliff
    /// time, and (iii) end time, all as Unix timestamps.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getRange(uint256 streamId) external view returns (LockupLinear.Range memory range);

    /// @notice Retrieves the stream entity.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getStream(uint256 streamId) external view returns (LockupLinear.Stream memory stream);

    /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
    ///
    /// When the stream is warm, the streaming function is:
    ///
    /// $$
    /// f(x) = x * d + c
    /// $$
    ///
    /// Where:
    ///
    /// - $x$ is the elapsed time divided by the stream's total duration.
    /// - $d$ is the deposited amount.
    /// - $c$ is the cliff amount.
    ///
    /// Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited
    /// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent
    /// to the total amount withdrawn.
    ///
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to
    /// the sum of `block.timestamp` and `params.durations.total. The stream is funded by `msg.sender` and is wrapped
    /// in an ERC-721 NFT.
    ///
    /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
    ///
    /// Requirements:
    /// - All requirements in {createWithRange} must be met for the calculated parameters.
    ///
    /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
    /// @return streamId The id of the newly created stream.
    function createWithDurations(LockupLinear.CreateWithDurations calldata params)
        external
        returns (uint256 streamId);

    /// @notice Creates a stream with the provided start time and end time as the range. The stream is
    /// funded by `msg.sender` and is wrapped in an ERC-721 NFT.
    ///
    /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
    ///
    /// Notes:
    /// - As long as the times are ordered, it is not an error for the start or the cliff time to be in the past.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `params.totalAmount` must be greater than zero.
    /// - If set, `params.broker.fee` must not be greater than `MAX_FEE`.
    /// - `params.range.start` must be less than or equal to `params.range.cliff`.
    /// - `params.range.cliff` must be less than `params.range.end`.
    /// - `params.range.end` must be in the future.
    /// - `params.recipient` must not be the zero address.
    /// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets.
    ///
    /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
    /// @return streamId The id of the newly created stream.
    function createWithRange(LockupLinear.CreateWithRange calldata params) external returns (uint256 streamId);
}

File 8 of 53 : DataTypes.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD2x18 } from "@prb/math/src/UD2x18.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";

// DataTypes.sol
//
// This file defines all structs used in V2 Core, most of which are organized under three namespaces:
//
// - Lockup
// - LockupDynamic
// - LockupLinear
//
// You will notice that some structs contain "slot" annotations - they are used to indicate the
// storage layout of the struct. It is more gas efficient to group small data types together so
// that they fit in a single 32-byte slot.

/// @notice Struct encapsulating the broker parameters passed to the create functions. Both can be set to zero.
/// @param account The address receiving the broker's fee.
/// @param fee The broker's percentage fee from the total amount, denoted as a fixed-point number where 1e18 is 100%.
struct Broker {
    address account;
    UD60x18 fee;
}

/// @notice Namespace for the structs used in both {SablierV2LockupLinear} and {SablierV2LockupDynamic}.
library Lockup {
    /// @notice Struct encapsulating the deposit, withdrawn, and refunded amounts, all denoted in units
    /// of the asset's decimals.
    /// @dev Because the deposited and the withdrawn amount are often read together, declaring them in
    /// the same slot saves gas.
    /// @param deposited The initial amount deposited in the stream, net of fees.
    /// @param withdrawn The cumulative amount withdrawn from the stream.
    /// @param refunded The amount refunded to the sender. Unless the stream was canceled, this is always zero.
    struct Amounts {
        // slot 0
        uint128 deposited;
        uint128 withdrawn;
        // slot 1
        uint128 refunded;
    }

    /// @notice Struct encapsulating the deposit amount, the protocol fee amount, and the broker fee amount,
    /// all denoted in units of the asset's decimals.
    /// @param deposit The amount to deposit in the stream.
    /// @param protocolFee The protocol fee amount.
    /// @param brokerFee The broker fee amount.
    struct CreateAmounts {
        uint128 deposit;
        uint128 protocolFee;
        uint128 brokerFee;
    }

    /// @notice Enum representing the different statuses of a stream.
    /// @custom:value PENDING Stream created but not started; assets are in a pending state.
    /// @custom:value STREAMING Active stream where assets are currently being streamed.
    /// @custom:value SETTLED All assets have been streamed; recipient is due to withdraw them.
    /// @custom:value CANCELED Canceled stream; remaining assets await recipient's withdrawal.
    /// @custom:value DEPLETED Depleted stream; all assets have been withdrawn and/or refunded.
    enum Status {
        PENDING, // value 0
        STREAMING, // value 1
        SETTLED, // value 2
        CANCELED, // value 3
        DEPLETED // value 4
    }
}

/// @notice Namespace for the structs used in {SablierV2LockupDynamic}.
library LockupDynamic {
    /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithDeltas} function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    /// @param segments Segments with deltas used to compose the custom streaming curve. Milestones are calculated by
    /// starting from `block.timestamp` and adding each delta to the previous milestone.
    struct CreateWithDeltas {
        address sender;
        bool cancelable;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        Broker broker;
        SegmentWithDelta[] segments;
    }

    /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithMilestones}
    /// function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param startTime The Unix timestamp indicating the stream's start.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    /// @param segments Segments used to compose the custom streaming curve.
    struct CreateWithMilestones {
        address sender;
        uint40 startTime;
        bool cancelable;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        Broker broker;
        Segment[] segments;
    }

    /// @notice Struct encapsulating the time range.
    /// @param start The Unix timestamp indicating the stream's start.
    /// @param end The Unix timestamp indicating the stream's end.
    struct Range {
        uint40 start;
        uint40 end;
    }

    /// @notice Segment struct used in the Lockup Dynamic stream.
    /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
    /// @param exponent The exponent of this segment, denoted as a fixed-point number.
    /// @param milestone The Unix timestamp indicating this segment's end.
    struct Segment {
        // slot 0
        uint128 amount;
        UD2x18 exponent;
        uint40 milestone;
    }

    /// @notice Segment struct used at runtime in {SablierV2LockupDynamic.createWithDeltas}.
    /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
    /// @param exponent The exponent of this segment, denoted as a fixed-point number.
    /// @param delta The time difference in seconds between this segment and the previous one.
    struct SegmentWithDelta {
        uint128 amount;
        UD2x18 exponent;
        uint40 delta;
    }

    /// @notice Lockup Dynamic stream.
    /// @dev The fields are arranged like this to save gas via tight variable packing.
    /// @param sender The address streaming the assets, with the ability to cancel the stream.
    /// @param startTime The Unix timestamp indicating the stream's start.
    /// @param endTime The Unix timestamp indicating the stream's end.
    /// @param isCancelable Boolean indicating if the stream is cancelable.
    /// @param wasCanceled Boolean indicating if the stream was canceled.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param isDepleted Boolean indicating if the stream is depleted.
    /// @param isStream Boolean indicating if the struct entity exists.
    /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
    /// asset's decimals.
    /// @param segments Segments used to compose the custom streaming curve.
    struct Stream {
        // slot 0
        address sender;
        uint40 startTime;
        uint40 endTime;
        bool isCancelable;
        bool wasCanceled;
        // slot 1
        IERC20 asset;
        bool isDepleted;
        bool isStream;
        // slot 2 and 3
        Lockup.Amounts amounts;
        // slots [4..n]
        Segment[] segments;
    }
}

/// @notice Namespace for the structs used in {SablierV2LockupLinear}.
library LockupLinear {
    /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithDurations} function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param durations Struct containing (i) cliff period duration and (ii) total stream duration, both in seconds.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    struct CreateWithDurations {
        address sender;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        bool cancelable;
        Durations durations;
        Broker broker;
    }

    /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithRange} function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix
    /// timestamps.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    struct CreateWithRange {
        address sender;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        bool cancelable;
        Range range;
        Broker broker;
    }

    /// @notice Struct encapsulating the cliff duration and the total duration.
    /// @param cliff The cliff duration in seconds.
    /// @param total The total duration in seconds.
    struct Durations {
        uint40 cliff;
        uint40 total;
    }

    /// @notice Struct encapsulating the time range.
    /// @param start The Unix timestamp for the stream's start.
    /// @param cliff The Unix timestamp for the cliff period's end.
    /// @param end The Unix timestamp for the stream's end.
    struct Range {
        uint40 start;
        uint40 cliff;
        uint40 end;
    }

    /// @notice Lockup Linear stream.
    /// @dev The fields are arranged like this to save gas via tight variable packing.
    /// @param sender The address streaming the assets, with the ability to cancel the stream.
    /// @param startTime The Unix timestamp indicating the stream's start.
    /// @param cliffTime The Unix timestamp indicating the cliff period's end.
    /// @param isCancelable Boolean indicating if the stream is cancelable.
    /// @param wasCanceled Boolean indicating if the stream was canceled.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param endTime The Unix timestamp indicating the stream's end.
    /// @param isDepleted Boolean indicating if the stream is depleted.
    /// @param isStream Boolean indicating if the struct entity exists.
    /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
    /// asset's decimals.
    struct Stream {
        // slot 0
        address sender;
        uint40 startTime;
        uint40 cliffTime;
        bool isCancelable;
        bool wasCanceled;
        // slot 1
        IERC20 asset;
        uint40 endTime;
        bool isDepleted;
        bool isStream;
        // slot 2 and 3
        Lockup.Amounts amounts;
    }
}

File 9 of 53 : Math.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// solhint-disable no-unused-import
pragma solidity >=0.8.19;

// Math.sol
//
// This file re-exports all PRBMath types used in V2 Core. It is provided for convenience so
// that users don't have to install PRBMath separately.

import { SD59x18, sd, sd59x18 } from "@prb/math/src/SD59x18.sol";
import { UD2x18, ud2x18 } from "@prb/math/src/UD2x18.sol";
import { UD60x18, ud, ud60x18 } from "@prb/math/src/UD60x18.sol";

File 10 of 53 : Tokens.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// solhint-disable no-unused-import
pragma solidity >=0.8.19;

// Tokens.sol
//
// This file re-exports all token interfaces used in V2 Core. It is provided for convenience so
// that users don't have to install OpenZeppelin separately.

