ETH Price: $3,366.99 (+0.57%)
Gas: 8.89 Gwei

Contract Diff Checker

Contract Name:
EtherFiRestaker

Contract Source Code:

/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;

import "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol";
import "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/access/OwnableUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/security/PausableUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/security/ReentrancyGuardUpgradeable.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import "./Liquifier.sol";
import "./LiquidityPool.sol";

import "./eigenlayer-interfaces/IStrategyManager.sol";
import "./eigenlayer-interfaces/IDelegationManager.sol";

contract EtherFiRestaker is Initializable, UUPSUpgradeable, OwnableUpgradeable, PausableUpgradeable {
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.Bytes32Set;

    struct TokenInfo {
        // EigenLayer
        IStrategy elStrategy;
        uint256 elSharesInPendingForWithdrawals;
    }

    LiquidityPool public liquidityPool;
    Liquifier public liquifier;
    ILidoWithdrawalQueue public lidoWithdrawalQueue;
    ILido public lido;
    IDelegationManager public eigenLayerDelegationManager;
    IStrategyManager public eigenLayerStrategyManager;

    mapping(address => bool) public pausers;
    mapping(address => bool) public admins;

    mapping(address => TokenInfo) public tokenInfos;
    
    EnumerableSet.Bytes32Set private withdrawalRootsSet;
    mapping(bytes32 => IDelegationManager.Withdrawal) public withdrawalRootToWithdrawal;


    event QueuedStEthWithdrawals(uint256[] _reqIds);
    event CompletedStEthQueuedWithdrawals(uint256[] _reqIds);
    event CompletedQueuedWithdrawal(bytes32 _withdrawalRoot);

    error NotEnoughBalance();
    error IncorrectAmount();
    error StrategyShareNotEnough();
    error EthTransferFailed();
    error AlreadyRegistered();
    error NotRegistered();
    error WrongOutput();
    error IncorrectCaller();

     /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @notice initialize to set variables on deployment
    function initialize(address _liquidityPool, address _liquifier) initializer external {
        __Ownable_init();
        __Pausable_init();
        __UUPSUpgradeable_init();

        liquidityPool = LiquidityPool(payable(_liquidityPool));
        liquifier = Liquifier(payable(_liquifier));

        lido = liquifier.lido();
        lidoWithdrawalQueue = liquifier.lidoWithdrawalQueue();

        eigenLayerStrategyManager = liquifier.eigenLayerStrategyManager();
        eigenLayerDelegationManager = liquifier.eigenLayerDelegationManager();

        (,, IStrategy strategy,,,,,,,,) = liquifier.tokenInfos(address(lido));
        tokenInfos[address(lido)] = TokenInfo({
            elStrategy: strategy,
            elSharesInPendingForWithdrawals: 0
        });
    }

    receive() external payable {}

    // |--------------------------------------------------------------------------------------------|
    // |                                   Handling Lido's stETH                                    |
    // |--------------------------------------------------------------------------------------------|

    /// Initiate the redemption of stETH for ETH 
    /// @notice Request for all stETH holdings
    function stEthRequestWithdrawal() external onlyAdmin returns (uint256[] memory) {
        uint256 amount = lido.balanceOf(address(this));
        return stEthRequestWithdrawal(amount);
    }

    /// @notice Request for a specific amount of stETH holdings
    /// @param _amount the amount of stETH to request
    function stEthRequestWithdrawal(uint256 _amount) public onlyAdmin returns (uint256[] memory) {
        if (_amount < lidoWithdrawalQueue.MIN_STETH_WITHDRAWAL_AMOUNT()) revert IncorrectAmount();
        if (_amount > lido.balanceOf(address(this))) revert NotEnoughBalance();

        uint256 maxAmount = lidoWithdrawalQueue.MAX_STETH_WITHDRAWAL_AMOUNT();
        uint256 numReqs = (_amount + maxAmount - 1) / maxAmount;
        uint256[] memory reqAmounts = new uint256[](numReqs);
        for (uint256 i = 0; i < numReqs; i++) {
            reqAmounts[i] = (i == numReqs - 1) ? _amount - i * maxAmount : maxAmount;
        }
        lido.approve(address(lidoWithdrawalQueue), _amount);
        uint256[] memory reqIds = lidoWithdrawalQueue.requestWithdrawals(reqAmounts, address(this));

        emit QueuedStEthWithdrawals(reqIds);

        return reqIds;
    }

    /// @notice Claim a batch of withdrawal requests if they are finalized sending the ETH to the this contract back
    /// @param _requestIds array of request ids to claim
    /// @param _hints checkpoint hint for each id. Can be obtained with `findCheckpointHints()`
    function stEthClaimWithdrawals(uint256[] calldata _requestIds, uint256[] calldata _hints) external onlyAdmin {
        uint256 balance = address(this).balance;
        lidoWithdrawalQueue.claimWithdrawals(_requestIds, _hints);

        withdrawEther();

        emit CompletedStEthQueuedWithdrawals(_requestIds);
    }

    // Send the ETH back to the liquidity pool
    function withdrawEther() public onlyAdmin {
        uint256 amountToLiquidityPool = address(this).balance;
        (bool sent, ) = payable(address(liquidityPool)).call{value: amountToLiquidityPool, gas: 20000}("");
        require(sent, "ETH_SEND_TO_LIQUIDITY_POOL_FAILED");
    }

    // |--------------------------------------------------------------------------------------------|
    // |                                    EigenLayer Restaking                                    |
    // |--------------------------------------------------------------------------------------------|
    
    // delegate to an AVS operator
    function delegateTo(address operator, IDelegationManager.SignatureWithExpiry memory approverSignatureAndExpiry, bytes32 approverSalt) external onlyAdmin {
        eigenLayerDelegationManager.delegateTo(operator, approverSignatureAndExpiry, approverSalt);
    }

    // undelegate from the current AVS operator & un-restake all
    function undelegate() external onlyAdmin returns (bytes32[] memory) {
        // Un-restake all assets
        // Currently, only stETH is supported
        TokenInfo memory info = tokenInfos[address(lido)];
        uint256 shares = eigenLayerStrategyManager.stakerStrategyShares(address(this), info.elStrategy);

        _queueWithdrawlsByShares(address(lido), shares);

        bytes32[] memory withdrawalRoots = eigenLayerDelegationManager.undelegate(address(this));
        assert(withdrawalRoots.length == 0);

        return withdrawalRoots;
    }

    // deposit the token in holding into the restaking strategy
    function depositIntoStrategy(address token, uint256 amount) external onlyAdmin returns (uint256) {
        IERC20(token).safeApprove(address(eigenLayerStrategyManager), amount);

        IStrategy strategy = tokenInfos[token].elStrategy;
        uint256 shares = eigenLayerStrategyManager.depositIntoStrategy(strategy, IERC20(token), amount);

        return shares;
    }

    /// queue withdrawals for un-restaking the token
    /// Made easy for operators
    /// @param token the token to withdraw
    /// @param amount the amount of token to withdraw
    function queueWithdrawals(address token, uint256 amount) public onlyAdmin returns (bytes32[] memory) {
        uint256 shares = getEigenLayerRestakingStrategy(token).underlyingToSharesView(amount);
        return _queueWithdrawlsByShares(token, shares);
    }

    /// Advanced version
    function queueWithdrawals(IDelegationManager.QueuedWithdrawalParams[] memory queuedWithdrawalParams) public onlyAdmin returns (bytes32[] memory) {
        uint256 currentNonce = eigenLayerDelegationManager.cumulativeWithdrawalsQueued(address(this));
        
        bytes32[] memory withdrawalRoots = eigenLayerDelegationManager.queueWithdrawals(queuedWithdrawalParams);
        IDelegationManager.Withdrawal[] memory withdrawals = new IDelegationManager.Withdrawal[](queuedWithdrawalParams.length);

        for (uint256 i = 0; i < queuedWithdrawalParams.length; i++) {
            withdrawals[i] = IDelegationManager.Withdrawal({
                staker: address(this),
                delegatedTo: eigenLayerDelegationManager.delegatedTo(address(this)),
                withdrawer: address(this),
                nonce: currentNonce + i,
                startBlock: uint32(block.number),
                strategies: queuedWithdrawalParams[i].strategies,
                shares: queuedWithdrawalParams[i].shares
            });

            require(eigenLayerDelegationManager.calculateWithdrawalRoot(withdrawals[i]) == withdrawalRoots[i], "INCORRECT_WITHDRAWAL_ROOT");
            require(eigenLayerDelegationManager.pendingWithdrawals(withdrawalRoots[i]), "WITHDRAWAL_NOT_PENDING");

            for (uint256 j = 0; j < queuedWithdrawalParams[i].strategies.length; j++) {
                address token = address(queuedWithdrawalParams[i].strategies[j].underlyingToken());
                tokenInfos[token].elSharesInPendingForWithdrawals += queuedWithdrawalParams[i].shares[j];
            }

            withdrawalRootToWithdrawal[withdrawalRoots[i]] = withdrawals[i];
            withdrawalRootsSet.add(withdrawalRoots[i]);
        }

        return withdrawalRoots;
    }

    /// @notice Complete the queued withdrawals that are ready to be withdrawn
    /// @param max_cnt the maximum number of withdrawals to complete
    function completeQueuedWithdrawals(uint256 max_cnt) external onlyAdmin {
        bytes32[] memory withdrawalRoots = pendingWithdrawalRoots();

        // process the first `max_cnt` withdrawals
        uint256 num_to_process = _min(max_cnt, withdrawalRoots.length);

        IDelegationManager.Withdrawal[] memory _queuedWithdrawals = new IDelegationManager.Withdrawal[](num_to_process);
        IERC20[][] memory _tokens = new IERC20[][](num_to_process);
        uint256[] memory _middlewareTimesIndexes = new uint256[](num_to_process);

        uint256 cnt = 0;
        for (uint256 i = 0; i < num_to_process; i++) {
            IDelegationManager.Withdrawal memory withdrawal = withdrawalRootToWithdrawal[withdrawalRoots[i]];

            uint256 withdrawalDelay = eigenLayerDelegationManager.getWithdrawalDelay(withdrawal.strategies);

            if (withdrawal.startBlock + withdrawalDelay <= block.number) {
                IERC20[] memory tokens = new IERC20[](withdrawal.strategies.length);
                for (uint256 j = 0; j < withdrawal.strategies.length; j++) {
                    tokens[j] = withdrawal.strategies[j].underlyingToken();    

                    assert(tokenInfos[address(tokens[j])].elStrategy == withdrawal.strategies[j]);

                    tokenInfos[address(tokens[j])].elSharesInPendingForWithdrawals -= withdrawal.shares[j];
                }

                _queuedWithdrawals[cnt] = withdrawal;
                _tokens[cnt] = tokens;
                _middlewareTimesIndexes[cnt] = 0;
                cnt += 1;
            }
        }

        if (cnt == 0) return;

        assembly {
            mstore(_queuedWithdrawals, cnt)
            mstore(_tokens, cnt)
            mstore(_middlewareTimesIndexes, cnt)
        }

        completeQueuedWithdrawals(_queuedWithdrawals, _tokens, _middlewareTimesIndexes);
    }

    /// Advanced version
    /// @notice Used to complete the specified `queuedWithdrawals`. The function caller must match `queuedWithdrawals[...].withdrawer`
    /// @param _queuedWithdrawals The QueuedWithdrawals to complete.
    /// @param _tokens Array of tokens for each QueuedWithdrawal. See `completeQueuedWithdrawal` for the usage of a single array.
    /// @param _middlewareTimesIndexes One index to reference per QueuedWithdrawal. See `completeQueuedWithdrawal` for the usage of a single index.
    /// @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw`
    function completeQueuedWithdrawals(IDelegationManager.Withdrawal[] memory _queuedWithdrawals, IERC20[][] memory _tokens, uint256[] memory _middlewareTimesIndexes) public onlyAdmin {
        uint256 num = _queuedWithdrawals.length;
        bool[] memory receiveAsTokens = new bool[](num);
        for (uint256 i = 0; i < num; i++) {
            bytes32 withdrawalRoot = eigenLayerDelegationManager.calculateWithdrawalRoot(_queuedWithdrawals[i]);
            emit CompletedQueuedWithdrawal(withdrawalRoot);

            /// so that the shares withdrawn from the specified strategies are sent to the caller
            receiveAsTokens[i] = true;
            withdrawalRootsSet.remove(withdrawalRoot);
        }

        /// it will update the erc20 balances of this contract
        eigenLayerDelegationManager.completeQueuedWithdrawals(_queuedWithdrawals, _tokens, _middlewareTimesIndexes, receiveAsTokens);
    }

    /// Enumerate the pending withdrawal roots
    function pendingWithdrawalRoots() public view returns (bytes32[] memory) {
        return withdrawalRootsSet.values();
    }

    /// Check if a withdrawal is pending for a given withdrawal root
    function isPendingWithdrawal(bytes32 _withdrawalRoot) external view returns (bool) {
        return withdrawalRootsSet.contains(_withdrawalRoot);
    }


    // |--------------------------------------------------------------------------------------------|
    // |                                    VIEW functions                                        |
    // |--------------------------------------------------------------------------------------------|
    function getTotalPooledEther() public view returns (uint256 total) {
        total = address(this).balance + getTotalPooledEther(address(lido));
    }

    function getTotalPooledEther(address _token) public view returns (uint256) {
        (uint256 restaked, uint256 unrestaking, uint256 holding, uint256 pendingForWithdrawals) = getTotalPooledEtherSplits(_token);
        return restaked + unrestaking + holding + pendingForWithdrawals;
    }
    
    function getRestakedAmount(address _token) public view returns (uint256) {
        TokenInfo memory info = tokenInfos[_token];
        uint256 shares = eigenLayerStrategyManager.stakerStrategyShares(address(this), info.elStrategy);
        uint256 restaked = info.elStrategy.sharesToUnderlyingView(shares);
        return restaked;
    }

    function getEigenLayerRestakingStrategy(address _token) public view returns (IStrategy) {
        return tokenInfos[_token].elStrategy;
    }

    /// each asset in holdings can have 3 states:
    /// - in Eigenlayer, either restaked or pending for un-restaking
    /// - non-restaked & held by this contract
    /// - non-restaked & not held by this contract & pending in redemption for ETH
    function getTotalPooledEtherSplits(address _token) public view returns (uint256 restaked, uint256 unrestaking, uint256 holding, uint256 pendingForWithdrawals) {
        TokenInfo memory info = tokenInfos[_token];
        if (info.elStrategy != IStrategy(address(0))) {
            uint256 restakedTokenAmount = getRestakedAmount(_token);
            restaked = liquifier.quoteByFairValue(_token, restakedTokenAmount); /// restaked & pending for withdrawals
            unrestaking = getEthAmountInEigenLayerPendingForWithdrawals(_token);
        }
        holding = liquifier.quoteByFairValue(_token, IERC20(_token).balanceOf(address(this))); /// eth value for erc20 holdings
        pendingForWithdrawals = getEthAmountPendingForRedemption(_token);
    }

    function getEthAmountInEigenLayerPendingForWithdrawals(address _token) public view returns (uint256) {
        TokenInfo memory info = tokenInfos[_token];
        if (info.elStrategy == IStrategy(address(0))) return 0;
        uint256 amount = info.elStrategy.sharesToUnderlyingView(info.elSharesInPendingForWithdrawals);
        return amount;
    }

    function getEthAmountPendingForRedemption(address _token) public view returns (uint256) {
        uint256 total = 0;
        if (_token == address(lido)) {
            uint256[] memory stEthWithdrawalRequestIds = lidoWithdrawalQueue.getWithdrawalRequests(address(this));
            ILidoWithdrawalQueue.WithdrawalRequestStatus[] memory statuses = lidoWithdrawalQueue.getWithdrawalStatus(stEthWithdrawalRequestIds);
            for (uint256 i = 0; i < statuses.length; i++) {
                require(statuses[i].owner == address(this), "Not the owner");
                require(!statuses[i].isClaimed, "Already claimed");
                total += statuses[i].amountOfStETH;
            }
        }
        return total;
    }

    function updateAdmin(address _address, bool _isAdmin) external onlyOwner {
        admins[_address] = _isAdmin;
    }

    function updatePauser(address _address, bool _isPauser) external onlyAdmin {
        pausers[_address] = _isPauser;
    }

    // Pauses the contract
    function pauseContract() external onlyPauser {
        _pause();
    }

    // Unpauses the contract
    function unPauseContract() external onlyAdmin {
        _unpause();
    }

    // INTERNAL functions
    function _queueWithdrawlsByShares(address token, uint256 shares) internal returns (bytes32[] memory) {
        IStrategy strategy = tokenInfos[token].elStrategy;
        IDelegationManager.QueuedWithdrawalParams[] memory params = new IDelegationManager.QueuedWithdrawalParams[](1);
        IStrategy[] memory strategies = new IStrategy[](1);
        strategies[0] = strategy;
        uint256[] memory sharesArr = new uint256[](1);
        sharesArr[0] = shares;

        params[0] = IDelegationManager.QueuedWithdrawalParams({
            strategies: strategies,
            shares: sharesArr,
            withdrawer: address(this)
        });

        return queueWithdrawals(params);
    }

    function _min(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return (_a > _b) ? _b : _a;
    }

    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    function _requireAdmin() internal view virtual {
        if (!(admins[msg.sender] || msg.sender == owner())) revert IncorrectCaller();
    }

    function _requirePauser() internal view virtual {
        if (!(pausers[msg.sender] || admins[msg.sender] || msg.sender == owner())) revert IncorrectCaller();
    }

    /* MODIFIER */
    modifier onlyAdmin() {
        _requireAdmin();
        _;
    }

    modifier onlyPauser() {
        _requirePauser();
        _;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized < type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.0;

import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
import "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 *
 * _Available since v4.1._
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
    address private immutable __self = address(this);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        require(address(this) != __self, "Function must be called through delegatecall");
        require(_getImplementation() == __self, "Function must be called through active proxy");
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
        _;
    }

    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
        return _IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     */
    function upgradeTo(address newImplementation) external virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data, true);
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeTo} and {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal override onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal onlyInitializing {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;

import "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol";
import "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/access/OwnableUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/security/PausableUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/security/ReentrancyGuardUpgradeable.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "./interfaces/ILiquifier.sol";
import "./interfaces/ILiquidityPool.sol";

import "./eigenlayer-interfaces/IStrategyManager.sol";
import "./eigenlayer-interfaces/IDelegationManager.sol";


/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via PancakeSwap V3
interface IPancackeV3SwapRouter {
    function WETH9() external returns (address);

    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another token
    /// @dev Setting `amountIn` to 0 will cause the contract to look up its own balance,
    /// and swap the entire amount, enabling contracts to send tokens before calling this function.
    /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);

    function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
}

interface IERC20Burnable is IERC20 {
    function burn(uint256 amount) external;
}

/// Go wild, spread eETH/weETH to the world
contract Liquifier is Initializable, UUPSUpgradeable, OwnableUpgradeable, PausableUpgradeable, ReentrancyGuardUpgradeable, ILiquifier {
    using SafeERC20 for IERC20;

    uint32 public DEPRECATED_eigenLayerWithdrawalClaimGasCost;
    uint32 public timeBoundCapRefreshInterval; // seconds

    bool public quoteStEthWithCurve;

    uint128 public DEPRECATED_accumulatedFee;

    mapping(address => TokenInfo) public tokenInfos;
    mapping(bytes32 => bool) public isRegisteredQueuedWithdrawals;
    mapping(address => bool) public admins;

    address public treasury;
    ILiquidityPool public liquidityPool;
    IStrategyManager public eigenLayerStrategyManager;
    ILidoWithdrawalQueue public lidoWithdrawalQueue;

    ICurvePool public cbEth_Eth_Pool;
    ICurvePool public wbEth_Eth_Pool;
    ICurvePool public stEth_Eth_Pool;

    IcbETH public cbEth;
    IwBETH public wbEth;
    ILido public lido;

    IDelegationManager public eigenLayerDelegationManager;

    IPancackeV3SwapRouter pancakeRouter;

    mapping(string => bool) flags;
    
    // To support L2 native minting of weETH
    IERC20[] public dummies;
    address public l1SyncPool;

    mapping(address => bool) public pausers;

    address public etherfiRestaker;

    event Liquified(address _user, uint256 _toEEthAmount, address _fromToken, bool _isRestaked);
    event RegisteredQueuedWithdrawal(bytes32 _withdrawalRoot, IStrategyManager.DeprecatedStruct_QueuedWithdrawal _queuedWithdrawal);
    event RegisteredQueuedWithdrawal_V2(bytes32 _withdrawalRoot, IDelegationManager.Withdrawal _queuedWithdrawal);
    event CompletedQueuedWithdrawal(bytes32 _withdrawalRoot);
    event QueuedStEthWithdrawals(uint256[] _reqIds);
    event CompletedStEthQueuedWithdrawals(uint256[] _reqIds);

    error StrategyShareNotEnough();
    error NotSupportedToken();
    error EthTransferFailed();
    error NotEnoughBalance();
    error AlreadyRegistered();
    error NotRegistered();
    error WrongOutput();
    error IncorrectCaller();
    error IncorrectAmount();

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @notice initialize to set variables on deployment
    function initialize(address _treasury, address _liquidityPool, address _eigenLayerStrategyManager, address _lidoWithdrawalQueue, 
                        address _stEth, address _cbEth, address _wbEth, address _cbEth_Eth_Pool, address _wbEth_Eth_Pool, address _stEth_Eth_Pool,
                        uint32 _timeBoundCapRefreshInterval) initializer external {
        __Pausable_init();
        __Ownable_init();
        __UUPSUpgradeable_init();
        __ReentrancyGuard_init();

        treasury = _treasury;
        liquidityPool = ILiquidityPool(_liquidityPool);
        lidoWithdrawalQueue = ILidoWithdrawalQueue(_lidoWithdrawalQueue);
        eigenLayerStrategyManager = IEigenLayerStrategyManager(_eigenLayerStrategyManager);

        lido = ILido(_stEth);
        cbEth = IcbETH(_cbEth);
        wbEth = IwBETH(_wbEth);
        cbEth_Eth_Pool = ICurvePool(_cbEth_Eth_Pool);
        wbEth_Eth_Pool = ICurvePool(_wbEth_Eth_Pool);
        stEth_Eth_Pool = ICurvePool(_stEth_Eth_Pool);
        
        timeBoundCapRefreshInterval = _timeBoundCapRefreshInterval;
        DEPRECATED_eigenLayerWithdrawalClaimGasCost = 150_000;
    }

    function initializeOnUpgrade(address _etherfiRestaker) external onlyOwner {
        etherfiRestaker = _etherfiRestaker;
    }

    receive() external payable {}

    /// Deposit Liquid Staking Token such as stETH and Mint eETH
    /// @param _token The address of the token to deposit
    /// @param _amount The amount of the token to deposit
    /// @param _referral The referral address
    /// @return mintedAmount the amount of eETH minted to the caller (= msg.sender)
    /// If the token is l2Eth, only the l2SyncPool can call this function
    function depositWithERC20(address _token, uint256 _amount, address _referral) public whenNotPaused nonReentrant returns (uint256) {        
        require(isTokenWhitelisted(_token) && (!tokenInfos[_token].isL2Eth || msg.sender == l1SyncPool), "NOT_ALLOWED");

        if (tokenInfos[_token].isL2Eth) {
            IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);     
        } else {
            IERC20(_token).safeTransferFrom(msg.sender, address(etherfiRestaker), _amount);
        }

        // The L1SyncPool's `_anticipatedDeposit` should be the only place to mint the `token` and always send its entirety to the Liquifier contract
        if(tokenInfos[_token].isL2Eth) _L2SanityChecks(_token);
    
        uint256 dx = quoteByDiscountedValue(_token, _amount);
        require(!isDepositCapReached(_token, dx), "CAPPED");

        uint256 eEthShare = liquidityPool.depositToRecipient(msg.sender, dx, _referral);

        emit Liquified(msg.sender, dx, _token, false);

        _afterDeposit(_token, dx);
        return eEthShare;
    }

    function depositWithERC20WithPermit(address _token, uint256 _amount, address _referral, PermitInput calldata _permit) external whenNotPaused returns (uint256) {
        try IERC20Permit(_token).permit(msg.sender, address(this), _permit.value, _permit.deadline, _permit.v, _permit.r, _permit.s) {} catch {}
        return depositWithERC20(_token, _amount, _referral);
    }

