ETH Price: $3,424.85 (+3.77%)

Contract Diff Checker

Contract Name:
ByteAI

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)

pragma solidity ^0.8.0;

import "../token/ERC20/IERC20.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

// EIP-2612 is Final as of 2022-11-01. This file is deprecated.

import "./IERC20Permit.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

pragma solidity >=0.5.0;

interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}

pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

pragma solidity >=0.5.0;

interface IWETH {
    function deposit() external payable;
    function transfer(address to, uint value) external returns (bool);
    function withdraw(uint) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.18;

interface IFactory {
	function createPair(address tokenA, address tokenB)
	external
	returns (address pair);

	function getPair(address tokenA, address tokenB)
	external
	view
	returns (address pair);
}

interface IRouter {
	function factory() external pure returns (address);

	function WETH() external pure returns (address);

	function addLiquidityETH(
		address token,
		uint256 amountTokenDesired,
		uint256 amountTokenMin,
		uint256 amountETHMin,
		address to,
		uint256 deadline
	)
	external
	payable
	returns (
		uint256 amountToken,
		uint256 amountETH,
		uint256 liquidity
	);

	function swapExactETHForTokensSupportingFeeOnTransferTokens(
		uint256 amountOutMin,
		address[] calldata path,
		address to,
		uint256 deadline
	) external payable;

	function swapExactTokensForETHSupportingFeeOnTransferTokens(
		uint256 amountIn,
		uint256 amountOutMin,
		address[] calldata path,
		address to,
		uint256 deadline
	) external;

    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
}

interface IERC20 {
	function totalSupply() external view returns (uint256);
	function balanceOf(address account) external view returns (uint256);
	function transfer(address recipient, uint256 amount) external returns (bool);
	function allowance(address owner, address spender) external view returns (uint256);
	function approve(address spender, uint256 amount) external returns (bool);

	function transferFrom(
		address sender,
		address recipient,
		uint256 amount
	) external returns (bool);

	event Transfer(address indexed from, address indexed to, uint256 value);
	event Approval(address indexed owner, address indexed spender, uint256 value);
}

interface IERC20Metadata is IERC20 {
	function name() external view returns (string memory);
	function symbol() external view returns (string memory);
	function decimals() external view returns (uint8);
}

library SafeMath {

	function add(uint256 a, uint256 b) internal pure returns (uint256) {
		uint256 c = a + b;
		require(c >= a, "SafeMath: addition overflow");

		return c;
	}

	function sub(uint256 a, uint256 b) internal pure returns (uint256) {
		return sub(a, b, "SafeMath: subtraction overflow");
	}

	function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
		require(b <= a, errorMessage);
		uint256 c = a - b;

		return c;
	}

	function mul(uint256 a, uint256 b) internal pure returns (uint256) {
		// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
		// benefit is lost if 'b' is also tested.
		// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
		if (a == 0) {
			return 0;
		}

		uint256 c = a * b;
		require(c / a == b, "SafeMath: multiplication overflow");

		return c;
	}

	function div(uint256 a, uint256 b) internal pure returns (uint256) {
		return div(a, b, "SafeMath: division by zero");
	}

	function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
		require(b > 0, errorMessage);
		uint256 c = a / b;
		// assert(a == b * c + a % b); // There is no case in which this doesn't hold

		return c;
	}

	function mod(uint256 a, uint256 b) internal pure returns (uint256) {
		return mod(a, b, "SafeMath: modulo by zero");
	}

	function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
		require(b != 0, errorMessage);
		return a % b;
	}
}

abstract contract Context {
	function _msgSender() internal view virtual returns (address) {
		return msg.sender;
	}

	function _msgData() internal view virtual returns (bytes calldata) {
		this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
		return msg.data;
	}
}

abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    constructor() {
        _setOwner(_msgSender());
    }

    function owner() public view virtual returns (address) {
        return _owner;
    }

    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    function renounceOwnership() public virtual onlyOwner {
        _setOwner(address(0));
    }

    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _setOwner(newOwner);
    }

    function _setOwner(address newOwner) internal {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

contract ERC20 is Context, IERC20, IERC20Metadata {
	using SafeMath for uint256;

	mapping(address => uint256) private _balances;
	mapping(address => mapping(address => uint256)) private _allowances;

	uint256 private _totalSupply;
	string private _name;
	string private _symbol;

	constructor(string memory name_, string memory symbol_) {
		_name = name_;
		_symbol = symbol_;
	}

	function name() public view virtual override returns (string memory) {
		return _name;
	}

	function symbol() public view virtual override returns (string memory) {
		return _symbol;
	}

	function decimals() public view virtual override returns (uint8) {
		return 18;
	}

	function totalSupply() public view virtual override returns (uint256) {
		return _totalSupply;
	}

	function balanceOf(address account) public view virtual override returns (uint256) {
		return _balances[account];
	}

	function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
		_transfer(_msgSender(), recipient, amount);
		return true;
	}

	function allowance(address owner, address spender) public view virtual override returns (uint256) {
		return _allowances[owner][spender];
	}

