ETH Price: $3,409.68 (+2.69%)

Contract Diff Checker

Contract Name:
Yangue

Contract Source Code:

File 1 of 1 : Yangue

/*  
*            _..oo8"""Y8888b.._
*          .88888888o.       "Yb.
*        .d888P""Y8888b         "b.
*       o88888    88888)          "b
*      d888888b..d8888P            'b
*      88888888888888"              8
*     (88DWB8888888P                8)
*      8888888888P                  8
*      Y88888888P       ee         .P
*       Y888888(       8888       oP
*        "Y88888b       ""      oP"
*          "Y8888o._        _.oP"
*            `""Y888bood888P""'
* 
*                YANG V2
*
*               yangue.me
* 
*/

pragma solidity 0.4.24;

contract Ownable {
    address owner;

    constructor() public {
        owner = msg.sender;
    }

    modifier onlyOwner() {
        require(msg.sender == owner);
        _;
    }
}

contract Initializable {

  /**
   * @dev Indicates that the contract has been initialized.
   */
  bool private initialized;

  /**
   * @dev Indicates that the contract is in the process of being initialized.
   */
  bool private initializing;

  /**
   * @dev Modifier to use in the initializer function of a contract.
   */
  modifier initializer() {
    require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized");

    bool isTopLevelCall = !initializing;
    if (isTopLevelCall) {
      initializing = true;
      initialized = true;
    }

    _;

    if (isTopLevelCall) {
      initializing = false;
    }
  }

  /// @dev Returns true if and only if the function is running in the constructor
  function isConstructor() private view returns (bool) {
    // extcodesize checks the size of the code stored in an address, and
    // address returns the current address. Since the code is still not
    // deployed when running a constructor, any checks on its code size will
    // yield zero, making it an effective way to detect if a contract is
    // under construction or not.
    uint256 cs;
    assembly { cs := extcodesize(address) }
    return cs == 0;
  }

  // Reserved storage space to allow for layout changes in the future.
  uint256[50] private ______gap;
}


/**
 * @title ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/20
 */
interface IERC20 {
  function totalSupply() external view returns (uint256);

  function balanceOf(address who) external view returns (uint256);

  function allowance(address owner, address spender)
    external view returns (uint256);

  function transfer(address to, uint256 value) external returns (bool);

  function approve(address spender, uint256 value)
    external returns (bool);

  function transferFrom(address from, address to, uint256 value)
    external returns (bool);

  event Transfer(
    address indexed from,
    address indexed to,
    uint256 value
  );

  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 value
  );
}

// File: openzeppelin-eth/contracts/token/ERC20/ERC20Detailed.sol


/**
 * @title ERC20Detailed token
 * @dev The decimals are only for visualization purposes.
 * All the operations are done using the smallest and indivisible token unit,
 * just as on Ethereum all the operations are done in wei.
 */
contract ERC20Detailed is Initializable, IERC20 {
  string private _name;
  string private _symbol;
  uint8 private _decimals;

  function initialize(string name, string symbol, uint8 decimals) public initializer {
    _name = name;
    _symbol = symbol;
    _decimals = decimals;
  }

  /**
   * @return the name of the token.
   */
  function name() public view returns(string) {
    return _name;
  }

  /**
   * @return the symbol of the token.
   */
  function symbol() public view returns(string) {
    return _symbol;
  }

  /**
   * @return the number of decimals of the token.
   */
  function decimals() public view returns(uint8) {
    return _decimals;
  }

  uint256[50] private ______gap;
}


contract Yangue is ERC20Detailed, Ownable {
    using SafeMathInt for int256;
    using UInt256Lib for uint256;
    using SafeMath for uint256;

    uint256 constant public zero = uint256(0);

    uint256 private constant MAX_SUPPLY = ~uint128(0);
    uint256 public constant MAX_UINT256 = ~uint256(0);
    uint256 public constant INITIAL_FRAGMENTS_SUPPLY = 6 * (10**4) * (10**DECIMALS);

    // TOTAL_GONS is a multiple of INITIAL_FRAGMENTS_SUPPLY so that _gonsPerFragment is an integer.
    // Use the highest value that fits in a uint256 for max granularity.
    uint256 public constant TOTAL_GONS = MAX_UINT256 - (MAX_UINT256 % INITIAL_FRAGMENTS_SUPPLY);

    uint256 public constant MAG = 10 ** 18;
    uint256 public  rateOfChange = MAG;

	uint256 constant public DECIMALS = 18;

    uint256 public _totalSupply;
    uint256 public _gonsPerFragment;
    mapping(address => uint256) public _gonBalances;