import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

File 11 of 53 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 12 of 53 : LiquidityBootstrapLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity =0.8.21;

import "weighted-math-lib/WeightedMathLib.sol";
import "solady/src/tokens/ERC20.sol";

struct Pool {
    address asset;
    address share;
    uint256 assets;
    uint256 shares;
    uint256 virtualAssets;
    uint256 virtualShares;
    uint256 weightStart;
    uint256 weightEnd;
    uint256 saleStart;
    uint256 saleEnd;
    uint256 totalPurchased;
    uint256 maxSharePrice;
}

library LiquidityBootstrapLib {
    /// -----------------------------------------------------------------------
    /// Dependencies
    /// -----------------------------------------------------------------------

    using WeightedMathLib for *;

    using FixedPointMathLib for *;

    /// -----------------------------------------------------------------------
    /// Swap Helpers
    /// -----------------------------------------------------------------------

    function computeReservesAndWeights(Pool memory args)
        internal
        view
        returns (
            uint256 assetReserve,
            uint256 shareReserve,
            uint256 assetWeight,
            uint256 shareWeight
        )
    {
        assetReserve = args.assets + args.virtualAssets;

        shareReserve = args.shares + args.virtualShares - args.totalPurchased;

        uint256 totalSeconds = args.saleEnd - args.saleStart;

        uint256 secondsElapsed = 0;
        if (block.timestamp > args.saleStart) {
            secondsElapsed = block.timestamp - args.saleStart;
        }

        assetWeight = WeightedMathLib.linearInterpolation({
            x: args.weightStart,
            y: args.weightEnd,
            i: secondsElapsed,
            n: totalSeconds
        });

        shareWeight = uint256(1e18).rawSub(assetWeight);
    }

    function previewAssetsIn(
        Pool memory args,
        uint256 sharesOut
    )
        internal
        view
        returns (uint256 assetsIn)
    {
        (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) =
            computeReservesAndWeights(args);

        (uint256 assetReserveScaled, uint256 shareReserveScaled) =
            scaledReserves(args, assetReserve, shareReserve);
        uint256 sharesOutScaled = scaleTokenBefore(args.share, sharesOut);

        assetsIn = sharesOutScaled.getAmountIn(
            assetReserveScaled, shareReserveScaled, assetWeight, shareWeight
        );

        if (assetsIn.divWad(sharesOutScaled) > args.maxSharePrice) {
            assetsIn = sharesOutScaled.divWad(args.maxSharePrice);
        }

        assetsIn = scaleTokenAfter(args.asset, assetsIn);
    }

    function previewSharesOut(
        Pool memory args,
        uint256 assetsIn
    )
        internal
        view
        returns (uint256 sharesOut)
    {
        (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) =
            computeReservesAndWeights(args);

        (uint256 assetReserveScaled, uint256 shareReserveScaled) =
            scaledReserves(args, assetReserve, shareReserve);
        uint256 assetsInScaled = scaleTokenBefore(args.asset, assetsIn);

        sharesOut = assetsInScaled.getAmountOut(
            assetReserveScaled, shareReserveScaled, assetWeight, shareWeight
        );

        if (assetsInScaled.divWad(sharesOut) > args.maxSharePrice) {
            sharesOut = assetsInScaled.mulWad(args.maxSharePrice);
        }

        sharesOut = scaleTokenAfter(args.share, sharesOut);
    }

    function previewSharesIn(
        Pool memory args,
        uint256 assetsOut
    )
        internal
        view
        returns (uint256 sharesIn)
    {
        (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) =
            computeReservesAndWeights(args);

        (uint256 assetReserveScaled, uint256 shareReserveScaled) =
            scaledReserves(args, assetReserve, shareReserve);
        uint256 assetsOutScaled = scaleTokenBefore(args.asset, assetsOut);

        sharesIn = assetsOutScaled.getAmountIn(
            shareReserveScaled, assetReserveScaled, shareWeight, assetWeight
        );

        if (assetsOutScaled.divWad(sharesIn) > args.maxSharePrice) {
            sharesIn = assetsOutScaled.divWad(args.maxSharePrice);
        }

        sharesIn = scaleTokenAfter(args.share, sharesIn);
    }

    function previewAssetsOut(
        Pool memory args,
        uint256 sharesIn
    )
        internal
        view
        returns (uint256 assetsOut)
    {
        (uint256 assetReserve, uint256 shareReserve, uint256 assetWeight, uint256 shareWeight) =
            computeReservesAndWeights(args);

        (uint256 assetReserveScaled, uint256 shareReserveScaled) =
            scaledReserves(args, assetReserve, shareReserve);
        uint256 sharesInScaled = scaleTokenBefore(args.share, sharesIn);

        assetsOut = sharesInScaled.getAmountOut(
            shareReserveScaled, assetReserveScaled, shareWeight, assetWeight
        );

        if (assetsOut.divWad(sharesInScaled) > args.maxSharePrice) {
            assetsOut = sharesInScaled.mulWad(args.maxSharePrice);
        }

        assetsOut = scaleTokenAfter(args.asset, assetsOut);
    }

    function scaledReserves(
        Pool memory args,
        uint256 assetReserve,
        uint256 shareReserve
    )
        internal
        view
        returns (uint256, uint256)
    {
        return
            (scaleTokenBefore(args.asset, assetReserve), scaleTokenBefore(args.share, shareReserve));
    }

    function scaleTokenBefore(
        address token,
        uint256 amount
    )
        internal
        view
        returns (uint256 scaledAmount)
    {
        uint8 decimals = ERC20(token).decimals();
        scaledAmount = amount;

        if (decimals < 18) {
            uint256 decDiff = uint256(18).rawSub(uint256(decimals));
            scaledAmount = amount * (10 ** decDiff);
        } else if (decimals > 18) {
            uint256 decDiff = uint256(decimals).rawSub(uint256(18));
            scaledAmount = amount / (10 ** decDiff);
        }
    }

    function scaleTokenAfter(
        address token,
        uint256 amount
    )
        internal
        view
        returns (uint256 scaledAmount)
    {
        uint8 decimals = ERC20(token).decimals();
        scaledAmount = amount;

        if (decimals < 18) {
            uint256 decDiff = uint256(18).rawSub(uint256(decimals));
            scaledAmount = amount / (10 ** decDiff);
        } else if (decimals > 18) {
            uint256 decDiff = uint256(decimals).rawSub(uint256(18));
            scaledAmount = amount * (10 ** decDiff);
        }
    }
}

File 13 of 53 : Pausable.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity =0.8.21;

abstract contract Pausable {
    /// -----------------------------------------------------------------------
    /// Events
    /// -----------------------------------------------------------------------

    event Paused(bool);

    /// -----------------------------------------------------------------------
    /// Custom Errors
    /// -----------------------------------------------------------------------

    error EnforcedPause();

    /// -----------------------------------------------------------------------
    /// Mutable Storage
    /// -----------------------------------------------------------------------

    bool public paused;

    /// -----------------------------------------------------------------------
    /// Modifiers
    /// -----------------------------------------------------------------------

    modifier whenNotPaused() {
        if (paused) revert EnforcedPause();
        _;
    }

    /// -----------------------------------------------------------------------
    /// Internal Logic
    /// -----------------------------------------------------------------------

    function _togglePause() internal virtual {
        emit Paused(paused = !paused);
    }
}

File 14 of 53 : Treasury.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity =0.8.21;

import "solady/src/auth/Ownable.sol";
import "solady/src/utils/SafeTransferLib.sol";
import "weighted-math-lib/WeightedMathLib.sol";

contract Treasury is Ownable {
    /// -----------------------------------------------------------------------
    /// Dependencies
    /// -----------------------------------------------------------------------

    using FixedPointMathLib for *;

    using SafeTransferLib for address;

    /// -----------------------------------------------------------------------
    /// Events
    /// -----------------------------------------------------------------------

    /// @dev Emitted when the fee recipient is updated.
    /// @param recipient The new fee recipient address.
    /// @param percentage The new fee recipient percentage.
    event FeeRecipientUpdated(address recipient, uint256 percentage);

    /// -----------------------------------------------------------------------
    /// Custom Errors
    /// -----------------------------------------------------------------------

    /// @dev Error thrown when the input lenght is not same for recipients and percentages.
    error InvalidInput();

    /// @dev Error thrown when the percentage sum is not 100.
    error InvalidPercentageSum();

    /// @dev Error thrown when the address is 0x.
    error ZeroAddress();

    /// -----------------------------------------------------------------------
    /// Mutable Storage
    /// -----------------------------------------------------------------------

    /// @notice Mapping to track fee percentage for each address.
    mapping(address => uint256) private feePercents;

    /// @notice List of addresses of fee recipients.
    address[] private recipients;

    /// @notice Address of swap fee recipient.
    address private swapFeeRecipient;

    /// -----------------------------------------------------------------------
    /// Constructor
    /// -----------------------------------------------------------------------

    /// @param _owner The owner of the factory contract.
    constructor(address _owner) {
        // Initialize the owner and implementation address.
        _initializeOwner(_owner);

        // Set the initial recipientes here.
        recipients.push(_owner);
        feePercents[_owner] = 1 ether;

        swapFeeRecipient = _owner;
    }

    /**
     * @notice Update fee recipients and percentages.
     * @param _recipients List of addresses to be added as fee recipients.
     */
    function updateRecipients(
        address[] calldata _recipients,
        uint256[] calldata _percentages
    )
        public
        onlyOwner
    {
        if (_recipients.length != _percentages.length) revert InvalidInput();

        delete recipients;

        uint256 totalPercentage;

        for (uint8 i = 0; i < _recipients.length;) {
            if (_recipients[i] == address(0)) revert ZeroAddress();
            recipients.push(_recipients[i]);
            feePercents[_recipients[i]] = _percentages[i];
            totalPercentage += _percentages[i];
            emit FeeRecipientUpdated(_recipients[i], _percentages[i]);

            unchecked {
                ++i;
            }
        }

        if (totalPercentage != 1 ether) revert InvalidPercentageSum();
    }

    function updateSwapFeeRecipient(address _sfr) public onlyOwner {
        if (_sfr == address(0)) revert ZeroAddress();

        swapFeeRecipient = _sfr;

        emit FeeRecipientUpdated(_sfr, 0);
    }

    /**
     * @notice Distriburte the fee to the recipients.
     * @param asset Address of the asset that will be distrubuted.
     * @param amount Total amount of fees that will be distributed.
     */
    function distributeFee(
        address asset,
        uint256 amount,
        uint256 swapFeesAsset,
        address share,
        uint256 swapFeesShare
    )
        external
    {
        for (uint8 i = 0; i < recipients.length;) {
            uint256 feeP = feePercents[recipients[i]];
            uint256 feeShare = amount.mulWad(feeP);

            asset.safeTransfer(recipients[i], feeShare);

            unchecked {
                ++i;
            }
        }

        share.safeTransfer(swapFeeRecipient, swapFeesShare);
        asset.safeTransfer(swapFeeRecipient, swapFeesAsset);
    }
}