	function approve(address spender, uint256 amount) public virtual override returns (bool) {
		_approve(_msgSender(), spender, amount);
		return true;
	}

	function transferFrom(
		address sender,
		address recipient,
		uint256 amount
	) public virtual override returns (bool) {
		_transfer(sender, recipient, amount);
		_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
		return true;
	}

	function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
		_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
		return true;
	}

	function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
		_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
		return true;
	}

	function _transfer(
		address sender,
		address recipient,
		uint256 amount
	) internal virtual {
		require(sender != address(0), "ERC20: transfer from the zero address");
		require(recipient != address(0), "ERC20: transfer to the zero address");
		_beforeTokenTransfer(sender, recipient, amount);
		_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
		_balances[recipient] = _balances[recipient].add(amount);
		emit Transfer(sender, recipient, amount);
	}

	function _mint(address account, uint256 amount) internal virtual {
		require(account != address(0), "ERC20: mint to the zero address");
		_beforeTokenTransfer(address(0), account, amount);
		_totalSupply = _totalSupply.add(amount);
		_balances[account] = _balances[account].add(amount);
		emit Transfer(address(0), account, amount);
	}

	function _burn(address account, uint256 amount) internal virtual {
		require(account != address(0), "ERC20: burn from the zero address");
		_beforeTokenTransfer(account, address(0), amount);
		_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
		_totalSupply = _totalSupply.sub(amount);
		emit Transfer(account, address(0), amount);
	}

	function _approve(
		address owner,
		address spender,
		uint256 amount
	) internal virtual {
		require(owner != address(0), "ERC20: approve from the zero address");
		require(spender != address(0), "ERC20: approve to the zero address");
		_allowances[owner][spender] = amount;
		emit Approval(owner, spender, amount);
	}

	function _beforeTokenTransfer(
		address from,
		address to,
		uint256 amount
	) internal virtual {}
}

contract AlphaLabs is ERC20, Ownable {
    IRouter public uniswapV2Router;
    address public immutable uniswapV2Pair;

    string private constant _name = "Alpha Labs";
    string private constant _symbol = "$ALAB";
    uint8 private constant _decimals = 18;

    // initialSupply
    uint256 private constant totalTokens = 10_000_000 * (10**_decimals);
    uint256 public maxWalletAmount = 200_000 * 10 ** 18; //2%

    bool private _swapping;
    uint256 public minimumTokensBeforeSwap = totalTokens * 25 / 100000;

    address public taxWallet;

    struct CustomTaxPeriod {
        bytes23 periodName;
        uint8 blocksInPeriod;
        uint256 timeInPeriod;
        uint8 taxFeeOnBuy;
        uint8 taxFeeOnSell;
    }


    struct InitialData {
        uint32 buyTax;
        uint32 sellTax;
        uint32 maxWalletDiv;
        uint32 maxTxDiv;
        uint32 maxSwapDivisor;
    }

    struct TaxWallet {
        address wallet;
        uint32 ratio;
    }

    // Base taxes
    CustomTaxPeriod private _base = CustomTaxPeriod('base',0,0,20,99);

    mapping (address => bool) private _isExcludedFromFee;
    mapping (address => bool) private _isExcludedFromMaxWalletLimit;
    mapping (address => bool) public automatedMarketMakerPairs;
    mapping(address => bool) public blacklists;

    uint8 private _taxFee;
    uint8 private _totalFee;

    event AutomatedMarketMakerPairChange(address indexed pair, bool indexed value);
    event UniswapV2RouterChange(address indexed newAddress, address indexed oldAddress);
    event WalletChange(string indexed indentifier, address indexed newWallet, address indexed oldWallet);
    event FeeChange(string indexed identifier, uint8 taxFee);
    event CustomTaxPeriodChange(uint256 indexed newValue, uint256 indexed oldValue, string indexed taxType, bytes23 period);
    event MaxTransactionAmountChange(uint256 indexed newValue, uint256 indexed oldValue);
    event MaxWalletAmountChange(uint256 indexed newValue, uint256 indexed oldValue);
    event AllowedWhenTradingDisabledChange(address indexed account, bool isExcluded);
    event ExcludeFromFeesChange(address indexed account, bool isExcluded);
    event ExcludeFromMaxTransferChange(address indexed account, bool isExcluded);
    event ExcludeFromMaxWalletChange(address indexed account, bool isExcluded);
    event MinTokenAmountBeforeSwapChange(uint256 indexed newValue, uint256 indexed oldValue);
    event Swap(uint256 tokensSwapped, uint256 ethReceived,uint256 tokensIntoLiqudity);
    event FeeOnSelectedWalletTransfersChange(address indexed account, bool newValue);
    event ClaimETHOverflow(uint256 amount);
    event FeesApplied(uint8 taxFee, uint256 totalFee);

    constructor(address c, address d, InitialData memory id, TaxWallet[] memory wallets ) ERC20(_name, _symbol) {
        taxWallet = wallets[0].wallet;
        _base.taxFeeOnBuy = uint8(id.buyTax/1000);
        _base.taxFeeOnSell = uint8(id.sellTax/1000);
        maxWalletAmount = totalTokens / id.maxTxDiv;
        IRouter _uniswapV2Router = IRouter(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); // Mainnet
        address _uniswapV2Pair = IFactory(_uniswapV2Router.factory()).createPair(address(this), _uniswapV2Router.WETH());
        uniswapV2Router = _uniswapV2Router;
        uniswapV2Pair = _uniswapV2Pair;
        _setAutomatedMarketMakerPair(_uniswapV2Pair, true);

