Contract Name:
ElementHolderVault
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success,) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(address target, bool success, bytes memory returndata)
internal
view
returns (bytes memory)
{
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.24;
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "./interfaces/IElementNFT.sol";
import "./interfaces/IElement280.sol";
import "./lib/constants.sol";
/// @title Element 280 Holder Vault Contract
contract ElementHolderVault is Ownable2Step {
using SafeERC20 for IERC20;
// --------------------------- STATE VARIABLES --------------------------- //
struct Cycle {
uint256 timestamp;
uint256 tokensPerMultiplier;
}
address public immutable E280;
address public immutable E280_NFT;
address public treasury;
address public devWallet;
/// @notice The total amount of rewards accumulated.
uint256 public totalRewardPool;
/// @notice The minimum pool size required to trigger a new cycle.
uint256 public minCyclePool;
/// @notice The total amount of rewards paid out to users.
uint256 public totalRewadsPaid;
/// @notice The total amount of E280 tokens burned during.
uint256 public totalE280Burned;
/// @notice The current cycle ID.
uint256 public currentCycle;
/// @notice A mapping of cycle IDs to the corresponding cycle data.
/// @return timestamp The timestamp when the cycle was created.
/// @return tokensPerMultiplier The number of tokens allocated per multiplier in this cycle.
mapping(uint256 id => Cycle) public cycles;
/// @notice A mapping of token IDs to the last claimed cycle ID for each token.
mapping(uint256 tokenId => uint256) public claimedCycles;
/// @notice A mapping of user addresses to the total amount of Element 280 tokens claimed by each user.
mapping(address user => uint256) public claimed;
event CycleUpdated();
// --------------------------- CONSTRUCTOR --------------------------- //
constructor(
address _E280,
address _E280_NFT,
address _owner,
address _devWallet,
address _treasury,
uint256 _minCyclePool
) Ownable(_owner) {
require(_E280 != address(0), "E280 token address not provided");
require(_E280_NFT != address(0), "E280 NFT address not provided");
require(_owner != address(0), "Owner wallet not provided");
require(_devWallet != address(0), "Dev wallet address not provided");
require(_treasury != address(0), "Treasury address not provided");
require(_minCyclePool > 0, "Minimum cycle pool not provided");
E280 = _E280;
E280_NFT = _E280_NFT;
devWallet = _devWallet;
treasury = _treasury;
minCyclePool = _minCyclePool;
}
// --------------------------- PUBLIC FUNCTIONS --------------------------- //
/// @notice Creates the new cycle by distributing the cycle pool and calculating tokens per multiplier.
function updateCycle() external {
require(block.timestamp > getNextCycleTime(), "Cooldown in progress");
uint256 cyclePool = getNextCyclePool();
require(cyclePool > minCyclePool, "Not enough E280 available");
unchecked {
currentCycle++;
uint256 rewardPool = _processCyclePool(cyclePool);
uint256 multiplierPool = IElementNFT(E280_NFT).multiplierPool();
cycles[currentCycle] = Cycle(block.timestamp, rewardPool / multiplierPool);
totalRewardPool += cycles[currentCycle].tokensPerMultiplier * multiplierPool;
}
emit CycleUpdated();
}
/// @notice Claims the accumulated Element 280 rewards for a batch of NFT tokens.
/// @param tokenIds An array of token IDs for which rewards are being claimed.
function claimRewards(uint256[] calldata tokenIds) external {
require(currentCycle != 0, "No cycle created");
(uint256[] memory timestamps, uint16[] memory multipliers) =
IElementNFT(E280_NFT).getBatchedTokensData(tokenIds, msg.sender);
uint256 totalReward;
unchecked {
for (uint256 i = 0; i < tokenIds.length; i++) {
totalReward += _processTokenId(tokenIds[i], timestamps[i], multipliers[i]);
}
claimed[msg.sender] += totalReward;
totalRewadsPaid += totalReward;
}
IERC20(E280).safeTransfer(msg.sender, totalReward);
}
// --------------------------- ADMINISTRATIVE FUNCTIONS --------------------------- //
/// @notice Sets the minimum pool size required to trigger a new cycle.
/// @param limit The new minimum pool size in WEI.
function setMinCyclePool(uint256 limit) external onlyOwner {
minCyclePool = limit;
}
/// @notice Sets the treasury wallet address.