File 15 of 53 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, either due to a
    /// multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The multiply-divide operation failed, either due to a
    /// multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            /// @solidity memory-safe-assembly
            assembly {
                if iszero(sgt(x, 0)) {
                    mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                    revert(0x1c, 0x04)
                }
            }

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Compute k = log2(x) - 96, t = 159 - k = 255 - log2(x) = 255 ^ log2(x).
            int256 t;
            /// @solidity memory-safe-assembly
            assembly {
                t := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                t := or(t, shl(6, lt(0xffffffffffffffff, shr(t, x))))
                t := or(t, shl(5, lt(0xffffffff, shr(t, x))))
                t := or(t, shl(4, lt(0xffff, shr(t, x))))
                t := or(t, shl(3, lt(0xff, shr(t, x))))
                // forgefmt: disable-next-item
                t := xor(t, byte(and(0x1f, shr(shr(t, x), 0x8421084210842108cc6318c6db6d54be)),
                    0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
            }

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x = int256(uint256(x << uint256(t)) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * (159 - t);
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Calculates `floor(a * b / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                // 512-bit multiply `[p1 p0] = x * y`.
                // Compute the product mod `2**256` and mod `2**256 - 1`
                // then use the Chinese Remainder Theorem to reconstruct
                // the 512 bit result. The result is stored in two 256
                // variables such that `product = p1 * 2**256 + p0`.

                // Least significant 256 bits of the product.
                let p0 := mul(x, y)
                let mm := mulmod(x, y, not(0))
                // Most significant 256 bits of the product.
                let p1 := sub(mm, add(p0, lt(mm, p0)))

                // Handle non-overflow cases, 256 by 256 division.
                if iszero(p1) {
                    if iszero(d) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    result := div(p0, d)
                    break
                }

                // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                if iszero(gt(d, p1)) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }

                /*------------------- 512 by 256 division --------------------*/

                // Make division exact by subtracting the remainder from `[p1 p0]`.
                // Compute remainder using mulmod.
                let r := mulmod(x, y, d)
                // `t` is the least significant bit of `d`.
                // Always greater or equal to 1.
                let t := and(d, sub(0, d))
                // Divide `d` by `t`, which is a power of two.
                d := div(d, t)
                // Invert `d mod 2**256`
                // Now that `d` is an odd number, it has an inverse
                // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                // Compute the inverse by starting with a seed that is correct
                // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                let inv := xor(mul(3, d), 2)
                // Now use Newton-Raphson iteration to improve the precision.
                // Thanks to Hensel's lifting lemma, this also works in modular
                // arithmetic, doubling the correct bits in each step.
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                result :=
                    mul(
                        // Divide [p1 p0] by the factors of two.
                        // Shift in bits from `p1` into `p0`. For this we need
                        // to flip `t` such that it is `2**256 / t`.
                        or(mul(sub(p1, gt(r, p0)), add(div(sub(0, t), t), 1)), div(sub(p0, r), t)),
                        // inverse mod 2**256
                        mul(inv, sub(2, mul(d, inv)))
                    )
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        result = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                result := add(result, 1)
                if iszero(result) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if iszero(iszero(x)) {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))

            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))

            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)

            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            z = 10 ** 9;
            if (x <= type(uint256).max / 10 ** 36 - 1) {
                x *= 10 ** 18;
                z = 1;
            }
            z *= sqrt(x);
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`.
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            z = 10 ** 12;
            if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) {
                if (x >= type(uint256).max / 10 ** 36) {
                    x *= 10 ** 18;
                    z = 10 ** 6;
                } else {
                    x *= 10 ** 36;
                    z = 1;
                }
            }
            z *= cbrt(x);
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the average of `x` and `y`.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (((x & 1) + (y & 1)) >> 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(sub(0, shr(255, x)), add(sub(0, shr(255, x)), x))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

File 16 of 53 : SafeCastLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe integer casting library that reverts on overflow.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
library SafeCastLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    error Overflow();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*          UNSIGNED INTEGER SAFE CASTING OPERATIONS          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toUint8(uint256 x) internal pure returns (uint8) {
        if (x >= 1 << 8) _revertOverflow();
        return uint8(x);
    }

    function toUint16(uint256 x) internal pure returns (uint16) {
        if (x >= 1 << 16) _revertOverflow();
        return uint16(x);
    }

    function toUint24(uint256 x) internal pure returns (uint24) {
        if (x >= 1 << 24) _revertOverflow();
        return uint24(x);
    }

    function toUint32(uint256 x) internal pure returns (uint32) {
        if (x >= 1 << 32) _revertOverflow();
        return uint32(x);
    }

    function toUint40(uint256 x) internal pure returns (uint40) {
        if (x >= 1 << 40) _revertOverflow();
        return uint40(x);
    }

    function toUint48(uint256 x) internal pure returns (uint48) {
        if (x >= 1 << 48) _revertOverflow();
        return uint48(x);
    }

    function toUint56(uint256 x) internal pure returns (uint56) {
        if (x >= 1 << 56) _revertOverflow();
        return uint56(x);
    }

    function toUint64(uint256 x) internal pure returns (uint64) {
        if (x >= 1 << 64) _revertOverflow();
        return uint64(x);
    }

    function toUint72(uint256 x) internal pure returns (uint72) {
        if (x >= 1 << 72) _revertOverflow();
        return uint72(x);
    }

    function toUint80(uint256 x) internal pure returns (uint80) {
        if (x >= 1 << 80) _revertOverflow();
        return uint80(x);
    }

    function toUint88(uint256 x) internal pure returns (uint88) {
        if (x >= 1 << 88) _revertOverflow();
        return uint88(x);
    }

    function toUint96(uint256 x) internal pure returns (uint96) {
        if (x >= 1 << 96) _revertOverflow();
        return uint96(x);
    }

    function toUint104(uint256 x) internal pure returns (uint104) {
        if (x >= 1 << 104) _revertOverflow();
        return uint104(x);
    }

    function toUint112(uint256 x) internal pure returns (uint112) {
        if (x >= 1 << 112) _revertOverflow();
        return uint112(x);
    }

    function toUint120(uint256 x) internal pure returns (uint120) {
        if (x >= 1 << 120) _revertOverflow();
        return uint120(x);
    }

    function toUint128(uint256 x) internal pure returns (uint128) {
        if (x >= 1 << 128) _revertOverflow();
        return uint128(x);
    }

    function toUint136(uint256 x) internal pure returns (uint136) {
        if (x >= 1 << 136) _revertOverflow();
        return uint136(x);
    }

    function toUint144(uint256 x) internal pure returns (uint144) {
        if (x >= 1 << 144) _revertOverflow();
        return uint144(x);
    }

    function toUint152(uint256 x) internal pure returns (uint152) {
        if (x >= 1 << 152) _revertOverflow();
        return uint152(x);
    }

    function toUint160(uint256 x) internal pure returns (uint160) {
        if (x >= 1 << 160) _revertOverflow();
        return uint160(x);
    }

    function toUint168(uint256 x) internal pure returns (uint168) {
        if (x >= 1 << 168) _revertOverflow();
        return uint168(x);
    }

    function toUint176(uint256 x) internal pure returns (uint176) {
        if (x >= 1 << 176) _revertOverflow();
        return uint176(x);
    }

    function toUint184(uint256 x) internal pure returns (uint184) {
        if (x >= 1 << 184) _revertOverflow();
        return uint184(x);
    }

    function toUint192(uint256 x) internal pure returns (uint192) {
        if (x >= 1 << 192) _revertOverflow();
        return uint192(x);
    }

    function toUint200(uint256 x) internal pure returns (uint200) {
        if (x >= 1 << 200) _revertOverflow();
        return uint200(x);
    }

    function toUint208(uint256 x) internal pure returns (uint208) {
        if (x >= 1 << 208) _revertOverflow();
        return uint208(x);
    }

    function toUint216(uint256 x) internal pure returns (uint216) {
        if (x >= 1 << 216) _revertOverflow();
        return uint216(x);
    }

    function toUint224(uint256 x) internal pure returns (uint224) {
        if (x >= 1 << 224) _revertOverflow();
        return uint224(x);
    }

    function toUint232(uint256 x) internal pure returns (uint232) {
        if (x >= 1 << 232) _revertOverflow();
        return uint232(x);
    }

    function toUint240(uint256 x) internal pure returns (uint240) {
        if (x >= 1 << 240) _revertOverflow();
        return uint240(x);
    }

    function toUint248(uint256 x) internal pure returns (uint248) {
        if (x >= 1 << 248) _revertOverflow();
        return uint248(x);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*           SIGNED INTEGER SAFE CASTING OPERATIONS           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toInt8(int256 x) internal pure returns (int8) {
        int8 y = int8(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt16(int256 x) internal pure returns (int16) {
        int16 y = int16(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt24(int256 x) internal pure returns (int24) {
        int24 y = int24(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt32(int256 x) internal pure returns (int32) {
        int32 y = int32(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt40(int256 x) internal pure returns (int40) {
        int40 y = int40(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt48(int256 x) internal pure returns (int48) {
        int48 y = int48(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt56(int256 x) internal pure returns (int56) {
        int56 y = int56(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt64(int256 x) internal pure returns (int64) {
        int64 y = int64(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt72(int256 x) internal pure returns (int72) {
        int72 y = int72(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt80(int256 x) internal pure returns (int80) {
        int80 y = int80(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt88(int256 x) internal pure returns (int88) {
        int88 y = int88(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt96(int256 x) internal pure returns (int96) {
        int96 y = int96(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt104(int256 x) internal pure returns (int104) {
        int104 y = int104(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt112(int256 x) internal pure returns (int112) {
        int112 y = int112(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt120(int256 x) internal pure returns (int120) {
        int120 y = int120(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt128(int256 x) internal pure returns (int128) {
        int128 y = int128(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt136(int256 x) internal pure returns (int136) {
        int136 y = int136(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt144(int256 x) internal pure returns (int144) {
        int144 y = int144(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt152(int256 x) internal pure returns (int152) {
        int152 y = int152(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt160(int256 x) internal pure returns (int160) {
        int160 y = int160(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt168(int256 x) internal pure returns (int168) {
        int168 y = int168(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt176(int256 x) internal pure returns (int176) {
        int176 y = int176(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt184(int256 x) internal pure returns (int184) {
        int184 y = int184(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt192(int256 x) internal pure returns (int192) {
        int192 y = int192(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt200(int256 x) internal pure returns (int200) {
        int200 y = int200(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt208(int256 x) internal pure returns (int208) {
        int208 y = int208(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt216(int256 x) internal pure returns (int216) {
        int216 y = int216(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt224(int256 x) internal pure returns (int224) {
        int224 y = int224(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt232(int256 x) internal pure returns (int232) {
        int232 y = int232(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt240(int256 x) internal pure returns (int240) {
        int240 y = int240(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt248(int256 x) internal pure returns (int248) {
        int248 y = int248(x);
        if (x != y) _revertOverflow();
        return y;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               OTHER SAFE CASTING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toInt256(uint256 x) internal pure returns (int256) {
        if (x >= 1 << 255) _revertOverflow();
        return int256(x);
    }