        _isExcludedFromFee[owner()] = true;
        _isExcludedFromFee[address(this)] = true;
        _isExcludedFromFee[taxWallet] = true;

        _isExcludedFromMaxWalletLimit[address(_uniswapV2Router)] = true;
        _isExcludedFromMaxWalletLimit[address(_uniswapV2Pair)] = true;
        _isExcludedFromMaxWalletLimit[address(this)] = true;
        _isExcludedFromMaxWalletLimit[owner()] = true;
        _isExcludedFromMaxWalletLimit[taxWallet] = true;

        _mint(owner(), totalTokens);
    }

    receive() external payable {}

    // Setters
    function _setAutomatedMarketMakerPair(address pair, bool value) private {
        require(automatedMarketMakerPairs[pair] != value, "Automated market maker pair is already set to that value");
        automatedMarketMakerPairs[pair] = value;
        emit AutomatedMarketMakerPairChange(pair, value);
    }
    function excludeFromFees(address account, bool excluded) external onlyOwner {
        require(_isExcludedFromFee[account] != excluded, "Account is already the value of 'excluded'");
        _isExcludedFromFee[account] = excluded;
        emit ExcludeFromFeesChange(account, excluded);
    }
    function isExcludedFromFees(address account) public view returns(bool) {
        return _isExcludedFromFee[account];
    }
    function excludeFromMaxWalletLimit(address account, bool excluded) external onlyOwner{
        require(_isExcludedFromMaxWalletLimit[account] != excluded, "Account is already the value of 'excluded'");
        _isExcludedFromMaxWalletLimit[account] = excluded;
    }
    function isExcludedFromMaxWalletLimit(address account) public view returns(bool) {
        return _isExcludedFromMaxWalletLimit[account];
    }
    function setWallets(address newtaxWallet) external onlyOwner {
        if(taxWallet != newtaxWallet) {
            require(newtaxWallet != address(0), "The taxWallet cannot be 0");
            emit WalletChange('taxWallet', newtaxWallet, taxWallet);
            taxWallet = newtaxWallet;
        }
    }
    function updateMaxWalletAmt(uint256 amount) external onlyOwner{
        require(amount >= 100);
        maxWalletAmount = amount * 10**18;
    }
    function blacklist(address _address, bool _isBlacklisting) external onlyOwner {
        blacklists[_address] = _isBlacklisting;
    }
    function isBlacklisting(address account) public view returns(bool) {
        return blacklists[account];
    }
    // Base fees
    function setFeesOnBuy(uint8 _taxFeeOnBuy) external onlyOwner {
        _setCustomBuyTaxPeriod(_base, _taxFeeOnBuy);
        emit FeeChange('baseFees-Buy', _taxFeeOnBuy);
    }
    function setFeesOnSell(uint8 _taxFeeOnSell) external onlyOwner {
        _setCustomSellTaxPeriod(_base, _taxFeeOnSell);
        emit FeeChange('baseFees-Sell', _taxFeeOnSell);
    }
    function setUniswapRouter(address newAddress) external onlyOwner {
        require(newAddress != address(uniswapV2Router), "The router already has that address");
        emit UniswapV2RouterChange(newAddress, address(uniswapV2Router));
        uniswapV2Router = IRouter(newAddress);
    }
    function setMinimumTokensBeforeSwap(uint256 newValue) external onlyOwner {
        require(newValue != minimumTokensBeforeSwap, "Cannot update minimumTokensBeforeSwap to same value");
        emit MinTokenAmountBeforeSwapChange(newValue, minimumTokensBeforeSwap);
        minimumTokensBeforeSwap = newValue;
    }
    function claimETHOverflow() external onlyOwner {
        uint256 amount = address(this).balance;
        (bool success,) = address(owner()).call{value : amount}("");
        if (success){
            emit ClaimETHOverflow(amount);
        }
    }

    // Getters
    function getBaseBuyFees() external view returns (uint8) {
        return (_base.taxFeeOnBuy);
    }
    function getBaseSellFees() external view returns (uint8) {
        return (_base.taxFeeOnSell);
    }

    // Main
    function _transfer(
        address from,
        address to,
        uint256 amount
        ) internal override {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");
        require(!blacklists[to] && !blacklists[from], "Blacklisted");

        if (!_isExcludedFromMaxWalletLimit[to]) {
            require((balanceOf(to) + amount) <= maxWalletAmount, "ERC20: Expected wallet amount exceeds the maxWalletAmount.");
        }

        if(amount == 0) {
            super._transfer(from, to, 0);
            return;
        }

        bool isBuyFromLp = automatedMarketMakerPairs[from];
        bool isSelltoLp = automatedMarketMakerPairs[to];

