Contract Name:
Vyper_contract
Contract Source Code:
File 1 of 1 : Vyper_contract
# @version 0.3.0
# (c) Curve.Fi, 2021
# Pool for two crypto assets
from vyper.interfaces import ERC20
# Expected coins:
# eur*/3crv
# crypto/tricrypto
# All are proper ERC20s, so let's use a standard interface and save bytespace
interface CurveToken:
def totalSupply() -> uint256: view
def mint(_to: address, _value: uint256) -> bool: nonpayable
def mint_relative(_to: address, frac: uint256) -> uint256: nonpayable
def burnFrom(_to: address, _value: uint256) -> bool: nonpayable
# Events
event TokenExchange:
buyer: indexed(address)
sold_id: uint256
tokens_sold: uint256
bought_id: uint256
tokens_bought: uint256
event AddLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fee: uint256
token_supply: uint256
event RemoveLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
token_supply: uint256
event RemoveLiquidityOne:
provider: indexed(address)
token_amount: uint256
coin_index: uint256
coin_amount: uint256
event CommitNewAdmin:
deadline: indexed(uint256)
admin: indexed(address)
event NewAdmin:
admin: indexed(address)
event CommitNewParameters:
deadline: indexed(uint256)
admin_fee: uint256
mid_fee: uint256
out_fee: uint256
fee_gamma: uint256
allowed_extra_profit: uint256
adjustment_step: uint256
ma_half_time: uint256
event NewParameters:
admin_fee: uint256
mid_fee: uint256
out_fee: uint256
fee_gamma: uint256
allowed_extra_profit: uint256
adjustment_step: uint256
ma_half_time: uint256
event RampAgamma:
initial_A: uint256
future_A: uint256
initial_gamma: uint256
future_gamma: uint256
initial_time: uint256
future_time: uint256
event StopRampA:
current_A: uint256
current_gamma: uint256
time: uint256
event ClaimAdminFee:
admin: indexed(address)
tokens: uint256
N_COINS: constant(int128) = 2
PRECISION: constant(uint256) = 10 ** 18 # The precision to convert to
A_MULTIPLIER: constant(uint256) = 10000
# These addresses are replaced by the deployer
token: constant(address) = 0x3D229E1B4faab62F621eF2F6A610961f7BD7b23B
coins: constant(address[N_COINS]) = [
0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48,
0xdB25f211AB05b1c97D595516F45794528a807ad8]
price_scale: public(uint256) # Internal price scale
price_oracle: public(uint256) # Price target given by MA
last_prices: public(uint256)
last_prices_timestamp: public(uint256)
initial_A_gamma: public(uint256)
future_A_gamma: public(uint256)
initial_A_gamma_time: public(uint256)
future_A_gamma_time: public(uint256)
allowed_extra_profit: public(uint256) # 2 * 10**12 - recommended value
future_allowed_extra_profit: public(uint256)
fee_gamma: public(uint256)
future_fee_gamma: public(uint256)
adjustment_step: public(uint256)
future_adjustment_step: public(uint256)
ma_half_time: public(uint256)
future_ma_half_time: public(uint256)
mid_fee: public(uint256)
out_fee: public(uint256)
admin_fee: public(uint256)
future_mid_fee: public(uint256)
future_out_fee: public(uint256)
future_admin_fee: public(uint256)
balances: public(uint256[N_COINS])
D: public(uint256)
owner: public(address)
future_owner: public(address)
xcp_profit: public(uint256)
xcp_profit_a: public(uint256) # Full profit at last claim of admin fees
virtual_price: public(uint256) # Cached (fast to read) virtual price also used internally
not_adjusted: bool
is_killed: public(bool)
kill_deadline: public(uint256)
transfer_ownership_deadline: public(uint256)
admin_actions_deadline: public(uint256)
admin_fee_receiver: public(address)
KILL_DEADLINE_DT: constant(uint256) = 2 * 30 * 86400
ADMIN_ACTIONS_DELAY: constant(uint256) = 3 * 86400
MIN_RAMP_TIME: constant(uint256) = 86400
MAX_ADMIN_FEE: constant(uint256) = 10 * 10 ** 9
MIN_FEE: constant(uint256) = 5 * 10 ** 5 # 0.5 bps
MAX_FEE: constant(uint256) = 10 * 10 ** 9
MAX_A_CHANGE: constant(uint256) = 10
NOISE_FEE: constant(uint256) = 10**5 # 0.1 bps
MIN_GAMMA: constant(uint256) = 10**10
MAX_GAMMA: constant(uint256) = 2 * 10**16
MIN_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER / 10
MAX_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER * 100000
