ETH Price: $3,430.00 (+3.30%)

Contract Diff Checker

Contract Name:
Silver

Contract Source Code:

File 1 of 1 : Silver

// File: @openzeppelin/contracts/GSN/Context.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
contract Context {
    // Empty internal constructor, to prevent people from mistakenly deploying
    // an instance of this contract, which should be used via inheritance.
    constructor () internal { }

    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

// File: @openzeppelin/contracts/access/Ownable.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.0;

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(_owner == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

// File: @openzeppelin/contracts/math/SafeMath.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// File: @openzeppelin/contracts/token/ERC20/IERC20.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// File: contracts/Base.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.6.0;




contract Base is IERC20, Ownable {
    
    using SafeMath for uint;

    uint256 private _totalSupply;
    uint256 private _stockCount;
    mapping (address => uint256) private _balances;
    mapping (address => mapping (address => uint256)) private _allowed;

    mapping (bytes32 => uint256) public stock;
    address public minter;
    address public burner;

    function burn(bytes32 serial) external onlyBurner() {
        require(serial != 0x00, "Invalid location or serial");
        uint256 value = stock[serial];

        require(value > 0, "Invalid stock");
        require(_balances[owner()] >= value, "Cannot burn more than you own");

        stock[serial] = 0;
        _balances[owner()] = _balances[owner()].sub(value);

        _stockCount = _stockCount.sub(1);
        _totalSupply = _totalSupply.sub(value);

        emit Transfer(owner(), address(0), value);
        emit Burned(serial, value);
    }

    function mint(address to, bytes32 serial, uint256 value) external onlyMinter() returns(bool) {
        require(serial != 0x00, "Invalid location or serial");
        require(to != address(0), "Invalid to address");
        require(value > 0, "Amount must be greater than zero");

        stock[serial] = value;
        _stockCount = _stockCount.add(1);

        _totalSupply = _totalSupply.add(value);
        _balances[to] = _balances[to].add(value);

        emit Transfer(owner(), to, value);
        emit Minted(serial, value);

        return true;
    }

    function updateBurner(address who) external onlyOwner() returns (bool) {
        require(who != address(0), "Invalid address");
        burner = who;
        return true;
    }

    function updateMinter(address who) external onlyOwner() returns (bool) {
        require(who != address(0), "Invalid address");
        minter = who;
        return true;
    }

    function stockCount() public view returns (uint256) {
        return _stockCount;
    }

    //erc20 props
    function decimals() public pure returns (uint8) {
        return 4;
    }

    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(address who) public override view returns (uint256 balance) {
        balance = _balances[who];
    }

    function allowance(address tokenOwner, address spender) public override view returns (uint remaining) {
        return _allowed[tokenOwner][spender];
    }

    function approve(address spender, uint256 value) public override returns (bool) {
        require(spender != address(0), "Invalid address");

        _allowed[msg.sender][spender] = value;
        emit Approval(msg.sender, spender, value);
        return true;
    }

    function transfer(address to, uint256 value) public override returns (bool) {
        _transfer(msg.sender, to, value);
        return true;
    }

    function transferFrom(address from, address to, uint256 value) public override returns (bool success) {
        require(to != address(0), "Invalid address");

        _allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);
        _transfer(from, to, value);

        emit Approval(from, msg.sender, _allowed[from][msg.sender]);
        return true;
    }

    function _transfer(address from, address to, uint256 value) internal {
        require(to != address(0), "Invalid to address");
        require(from != address(0), "Invalid from address");

        _balances[from] = _balances[from].sub(value);
        _balances[to] = _balances[to].add(value);

        emit Transfer(from, to, value);
    }

    event FeeUpdated(uint256 value);
    event Burned(bytes32 indexed serial, uint value);
    event Minted(bytes32 indexed serial, uint value);

    modifier onlyBurner() {
        require(burner == msg.sender, "Sender is not a burner");
        _;
    }

    modifier onlyMinter() {
        require(minter == msg.sender, "Sender is not a minter");
        _;
    }
}

// File: contracts/Silver.sol

// SPDX-License-Identifier: MIT
pragma solidity =0.6.0;


contract Silver is Base {

    function symbol() public pure returns (string memory) {
        return "AGS";
    }

    function name() public pure returns (string memory) {
        return "Silver Standard";
    }

    constructor() public {
        burner = msg.sender;
        minter = msg.sender;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):