    // Send the redeemed ETH back to the liquidity pool & Send the fee to Treasury
    function withdrawEther() external onlyAdmin {
        uint256 amountToLiquidityPool = address(this).balance;
        (bool sent, ) = payable(address(liquidityPool)).call{value: amountToLiquidityPool, gas: 20000}("");
        if (!sent) revert EthTransferFailed();
    }

    function sendToEtherFiRestaker(address _token, uint256 _amount) external onlyAdmin {
        IERC20(_token).safeTransfer(etherfiRestaker, _amount);
    }

    function updateWhitelistedToken(address _token, bool _isWhitelisted) external onlyOwner {
        tokenInfos[_token].isWhitelisted = _isWhitelisted;
    }

    function updateDepositCap(address _token, uint32 _timeBoundCapInEther, uint32 _totalCapInEther) public onlyOwner {
        tokenInfos[_token].timeBoundCapInEther = _timeBoundCapInEther;
        tokenInfos[_token].totalCapInEther = _totalCapInEther;
    }
    
    function registerToken(address _token, address _target, bool _isWhitelisted, uint16 _discountInBasisPoints, uint32 _timeBoundCapInEther, uint32 _totalCapInEther, bool _isL2Eth) external onlyOwner {
        if (tokenInfos[_token].timeBoundCapClockStartTime != 0) revert AlreadyRegistered();
        if (_isL2Eth) {
            if (_token == address(0) || _target != address(0)) revert();
            dummies.push(IERC20(_token));
        } else {
            // _target = EigenLayer's Strategy contract
            if (_token != address(IStrategy(_target).underlyingToken())) revert NotSupportedToken();
        }
        tokenInfos[_token] = TokenInfo(0, 0, IStrategy(_target), _isWhitelisted, _discountInBasisPoints, uint32(block.timestamp), _timeBoundCapInEther, _totalCapInEther, 0, 0, _isL2Eth);
    }

    function updateTimeBoundCapRefreshInterval(uint32 _timeBoundCapRefreshInterval) external onlyOwner {
        timeBoundCapRefreshInterval = _timeBoundCapRefreshInterval;
    }

    function pauseDeposits(address _token) external onlyPauser {
        tokenInfos[_token].timeBoundCapInEther = 0;
        tokenInfos[_token].totalCapInEther = 0;
    }

    function updateAdmin(address _address, bool _isAdmin) external onlyOwner {
        admins[_address] = _isAdmin;
    }

    function updatePauser(address _address, bool _isPauser) external onlyAdmin {
        pausers[_address] = _isPauser;
    }

    function updateDiscountInBasisPoints(address _token, uint16 _discountInBasisPoints) external onlyAdmin {
        tokenInfos[_token].discountInBasisPoints = _discountInBasisPoints;
    }

    function updateQuoteStEthWithCurve(bool _quoteStEthWithCurve) external onlyAdmin {
        quoteStEthWithCurve = _quoteStEthWithCurve;
    }

    //Pauses the contract
    function pauseContract() external onlyPauser {
        _pause();
    }

    //Unpauses the contract
    function unPauseContract() external onlyOwner {
        _unpause();
    }

    // ETH comes in, L2ETH is burnt
    function unwrapL2Eth(address _l2Eth) external payable nonReentrant returns (uint256) {
        if (msg.sender != l1SyncPool) revert IncorrectCaller();
        if (!isTokenWhitelisted(_l2Eth) || !tokenInfos[_l2Eth].isL2Eth) revert NotSupportedToken();
        _L2SanityChecks(_l2Eth);

        IERC20(_l2Eth).safeTransfer(msg.sender, msg.value);
        return msg.value;
    }

    /* VIEW FUNCTIONS */

    // Given the `_amount` of `_token` token, returns the equivalent amount of ETH 
    function quoteByFairValue(address _token, uint256 _amount) public view returns (uint256) {
        if (!isTokenWhitelisted(_token)) revert NotSupportedToken();

        if (_token == address(lido)) return _amount * 1; /// 1:1 from stETH to eETH
        else if (_token == address(cbEth)) return _amount * cbEth.exchangeRate() / 1e18;
        else if (_token == address(wbEth)) return _amount * wbEth.exchangeRate() / 1e18;
        else if (tokenInfos[_token].isL2Eth) return _amount * 1; /// 1:1 from l2Eth to eETH

        revert NotSupportedToken();
    }

    function quoteStrategyShareForDeposit(address _token, IStrategy _strategy, uint256 _share) public view returns (uint256) {
        uint256 tokenAmount = _strategy.sharesToUnderlyingView(_share);
        return quoteByMarketValue(_token, tokenAmount);
    }

    function quoteByMarketValue(address _token, uint256 _amount) public view returns (uint256) {
        if (!isTokenWhitelisted(_token)) revert NotSupportedToken();

        if (_token == address(lido)) {
            if (quoteStEthWithCurve) {
                return _min(_amount, ICurvePoolQuoter1(address(stEth_Eth_Pool)).get_dy(1, 0, _amount));
            } else {
                return _amount; /// 1:1 from stETH to eETH
            }
        } else if (_token == address(cbEth)) {
            return _min(_amount * cbEth.exchangeRate() / 1e18, ICurvePoolQuoter2(address(cbEth_Eth_Pool)).get_dy(1, 0, _amount));
        } else if (_token == address(wbEth)) {
            return _min(_amount * wbEth.exchangeRate() / 1e18, ICurvePoolQuoter1(address(wbEth_Eth_Pool)).get_dy(1, 0, _amount));
        } else if (tokenInfos[_token].isL2Eth) {
            // 1:1 for all dummy tokens
            return _amount;
        }

        revert NotSupportedToken();
    }

    // Calculates the amount of eETH that will be minted for a given token considering the discount rate
    function quoteByDiscountedValue(address _token, uint256 _amount) public view returns (uint256) {
        uint256 marketValue = quoteByMarketValue(_token, _amount);

        return (10000 - tokenInfos[_token].discountInBasisPoints) * marketValue / 10000;
    }

    function isTokenWhitelisted(address _token) public view returns (bool) {
        return tokenInfos[_token].isWhitelisted;
    }

    function isL2Eth(address _token) public view returns (bool) {
        return tokenInfos[_token].isL2Eth;
    }

    function getTotalPooledEther() public view returns (uint256 total) {
        total = address(this).balance + getTotalPooledEther(address(lido)) + getTotalPooledEther(address(cbEth)) + getTotalPooledEther(address(wbEth));
        for (uint256 i = 0; i < dummies.length; i++) {
            total += getTotalPooledEther(address(dummies[i]));
        }
    }

    /// deposited (restaked) ETH can have 3 states:
    /// - restaked in EigenLayer & pending for withdrawals
    /// - non-restaked & held by this contract
    /// - non-restaked & not held by this contract & pending for withdrawals
    function getTotalPooledEtherSplits(address _token) public view returns (uint256 restaked, uint256 holding, uint256 pendingForWithdrawals) {
        TokenInfo memory info = tokenInfos[_token];
        if (!isTokenWhitelisted(_token)) return (0, 0, 0);

        if (info.strategy != IStrategy(address(0))) {
            restaked = quoteByFairValue(_token, info.strategy.sharesToUnderlyingView(info.strategyShare)); /// restaked & pending for withdrawals
        }
        holding = quoteByFairValue(_token, IERC20(_token).balanceOf(address(this))); /// eth value for erc20 holdings
        pendingForWithdrawals = info.ethAmountPendingForWithdrawals; /// eth pending for withdrawals
    }

    function getTotalPooledEther(address _token) public view returns (uint256) {
        (uint256 restaked, uint256 holding, uint256 pendingForWithdrawals) = getTotalPooledEtherSplits(_token);
        return restaked + holding + pendingForWithdrawals;
    }

    function getImplementation() external view returns (address) {
        return _getImplementation();
    }

    function timeBoundCap(address _token) public view returns (uint256) {
        return uint256(1 ether) * tokenInfos[_token].timeBoundCapInEther;
    }

    function totalCap(address _token) public view returns (uint256) {
        return uint256(1 ether) * tokenInfos[_token].totalCapInEther;
    }

    function totalDeposited(address _token) public view returns (uint256) {
        return tokenInfos[_token].totalDeposited;
    }

    function isDepositCapReached(address _token, uint256 _amount) public view returns (bool) {
        TokenInfo memory info = tokenInfos[_token];
        uint96 totalDepositedThisPeriod_ = info.totalDepositedThisPeriod;
        uint32 timeBoundCapClockStartTime_ = info.timeBoundCapClockStartTime;
        if (block.timestamp >= timeBoundCapClockStartTime_ + timeBoundCapRefreshInterval) {
            totalDepositedThisPeriod_ = 0;
        }
        return (totalDepositedThisPeriod_ + _amount > timeBoundCap(_token) || info.totalDeposited + _amount > totalCap(_token));
    }

    /* INTERNAL FUNCTIONS */
    function _afterDeposit(address _token, uint256 _amount) internal {
        TokenInfo storage info = tokenInfos[_token];
        if (block.timestamp >= info.timeBoundCapClockStartTime + timeBoundCapRefreshInterval) {
            info.totalDepositedThisPeriod = 0;
            info.timeBoundCapClockStartTime = uint32(block.timestamp);
        }
        info.totalDepositedThisPeriod += uint96(_amount);
        info.totalDeposited += uint96(_amount);
    }

    function _L2SanityChecks(address _token) internal view {
        if (IERC20(_token).totalSupply() != IERC20(_token).balanceOf(address(this))) revert();
    }

    function _min(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return (_a > _b) ? _b : _a;
    }

    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    function _requireAdmin() internal view virtual {
        if (!(admins[msg.sender] || msg.sender == owner())) revert IncorrectCaller();
    }

    function _requirePauser() internal view virtual {
        if (!(pausers[msg.sender] || admins[msg.sender] || msg.sender == owner())) revert IncorrectCaller();
    }

    /* MODIFIER */
    modifier onlyAdmin() {
        _requireAdmin();
        _;
    }

    modifier onlyPauser() {
        _requirePauser();
        _;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";

import "@openzeppelin-upgradeable/contracts/token/ERC20/IERC20Upgradeable.sol";
import "@openzeppelin-upgradeable/contracts/token/ERC721/IERC721ReceiverUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol";
import "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/access/OwnableUpgradeable.sol";

import "./interfaces/IRegulationsManager.sol";
import "./interfaces/IStakingManager.sol";
import "./interfaces/IEtherFiNodesManager.sol";
import "./interfaces/IeETH.sol";
import "./interfaces/IStakingManager.sol";
import "./interfaces/IMembershipManager.sol";
import "./interfaces/ITNFT.sol";
import "./interfaces/IWithdrawRequestNFT.sol";
import "./interfaces/ILiquidityPool.sol";
import "./interfaces/IEtherFiAdmin.sol";
import "./interfaces/IAuctionManager.sol";
import "./interfaces/ILiquifier.sol";

contract LiquidityPool is Initializable, OwnableUpgradeable, UUPSUpgradeable, ILiquidityPool {
    //--------------------------------------------------------------------------------------
    //---------------------------------  STATE-VARIABLES  ----------------------------------
    //--------------------------------------------------------------------------------------

    IStakingManager public stakingManager;
    IEtherFiNodesManager public nodesManager;
    IRegulationsManager public DEPRECATED_regulationsManager;
    IMembershipManager public membershipManager;
    ITNFT public tNft;
    IeETH public eETH; 

    bool public DEPRECATED_eEthliquidStakingOpened;

    uint128 public totalValueOutOfLp;
    uint128 public totalValueInLp;

    address public treasury;

    uint32 public numPendingDeposits; // number of validator deposits, which needs 'registerValidator'

    address public DEPRECATED_bNftTreasury;
    IWithdrawRequestNFT public withdrawRequestNFT;

    BnftHolder[] public bnftHolders;
    uint128 public DEPRECATED_maxValidatorsPerOwner;
    uint128 public DEPRECATED_schedulingPeriodInSeconds;

    HoldersUpdate public DEPRECATED_holdersUpdate;

    mapping(address => bool) public admins;
    mapping(SourceOfFunds => FundStatistics) public DEPRECATED_fundStatistics;
    mapping(uint256 => bytes32) public depositDataRootForApprovalDeposits;
    address public etherFiAdminContract;
    bool public whitelistEnabled;
    mapping(address => bool) public whitelisted;
    mapping(address => BnftHoldersIndex) public bnftHoldersIndexes;

    bool public restakeBnftDeposits;
    uint128 public ethAmountLockedForWithdrawal;
    bool public paused;
    IAuctionManager public auctionManager;
    ILiquifier public liquifier;

    bool private isLpBnftHolder;

    //--------------------------------------------------------------------------------------
    //-------------------------------------  EVENTS  ---------------------------------------
    //--------------------------------------------------------------------------------------

    event Paused(address account);
    event Unpaused(address account);

    event Deposit(address indexed sender, uint256 amount, SourceOfFunds source, address referral);
    event Withdraw(address indexed sender, address recipient, uint256 amount, SourceOfFunds source);
    event UpdatedWhitelist(address userAddress, bool value);
    event UpdatedTreasury(address newTreasury);
    event BnftHolderDeregistered(address user, uint256 index);
    event BnftHolderRegistered(address user, uint256 index);
    event UpdatedSchedulingPeriod(uint128 newPeriodInSeconds);
    event ValidatorRegistered(uint256 indexed validatorId, bytes signature, bytes pubKey, bytes32 depositRoot);
    event ValidatorApproved(uint256 indexed validatorId);
    event ValidatorRegistrationCanceled(uint256 indexed validatorId);
    event Rebase(uint256 totalEthLocked, uint256 totalEEthShares);
    event ProtocolFeePaid(uint128 protocolFees);
    event WhitelistStatusUpdated(bool value);

    error IncorrectCaller();
    error InvalidAmount();
    error InvalidParams();
    error DataNotSet();
    error InsufficientLiquidity();
    error SendFail();

    //--------------------------------------------------------------------------------------
    //----------------------------  STATE-CHANGING FUNCTIONS  ------------------------------
    //--------------------------------------------------------------------------------------

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    receive() external payable {
        if (msg.value > type(uint128).max) revert InvalidAmount();
        totalValueOutOfLp -= uint128(msg.value);
        totalValueInLp += uint128(msg.value);
    }

    function initialize(address _eEthAddress, address _stakingManagerAddress, address _nodesManagerAddress, address _membershipManagerAddress, address _tNftAddress, address _etherFiAdminContract, address _withdrawRequestNFT) external initializer {
        if (_eEthAddress == address(0) || _stakingManagerAddress == address(0) || _nodesManagerAddress == address(0) || _membershipManagerAddress == address(0) || _tNftAddress == address(0)) revert DataNotSet();
        
        __Ownable_init();
        __UUPSUpgradeable_init();
        eETH = IeETH(_eEthAddress);
        stakingManager = IStakingManager(_stakingManagerAddress);
        nodesManager = IEtherFiNodesManager(_nodesManagerAddress);
        membershipManager = IMembershipManager(_membershipManagerAddress);
        tNft = ITNFT(_tNftAddress);
        paused = true;
        whitelistEnabled = true;
        restakeBnftDeposits = false;
        ethAmountLockedForWithdrawal = 0;
        etherFiAdminContract = _etherFiAdminContract;
        withdrawRequestNFT = IWithdrawRequestNFT(_withdrawRequestNFT);
        admins[_etherFiAdminContract] = true;
        isLpBnftHolder = false;
    }

    function initializeOnUpgrade(address _auctionManager, address _liquifier) external onlyOwner { 
        require(_auctionManager != address(0) && _liquifier != address(0), "Invalid params");

        auctionManager = IAuctionManager(_auctionManager);
        liquifier = ILiquifier(_liquifier);
    }

    // Used by eETH staking flow
    function deposit() external payable returns (uint256) {
        return deposit(address(0));
    }

    // Used by eETH staking flow
    function deposit(address _referral) public payable whenNotPaused returns (uint256) {
        require(_isWhitelisted(msg.sender), "Invalid User");

        emit Deposit(msg.sender, msg.value, SourceOfFunds.EETH, _referral);

        return _deposit(msg.sender, msg.value, 0);
    }

    // Used by eETH staking flow through Liquifier contract; deVamp or to pay protocol fees
    function depositToRecipient(address _recipient, uint256 _amount, address _referral) public whenNotPaused returns (uint256) {
        require(msg.sender == address(liquifier) || msg.sender == address(etherFiAdminContract), "Incorrect Caller");

        emit Deposit(_recipient, _amount, SourceOfFunds.EETH, _referral);

        return _deposit(_recipient, 0, _amount);
    }

    // Used by ether.fan staking flow
    function deposit(address _user, address _referral) external payable whenNotPaused returns (uint256) {
        require(msg.sender == address(membershipManager), "Incorrect Caller");
        require(_user == address(membershipManager) || _isWhitelisted(_user), "Invalid User");

        emit Deposit(msg.sender, msg.value, SourceOfFunds.ETHER_FAN, _referral);

        return _deposit(msg.sender, msg.value, 0);
    }

    /// @notice withdraw from pool
    /// @dev Burns user share from msg.senders account & Sends equivalent amount of ETH back to the recipient
    /// @param _recipient the recipient who will receives the ETH
    /// @param _amount the amount to withdraw from contract
    /// it returns the amount of shares burned
    function withdraw(address _recipient, uint256 _amount) external whenNotPaused returns (uint256) {
        uint256 share = sharesForWithdrawalAmount(_amount);
        require(msg.sender == address(withdrawRequestNFT) || msg.sender == address(membershipManager), "Incorrect Caller");
        if (totalValueInLp < _amount || (msg.sender == address(withdrawRequestNFT) && ethAmountLockedForWithdrawal < _amount) || eETH.balanceOf(msg.sender) < _amount) revert InsufficientLiquidity();
        if (_amount > type(uint128).max || _amount == 0 || share == 0) revert InvalidAmount();

        totalValueInLp -= uint128(_amount);
        if (msg.sender == address(withdrawRequestNFT)) {
            ethAmountLockedForWithdrawal -= uint128(_amount);
        }

        eETH.burnShares(msg.sender, share);

        _sendFund(_recipient, _amount);

        return share;
    }

    /// @notice request withdraw from pool and receive a WithdrawRequestNFT
    /// @dev Transfers the amount of eETH from msg.senders account to the WithdrawRequestNFT contract & mints an NFT to the msg.sender
    /// @param recipient address that will be issued the NFT
    /// @param amount requested amount to withdraw from contract
    /// @return uint256 requestId of the WithdrawRequestNFT
    function requestWithdraw(address recipient, uint256 amount) public whenNotPaused returns (uint256) {
        uint256 share = sharesForAmount(amount);
        if (amount > type(uint96).max || amount == 0 || share == 0) revert InvalidAmount();

        // transfer shares to WithdrawRequestNFT contract from this contract
        eETH.transferFrom(msg.sender, address(withdrawRequestNFT), amount);

        uint256 requestId = withdrawRequestNFT.requestWithdraw(uint96(amount), uint96(share), recipient, 0);
       
        emit Withdraw(msg.sender, recipient, amount, SourceOfFunds.EETH);

        return requestId;
    }

    /// @notice request withdraw from pool with signed permit data and receive a WithdrawRequestNFT
    /// @dev accepts PermitInput signed data to approve transfer of eETH (EIP-2612) so withdraw request can happen in 1 tx
    /// @param _owner address that will be issued the NFT
    /// @param _amount requested amount to withdraw from contract
    /// @param _permit signed permit data to approve transfer of eETH
    /// @return uint256 requestId of the WithdrawRequestNFT
    function requestWithdrawWithPermit(address _owner, uint256 _amount, PermitInput calldata _permit)
        external
        whenNotPaused
        returns (uint256)
    {
        eETH.permit(msg.sender, address(this), _permit.value, _permit.deadline, _permit.v, _permit.r, _permit.s);
        return requestWithdraw(_owner, _amount);
    }

    /// @notice request withdraw of some or all of the eETH backing a MembershipNFT and receive a WithdrawRequestNFT
    /// @dev Transfers the amount of eETH from MembershipManager to the WithdrawRequestNFT contract & mints an NFT to the recipient
    /// @param recipient address that will be issued the NFT
    /// @param amount requested amount to withdraw from contract
    /// @param fee the burn fee to be paid by the recipient when the withdrawal is claimed (WithdrawRequestNFT.claimWithdraw)
    /// @return uint256 requestId of the WithdrawRequestNFT
    function requestMembershipNFTWithdraw(address recipient, uint256 amount, uint256 fee) public whenNotPaused returns (uint256) {
        if (msg.sender != address(membershipManager)) revert IncorrectCaller();
        uint256 share = sharesForAmount(amount);
        if (amount > type(uint96).max || amount == 0 || share == 0) revert InvalidAmount();

        // transfer shares to WithdrawRequestNFT contract
        eETH.transferFrom(msg.sender, address(withdrawRequestNFT), amount);

        uint256 requestId = withdrawRequestNFT.requestWithdraw(uint96(amount), uint96(share), recipient, fee);

        emit Withdraw(msg.sender, recipient, amount, SourceOfFunds.ETHER_FAN);

        return requestId;
    }

    // [Staking flow]
    // Step 1: [Deposit] initiate spinning up the validators & allocate withdrawal safe contracts
    // Step 2: create the keys using the desktop app
    // Step 3: [Register] register the validator keys sending 1 ETH to the eth deposit contract
    // Step 4: wait for the oracle to approve and send the rest 31 ETH to the eth deposit contract
    function batchDepositAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators) external payable whenNotPaused returns (uint256[] memory) {
        return batchDepositAsBnftHolder(_candidateBidIds, _numberOfValidators, 0);
    }

    /// @notice Allows a BNFT player to deposit their 2 ETH and pair with 30 ETH from the LP
    /// @dev This function has multiple dependencies that need to be followed before this function will succeed. 
    /// @param _candidateBidIds validator IDs that have been matched with the BNFT holder on the FE
    /// @param _numberOfValidators how many validators the user wants to spin up. This can be less than the candidateBidIds length. 
    ///         we may have more Ids sent in than needed to spin up incase some ids fail.
    /// @param _validatorIdToShareSafeWith The validator ID of the validator that the user wants to shafe the withdrawal safe with
    /// @return Array of bids that were successfully processed.
    function batchDepositAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators, uint256 _validatorIdToShareSafeWith) public payable whenNotPaused returns (uint256[] memory) {
        require(!isLpBnftHolder, "IncorrectBnftMode");
        return _batchDeposit(_candidateBidIds, _numberOfValidators, 2 ether, _validatorIdToShareSafeWith);
    }

    /// @notice BNFT players register validators they have deposited. This triggers a 1 ETH transaction to the beacon chain.
    /// @dev This function can only be called by a BNFT player on IDs that have been deposited.  
    /// @param _depositRoot This is the deposit root of the beacon chain. Can send in 0x00 to bypass this check in future
    /// @param _validatorIds The ids of the validators to register
    /// @param _registerValidatorDepositData As in the solo staking flow, the BNFT player must send in a deposit data object (see ILiquidityPool for struct data)
    ///         to register the validators. However, the signature and deposit data root must be for a 1 ETH deposit
    /// @param _depositDataRootApproval The deposit data roots for each validator for the 31 ETH transaction which will happen in the approval
    ///         step. See the Staking Manager for details.
    /// @param _signaturesForApprovalDeposit Much like the deposit data root. This is the signature for each validator for the 31 ETH 
    ///         transaction which will happen in the approval step.
    function batchRegisterAsBnftHolder(
        bytes32 _depositRoot,
        uint256[] calldata _validatorIds,
        IStakingManager.DepositData[] calldata _registerValidatorDepositData,
        bytes32[] calldata _depositDataRootApproval,
        bytes[] calldata _signaturesForApprovalDeposit
    ) external whenNotPaused {
        require(!isLpBnftHolder, "IncorrectBnftMode");
        return _batchRegister(_depositRoot, _validatorIds, _registerValidatorDepositData, _depositDataRootApproval, _signaturesForApprovalDeposit, msg.sender);
    }

    function batchDepositWithLiquidityPoolAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators) external whenNotPaused returns (uint256[] memory) {
        return batchDepositWithLiquidityPoolAsBnftHolder(_candidateBidIds, _numberOfValidators, 0);
    }

    function batchDepositWithLiquidityPoolAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators, uint256 _validatorIdToShareSafeWith) public whenNotPaused returns (uint256[] memory) {
        require(isLpBnftHolder, "IncorrectBnftMode");
        return _batchDeposit(_candidateBidIds, _numberOfValidators, 0 ether, _validatorIdToShareSafeWith);
    }

    function batchRegisterWithLiquidityPoolAsBnftHolder(
        bytes32 _depositRoot,
        uint256[] calldata _validatorIds,
        IStakingManager.DepositData[] calldata _registerValidatorDepositData,
        bytes32[] calldata _depositDataRootApproval,
        bytes[] calldata _signaturesForApprovalDeposit
    ) external whenNotPaused {
        require(isLpBnftHolder, "IncorrectBnftMode");
        return _batchRegister(_depositRoot, _validatorIds, _registerValidatorDepositData, _depositDataRootApproval, _signaturesForApprovalDeposit, address(this));
    }

    function _batchDeposit(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators, uint256 _stakerDepositAmountPerValidator, uint256 _validatorIdToShareSafeWith) internal returns (uint256[] memory) {
        uint32 index = bnftHoldersIndexes[msg.sender].index;
        require(bnftHoldersIndexes[msg.sender].registered && bnftHolders[index].holder == msg.sender, "Incorrect Caller");        
        require(msg.value == _numberOfValidators * _stakerDepositAmountPerValidator, "Not Enough Deposit");
        require(totalValueInLp + msg.value >= 32 ether * _numberOfValidators, "Not enough balance");
    
        address tnftHolder = address(this);
        address bnftHolder = isLpBnftHolder ? address(this) : msg.sender;
        uint256[] memory newValidators = stakingManager.batchDepositWithBidIds(_candidateBidIds, _numberOfValidators, msg.sender, tnftHolder, bnftHolder, SourceOfFunds.EETH, restakeBnftDeposits, _validatorIdToShareSafeWith);
        numPendingDeposits += uint32(newValidators.length);
        