# This must be changed for different N_COINS
# For example:
# N_COINS = 3 -> 1 (10**18 -> 10**18)
# N_COINS = 4 -> 10**8 (10**18 -> 10**10)
# PRICE_PRECISION_MUL: constant(uint256) = 1
PRECISIONS: constant(uint256[N_COINS]) = [
1000000000000,
10000000000000000,
]
EXP_PRECISION: constant(uint256) = 10**10
@external
def __init__(
owner: address,
admin_fee_receiver: address,
A: uint256,
gamma: uint256,
mid_fee: uint256,
out_fee: uint256,
allowed_extra_profit: uint256,
fee_gamma: uint256,
adjustment_step: uint256,
admin_fee: uint256,
ma_half_time: uint256,
initial_price: uint256
):
self.owner = owner
# Pack A and gamma:
# shifted A + gamma
A_gamma: uint256 = shift(A, 128)
A_gamma = bitwise_or(A_gamma, gamma)
self.initial_A_gamma = A_gamma
self.future_A_gamma = A_gamma
self.mid_fee = mid_fee
self.out_fee = out_fee
self.allowed_extra_profit = allowed_extra_profit
self.fee_gamma = fee_gamma
self.adjustment_step = adjustment_step
self.admin_fee = admin_fee
self.price_scale = initial_price
self.price_oracle = initial_price
self.last_prices = initial_price
self.last_prices_timestamp = block.timestamp
self.ma_half_time = ma_half_time
self.xcp_profit_a = 10**18
self.kill_deadline = block.timestamp + KILL_DEADLINE_DT
self.admin_fee_receiver = admin_fee_receiver
### Math functions
@internal
@pure
def geometric_mean(unsorted_x: uint256[N_COINS], sort: bool) -> uint256:
"""
(x[0] * x[1] * ...) ** (1/N)
"""
x: uint256[N_COINS] = unsorted_x
if sort and x[0] < x[1]:
x = [unsorted_x[1], unsorted_x[0]]
D: uint256 = x[0]
diff: uint256 = 0
for i in range(255):
D_prev: uint256 = D
# tmp: uint256 = 10**18
# for _x in x:
# tmp = tmp * _x / D
# D = D * ((N_COINS - 1) * 10**18 + tmp) / (N_COINS * 10**18)
# line below makes it for 2 coins
D = (D + x[0] * x[1] / D) / N_COINS
if D > D_prev:
diff = D - D_prev
else:
diff = D_prev - D
if diff <= 1 or diff * 10**18 < D:
return D
raise "Did not converge"
@internal
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS]) -> uint256:
"""
Finding the invariant using Newton method.
ANN is higher by the factor A_MULTIPLIER
ANN is already A * N**N
Currently uses 60k gas
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
# Initial value of invariant D is that for constant-product invariant
x: uint256[N_COINS] = x_unsorted
if x[0] < x[1]:
x = [x_unsorted[1], x_unsorted[0]]
assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0]
assert x[1] * 10**18 / x[0] > 10**14-1 # dev: unsafe values x[i] (input)
D: uint256 = N_COINS * self.geometric_mean(x, False)
S: uint256 = x[0] + x[1]
for i in range(255):
D_prev: uint256 = D
# K0: uint256 = 10**18
# for _x in x:
# K0 = K0 * _x * N_COINS / D
# collapsed for 2 coins
K0: uint256 = (10**18 * N_COINS**2) * x[0] / D * x[1] / D
_g1k0: uint256 = gamma + 10**18
if _g1k0 > K0:
_g1k0 = _g1k0 - K0 + 1
else:
_g1k0 = K0 - _g1k0 + 1
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
# 2*N*K0 / _g1k0
mul2: uint256 = (2 * 10**18) * N_COINS * K0 / _g1k0
neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18
# D -= f / fprime
D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
D_minus: uint256 = D*D / neg_fprime
if 10**18 > K0:
D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0
else:
D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0
if D_plus > D_minus:
D = D_plus - D_minus
else:
D = (D_minus - D_plus) / 2
diff: uint256 = 0
if D > D_prev:
diff = D - D_prev
else:
diff = D_prev - D
if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here
# Test that we are safe with the next newton_y
for _x in x:
frac: uint256 = _x * 10**18 / D
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i]
return D
raise "Did not converge"
@internal
@pure
def newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256) -> uint256:
"""
Calculating x[i] given other balances x[0..N_COINS-1] and invariant D
ANN = A * N**N
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert D > 10**17 - 1 and D < 10**15 * 10**18 + 1 # dev: unsafe values D
x_j: uint256 = x[1 - i]
y: uint256 = D**2 / (x_j * N_COINS**2)
K0_i: uint256 = (10**18 * N_COINS) * x_j / D