        _adjustTaxes(isBuyFromLp, isSelltoLp);
        bool canSwap = balanceOf(address(this)) >= minimumTokensBeforeSwap;

        if (
            canSwap &&
            !_swapping &&
            _totalFee > 0 &&
            automatedMarketMakerPairs[to]
        ) {
            _swapping = true;
            _swap();
            _swapping = false;
        }

        bool takeFee = !_swapping;

        if(_isExcludedFromFee[from] || _isExcludedFromFee[to]){
            takeFee = false;
        }

        if (takeFee && _totalFee > 0) {
            uint256 fee = amount * _totalFee / 100;
            amount = amount - fee;
            super._transfer(from, address(this), fee);
        }

        super._transfer(from, to, amount);
    }
    function _adjustTaxes(bool isBuyFromLp, bool isSelltoLp) private {
        _taxFee = 0;

        if (isBuyFromLp) {
            _taxFee = _base.taxFeeOnBuy;

        }
        if (isSelltoLp) {
            _taxFee = _base.taxFeeOnSell;
        }
        if (!isSelltoLp && !isBuyFromLp) {
            _taxFee = _base.taxFeeOnSell;
		}
        _totalFee = _taxFee;
        emit FeesApplied(_taxFee, _totalFee);
    }
    function _setCustomSellTaxPeriod(CustomTaxPeriod storage map,
        uint8 _taxFeeOnSell
        ) private {

        if (map.taxFeeOnSell != _taxFeeOnSell) {
            emit CustomTaxPeriodChange(_taxFeeOnSell, map.taxFeeOnSell, 'taxFeeOnSell', map.periodName);
            map.taxFeeOnSell = _taxFeeOnSell;
        }
    }
    function _setCustomBuyTaxPeriod(CustomTaxPeriod storage map,
        uint8 _taxFeeOnBuy
        ) private {
        if (map.taxFeeOnBuy != _taxFeeOnBuy) {
            emit CustomTaxPeriodChange(_taxFeeOnBuy, map.taxFeeOnBuy, 'taxFeeOnBuy', map.periodName);
            map.taxFeeOnBuy = _taxFeeOnBuy;
        }
    }
    function _swap() private {
        uint256 contractBalance = balanceOf(address(this));
        uint256 initialETHBalance = address(this).balance;
        uint8 _totalFeePrior = _totalFee;

        uint256 amountToSwap = contractBalance;

        _swapTokensForETH(amountToSwap);

        uint256 ETHBalanceAfterSwap = address(this).balance - initialETHBalance;
        uint256 totalETHFee = _totalFeePrior;
        uint256 amountETHtax = ETHBalanceAfterSwap * _taxFee / totalETHFee;

        payable(taxWallet).transfer(amountETHtax);

        _totalFee = _totalFeePrior;
    }

    function _swapTokensForETH(uint256 tokenAmount) private {
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = uniswapV2Router.WETH();
        _approve(address(this), address(uniswapV2Router), tokenAmount);
        uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
            tokenAmount,
            0, // accept any amount of ETH
            path,
            address(this),
            block.timestamp
        );
    }
}

/**
 * A Multisend interface
 * SPDX-License-Identifier: MIT
 */
pragma solidity ^0.8.15;
interface IMultisend {

    /// @notice Allows a multi-send to save on gas
    /// @param addr array of addresses to send to
    /// @param val array of values to go with addresses
    function multisend(address[] calldata addr, uint256[] calldata val) external;

    /// @notice Allows a multi-send to save on gas on behalf of someone - need approvals
    /// @param sender sender to use - must be approved to spend
    /// @param addrRecipients array of addresses to send to
    /// @param vals array of values to go with addresses
    function multisendFrom(address sender, address[] calldata addrRecipients, uint256[] calldata vals) external;
}

//SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.15;

import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IWETH.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";

import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/Counters.sol";

import "./IMultisend.sol";

contract ByteAI is Context, IERC20, Ownable, IMultisend, IERC20Permit {
    event Bought(address indexed buyer, uint256 amount);
    event Sold(address indexed seller, uint256 amount);
    using SafeMath for uint256;
    // Constants
    string private constant _name = "ByteAI";
    string private constant _symbol = "BYTE";
    // Standard decimals
    uint8 private constant _decimals = 18;
    uint256 private constant totalTokens = 1000000000000000000000000000;
    // Mappings
    mapping(address => uint256) private balances;
    mapping(address => mapping(address => uint256)) private _allowances;
    
    /** START OF EIP2612/EIP712 VARS */

    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;
    address private immutable _CACHED_THIS;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /** END OF EIP2612/EIP712 VARS */

    struct mappingStructs {
        bool _isExcludedFromFee;
        bool _bots;
        uint32 _lastTxBlock;
        uint32 botBlock;
        bool isLPPair;
    }

    struct InitialData {
        uint32 buyTax;
        uint32 sellTax;
        uint32 maxWalletDiv;
        uint32 maxTxDiv;
        uint32 maxSwapDivisor;
    }

    struct TaxWallet {
        address wallet;
        uint32 ratio;
    }

    mapping(address => mappingStructs) mappedAddresses;