        // In the case when some bids are already taken, we refund 2 ETH for each
        if (_numberOfValidators > newValidators.length) {
            uint256 returnAmount = _stakerDepositAmountPerValidator * (_numberOfValidators - newValidators.length);
            _sendFund(msg.sender, returnAmount);
        }

        return newValidators;
    }

    function _batchRegister(
        bytes32 _depositRoot,
        uint256[] calldata _validatorIds,
        IStakingManager.DepositData[] calldata _registerValidatorDepositData,
        bytes32[] calldata _depositDataRootApproval,
        bytes[] calldata _signaturesForApprovalDeposit,
        address _bnftRecipient
    ) internal {
        require(_validatorIds.length == _registerValidatorDepositData.length && _validatorIds.length == _depositDataRootApproval.length && _validatorIds.length == _signaturesForApprovalDeposit.length, "lengths differ");
        
        numPendingDeposits -= uint32(_validatorIds.length);
        stakingManager.batchRegisterValidators{value: 1 ether * _validatorIds.length}(_depositRoot, _validatorIds, _bnftRecipient, address(this), _registerValidatorDepositData, msg.sender);
        
        for(uint256 i; i < _validatorIds.length; i++) {
            depositDataRootForApprovalDeposits[_validatorIds[i]] = _depositDataRootApproval[i];
            emit ValidatorRegistered(_validatorIds[i], _signaturesForApprovalDeposit[i], _registerValidatorDepositData[i].publicKey, _depositDataRootApproval[i]);
        }
    }

    /// @notice Approves validators and triggers the 31 ETH transaction to the beacon chain (rest of the stake).
    /// @dev This gets called by the Oracle and only when it has confirmed the withdraw credentials of the 1 ETH deposit in the registration
    ///         phase match the withdraw credentials stored on the beacon chain. This prevents a front-running attack.
    /// @param _validatorIds The IDs of the validators to be approved
    /// @param _pubKey The pubKey for each validator being spun up.
    /// @param _signature The signatures for each validator for the 31 ETH transaction that were emitted in the register phase
    function batchApproveRegistration(
        uint256[] memory _validatorIds, 
        bytes[] calldata _pubKey,
        bytes[] calldata _signature
    ) external onlyAdmin whenNotPaused {
        require(_validatorIds.length == _pubKey.length && _validatorIds.length == _signature.length, "lengths differ");

        bytes32[] memory depositDataRootApproval = new bytes32[](_validatorIds.length);
        for(uint256 i; i < _validatorIds.length; i++) {
            depositDataRootApproval[i] = depositDataRootForApprovalDeposits[_validatorIds[i]];
            delete depositDataRootForApprovalDeposits[_validatorIds[i]];        

            emit ValidatorApproved(_validatorIds[i]);
        }

        totalValueOutOfLp += uint128(30 ether * _validatorIds.length);
        totalValueInLp -= uint128(30 ether * _validatorIds.length);

        stakingManager.batchApproveRegistration{value: 31 ether * _validatorIds.length}(_validatorIds, _pubKey, _signature, depositDataRootApproval);
    }

    /// @notice Cancels a BNFT players deposits (whether validator is registered or deposited. Just not live on beacon chain)
    /// @dev This is called only in the BNFT player flow
    /// @param _validatorIds The IDs to be cancelled
    function batchCancelDeposit(uint256[] calldata _validatorIds) external whenNotPaused {
        _batchCancelDeposit(_validatorIds, msg.sender);
    }

    function batchCancelDepositByAdmin(uint256[] calldata _validatorIds, address _bnftStaker) external whenNotPaused onlyAdmin {
        _batchCancelDeposit(_validatorIds, _bnftStaker);
    }

    function _batchCancelDeposit(uint256[] calldata _validatorIds, address _bnftStaker) internal {
        uint256 returnAmount = 0;

        for (uint256 i = 0; i < _validatorIds.length; i++) {
            if(nodesManager.phase(_validatorIds[i]) == IEtherFiNode.VALIDATOR_PHASE.WAITING_FOR_APPROVAL) {
                if (!isLpBnftHolder) returnAmount += 1 ether;
                else totalValueInLp -= 1 ether;
                emit ValidatorRegistrationCanceled(_validatorIds[i]);
            } else {
                if (!isLpBnftHolder) returnAmount += 2 ether;
                numPendingDeposits -= 1;
            }
        }

        stakingManager.batchCancelDepositAsBnftHolder(_validatorIds, _bnftStaker);

        _sendFund(_bnftStaker, returnAmount);
    }

    /// @notice The admin can register an address to become a BNFT holder
    /// @param _user The address of the BNFT player to register
    function registerAsBnftHolder(address _user) public onlyAdmin {      
        require(!bnftHoldersIndexes[_user].registered, "Already registered");  

        BnftHolder memory bnftHolder = BnftHolder({
            holder: _user,
            timestamp: 0
        });

        uint256 index = bnftHolders.length;

        bnftHolders.push(bnftHolder);
        bnftHoldersIndexes[_user] = BnftHoldersIndex({
            registered: true,
            index: uint32(index)
        });

        emit BnftHolderRegistered(_user, index);
    }

    /// @notice Removes a BNFT player from the bnftHolders array
    /// @param _bNftHolder Address of the BNFT player to remove
    function deRegisterBnftHolder(address _bNftHolder) external {
        require(bnftHoldersIndexes[_bNftHolder].registered, "Not registered");
        uint256 index = bnftHoldersIndexes[_bNftHolder].index;
        require(admins[msg.sender] || msg.sender == bnftHolders[index].holder, "Incorrect Caller");
        
        uint256 endIndex = bnftHolders.length - 1;
        address endUser = bnftHolders[endIndex].holder;

        //Swap the end BNFT player with the BNFT player being removed
        bnftHolders[index] = bnftHolders[endIndex];
        bnftHoldersIndexes[endUser].index = uint32(index);
        
        //Pop the last user as we have swapped them around
        bnftHolders.pop();
        delete bnftHoldersIndexes[_bNftHolder];

        emit BnftHolderDeregistered(_bNftHolder, index);
    }

    /// @notice Send the exit requests as the T-NFT holder of the LiquidityPool validators
    function sendExitRequests(uint256[] calldata _validatorIds) external onlyAdmin {
        nodesManager.batchSendExitRequest(_validatorIds);
    }

    /// @notice Rebase by ether.fi
    function rebase(int128 _accruedRewards) public {
        if (msg.sender != address(membershipManager)) revert IncorrectCaller();
        totalValueOutOfLp = uint128(int128(totalValueOutOfLp) + _accruedRewards);

        emit Rebase(getTotalPooledEther(), eETH.totalShares());
    }
    /// @notice pay protocol fees including 5% to treaury, 5% to node operator and ethfund bnft holders
    /// @param _protocolFees The amount of protocol fees to pay in ether
    function payProtocolFees(uint128 _protocolFees) external {
        if (msg.sender != address(etherFiAdminContract)) revert IncorrectCaller();   
        emit ProtocolFeePaid(_protocolFees);
        depositToRecipient(treasury, _protocolFees, address(0));
    }

    /// @notice Set the treasury address
    /// @param _treasury The address to set as the treasury
    function setTreasury(address _treasury) external onlyOwner {
        treasury = _treasury;
        emit UpdatedTreasury(_treasury);
    }

    /// @notice Whether or not nodes created via bNFT deposits should be restaked
    function setRestakeBnftDeposits(bool _restake) external onlyAdmin {
        restakeBnftDeposits = _restake;
    }

    /// @notice Updates the address of the admin
    /// @param _address the new address to set as admin
    function updateAdmin(address _address, bool _isAdmin) external onlyOwner {
        admins[_address] = _isAdmin;
    }

    function pauseContract() external onlyAdmin {
        paused = true;
        emit Paused(_msgSender());
    }

    function unPauseContract() external onlyAdmin {
        paused = false;
        emit Unpaused(_msgSender());
    }

    // Deprecated, just existing not to touch EtherFiAdmin contract
    function setStakingTargetWeights(uint32 _eEthWeight, uint32 _etherFanWeight) external onlyAdmin {
    }

    function updateWhitelistedAddresses(address[] calldata _users, bool _value) external onlyAdmin {
        for (uint256 i = 0; i < _users.length; i++) {
            whitelisted[_users[i]] = _value;

            emit UpdatedWhitelist(_users[i], _value);
        }
    }

    function updateWhitelistStatus(bool _value) external onlyAdmin {
        whitelistEnabled = _value;

        emit WhitelistStatusUpdated(_value);
    }

    function updateBnftMode(bool _isLpBnftHolder) external onlyAdmin {
        // Never toggle it in the process of deposit-regiration
        isLpBnftHolder = _isLpBnftHolder;
    }

    function addEthAmountLockedForWithdrawal(uint128 _amount) external {
        if (!(msg.sender == address(etherFiAdminContract) || msg.sender == address(withdrawRequestNFT))) revert IncorrectCaller();

        ethAmountLockedForWithdrawal += _amount;
    }

    function reduceEthAmountLockedForWithdrawal(uint128 _amount) external {
        if (msg.sender != address(withdrawRequestNFT)) revert IncorrectCaller();

        ethAmountLockedForWithdrawal -= _amount;
    }

    //--------------------------------------------------------------------------------------
    //------------------------------  INTERNAL FUNCTIONS  ----------------------------------
    //--------------------------------------------------------------------------------------

    function _deposit(address _recipient, uint256 _amountInLp, uint256 _amountOutOfLp) internal returns (uint256) {
        totalValueInLp += uint128(_amountInLp);
        totalValueOutOfLp += uint128(_amountOutOfLp);
        uint256 amount = _amountInLp + _amountOutOfLp;
        uint256 share = _sharesForDepositAmount(amount);
        if (amount > type(uint128).max || amount == 0 || share == 0) revert InvalidAmount();

        eETH.mintShares(_recipient, share);

        return share;
    }

    function _isWhitelisted(address _user) internal view returns (bool) {
        return (!whitelistEnabled || whitelisted[_user]);
    }

    function _sharesForDepositAmount(uint256 _depositAmount) internal view returns (uint256) {
        uint256 totalPooledEther = getTotalPooledEther() - _depositAmount;
        if (totalPooledEther == 0) {
            return _depositAmount;
        }
        return (_depositAmount * eETH.totalShares()) / totalPooledEther;
    }

    function _sendFund(address _recipient, uint256 _amount) internal {
        uint256 balanace = address(this).balance;
        (bool sent, ) = _recipient.call{value: _amount}("");
        require(sent && address(this).balance == balanace - _amount, "SendFail");
    }

    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    //--------------------------------------------------------------------------------------
    //------------------------------------  GETTERS  ---------------------------------------
    //--------------------------------------------------------------------------------------

    function getTotalEtherClaimOf(address _user) external view returns (uint256) {
        uint256 staked;
        uint256 totalShares = eETH.totalShares();
        if (totalShares > 0) {
            staked = (getTotalPooledEther() * eETH.shares(_user)) / totalShares;
        }
        return staked;
    }

    function getTotalPooledEther() public view returns (uint256) {
        return totalValueOutOfLp + totalValueInLp;
    }

    function sharesForAmount(uint256 _amount) public view returns (uint256) {
        uint256 totalPooledEther = getTotalPooledEther();
        if (totalPooledEther == 0) {
            return 0;
        }
        return (_amount * eETH.totalShares()) / totalPooledEther;
    }

    /// @dev withdrawal rounding errors favor the protocol by rounding up
    function sharesForWithdrawalAmount(uint256 _amount) public view returns (uint256) {
        uint256 totalPooledEther = getTotalPooledEther();
        if (totalPooledEther == 0) {
            return 0;
        }

        // ceiling division so rounding errors favor the protocol
        uint256 numerator = _amount * eETH.totalShares();
        return (numerator + totalPooledEther - 1) / totalPooledEther;
    }

    function amountForShare(uint256 _share) public view returns (uint256) {
        uint256 totalShares = eETH.totalShares();
        if (totalShares == 0) {
            return 0;
        }
        return (_share * getTotalPooledEther()) / totalShares;
    }

    function getImplementation() external view returns (address) {return _getImplementation();}

    function _requireAdmin() internal view virtual {
        require(admins[msg.sender], "Not admin");
    }

    function _requireNotPaused() internal view virtual {
        require(!paused, "Pausable: paused");
    }

    //--------------------------------------------------------------------------------------
    //-----------------------------------  MODIFIERS  --------------------------------------
    //--------------------------------------------------------------------------------------

    modifier onlyAdmin() {
        _requireAdmin();
        _;
    }

    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "./IStrategy.sol";
import "./ISlasher.sol";
import "./IDelegationManager.sol";
import "./IEigenPodManager.sol";

/**
 * @title Interface for the primary entrypoint for funds into EigenLayer.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice See the `StrategyManager` contract itself for implementation details.
 */
interface IStrategyManager {
    /**
     * @notice Emitted when a new deposit occurs on behalf of `staker`.
     * @param staker Is the staker who is depositing funds into EigenLayer.
     * @param strategy Is the strategy that `staker` has deposited into.
     * @param token Is the token that `staker` deposited.
     * @param shares Is the number of new shares `staker` has been granted in `strategy`.
     */
    event Deposit(address staker, IERC20 token, IStrategy strategy, uint256 shares);

    /// @notice Emitted when `thirdPartyTransfersForbidden` is updated for a strategy and value by the owner
    event UpdatedThirdPartyTransfersForbidden(IStrategy strategy, bool value);

    /// @notice Emitted when the `strategyWhitelister` is changed
    event StrategyWhitelisterChanged(address previousAddress, address newAddress);

    /// @notice Emitted when a strategy is added to the approved list of strategies for deposit
    event StrategyAddedToDepositWhitelist(IStrategy strategy);

    /// @notice Emitted when a strategy is removed from the approved list of strategies for deposit
    event StrategyRemovedFromDepositWhitelist(IStrategy strategy);

    /**
     * @notice Deposits `amount` of `token` into the specified `strategy`, with the resultant shares credited to `msg.sender`
     * @param strategy is the specified strategy where deposit is to be made,
     * @param token is the denomination in which the deposit is to be made,
     * @param amount is the amount of token to be deposited in the strategy by the staker
     * @return shares The amount of new shares in the `strategy` created as part of the action.
     * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf.
     * @dev Cannot be called by an address that is 'frozen' (this function will revert if the `msg.sender` is frozen).
     *
     * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended.  This can lead to attack vectors
     *          where the token balance and corresponding strategy shares are not in sync upon reentrancy.
     */
    function depositIntoStrategy(IStrategy strategy, IERC20 token, uint256 amount) external returns (uint256 shares);

    /**
     * @notice Used for depositing an asset into the specified strategy with the resultant shares credited to `staker`,
     * who must sign off on the action.
     * Note that the assets are transferred out/from the `msg.sender`, not from the `staker`; this function is explicitly designed
     * purely to help one address deposit 'for' another.
     * @param strategy is the specified strategy where deposit is to be made,
     * @param token is the denomination in which the deposit is to be made,
     * @param amount is the amount of token to be deposited in the strategy by the staker
     * @param staker the staker that the deposited assets will be credited to
     * @param expiry the timestamp at which the signature expires
     * @param signature is a valid signature from the `staker`. either an ECDSA signature if the `staker` is an EOA, or data to forward
     * following EIP-1271 if the `staker` is a contract
     * @return shares The amount of new shares in the `strategy` created as part of the action.
     * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf.
     * @dev A signature is required for this function to eliminate the possibility of griefing attacks, specifically those
     * targeting stakers who may be attempting to undelegate.
     * @dev Cannot be called if thirdPartyTransfersForbidden is set to true for this strategy
     *
     *  WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended.  This can lead to attack vectors
     *          where the token balance and corresponding strategy shares are not in sync upon reentrancy
     */
    function depositIntoStrategyWithSignature(
        IStrategy strategy,
        IERC20 token,
        uint256 amount,
        address staker,
        uint256 expiry,
        bytes memory signature
    ) external returns (uint256 shares);

    /// @notice Used by the DelegationManager to remove a Staker's shares from a particular strategy when entering the withdrawal queue
    function removeShares(address staker, IStrategy strategy, uint256 shares) external;

    /// @notice Used by the DelegationManager to award a Staker some shares that have passed through the withdrawal queue
    function addShares(address staker, IERC20 token, IStrategy strategy, uint256 shares) external;
    
    /// @notice Used by the DelegationManager to convert withdrawn shares to tokens and send them to a recipient
    function withdrawSharesAsTokens(address recipient, IStrategy strategy, uint256 shares, IERC20 token) external;

    /// @notice Returns the current shares of `user` in `strategy`
    function stakerStrategyShares(address user, IStrategy strategy) external view returns (uint256 shares);

    /**
     * @notice Get all details on the staker's deposits and corresponding shares
     * @return (staker's strategies, shares in these strategies)
     */
    function getDeposits(address staker) external view returns (IStrategy[] memory, uint256[] memory);

    /// @notice Simple getter function that returns `stakerStrategyList[staker].length`.
    function stakerStrategyListLength(address staker) external view returns (uint256);

    /**
     * @notice Owner-only function that adds the provided Strategies to the 'whitelist' of strategies that stakers can deposit into
     * @param strategiesToWhitelist Strategies that will be added to the `strategyIsWhitelistedForDeposit` mapping (if they aren't in it already)
     * @param thirdPartyTransfersForbiddenValues bool values to set `thirdPartyTransfersForbidden` to for each strategy
     */
    function addStrategiesToDepositWhitelist(
        IStrategy[] calldata strategiesToWhitelist,
        bool[] calldata thirdPartyTransfersForbiddenValues
    ) external;

    /**
     * @notice Owner-only function that removes the provided Strategies from the 'whitelist' of strategies that stakers can deposit into
     * @param strategiesToRemoveFromWhitelist Strategies that will be removed to the `strategyIsWhitelistedForDeposit` mapping (if they are in it)
     */
    function removeStrategiesFromDepositWhitelist(IStrategy[] calldata strategiesToRemoveFromWhitelist) external;

    /// @notice Returns the single, central Delegation contract of EigenLayer
    function delegation() external view returns (IDelegationManager);

    /// @notice Returns the single, central Slasher contract of EigenLayer
    function slasher() external view returns (ISlasher);

    /// @notice Returns the EigenPodManager contract of EigenLayer
    function eigenPodManager() external view returns (IEigenPodManager);

    /// @notice Returns the address of the `strategyWhitelister`
    function strategyWhitelister() external view returns (address);

    /**
     * @notice Returns bool for whether or not `strategy` enables credit transfers. i.e enabling
     * depositIntoStrategyWithSignature calls or queueing withdrawals to a different address than the staker.
     */
    function thirdPartyTransfersForbidden(IStrategy strategy) external view returns (bool);

// LIMITED BACKWARDS-COMPATIBILITY FOR DEPRECATED FUNCTIONALITY
    // packed struct for queued withdrawals; helps deal with stack-too-deep errors
    struct DeprecatedStruct_WithdrawerAndNonce {
        address withdrawer;
        uint96 nonce;
    }

    /**
     * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored.
     * In functions that operate on existing queued withdrawals -- e.g. `startQueuedWithdrawalWaitingPeriod` or `completeQueuedWithdrawal`,
     * the data is resubmitted and the hash of the submitted data is computed by `calculateWithdrawalRoot` and checked against the
     * stored hash in order to confirm the integrity of the submitted data.
     */
    struct DeprecatedStruct_QueuedWithdrawal {
        IStrategy[] strategies;
        uint256[] shares;
        address staker;
        DeprecatedStruct_WithdrawerAndNonce withdrawerAndNonce;
        uint32 withdrawalStartBlock;
        address delegatedAddress;
    }

    function migrateQueuedWithdrawal(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external returns (bool, bytes32);

    function calculateWithdrawalRoot(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external pure returns (bytes32);

    function withdrawalRootPending(bytes32 _withdrawalRoot) external view returns (bool);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "./IStrategy.sol";
import "./ISignatureUtils.sol";
import "./IStrategyManager.sol";

/**
 * @title DelegationManager
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice  This is the contract for delegation in EigenLayer. The main functionalities of this contract are
 * - enabling anyone to register as an operator in EigenLayer
 * - allowing operators to specify parameters related to stakers who delegate to them
 * - enabling any staker to delegate its stake to the operator of its choice (a given staker can only delegate to a single operator at a time)
 * - enabling a staker to undelegate its assets from the operator it is delegated to (performed as part of the withdrawal process, initiated through the StrategyManager)
 */
interface IDelegationManager is ISignatureUtils {
    // @notice Struct used for storing information about a single operator who has registered with EigenLayer
    struct OperatorDetails {
        // @notice address to receive the rewards that the operator earns via serving applications built on EigenLayer.
        address earningsReceiver;
        /**
         * @notice Address to verify signatures when a staker wishes to delegate to the operator, as well as controlling "forced undelegations".
         * @dev Signature verification follows these rules:
         * 1) If this address is left as address(0), then any staker will be free to delegate to the operator, i.e. no signature verification will be performed.
         * 2) If this address is an EOA (i.e. it has no code), then we follow standard ECDSA signature verification for delegations to the operator.
         * 3) If this address is a contract (i.e. it has code) then we forward a call to the contract and verify that it returns the correct EIP-1271 "magic value".
         */
        address delegationApprover;
        /**
         * @notice A minimum delay -- measured in blocks -- enforced between:
         * 1) the operator signalling their intent to register for a service, via calling `Slasher.optIntoSlashing`
         * and
         * 2) the operator completing registration for the service, via the service ultimately calling `Slasher.recordFirstStakeUpdate`
         * @dev note that for a specific operator, this value *cannot decrease*, i.e. if the operator wishes to modify their OperatorDetails,
         * then they are only allowed to either increase this value or keep it the same.
         */
        uint32 stakerOptOutWindowBlocks;
    }

    /**
     * @notice Abstract struct used in calculating an EIP712 signature for a staker to approve that they (the staker themselves) delegate to a specific operator.
     * @dev Used in computing the `STAKER_DELEGATION_TYPEHASH` and as a reference in the computation of the stakerDigestHash in the `delegateToBySignature` function.
     */
    struct StakerDelegation {
        // the staker who is delegating
        address staker;
        // the operator being delegated to
        address operator;
        // the staker's nonce
        uint256 nonce;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }

    /**
     * @notice Abstract struct used in calculating an EIP712 signature for an operator's delegationApprover to approve that a specific staker delegate to the operator.
     * @dev Used in computing the `DELEGATION_APPROVAL_TYPEHASH` and as a reference in the computation of the approverDigestHash in the `_delegate` function.
     */
    struct DelegationApproval {
        // the staker who is delegating
        address staker;
        // the operator being delegated to
        address operator;
        // the operator's provided salt
        bytes32 salt;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }

    /**
     * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored.
     * In functions that operate on existing queued withdrawals -- e.g. completeQueuedWithdrawal`, the data is resubmitted and the hash of the submitted
     * data is computed by `calculateWithdrawalRoot` and checked against the stored hash in order to confirm the integrity of the submitted data.
     */
    struct Withdrawal {
        // The address that originated the Withdrawal
        address staker;
        // The address that the staker was delegated to at the time that the Withdrawal was created
        address delegatedTo;
        // The address that can complete the Withdrawal + will receive funds when completing the withdrawal
        address withdrawer;
        // Nonce used to guarantee that otherwise identical withdrawals have unique hashes
        uint256 nonce;
        // Block number when the Withdrawal was created
        uint32 startBlock;
        // Array of strategies that the Withdrawal contains
        IStrategy[] strategies;
        // Array containing the amount of shares in each Strategy in the `strategies` array
        uint256[] shares;
    }

    struct QueuedWithdrawalParams {
        // Array of strategies that the QueuedWithdrawal contains
        IStrategy[] strategies;
        // Array containing the amount of shares in each Strategy in the `strategies` array
        uint256[] shares;
        // The address of the withdrawer
        address withdrawer;
    }

    // @notice Emitted when a new operator registers in EigenLayer and provides their OperatorDetails.
    event OperatorRegistered(address indexed operator, OperatorDetails operatorDetails);

    /// @notice Emitted when an operator updates their OperatorDetails to @param newOperatorDetails
    event OperatorDetailsModified(address indexed operator, OperatorDetails newOperatorDetails);

    /**
     * @notice Emitted when @param operator indicates that they are updating their MetadataURI string
     * @dev Note that these strings are *never stored in storage* and are instead purely emitted in events for off-chain indexing
     */
    event OperatorMetadataURIUpdated(address indexed operator, string metadataURI);

    /// @notice Emitted whenever an operator's shares are increased for a given strategy. Note that shares is the delta in the operator's shares.
    event OperatorSharesIncreased(address indexed operator, address staker, IStrategy strategy, uint256 shares);

    /// @notice Emitted whenever an operator's shares are decreased for a given strategy. Note that shares is the delta in the operator's shares.
    event OperatorSharesDecreased(address indexed operator, address staker, IStrategy strategy, uint256 shares);

    /// @notice Emitted when @param staker delegates to @param operator.
    event StakerDelegated(address indexed staker, address indexed operator);

    /// @notice Emitted when @param staker undelegates from @param operator.
    event StakerUndelegated(address indexed staker, address indexed operator);

    /// @notice Emitted when @param staker is undelegated via a call not originating from the staker themself
    event StakerForceUndelegated(address indexed staker, address indexed operator);

    /**
     * @notice Emitted when a new withdrawal is queued.
     * @param withdrawalRoot Is the hash of the `withdrawal`.
     * @param withdrawal Is the withdrawal itself.
     */
    event WithdrawalQueued(bytes32 withdrawalRoot, Withdrawal withdrawal);

    /// @notice Emitted when a queued withdrawal is completed
    event WithdrawalCompleted(bytes32 withdrawalRoot);

    /// @notice Emitted when a queued withdrawal is *migrated* from the StrategyManager to the DelegationManager
    event WithdrawalMigrated(bytes32 oldWithdrawalRoot, bytes32 newWithdrawalRoot);
    
    /// @notice Emitted when the `minWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`.
    event MinWithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue);

    /// @notice Emitted when the `strategyWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`.
    event StrategyWithdrawalDelayBlocksSet(IStrategy strategy, uint256 previousValue, uint256 newValue);

    /**
     * @notice Registers the caller as an operator in EigenLayer.
     * @param registeringOperatorDetails is the `OperatorDetails` for the operator.
     * @param metadataURI is a URI for the operator's metadata, i.e. a link providing more details on the operator.
     *
     * @dev Once an operator is registered, they cannot 'deregister' as an operator, and they will forever be considered "delegated to themself".
     * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0).
     * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event
     */
    function registerAsOperator(
        OperatorDetails calldata registeringOperatorDetails,
        string calldata metadataURI
    ) external;

    /**
     * @notice Updates an operator's stored `OperatorDetails`.
     * @param newOperatorDetails is the updated `OperatorDetails` for the operator, to replace their current OperatorDetails`.
     *
     * @dev The caller must have previously registered as an operator in EigenLayer.
     * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0).
     */
    function modifyOperatorDetails(OperatorDetails calldata newOperatorDetails) external;

    /**
     * @notice Called by an operator to emit an `OperatorMetadataURIUpdated` event indicating the information has updated.
     * @param metadataURI The URI for metadata associated with an operator
     * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event
     */
    function updateOperatorMetadataURI(string calldata metadataURI) external;

    /**
     * @notice Caller delegates their stake to an operator.
     * @param operator The account (`msg.sender`) is delegating its assets to for use in serving applications built on EigenLayer.
     * @param approverSignatureAndExpiry Verifies the operator approves of this delegation
     * @param approverSalt A unique single use value tied to an individual signature.
     * @dev The approverSignatureAndExpiry is used in the event that:
     *          1) the operator's `delegationApprover` address is set to a non-zero value.
     *                  AND
     *          2) neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator
     *             or their delegationApprover is the `msg.sender`, then approval is assumed.
     * @dev In the event that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input
     * in this case to save on complexity + gas costs
     */
    function delegateTo(
        address operator,
        SignatureWithExpiry memory approverSignatureAndExpiry,
        bytes32 approverSalt
    ) external;

    /**
     * @notice Caller delegates a staker's stake to an operator with valid signatures from both parties.
     * @param staker The account delegating stake to an `operator` account
     * @param operator The account (`staker`) is delegating its assets to for use in serving applications built on EigenLayer.
     * @param stakerSignatureAndExpiry Signed data from the staker authorizing delegating stake to an operator
     * @param approverSignatureAndExpiry is a parameter that will be used for verifying that the operator approves of this delegation action in the event that:
     * @param approverSalt Is a salt used to help guarantee signature uniqueness. Each salt can only be used once by a given approver.
     *
     * @dev If `staker` is an EOA, then `stakerSignature` is verified to be a valid ECDSA stakerSignature from `staker`, indicating their intention for this action.
     * @dev If `staker` is a contract, then `stakerSignature` will be checked according to EIP-1271.
     * @dev the operator's `delegationApprover` address is set to a non-zero value.
     * @dev neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator or their delegationApprover
     * is the `msg.sender`, then approval is assumed.
     * @dev This function will revert if the current `block.timestamp` is equal to or exceeds the expiry
     * @dev In the case that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input
     * in this case to save on complexity + gas costs
     */
    function delegateToBySignature(
        address staker,
        address operator,
        SignatureWithExpiry memory stakerSignatureAndExpiry,
        SignatureWithExpiry memory approverSignatureAndExpiry,
        bytes32 approverSalt
    ) external;

    /**
     * @notice Undelegates the staker from the operator who they are delegated to. Puts the staker into the "undelegation limbo" mode of the EigenPodManager
     * and queues a withdrawal of all of the staker's shares in the StrategyManager (to the staker), if necessary.
     * @param staker The account to be undelegated.
     * @return withdrawalRoot The root of the newly queued withdrawal, if a withdrawal was queued. Otherwise just bytes32(0).
     *
     * @dev Reverts if the `staker` is also an operator, since operators are not allowed to undelegate from themselves.
     * @dev Reverts if the caller is not the staker, nor the operator who the staker is delegated to, nor the operator's specified "delegationApprover"
     * @dev Reverts if the `staker` is already undelegated.
     */
    function undelegate(address staker) external returns (bytes32[] memory withdrawalRoot);

    /**
     * Allows a staker to withdraw some shares. Withdrawn shares/strategies are immediately removed
     * from the staker. If the staker is delegated, withdrawn shares/strategies are also removed from
     * their operator.
     *
     * All withdrawn shares/strategies are placed in a queue and can be fully withdrawn after a delay.
     */
    function queueWithdrawals(
        QueuedWithdrawalParams[] calldata queuedWithdrawalParams
    ) external returns (bytes32[] memory);

    /**
     * @notice Used to complete the specified `withdrawal`. The caller must match `withdrawal.withdrawer`
     * @param withdrawal The Withdrawal to complete.
     * @param tokens Array in which the i-th entry specifies the `token` input to the 'withdraw' function of the i-th Strategy in the `withdrawal.strategies` array.
     * This input can be provided with zero length if `receiveAsTokens` is set to 'false' (since in that case, this input will be unused)
     * @param middlewareTimesIndex is the index in the operator that the staker who triggered the withdrawal was delegated to's middleware times array
     * @param receiveAsTokens If true, the shares specified in the withdrawal will be withdrawn from the specified strategies themselves
     * and sent to the caller, through calls to `withdrawal.strategies[i].withdraw`. If false, then the shares in the specified strategies
     * will simply be transferred to the caller directly.
     * @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw`
     * @dev beaconChainETHStrategy shares are non-transferrable, so if `receiveAsTokens = false` and `withdrawal.withdrawer != withdrawal.staker`, note that
     * any beaconChainETHStrategy shares in the `withdrawal` will be _returned to the staker_, rather than transferred to the withdrawer, unlike shares in
     * any other strategies, which will be transferred to the withdrawer.
     */
    function completeQueuedWithdrawal(
        Withdrawal calldata withdrawal,
        IERC20[] calldata tokens,
        uint256 middlewareTimesIndex,
        bool receiveAsTokens
    ) external;

    /**
     * @notice Array-ified version of `completeQueuedWithdrawal`.
     * Used to complete the specified `withdrawals`. The function caller must match `withdrawals[...].withdrawer`
     * @param withdrawals The Withdrawals to complete.
     * @param tokens Array of tokens for each Withdrawal. See `completeQueuedWithdrawal` for the usage of a single array.
     * @param middlewareTimesIndexes One index to reference per Withdrawal. See `completeQueuedWithdrawal` for the usage of a single index.
     * @param receiveAsTokens Whether or not to complete each withdrawal as tokens. See `completeQueuedWithdrawal` for the usage of a single boolean.
     * @dev See `completeQueuedWithdrawal` for relevant dev tags
     */
    function completeQueuedWithdrawals(
        Withdrawal[] calldata withdrawals,
        IERC20[][] calldata tokens,
        uint256[] calldata middlewareTimesIndexes,
        bool[] calldata receiveAsTokens
    ) external;

    /**
     * @notice Increases a staker's delegated share balance in a strategy.
     * @param staker The address to increase the delegated shares for their operator.
     * @param strategy The strategy in which to increase the delegated shares.
     * @param shares The number of shares to increase.
     *
     * @dev *If the staker is actively delegated*, then increases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing.
     * @dev Callable only by the StrategyManager or EigenPodManager.
     */
    function increaseDelegatedShares(
        address staker,
        IStrategy strategy,
        uint256 shares
    ) external;

    /**
     * @notice Decreases a staker's delegated share balance in a strategy.
     * @param staker The address to increase the delegated shares for their operator.
     * @param strategy The strategy in which to decrease the delegated shares.
     * @param shares The number of shares to decrease.
     *
     * @dev *If the staker is actively delegated*, then decreases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing.
     * @dev Callable only by the StrategyManager or EigenPodManager.
     */
    function decreaseDelegatedShares(
        address staker,
        IStrategy strategy,
        uint256 shares
    ) external;

    /**
     * @notice returns the address of the operator that `staker` is delegated to.
     * @notice Mapping: staker => operator whom the staker is currently delegated to.
     * @dev Note that returning address(0) indicates that the staker is not actively delegated to any operator.
     */
    function delegatedTo(address staker) external view returns (address);

    /**
     * @notice Returns the OperatorDetails struct associated with an `operator`.
     */
    function operatorDetails(address operator) external view returns (OperatorDetails memory);

    /*
     * @notice Returns the earnings receiver address for an operator
     */
    function earningsReceiver(address operator) external view returns (address);

    /**
     * @notice Returns the delegationApprover account for an operator
     */
    function delegationApprover(address operator) external view returns (address);

    /**
     * @notice Returns the stakerOptOutWindowBlocks for an operator
     */
    function stakerOptOutWindowBlocks(address operator) external view returns (uint256);

    /**
     * @notice Given array of strategies, returns array of shares for the operator
     */
    function getOperatorShares(
        address operator,
        IStrategy[] memory strategies
    ) external view returns (uint256[] memory);

    /**
     * @notice Given a list of strategies, return the minimum number of blocks that must pass to withdraw
     * from all the inputted strategies. Return value is >= minWithdrawalDelayBlocks as this is the global min withdrawal delay.
     * @param strategies The strategies to check withdrawal delays for
     */
    function getWithdrawalDelay(IStrategy[] calldata strategies) external view returns (uint256);

    /**
     * @notice returns the total number of shares in `strategy` that are delegated to `operator`.
     * @notice Mapping: operator => strategy => total number of shares in the strategy delegated to the operator.
     * @dev By design, the following invariant should hold for each Strategy:
     * (operator's shares in delegation manager) = sum (shares above zero of all stakers delegated to operator)
     * = sum (delegateable shares of all stakers delegated to the operator)
     */
    function operatorShares(address operator, IStrategy strategy) external view returns (uint256);

    /**
     * @notice Returns 'true' if `staker` *is* actively delegated, and 'false' otherwise.
     */
    function isDelegated(address staker) external view returns (bool);

    /**
     * @notice Returns true is an operator has previously registered for delegation.
     */
    function isOperator(address operator) external view returns (bool);

    /// @notice Mapping: staker => number of signed delegation nonces (used in `delegateToBySignature`) from the staker that the contract has already checked
    function stakerNonce(address staker) external view returns (uint256);

    /**
     * @notice Mapping: delegationApprover => 32-byte salt => whether or not the salt has already been used by the delegationApprover.
     * @dev Salts are used in the `delegateTo` and `delegateToBySignature` functions. Note that these functions only process the delegationApprover's
     * signature + the provided salt if the operator being delegated to has specified a nonzero address as their `delegationApprover`.
     */
    function delegationApproverSaltIsSpent(address _delegationApprover, bytes32 salt) external view returns (bool);

    /**
     * @notice Minimum delay enforced by this contract for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner,
     * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced).
     * Note that strategies each have a separate withdrawal delay, which can be greater than this value. So the minimum number of blocks that must pass
     * to withdraw a strategy is MAX(minWithdrawalDelayBlocks, strategyWithdrawalDelayBlocks[strategy])
     */
    function minWithdrawalDelayBlocks() external view returns (uint256);

    /**
     * @notice Minimum delay enforced by this contract per Strategy for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner,
     * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced).
     */
    function strategyWithdrawalDelayBlocks(IStrategy strategy) external view returns (uint256);

    /**
     * @notice Calculates the digestHash for a `staker` to sign to delegate to an `operator`
     * @param staker The signing staker
     * @param operator The operator who is being delegated to
     * @param expiry The desired expiry time of the staker's signature
     */
    function calculateCurrentStakerDelegationDigestHash(
        address staker,
        address operator,
        uint256 expiry
    ) external view returns (bytes32);

    /**
     * @notice Calculates the digest hash to be signed and used in the `delegateToBySignature` function
     * @param staker The signing staker
     * @param _stakerNonce The nonce of the staker. In practice we use the staker's current nonce, stored at `stakerNonce[staker]`
     * @param operator The operator who is being delegated to
     * @param expiry The desired expiry time of the staker's signature
     */
    function calculateStakerDelegationDigestHash(
        address staker,
        uint256 _stakerNonce,
        address operator,
        uint256 expiry
    ) external view returns (bytes32);

    /**
     * @notice Calculates the digest hash to be signed by the operator's delegationApprove and used in the `delegateTo` and `delegateToBySignature` functions.
     * @param staker The account delegating their stake
     * @param operator The account receiving delegated stake
     * @param _delegationApprover the operator's `delegationApprover` who will be signing the delegationHash (in general)
     * @param approverSalt A unique and single use value associated with the approver signature.
     * @param expiry Time after which the approver's signature becomes invalid
     */
    function calculateDelegationApprovalDigestHash(
        address staker,
        address operator,
        address _delegationApprover,
        bytes32 approverSalt,
        uint256 expiry
    ) external view returns (bytes32);

    /// @notice The EIP-712 typehash for the contract's domain
    function DOMAIN_TYPEHASH() external view returns (bytes32);

    /// @notice The EIP-712 typehash for the StakerDelegation struct used by the contract
    function STAKER_DELEGATION_TYPEHASH() external view returns (bytes32);

    /// @notice The EIP-712 typehash for the DelegationApproval struct used by the contract
    function DELEGATION_APPROVAL_TYPEHASH() external view returns (bytes32);

    /**
     * @notice Getter function for the current EIP-712 domain separator for this contract.
     *
     * @dev The domain separator will change in the event of a fork that changes the ChainID.
     * @dev By introducing a domain separator the DApp developers are guaranteed that there can be no signature collision.
     * for more detailed information please read EIP-712.
     */
    function domainSeparator() external view returns (bytes32);
    
    /// @notice Mapping: staker => cumulative number of queued withdrawals they have ever initiated.
    /// @dev This only increments (doesn't decrement), and is used to help ensure that otherwise identical withdrawals have unique hashes.
    function cumulativeWithdrawalsQueued(address staker) external view returns (uint256);

    /// @notice Returns the keccak256 hash of `withdrawal`.
    function calculateWithdrawalRoot(Withdrawal memory withdrawal) external pure returns (bytes32);

    function migrateQueuedWithdrawals(IStrategyManager.DeprecatedStruct_QueuedWithdrawal[] memory withdrawalsToQueue) external;

    function pendingWithdrawals(bytes32 withdrawalRoot) external view returns (bool);

    function beaconChainETHStrategy() external view returns (IStrategy);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.0;

/**
 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822ProxiableUpgradeable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)

pragma solidity ^0.8.2;

import "../beacon/IBeaconUpgradeable.sol";
import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../../utils/AddressUpgradeable.sol";
import "../../utils/StorageSlotUpgradeable.sol";
import "../utils/Initializable.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 *
 * _Available since v4.1._
 *
 * @custom:oz-upgrades-unsafe-allow delegatecall
 */
abstract contract ERC1967UpgradeUpgradeable is Initializable {
    function __ERC1967Upgrade_init() internal onlyInitializing {
    }

    function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
    }
    // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
    bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Returns the current implementation address.
     */
    function _getImplementation() internal view returns (address) {
        return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
        StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Perform implementation upgrade
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeTo(address newImplementation) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);
    }

    /**
     * @dev Perform implementation upgrade with additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCall(
        address newImplementation,
        bytes memory data,
        bool forceCall
    ) internal {
        _upgradeTo(newImplementation);
        if (data.length > 0 || forceCall) {
            _functionDelegateCall(newImplementation, data);
        }
    }

    /**
     * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCallUUPS(
        address newImplementation,
        bytes memory data,
        bool forceCall
    ) internal {
        // Upgrades from old implementations will perform a rollback test. This test requires the new
        // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
        // this special case will break upgrade paths from old UUPS implementation to new ones.
        if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
            _setImplementation(newImplementation);
        } else {
            try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
            } catch {
                revert("ERC1967Upgrade: new implementation is not UUPS");
            }
            _upgradeToAndCall(newImplementation, data, forceCall);
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Returns the current admin.
     */
    function _getAdmin() internal view returns (address) {
        return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        require(newAdmin != address(0), "ERC1967: new admin is the zero address");
        StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {AdminChanged} event.
     */
    function _changeAdmin(address newAdmin) internal {
        emit AdminChanged(_getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
     */
    bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Emitted when the beacon is upgraded.
     */
    event BeaconUpgraded(address indexed beacon);

    /**
     * @dev Returns the current beacon.
     */
    function _getBeacon() internal view returns (address) {
        return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
        require(
            AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
            "ERC1967: beacon implementation is not a contract"
        );
        StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
    }

    /**
     * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
     * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
     *
     * Emits a {BeaconUpgraded} event.
     */
    function _upgradeBeaconToAndCall(
        address newBeacon,
        bytes memory data,
        bool forceCall
    ) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);
        if (data.length > 0 || forceCall) {
            _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
        }
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
        require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "../eigenlayer-interfaces/IStrategyManager.sol";
import "../eigenlayer-interfaces/IStrategy.sol";
import "../eigenlayer-interfaces/IPauserRegistry.sol";

// cbETH-ETH mainnet: 0x5FAE7E604FC3e24fd43A72867ceBaC94c65b404A
// wBETH-ETH mainnet: 0xBfAb6FA95E0091ed66058ad493189D2cB29385E6
// stETH-ETH mainnet: 0xDC24316b9AE028F1497c275EB9192a3Ea0f67022
interface ICurvePool {
    function exchange_underlying(uint256 i, uint256 j, uint256 dx, uint256 min_dy) external returns (uint256);
    function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external returns (uint256);
    function get_virtual_price() external view returns (uint256);
}

interface ICurvePoolQuoter1 {
    function get_dy(int128 i, int128 j, uint256 dx) external view returns (uint256); // wBETH-ETH, stETH-ETH
}

interface ICurvePoolQuoter2 {
    function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256); // cbETH-ETH
}

// mint forwarder: 0xfae23c30d383DF59D3E031C325a73d454e8721a6
// mainnet: 0xBe9895146f7AF43049ca1c1AE358B0541Ea49704
interface IcbETH is IERC20 {
    function mint(address _to, uint256 _amount) external;
    function exchangeRate() external view returns (uint256 _exchangeRate);
}

// mainnet: 0xa2E3356610840701BDf5611a53974510Ae27E2e1
interface IwBETH is IERC20 {
    function deposit(address referral) payable external;
    function mint(address _to, uint256 _amount) external;
    function exchangeRate() external view returns (uint256 _exchangeRate);
}

// mainnet: 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84
interface ILido is IERC20 {
    function getTotalPooledEther() external view returns (uint256);
    function getTotalShares() external view returns (uint256);

    function submit(address _referral) external payable returns (uint256);
    function nonces(address _user) external view returns (uint256);
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// mainnet: 0x858646372CC42E1A627fcE94aa7A7033e7CF075A
interface IEigenLayerStrategyManager is IStrategyManager {
    function withdrawalRootPending(bytes32 _withdrawalRoot) external view returns (bool);
    function numWithdrawalsQueued(address _user) external view returns (uint96);
    function pauserRegistry() external returns (IPauserRegistry);
    function paused(uint8 index) external view returns (bool);
    function unpause(uint256 newPausedStatus) external;

    // For testing
    function queueWithdrawal( uint256[] calldata strategyIndexes, IStrategy[] calldata strategies, uint256[] calldata shares, address withdrawer, bool undelegateIfPossible ) external returns(bytes32);
}

interface IEigenLayerStrategyTVLLimits is IStrategy {
    function getTVLLimits() external view returns (uint256, uint256);
    function setTVLLimits(uint256 newMaxPerDeposit, uint256 newMaxTotalDeposits) external;
    function pauserRegistry() external returns (IPauserRegistry);
    function paused(uint8 index) external view returns (bool);
    function unpause(uint256 newPausedStatus) external;
}

// mainnet: 0x889edC2eDab5f40e902b864aD4d7AdE8E412F9B1
interface ILidoWithdrawalQueue {
    struct WithdrawalRequestStatus {
        /// @notice stETH token amount that was locked on withdrawal queue for this request
        uint256 amountOfStETH;
        /// @notice amount of stETH shares locked on withdrawal queue for this request
        uint256 amountOfShares;
        /// @notice address that can claim or transfer this request
        address owner;
        /// @notice timestamp of when the request was created, in seconds
        uint256 timestamp;
        /// @notice true, if request is finalized
        bool isFinalized;
        /// @notice true, if request is claimed. Request is claimable if (isFinalized && !isClaimed)
        bool isClaimed;
    }

    function FINALIZE_ROLE() external view returns (bytes32);
    function MAX_STETH_WITHDRAWAL_AMOUNT() external view returns (uint256);
    function MIN_STETH_WITHDRAWAL_AMOUNT() external view returns (uint256);
    function requestWithdrawals(uint256[] calldata _amount, address _depositor) external returns (uint256[] memory);
    function claimWithdrawals(uint256[] calldata _requestIds, uint256[] calldata _hints) external;

    function finalize(uint256 _lastRequestIdToBeFinalized, uint256 _maxShareRate) external payable;
    function prefinalize(uint256[] calldata _batches, uint256 _maxShareRate) external view returns (uint256 ethToLock, uint256 sharesToBurn);

    function findCheckpointHints(uint256[] calldata _requestIds, uint256 _firstIndex, uint256 _lastIndex) external view returns (uint256[] memory hintIds);
    function getRoleMember(bytes32 _role, uint256 _index) external view returns (address);
    function getLastRequestId() external view returns (uint256);
    function getLastCheckpointIndex() external view returns (uint256);
    function getWithdrawalRequests(address _owner) external view returns (uint256[] memory requestsIds);
    function getWithdrawalStatus(uint256[] memory _requestIds) external view returns (WithdrawalRequestStatus[] memory statuses);
}

interface ILiquifier {
    
    struct PermitInput {
        uint256 value;
        uint256 deadline;
        uint8 v;
        bytes32 r;
        bytes32 s;
    } 

    struct TokenInfo {
        uint128 strategyShare;
        uint128 ethAmountPendingForWithdrawals;
        IStrategy strategy;
        bool isWhitelisted;
        uint16 discountInBasisPoints;
        uint32 timeBoundCapClockStartTime;
        uint32 timeBoundCapInEther;
        uint32 totalCapInEther;
        uint96 totalDepositedThisPeriod;
        uint96 totalDeposited;
        bool isL2Eth;
    }

    function depositWithERC20(address _token, uint256 _amount, address _referral) external returns (uint256);
    function quoteByFairValue(address _token, uint256 _amount) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "./IStakingManager.sol";

interface ILiquidityPool {

    struct PermitInput {
        uint256 value;
        uint256 deadline;
        uint8 v;
        bytes32 r;
        bytes32 s;
    } 

    enum SourceOfFunds {
        UNDEFINED,
        EETH,
        ETHER_FAN,
        DELEGATED_STAKING
    }

    struct FundStatistics {
        uint32 numberOfValidators;
        uint32 targetWeight;
    }