# S_i = x_j
# frac = x_j * 1e18 / D => frac = K0_i / N_COINS
assert (K0_i > 10**16*N_COINS - 1) and (K0_i < 10**20*N_COINS + 1) # dev: unsafe values x[i]
# x_sorted: uint256[N_COINS] = x
# x_sorted[i] = 0
# x_sorted = self.sort(x_sorted) # From high to low
# x[not i] instead of x_sorted since x_soted has only 1 element
convergence_limit: uint256 = max(max(x_j / 10**14, D / 10**14), 100)
for j in range(255):
y_prev: uint256 = y
K0: uint256 = K0_i * y * N_COINS / D
S: uint256 = x_j + y
_g1k0: uint256 = gamma + 10**18
if _g1k0 > K0:
_g1k0 = _g1k0 - K0 + 1
else:
_g1k0 = K0 - _g1k0 + 1
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
# 2*K0 / _g1k0
mul2: uint256 = 10**18 + (2 * 10**18) * K0 / _g1k0
yfprime: uint256 = 10**18 * y + S * mul2 + mul1
_dyfprime: uint256 = D * mul2
if yfprime < _dyfprime:
y = y_prev / 2
continue
else:
yfprime -= _dyfprime
fprime: uint256 = yfprime / y
# y -= f / f_prime; y = (y * fprime - f) / fprime
# y = (yfprime + 10**18 * D - 10**18 * S) // fprime + mul1 // fprime * (10**18 - K0) // K0
y_minus: uint256 = mul1 / fprime
y_plus: uint256 = (yfprime + 10**18 * D) / fprime + y_minus * 10**18 / K0
y_minus += 10**18 * S / fprime
if y_plus < y_minus:
y = y_prev / 2
else:
y = y_plus - y_minus
diff: uint256 = 0
if y > y_prev:
diff = y - y_prev
else:
diff = y_prev - y
if diff < max(convergence_limit, y / 10**14):
frac: uint256 = y * 10**18 / D
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y
raise "Did not converge"
@internal
@pure
def halfpow(power: uint256) -> uint256:
"""
1e18 * 0.5 ** (power/1e18)
Inspired by: https://github.com/balancer-labs/balancer-core/blob/master/contracts/BNum.sol#L128
"""
intpow: uint256 = power / 10**18
otherpow: uint256 = power - intpow * 10**18
if intpow > 59:
return 0
result: uint256 = 10**18 / (2**intpow)
if otherpow == 0:
return result
term: uint256 = 10**18
x: uint256 = 5 * 10**17
S: uint256 = 10**18
neg: bool = False
for i in range(1, 256):
K: uint256 = i * 10**18
c: uint256 = K - 10**18
if otherpow > c:
c = otherpow - c
neg = not neg
else:
c -= otherpow
term = term * (c * x / 10**18) / K
if neg:
S -= term
else:
S += term
if term < EXP_PRECISION:
return result * S / 10**18
raise "Did not converge"
### end of Math functions
@external
@view
def token() -> address:
return token
@external
@view
def coins(i: uint256) -> address:
_coins: address[N_COINS] = coins
return _coins[i]
@internal
@view
def xp() -> uint256[N_COINS]:
return [self.balances[0] * PRECISIONS[0],
self.balances[1] * PRECISIONS[1] * self.price_scale / PRECISION]
@view
@internal
def _A_gamma() -> uint256[2]:
t1: uint256 = self.future_A_gamma_time
A_gamma_1: uint256 = self.future_A_gamma
gamma1: uint256 = bitwise_and(A_gamma_1, 2**128-1)
A1: uint256 = shift(A_gamma_1, -128)
if block.timestamp < t1:
# handle ramping up and down of A
A_gamma_0: uint256 = self.initial_A_gamma
t0: uint256 = self.initial_A_gamma_time
# Less readable but more compact way of writing and converting to uint256
# gamma0: uint256 = bitwise_and(A_gamma_0, 2**128-1)
# A0: uint256 = shift(A_gamma_0, -128)
# A1 = A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
# gamma1 = gamma0 + (gamma1 - gamma0) * (block.timestamp - t0) / (t1 - t0)
t1 -= t0
t0 = block.timestamp - t0
t2: uint256 = t1 - t0
A1 = (shift(A_gamma_0, -128) * t2 + A1 * t0) / t1
gamma1 = (bitwise_and(A_gamma_0, 2**128-1) * t2 + gamma1 * t0) / t1
return [A1, gamma1]
@view
@external
def A() -> uint256:
return self._A_gamma()[0]
@view
@external
def gamma() -> uint256:
return self._A_gamma()[1]
@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
"""
f = fee_gamma / (fee_gamma + (1 - K))
where
K = prod(x) / (sum(x) / N)**N
(all normalized to 1e18)
"""
fee_gamma: uint256 = self.fee_gamma
f: uint256 = xp[0] + xp[1] # sum
f = fee_gamma * 10**18 / (
fee_gamma + 10**18 - (10**18 * N_COINS**N_COINS) * xp[0] / f * xp[1] / f
)
return (self.mid_fee * f + self.out_fee * (10**18 - f)) / 10**18
@external
@view
def fee() -> uint256:
return self._fee(self.xp())
@internal
@view
def get_xcp(D: uint256) -> uint256:
x: uint256[N_COINS] = [D / N_COINS, D * PRECISION / (self.price_scale * N_COINS)]
return self.geometric_mean(x, True)
@external
@view
def get_virtual_price() -> uint256:
return 10**18 * self.get_xcp(self.D) / CurveToken(token).totalSupply()
@internal
def _claim_admin_fees():
A_gamma: uint256[2] = self._A_gamma()
xcp_profit: uint256 = self.xcp_profit
xcp_profit_a: uint256 = self.xcp_profit_a
# Gulp here
_coins: address[N_COINS] = coins
for i in range(N_COINS):
self.balances[i] = ERC20(_coins[i]).balanceOf(self)
vprice: uint256 = self.virtual_price
if xcp_profit > xcp_profit_a:
fees: uint256 = (xcp_profit - xcp_profit_a) * self.admin_fee / (2 * 10**10)
if fees > 0:
receiver: address = self.admin_fee_receiver
if receiver != ZERO_ADDRESS:
frac: uint256 = vprice * 10**18 / (vprice - fees) - 10**18
claimed: uint256 = CurveToken(token).mint_relative(receiver, frac)
xcp_profit -= fees*2
self.xcp_profit = xcp_profit
log ClaimAdminFee(receiver, claimed)
total_supply: uint256 = CurveToken(token).totalSupply()
# Recalculate D b/c we gulped
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], self.xp())
self.D = D
self.virtual_price = 10**18 * self.get_xcp(D) / total_supply
if xcp_profit > xcp_profit_a:
self.xcp_profit_a = xcp_profit
@internal
def tweak_price(A_gamma: uint256[2],_xp: uint256[N_COINS], p_i: uint256, new_D: uint256):
price_oracle: uint256 = self.price_oracle
last_prices: uint256 = self.last_prices
price_scale: uint256 = self.price_scale
last_prices_timestamp: uint256 = self.last_prices_timestamp
p_new: uint256 = 0
if last_prices_timestamp < block.timestamp:
# MA update required
ma_half_time: uint256 = self.ma_half_time
alpha: uint256 = self.halfpow((block.timestamp - last_prices_timestamp) * 10**18 / ma_half_time)
price_oracle = (last_prices * (10**18 - alpha) + price_oracle * alpha) / 10**18
self.price_oracle = price_oracle
self.last_prices_timestamp = block.timestamp
D_unadjusted: uint256 = new_D # Withdrawal methods know new D already
if new_D == 0:
# We will need this a few times (35k gas)
D_unadjusted = self.newton_D(A_gamma[0], A_gamma[1], _xp)
if p_i > 0:
last_prices = p_i
else:
# calculate real prices
__xp: uint256[N_COINS] = _xp
dx_price: uint256 = __xp[0] / 10**6
__xp[0] += dx_price
last_prices = price_scale * dx_price / (_xp[1] - self.newton_y(A_gamma[0], A_gamma[1], __xp, D_unadjusted, 1))
self.last_prices = last_prices
total_supply: uint256 = CurveToken(token).totalSupply()
old_xcp_profit: uint256 = self.xcp_profit
old_virtual_price: uint256 = self.virtual_price
# Update profit numbers without price adjustment first
xp: uint256[N_COINS] = [D_unadjusted / N_COINS, D_unadjusted * PRECISION / (N_COINS * price_scale)]
xcp_profit: uint256 = 10**18
virtual_price: uint256 = 10**18
if old_virtual_price > 0:
xcp: uint256 = self.geometric_mean(xp, True)
virtual_price = 10**18 * xcp / total_supply
xcp_profit = old_xcp_profit * virtual_price / old_virtual_price
t: uint256 = self.future_A_gamma_time
if virtual_price < old_virtual_price and t == 0:
raise "Loss"
if t == 1:
self.future_A_gamma_time = 0
self.xcp_profit = xcp_profit
needs_adjustment: bool = self.not_adjusted
# if not needs_adjustment and (virtual_price-10**18 > (xcp_profit-10**18)/2 + self.allowed_extra_profit):
# (re-arrange for gas efficiency)
if not needs_adjustment and (virtual_price * 2 - 10**18 > xcp_profit + 2*self.allowed_extra_profit):
needs_adjustment = True
self.not_adjusted = True
if needs_adjustment:
adjustment_step: uint256 = self.adjustment_step
norm: uint256 = price_oracle * 10**18 / price_scale
if norm > 10**18:
norm -= 10**18
else:
norm = 10**18 - norm
if norm > adjustment_step and old_virtual_price > 0:
p_new = (price_scale * (norm - adjustment_step) + adjustment_step * price_oracle) / norm
# Calculate balances*prices
xp = [_xp[0], _xp[1] * p_new / price_scale]
# Calculate "extended constant product" invariant xCP and virtual price
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
xp = [D / N_COINS, D * PRECISION / (N_COINS * p_new)]
# We reuse old_virtual_price here but it's not old anymore
old_virtual_price = 10**18 * self.geometric_mean(xp, True) / total_supply