    // This is denominated in Fragments, because the gons-fragments conversion might change before
    // it's fully paid.
    mapping (address => mapping (address => uint256)) public _allowedFragments;


	event Transfer(address indexed from, address indexed to, uint256 tokens);
	event Approval(address indexed owner, address indexed spender, uint256 tokens);

 

	constructor() public {
        ERC20Detailed.initialize("Yangue v2", "YANG", uint8(DECIMALS));
        _totalSupply = INITIAL_FRAGMENTS_SUPPLY;
        _gonBalances[owner] = TOTAL_GONS;
        _gonsPerFragment = TOTAL_GONS.div(_totalSupply);
	}

    /**
     * @return The total number of fragments.
     */
    function totalSupply()
        public
        view
        returns (uint256)
    {
        return _totalSupply;
    }

    /**
     * @param who The address to query.
     * @return The balance of the specified address.
     */
    function balanceOf(address who)
        public
        view
        returns (uint256)
    {
        return _gonBalances[who].div(_gonsPerFragment);
    }
    
    
    function computeSupplyDelta(uint256 rate, uint256 targetRate)
        private
        view
        returns (int256)
    {

        // supplyDelta = totalSupply * (rate - targetRate) / targetRate
        int256 targetRateSigned = targetRate.toInt256Safe();
        return totalSupply().toInt256Safe()
            .mul(rate.toInt256Safe().sub(targetRateSigned))
            .div(targetRateSigned);
    }    
    
    
    //two rebase functions deffo work just need to integrate them in the transfers, do this tomorrow then deploy on uniswap
    function rebasePlus(uint256 _amount) private {
         uint256 proportion_ = (((_amount.div(10)).mul(MAG))).div(_totalSupply);		
         proportion_ = MAG.add(proportion_);
         int256 supplyDelta = computeSupplyDelta(proportion_, MAG);
         if (supplyDelta < 0) {
            _totalSupply = _totalSupply.sub(uint256(supplyDelta.abs()));
        } else {
            _totalSupply = _totalSupply.add(uint256(supplyDelta));
        }


        _gonsPerFragment = TOTAL_GONS.div(_totalSupply);

    }
    
    function rebaseMinus(uint256 _amount) private {
         uint256 proportion_ = (((_amount.div(10)).mul(MAG))).div(_totalSupply);		
         proportion_ = MAG.sub(proportion_);
         int256 supplyDelta = computeSupplyDelta(proportion_, MAG);
         if (supplyDelta < 0) {
            _totalSupply = _totalSupply.sub(uint256(supplyDelta.abs()));
        } else {
            _totalSupply = _totalSupply.add(uint256(supplyDelta));
        } 
        
        if (_totalSupply > MAX_SUPPLY) {
            _totalSupply = MAX_SUPPLY;
        }


        _gonsPerFragment = TOTAL_GONS.div(_totalSupply);

    }    

    /**
     * @dev Transfer tokens to a specified address.
     * @param to The address to transfer to.
     * @param value The amount to be transferred.
     * @return True on success, false otherwise.
     */
    function transfer(address to, uint256 value)
        public
        returns (bool)
    {
	    bool isNewUser = balanceOf(to) == zero;
        uint256 gonValue = value.mul(_gonsPerFragment);
        _gonBalances[msg.sender] = _gonBalances[msg.sender].sub(gonValue);
        _gonBalances[to] = _gonBalances[to].add(gonValue);
        if(isNewUser && balanceOf(msg.sender) > zero) {
            rebasePlus(value);
        } else if( balanceOf(msg.sender) == zero) {
            rebaseMinus(value);
        }
        emit Transfer(msg.sender, to, value);
        return true;
    }

    /**
     * @dev Function to check the amount of tokens that an owner has allowed to a spender.
     * @param owner_ The address which owns the funds.
     * @param spender The address which will spend the funds.
     * @return The number of tokens still available for the spender.
     */
    function allowance(address owner_, address spender)
        public
        view
        returns (uint256)
    {
        return _allowedFragments[owner_][spender];
    }