/// @param _address The new treasury wallet address.
function setTreasury(address _address) external onlyOwner {
require(_address != address(0), "Treasury address not provided");
treasury = _address;
}
// --------------------------- VIEW FUNCTIONS --------------------------- //
/// @notice Returns the reward availability and total reward for a batch of tokens.
/// @param tokenIds An array of token IDs to query.
/// @param account The address of the token owner.
/// @return availability A boolean array indicating whether each token is eligible for rewards in the current cycle.
/// @return totalReward The total amount of rewards the account can claim for the eligible provided tokens.
function getRewards(uint256[] calldata tokenIds, address account)
external
view
returns (bool[] memory availability, uint256 totalReward)
{
require(tokenIds.length > 0, "No tokenIds provided");
require(currentCycle != 0, "No cycles created");
availability = new bool[](tokenIds.length);
(uint256[] memory timestamps, uint16[] memory multipliers) =
IElementNFT(E280_NFT).getBatchedTokensData(tokenIds, account);
for (uint256 i = 0; i < tokenIds.length; i++) {
uint256 tokenId = tokenIds[i];
for (uint256 j = i + 1; j < tokenIds.length; j++) {
require(tokenId != tokenIds[j], "Duplicate token ID");
}
uint256 nftTimestamp = timestamps[i];
uint256 nftClaimedCycle = claimedCycles[tokenId];
uint256 totalTokensPerMultiplier;
uint256 startCycle = nftClaimedCycle == 0 ? _getNFTFirstCycle(nftTimestamp) : nftClaimedCycle + 1;
availability[i] = startCycle <= currentCycle;
if (startCycle <= currentCycle) {
uint256 endCycle = _applyMaxCycleProtection(startCycle);
unchecked {
for (uint256 j = startCycle; j <= endCycle; j++) {
totalTokensPerMultiplier += cycles[j].tokensPerMultiplier;
}
totalReward += totalTokensPerMultiplier * multipliers[i];
}
}
}
}
/// @notice Returns the timestamp for when the next cycle will be available for update.
/// @return The timestamp for the next cycle update.
function getNextCycleTime() public view returns (uint256) {
return cycles[currentCycle].timestamp + CYCLE_INTERVAL;
}
/// @notice Returns the available pool of tokens for the next cycle update.
/// @return The amount of E280 tokens available for the next cycle, excluding rewards already allocated and paid.
function getNextCyclePool() public view returns (uint256) {
return IERC20(E280).balanceOf(address(this)) + totalRewadsPaid - totalRewardPool;
}
// --------------------------- INTERNAL FUNCTIONS --------------------------- //
function _processTokenId(uint256 tokenId, uint256 nftTimestamp, uint16 multiplier)
internal
returns (uint256 tokenReward)
{
uint256 nftClaimedCycle = claimedCycles[tokenId];
uint256 totalTokensPerMultiplier;
uint256 startCycle = nftClaimedCycle == 0 ? _getNFTFirstCycle(nftTimestamp) : nftClaimedCycle + 1;
require(startCycle <= currentCycle, "Cycle not available");
uint256 endCycle = _applyMaxCycleProtection(startCycle);
unchecked {
for (uint256 i = startCycle; i <= endCycle; i++) {
totalTokensPerMultiplier += cycles[i].tokensPerMultiplier;
}
}
claimedCycles[tokenId] = endCycle;
unchecked {
tokenReward = totalTokensPerMultiplier * multiplier;
}
}
function _processCyclePool(uint256 pool) internal returns (uint256 rewardPool) {
IElement280 e280 = IElement280(E280);
uint256 burnPool;
uint256 devFee;
uint256 treasuryFee;
unchecked {
if (e280.presaleEnd() < block.timestamp) {
burnPool = pool * 20 / 100;
devFee = pool * 15 / 100;
treasuryFee = pool * 5 / 100;
} else {
burnPool = pool * 100 / 1000;
devFee = pool * 75 / 1000;
treasuryFee = pool * 25 / 1000;
}
totalE280Burned += burnPool;
rewardPool = pool - burnPool - devFee - treasuryFee;
}
e280.burn(burnPool);
IERC20(E280).safeTransfer(devWallet, devFee);
IERC20(E280).safeTransfer(treasury, treasuryFee);
}
function _applyMaxCycleProtection(uint256 startCycle) internal view returns (uint256) {
return