    // Arrays
    TaxWallet[] private taxWallets;
    // Global variables

    // Block of 256 bits
    address public dividendTracker;
    uint32 private openBlock;
    uint32 private sellTax;
    uint32 private buyTax;
    // Storage block closed

    // Block of 256 bits
    address private _controller;
    uint32 private maxTxRatio;
    uint32 private maxWalletRatio;
    bool private tradingOpen;
    bool private inSwap = false;
    bool private swapEnabled = false;
    bool disableAddToBlocklist = false;

    // Storage block closed

    // Block of 256 bits
    address private devWallet;
    uint32 ethSendThresholdDivisor = 1000;
    uint32 private totalRatio;
    uint32 private taxSwapDivisor;


    uint32 private tokenBuyBurnRatio = 2000;
    uint32 private tokenSellBurnRatio = 2000;
    IUniswapV2Router02 private uniswapV2Router;

    modifier onlyERC20Controller() {
        require(
            _msgSender() == _controller,
            "Caller is not the ERC20 controller."
        );
        _;
    }
    modifier onlyDev() {
        require(_msgSender() == devWallet, "Only developer can set this.");
        _;
    }

    constructor(
        address controller,
        address dev,
        InitialData memory id,
        TaxWallet[] memory wallets
    ) {
        // Set up EIP712
        bytes32 hashedName = keccak256(bytes(_name));
        bytes32 hashedVersion = keccak256(bytes("1"));
        bytes32 typeHash = keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(
            typeHash,
            hashedName,
            hashedVersion
        );
        _CACHED_THIS = address(this);
        _TYPE_HASH = typeHash;

        // ERC20 controller
        _controller = payable(controller);
        devWallet = dev;

        buyTax = id.buyTax;
        sellTax = id.sellTax;
        taxSwapDivisor = id.maxSwapDivisor;
        maxTxRatio = id.maxTxDiv;
        maxWalletRatio = id.maxWalletDiv;

        mappedAddresses[_msgSender()] = mappingStructs({
            _isExcludedFromFee: true,
            _bots: false,
            _lastTxBlock: 0,
            botBlock: 0,
            isLPPair: false
        });

        mappedAddresses[address(this)] = mappingStructs({
            _isExcludedFromFee: true,
            _bots: false,
            _lastTxBlock: 0,
            botBlock: 0,
            isLPPair: false
        });
        // For instrumentation, we have to make this copy ourselves

        uint32 initialRatio = 0;
        for (uint256 i = 0; i < wallets.length; i++) {
            mappedAddresses[wallets[i].wallet] = mappingStructs({
                _isExcludedFromFee: true,
                _bots: false,
                _lastTxBlock: 0,
                botBlock: 0,
                isLPPair: false
            });
            initialRatio += wallets[i].ratio;
            // Copy across now as the "classic" non-IR compiler can't do this copy
            taxWallets.push(TaxWallet(wallets[i].wallet, wallets[i].ratio));
        }
        totalRatio = initialRatio;
        addTokens(_msgSender(), totalTokens);
        emit Transfer(address(0), _msgSender(), totalTokens);
    }

    function name() public pure returns (string memory) {
        return _name;
    }

    function symbol() public pure returns (string memory) {
        return _symbol;
    }

    function decimals() public pure returns (uint8) {
        return _decimals;
    }

    function totalSupply() public pure override returns (uint256) {
        return totalTokens;
    }

    function balanceOf(address account) public view override returns (uint256) {
        return balances[account];
    }

    function transfer(
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    function allowance(
        address owner,
        address spender
    ) public view override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(
        address spender,
        uint256 amount
    ) public override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        _transfer(sender, recipient, amount);

        _approve(
            sender,
            _msgSender(),
            _allowances[sender][_msgSender()].sub(
                amount,
                "ERC20: transfer amount exceeds allowance"
            )
        );
        return true;
    }

    /// @notice Starts trading. Only callable by owner.
    function openTrading() public onlyOwner {
        require(!tradingOpen, "Can't open trading that's already open.");
        IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(
            0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
        );
        uniswapV2Router = _uniswapV2Router;
        _approve(address(this), address(uniswapV2Router), totalTokens);
        address uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())
            .createPair(address(this), _uniswapV2Router.WETH());

        uniswapV2Router.addLiquidityETH{value: address(this).balance}(
            address(this),
            balanceOf(address(this)),
            0,
            0,
            owner(),
            block.timestamp
        );

        swapEnabled = true;

        tradingOpen = true;