    // Necessary to preserve "statelessness" of dutyForWeek().
    // Handles case where new users join/leave holder list during an active slot
    struct HoldersUpdate {
        uint32 timestamp;
        uint32 startOfSlotNumOwners;
    }

    struct BnftHolder {
        address holder;
        uint32 timestamp;
    }

    struct BnftHoldersIndex {
        bool registered;
        uint32 index;
    }

    function numPendingDeposits() external view returns (uint32);
    function totalValueOutOfLp() external view returns (uint128);
    function totalValueInLp() external view returns (uint128);
    function getTotalEtherClaimOf(address _user) external view returns (uint256);
    function getTotalPooledEther() external view returns (uint256);
    function sharesForAmount(uint256 _amount) external view returns (uint256);
    function sharesForWithdrawalAmount(uint256 _amount) external view returns (uint256);
    function amountForShare(uint256 _share) external view returns (uint256);

    function deposit() external payable returns (uint256);
    function deposit(address _referral) external payable returns (uint256);
    function deposit(address _user, address _referral) external payable returns (uint256);
    function depositToRecipient(address _recipient, uint256 _amount, address _referral) external returns (uint256);
    function withdraw(address _recipient, uint256 _amount) external returns (uint256);
    function requestWithdraw(address recipient, uint256 amount) external returns (uint256);
    function requestWithdrawWithPermit(address _owner, uint256 _amount, PermitInput calldata _permit) external returns (uint256);
    function requestMembershipNFTWithdraw(address recipient, uint256 amount, uint256 fee) external returns (uint256);

    function batchDepositAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators) external payable returns (uint256[] memory);
    function batchDepositAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators, uint256 _validatorIdToCoUseWithdrawalSafe) external payable returns (uint256[] memory);
    function batchRegisterAsBnftHolder(bytes32 _depositRoot, uint256[] calldata _validatorIds, IStakingManager.DepositData[] calldata _registerValidatorDepositData, bytes32[] calldata _depositDataRootApproval, bytes[] calldata _signaturesForApprovalDeposit) external;
    function batchApproveRegistration(uint256[] memory _validatorIds, bytes[] calldata _pubKey, bytes[] calldata _signature) external;
    function batchCancelDeposit(uint256[] calldata _validatorIds) external;
    function sendExitRequests(uint256[] calldata _validatorIds) external;

    function rebase(int128 _accruedRewards) external;
    function payProtocolFees(uint128 _protocolFees) external;
    function addEthAmountLockedForWithdrawal(uint128 _amount) external;
    function reduceEthAmountLockedForWithdrawal(uint128 _amount) external;
    
    function setStakingTargetWeights(uint32 _eEthWeight, uint32 _etherFanWeight) external;
    function updateAdmin(address _newAdmin, bool _isAdmin) external;
    function pauseContract() external;
    function unPauseContract() external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721ReceiverUpgradeable {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IRegulationsManager {
    function initialize() external;

    function confirmEligibility(bytes32 hash) external;

    function removeFromWhitelist(address _user) external;

    function initializeNewWhitelist(bytes32 _newVersionHash) external;

    function isEligible(uint32 _whitelistVersion, address _user) external view returns (bool);

    function whitelistVersion() external view returns (uint32);

}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "./ILiquidityPool.sol";

interface IStakingManager {
    struct DepositData {
        bytes publicKey;
        bytes signature;
        bytes32 depositDataRoot;
        string ipfsHashForEncryptedValidatorKey;
    }

    struct StakerInfo {
        address staker;
        ILiquidityPool.SourceOfFunds sourceOfFund;
    }

    function bidIdToStaker(uint256 id) external view returns (address);

    function getEtherFiNodeBeacon() external view returns (address);

    function initialize(address _auctionAddress, address _depositContractAddress) external;
    function setEtherFiNodesManagerAddress(address _managerAddress) external;
    function setLiquidityPoolAddress(address _liquidityPoolAddress) external;
    
    function batchDepositWithBidIds(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators, address _staker, address _tnftHolder, address _bnftHolder, ILiquidityPool.SourceOfFunds source, bool _enableRestaking, uint256 _validatorIdToCoUseWithdrawalSafe) external returns (uint256[] memory);
    function batchDepositWithBidIds(uint256[] calldata _candidateBidIds, bool _enableRestaking) external payable returns (uint256[] memory);

    function batchRegisterValidators(bytes32 _depositRoot, uint256[] calldata _validatorId, DepositData[] calldata _depositData) external;
    function batchRegisterValidators(bytes32 _depositRoot, uint256[] calldata _validatorId, address _bNftRecipient, address _tNftRecipient, DepositData[] calldata _depositData, address _user) external payable;

    function batchApproveRegistration(uint256[] memory _validatorId, bytes[] calldata _pubKey, bytes[] calldata _signature, bytes32[] calldata _depositDataRootApproval) external payable;

    function batchCancelDeposit(uint256[] calldata _validatorIds) external;

    function batchCancelDepositAsBnftHolder(uint256[] calldata _validatorIds, address _caller) external;

    function instantiateEtherFiNode(bool _createEigenPod) external returns (address);

    function updateAdmin(address _address, bool _isAdmin) external;
    function pauseContract() external;
    function unPauseContract() external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;


import "./IEtherFiNode.sol";

import "../eigenlayer-interfaces/IEigenPodManager.sol";
import "../eigenlayer-interfaces/IDelegationManager.sol";
import "../eigenlayer-interfaces/IDelayedWithdrawalRouter.sol";


interface IEtherFiNodesManager {

    struct ValidatorInfo {
        uint32 validatorIndex;
        uint32 exitRequestTimestamp;
        uint32 exitTimestamp;
        IEtherFiNode.VALIDATOR_PHASE phase;
    }

    struct RewardsSplit {
        uint64 treasury;
        uint64 nodeOperator;
        uint64 tnft;
        uint64 bnft;
    }

    // VIEW functions
    function delayedWithdrawalRouter() external view returns (IDelayedWithdrawalRouter);
    function eigenPodManager() external view returns (IEigenPodManager);
    function delegationManager() external view returns (IDelegationManager);
    function treasuryContract() external view returns (address);
    function unusedWithdrawalSafes(uint256 _index) external view returns (address);

    function etherfiNodeAddress(uint256 _validatorId) external view returns (address);
    function calculateTVL(uint256 _validatorId, uint256 _beaconBalance) external view returns (uint256, uint256, uint256, uint256);
    function getFullWithdrawalPayouts(uint256 _validatorId) external view returns (uint256, uint256, uint256, uint256);
    function getNonExitPenalty(uint256 _validatorId) external view returns (uint256);
    function getRewardsPayouts(uint256 _validatorId) external view returns (uint256, uint256, uint256, uint256);
    function getWithdrawalCredentials(uint256 _validatorId) external view returns (bytes memory);
    function getValidatorInfo(uint256 _validatorId) external view returns (ValidatorInfo memory);
    function numAssociatedValidators(uint256 _validatorId) external view returns (uint256);
    function phase(uint256 _validatorId) external view returns (IEtherFiNode.VALIDATOR_PHASE phase);

    function generateWithdrawalCredentials(address _address) external view returns (bytes memory);
    function nonExitPenaltyDailyRate() external view returns (uint64);
    function nonExitPenaltyPrincipal() external view returns (uint64);
    function numberOfValidators() external view returns (uint64);
    function maxEigenlayerWithdrawals() external view returns (uint8);

    function admins(address _address) external view returns (bool);
    function operatingAdmin(address _address) external view returns (bool);

    // Non-VIEW functions    
    function updateEtherFiNode(uint256 _validatorId) external;

    function batchQueueRestakedWithdrawal(uint256[] calldata _validatorIds) external;
    function batchSendExitRequest(uint256[] calldata _validatorIds) external;
    function batchFullWithdraw(uint256[] calldata _validatorIds) external;
    function batchPartialWithdraw(uint256[] calldata _validatorIds) external;
    function fullWithdraw(uint256 _validatorId) external;
    function getUnusedWithdrawalSafesLength() external view returns (uint256);
    function incrementNumberOfValidators(uint64 _count) external;
    function markBeingSlashed(uint256[] calldata _validatorIds) external;
    function partialWithdraw(uint256 _validatorId) external;
    function processNodeExit(uint256[] calldata _validatorIds, uint32[] calldata _exitTimestamp) external;
    function allocateEtherFiNode(bool _enableRestaking) external returns (address);
    function registerValidator(uint256 _validatorId, bool _enableRestaking, address _withdrawalSafeAddress) external;
    function setValidatorPhase(uint256 _validatorId, IEtherFiNode.VALIDATOR_PHASE _phase) external;
    function setNonExitPenalty(uint64 _nonExitPenaltyDailyRate, uint64 _nonExitPenaltyPrincipal) external;
    function setStakingRewardsSplit(uint64 _treasury, uint64 _nodeOperator, uint64 _tnft, uint64 _bnf) external;
    function unregisterValidator(uint256 _validatorId) external;
    
    function updateAdmin(address _address, bool _isAdmin) external;
    function pauseContract() external;
    function unPauseContract() external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IeETH {
    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalShares() external view returns (uint256);

    function shares(address _user) external view returns (uint256);
    function balanceOf(address _user) external view returns (uint256);

    function initialize(address _liquidityPool) external;
    function mintShares(address _user, uint256 _share) external;
    function burnShares(address _user, uint256 _share) external;
    function transferFrom(address _sender, address _recipient, uint256 _amount) external returns (bool);
    function transfer(address _recipient, uint256 _amount) external returns (bool);
    function approve(address _spender, uint256 _amount) external returns (bool);
    function increaseAllowance(address _spender, uint256 _increaseAmount) external returns (bool);
    function decreaseAllowance(address _spender, uint256 _decreaseAmount) external returns (bool);

    function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IMembershipManager {

    struct TokenDeposit {
        uint128 amounts;
        uint128 shares;
    }

    struct TokenData {
        uint96 vaultShare;
        uint40 baseLoyaltyPoints;
        uint40 baseTierPoints;
        uint32 prevPointsAccrualTimestamp;
        uint32 prevTopUpTimestamp;
        uint8  tier;
        uint8  version;
    }

    // Used for V1
    struct TierVault {
        uint128 totalPooledEEthShares; // total share of eEth in the tier vault
        uint128 totalVaultShares; // total share of the tier vault
    }

    // Used for V0
    struct TierDeposit {
        uint128 amounts; // total pooled eth amount
        uint128 shares; // total pooled eEth shares
    }

    struct TierData {
        uint96 rewardsGlobalIndex;
        uint40 requiredTierPoints;
        uint24 weight;
        uint96  __gap;
    }

    // State-changing functions
    function wrapEthForEap(uint256 _amount, uint256 _amountForPoint, uint32  _eapDepositBlockNumber, uint256 _snapshotEthAmount, uint256 _points, bytes32[] calldata _merkleProof) external payable returns (uint256);
    function wrapEth(uint256 _amount, uint256 _amountForPoint) external payable returns (uint256);
    function wrapEth(uint256 _amount, uint256 _amountForPoint, address _referral) external payable returns (uint256);

    function topUpDepositWithEth(uint256 _tokenId, uint128 _amount, uint128 _amountForPoints) external payable;

    function requestWithdraw(uint256 _tokenId, uint256 _amount) external returns (uint256);
    function requestWithdrawAndBurn(uint256 _tokenId) external returns (uint256);

    function claim(uint256 _tokenId) external;

    function migrateFromV0ToV1(uint256 _tokenId) external;

    // Getter functions
    function tokenDeposits(uint256) external view returns (uint128, uint128);
    function tokenData(uint256) external view returns (uint96, uint40, uint40, uint32, uint32, uint8, uint8);
    function tierDeposits(uint256) external view returns (uint128, uint128);
    function tierData(uint256) external view returns (uint96, uint40, uint24, uint96);

    function rewardsGlobalIndex(uint8 _tier) external view returns (uint256);
    function allTimeHighDepositAmount(uint256 _tokenId) external view returns (uint256);
    function tierForPoints(uint40 _tierPoints) external view returns (uint8);
    function canTopUp(uint256 _tokenId, uint256 _totalAmount, uint128 _amount, uint128 _amountForPoints) external view returns (bool);
    function pointsBoostFactor() external view returns (uint16);
    function pointsGrowthRate() external view returns (uint16);
    function maxDepositTopUpPercent() external view returns (uint8);
    function numberOfTiers() external view returns (uint8);
    function getImplementation() external view returns (address);
    function minimumAmountForMint() external view returns (uint256);

    function eEthShareForVaultShare(uint8 _tier, uint256 _vaultShare) external view returns (uint256);
    function vaultShareForEEthShare(uint8 _tier, uint256 _eEthShare) external view returns (uint256);
    function ethAmountForVaultShare(uint8 _tier, uint256 _vaultShare) external view returns (uint256);
    function vaultShareForEthAmount(uint8 _tier, uint256 _ethAmount) external view returns (uint256);

    // only Owner
    function initializeOnUpgrade(address _etherFiAdminAddress, uint256 _fanBoostThresholdAmount, uint16 _burnFeeWaiverPeriodInDays) external;

    function setWithdrawalLockBlocks(uint32 _blocks) external;
    function updatePointsParams(uint16 _newPointsBoostFactor, uint16 _newPointsGrowthRate) external;
    function rebase(int128 _accruedRewards) external;
    function addNewTier(uint40 _requiredTierPoints, uint24 _weight) external;
    function updateTier(uint8 _tier, uint40 _requiredTierPoints, uint24 _weight) external;
    function setPoints(uint256 _tokenId, uint40 _loyaltyPoints, uint40 _tierPoints) external;
    function setDepositAmountParams(uint56 _minDepositGwei, uint8 _maxDepositTopUpPercent) external;
    function setTopUpCooltimePeriod(uint32 _newWaitTime) external;
    function updateAdmin(address _address, bool _isAdmin) external;
    function pauseContract() external;
    function unPauseContract() external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "@openzeppelin-upgradeable/contracts/token/ERC721/IERC721Upgradeable.sol";

interface ITNFT is IERC721Upgradeable {

    function burnFromWithdrawal(uint256 _validatorId) external;
    function initialize() external;
    function initializeOnUpgrade(address _etherFiNodesManagerAddress) external;
    function mint(address _receiver, uint256 _validatorId) external;
    function burnFromCancelBNftFlow(uint256 _validatorId) external;
    function upgradeTo(address _newImplementation) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IWithdrawRequestNFT {
    struct WithdrawRequest {
        uint96  amountOfEEth;
        uint96  shareOfEEth;
        bool    isValid;
        uint32  feeGwei;
    }

    function initialize(address _liquidityPoolAddress, address _eEthAddress, address _membershipManager) external;
    function requestWithdraw(uint96 amountOfEEth, uint96 shareOfEEth, address requester, uint256 fee) external payable returns (uint256);
    function claimWithdraw(uint256 requestId) external;

    function getRequest(uint256 requestId) external view returns (WithdrawRequest memory);
    function isFinalized(uint256 requestId) external view returns (bool);

    function invalidateRequest(uint256 requestId) external;
    function finalizeRequests(uint256 upperBound) external;
    function updateAdmin(address _address, bool _isAdmin) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IEtherFiAdmin {
    function lastHandledReportRefSlot() external view returns (uint32);
    function lastHandledReportRefBlock() external view returns (uint32);
    function lastAdminExecutionBlock() external view returns (uint32);
    function numValidatorsToSpinUp() external view returns (uint32);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IAuctionManager {
    struct Bid {
        uint256 amount;
        uint64 bidderPubKeyIndex;
        address bidderAddress;
        bool isActive;
    }

    function initialize(address _nodeOperatorManagerContract) external;

    function getBidOwner(uint256 _bidId) external view returns (address);

    function numberOfActiveBids() external view returns (uint256);

    function isBidActive(uint256 _bidId) external view returns (bool);

    function createBid(
        uint256 _bidSize,
        uint256 _bidAmount
    ) external payable returns (uint256[] memory);

    function cancelBidBatch(uint256[] calldata _bidIds) external;

    function cancelBid(uint256 _bidId) external;

    function reEnterAuction(uint256 _bidId) external;

    function updateSelectedBidInformation(uint256 _bidId) external;

    function processAuctionFeeTransfer(uint256 _validatorId) external;

    function setStakingManagerContractAddress(
        address _stakingManagerContractAddress
    ) external;

    function setAccumulatedRevenueThreshold(uint128 _newThreshold) external;

    function updateAdmin(address _address, bool _isAdmin) external;
    function pauseContract() external;
    function unPauseContract() external;
    
    function transferAccumulatedRevenue() external;
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title Minimal interface for an `Strategy` contract.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice Custom `Strategy` implementations may expand extensively on this interface.
 */
interface IStrategy {
    /**
     * @notice Used to deposit tokens into this Strategy
     * @param token is the ERC20 token being deposited
     * @param amount is the amount of token being deposited
     * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's
     * `depositIntoStrategy` function, and individual share balances are recorded in the strategyManager as well.
     * @return newShares is the number of new shares issued at the current exchange ratio.
     */
    function deposit(IERC20 token, uint256 amount) external returns (uint256);

    /**
     * @notice Used to withdraw tokens from this Strategy, to the `recipient`'s address
     * @param recipient is the address to receive the withdrawn funds
     * @param token is the ERC20 token being transferred out
     * @param amountShares is the amount of shares being withdrawn
     * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's
     * other functions, and individual share balances are recorded in the strategyManager as well.
     */
    function withdraw(address recipient, IERC20 token, uint256 amountShares) external;

    /**
     * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy.
     * @notice In contrast to `sharesToUnderlyingView`, this function **may** make state modifications
     * @param amountShares is the amount of shares to calculate its conversion into the underlying token
     * @return The amount of underlying tokens corresponding to the input `amountShares`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function sharesToUnderlying(uint256 amountShares) external returns (uint256);

    /**
     * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy.
     * @notice In contrast to `underlyingToSharesView`, this function **may** make state modifications
     * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares
     * @return The amount of underlying tokens corresponding to the input `amountShares`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function underlyingToShares(uint256 amountUnderlying) external returns (uint256);

    /**
     * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in
     * this strategy. In contrast to `userUnderlyingView`, this function **may** make state modifications
     */
    function userUnderlying(address user) external returns (uint256);

    /**
     * @notice convenience function for fetching the current total shares of `user` in this strategy, by
     * querying the `strategyManager` contract
     */
    function shares(address user) external view returns (uint256);

    /**
     * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy.
     * @notice In contrast to `sharesToUnderlying`, this function guarantees no state modifications
     * @param amountShares is the amount of shares to calculate its conversion into the underlying token
     * @return The amount of shares corresponding to the input `amountUnderlying`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function sharesToUnderlyingView(uint256 amountShares) external view returns (uint256);

    /**
     * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy.
     * @notice In contrast to `underlyingToShares`, this function guarantees no state modifications
     * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares
     * @return The amount of shares corresponding to the input `amountUnderlying`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function underlyingToSharesView(uint256 amountUnderlying) external view returns (uint256);

    /**
     * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in
     * this strategy. In contrast to `userUnderlying`, this function guarantees no state modifications
     */
    function userUnderlyingView(address user) external view returns (uint256);

    /// @notice The underlying token for shares in this Strategy
    function underlyingToken() external view returns (IERC20);

    /// @notice The total number of extant shares in this Strategy
    function totalShares() external view returns (uint256);

    /// @notice Returns either a brief string explaining the strategy's goal & purpose, or a link to metadata that explains in more detail.
    function explanation() external view returns (string memory);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "./IStrategyManager.sol";
import "./IDelegationManager.sol";

/**
 * @title Interface for the primary 'slashing' contract for EigenLayer.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice See the `Slasher` contract itself for implementation details.
 */
interface ISlasher {
    // struct used to store information about the current state of an operator's obligations to middlewares they are serving
    struct MiddlewareTimes {
        // The update block for the middleware whose most recent update was earliest, i.e. the 'stalest' update out of all middlewares the operator is serving
        uint32 stalestUpdateBlock;
        // The latest 'serveUntilBlock' from all of the middleware that the operator is serving
        uint32 latestServeUntilBlock;
    }

    // struct used to store details relevant to a single middleware that an operator has opted-in to serving
    struct MiddlewareDetails {
        // the block at which the contract begins being able to finalize the operator's registration with the service via calling `recordFirstStakeUpdate`
        uint32 registrationMayBeginAtBlock;
        // the block before which the contract is allowed to slash the user
        uint32 contractCanSlashOperatorUntilBlock;
        // the block at which the middleware's view of the operator's stake was most recently updated
        uint32 latestUpdateBlock;
    }

    /// @notice Emitted when a middleware times is added to `operator`'s array.
    event MiddlewareTimesAdded(
        address operator,
        uint256 index,
        uint32 stalestUpdateBlock,
        uint32 latestServeUntilBlock
    );

    /// @notice Emitted when `operator` begins to allow `contractAddress` to slash them.
    event OptedIntoSlashing(address indexed operator, address indexed contractAddress);

    /// @notice Emitted when `contractAddress` signals that it will no longer be able to slash `operator` after the `contractCanSlashOperatorUntilBlock`.
    event SlashingAbilityRevoked(
        address indexed operator,
        address indexed contractAddress,
        uint32 contractCanSlashOperatorUntilBlock
    );

    /**
     * @notice Emitted when `slashingContract` 'freezes' the `slashedOperator`.
     * @dev The `slashingContract` must have permission to slash the `slashedOperator`, i.e. `canSlash(slasherOperator, slashingContract)` must return 'true'.
     */
    event OperatorFrozen(address indexed slashedOperator, address indexed slashingContract);

    /// @notice Emitted when `previouslySlashedAddress` is 'unfrozen', allowing them to again move deposited funds within EigenLayer.
    event FrozenStatusReset(address indexed previouslySlashedAddress);

    /**
     * @notice Gives the `contractAddress` permission to slash the funds of the caller.
     * @dev Typically, this function must be called prior to registering for a middleware.
     */
    function optIntoSlashing(address contractAddress) external;

    /**
     * @notice Used for 'slashing' a certain operator.
     * @param toBeFrozen The operator to be frozen.
     * @dev Technically the operator is 'frozen' (hence the name of this function), and then subject to slashing pending a decision by a human-in-the-loop.
     * @dev The operator must have previously given the caller (which should be a contract) the ability to slash them, through a call to `optIntoSlashing`.
     */
    function freezeOperator(address toBeFrozen) external;

    /**
     * @notice Removes the 'frozen' status from each of the `frozenAddresses`
     * @dev Callable only by the contract owner (i.e. governance).
     */
    function resetFrozenStatus(address[] calldata frozenAddresses) external;

    /**
     * @notice this function is a called by middlewares during an operator's registration to make sure the operator's stake at registration
     *         is slashable until serveUntil
     * @param operator the operator whose stake update is being recorded
     * @param serveUntilBlock the block until which the operator's stake at the current block is slashable
     * @dev adds the middleware's slashing contract to the operator's linked list
     */
    function recordFirstStakeUpdate(address operator, uint32 serveUntilBlock) external;

    /**
     * @notice this function is a called by middlewares during a stake update for an operator (perhaps to free pending withdrawals)
     *         to make sure the operator's stake at updateBlock is slashable until serveUntil
     * @param operator the operator whose stake update is being recorded
     * @param updateBlock the block for which the stake update is being recorded
     * @param serveUntilBlock the block until which the operator's stake at updateBlock is slashable
     * @param insertAfter the element of the operators linked list that the currently updating middleware should be inserted after
     * @dev insertAfter should be calculated offchain before making the transaction that calls this. this is subject to race conditions,
     *      but it is anticipated to be rare and not detrimental.
     */
    function recordStakeUpdate(
        address operator,
        uint32 updateBlock,
        uint32 serveUntilBlock,
        uint256 insertAfter
    ) external;