    function toUint256(int256 x) internal pure returns (uint256) {
        if (x < 0) _revertOverflow();
        return uint256(x);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function _revertOverflow() private pure {
        /// @solidity memory-safe-assembly
        assembly {
            // Store the function selector of `Overflow()`.
            mstore(0x00, 0x35278d12)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
    }
}

File 17 of 53 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 18 of 53 : ISablierV2Lockup.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";

import { Lockup } from "../types/DataTypes.sol";
import { ISablierV2Base } from "./ISablierV2Base.sol";
import { ISablierV2NFTDescriptor } from "./ISablierV2NFTDescriptor.sol";

/// @title ISablierV2Lockup
/// @notice Common logic between all Sablier V2 lockup streaming contracts.
interface ISablierV2Lockup is
    ISablierV2Base, // 1 inherited component
    IERC721Metadata // 2 inherited components
{
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when a stream is canceled.
    /// @param streamId The id of the stream.
    /// @param sender The address of the stream's sender.
    /// @param recipient The address of the stream's recipient.
    /// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's
    /// decimals.
    /// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of the
    /// asset's decimals.
    event CancelLockupStream(
        uint256 indexed streamId,
        address indexed sender,
        address indexed recipient,
        uint128 senderAmount,
        uint128 recipientAmount
    );

    /// @notice Emitted when a sender gives up the right to cancel a stream.
    /// @param streamId The id of the stream.
    event RenounceLockupStream(uint256 indexed streamId);

    /// @notice Emitted when the admin sets a new NFT descriptor contract.
    /// @param admin The address of the current contract admin.
    /// @param oldNFTDescriptor The address of the old NFT descriptor contract.
    /// @param newNFTDescriptor The address of the new NFT descriptor contract.
    event SetNFTDescriptor(
        address indexed admin, ISablierV2NFTDescriptor oldNFTDescriptor, ISablierV2NFTDescriptor newNFTDescriptor
    );

    /// @notice Emitted when assets are withdrawn from a stream.
    /// @param streamId The id of the stream.
    /// @param to The address that has received the withdrawn assets.
    /// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals.
    event WithdrawFromLockupStream(uint256 indexed streamId, address indexed to, uint128 amount);

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the address of the ERC-20 asset used for streaming.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getAsset(uint256 streamId) external view returns (IERC20 asset);

    /// @notice Retrieves the amount deposited in the stream, denoted in units of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getDepositedAmount(uint256 streamId) external view returns (uint128 depositedAmount);

    /// @notice Retrieves the stream's end time, which is a Unix timestamp.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getEndTime(uint256 streamId) external view returns (uint40 endTime);

    /// @notice Retrieves the stream's recipient.
    /// @dev Reverts if the NFT has been burned.
    /// @param streamId The stream id for the query.
    function getRecipient(uint256 streamId) external view returns (address recipient);

    /// @notice Retrieves the amount refunded to the sender after a cancellation, denoted in units of the asset's
    /// decimals. This amount is always zero unless the stream was canceled.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getRefundedAmount(uint256 streamId) external view returns (uint128 refundedAmount);

    /// @notice Retrieves the stream's sender.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getSender(uint256 streamId) external view returns (address sender);

    /// @notice Retrieves the stream's start time, which is a Unix timestamp.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getStartTime(uint256 streamId) external view returns (uint40 startTime);

    /// @notice Retrieves the amount withdrawn from the stream, denoted in units of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getWithdrawnAmount(uint256 streamId) external view returns (uint128 withdrawnAmount);

    /// @notice Retrieves a flag indicating whether the stream can be canceled. When the stream is cold, this
    /// flag is always `false`.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isCancelable(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream is cold, i.e. settled, canceled, or depleted.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isCold(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream is depleted.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isDepleted(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream exists.
    /// @dev Does not revert if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isStream(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream is warm, i.e. either pending or streaming.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isWarm(uint256 streamId) external view returns (bool result);

    /// @notice Counter for stream ids, used in the create functions.
    function nextStreamId() external view returns (uint256);

    /// @notice Calculates the amount that the sender would be refunded if the stream were canceled, denoted in units
    /// of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function refundableAmountOf(uint256 streamId) external view returns (uint128 refundableAmount);

    /// @notice Retrieves the stream's status.
    /// @param streamId The stream id for the query.
    function statusOf(uint256 streamId) external view returns (Lockup.Status status);

    /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);

    /// @notice Retrieves a flag indicating whether the stream was canceled.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function wasCanceled(uint256 streamId) external view returns (bool result);

    /// @notice Calculates the amount that the recipient can withdraw from the stream, denoted in units of the asset's
    /// decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function withdrawableAmountOf(uint256 streamId) external view returns (uint128 withdrawableAmount);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Burns the NFT associated with the stream.
    ///
    /// @dev Emits a {Transfer} event.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `streamId` must reference a depleted stream.
    /// - The NFT must exist.
    /// - `msg.sender` must be either the NFT owner or an approved third party.
    ///
    /// @param streamId The id of the stream NFT to burn.
    function burn(uint256 streamId) external;

    /// @notice Cancels the stream and refunds any remaining assets to the sender.
    ///
    /// @dev Emits a {Transfer}, {CancelLockupStream}, and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - If there any assets left for the recipient to withdraw, the stream is marked as canceled. Otherwise, the
    /// stream is marked as depleted.
    /// - This function attempts to invoke a hook on either the sender or the recipient, depending on who `msg.sender`
    /// is, and if the resolved address is a contract.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - The stream must be warm and cancelable.
    /// - `msg.sender` must be either the stream's sender or the stream's recipient (i.e. the NFT owner).
    ///
    /// @param streamId The id of the stream to cancel.
    function cancel(uint256 streamId) external;

    /// @notice Cancels multiple streams and refunds any remaining assets to the sender.
    ///
    /// @dev Emits multiple {Transfer}, {CancelLockupStream}, and {MetadataUpdate} events.
    ///
    /// Notes:
    /// - Refer to the notes in {cancel}.
    ///
    /// Requirements:
    /// - All requirements from {cancel} must be met for each stream.
    ///
    /// @param streamIds The ids of the streams to cancel.
    function cancelMultiple(uint256[] calldata streamIds) external;

    /// @notice Removes the right of the stream's sender to cancel the stream.
    ///
    /// @dev Emits a {RenounceLockupStream} and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - This is an irreversible operation.
    /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `streamId` must reference a warm stream.
    /// - `msg.sender` must be the stream's sender.
    /// - The stream must be cancelable.
    ///
    /// @param streamId The id of the stream to renounce.
    function renounce(uint256 streamId) external;

    /// @notice Sets a new NFT descriptor contract, which produces the URI describing the Sablier stream NFTs.
    ///
    /// @dev Emits a {SetNFTDescriptor} and {BatchMetadataUpdate} event.
    ///
    /// Notes:
    /// - Does not revert if the NFT descriptor is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newNFTDescriptor The address of the new NFT descriptor contract.
    function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external;

    /// @notice Withdraws the provided amount of assets from the stream to the `to` address.
    ///
    /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract
    /// and `msg.sender` is either the sender or an approved operator.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `streamId` must not reference a null or depleted stream.
    /// - `msg.sender` must be the stream's sender, the stream's recipient or an approved third party.
    /// - `to` must be the recipient if `msg.sender` is the stream's sender.
    /// - `to` must not be the zero address.
    /// - `amount` must be greater than zero and must not exceed the withdrawable amount.
    ///
    /// @param streamId The id of the stream to withdraw from.
    /// @param to The address receiving the withdrawn assets.
    /// @param amount The amount to withdraw, denoted in units of the asset's decimals.
    function withdraw(uint256 streamId, address to, uint128 amount) external;

    /// @notice Withdraws the maximum withdrawable amount from the stream to the provided address `to`.
    ///
    /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - Refer to the notes in {withdraw}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {withdraw}.
    ///
    /// @param streamId The id of the stream to withdraw from.
    /// @param to The address receiving the withdrawn assets.
    function withdrawMax(uint256 streamId, address to) external;

    /// @notice Withdraws the maximum withdrawable amount from the stream to the current recipient, and transfers the
    /// NFT to `newRecipient`.
    ///
    /// @dev Emits a {WithdrawFromLockupStream} and a {Transfer} event.
    ///
    /// Notes:
    /// - If the withdrawable amount is zero, the withdrawal is skipped.
    /// - Refer to the notes in {withdraw}.
    ///
    /// Requirements:
    /// - `msg.sender` must be the stream's recipient.
    /// - Refer to the requirements in {withdraw}.
    /// - Refer to the requirements in {IERC721.transferFrom}.
    ///
    /// @param streamId The id of the stream NFT to transfer.
    /// @param newRecipient The address of the new owner of the stream NFT.
    function withdrawMaxAndTransfer(uint256 streamId, address newRecipient) external;