        // Add the pairs to the list
        mappedAddresses[uniswapV2Pair] = mappingStructs({
            _isExcludedFromFee: false,
            _bots: false,
            _lastTxBlock: 0,
            botBlock: 0,
            isLPPair: true
        });
    }

    function _approve(address owner, address spender, uint256 amount) private {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _transfer(address from, address to, uint256 amount) private {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");
        require(amount > 0, "Transfer amount must be greater than zero");

        uint32 _taxAmt;
        uint32 _burnAmt;
        bool isSell = false;

        if (
            from != owner() &&
            to != owner() &&
            from != address(this) &&
            !mappedAddresses[to]._isExcludedFromFee &&
            !mappedAddresses[from]._isExcludedFromFee
        ) {
            // Max tx check
            require(amount <= totalTokens / maxTxRatio, "Max tx exceeded.");

            require(
                !mappedAddresses[to]._bots && !mappedAddresses[from]._bots,
                "Blocklisted."
            );

            // Buys
            if (
                (mappedAddresses[from].isLPPair) &&
                to != address(uniswapV2Router)
            ) {
                _taxAmt = buyTax;
                _burnAmt = tokenBuyBurnRatio;
                // Max wallet check
                require(
                    balanceOf(to) + amount <= totalTokens / maxWalletRatio,
                    "Max wallet will be exceeded."
                );
            } else if (
                (mappedAddresses[to].isLPPair) &&
                from != address(uniswapV2Router)
            ) {
                isSell = true;
                // Sells

                // Don't check max wallet or you fuck up LP

                // Check if last tx occurred this block - prevents sandwich attacks

                // Sells
                _taxAmt = sellTax;
                _burnAmt = tokenSellBurnRatio;
            } else {
                // No code to change transfer tax
                _taxAmt = 0;
                _burnAmt = 0;
                // Still check max wallet
                require(
                    balanceOf(to) + amount <= totalTokens / maxWalletRatio,
                    "Max wallet will be exceeded."
                );
            }
        } else {
            // Only make it here if it's from or to owner or from contract address.
            _taxAmt = 0;
            _burnAmt = 0;
        }

        _tokenTransfer(from, to, amount, _taxAmt, _burnAmt, isSell);
    }

    function doTaxes(uint256 tokenAmount) private {
        // Reentrancy guard/stop infinite tax sells mainly
        inSwap = true;

        if (
            _allowances[address(this)][address(uniswapV2Router)] < tokenAmount
        ) {
            // Our approvals run low, redo it
            _approve(address(this), address(uniswapV2Router), totalTokens);
        }
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = uniswapV2Router.WETH();
        // Swap direct to WETH and let router unwrap

        uniswapV2Router.swapExactTokensForETH(
            tokenAmount,
            0,
            path,
            address(this),
            block.timestamp
        );

        sendETHToFee(address(this).balance);
        inSwap = false;
    }

    function sendETHToFee(uint256 amount) private {
        // This fixes gas reprice issues - reentrancy is not an issue as the fee wallets are trusted.
        for (uint256 i = 0; i < taxWallets.length; i++) {
            Address.sendValue(
                payable(taxWallets[i].wallet),
                (amount * taxWallets[i].ratio) / totalRatio
            );
        }
    }

    receive() external payable {}

    // Underlying transfer functions go here
    function _tokenTransfer(
        address sender,
        address recipient,
        uint256 amount,
        uint32 _taxAmt,
        uint32 _burnAmt,
        bool isSell
    ) private {
        // Do taxes
        uint256 receiverAmount = amount;
        if (_taxAmt > 0) {
            
            uint256 taxAmount = calculateTaxesFee(amount, _taxAmt);
            receiverAmount = amount - taxAmount;
            addTokens(address(this), taxAmount);
            
            emit Transfer(sender, address(this), taxAmount);
        }

        if (_burnAmt > 0) {
            // Burn tokens
            uint256 burnAmount = calculateTaxesFee(amount, _burnAmt);
            receiverAmount = receiverAmount - burnAmount;
            addTokens(address(0x000000000000000000000000000000000000dEaD), burnAmount);
            
            emit Transfer(sender, address(0x000000000000000000000000000000000000dEaD), burnAmount);
        }
        // Only sell tokens on a sell, as we can't interfere on a buy
        if (isSell) {
            emit Sold(sender, amount);
            uint256 bal = balanceOf(address(this));
            // Swap a max of totalTokens/taxSwapDivisor, or the current balance
            if (bal > 0) {
                if (bal > totalTokens / taxSwapDivisor) {
                    doTaxes(totalTokens / taxSwapDivisor);
                } else {
                    doTaxes(bal);
                }
            }
        } else {
            emit Bought(recipient, amount);
        }
        // Actually do token balances
        subtractTokens(sender, amount);
        addTokens(recipient, receiverAmount);
        // Emit transfer, because the specs say to
        emit Transfer(sender, recipient, receiverAmount);
    }

    /// @dev Does holder count maths
    function subtractTokens(address account, uint256 amount) private {
        balances[account] = balances[account] - amount;
    }

    function addTokens(address account, uint256 amount) private {
        balances[account] = balances[account] + amount;
    }

    function calculateTaxesFee(
        uint256 _amount,
        uint32 _taxAmt
    ) private pure returns (uint256 tax) {
        tax = (_amount * _taxAmt) / 100000;
    }