currentCycle - startCycle + 1 > MAX_CYCLES_PER_CLAIM ? startCycle + MAX_CYCLES_PER_CLAIM - 1 : currentCycle;
}
function _getNFTFirstCycle(uint256 nftTimestamp) internal view returns (uint256) {
for (uint256 i = 1; i <= currentCycle; i++) {
if (cycles[i].timestamp > nftTimestamp) return i;
}
return currentCycle + 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import "./IERC20Burnable.sol";
interface IElement280 is IERC20Burnable {
function presaleEnd() external returns (uint256);
function handleRedeem(uint256 amount, address receiver) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
interface IElementNFT {
function startPresale(uint256 _presaleEnd) external;
function multiplierPool() external returns (uint256);
function getBatchedTokensData(uint256[] calldata tokenIds, address owner)
external
view
returns (uint256[] memory timestamps, uint16[] memory multipliers);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
interface IERC20Burnable {
function burn(uint256 value) external;
function balanceOf(address account) external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
interface ITitanOnBurn {
function onBurn(address user, uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import "../interfaces/ITitanOnBurn.sol";
import "@openzeppelin/contracts/interfaces/IERC20.sol";
// ===================== Contract Addresses =====================================
uint8 constant NUM_ECOSYSTEM_TOKENS = 14;
address constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address constant TITANX = 0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1;
address constant HYPER_ADDRESS = 0xE2cfD7a01ec63875cd9Da6C7c1B7025166c2fA2F;
address constant HELIOS_ADDRESS = 0x2614f29C39dE46468A921Fd0b41fdd99A01f2EDf;
address constant DRAGONX_ADDRESS = 0x96a5399D07896f757Bd4c6eF56461F58DB951862;
address constant BDX_ADDRESS = 0x9f278Dc799BbC61ecB8e5Fb8035cbfA29803623B;
address constant BLAZE_ADDRESS = 0xfcd7cceE4071aA4ecFAC1683b7CC0aFeCAF42A36;
address constant INFERNO_ADDRESS = 0x00F116ac0c304C570daAA68FA6c30a86A04B5C5F;
address constant HYDRA_ADDRESS = 0xCC7ed2ab6c3396DdBc4316D2d7C1b59ff9d2091F;
address constant AWESOMEX_ADDRESS = 0xa99AFcC6Aa4530d01DFFF8E55ec66E4C424c048c;
address constant FLUX_ADDRESS = 0xBFDE5ac4f5Adb419A931a5bF64B0f3BB5a623d06;
address constant DRAGONX_BURN_ADDRESS = 0x1d59429571d8Fde785F45bf593E94F2Da6072Edb;
// ===================== Presale ================================================
uint256 constant PRESALE_LENGTH = 28 days;
uint256 constant COOLDOWN_PERIOD = 48 hours;
uint256 constant LP_POOL_SIZE = 200_000_000_000 ether;
// ===================== Fees ===================================================
uint256 constant DEV_PERCENT = 6;
uint256 constant TREASURY_PERCENT = 4;
uint256 constant BURN_PERCENT = 10;
// ===================== Sell Tax ===============================================
uint256 constant PRESALE_TRANSFER_TAX_PERCENTAGE = 16;
uint256 constant TRANSFER_TAX_PERCENTAGE = 4;
uint256 constant NFT_REDEEM_TAX_PERCENTAGE = 3;
// ===================== Holder Vault ===========================================
uint16 constant MAX_CYCLES_PER_CLAIM = 100;
uint32 constant CYCLE_INTERVAL = 7 days;
// ===================== UNISWAP Interface ======================================
address constant UNISWAP_V2_FACTORY = 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f;
address constant UNISWAP_V2_ROUTER = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
address constant UNISWAP_V3_ROUTER = 0xE592427A0AEce92De3Edee1F18E0157C05861564;
uint24 constant POOL_FEE_1PERCENT = 10000;
// ===================== Interface IDs ==========================================
bytes4 constant INTERFACE_ID_ERC165 = 0x01ffc9a7;
bytes4 constant INTERFACE_ID_ERC20 = type(IERC20).interfaceId;
bytes4 constant INTERFACE_ID_ERC721 = 0x80ac58cd;
bytes4 constant INTERFACE_ID_ERC721Metadata = 0x5b5e139f;
bytes4 constant INTERFACE_ID_ITITANONBURN = type(ITitanOnBurn).interfaceId;