    /// @notice Withdraws assets from streams to the provided address `to`.
    ///
    /// @dev Emits multiple {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} events.
    ///
    /// Notes:
    /// - This function attempts to call a hook on the recipient of each stream, unless `msg.sender` is the recipient.
    ///
    /// Requirements:
    /// - All requirements from {withdraw} must be met for each stream.
    /// - There must be an equal number of `streamIds` and `amounts`.
    ///
    /// @param streamIds The ids of the streams to withdraw from.
    /// @param to The address receiving the withdrawn assets.
    /// @param amounts The amounts to withdraw, denoted in units of the asset's decimals.
    function withdrawMultiple(uint256[] calldata streamIds, address to, uint128[] calldata amounts) external;
}

File 19 of 53 : UD2x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝

██╗   ██╗██████╗ ██████╗ ██╗  ██╗ ██╗ █████╗
██║   ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗
██║   ██║██║  ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝
██║   ██║██║  ██║██╔═══╝  ██╔██╗  ██║██╔══██╗
╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝
 ╚═════╝ ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═╝ ╚════╝

*/

import "./ud2x18/Casting.sol";
import "./ud2x18/Constants.sol";
import "./ud2x18/Errors.sol";
import "./ud2x18/ValueType.sol";

File 20 of 53 : UD60x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝

██╗   ██╗██████╗  ██████╗  ██████╗ ██╗  ██╗ ██╗ █████╗
██║   ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗
██║   ██║██║  ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝
██║   ██║██║  ██║██╔═══██╗████╔╝██║ ██╔██╗  ██║██╔══██╗
╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝
 ╚═════╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝ ╚═╝ ╚════╝

*/

import "./ud60x18/Casting.sol";
import "./ud60x18/Constants.sol";
import "./ud60x18/Conversions.sol";
import "./ud60x18/Errors.sol";
import "./ud60x18/Helpers.sol";
import "./ud60x18/Math.sol";
import "./ud60x18/ValueType.sol";

File 21 of 53 : SD59x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝

███████╗██████╗ ███████╗ █████╗ ██╗  ██╗ ██╗ █████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗╚██╗██╔╝███║██╔══██╗
███████╗██║  ██║███████╗╚██████║ ╚███╔╝ ╚██║╚█████╔╝
╚════██║██║  ██║╚════██║ ╚═══██║ ██╔██╗  ██║██╔══██╗
███████║██████╔╝███████║ █████╔╝██╔╝ ██╗ ██║╚█████╔╝
╚══════╝╚═════╝ ╚══════╝ ╚════╝ ╚═╝  ╚═╝ ╚═╝ ╚════╝

*/

import "./sd59x18/Casting.sol";
import "./sd59x18/Constants.sol";
import "./sd59x18/Conversions.sol";
import "./sd59x18/Errors.sol";
import "./sd59x18/Helpers.sol";
import "./sd59x18/Math.sol";
import "./sd59x18/ValueType.sol";

File 22 of 53 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 23 of 53 : ERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple ERC20 + EIP-2612 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
///
/// @dev Note:
/// - The ERC20 standard allows minting and transferring to and from the zero address,
///   minting and transferring zero tokens, as well as self-approvals.
///   For performance, this implementation WILL NOT revert for such actions.
///   Please add any checks with overrides if desired.
/// - The `permit` function uses the ecrecover precompile (0x1).
///
/// If you are overriding:
/// - NEVER violate the ERC20 invariant:
///   the total sum of all balances must be equal to `totalSupply()`.
/// - Check that the overridden function is actually used in the function you want to
///   change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC20 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The total supply has overflowed.
    error TotalSupplyOverflow();

    /// @dev The allowance has overflowed.
    error AllowanceOverflow();

    /// @dev The allowance has underflowed.
    error AllowanceUnderflow();

    /// @dev Insufficient balance.
    error InsufficientBalance();

    /// @dev Insufficient allowance.
    error InsufficientAllowance();

    /// @dev The permit is invalid.
    error InvalidPermit();

    /// @dev The permit has expired.
    error PermitExpired();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
    uint256 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
    uint256 private constant _APPROVAL_EVENT_SIGNATURE =
        0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The storage slot for the total supply.
    uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;

    /// @dev The balance slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _BALANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let balanceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;

    /// @dev The allowance slot of (`owner`, `spender`) is given by:
    /// ```
    ///     mstore(0x20, spender)
    ///     mstore(0x0c, _ALLOWANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let allowanceSlot := keccak256(0x0c, 0x34)
    /// ```
    uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;

    /// @dev The nonce slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _NONCES_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let nonceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _NONCES_SLOT_SEED = 0x38377508;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
    uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;

    /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
    bytes32 private constant _DOMAIN_TYPEHASH =
        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;

    /// @dev `keccak256("1")`.
    bytes32 private constant _VERSION_HASH =
        0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;

    /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
    bytes32 private constant _PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ERC20 METADATA                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the name of the token.
    function name() public view virtual returns (string memory);

    /// @dev Returns the symbol of the token.
    function symbol() public view virtual returns (string memory);

    /// @dev Returns the decimals places of the token.
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           ERC20                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the amount of tokens in existence.
    function totalSupply() public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_TOTAL_SUPPLY_SLOT)
        }
    }

    /// @dev Returns the amount of tokens owned by `owner`.
    function balanceOf(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
    function allowance(address owner, address spender)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x34))
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    ///
    /// Emits a {Approval} event.
    function approve(address spender, uint256 amount) public virtual returns (bool) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
        }
        return true;
    }

    /// @dev Transfer `amount` tokens from the caller to `to`.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    ///
    /// Emits a {Transfer} event.
    function transfer(address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(msg.sender, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, caller())
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(msg.sender, to, amount);
        return true;
    }

    /// @dev Transfers `amount` tokens from `from` to `to`.
    ///
    /// Note: Does not update the allowance if it is the maximum uint256 value.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
    ///
    /// Emits a {Transfer} event.
    function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(from, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let from_ := shl(96, from)
            // Compute the allowance slot and load its value.
            mstore(0x20, caller())
            mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
            let allowanceSlot := keccak256(0x0c, 0x34)
            let allowance_ := sload(allowanceSlot)
            // If the allowance is not the maximum uint256 value.
            if add(allowance_, 1) {
                // Revert if the amount to be transferred exceeds the allowance.
                if gt(amount, allowance_) {
                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated allowance.
                sstore(allowanceSlot, sub(allowance_, amount))
            }
            // Compute the balance slot and load its value.
            mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(from, to, amount);
        return true;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          EIP-2612                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For more performance, override to return the constant value
    /// of `keccak256(bytes(name()))` if `name()` will never change.
    function _constantNameHash() internal view virtual returns (bytes32 result) {}

    /// @dev Returns the current nonce for `owner`.
    /// This value is used to compute the signature for EIP-2612 permit.
    function nonces(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the nonce slot and load its value.
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
    /// authorized by a signed approval by `owner`.
    ///
    /// Emits a {Approval} event.
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        /// @solidity memory-safe-assembly
        assembly {
            // Revert if the block timestamp is greater than `deadline`.
            if gt(timestamp(), deadline) {
                mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
                revert(0x1c, 0x04)
            }
            let m := mload(0x40) // Grab the free memory pointer.
            // Clean the upper 96 bits.
            owner := shr(96, shl(96, owner))
            spender := shr(96, shl(96, spender))
            // Compute the nonce slot and load its value.
            mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            let nonceValue := sload(nonceSlot)
            // Prepare the domain separator.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), _VERSION_HASH)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            mstore(0x2e, keccak256(m, 0xa0))
            // Prepare the struct hash.
            mstore(m, _PERMIT_TYPEHASH)
            mstore(add(m, 0x20), owner)
            mstore(add(m, 0x40), spender)
            mstore(add(m, 0x60), value)
            mstore(add(m, 0x80), nonceValue)
            mstore(add(m, 0xa0), deadline)
            mstore(0x4e, keccak256(m, 0xc0))
            // Prepare the ecrecover calldata.
            mstore(0x00, keccak256(0x2c, 0x42))
            mstore(0x20, and(0xff, v))
            mstore(0x40, r)
            mstore(0x60, s)
            let t := staticcall(gas(), 1, 0, 0x80, 0x20, 0x20)
            // If the ecrecover fails, the returndatasize will be 0x00,
            // `owner` will be checked if it equals the hash at 0x00,
            // which evaluates to false (i.e. 0), and we will revert.
            // If the ecrecover succeeds, the returndatasize will be 0x20,
            // `owner` will be compared against the returned address at 0x20.
            if iszero(eq(mload(returndatasize()), owner)) {
                mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
                revert(0x1c, 0x04)
            }
            // Increment and store the updated nonce.
            sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
            // Compute the allowance slot and store the value.
            // The `owner` is already at slot 0x20.
            mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
            sstore(keccak256(0x2c, 0x34), value)
            // Emit the {Approval} event.
            log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero pointer.
        }
    }

    /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
    function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Grab the free memory pointer.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), _VERSION_HASH)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            result := keccak256(m, 0xa0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL MINT FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Mints `amount` tokens to `to`, increasing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _mint(address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
            let totalSupplyAfter := add(totalSupplyBefore, amount)
            // Revert if the total supply overflows.
            if lt(totalSupplyAfter, totalSupplyBefore) {
                mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
                revert(0x1c, 0x04)
            }
            // Store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(address(0), to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL BURN FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Burns `amount` tokens from `from`, reducing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _burn(address from, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, address(0), amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, from)
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Subtract and store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
            // Emit the {Transfer} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
        }
        _afterTokenTransfer(from, address(0), amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL TRANSFER FUNCTIONS                 */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Moves `amount` of tokens from `from` to `to`.
    function _transfer(address from, address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let from_ := shl(96, from)
            // Compute the balance slot and load its value.
            mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(from, to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL ALLOWANCE FUNCTIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and load its value.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            let allowanceSlot := keccak256(0x0c, 0x34)
            let allowance_ := sload(allowanceSlot)
            // If the allowance is not the maximum uint256 value.
            if add(allowance_, 1) {
                // Revert if the amount to be transferred exceeds the allowance.
                if gt(amount, allowance_) {
                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated allowance.
                sstore(allowanceSlot, sub(allowance_, amount))
            }
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
    ///
    /// Emits a {Approval} event.
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            let owner_ := shl(96, owner)
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HOOKS TO OVERRIDE                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Hook that is called before any transfer of tokens.
    /// This includes minting and burning.
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /// @dev Hook that is called after any transfer of tokens.
    /// This includes minting and burning.
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