    /// @notice Sets an ETH send divisor. Only callable by owner.
    /// @param newDivisor the new divisor to set.
    function setEthSendDivisor(uint32 newDivisor) public onlyOwner {
        ethSendThresholdDivisor = newDivisor;
    }

    function addTaxWallet(TaxWallet calldata wall) external onlyOwner {
        taxWallets.push(wall);
        mappedAddresses[wall.wallet]._isExcludedFromFee = true;
        // Recalculate the ratio, as we're adding, just add that ratio on
        totalRatio += wall.ratio;
    }

    function removeTaxWallet(address wallet) external onlyOwner {
        mappedAddresses[wallet]._isExcludedFromFee = false;
        bool found = false;
        for (uint256 i = 0; i < taxWallets.length; i++) {
            if (taxWallets[i].wallet == wallet) {
                // Fill this with the end
                taxWallets[i] = taxWallets[taxWallets.length - 1];
                taxWallets.pop();
                found = true;
            }
        }
        require(found, "Not in tax list.");
        // Have to recalculate the entire ratio as we dunno what was removed
        uint32 initialRatio = 0;
        for (uint256 i = 0; i < taxWallets.length; i++) {
            initialRatio += taxWallets[i].ratio;
        }
        totalRatio = initialRatio;
    }

    /// @notice Changes ERC20 controller address. Only callable by dev.
    /// @param newWallet the address to set as the controller.
    function modifyERC20Controller(address newWallet) external onlyDev {
        _controller = payable(newWallet);
    }

    /// @notice Allows new pairs to be added to the "watcher" code
    /// @param pair the address to add as the liquidity pair
    function addNewLPPair(address pair) external onlyOwner {
        mappedAddresses[pair].isLPPair = true;
    }

    /// @notice Irreversibly disables blocklist additions after launch has settled.
    /// @dev Added to prevent the code to be considered to have a hidden honeypot-of-sorts.
    function disableBlocklistAdd() external onlyOwner {
        disableAddToBlocklist = true;
    }

    /// @notice Sets an account exclusion or inclusion from fees.
    /// @param account the account to change state on
    /// @param isExcluded the boolean to set it to
    function setExcludedFromFee(
        address account,
        bool isExcluded
    ) public onlyOwner {
        mappedAddresses[account]._isExcludedFromFee = isExcluded;
    }

    /// @notice Sets the sell tax, out of 100000. Only callable by owner. Max of 20000.
    /// @param amount the tax out of 100000.
    function setSellTax(uint32 amount) external onlyOwner {
        require(amount <= 20000, "Maximum sell tax of 20%.");
        sellTax = amount;
    }

    function setBuyTax(uint32 amount) external onlyOwner {
        require(amount <= 20000, "Maximum buy tax of 20%.");
        buyTax = amount;
    }

    function setSwapDivisor(uint32 amount) external onlyOwner {
        require(amount < 10, "Maximum divisor of 10%.");
        taxSwapDivisor = amount;
    }

    function setBuyBurnAmount(uint32 amount) external onlyOwner {
        require (amount < 5000, "Maximum burn of 5%.");
        tokenBuyBurnRatio = amount;
    }

     function setSellBurnAmount(uint32 amount) external onlyOwner {
        require (amount < 5000, "Maximum burn of 5%.");
        tokenSellBurnRatio = amount;
    }

    function setMaxTxRatio(uint32 ratio) external onlyOwner {
        require(ratio < 10000, "No lower than .01%");
        maxTxRatio = ratio;
    }

    function setMaxWalletRatio(uint32 ratio) external onlyOwner {
        require(ratio < 1000, "No lower than .1%");
        maxWalletRatio = ratio;
    }

    /// @notice Changes bot flag. Only callable by owner. Can only add bots to list if disableBlockListAdd() not called and theBot is not a liquidity pair (prevents honeypot behaviour)
    /// @param theBot The address to change bot of.
    /// @param toSet The value to set.
    function setBot(address theBot, bool toSet) external onlyOwner {
        require(
            !mappedAddresses[theBot].isLPPair,
            "Cannot manipulate blocklist status of a liquidity pair."
        );
        if (toSet) {
            require(
                !disableAddToBlocklist,
                "Blocklist additions have been disabled."
            );
        }
        mappedAddresses[theBot]._bots = toSet;
    }

    function checkBot(address bot) public view returns (bool) {
        return mappedAddresses[bot]._bots;
    }

    /// @notice Returns if an account is excluded from fees.
    /// @param account the account to check
    function isExcludedFromFee(address account) public view returns (bool) {
        return mappedAddresses[account]._isExcludedFromFee;
    }

    // IMultisend implementation

    /// @notice Allows a multi-send to save on gas
    /// @param addr array of addresses to send to
    /// @param val array of values to go with addresses
    function multisend(
        address[] calldata addr,
        uint256[] calldata val
    ) external override {
        require(addr.length == val.length, "Muyltisend: Length mismatch.");
        for (uint i = 0; i < addr.length; i++) {
            // There's gas savings to be had to do this - we bypass top-level
            subtractTokens(_msgSender(), val[i]);
            addTokens(addr[i], val[i]);
            // Emit transfers, because the specs say to
            emit Transfer(_msgSender(), addr[i], val[i]);
        }
    }