# Proceed if we've got enough profit
# if (old_virtual_price > 10**18) and (2 * (old_virtual_price - 10**18) > xcp_profit - 10**18):
if (old_virtual_price > 10**18) and (2 * old_virtual_price - 10**18 > xcp_profit):
self.price_scale = p_new
self.D = D
self.virtual_price = old_virtual_price
return
else:
self.not_adjusted = False
# Can instead do another flag variable if we want to save bytespace
self.D = D_unadjusted
self.virtual_price = virtual_price
self._claim_admin_fees()
return
# If we are here, the price_scale adjustment did not happen
# Still need to update the profit counter and D
self.D = D_unadjusted
self.virtual_price = virtual_price
@external
@nonreentrant('lock')
def exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256) -> uint256:
assert not self.is_killed # dev: the pool is killed
assert i != j # dev: coin index out of range
assert i < N_COINS # dev: coin index out of range
assert j < N_COINS # dev: coin index out of range
assert dx > 0 # dev: do not exchange 0 coins
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
p: uint256 = 0
dy: uint256 = 0
_coins: address[N_COINS] = coins
assert ERC20(_coins[i]).transferFrom(msg.sender, self, dx)
y: uint256 = xp[j]
x0: uint256 = xp[i]
xp[i] = x0 + dx
self.balances[i] = xp[i]
price_scale: uint256 = self.price_scale
xp = [xp[0] * PRECISIONS[0], xp[1] * price_scale * PRECISIONS[1] / PRECISION]
prec_i: uint256 = PRECISIONS[0]
prec_j: uint256 = PRECISIONS[1]
if i == 1:
prec_i = PRECISIONS[1]
prec_j = PRECISIONS[0]
# In case ramp is happening
t: uint256 = self.future_A_gamma_time
if t > 0:
x0 *= prec_i
if i > 0:
x0 = x0 * price_scale / PRECISION
x1: uint256 = xp[i] # Back up old value in xp
xp[i] = x0
self.D = self.newton_D(A_gamma[0], A_gamma[1], xp)
xp[i] = x1 # And restore
if block.timestamp >= t:
self.future_A_gamma_time = 1
dy = xp[j] - self.newton_y(A_gamma[0], A_gamma[1], xp, self.D, j)
# Not defining new "y" here to have less variables / make subsequent calls cheaper
xp[j] -= dy
dy -= 1
if j > 0:
dy = dy * PRECISION / price_scale
dy /= prec_j
dy -= self._fee(xp) * dy / 10**10
assert dy >= min_dy, "Slippage"
y -= dy
self.balances[j] = y
assert ERC20(_coins[j]).transfer(msg.sender, dy)
y *= prec_j
if j > 0:
y = y * price_scale / PRECISION
xp[j] = y
# Calculate price
if dx > 10**5 and dy > 10**5:
_dx: uint256 = dx * prec_i
_dy: uint256 = dy * prec_j
if i == 0:
p = _dx * 10**18 / _dy
else: # j == 0
p = _dy * 10**18 / _dx
self.tweak_price(A_gamma, xp, p, 0)
log TokenExchange(msg.sender, i, dx, j, dy)
return dy
@external
@view
def get_dy(i: uint256, j: uint256, dx: uint256) -> uint256:
assert i != j # dev: same input and output coin
assert i < N_COINS # dev: coin index out of range
assert j < N_COINS # dev: coin index out of range
price_scale: uint256 = self.price_scale * PRECISIONS[1]
xp: uint256[N_COINS] = self.balances
A_gamma: uint256[2] = self._A_gamma()
D: uint256 = self.D
if self.future_A_gamma_time > 0:
D = self.newton_D(A_gamma[0], A_gamma[1], self.xp())
xp[i] += dx
xp = [xp[0] * PRECISIONS[0], xp[1] * price_scale / PRECISION]
y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, j)
dy: uint256 = xp[j] - y - 1
xp[j] = y
if j > 0:
dy = dy * PRECISION / price_scale
else:
dy /= PRECISIONS[0]
dy -= self._fee(xp) * dy / 10**10
return dy
@view
@internal
def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)
fee: uint256 = self._fee(xp) * N_COINS / (4 * (N_COINS-1))
S: uint256 = 0
for _x in amounts:
S += _x
avg: uint256 = S / N_COINS
Sdiff: uint256 = 0
for _x in amounts:
if _x > avg:
Sdiff += _x - avg
else:
Sdiff += avg - _x
return fee * Sdiff / S + NOISE_FEE
@external
@nonreentrant('lock')
def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256) -> uint256:
assert not self.is_killed # dev: the pool is killed
A_gamma: uint256[2] = self._A_gamma()
_coins: address[N_COINS] = coins
xp: uint256[N_COINS] = self.balances
amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
xx: uint256[N_COINS] = empty(uint256[N_COINS])
d_token: uint256 = 0
d_token_fee: uint256 = 0