File 24 of 53 : Ownable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /// @dev Cannot double-initialize.
    error AlreadyInitialized();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by:
    /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
    /// It is intentionally chosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    bytes32 internal constant _OWNER_SLOT =
        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
    function _guardInitializeOwner() internal pure virtual returns (bool guard) {}

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                if sload(ownerSlot) {
                    mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                    revert(0x1c, 0x04)
                }
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(_OWNER_SLOT, newOwner)
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, newOwner)
            }
        }
    }

    /// @dev Throws if the sender is not the owner.
    function _checkOwner() internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    /// Override to return a different value if needed.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
        return 48 * 3600;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(shl(96, newOwner)) {
                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                revert(0x1c, 0x04)
            }
        }
        _setOwner(newOwner);
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        _setOwner(address(0));
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to `expires`.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            let handoverSlot := keccak256(0x0c, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
        }
        _setOwner(pendingOwner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_OWNER_SLOT)
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            // Load the handover slot.
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }
}

File 25 of 53 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 26 of 53 : ISablierV2Base.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";

import { IAdminable } from "./IAdminable.sol";
import { ISablierV2Comptroller } from "./ISablierV2Comptroller.sol";

/// @title ISablierV2Base
/// @notice Base logic for all Sablier V2 streaming contracts.
interface ISablierV2Base is IAdminable {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when the admin claims all protocol revenues accrued for a particular ERC-20 asset.
    /// @param admin The address of the contract admin.
    /// @param asset The contract address of the ERC-20 asset the protocol revenues have been claimed for.
    /// @param protocolRevenues The amount of protocol revenues claimed, denoted in units of the asset's decimals.
    event ClaimProtocolRevenues(address indexed admin, IERC20 indexed asset, uint128 protocolRevenues);

    /// @notice Emitted when the admin sets a new comptroller contract.
    /// @param admin The address of the contract admin.
    /// @param oldComptroller The address of the old comptroller contract.
    /// @param newComptroller The address of the new comptroller contract.
    event SetComptroller(
        address indexed admin, ISablierV2Comptroller oldComptroller, ISablierV2Comptroller newComptroller
    );

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the maximum fee that can be charged by the protocol or a broker, denoted as a fixed-point
    /// number where 1e18 is 100%.
    /// @dev This value is hard coded as a constant.
    function MAX_FEE() external view returns (UD60x18);

    /// @notice Retrieves the address of the comptroller contract, responsible for the Sablier V2 protocol
    /// configuration.
    function comptroller() external view returns (ISablierV2Comptroller);

    /// @notice Retrieves the protocol revenues accrued for the provided ERC-20 asset, in units of the asset's
    /// decimals.
    /// @param asset The contract address of the ERC-20 asset to query.
    function protocolRevenues(IERC20 asset) external view returns (uint128 revenues);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Claims all accumulated protocol revenues for the provided ERC-20 asset.
    ///
    /// @dev Emits a {ClaimProtocolRevenues} event.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param asset The contract address of the ERC-20 asset for which to claim protocol revenues.
    function claimProtocolRevenues(IERC20 asset) external;

    /// @notice Assigns a new comptroller contract responsible for the protocol configuration.
    ///
    /// @dev Emits a {SetComptroller} event.
    ///
    /// Notes:
    /// - Does not revert if the comptroller is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newComptroller The address of the new comptroller contract.
    function setComptroller(ISablierV2Comptroller newComptroller) external;
}

File 27 of 53 : ISablierV2NFTDescriptor.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";

/// @title ISablierV2NFTDescriptor
/// @notice This contract generates the URI describing the Sablier V2 stream NFTs.
/// @dev Inspired by Uniswap V3 Positions NFTs.
interface ISablierV2NFTDescriptor {
    /// @notice Produces the URI describing a particular stream NFT.
    /// @dev This is a data URI with the JSON contents directly inlined.
    /// @param sablier The address of the Sablier contract the stream was created in.
    /// @param streamId The id of the stream for which to produce a description.
    /// @return uri The URI of the ERC721-compliant metadata.
    function tokenURI(IERC721Metadata sablier, uint256 streamId) external view returns (string memory uri);
}

File 28 of 53 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";

/// @notice Casts a UD2x18 number into SD1x18.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(uMAX_SD1x18)) {
        revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xUint));
}

/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}

/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
    result = uint128(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
    result = uint256(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD2x18 x) pure returns (uint40 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(Common.MAX_UINT40)) {
        revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
    result = UD2x18.unwrap(x);
}

/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

File 29 of 53 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);

/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);

/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD2x18.
uint256 constant uUNIT = 1e18;
UD2x18 constant UNIT = UD2x18.wrap(1e18);

File 30 of 53 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18.
error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x);

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);

File 31 of 53 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for UD2x18 global;

File 32 of 53 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(int256(uMAX_SD1x18))) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(uint64(xUint)));
}

/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uMAX_UD2x18) {
        revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(xUint));
}

/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD59x18`.
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(uMAX_SD59x18)) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
    }
    result = SD59x18.wrap(int256(xUint));
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT128`.
function intoUint128(UD60x18 x) pure returns (uint128 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT128) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
    }
    result = uint128(xUint);
}

/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD60x18 x) pure returns (uint40 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT40) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

File 33 of 53 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);

/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);

/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);

/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);

/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);

/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);

File 34 of 53 : Conversions.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The UD60x18 number to convert.
/// @return result The same number in basic integer form.
function convert(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x) / uUNIT;
}

/// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UD60x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to UD60x18.
function convert(uint256 x) pure returns (UD60x18 result) {
    if (x > uMAX_UD60x18 / uUNIT) {
        revert PRBMath_UD60x18_Convert_Overflow(x);
    }
    unchecked {
        result = UD60x18.wrap(x * uUNIT);
    }
}

File 35 of 53 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);

/// @notice Thrown when taking the logarithm of a number less than 1.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);

/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);

File 36 of 53 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
    // This wouldn't work if x could be negative.
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 37 of 53 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_UD60x18,
    uMAX_WHOLE_UD60x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
//
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    unchecked {
        result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
///
/// @param x The UD60x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint > uMAX_WHOLE_UD60x18) {
        revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
    }

    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `UNIT - remainder`.
        let delta := sub(uUNIT, remainder)

        // Equivalent to `x + remainder > 0 ? delta : 0`.
        result := add(x, mul(delta, gt(remainder, 0)))
    }
}

/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @param result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xUint > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        uint256 doubleUnitProduct = xUint * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
    if (xUint > uEXP2_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
    }

    // Convert x to the 192.64-bit fixed-point format.
    uint256 x_192x64 = (xUint << 64) / uUNIT;

    // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
    result = wrap(Common.exp2(x_192x64));
}

/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `x - remainder > 0 ? remainder : 0)`.
        result := sub(x, mul(remainder, gt(remainder, 0)))
    }
}

/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @param result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        result := mod(x, uUNIT)
    }
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    if (xUint == 0 || yUint == 0) {
        return ZERO;
    }

    unchecked {
        // Checking for overflow this way is faster than letting Solidity do it.
        uint256 xyUint = xUint * yUint;
        if (xyUint / xUint != yUint) {
            revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        result = wrap(Common.sqrt(xyUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(uUNIT_SQUARED / x.unwrap());
    }
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
        // {log2} can return is ~196_205294292027477728.
        result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
    }
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
        default { result := uMAX_UD60x18 }
    }

    if (result.unwrap() == uMAX_UD60x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    unchecked {
        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(xUint / uUNIT);

        // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
        // n is at most 255 and UNIT is 1e18.
        uint256 resultUint = n * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        uint256 y = xUint >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultUint);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        uint256 DOUBLE_UNIT = 2e18;
        for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultUint += delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        result = wrap(resultUint);
    }
}

/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}

/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xUint == 0) {
        return yUint == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xUint == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yUint == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yUint == uUNIT) {
        return x;
    }

    // If x is greater than `UNIT`, use the standard formula.
    if (xUint > uUNIT) {
        result = exp2(mul(log2(x), y));
    }
    // Conversely, if x is less than `UNIT`, use the equivalent formula.
    else {
        UD60x18 i = wrap(uUNIT_SQUARED / xUint);
        UD60x18 w = exp2(mul(log2(i), y));
        result = wrap(uUNIT_SQUARED / w.unwrap());
    }
}

/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
    // Calculate the first iteration of the loop in advance.
    uint256 xUint = x.unwrap();
    uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    for (y >>= 1; y > 0; y >>= 1) {
        xUint = Common.mulDiv18(xUint, xUint);

        // Equivalent to `y % 2 == 1`.
        if (y & 1 > 0) {
            resultUint = Common.mulDiv18(resultUint, xUint);
        }
    }
    result = wrap(resultUint);
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must be less than `MAX_UD60x18 / UNIT`.
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    unchecked {
        if (xUint > uMAX_UD60x18 / uUNIT) {
            revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
        }
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
        // In this case, the two numbers are both the square root.
        result = wrap(Common.sqrt(xUint * uUNIT));
    }
}

File 38 of 53 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoUD2x18,
    Casting.intoSD59x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.ln,
    Math.log10,
    Math.log2,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.xor
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.or as |,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.sub as -,
    Helpers.xor as ^
} for UD60x18 global;

File 39 of 53 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x must be greater than or equal to `uMIN_SD1x18`.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < uMIN_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
    }
    if (xInt > uMAX_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xInt));
}

/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
    }
    if (xInt > int256(uint256(uMAX_UD2x18))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(uint256(xInt)));
}

/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD59x18 x) pure returns (uint256 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
    }
    result = uint256(xInt);
}

/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UINT128`.
function intoUint128(SD59x18 x) pure returns (uint128 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT128))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
    }
    result = uint128(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD59x18 x) pure returns (uint40 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
    }
    result = uint40(uint256(xInt));
}

/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

File 40 of 53 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);

/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);

/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);

/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);

/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);

/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);

/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);

/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);