    /**
     * @notice this function is a called by middlewares during an operator's deregistration to make sure the operator's stake at deregistration
     *         is slashable until serveUntil
     * @param operator the operator whose stake update is being recorded
     * @param serveUntilBlock the block until which the operator's stake at the current block is slashable
     * @dev removes the middleware's slashing contract to the operator's linked list and revokes the middleware's (i.e. caller's) ability to
     * slash `operator` once `serveUntil` is reached
     */
    function recordLastStakeUpdateAndRevokeSlashingAbility(address operator, uint32 serveUntilBlock) external;

    /// @notice The StrategyManager contract of EigenLayer
    function strategyManager() external view returns (IStrategyManager);

    /// @notice The DelegationManager contract of EigenLayer
    function delegation() external view returns (IDelegationManager);

    /**
     * @notice Used to determine whether `staker` is actively 'frozen'. If a staker is frozen, then they are potentially subject to
     * slashing of their funds, and cannot cannot deposit or withdraw from the strategyManager until the slashing process is completed
     * and the staker's status is reset (to 'unfrozen').
     * @param staker The staker of interest.
     * @return Returns 'true' if `staker` themselves has their status set to frozen, OR if the staker is delegated
     * to an operator who has their status set to frozen. Otherwise returns 'false'.
     */
    function isFrozen(address staker) external view returns (bool);

    /// @notice Returns true if `slashingContract` is currently allowed to slash `toBeSlashed`.
    function canSlash(address toBeSlashed, address slashingContract) external view returns (bool);

    /// @notice Returns the block until which `serviceContract` is allowed to slash the `operator`.
    function contractCanSlashOperatorUntilBlock(
        address operator,
        address serviceContract
    ) external view returns (uint32);

    /// @notice Returns the block at which the `serviceContract` last updated its view of the `operator`'s stake
    function latestUpdateBlock(address operator, address serviceContract) external view returns (uint32);

    /// @notice A search routine for finding the correct input value of `insertAfter` to `recordStakeUpdate` / `_updateMiddlewareList`.
    function getCorrectValueForInsertAfter(address operator, uint32 updateBlock) external view returns (uint256);

    /**
     * @notice Returns 'true' if `operator` can currently complete a withdrawal started at the `withdrawalStartBlock`, with `middlewareTimesIndex` used
     * to specify the index of a `MiddlewareTimes` struct in the operator's list (i.e. an index in `operatorToMiddlewareTimes[operator]`). The specified
     * struct is consulted as proof of the `operator`'s ability (or lack thereof) to complete the withdrawal.
     * This function will return 'false' if the operator cannot currently complete a withdrawal started at the `withdrawalStartBlock`, *or* in the event
     * that an incorrect `middlewareTimesIndex` is supplied, even if one or more correct inputs exist.
     * @param operator Either the operator who queued the withdrawal themselves, or if the withdrawing party is a staker who delegated to an operator,
     * this address is the operator *who the staker was delegated to* at the time of the `withdrawalStartBlock`.
     * @param withdrawalStartBlock The block number at which the withdrawal was initiated.
     * @param middlewareTimesIndex Indicates an index in `operatorToMiddlewareTimes[operator]` to consult as proof of the `operator`'s ability to withdraw
     * @dev The correct `middlewareTimesIndex` input should be computable off-chain.
     */
    function canWithdraw(
        address operator,
        uint32 withdrawalStartBlock,
        uint256 middlewareTimesIndex
    ) external returns (bool);

    /**
     * operator =>
     *  [
     *      (
     *          the least recent update block of all of the middlewares it's serving/served,
     *          latest time that the stake bonded at that update needed to serve until
     *      )
     *  ]
     */
    function operatorToMiddlewareTimes(
        address operator,
        uint256 arrayIndex
    ) external view returns (MiddlewareTimes memory);

    /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator].length`
    function middlewareTimesLength(address operator) external view returns (uint256);

    /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].stalestUpdateBlock`.
    function getMiddlewareTimesIndexStalestUpdateBlock(address operator, uint32 index) external view returns (uint32);

    /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].latestServeUntil`.
    function getMiddlewareTimesIndexServeUntilBlock(address operator, uint32 index) external view returns (uint32);

    /// @notice Getter function for fetching `_operatorToWhitelistedContractsByUpdate[operator].size`.
    function operatorWhitelistedContractsLinkedListSize(address operator) external view returns (uint256);

    /// @notice Getter function for fetching a single node in the operator's linked list (`_operatorToWhitelistedContractsByUpdate[operator]`).
    function operatorWhitelistedContractsLinkedListEntry(
        address operator,
        address node
    ) external view returns (bool, uint256, uint256);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol";
import "./IETHPOSDeposit.sol";
import "./IStrategyManager.sol";
import "./IEigenPod.sol";
import "./IBeaconChainOracle.sol";
import "./IPausable.sol";
import "./ISlasher.sol";
import "./IStrategy.sol";

/**
 * @title Interface for factory that creates and manages solo staking pods that have their withdrawal credentials pointed to EigenLayer.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 */

interface IEigenPodManager is IPausable {
    /// @notice Emitted to notify the update of the beaconChainOracle address
    event BeaconOracleUpdated(address indexed newOracleAddress);

    /// @notice Emitted to notify the deployment of an EigenPod
    event PodDeployed(address indexed eigenPod, address indexed podOwner);

    /// @notice Emitted to notify a deposit of beacon chain ETH recorded in the strategy manager
    event BeaconChainETHDeposited(address indexed podOwner, uint256 amount);

    /// @notice Emitted when the balance of an EigenPod is updated
    event PodSharesUpdated(address indexed podOwner, int256 sharesDelta);

    /// @notice Emitted when a withdrawal of beacon chain ETH is completed
    event BeaconChainETHWithdrawalCompleted(
        address indexed podOwner,
        uint256 shares,
        uint96 nonce,
        address delegatedAddress,
        address withdrawer,
        bytes32 withdrawalRoot
    );

    event DenebForkTimestampUpdated(uint64 newValue);

    /**
     * @notice Creates an EigenPod for the sender.
     * @dev Function will revert if the `msg.sender` already has an EigenPod.
     * @dev Returns EigenPod address 
     */
    function createPod() external returns (address);

    /**
     * @notice Stakes for a new beacon chain validator on the sender's EigenPod.
     * Also creates an EigenPod for the sender if they don't have one already.
     * @param pubkey The 48 bytes public key of the beacon chain validator.
     * @param signature The validator's signature of the deposit data.
     * @param depositDataRoot The root/hash of the deposit data for the validator's deposit.
     */
    function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable;

    /**
     * @notice Changes the `podOwner`'s shares by `sharesDelta` and performs a call to the DelegationManager
     * to ensure that delegated shares are also tracked correctly
     * @param podOwner is the pod owner whose balance is being updated.
     * @param sharesDelta is the change in podOwner's beaconChainETHStrategy shares
     * @dev Callable only by the podOwner's EigenPod contract.
     * @dev Reverts if `sharesDelta` is not a whole Gwei amount
     */
    function recordBeaconChainETHBalanceUpdate(address podOwner, int256 sharesDelta) external;

    /**
     * @notice Updates the oracle contract that provides the beacon chain state root
     * @param newBeaconChainOracle is the new oracle contract being pointed to
     * @dev Callable only by the owner of this contract (i.e. governance)
     */
    function updateBeaconChainOracle(IBeaconChainOracle newBeaconChainOracle) external;

    /// @notice Returns the address of the `podOwner`'s EigenPod if it has been deployed.
    function ownerToPod(address podOwner) external view returns (IEigenPod);

    /// @notice Returns the address of the `podOwner`'s EigenPod (whether it is deployed yet or not).
    function getPod(address podOwner) external view returns (IEigenPod);

    /// @notice The ETH2 Deposit Contract
    function ethPOS() external view returns (IETHPOSDeposit);

    /// @notice Beacon proxy to which the EigenPods point
    function eigenPodBeacon() external view returns (IBeacon);

    /// @notice Oracle contract that provides updates to the beacon chain's state
    function beaconChainOracle() external view returns (IBeaconChainOracle);

    /// @notice Returns the beacon block root at `timestamp`. Reverts if the Beacon block root at `timestamp` has not yet been finalized.
    function getBlockRootAtTimestamp(uint64 timestamp) external view returns (bytes32);

    /// @notice EigenLayer's StrategyManager contract
    function strategyManager() external view returns (IStrategyManager);

    /// @notice EigenLayer's Slasher contract
    function slasher() external view returns (ISlasher);

    /// @notice Returns 'true' if the `podOwner` has created an EigenPod, and 'false' otherwise.
    function hasPod(address podOwner) external view returns (bool);

    /// @notice Returns the number of EigenPods that have been created
    function numPods() external view returns (uint256);

    /**
     * @notice Mapping from Pod owner owner to the number of shares they have in the virtual beacon chain ETH strategy.
     * @dev The share amount can become negative. This is necessary to accommodate the fact that a pod owner's virtual beacon chain ETH shares can
     * decrease between the pod owner queuing and completing a withdrawal.
     * When the pod owner's shares would otherwise increase, this "deficit" is decreased first _instead_.
     * Likewise, when a withdrawal is completed, this "deficit" is decreased and the withdrawal amount is decreased; We can think of this
     * as the withdrawal "paying off the deficit".
     */
    function podOwnerShares(address podOwner) external view returns (int256);

    /// @notice returns canonical, virtual beaconChainETH strategy
    function beaconChainETHStrategy() external view returns (IStrategy);

    /**
     * @notice Used by the DelegationManager to remove a pod owner's shares while they're in the withdrawal queue.
     * Simply decreases the `podOwner`'s shares by `shares`, down to a minimum of zero.
     * @dev This function reverts if it would result in `podOwnerShares[podOwner]` being less than zero, i.e. it is forbidden for this function to
     * result in the `podOwner` incurring a "share deficit". This behavior prevents a Staker from queuing a withdrawal which improperly removes excessive
     * shares from the operator to whom the staker is delegated.
     * @dev Reverts if `shares` is not a whole Gwei amount
     */
    function removeShares(address podOwner, uint256 shares) external;

    /**
     * @notice Increases the `podOwner`'s shares by `shares`, paying off deficit if possible.
     * Used by the DelegationManager to award a pod owner shares on exiting the withdrawal queue
     * @dev Returns the number of shares added to `podOwnerShares[podOwner]` above zero, which will be less than the `shares` input
     * in the event that the podOwner has an existing shares deficit (i.e. `podOwnerShares[podOwner]` starts below zero)
     * @dev Reverts if `shares` is not a whole Gwei amount
     */
    function addShares(address podOwner, uint256 shares) external returns (uint256);

    /**
     * @notice Used by the DelegationManager to complete a withdrawal, sending tokens to some destination address
     * @dev Prioritizes decreasing the podOwner's share deficit, if they have one
     * @dev Reverts if `shares` is not a whole Gwei amount
     */
    function withdrawSharesAsTokens(address podOwner, address destination, uint256 shares) external;

    /**
     * @notice the deneb hard fork timestamp used to determine which proof path to use for proving a withdrawal
     */
    function denebForkTimestamp() external view returns (uint64);

     /**
     * setting the deneb hard fork timestamp by the eigenPodManager owner
     * @dev this function is designed to be called twice.  Once, it is set to type(uint64).max 
     * prior to the actual deneb fork timestamp being set, and then the second time it is set 
     * to the actual deneb fork timestamp.
     */
    function setDenebForkTimestamp(uint64 newDenebForkTimestamp) external;

    function owner() external returns (address);

}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

/**
 * @title The interface for common signature utilities.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 */
interface ISignatureUtils {
    // @notice Struct that bundles together a signature and an expiration time for the signature. Used primarily for stack management.
    struct SignatureWithExpiry {
        // the signature itself, formatted as a single bytes object
        bytes signature;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }

    // @notice Struct that bundles together a signature, a salt for uniqueness, and an expiration time for the signature. Used primarily for stack management.
    struct SignatureWithSaltAndExpiry {
        // the signature itself, formatted as a single bytes object
        bytes signature;
        // the salt used to generate the signature
        bytes32 salt;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.0;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeaconUpgradeable {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {BeaconProxy} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
 */
library StorageSlotUpgradeable {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

/**
 * @title Interface for the `PauserRegistry` contract.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 */
interface IPauserRegistry {
    event PauserStatusChanged(address pauser, bool canPause);

    event UnpauserChanged(address previousUnpauser, address newUnpauser);
    
    /// @notice Mapping of addresses to whether they hold the pauser role.
    function isPauser(address pauser) external view returns (bool);

    /// @notice Unique address that holds the unpauser role. Capable of changing *both* the pauser and unpauser addresses.
    function unpauser() external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "./IEtherFiNodesManager.sol";

import "../eigenlayer-interfaces/IDelegationManager.sol";


interface IEtherFiNode {
    // State Transition Diagram for StateMachine contract:
    //
    //      NOT_INITIALIZED <-
    //              |        |
    //              ↓        |
    //      STAKE_DEPOSITED --
    //           /    \      |
    //          ↓      ↓     |
    //         LIVE <- WAITING_FOR_APPROVAL
    //         |  \ 
    //         |   ↓  
    //         |  BEING_SLASHED
    //         |   /
    //         ↓  ↓
    //         EXITED
    //         |
    //         ↓
    //     FULLY_WITHDRAWN
    // 
    // Transitions are only allowed as directed above.
    // For instance, a transition from STAKE_DEPOSITED to either LIVE or CANCELLED is allowed,
    // but a transition from LIVE to NOT_INITIALIZED is not.
    //
    // All phase transitions should be made through the setPhase function,
    // which validates transitions based on these rules.
    //
    enum VALIDATOR_PHASE {
        NOT_INITIALIZED,
        STAKE_DEPOSITED,
        LIVE,
        EXITED,
        FULLY_WITHDRAWN,
        DEPRECATED_CANCELLED,
        BEING_SLASHED,
        DEPRECATED_EVICTED,
        WAITING_FOR_APPROVAL,
        DEPRECATED_READY_FOR_DEPOSIT
    }

    // VIEW functions
    function numAssociatedValidators() external view returns (uint256);
    function numExitRequestsByTnft() external view returns (uint16);
    function numExitedValidators() external view returns (uint16);
    function version() external view returns (uint16);
    function eigenPod() external view returns (address);
    function calculateTVL(uint256 _beaconBalance, IEtherFiNodesManager.ValidatorInfo memory _info, IEtherFiNodesManager.RewardsSplit memory _SRsplits, bool _onlyWithdrawable) external view returns (uint256, uint256, uint256, uint256);
    function getNonExitPenalty(uint32 _tNftExitRequestTimestamp, uint32 _bNftExitRequestTimestamp) external view returns (uint256);
    function getRewardsPayouts(uint32 _exitRequestTimestamp, IEtherFiNodesManager.RewardsSplit memory _splits) external view returns (uint256, uint256, uint256, uint256);
    function getFullWithdrawalPayouts(IEtherFiNodesManager.ValidatorInfo memory _info, IEtherFiNodesManager.RewardsSplit memory _SRsplits) external view returns (uint256, uint256, uint256, uint256);
    function associatedValidatorIds(uint256 _index) external view returns (uint256);
    function associatedValidatorIndices(uint256 _validatorId) external view returns (uint256);
    function validatePhaseTransition(VALIDATOR_PHASE _currentPhase, VALIDATOR_PHASE _newPhase) external pure returns (bool);

    function DEPRECATED_exitRequestTimestamp() external view returns (uint32);
    function DEPRECATED_exitTimestamp() external view returns (uint32);
    function DEPRECATED_phase() external view returns (VALIDATOR_PHASE);

    // Non-VIEW functions
    function initialize(address _etherFiNodesManager) external;
    function DEPRECATED_claimDelayedWithdrawalRouterWithdrawals() external;
    function createEigenPod() external;
    function isRestakingEnabled() external view returns (bool);
    function processNodeExit(uint256 _validatorId) external returns (bytes32[] memory withdrawalRoots);
    function processFullWithdraw(uint256 _validatorId) external;
    function queueEigenpodFullWithdrawal() external returns (bytes32[] memory withdrawalRoots);
    function completeQueuedWithdrawals(IDelegationManager.Withdrawal[] memory withdrawals, uint256[] calldata middlewareTimesIndexes, bool _receiveAsTokens) external;
    function completeQueuedWithdrawal(IDelegationManager.Withdrawal memory withdrawals, uint256 middlewareTimesIndexes, bool _receiveAsTokens) external;
    function updateNumberOfAssociatedValidators(uint16 _up, uint16 _down) external;
    function updateNumExitedValidators(uint16 _up, uint16 _down) external;
    function registerValidator(uint256 _validatorId, bool _enableRestaking) external;
    function unRegisterValidator(uint256 _validatorId, IEtherFiNodesManager.ValidatorInfo memory _info) external returns (bool);
    function splitBalanceInExecutionLayer() external view returns (uint256 _withdrawalSafe, uint256 _eigenPod, uint256 _delayedWithdrawalRouter);
    function totalBalanceInExecutionLayer() external view returns (uint256);
    function withdrawableBalanceInExecutionLayer() external view returns (uint256);
    function updateNumExitRequests(uint16 _up, uint16 _down) external;
    function migrateVersion(uint256 _validatorId, IEtherFiNodesManager.ValidatorInfo memory _info) external;

    function startCheckpoint(bool _revertIfNoBalance) external;
    function setProofSubmitter(address _newProofSubmitter) external;
    function callEigenPod(bytes memory data) external returns (bytes memory);
    function forwardCall(address to, bytes memory data) external returns (bytes memory);

    function withdrawFunds(
        address _treasury,
        uint256 _treasuryAmount,
        address _operator,
        uint256 _operatorAmount,
        address _tnftHolder,
        uint256 _tnftAmount,
        address _bnftHolder,
        uint256 _bnftAmount
    ) external;

    function moveFundsToManager(uint256 _amount) external;
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

interface IDelayedWithdrawalRouter {
    // struct used to pack data into a single storage slot
    struct DelayedWithdrawal {
        uint224 amount;
        uint32 blockCreated;
    }

    // struct used to store a single users delayedWithdrawal data
    struct UserDelayedWithdrawals {
        uint256 delayedWithdrawalsCompleted;
        DelayedWithdrawal[] delayedWithdrawals;
    }

     /// @notice event for delayedWithdrawal creation
    event DelayedWithdrawalCreated(address podOwner, address recipient, uint256 amount, uint256 index);

    /// @notice event for the claiming of delayedWithdrawals
    event DelayedWithdrawalsClaimed(address recipient, uint256 amountClaimed, uint256 delayedWithdrawalsCompleted);

    /// @notice Emitted when the `withdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`.
    event WithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue);

    /**
     * @notice Creates an delayed withdrawal for `msg.value` to the `recipient`.
     * @dev Only callable by the `podOwner`'s EigenPod contract.
     */
    function createDelayedWithdrawal(address podOwner, address recipient) external payable;

    /**
     * @notice Called in order to withdraw delayed withdrawals made to the `recipient` that have passed the `withdrawalDelayBlocks` period.
     * @param recipient The address to claim delayedWithdrawals for.
     * @param maxNumberOfWithdrawalsToClaim Used to limit the maximum number of withdrawals to loop through claiming.
     */
    function claimDelayedWithdrawals(address recipient, uint256 maxNumberOfWithdrawalsToClaim) external;

    /**
     * @notice Called in order to withdraw delayed withdrawals made to the caller that have passed the `withdrawalDelayBlocks` period.
     * @param maxNumberOfWithdrawalsToClaim Used to limit the maximum number of withdrawals to loop through claiming.
     */
    function claimDelayedWithdrawals(uint256 maxNumberOfWithdrawalsToClaim) external;

    /// @notice Owner-only function for modifying the value of the `withdrawalDelayBlocks` variable.
    function setWithdrawalDelayBlocks(uint256 newValue) external;

    /// @notice Getter function for the mapping `_userWithdrawals`
    function userWithdrawals(address user) external view returns (UserDelayedWithdrawals memory);

    /// @notice Getter function to get all delayedWithdrawals of the `user`
    function getUserDelayedWithdrawals(address user) external view returns (DelayedWithdrawal[] memory);

    /// @notice Getter function to get all delayedWithdrawals that are currently claimable by the `user`
    function getClaimableUserDelayedWithdrawals(address user) external view returns (DelayedWithdrawal[] memory);

    /// @notice Getter function for fetching the delayedWithdrawal at the `index`th entry from the `_userWithdrawals[user].delayedWithdrawals` array
    function userDelayedWithdrawalByIndex(address user, uint256 index) external view returns (DelayedWithdrawal memory);

    /// @notice Getter function for fetching the length of the delayedWithdrawals array of a specific user
    function userWithdrawalsLength(address user) external view returns (uint256);

    /// @notice Convenience function for checking whether or not the delayedWithdrawal at the `index`th entry from the `_userWithdrawals[user].delayedWithdrawals` array is currently claimable
    function canClaimDelayedWithdrawal(address user, uint256 index) external view returns (bool);

    /**
     * @notice Delay enforced by this contract for completing any delayedWithdrawal. Measured in blocks, and adjustable by this contract's owner,
     * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced).
     */
    function withdrawalDelayBlocks() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165Upgradeable.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721Upgradeable is IERC165Upgradeable {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.0;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {BeaconProxy} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━
// ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓
// ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛
// ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃┃━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━
// ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓
// ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛
// ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
// ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

// SPDX-License-Identifier: CC0-1.0

pragma solidity >=0.5.0;

// This interface is designed to be compatible with the Vyper version.
/// @notice This is the Ethereum 2.0 deposit contract interface.
/// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs
interface IETHPOSDeposit {
    /// @notice A processed deposit event.
    event DepositEvent(bytes pubkey, bytes withdrawal_credentials, bytes amount, bytes signature, bytes index);

    /// @notice Submit a Phase 0 DepositData object.
    /// @param pubkey A BLS12-381 public key.
    /// @param withdrawal_credentials Commitment to a public key for withdrawals.
    /// @param signature A BLS12-381 signature.
    /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object.
    /// Used as a protection against malformed input.
    function deposit(
        bytes calldata pubkey,
        bytes calldata withdrawal_credentials,
        bytes calldata signature,
        bytes32 deposit_data_root
    ) external payable;

    /// @notice Query the current deposit root hash.
    /// @return The deposit root hash.
    function get_deposit_root() external view returns (bytes32);

    /// @notice Query the current deposit count.
    /// @return The deposit count encoded as a little endian 64-bit number.
    function get_deposit_count() external view returns (bytes memory);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "src/eigenlayer-libraries/LegacyBeaconChainProofs.sol";
import "src/eigenlayer-libraries/BeaconChainProofs.sol";
import "./IEigenPodManager.sol";
import "./IBeaconChainOracle.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title The implementation contract used for restaking beacon chain ETH on EigenLayer
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice The main functionalities are:
 * - creating new ETH validators with their withdrawal credentials pointed to this contract
 * - proving from beacon chain state roots that withdrawal credentials are pointed to this contract
 * - proving from beacon chain state roots the balances of ETH validators with their withdrawal credentials
 *   pointed to this contract
 * - updating aggregate balances in the EigenPodManager
 * - withdrawing eth when withdrawals are initiated
 * @dev Note that all beacon chain balances are stored as gwei within the beacon chain datastructures. We choose
 *   to account balances in terms of gwei in the EigenPod contract and convert to wei when making calls to other contracts
 */
interface IEigenPod {
    enum VALIDATOR_STATUS {
        INACTIVE, // doesnt exist
        ACTIVE, // staked on ethpos and withdrawal credentials are pointed to the EigenPod
        WITHDRAWN // withdrawn from the Beacon Chain
    }

    struct ValidatorInfo {
        // index of the validator in the beacon chain
        uint64 validatorIndex;
        // amount of beacon chain ETH restaked on EigenLayer in gwei
        uint64 restakedBalanceGwei;
        //timestamp of the validator's most recent balance update
        uint64 mostRecentBalanceUpdateTimestamp;
        // status of the validator
        VALIDATOR_STATUS status;
    }

    /**
     * @notice struct used to store amounts related to proven withdrawals in memory. Used to help
     * manage stack depth and optimize the number of external calls, when batching withdrawal operations.
     */
    struct VerifiedWithdrawal {
        // amount to send to a podOwner from a proven withdrawal
        uint256 amountToSendGwei;
        // difference in shares to be recorded in the eigenPodManager, as a result of the withdrawal
        int256 sharesDeltaGwei;
    }


    enum PARTIAL_WITHDRAWAL_CLAIM_STATUS {
        REDEEMED,
        PENDING,
        FAILED
    }

    /// @notice Emitted when an ETH validator stakes via this eigenPod
    event EigenPodStaked(bytes pubkey);