old_D: uint256 = 0
xp_old: uint256[N_COINS] = xp
for i in range(N_COINS):
bal: uint256 = xp[i] + amounts[i]
xp[i] = bal
self.balances[i] = bal
xx = xp
price_scale: uint256 = self.price_scale * PRECISIONS[1]
xp = [xp[0] * PRECISIONS[0], xp[1] * price_scale / PRECISION]
xp_old = [xp_old[0] * PRECISIONS[0], xp_old[1] * price_scale / PRECISION]
for i in range(N_COINS):
if amounts[i] > 0:
assert ERC20(_coins[i]).transferFrom(msg.sender, self, amounts[i])
amountsp[i] = xp[i] - xp_old[i]
assert amounts[0] > 0 or amounts[1] > 0 # dev: no coins to add
t: uint256 = self.future_A_gamma_time
if t > 0:
old_D = self.newton_D(A_gamma[0], A_gamma[1], xp_old)
if block.timestamp >= t:
self.future_A_gamma_time = 1
else:
old_D = self.D
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
token_supply: uint256 = CurveToken(token).totalSupply()
if old_D > 0:
d_token = token_supply * D / old_D - token_supply
else:
d_token = self.get_xcp(D) # making initial virtual price equal to 1
assert d_token > 0 # dev: nothing minted
if old_D > 0:
d_token_fee = self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
d_token -= d_token_fee
token_supply += d_token
CurveToken(token).mint(msg.sender, d_token)
# Calculate price
# p_i * (dx_i - dtoken / token_supply * xx_i) = sum{k!=i}(p_k * (dtoken / token_supply * xx_k - dx_k))
# Simplified for 2 coins
p: uint256 = 0
if d_token > 10**5:
if amounts[0] == 0 or amounts[1] == 0:
S: uint256 = 0
precision: uint256 = 0
ix: uint256 = 0
if amounts[0] == 0:
S = xx[0] * PRECISIONS[0]
precision = PRECISIONS[1]
ix = 1
else:
S = xx[1] * PRECISIONS[1]
precision = PRECISIONS[0]
S = S * d_token / token_supply
p = S * PRECISION / (amounts[ix] * precision - d_token * xx[ix] * precision / token_supply)
if ix == 0:
p = (10**18)**2 / p
self.tweak_price(A_gamma, xp, p, D)
else:
self.D = D
self.virtual_price = 10**18
self.xcp_profit = 10**18
CurveToken(token).mint(msg.sender, d_token)
assert d_token >= min_mint_amount, "Slippage"
log AddLiquidity(msg.sender, amounts, d_token_fee, token_supply)
return d_token
@external
@nonreentrant('lock')
def remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS]):
"""
This withdrawal method is very safe, does no complex math
"""
_coins: address[N_COINS] = coins
total_supply: uint256 = CurveToken(token).totalSupply()
CurveToken(token).burnFrom(msg.sender, _amount)
balances: uint256[N_COINS] = self.balances
amount: uint256 = _amount - 1 # Make rounding errors favoring other LPs a tiny bit
for i in range(N_COINS):
d_balance: uint256 = balances[i] * amount / total_supply
assert d_balance >= min_amounts[i]
self.balances[i] = balances[i] - d_balance
balances[i] = d_balance # now it's the amounts going out
assert ERC20(_coins[i]).transfer(msg.sender, d_balance)
D: uint256 = self.D
self.D = D - D * amount / total_supply
log RemoveLiquidity(msg.sender, balances, total_supply - _amount)
@view
@external
def calc_token_amount(amounts: uint256[N_COINS]) -> uint256:
token_supply: uint256 = CurveToken(token).totalSupply()
price_scale: uint256 = self.price_scale * PRECISIONS[1]
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.xp()
amountsp: uint256[N_COINS] = [
amounts[0] * PRECISIONS[0],
amounts[1] * price_scale / PRECISION]
D0: uint256 = self.D
if self.future_A_gamma_time > 0:
D0 = self.newton_D(A_gamma[0], A_gamma[1], xp)
xp[0] += amountsp[0]
xp[1] += amountsp[1]
D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
d_token: uint256 = token_supply * D / D0 - token_supply
d_token -= self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
return d_token
@internal
@view
def _calc_withdraw_one_coin(A_gamma: uint256[2], token_amount: uint256, i: uint256, update_D: bool,
calc_price: bool) -> (uint256, uint256, uint256, uint256[N_COINS]):
token_supply: uint256 = CurveToken(token).totalSupply()
assert token_amount <= token_supply # dev: token amount more than supply
assert i < N_COINS # dev: coin out of range
xx: uint256[N_COINS] = self.balances
D0: uint256 = 0
price_scale_i: uint256 = self.price_scale * PRECISIONS[1]