File 41 of 53 : Conversions.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { uMAX_SD59x18, uMIN_SD59x18, uUNIT } from "./Constants.sol";
import { PRBMath_SD59x18_Convert_Overflow, PRBMath_SD59x18_Convert_Underflow } from "./Errors.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Converts a simple integer to SD59x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be greater than or equal to `MIN_SD59x18 / UNIT`.
/// - x must be less than or equal to `MAX_SD59x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to SD59x18.
function convert(int256 x) pure returns (SD59x18 result) {
    if (x < uMIN_SD59x18 / uUNIT) {
        revert PRBMath_SD59x18_Convert_Underflow(x);
    }
    if (x > uMAX_SD59x18 / uUNIT) {
        revert PRBMath_SD59x18_Convert_Overflow(x);
    }
    unchecked {
        result = SD59x18.wrap(x * uUNIT);
    }
}

/// @notice Converts an SD59x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The SD59x18 number to convert.
/// @return result The same number as a simple integer.
function convert(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x) / uUNIT;
}

File 42 of 53 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();

/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);

/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);

/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();

/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);

/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);

/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);

/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();

/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);

/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);

/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);

File 43 of 53 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(-x.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(-x.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 44 of 53 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_SD59x18,
    uMAX_WHOLE_SD59x18,
    uMIN_SD59x18,
    uMIN_WHOLE_SD59x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x must be greater than `MIN_SD59x18`.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @param result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
    }
    result = xInt < 0 ? wrap(-xInt) : x;
}

/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    unchecked {
        // This operation is equivalent to `x / 2 +  y / 2`, and it can never overflow.
        int256 sum = (xInt >> 1) + (yInt >> 1);

        if (sum < 0) {
            // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
            // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
            assembly ("memory-safe") {
                result := add(sum, and(or(xInt, yInt), 1))
            }
        } else {
            // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
            result = wrap(sum + (xInt & yInt & 1));
        }
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt > uMAX_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt > 0) {
                resultInt += uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @param result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xInt > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        int256 doubleUnitProduct = xInt * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x is less than -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        // The inverse of any number less than this is truncated to zero.
        if (xInt < -59_794705707972522261) {
            return ZERO;
        }

        unchecked {
            // Inline the fixed-point inversion to save gas.
            result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
        }
    } else {
        // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
        if (xInt > uEXP2_MAX_INPUT) {
            revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x_192x64 = uint256((xInt << 64) / uUNIT);

            // It is safe to cast the result to int256 due to the checks above.
            result = wrap(int256(Common.exp2(x_192x64)));
        }
    }
}

/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be greater than or equal to `MIN_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < uMIN_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt < 0) {
                resultInt -= uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @param result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % uUNIT);
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == 0 || yInt == 0) {
        return ZERO;
    }

    unchecked {
        // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
        int256 xyInt = xInt * yInt;
        if (xyInt / xInt != yInt) {
            revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
        }

        // The product must not be negative, since complex numbers are not supported.
        if (xyInt < 0) {
            revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        uint256 resultUint = Common.sqrt(uint256(xyInt));
        result = wrap(int256(resultUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(uUNIT_SQUARED / x.unwrap());
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
    // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
    // {log2} can return is ~195_205294292027477728.
    result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        default { result := uMAX_SD59x18 }
    }

    if (result.unwrap() == uMAX_SD59x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt <= 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    unchecked {
        int256 sign;
        if (xInt >= uUNIT) {
            sign = 1;
        } else {
            sign = -1;
            // Inline the fixed-point inversion to save gas.
            xInt = uUNIT_SQUARED / xInt;
        }

        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(uint256(xInt / uUNIT));

        // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
        // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
        int256 resultInt = int256(n) * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        int256 y = xInt >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultInt * sign);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        int256 DOUBLE_UNIT = 2e18;
        for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultInt = resultInt + delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        resultInt *= sign;
        result = wrap(resultInt);
    }
}

/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xInt == 0) {
        return yInt == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xInt == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yInt == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yInt == uUNIT) {
        return x;
    }

    // Calculate the result using the formula.
    result = exp2(mul(log2(x), y));
}

/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
    uint256 xAbs = uint256(abs(x).unwrap());

    // Calculate the first iteration of the loop in advance.
    uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    uint256 yAux = y;
    for (yAux >>= 1; yAux > 0; yAux >>= 1) {
        xAbs = Common.mulDiv18(xAbs, xAbs);

        // Equivalent to `y % 2 == 1`.
        if (yAux & 1 > 0) {
            resultAbs = Common.mulDiv18(resultAbs, xAbs);
        }
    }

    // The result must fit in SD59x18.
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
    }

    unchecked {
        // Is the base negative and the exponent odd? If yes, the result should be negative.
        int256 resultInt = int256(resultAbs);
        bool isNegative = x.unwrap() < 0 && y & 1 == 1;
        if (isNegative) {
            resultInt = -resultInt;
        }
        result = wrap(resultInt);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x cannot be negative, since complex numbers are not supported.
/// - x must be less than `MAX_SD59x18 / UNIT`.
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
    }
    if (xInt > uMAX_SD59x18 / uUNIT) {
        revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
    }

    unchecked {
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
        // In this case, the two numbers are both the square root.
        uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
        result = wrap(int256(resultUint));
    }
}

File 45 of 53 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoInt256,
    Casting.intoSD1x18,
    Casting.intoUD2x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Math.abs,
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.log10,
    Math.log2,
    Math.ln,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.uncheckedUnary,
    Helpers.xor
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.or as |,
    Helpers.sub as -,
    Helpers.unary as -,
    Helpers.xor as ^
} for SD59x18 global;

File 46 of 53 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 47 of 53 : IAdminable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

/// @title IAdminable
/// @notice Contract module that provides a basic access control mechanism, with an admin that can be
/// granted exclusive access to specific functions. The inheriting contract must set the initial admin
/// in the constructor.
interface IAdminable {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when the admin is transferred.
    /// @param oldAdmin The address of the old admin.
    /// @param newAdmin The address of the new admin.
    event TransferAdmin(address indexed oldAdmin, address indexed newAdmin);

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice The address of the admin account or contract.
    function admin() external view returns (address);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Transfers the contract admin to a new address.
    ///
    /// @dev Notes:
    /// - Does not revert if the admin is the same.
    /// - This function can potentially leave the contract without an admin, thereby removing any
    /// functionality that is only available to the admin.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newAdmin The address of the new admin.
    function transferAdmin(address newAdmin) external;
}

File 48 of 53 : ISablierV2Comptroller.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";

import { IAdminable } from "./IAdminable.sol";

/// @title ISablierV2Controller
/// @notice This contract is in charge of the Sablier V2 protocol configuration, handling such values as the
/// protocol fees.
interface ISablierV2Comptroller is IAdminable {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when the admin sets a new flash fee.
    /// @param admin The address of the contract admin.
    /// @param oldFlashFee The old flash fee, denoted as a fixed-point number.
    /// @param newFlashFee The new flash fee, denoted as a fixed-point number.
    event SetFlashFee(address indexed admin, UD60x18 oldFlashFee, UD60x18 newFlashFee);

    /// @notice Emitted when the admin sets a new protocol fee for the provided ERC-20 asset.
    /// @param admin The address of the contract admin.
    /// @param asset The contract address of the ERC-20 asset the new protocol fee has been set for.
    /// @param oldProtocolFee The old protocol fee, denoted as a fixed-point number.
    /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number.
    event SetProtocolFee(address indexed admin, IERC20 indexed asset, UD60x18 oldProtocolFee, UD60x18 newProtocolFee);

    /// @notice Emitted when the admin enables or disables an ERC-20 asset for flash loaning.
    /// @param admin The address of the contract admin.
    /// @param asset The contract address of the ERC-20 asset to toggle.
    /// @param newFlag Whether the ERC-20 asset can be flash loaned.
    event ToggleFlashAsset(address indexed admin, IERC20 indexed asset, bool newFlag);

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the global flash fee, denoted as a fixed-point number where 1e18 is 100%.
    ///
    /// @dev Notes:
    /// - This fee represents a percentage, not an amount. Do not confuse it with {IERC3156FlashLender.flashFee},
    /// which calculates the fee amount for a specified flash loan amount.
    /// - Unlike the protocol fee, this is a global fee applied to all flash loans, not a per-asset fee.
    function flashFee() external view returns (UD60x18 fee);

    /// @notice Retrieves a flag indicating whether the provided ERC-20 asset can be flash loaned.
    /// @param token The contract address of the ERC-20 asset to check.
    function isFlashAsset(IERC20 token) external view returns (bool result);

    /// @notice Retrieves the protocol fee for all streams created with the provided ERC-20 asset.
    /// @param asset The contract address of the ERC-20 asset to query.
    /// @return fee The protocol fee denoted as a fixed-point number where 1e18 is 100%.
    function protocolFees(IERC20 asset) external view returns (UD60x18 fee);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Updates the flash fee charged on all flash loans made with any ERC-20 asset.
    ///
    /// @dev Emits a {SetFlashFee} event.
    ///
    /// Notes:
    /// - Does not revert if the fee is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newFlashFee The new flash fee to set, denoted as a fixed-point number where 1e18 is 100%.
    function setFlashFee(UD60x18 newFlashFee) external;

    /// @notice Sets a new protocol fee that will be charged on all streams created with the provided ERC-20 asset.
    ///
    /// @dev Emits a {SetProtocolFee} event.
    ///
    /// Notes:
    /// - The fee is not denoted in units of the asset's decimals; it is a fixed-point number. Refer to the
    /// PRBMath documentation for more detail on the logic of UD60x18.
    /// - Does not revert if the fee is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param asset The contract address of the ERC-20 asset to update the fee for.
    /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number where 1e18 is 100%.
    function setProtocolFee(IERC20 asset, UD60x18 newProtocolFee) external;

    /// @notice Toggles the flash loanability of an ERC-20 asset.
    ///
    /// @dev Emits a {ToggleFlashAsset} event.
    ///
    /// Requirements:
    /// - `msg.sender` must be the admin.
    ///
    /// @param asset The address of the ERC-20 asset to toggle.
    function toggleFlashAsset(IERC20 asset) external;
}

File 49 of 53 : Common.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

// Common.sol
//
// Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.