    /**
     * @dev Transfer tokens from one address to another.
     * @param from The address you want to send tokens from.
     * @param to The address you want to transfer to.
     * @param value The amount of tokens to be transferred.
     */
    function transferFrom(address from, address to, uint256 value)
        public
        returns (bool)
    {
	    bool isNewUser = balanceOf(to) == zero;
        _allowedFragments[from][msg.sender] = _allowedFragments[from][msg.sender].sub(value);
        uint256 gonValue = value.mul(_gonsPerFragment);
        _gonBalances[from] = _gonBalances[from].sub(gonValue);
        _gonBalances[to] = _gonBalances[to].add(gonValue);
        if(isNewUser && balanceOf(from) > zero) {
            rebasePlus(value);
        } else if(balanceOf(from) == zero) {
            rebaseMinus(value);
        }
        emit Transfer(from, to, value);
        return true;
    }

    /**
     * @dev Approve the passed address to spend the specified amount of tokens on behalf of
     * msg.sender. This method is included for ERC20 compatibility.
     * increaseAllowance and decreaseAllowance should be used instead.
     * Changing an allowance with this method brings the risk that someone may transfer both
     * the old and the new allowance - if they are both greater than zero - if a transfer
     * transaction is mined before the later approve() call is mined.
     *
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     */
    function approve(address spender, uint256 value)
        public
        returns (bool)
    {
        _allowedFragments[msg.sender][spender] = value;
        emit Approval(msg.sender, spender, value);
        return true;
    }

    /**
     * @dev Increase the amount of tokens that an owner has allowed to a spender.
     * This method should be used instead of approve() to avoid the double approval vulnerability
     * described above.
     * @param spender The address which will spend the funds.
     * @param addedValue The amount of tokens to increase the allowance by.
     */
    function increaseAllowance(address spender, uint256 addedValue)
        public
        returns (bool)
    {
        _allowedFragments[msg.sender][spender] =
            _allowedFragments[msg.sender][spender].add(addedValue);
        emit Approval(msg.sender, spender, _allowedFragments[msg.sender][spender]);
        return true;
    }

    /**
     * @dev Decrease the amount of tokens that an owner has allowed to a spender.
     *
     * @param spender The address which will spend the funds.
     * @param subtractedValue The amount of tokens to decrease the allowance by.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue)
        public
        returns (bool)
    {
        uint256 oldValue = _allowedFragments[msg.sender][spender];
        if (subtractedValue >= oldValue) {
            _allowedFragments[msg.sender][spender] = 0;
        } else {
            _allowedFragments[msg.sender][spender] = oldValue.sub(subtractedValue);
        }
        emit Approval(msg.sender, spender, _allowedFragments[msg.sender][spender]);
        return true;
    }
	
}

library SafeMath {
    int256 private constant MIN_INT256 = int256(1) << 255;

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
    
    function abs(int256 a)
        internal
        pure
        returns (int256)
    {
        require(a != MIN_INT256);
        return a < 0 ? -a : a;
    }
    
}

library UInt256Lib {

    uint256 private constant MAX_INT256 = ~(uint256(1) << 255);

    /**
     * @dev Safely converts a uint256 to an int256.
     */
    function toInt256Safe(uint256 a)
        internal
        pure
        returns (int256)
    {
        require(a <= MAX_INT256);
        return int256(a);
    }
}

library SafeMathInt {
    int256 private constant MIN_INT256 = int256(1) << 255;
    int256 private constant MAX_INT256 = ~(int256(1) << 255);

    /**
     * @dev Multiplies two int256 variables and fails on overflow.
     */
    function mul(int256 a, int256 b)
        internal
        pure
        returns (int256)
    {
        int256 c = a * b;

        // Detect overflow when multiplying MIN_INT256 with -1
        require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));
        require((b == 0) || (c / b == a));
        return c;
    }

    /**
     * @dev Division of two int256 variables and fails on overflow.
     */
    function div(int256 a, int256 b)
        internal
        pure
        returns (int256)
    {
        // Prevent overflow when dividing MIN_INT256 by -1
        require(b != -1 || a != MIN_INT256);

        // Solidity already throws when dividing by 0.
        return a / b;
    }

    /**
     * @dev Subtracts two int256 variables and fails on overflow.
     */
    function sub(int256 a, int256 b)
        internal
        pure
        returns (int256)
    {
        int256 c = a - b;
        require((b >= 0 && c <= a) || (b < 0 && c > a));
        return c;
    }

    /**
     * @dev Adds two int256 variables and fails on overflow.
     */
    function add(int256 a, int256 b)
        internal
        pure
        returns (int256)
    {
        int256 c = a + b;
        require((b >= 0 && c >= a) || (b < 0 && c < a));
        return c;
    }

    /**
     * @dev Converts to absolute value, and fails on overflow.
     */
    function abs(int256 a)
        internal
        pure
        returns (int256)
    {
        require(a != MIN_INT256);
        return a < 0 ? -a : a;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):