xp: uint256[N_COINS] = [xx[0] * PRECISIONS[0], xx[1] * price_scale_i / PRECISION]
if i == 0:
price_scale_i = PRECISION * PRECISIONS[0]
if update_D:
D0 = self.newton_D(A_gamma[0], A_gamma[1], xp)
else:
D0 = self.D
D: uint256 = D0
# Charge the fee on D, not on y, e.g. reducing invariant LESS than charging the user
fee: uint256 = self._fee(xp)
dD: uint256 = token_amount * D / token_supply
D -= (dD - (fee * dD / (2 * 10**10) + 1))
y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, i)
dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i
xp[i] = y
# Price calc
p: uint256 = 0
if calc_price and dy > 10**5 and token_amount > 10**5:
# p_i = dD / D0 * sum'(p_k * x_k) / (dy - dD / D0 * y0)
S: uint256 = 0
precision: uint256 = PRECISIONS[0]
if i == 1:
S = xx[0] * PRECISIONS[0]
precision = PRECISIONS[1]
else:
S = xx[1] * PRECISIONS[1]
S = S * dD / D0
p = S * PRECISION / (dy * precision - dD * xx[i] * precision / D0)
if i == 0:
p = (10**18)**2 / p
return dy, p, D, xp
@view
@external
def calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256:
return self._calc_withdraw_one_coin(self._A_gamma(), token_amount, i, True, False)[0]
@external
@nonreentrant('lock')
def remove_liquidity_one_coin(token_amount: uint256, i: uint256, min_amount: uint256) -> uint256:
assert not self.is_killed # dev: the pool is killed
A_gamma: uint256[2] = self._A_gamma()
dy: uint256 = 0
D: uint256 = 0
p: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
future_A_gamma_time: uint256 = self.future_A_gamma_time
dy, p, D, xp = self._calc_withdraw_one_coin(A_gamma, token_amount, i, (future_A_gamma_time > 0), True)
assert dy >= min_amount, "Slippage"
if block.timestamp >= future_A_gamma_time:
self.future_A_gamma_time = 1
self.balances[i] -= dy
CurveToken(token).burnFrom(msg.sender, token_amount)
_coins: address[N_COINS] = coins
assert ERC20(_coins[i]).transfer(msg.sender, dy)
self.tweak_price(A_gamma, xp, p, D)
log RemoveLiquidityOne(msg.sender, token_amount, i, dy)
return dy
@external
@nonreentrant('lock')
def claim_admin_fees():
self._claim_admin_fees()
# Admin parameters
@external
def ramp_A_gamma(future_A: uint256, future_gamma: uint256, future_time: uint256):
assert msg.sender == self.owner # dev: only owner
assert block.timestamp > self.initial_A_gamma_time + (MIN_RAMP_TIME-1)
assert future_time > block.timestamp + (MIN_RAMP_TIME-1) # dev: insufficient time
A_gamma: uint256[2] = self._A_gamma()
initial_A_gamma: uint256 = shift(A_gamma[0], 128)
initial_A_gamma = bitwise_or(initial_A_gamma, A_gamma[1])
assert future_A > MIN_A-1
assert future_A < MAX_A+1
assert future_gamma > MIN_GAMMA-1
assert future_gamma < MAX_GAMMA+1
ratio: uint256 = 10**18 * future_A / A_gamma[0]
assert ratio < 10**18 * MAX_A_CHANGE + 1
assert ratio > 10**18 / MAX_A_CHANGE - 1
ratio = 10**18 * future_gamma / A_gamma[1]
assert ratio < 10**18 * MAX_A_CHANGE + 1
assert ratio > 10**18 / MAX_A_CHANGE - 1
self.initial_A_gamma = initial_A_gamma
self.initial_A_gamma_time = block.timestamp
future_A_gamma: uint256 = shift(future_A, 128)
future_A_gamma = bitwise_or(future_A_gamma, future_gamma)
self.future_A_gamma_time = future_time
self.future_A_gamma = future_A_gamma
log RampAgamma(A_gamma[0], future_A, A_gamma[1], future_gamma, block.timestamp, future_time)
@external
def stop_ramp_A_gamma():
assert msg.sender == self.owner # dev: only owner
A_gamma: uint256[2] = self._A_gamma()
current_A_gamma: uint256 = shift(A_gamma[0], 128)
current_A_gamma = bitwise_or(current_A_gamma, A_gamma[1])
self.initial_A_gamma = current_A_gamma
self.future_A_gamma = current_A_gamma
self.initial_A_gamma_time = block.timestamp
self.future_A_gamma_time = block.timestamp
# now (block.timestamp < t1) is always False, so we return saved A
log StopRampA(A_gamma[0], A_gamma[1], block.timestamp)
@external
def commit_new_parameters(
_new_mid_fee: uint256,
_new_out_fee: uint256,
_new_admin_fee: uint256,
_new_fee_gamma: uint256,
_new_allowed_extra_profit: uint256,
_new_adjustment_step: uint256,
_new_ma_half_time: uint256,
):
assert msg.sender == self.owner # dev: only owner
assert self.admin_actions_deadline == 0 # dev: active action