/*//////////////////////////////////////////////////////////////////////////
                                CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);

/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);

/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();

/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);

/*//////////////////////////////////////////////////////////////////////////
                                    CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;

/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;

/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;

/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;

/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;

/*//////////////////////////////////////////////////////////////////////////
                                    FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
    unchecked {
        // Start from 0.5 in the 192.64-bit fixed-point format.
        result = 0x800000000000000000000000000000000000000000000000;

        // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
        //
        // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
        // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
        // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
        // we know that `x & 0xFF` is also 1.
        if (x & 0xFF00000000000000 > 0) {
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
        }

        if (x & 0xFF000000000000 > 0) {
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
        }

        if (x & 0xFF0000000000 > 0) {
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
        }

        if (x & 0xFF00000000 > 0) {
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
        }

        if (x & 0xFF000000 > 0) {
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
        }

        if (x & 0xFF0000 > 0) {
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
        }

        if (x & 0xFF00 > 0) {
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
        }

        if (x & 0xFF > 0) {
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
        }

        // In the code snippet below, two operations are executed simultaneously:
        //
        // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
        // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
        // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
        //
        // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
        // integer part, $2^n$.
        result *= UNIT;
        result >>= (191 - (x >> 64));
    }
}

/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
///     x >>= 128;
///     result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
    // 2^128
    assembly ("memory-safe") {
        let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^64
    assembly ("memory-safe") {
        let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^32
    assembly ("memory-safe") {
        let factor := shl(5, gt(x, 0xFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^16
    assembly ("memory-safe") {
        let factor := shl(4, gt(x, 0xFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^8
    assembly ("memory-safe") {
        let factor := shl(3, gt(x, 0xFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^4
    assembly ("memory-safe") {
        let factor := shl(2, gt(x, 0xF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^2
    assembly ("memory-safe") {
        let factor := shl(1, gt(x, 0x3))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^1
    // No need to shift x any more.
    assembly ("memory-safe") {
        let factor := gt(x, 0x1)
        result := or(result, factor)
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
        unchecked {
            return prod0 / denominator;
        }
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    if (prod1 >= denominator) {
        revert PRBMath_MulDiv_Overflow(x, y, denominator);
    }

    ////////////////////////////////////////////////////////////////////////////
    // 512 by 256 division
    ////////////////////////////////////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly ("memory-safe") {
        // Compute remainder using the mulmod Yul instruction.
        remainder := mulmod(x, y, denominator)

        // Subtract 256 bit number from 512-bit number.
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
    }

    unchecked {
        // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
        // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
        // For more detail, see https://cs.stackexchange.com/q/138556/92363.
        uint256 lpotdod = denominator & (~denominator + 1);
        uint256 flippedLpotdod;

        assembly ("memory-safe") {
            // Factor powers of two out of denominator.
            denominator := div(denominator, lpotdod)

            // Divide [prod1 prod0] by lpotdod.
            prod0 := div(prod0, lpotdod)

            // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
            // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
            // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
            flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
        }

        // Shift in bits from prod1 into prod0.
        prod0 |= prod1 * flippedLpotdod;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
        uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
        // in modular arithmetic, doubling the correct bits in each step.
        inverse *= 2 - denominator * inverse; // inverse mod 2^8
        inverse *= 2 - denominator * inverse; // inverse mod 2^16
        inverse *= 2 - denominator * inverse; // inverse mod 2^32
        inverse *= 2 - denominator * inverse; // inverse mod 2^64
        inverse *= 2 - denominator * inverse; // inverse mod 2^128
        inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inverse;
    }
}

/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
///     x * y = MAX\_UINT256 * UNIT \\
///     (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
    uint256 prod0;
    uint256 prod1;
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    if (prod1 == 0) {
        unchecked {
            return prod0 / UNIT;
        }
    }

    if (prod1 >= UNIT) {
        revert PRBMath_MulDiv18_Overflow(x, y);
    }

    uint256 remainder;
    assembly ("memory-safe") {
        remainder := mulmod(x, y, UNIT)
        result :=
            mul(
                or(
                    div(sub(prod0, remainder), UNIT_LPOTD),
                    mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                ),
                UNIT_INVERSE
            )
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
    if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
        revert PRBMath_MulDivSigned_InputTooSmall();
    }

    // Get hold of the absolute values of x, y and the denominator.
    uint256 xAbs;
    uint256 yAbs;
    uint256 dAbs;
    unchecked {
        xAbs = x < 0 ? uint256(-x) : uint256(x);
        yAbs = y < 0 ? uint256(-y) : uint256(y);
        dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
    }

    // Compute the absolute value of x*y÷denominator. The result must fit in int256.
    uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
    if (resultAbs > uint256(type(int256).max)) {
        revert PRBMath_MulDivSigned_Overflow(x, y);
    }

    // Get the signs of x, y and the denominator.
    uint256 sx;
    uint256 sy;
    uint256 sd;
    assembly ("memory-safe") {
        // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
        sx := sgt(x, sub(0, 1))
        sy := sgt(y, sub(0, 1))
        sd := sgt(denominator, sub(0, 1))
    }

    // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
    // If there are, the result should be negative. Otherwise, it should be positive.
    unchecked {
        result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2 ** 128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2 ** 64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2 ** 32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2 ** 16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2 ** 8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2 ** 4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2 ** 2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}

File 50 of 53 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);

/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int256 constant uUNIT = 1e18;

File 51 of 53 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD2x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD1x18 global;

File 52 of 53 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";

/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}

/// @notice Casts an SD1x18 number into UD2x18.
/// - x must be positive.
function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
    }
    result = UD2x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD1x18 x) pure returns (uint256 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
    }
    result = uint256(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
function intoUint128(SD1x18 x) pure returns (uint128 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
    }
    result = uint128(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD1x18 x) pure returns (uint40 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
    }
    if (xInt > int64(uint64(Common.MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
    }
    result = uint40(uint64(xInt));
}

/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
    result = SD1x18.unwrap(x);
}

/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

File 53 of 53 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18.
error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/v2-core/lib/openzeppelin-contracts/contracts/",
    "@prb/math/=lib/v2-core/lib/prb-math/",
    "@prb/test/=lib/v2-core/lib/prb-test/src/",
    "ds-test/=lib/solady/lib/ds-test/src/",
    "erc4626-tests/=lib/v2-core/lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "murky/=lib/murky/",
    "openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/",
    "openzeppelin/=lib/v2-core/lib/openzeppelin-contracts/contracts/",
    "prb-math/=lib/v2-core/lib/prb-math/src/",
    "prb-test/=lib/v2-core/lib/prb-test/src/",
    "solady/=lib/solady/",
    "solarray/=lib/v2-core/lib/solarray/src/",
    "solplot/=lib/weighted-math-lib/lib/solplot/src/",
    "v2-core/=lib/v2-core/",
    "weighted-math-lib/=lib/weighted-math-lib/src/",
    "lib/forge-std:ds-test/=lib/weighted-math-lib/lib/forge-std/lib/ds-test/src/",
    "lib/solady:ds-test/=lib/weighted-math-lib/lib/solady/lib/ds-test/src/",
    "lib/solady:forge-std/=lib/weighted-math-lib/lib/solady/test/utils/forge-std/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_sablier","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AmountInTooLarge","type":"error"},{"inputs":[],"name":"AmountOutTooLarge","type":"error"},{"inputs":[],"name":"AssetsInExceeded","type":"error"},{"inputs":[],"name":"CallerDisallowed","type":"error"},{"inputs":[],"name":"ClosingDisallowed","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"RedeemingDisallowed","type":"error"},{"inputs":[],"name":"SellingDisallowed","type":"error"},{"inputs":[],"name":"SharesOutExceeded","type":"error"},{"inputs":[],"name":"SlippageExceeded","type":"error"},{"inputs":[],"name":"TradingDisallowed","type":"error"},{"inputs":[],"name":"WhitelistProof","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFee","type":"uint256"}],"name":"Buy","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"platformFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFeesAsset","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFeesShare","type":"uint256"}],"name":"Close","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"","type":"bool"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"uint256","name":"streamID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFee","type":"uint256"}],"name":"Sell","type":"event"},{"inputs":[],"name":"SABLIER","outputs":[{"internalType":"contract ISablierV2LockupLinear","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"args","outputs":[{"components":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"share","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"virtualAssets","type":"uint256"},{"internalType":"uint256","name":"virtualShares","type":"uint256"},{"internalType":"uint256","name":"weightStart","type":"uint256"},{"internalType":"uint256","name":"weightEnd","type":"uint256"},{"internalType":"uint256","name":"saleStart","type":"uint256"},{"internalType":"uint256","name":"saleEnd","type":"uint256"},{"internalType":"uint256","name":"totalPurchased","type":"uint256"},{"internalType":"uint256","name":"maxSharePrice","type":"uint256"}],"internalType":"struct Pool","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"close","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"closed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"manager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"maxSharePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"maxTotalAssetsIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"maxTotalSharesOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"platform","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"platformFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"name":"previewAssetsIn","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"name":"previewAssetsOut","outputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"name":"previewSharesIn","outputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"name":"previewSharesOut","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"purchasedShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bool","name":"referred","type":"bool"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"redeemedShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"referredAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"referrerFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"reservesAndWeights","outputs":[{"internalType":"uint256","name":"assetReserve","type":"uint256"},{"internalType":"uint256","name":"shareReserve","type":"uint256"},{"internalType":"uint256","name":"assetWeight","type":"uint256"},{"internalType":"uint256","name":"shareWeight","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"saleStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"sellingAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"share","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"},{"internalType":"uint256","name":"maxAssetsIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapAssetsForExactShares","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"},{"internalType":"uint256","name":"maxAssetsIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapAssetsForExactShares","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"},{"internalType":"uint256","name":"maxAssetsIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"name":"swapAssetsForExactShares","outputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapExactAssetsForShares","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"name":"swapExactAssetsForShares","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIn","type":"uint256"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"referrer","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapExactAssetsForShares","outputs":[{"internalType":"uint256","name":"sharesOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"},{"internalType":"uint256","name":"minAssetsOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapExactSharesForAssets","outputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"},{"internalType":"uint256","name":"minAssetsOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapExactSharesForAssets","outputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"},{"internalType":"uint256","name":"maxSharesIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"swapSharesForExactAssets","outputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsOut","type":"uint256"},{"internalType":"uint256","name":"maxSharesIn","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"swapSharesForExactAssets","outputs":[{"internalType":"uint256","name":"sharesIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"togglePause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalPurchased","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReferred","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSwapFeesAsset","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSwapFeesShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestCliff","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"vestEnd","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"vestShares","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"virtualAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"virtualShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"weightEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"weightStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"whitelistMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"whitelisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.