    /// @notice Emitted when an ETH validator's withdrawal credentials are successfully verified to be pointed to this eigenPod
    event ValidatorRestaked(uint40 validatorIndex);

    /// @notice Emitted when an ETH validator's  balance is proven to be updated.  Here newValidatorBalanceGwei
    //  is the validator's balance that is credited on EigenLayer.
    event ValidatorBalanceUpdated(uint40 validatorIndex, uint64 balanceTimestamp, uint64 newValidatorBalanceGwei);

    /// @notice Emitted when an ETH validator is prove to have withdrawn from the beacon chain
    event FullWithdrawalRedeemed(
        uint40 validatorIndex,
        uint64 withdrawalTimestamp,
        address indexed recipient,
        uint64 withdrawalAmountGwei
    );

    /// @notice Emitted when a partial withdrawal claim is successfully redeemed
    event PartialWithdrawalRedeemed(
        uint40 validatorIndex,
        uint64 withdrawalTimestamp,
        address indexed recipient,
        uint64 partialWithdrawalAmountGwei
    );

    /// @notice Emitted when restaked beacon chain ETH is withdrawn from the eigenPod.
    event RestakedBeaconChainETHWithdrawn(address indexed recipient, uint256 amount);

    /// @notice Emitted when podOwner enables restaking
    event RestakingActivated(address indexed podOwner);

    /// @notice Emitted when ETH is received via the `receive` fallback
    event NonBeaconChainETHReceived(uint256 amountReceived);

    /// @notice Emitted when ETH that was previously received via the `receive` fallback is withdrawn
    event NonBeaconChainETHWithdrawn(address indexed recipient, uint256 amountWithdrawn);


    /// @notice The max amount of eth, in gwei, that can be restaked per validator
    function MAX_RESTAKED_BALANCE_GWEI_PER_VALIDATOR() external view returns (uint64);

    /// @notice the amount of execution layer ETH in this contract that is staked in EigenLayer (i.e. withdrawn from beaconchain but not EigenLayer),
    function withdrawableRestakedExecutionLayerGwei() external view returns (uint64);

    /// @notice any ETH deposited into the EigenPod contract via the `receive` fallback function
    function nonBeaconChainETHBalanceWei() external view returns (uint256);

    /// @notice Used to initialize the pointers to contracts crucial to the pod's functionality, in beacon proxy construction from EigenPodManager
    function initialize(address owner) external;

    /// @notice Called by EigenPodManager when the owner wants to create another ETH validator.
    function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable;

    /**
     * @notice Transfers `amountWei` in ether from this contract to the specified `recipient` address
     * @notice Called by EigenPodManager to withdrawBeaconChainETH that has been added to the EigenPod's balance due to a withdrawal from the beacon chain.
     * @dev The podOwner must have already proved sufficient withdrawals, so that this pod's `withdrawableRestakedExecutionLayerGwei` exceeds the
     * `amountWei` input (when converted to GWEI).
     * @dev Reverts if `amountWei` is not a whole Gwei amount
     */
    function withdrawRestakedBeaconChainETH(address recipient, uint256 amount) external;

    /// @notice The single EigenPodManager for EigenLayer
    function eigenPodManager() external view returns (IEigenPodManager);

    /// @notice The owner of this EigenPod
    function podOwner() external view returns (address);

    /// @notice an indicator of whether or not the podOwner has ever "fully restaked" by successfully calling `verifyCorrectWithdrawalCredentials`.
    function hasRestaked() external view returns (bool);

    /**
     * @notice The latest timestamp at which the pod owner withdrew the balance of the pod, via calling `withdrawBeforeRestaking`.
     * @dev This variable is only updated when the `withdrawBeforeRestaking` function is called, which can only occur before `hasRestaked` is set to true for this pod.
     * Proofs for this pod are only valid against Beacon Chain state roots corresponding to timestamps after the stored `mostRecentWithdrawalTimestamp`.
     */
    function mostRecentWithdrawalTimestamp() external view returns (uint64);

    /// @notice Returns the validatorInfo struct for the provided pubkeyHash
    function validatorPubkeyHashToInfo(bytes32 validatorPubkeyHash) external view returns (ValidatorInfo memory);

    /// @notice Returns the validatorInfo struct for the provided pubkey
    function validatorPubkeyToInfo(bytes calldata validatorPubkey) external view returns (ValidatorInfo memory);

    ///@notice mapping that tracks proven withdrawals
    function provenWithdrawal(bytes32 validatorPubkeyHash, uint64 slot) external view returns (bool);

    /// @notice This returns the status of a given validator
    function validatorStatus(bytes32 pubkeyHash) external view returns (VALIDATOR_STATUS);

    /// @notice This returns the status of a given validator pubkey
    function validatorStatus(bytes calldata validatorPubkey) external view returns (VALIDATOR_STATUS);

    /**
     * @notice This function verifies that the withdrawal credentials of validator(s) owned by the podOwner are pointed to
     * this contract. It also verifies the effective balance  of the validator.  It verifies the provided proof of the ETH validator against the beacon chain state
     * root, marks the validator as 'active' in EigenLayer, and credits the restaked ETH in Eigenlayer.
     * @param oracleTimestamp is the Beacon Chain timestamp whose state root the `proof` will be proven against.
     * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs
     * @param withdrawalCredentialProofs is an array of proofs, where each proof proves each ETH validator's balance and withdrawal credentials
     * against a beacon chain state root
     * @param validatorFields are the fields of the "Validator Container", refer to consensus specs
     * for details: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
     */
    function verifyWithdrawalCredentials(
        uint64 oracleTimestamp,
        LegacyBeaconChainProofs.StateRootProof calldata stateRootProof,
        uint40[] calldata validatorIndices,
        bytes[] calldata withdrawalCredentialProofs,
        bytes32[][] calldata validatorFields
    )
        external;

    /**
     * @notice This function records an update (either increase or decrease) in the pod's balance in the StrategyManager.  
               It also verifies a merkle proof of the validator's current beacon chain balance.  
     * @param oracleTimestamp The oracleTimestamp whose state root the `proof` will be proven against.
     *        Must be within `VERIFY_BALANCE_UPDATE_WINDOW_SECONDS` of the current block.
     * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs 
     * @param validatorFieldsProofs proofs against the `beaconStateRoot` for each validator in `validatorFields`
     * @param validatorFields are the fields of the "Validator Container", refer to consensus specs
     * @dev For more details on the Beacon Chain spec, see: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
     */
    function verifyBalanceUpdates(
        uint64 oracleTimestamp,
        uint40[] calldata validatorIndices,
        LegacyBeaconChainProofs.StateRootProof calldata stateRootProof,
        bytes[] calldata validatorFieldsProofs,
        bytes32[][] calldata validatorFields
    ) external;

    /**
     * @notice This function records full and partial withdrawals on behalf of one of the Ethereum validators for this EigenPod
     * @param oracleTimestamp is the timestamp of the oracle slot that the withdrawal is being proven against
     * @param withdrawalProofs is the information needed to check the veracity of the block numbers and withdrawals being proven
     * @param validatorFieldsProofs is the proof of the validator's fields' in the validator tree
     * @param withdrawalFields are the fields of the withdrawals being proven
     * @param validatorFields are the fields of the validators being proven
     */
    function verifyAndProcessWithdrawals(
        uint64 oracleTimestamp,
        LegacyBeaconChainProofs.StateRootProof calldata stateRootProof,
        LegacyBeaconChainProofs.WithdrawalProof[] calldata withdrawalProofs,
        bytes[] calldata validatorFieldsProofs,
        bytes32[][] calldata validatorFields,
        bytes32[][] calldata withdrawalFields
    ) external;

    /**
     * @notice Called by the pod owner to activate restaking by withdrawing
     * all existing ETH from the pod and preventing further withdrawals via
     * "withdrawBeforeRestaking()"
     */
    function activateRestaking() external;

    /// @notice Called by the pod owner to withdraw the balance of the pod when `hasRestaked` is set to false
    function withdrawBeforeRestaking() external;

    /// @notice Called by the pod owner to withdraw the nonBeaconChainETHBalanceWei
    function withdrawNonBeaconChainETHBalanceWei(address recipient, uint256 amountToWithdraw) external;

    /// @notice called by owner of a pod to remove any ERC20s deposited in the pod
    function recoverTokens(IERC20[] memory tokenList, uint256[] memory amountsToWithdraw, address recipient) external;

    //--------------------------------------------------------------------------------------
    //---------------------------------  PEPE UPDATES   ------------------------------------
    //--------------------------------------------------------------------------------------

    // TODO(Dave): Once we are no longer in between the 2 updates, we can fully replace this file with
    // the new version

    /// State-changing methods

    function startCheckpoint(bool revertIfNoBalance) external;
    function verifyCheckpointProofs(
        BeaconChainProofs.BalanceContainerProof calldata balanceContainerProof,
        BeaconChainProofs.BalanceProof[] calldata proofs
    ) external;
    function setProofSubmitter(address newProofSubmitter) external;

    /// Events

    /// @notice Emitted when a checkpoint is created
    event CheckpointCreated(uint64 indexed checkpointTimestamp, bytes32 indexed beaconBlockRoot);
    /// @notice Emitted when a checkpoint is finalized
    event CheckpointFinalized(uint64 indexed checkpointTimestamp, int256 totalShareDeltaWei);
    /// @notice Emitted when a validator is proven for a given checkpoint
    event ValidatorCheckpointed(uint64 indexed checkpointTimestamp, uint40 indexed validatorIndex);
    /// @notice Emitted when a validaor is proven to have 0 balance at a given checkpoint
    event ValidatorWithdrawn(uint64 indexed checkpointTimestamp, uint40 indexed validatorIndex);

    /// Structs

    struct Checkpoint {
      bytes32 beaconBlockRoot;
      uint24 proofsRemaining;
      uint64 podBalanceGwei;
      int128 balanceDeltasGwei;
    }

    /// View methods

    function activeValidatorCount() external view returns (uint256); // note - this variable already exists in M2; this change just makes it public!
    function lastCheckpointTimestamp() external view returns (uint64);
    function currentCheckpointTimestamp() external view returns (uint64);
    function currentCheckpoint() external view returns (Checkpoint memory);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

/**
 * @title Interface for the BeaconStateOracle contract.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 */
interface IBeaconChainOracle {
    /// @notice The block number to state root mapping.
    function timestampToBlockRoot(uint256 timestamp) external view returns (bytes32);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "src/eigenlayer-interfaces/IPauserRegistry.sol";

/**
 * @title Adds pausability to a contract, with pausing & unpausing controlled by the `pauser` and `unpauser` of a PauserRegistry contract.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice Contracts that inherit from this contract may define their own `pause` and `unpause` (and/or related) functions.
 * These functions should be permissioned as "onlyPauser" which defers to a `PauserRegistry` for determining access control.
 * @dev Pausability is implemented using a uint256, which allows up to 256 different single bit-flags; each bit can potentially pause different functionality.
 * Inspiration for this was taken from the NearBridge design here https://etherscan.io/address/0x3FEFc5A4B1c02f21cBc8D3613643ba0635b9a873#code.
 * For the `pause` and `unpause` functions we've implemented, if you pause, you can only flip (any number of) switches to on/1 (aka "paused"), and if you unpause,
 * you can only flip (any number of) switches to off/0 (aka "paused").
 * If you want a pauseXYZ function that just flips a single bit / "pausing flag", it will:
 * 1) 'bit-wise and' (aka `&`) a flag with the current paused state (as a uint256)
 * 2) update the paused state to this new value
 * @dev We note as well that we have chosen to identify flags by their *bit index* as opposed to their numerical value, so, e.g. defining `DEPOSITS_PAUSED = 3`
 * indicates specifically that if the *third bit* of `_paused` is flipped -- i.e. it is a '1' -- then deposits should be paused
 */

interface IPausable {
    /// @notice Emitted when the `pauserRegistry` is set to `newPauserRegistry`.
    event PauserRegistrySet(IPauserRegistry pauserRegistry, IPauserRegistry newPauserRegistry);

    /// @notice Emitted when the pause is triggered by `account`, and changed to `newPausedStatus`.
    event Paused(address indexed account, uint256 newPausedStatus);

    /// @notice Emitted when the pause is lifted by `account`, and changed to `newPausedStatus`.
    event Unpaused(address indexed account, uint256 newPausedStatus);
    
    /// @notice Address of the `PauserRegistry` contract that this contract defers to for determining access control (for pausing).
    function pauserRegistry() external view returns (IPauserRegistry);

    /**
     * @notice This function is used to pause an EigenLayer contract's functionality.
     * It is permissioned to the `pauser` address, which is expected to be a low threshold multisig.
     * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once.
     * @dev This function can only pause functionality, and thus cannot 'unflip' any bit in `_paused` from 1 to 0.
     */
    function pause(uint256 newPausedStatus) external;

    /**
     * @notice Alias for `pause(type(uint256).max)`.
     */
    function pauseAll() external;

    /**
     * @notice This function is used to unpause an EigenLayer contract's functionality.
     * It is permissioned to the `unpauser` address, which is expected to be a high threshold multisig or governance contract.
     * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once.
     * @dev This function can only unpause functionality, and thus cannot 'flip' any bit in `_paused` from 0 to 1.
     */
    function unpause(uint256 newPausedStatus) external;

    /// @notice Returns the current paused status as a uint256.
    function paused() external view returns (uint256);

    /// @notice Returns 'true' if the `indexed`th bit of `_paused` is 1, and 'false' otherwise
    function paused(uint8 index) external view returns (bool);

    /// @notice Allows the unpauser to set a new pauser registry
    function setPauserRegistry(IPauserRegistry newPauserRegistry) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.0;

import "./EigenlayerMerkle.sol";
import "./Endian.sol";

//Utility library for parsing and PHASE0 beacon chain block headers
//SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization
//BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
//BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
library LegacyBeaconChainProofs {
    // constants are the number of fields and the heights of the different merkle trees used in merkleizing beacon chain containers
    uint256 internal constant NUM_BEACON_BLOCK_HEADER_FIELDS = 5;
    uint256 internal constant BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT = 3;

    uint256 internal constant NUM_BEACON_BLOCK_BODY_FIELDS = 11;
    uint256 internal constant BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT = 4;

    uint256 internal constant NUM_BEACON_STATE_FIELDS = 21;
    uint256 internal constant BEACON_STATE_FIELD_TREE_HEIGHT = 5;

    uint256 internal constant NUM_ETH1_DATA_FIELDS = 3;
    uint256 internal constant ETH1_DATA_FIELD_TREE_HEIGHT = 2;

    uint256 internal constant NUM_VALIDATOR_FIELDS = 8;
    uint256 internal constant VALIDATOR_FIELD_TREE_HEIGHT = 3;

    uint256 internal constant NUM_EXECUTION_PAYLOAD_HEADER_FIELDS = 15;
    uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT = 4;

    uint256 internal constant NUM_EXECUTION_PAYLOAD_FIELDS = 15;
    uint256 internal constant EXECUTION_PAYLOAD_FIELD_TREE_HEIGHT = 4;

    // HISTORICAL_ROOTS_LIMIT	 = 2**24, so tree height is 24
    uint256 internal constant HISTORICAL_ROOTS_TREE_HEIGHT = 24;

    // HISTORICAL_BATCH is root of state_roots and block_root, so number of leaves =  2^1
    uint256 internal constant HISTORICAL_BATCH_TREE_HEIGHT = 1;

    // SLOTS_PER_HISTORICAL_ROOT = 2**13, so tree height is 13
    uint256 internal constant STATE_ROOTS_TREE_HEIGHT = 13;
    uint256 internal constant BLOCK_ROOTS_TREE_HEIGHT = 13;

    //HISTORICAL_ROOTS_LIMIT = 2**24, so tree height is 24
    uint256 internal constant HISTORICAL_SUMMARIES_TREE_HEIGHT = 24;

    //Index of block_summary_root in historical_summary container
    uint256 internal constant BLOCK_SUMMARY_ROOT_INDEX = 0;

    uint256 internal constant NUM_WITHDRAWAL_FIELDS = 4;
    // tree height for hash tree of an individual withdrawal container
    uint256 internal constant WITHDRAWAL_FIELD_TREE_HEIGHT = 2;

    uint256 internal constant VALIDATOR_TREE_HEIGHT = 40;

    // MAX_WITHDRAWALS_PER_PAYLOAD = 2**4, making tree height = 4
    uint256 internal constant WITHDRAWALS_TREE_HEIGHT = 4;

    //in beacon block body https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconblockbody
    uint256 internal constant EXECUTION_PAYLOAD_INDEX = 9;

    // in beacon block header https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
    uint256 internal constant SLOT_INDEX = 0;
    uint256 internal constant PROPOSER_INDEX_INDEX = 1;
    uint256 internal constant STATE_ROOT_INDEX = 3;
    uint256 internal constant BODY_ROOT_INDEX = 4;
    // in beacon state https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconstate
    uint256 internal constant HISTORICAL_BATCH_STATE_ROOT_INDEX = 1;
    uint256 internal constant BEACON_STATE_SLOT_INDEX = 2;
    uint256 internal constant LATEST_BLOCK_HEADER_ROOT_INDEX = 4;
    uint256 internal constant BLOCK_ROOTS_INDEX = 5;
    uint256 internal constant STATE_ROOTS_INDEX = 6;
    uint256 internal constant HISTORICAL_ROOTS_INDEX = 7;
    uint256 internal constant ETH_1_ROOT_INDEX = 8;
    uint256 internal constant VALIDATOR_TREE_ROOT_INDEX = 11;
    uint256 internal constant EXECUTION_PAYLOAD_HEADER_INDEX = 24;
    uint256 internal constant HISTORICAL_SUMMARIES_INDEX = 27;

    // in validator https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
    uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0;
    uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1;
    uint256 internal constant VALIDATOR_BALANCE_INDEX = 2;
    uint256 internal constant VALIDATOR_SLASHED_INDEX = 3;
    uint256 internal constant VALIDATOR_WITHDRAWABLE_EPOCH_INDEX = 7;

    // in execution payload header
    uint256 internal constant TIMESTAMP_INDEX = 9;
    uint256 internal constant WITHDRAWALS_ROOT_INDEX = 14;

    //in execution payload
    uint256 internal constant WITHDRAWALS_INDEX = 14;

    // in withdrawal
    uint256 internal constant WITHDRAWAL_VALIDATOR_INDEX_INDEX = 1;
    uint256 internal constant WITHDRAWAL_VALIDATOR_AMOUNT_INDEX = 3;

    //In historicalBatch
    uint256 internal constant HISTORICALBATCH_STATEROOTS_INDEX = 1;

    //Misc Constants

    /// @notice The number of slots each epoch in the beacon chain
    uint64 internal constant SLOTS_PER_EPOCH = 32;

    /// @notice The number of seconds in a slot in the beacon chain
    uint64 internal constant SECONDS_PER_SLOT = 12;

    /// @notice Number of seconds per epoch: 384 == 32 slots/epoch * 12 seconds/slot 
    uint64 internal constant SECONDS_PER_EPOCH = SLOTS_PER_EPOCH * SECONDS_PER_SLOT;

    bytes8 internal constant UINT64_MASK = 0xffffffffffffffff;

    /// @notice This struct contains the merkle proofs and leaves needed to verify a partial/full withdrawal
    struct WithdrawalProof {
        bytes withdrawalProof;
        bytes slotProof;
        bytes executionPayloadProof;
        bytes timestampProof;
        bytes historicalSummaryBlockRootProof;
        uint64 blockRootIndex;
        uint64 historicalSummaryIndex;
        uint64 withdrawalIndex;
        bytes32 blockRoot;
        bytes32 slotRoot;
        bytes32 timestampRoot;
        bytes32 executionPayloadRoot;
    }

    /// @notice This struct contains the root and proof for verifying the state root against the oracle block root
    struct StateRootProof {
        bytes32 beaconStateRoot;
        bytes proof;
    }

    /**
     * @notice This function verifies merkle proofs of the fields of a certain validator against a beacon chain state root
     * @param validatorIndex the index of the proven validator
     * @param beaconStateRoot is the beacon chain state root to be proven against.
     * @param validatorFieldsProof is the data used in proving the validator's fields
     * @param validatorFields the claimed fields of the validator
     */
    function verifyValidatorFields(
        bytes32 beaconStateRoot,
        bytes32[] calldata validatorFields,
        bytes calldata validatorFieldsProof,
        uint40 validatorIndex
    ) internal view {
        require(
            validatorFields.length == 2 ** VALIDATOR_FIELD_TREE_HEIGHT,
            "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length"
        );

        /**
         * Note: the length of the validator merkle proof is BeaconChainProofs.VALIDATOR_TREE_HEIGHT + 1.
         * There is an additional layer added by hashing the root with the length of the validator list
         */
        require(
            validatorFieldsProof.length == 32 * ((VALIDATOR_TREE_HEIGHT + 1) + BEACON_STATE_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length"
        );
        uint256 index = (VALIDATOR_TREE_ROOT_INDEX << (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex);
        // merkleize the validatorFields to get the leaf to prove
        bytes32 validatorRoot = EigenlayerMerkle.merkleizeSha256(validatorFields);

        // verify the proof of the validatorRoot against the beaconStateRoot
        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: validatorFieldsProof,
                root: beaconStateRoot,
                leaf: validatorRoot,
                index: index
            }),
            "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof"
        );
    }

    /**
     * @notice This function verifies the latestBlockHeader against the state root. the latestBlockHeader is
     * a tracked in the beacon state.
     * @param beaconStateRoot is the beacon chain state root to be proven against.
     * @param stateRootProof is the provided merkle proof
     * @param latestBlockRoot is hashtree root of the latest block header in the beacon state
     */
    function verifyStateRootAgainstLatestBlockRoot(
        bytes32 latestBlockRoot,
        bytes32 beaconStateRoot,
        bytes calldata stateRootProof
    ) internal view {
        require(
            stateRootProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Proof has incorrect length"
        );
        //Next we verify the slot against the blockRoot
        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: stateRootProof,
                root: latestBlockRoot,
                leaf: beaconStateRoot,
                index: STATE_ROOT_INDEX
            }),
            "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Invalid latest block header root merkle proof"
        );
    }

    /**
     * @notice This function verifies the slot and the withdrawal fields for a given withdrawal
     * @param withdrawalProof is the provided set of merkle proofs
     * @param withdrawalFields is the serialized withdrawal container to be proven
     */
    function verifyWithdrawal(
        bytes32 beaconStateRoot,
        bytes32[] calldata withdrawalFields,
        WithdrawalProof calldata withdrawalProof
    ) internal view {
        require(
            withdrawalFields.length == 2 ** WITHDRAWAL_FIELD_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: withdrawalFields has incorrect length"
        );

        require(
            withdrawalProof.blockRootIndex < 2 ** BLOCK_ROOTS_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: blockRootIndex is too large"
        );
        require(
            withdrawalProof.withdrawalIndex < 2 ** WITHDRAWALS_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: withdrawalIndex is too large"
        );

        require(
            withdrawalProof.historicalSummaryIndex < 2 ** HISTORICAL_SUMMARIES_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: historicalSummaryIndex is too large"
        );

        require(
            withdrawalProof.withdrawalProof.length ==
                32 * (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT + WITHDRAWALS_TREE_HEIGHT + 1),
            "BeaconChainProofs.verifyWithdrawal: withdrawalProof has incorrect length"
        );
        require(
            withdrawalProof.executionPayloadProof.length ==
                32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT + BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyWithdrawal: executionPayloadProof has incorrect length"
        );
        require(
            withdrawalProof.slotProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyWithdrawal: slotProof has incorrect length"
        );
        require(
            withdrawalProof.timestampProof.length == 32 * (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyWithdrawal: timestampProof has incorrect length"
        );

        require(
            withdrawalProof.historicalSummaryBlockRootProof.length ==
                32 *
                    (BEACON_STATE_FIELD_TREE_HEIGHT +
                        (HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) +
                        1 +
                        (BLOCK_ROOTS_TREE_HEIGHT)),
            "BeaconChainProofs.verifyWithdrawal: historicalSummaryBlockRootProof has incorrect length"
        );
        /**
         * Note: Here, the "1" in "1 + (BLOCK_ROOTS_TREE_HEIGHT)" signifies that extra step of choosing the "block_root_summary" within the individual
         * "historical_summary". Everywhere else it signifies merkelize_with_mixin, where the length of an array is hashed with the root of the array,
         * but not here.
         */
        uint256 historicalBlockHeaderIndex = (HISTORICAL_SUMMARIES_INDEX <<
            ((HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT))) |
            (uint256(withdrawalProof.historicalSummaryIndex) << (1 + (BLOCK_ROOTS_TREE_HEIGHT))) |
            (BLOCK_SUMMARY_ROOT_INDEX << (BLOCK_ROOTS_TREE_HEIGHT)) |
            uint256(withdrawalProof.blockRootIndex);