new_mid_fee: uint256 = _new_mid_fee
new_out_fee: uint256 = _new_out_fee
new_admin_fee: uint256 = _new_admin_fee
new_fee_gamma: uint256 = _new_fee_gamma
new_allowed_extra_profit: uint256 = _new_allowed_extra_profit
new_adjustment_step: uint256 = _new_adjustment_step
new_ma_half_time: uint256 = _new_ma_half_time
# Fees
if new_out_fee < MAX_FEE+1:
assert new_out_fee > MIN_FEE-1 # dev: fee is out of range
else:
new_out_fee = self.out_fee
if new_mid_fee > MAX_FEE:
new_mid_fee = self.mid_fee
assert new_mid_fee <= new_out_fee # dev: mid-fee is too high
if new_admin_fee > MAX_ADMIN_FEE:
new_admin_fee = self.admin_fee
# AMM parameters
if new_fee_gamma < 10**18:
assert new_fee_gamma > 0 # dev: fee_gamma out of range [1 .. 10**18]
else:
new_fee_gamma = self.fee_gamma
if new_allowed_extra_profit > 10**18:
new_allowed_extra_profit = self.allowed_extra_profit
if new_adjustment_step > 10**18:
new_adjustment_step = self.adjustment_step
# MA
if new_ma_half_time < 7*86400:
assert new_ma_half_time > 0 # dev: MA time should be longer than 1 second
else:
new_ma_half_time = self.ma_half_time
_deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY
self.admin_actions_deadline = _deadline
self.future_admin_fee = new_admin_fee
self.future_mid_fee = new_mid_fee
self.future_out_fee = new_out_fee
self.future_fee_gamma = new_fee_gamma
self.future_allowed_extra_profit = new_allowed_extra_profit
self.future_adjustment_step = new_adjustment_step
self.future_ma_half_time = new_ma_half_time
log CommitNewParameters(_deadline, new_admin_fee, new_mid_fee, new_out_fee,
new_fee_gamma,
new_allowed_extra_profit, new_adjustment_step,
new_ma_half_time)
@external
@nonreentrant('lock')
def apply_new_parameters():
assert msg.sender == self.owner # dev: only owner
assert block.timestamp >= self.admin_actions_deadline # dev: insufficient time
assert self.admin_actions_deadline != 0 # dev: no active action
self.admin_actions_deadline = 0
admin_fee: uint256 = self.future_admin_fee
if self.admin_fee != admin_fee:
self._claim_admin_fees()
self.admin_fee = admin_fee
mid_fee: uint256 = self.future_mid_fee
self.mid_fee = mid_fee
out_fee: uint256 = self.future_out_fee
self.out_fee = out_fee
fee_gamma: uint256 = self.future_fee_gamma
self.fee_gamma = fee_gamma
allowed_extra_profit: uint256 = self.future_allowed_extra_profit
self.allowed_extra_profit = allowed_extra_profit
adjustment_step: uint256 = self.future_adjustment_step
self.adjustment_step = adjustment_step
ma_half_time: uint256 = self.future_ma_half_time
self.ma_half_time = ma_half_time
log NewParameters(admin_fee, mid_fee, out_fee,
fee_gamma,
allowed_extra_profit, adjustment_step,
ma_half_time)
@external
def revert_new_parameters():
assert msg.sender == self.owner # dev: only owner
self.admin_actions_deadline = 0
@external
def commit_transfer_ownership(_owner: address):
assert msg.sender == self.owner # dev: only owner
assert self.transfer_ownership_deadline == 0 # dev: active transfer
_deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY
self.transfer_ownership_deadline = _deadline
self.future_owner = _owner
log CommitNewAdmin(_deadline, _owner)
@external
def apply_transfer_ownership():
assert msg.sender == self.owner # dev: only owner
assert block.timestamp >= self.transfer_ownership_deadline # dev: insufficient time
assert self.transfer_ownership_deadline != 0 # dev: no active transfer
self.transfer_ownership_deadline = 0
_owner: address = self.future_owner
self.owner = _owner
log NewAdmin(_owner)
@external
def revert_transfer_ownership():
assert msg.sender == self.owner # dev: only owner
self.transfer_ownership_deadline = 0
@external
def kill_me():
assert msg.sender == self.owner # dev: only owner
assert self.kill_deadline > block.timestamp # dev: deadline has passed
self.is_killed = True
@external
def unkill_me():
assert msg.sender == self.owner # dev: only owner
self.is_killed = False
@external
def set_admin_fee_receiver(_admin_fee_receiver: address):
assert msg.sender == self.owner # dev: only owner
self.admin_fee_receiver = _admin_fee_receiver