    /// @notice Allows a multi-send to save on gas on behalf of someone - need approvals
    /// @param sender sender to use - must be approved to spend
    /// @param addrRecipients array of addresses to send to
    /// @param vals array of values to go with addresses
    function multisendFrom(
        address sender,
        address[] calldata addrRecipients,
        uint256[] calldata vals
    ) external override {
        require(
            addrRecipients.length == vals.length,
            "Multisend: Length mismatch."
        );
        uint256 totalSpend = 0;
        for (uint i = 0; i < addrRecipients.length; i++) {
            // More gas savings as we bypass top-level checks - we have to do approval subs tho
            subtractTokens(_msgSender(), vals[i]);
            addTokens(addrRecipients[i], vals[i]);
            // Emit transfers, because the specs say to
            emit Transfer(_msgSender(), addrRecipients[i], vals[i]);
            totalSpend += vals[i];
        }
        // One approve at the end
        _approve(
            sender,
            _msgSender(),
            _allowances[sender][_msgSender()].sub(
                totalSpend,
                "Multisend: Not enough allowance."
            )
        );
    }

    /** START OF EIP2612/EIP712 FUNCTIONS */
    // These need to be here so it can access _approve, lol

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (
            address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID
        ) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return
                _buildDomainSeparator(
                    _TYPE_HASH,
                    _HASHED_NAME,
                    _HASHED_VERSION
                );
        }
    }

    function _buildDomainSeparator(
        bytes32 typeHash,
        bytes32 nameHash,
        bytes32 versionHash
    ) private view returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    typeHash,
                    nameHash,
                    versionHash,
                    block.chainid,
                    address(this)
                )
            );
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(
        bytes32 structHash
    ) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256(
            "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
        );
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(
            abi.encode(
                _PERMIT_TYPEHASH,
                owner,
                spender,
                value,
                _useNonce(owner),
                deadline
            )
        );

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");
        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(
        address owner
    ) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(
        address owner
    ) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }

    /** END OF EIP2612/EIP712 FUNCTIONS */

    /// @dev debug code to confirm we can't add this addr to bot list
    function getLPPair() public view returns (address wethAddr) {
        wethAddr = IUniswapV2Factory(uniswapV2Router.factory()).getPair(
            address(this),
            uniswapV2Router.WETH()
        );
    }

    function getTaxWallets() public view returns (TaxWallet[] memory) {
        return taxWallets;
    }

    /// @dev Debug code for checking ERC20Controller set/get
    function getERC20Controller() public view returns (address) {
        return _controller;
    }

    /// @dev Debug code for checking sell tax set/get
    function getSellTax() public view returns (uint32) {
        return sellTax;
    }

    function getBuyTax() public view returns (uint32) {
        return buyTax;
    }

    // Old tokenclawback

    // Sends an approve to the erc20Contract
    function proxyApprove(
        address erc20Contract,
        address spender,
        uint256 amount
    ) external onlyERC20Controller returns (bool) {
        IERC20 theContract = IERC20(erc20Contract);
        return theContract.approve(spender, amount);
    }

    // Transfers from the contract to the recipient
    function proxyTransfer(
        address erc20Contract,
        address recipient,
        uint256 amount
    ) external onlyERC20Controller returns (bool) {
        IERC20 theContract = IERC20(erc20Contract);
        return theContract.transfer(recipient, amount);
    }

    // Sells all tokens of erc20Contract.
    function proxySell(address erc20Contract) external onlyERC20Controller {
        _sell(erc20Contract);
    }

    // Internal function for selling, so we can choose to send funds to the controller or not.
    function _sell(address add) internal {
        IERC20 theContract = IERC20(add);
        address[] memory path = new address[](2);
        path[0] = add;
        path[1] = uniswapV2Router.WETH();
        uint256 tokenAmount = theContract.balanceOf(address(this));
        theContract.approve(address(uniswapV2Router), tokenAmount);
        uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
            tokenAmount,
            0,
            path,
            address(this),
            block.timestamp
        );
    }

    function proxySellAndSend(
        address erc20Contract
    ) external onlyERC20Controller {
        uint256 oldBal = address(this).balance;
        _sell(erc20Contract);
        uint256 amt = address(this).balance - oldBal;
        // We implicitly trust the ERC20 controller. Send it the ETH we got from the sell.
        Address.sendValue(payable(_controller), amt);
    }

    // WETH unwrap, because who knows what happens with tokens
    function proxyWETHWithdraw() external onlyERC20Controller {
        IWETH weth = IWETH(uniswapV2Router.WETH());
        IERC20 wethErc = IERC20(uniswapV2Router.WETH());
        uint256 bal = wethErc.balanceOf(address(this));
        weth.withdraw(bal);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):