        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: withdrawalProof.historicalSummaryBlockRootProof,
                root: beaconStateRoot,
                leaf: withdrawalProof.blockRoot,
                index: historicalBlockHeaderIndex
            }),
            "BeaconChainProofs.verifyWithdrawal: Invalid historicalsummary merkle proof"
        );

        //Next we verify the slot against the blockRoot
        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: withdrawalProof.slotProof,
                root: withdrawalProof.blockRoot,
                leaf: withdrawalProof.slotRoot,
                index: SLOT_INDEX
            }),
            "BeaconChainProofs.verifyWithdrawal: Invalid slot merkle proof"
        );

        {
            // Next we verify the executionPayloadRoot against the blockRoot
            uint256 executionPayloadIndex = (BODY_ROOT_INDEX << (BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT)) |
                EXECUTION_PAYLOAD_INDEX;
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: withdrawalProof.executionPayloadProof,
                    root: withdrawalProof.blockRoot,
                    leaf: withdrawalProof.executionPayloadRoot,
                    index: executionPayloadIndex
                }),
                "BeaconChainProofs.verifyWithdrawal: Invalid executionPayload merkle proof"
            );
        }

        // Next we verify the timestampRoot against the executionPayload root
        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: withdrawalProof.timestampProof,
                root: withdrawalProof.executionPayloadRoot,
                leaf: withdrawalProof.timestampRoot,
                index: TIMESTAMP_INDEX
            }),
            "BeaconChainProofs.verifyWithdrawal: Invalid blockNumber merkle proof"
        );

        {
            /**
             * Next we verify the withdrawal fields against the blockRoot:
             * First we compute the withdrawal_index relative to the blockRoot by concatenating the indexes of all the
             * intermediate root indexes from the bottom of the sub trees (the withdrawal container) to the top, the blockRoot.
             * Then we calculate merkleize the withdrawalFields container to calculate the the withdrawalRoot.
             * Finally we verify the withdrawalRoot against the executionPayloadRoot.
             *
             *
             * Note: EigenlayerMerkleization of the withdrawals root tree uses EigenlayerMerkleizeWithMixin, i.e., the length of the array is hashed with the root of
             * the array.  Thus we shift the WITHDRAWALS_INDEX over by WITHDRAWALS_TREE_HEIGHT + 1 and not just WITHDRAWALS_TREE_HEIGHT.
             */
            uint256 withdrawalIndex = (WITHDRAWALS_INDEX << (WITHDRAWALS_TREE_HEIGHT + 1)) |
                uint256(withdrawalProof.withdrawalIndex);
            bytes32 withdrawalRoot = EigenlayerMerkle.merkleizeSha256(withdrawalFields);
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: withdrawalProof.withdrawalProof,
                    root: withdrawalProof.executionPayloadRoot,
                    leaf: withdrawalRoot,
                    index: withdrawalIndex
                }),
                "BeaconChainProofs.verifyWithdrawal: Invalid withdrawal merkle proof"
            );
        }
    }

    /**
     * @notice This function replicates the ssz hashing of a validator's pubkey, outlined below:
     *  hh := ssz.NewHasher()
     *  hh.PutBytes(validatorPubkey[:])
     *  validatorPubkeyHash := hh.Hash()
     *  hh.Reset()
     */
    function hashValidatorBLSPubkey(bytes memory validatorPubkey) internal pure returns (bytes32 pubkeyHash) {
        require(validatorPubkey.length == 48, "Input should be 48 bytes in length");
        return sha256(abi.encodePacked(validatorPubkey, bytes16(0)));
    }

    /**
     * @dev Retrieve the withdrawal timestamp
     */
    function getWithdrawalTimestamp(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) {
        return
            Endian.fromLittleEndianUint64(withdrawalProof.timestampRoot);
    }

    /**
     * @dev Converts the withdrawal's slot to an epoch
     */
    function getWithdrawalEpoch(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) {
        return
            Endian.fromLittleEndianUint64(withdrawalProof.slotRoot) / SLOTS_PER_EPOCH;
    }

    /**
     * Indices for validator fields (refer to consensus specs):
     * 0: pubkey
     * 1: withdrawal credentials
     * 2: effective balance
     * 3: slashed?
     * 4: activation elligibility epoch
     * 5: activation epoch
     * 6: exit epoch
     * 7: withdrawable epoch
     */

    /**
     * @dev Retrieves a validator's pubkey hash
     */
    function getPubkeyHash(bytes32[] memory validatorFields) internal pure returns (bytes32) {
        return 
            validatorFields[VALIDATOR_PUBKEY_INDEX];
    }

    function getWithdrawalCredentials(bytes32[] memory validatorFields) internal pure returns (bytes32) {
        return
            validatorFields[VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX];
    }

    /**
     * @dev Retrieves a validator's effective balance (in gwei)
     */
    function getEffectiveBalanceGwei(bytes32[] memory validatorFields) internal pure returns (uint64) {
        return 
            Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_BALANCE_INDEX]);
    }

    /**
     * @dev Retrieves a validator's withdrawable epoch
     */
    function getWithdrawableEpoch(bytes32[] memory validatorFields) internal pure returns (uint64) {
        return 
            Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_WITHDRAWABLE_EPOCH_INDEX]);
    }

    /**
     * Indices for withdrawal fields (refer to consensus specs):
     * 0: withdrawal index
     * 1: validator index
     * 2: execution address
     * 3: withdrawal amount
     */

    /**
     * @dev Retrieves a withdrawal's validator index
     */
    function getValidatorIndex(bytes32[] memory withdrawalFields) internal pure returns (uint40) {
        return 
            uint40(Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_INDEX_INDEX]));
    }

    /**
     * @dev Retrieves a withdrawal's withdrawal amount (in gwei)
     */
    function getWithdrawalAmountGwei(bytes32[] memory withdrawalFields) internal pure returns (uint64) {
        return
            Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_AMOUNT_INDEX]);
    }
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.0;

import "./EigenlayerMerkle.sol";
import "./Endian.sol";

//Utility library for parsing and PHASE0 beacon chain block headers
//SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization
//BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
//BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
library BeaconChainProofs {

    /// @notice Heights of various merkle trees in the beacon chain
    /// - beaconBlockRoot
    /// |                                             HEIGHT: BEACON_BLOCK_HEADER_TREE_HEIGHT
    /// -- beaconStateRoot
    /// |                                             HEIGHT: BEACON_STATE_TREE_HEIGHT
    /// validatorContainerRoot, balanceContainerRoot
    /// |                       |                     HEIGHT: BALANCE_TREE_HEIGHT
    /// |                       individual balances
    /// |                                             HEIGHT: VALIDATOR_TREE_HEIGHT
    /// individual validators
    uint256 internal constant BEACON_BLOCK_HEADER_TREE_HEIGHT = 3;
    uint256 internal constant BEACON_STATE_TREE_HEIGHT = 5;
    uint256 internal constant BALANCE_TREE_HEIGHT = 38;
    uint256 internal constant VALIDATOR_TREE_HEIGHT = 40;
    
    /// @notice Index of the beaconStateRoot in the `BeaconBlockHeader` container
    ///
    /// BeaconBlockHeader = [..., state_root, ...]
    ///                      0...      3
    ///
    /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader)
    uint256 internal constant STATE_ROOT_INDEX = 3;

    /// @notice Indices for fields in the `BeaconState` container
    ///
    /// BeaconState = [..., validators, balances, ...]
    ///                0...     11         12
    ///
    /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconstate)
    uint256 internal constant VALIDATOR_CONTAINER_INDEX = 11;
    uint256 internal constant BALANCE_CONTAINER_INDEX = 12;

    /// @notice Number of fields in the `Validator` container
    /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator)
    uint256 internal constant VALIDATOR_FIELDS_LENGTH = 8;

    /// @notice Indices for fields in the `Validator` container
    uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0;
    uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1;
    uint256 internal constant VALIDATOR_BALANCE_INDEX = 2;
    uint256 internal constant VALIDATOR_SLASHED_INDEX = 3;
    uint256 internal constant VALIDATOR_EXIT_EPOCH_INDEX = 6;

    /// @notice Slot/Epoch timings
    uint64 internal constant SECONDS_PER_SLOT = 12;
    uint64 internal constant SLOTS_PER_EPOCH = 32;
    uint64 internal constant SECONDS_PER_EPOCH = SLOTS_PER_EPOCH * SECONDS_PER_SLOT;

    /// @notice `FAR_FUTURE_EPOCH` is used as the default value for certain `Validator`
    /// fields when a `Validator` is first created on the beacon chain
    uint64 internal constant FAR_FUTURE_EPOCH = type(uint64).max;
    bytes8 internal constant UINT64_MASK = 0xffffffffffffffff;

    /// @notice Contains a beacon state root and a merkle proof verifying its inclusion under a beacon block root
    struct StateRootProof {
        bytes32 beaconStateRoot;
        bytes proof;
    }

    /// @notice Contains a validator's fields and a merkle proof of their inclusion under a beacon state root
    struct ValidatorProof {
        bytes32[] validatorFields;
        bytes proof;
    }

    /// @notice Contains a beacon balance container root and a proof of this root under a beacon block root
    struct BalanceContainerProof {
        bytes32 balanceContainerRoot;
        bytes proof;
    }

    /// @notice Contains a validator balance root and a proof of its inclusion under a balance container root
    struct BalanceProof {
        bytes32 pubkeyHash;
        bytes32 balanceRoot;
        bytes proof;
    }

    /*******************************************************************************
                 VALIDATOR FIELDS -> BEACON STATE ROOT -> BEACON BLOCK ROOT
    *******************************************************************************/

    /// @notice Verify a merkle proof of the beacon state root against a beacon block root
    /// @param beaconBlockRoot merkle root of the beacon block
    /// @param proof the beacon state root and merkle proof of its inclusion under `beaconBlockRoot`
    function verifyStateRoot(
        bytes32 beaconBlockRoot,
        StateRootProof calldata proof
    ) internal view {
        require(
            proof.proof.length == 32 * (BEACON_BLOCK_HEADER_TREE_HEIGHT),
            "BeaconChainProofs.verifyStateRoot: Proof has incorrect length"
        );

        /// This merkle proof verifies the `beaconStateRoot` under the `beaconBlockRoot`
        /// - beaconBlockRoot
        /// |                            HEIGHT: BEACON_BLOCK_HEADER_TREE_HEIGHT
        /// -- beaconStateRoot
        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: proof.proof,
                root: beaconBlockRoot,
                leaf: proof.beaconStateRoot,
                index: STATE_ROOT_INDEX
            }),
            "BeaconChainProofs.verifyStateRoot: Invalid state root merkle proof"
        );
    }

    /// @notice Verify a merkle proof of a validator container against a `beaconStateRoot`
    /// @dev This proof starts at a validator's container root, proves through the validator container root,
    /// and continues proving to the root of the `BeaconState`
    /// @dev See https://eth2book.info/capella/part3/containers/dependencies/#validator for info on `Validator` containers
    /// @dev See https://eth2book.info/capella/part3/containers/state/#beaconstate for info on `BeaconState` containers
    /// @param beaconStateRoot merkle root of the `BeaconState` container
    /// @param validatorFields an individual validator's fields. These are merklized to form a `validatorRoot`,
    /// which is used as the leaf to prove against `beaconStateRoot`
    /// @param validatorFieldsProof a merkle proof of inclusion of `validatorFields` under `beaconStateRoot`
    /// @param validatorIndex the validator's unique index
    function verifyValidatorFields(
        bytes32 beaconStateRoot,
        bytes32[] calldata validatorFields,
        bytes calldata validatorFieldsProof,
        uint40 validatorIndex
    ) internal view {
        require(
            validatorFields.length == VALIDATOR_FIELDS_LENGTH,
            "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length"
        );

        /// Note: the reason we use `VALIDATOR_TREE_HEIGHT + 1` here is because the merklization process for
        /// this container includes hashing the root of the validator tree with the length of the validator list
        require(
            validatorFieldsProof.length == 32 * ((VALIDATOR_TREE_HEIGHT + 1) + BEACON_STATE_TREE_HEIGHT),
            "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length"
        );

        // Merkleize `validatorFields` to get the leaf to prove
        bytes32 validatorRoot = EigenlayerMerkle.merkleizeSha256(validatorFields);

        /// This proof combines two proofs, so its index accounts for the relative position of leaves in two trees:
        /// - beaconStateRoot
        /// |                            HEIGHT: BEACON_STATE_TREE_HEIGHT
        /// -- validatorContainerRoot
        /// |                            HEIGHT: VALIDATOR_TREE_HEIGHT + 1
        /// ---- validatorRoot
        uint256 index = (VALIDATOR_CONTAINER_INDEX << (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex);

        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: validatorFieldsProof,
                root: beaconStateRoot,
                leaf: validatorRoot,
                index: index
            }),
            "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof"
        );
    }

    /*******************************************************************************
             VALIDATOR BALANCE -> BALANCE CONTAINER ROOT -> BEACON BLOCK ROOT
    *******************************************************************************/

    /// @notice Verify a merkle proof of the beacon state's balances container against the beacon block root
    /// @dev This proof starts at the balance container root, proves through the beacon state root, and
    /// continues proving through the beacon block root. As a result, this proof will contain elements
    /// of a `StateRootProof` under the same block root, with the addition of proving the balances field
    /// within the beacon state.
    /// @dev This is used to make checkpoint proofs more efficient, as a checkpoint will verify multiple balances
    /// against the same balance container root.
    /// @param beaconBlockRoot merkle root of the beacon block
    /// @param proof a beacon balance container root and merkle proof of its inclusion under `beaconBlockRoot`
    function verifyBalanceContainer(
        bytes32 beaconBlockRoot,
        BalanceContainerProof calldata proof
    ) internal view {
        require(
            proof.proof.length == 32 * (BEACON_BLOCK_HEADER_TREE_HEIGHT + BEACON_STATE_TREE_HEIGHT),
            "BeaconChainProofs.verifyBalanceContainer: Proof has incorrect length"
        );

        /// This proof combines two proofs, so its index accounts for the relative position of leaves in two trees:
        /// - beaconBlockRoot
        /// |                            HEIGHT: BEACON_BLOCK_HEADER_TREE_HEIGHT
        /// -- beaconStateRoot
        /// |                            HEIGHT: BEACON_STATE_TREE_HEIGHT
        /// ---- balancesContainerRoot
        uint256 index = (STATE_ROOT_INDEX << (BEACON_STATE_TREE_HEIGHT)) | BALANCE_CONTAINER_INDEX;
        
        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: proof.proof,
                root: beaconBlockRoot,
                leaf: proof.balanceContainerRoot,
                index: index
            }),
            "BeaconChainProofs.verifyBalanceContainer: invalid balance container proof"
        );
    }

    /// @notice Verify a merkle proof of a validator's balance against the beacon state's `balanceContainerRoot`
    /// @param balanceContainerRoot the merkle root of all validators' current balances
    /// @param validatorIndex the index of the validator whose balance we are proving
    /// @param proof the validator's associated balance root and a merkle proof of inclusion under `balanceContainerRoot`
    /// @return validatorBalanceGwei the validator's current balance (in gwei)
    function verifyValidatorBalance(
        bytes32 balanceContainerRoot,
        uint40 validatorIndex,
        BalanceProof calldata proof
    ) internal view returns (uint64 validatorBalanceGwei) {
        /// Note: the reason we use `BALANCE_TREE_HEIGHT + 1` here is because the merklization process for
        /// this container includes hashing the root of the balances tree with the length of the balances list
        require(
            proof.proof.length == 32 * (BALANCE_TREE_HEIGHT + 1),
            "BeaconChainProofs.verifyValidatorBalance: Proof has incorrect length"
        );

        /// When merkleized, beacon chain balances are combined into groups of 4 called a `balanceRoot`. The merkle
        /// proof here verifies that this validator's `balanceRoot` is included in the `balanceContainerRoot`
        /// - balanceContainerRoot
        /// |                            HEIGHT: BALANCE_TREE_HEIGHT
        /// -- balanceRoot
        uint256 balanceIndex = uint256(validatorIndex / 4);
 
        require(
            EigenlayerMerkle.verifyInclusionSha256({
                proof: proof.proof,
                root: balanceContainerRoot,
                leaf: proof.balanceRoot,
                index: balanceIndex
            }),
            "BeaconChainProofs.verifyValidatorBalance: Invalid merkle proof"
        );

        /// Extract the individual validator's balance from the `balanceRoot`
        return getBalanceAtIndex(proof.balanceRoot, validatorIndex);
    }

    /**
     * @notice Parses a balanceRoot to get the uint64 balance of a validator.  
     * @dev During merkleization of the beacon state balance tree, four uint64 values are treated as a single 
     * leaf in the merkle tree. We use validatorIndex % 4 to determine which of the four uint64 values to 
     * extract from the balanceRoot.
     * @param balanceRoot is the combination of 4 validator balances being proven for
     * @param validatorIndex is the index of the validator being proven for
     * @return The validator's balance, in Gwei
     */
    function getBalanceAtIndex(bytes32 balanceRoot, uint40 validatorIndex) internal pure returns (uint64) {
        uint256 bitShiftAmount = (validatorIndex % 4) * 64;
        return 
            Endian.fromLittleEndianUint64(bytes32((uint256(balanceRoot) << bitShiftAmount)));
    }

    /// @notice Indices for fields in the `Validator` container:
    /// 0: pubkey
    /// 1: withdrawal credentials
    /// 2: effective balance
    /// 3: slashed?
    /// 4: activation elligibility epoch
    /// 5: activation epoch
    /// 6: exit epoch
    /// 7: withdrawable epoch
    ///
    /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator)

    /// @dev Retrieves a validator's pubkey hash
    function getPubkeyHash(bytes32[] memory validatorFields) internal pure returns (bytes32) {
        return 
            validatorFields[VALIDATOR_PUBKEY_INDEX];
    }

    /// @dev Retrieves a validator's withdrawal credentials
    function getWithdrawalCredentials(bytes32[] memory validatorFields) internal pure returns (bytes32) {
        return
            validatorFields[VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX];
    }

    /// @dev Retrieves a validator's effective balance (in gwei)
    function getEffectiveBalanceGwei(bytes32[] memory validatorFields) internal pure returns (uint64) {
        return 
            Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_BALANCE_INDEX]);
    }

    /// @dev Retrieves true IFF a validator is marked slashed
    function isValidatorSlashed(bytes32[] memory validatorFields) internal pure returns (bool) {
        return validatorFields[VALIDATOR_SLASHED_INDEX] != 0;
    }

    /// @dev Retrieves a validator's exit epoch
    function getExitEpoch(bytes32[] memory validatorFields) internal pure returns (uint64) {
        return 
            Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_EXIT_EPOCH_INDEX]);
    }
}

// SPDX-License-Identifier: BUSL-1.1
// Adapted from OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library EigenlayerMerkle {
    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * Note this is for a Merkle tree using the keccak/sha3 hash function
     */
    function verifyInclusionKeccak(
        bytes memory proof,
        bytes32 root,
        bytes32 leaf,
        uint256 index
    ) internal pure returns (bool) {
        return processInclusionProofKeccak(proof, leaf, index) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * _Available since v4.4._
     *
     * Note this is for a Merkle tree using the keccak/sha3 hash function
     */
    function processInclusionProofKeccak(
        bytes memory proof,
        bytes32 leaf,
        uint256 index
    ) internal pure returns (bytes32) {
        require(
            proof.length != 0 && proof.length % 32 == 0,
            "Merkle.processInclusionProofKeccak: proof length should be a non-zero multiple of 32"
        );
        bytes32 computedHash = leaf;
        for (uint256 i = 32; i <= proof.length; i += 32) {
            if (index % 2 == 0) {
                // if ith bit of index is 0, then computedHash is a left sibling
                assembly {
                    mstore(0x00, computedHash)
                    mstore(0x20, mload(add(proof, i)))
                    computedHash := keccak256(0x00, 0x40)
                    index := div(index, 2)
                }
            } else {
                // if ith bit of index is 1, then computedHash is a right sibling
                assembly {
                    mstore(0x00, mload(add(proof, i)))
                    mstore(0x20, computedHash)
                    computedHash := keccak256(0x00, 0x40)
                    index := div(index, 2)
                }
            }
        }
        return computedHash;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * Note this is for a Merkle tree using the sha256 hash function
     */
    function verifyInclusionSha256(
        bytes memory proof,
        bytes32 root,
        bytes32 leaf,
        uint256 index
    ) internal view returns (bool) {
        return processInclusionProofSha256(proof, leaf, index) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * _Available since v4.4._
     *
     * Note this is for a Merkle tree using the sha256 hash function
     */
    function processInclusionProofSha256(
        bytes memory proof,
        bytes32 leaf,
        uint256 index
    ) internal view returns (bytes32) {
        require(
            proof.length != 0 && proof.length % 32 == 0,
            "Merkle.processInclusionProofSha256: proof length should be a non-zero multiple of 32"
        );
        bytes32[1] memory computedHash = [leaf];
        for (uint256 i = 32; i <= proof.length; i += 32) {
            if (index % 2 == 0) {
                // if ith bit of index is 0, then computedHash is a left sibling
                assembly {
                    mstore(0x00, mload(computedHash))
                    mstore(0x20, mload(add(proof, i)))
                    if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) {
                        revert(0, 0)
                    }
                    index := div(index, 2)
                }
            } else {
                // if ith bit of index is 1, then computedHash is a right sibling
                assembly {
                    mstore(0x00, mload(add(proof, i)))
                    mstore(0x20, mload(computedHash))
                    if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) {
                        revert(0, 0)
                    }
                    index := div(index, 2)
                }
            }
        }
        return computedHash[0];
    }

    /**
     @notice this function returns the merkle root of a tree created from a set of leaves using sha256 as its hash function
     @param leaves the leaves of the merkle tree
     @return The computed Merkle root of the tree.
     @dev A pre-condition to this function is that leaves.length is a power of two.  If not, the function will merkleize the inputs incorrectly.
     */
    function merkleizeSha256(bytes32[] memory leaves) internal pure returns (bytes32) {
        //there are half as many nodes in the layer above the leaves
        uint256 numNodesInLayer = leaves.length / 2;
        //create a layer to store the internal nodes
        bytes32[] memory layer = new bytes32[](numNodesInLayer);
        //fill the layer with the pairwise hashes of the leaves
        for (uint256 i = 0; i < numNodesInLayer; i++) {
            layer[i] = sha256(abi.encodePacked(leaves[2 * i], leaves[2 * i + 1]));
        }
        //the next layer above has half as many nodes
        numNodesInLayer /= 2;
        //while we haven't computed the root
        while (numNodesInLayer != 0) {
            //overwrite the first numNodesInLayer nodes in layer with the pairwise hashes of their children
            for (uint256 i = 0; i < numNodesInLayer; i++) {
                layer[i] = sha256(abi.encodePacked(layer[2 * i], layer[2 * i + 1]));
            }
            //the next layer above has half as many nodes
            numNodesInLayer /= 2;
        }
        //the first node in the layer is the root
        return layer[0];
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;

library Endian {
    /**
     * @notice Converts a little endian-formatted uint64 to a big endian-formatted uint64
     * @param lenum little endian-formatted uint64 input, provided as 'bytes32' type
     * @return n The big endian-formatted uint64
     * @dev Note that the input is formatted as a 'bytes32' type (i.e. 256 bits), but it is immediately truncated to a uint64 (i.e. 64 bits)
     * through a right-shift/shr operation.
     */
    function fromLittleEndianUint64(bytes32 lenum) internal pure returns (uint64 n) {
        // the number needs to be stored in little-endian encoding (ie in bytes 0-8)
        n = uint64(uint256(lenum >> 192));
        return
            (n >> 56) |
            ((0x00FF000000000000 & n) >> 40) |
            ((0x0000FF0000000000 & n) >> 24) |
            ((0x000000FF00000000 & n) >> 8) |
            ((0x00000000FF000000 & n) << 8) |
            ((0x0000000000FF0000 & n) << 24) |
            ((0x000000000000FF00 & n) << 40) |
            ((0x00000000000000FF & n) << 56);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):