ETH Price: $3,397.48 (+3.11%)

Contract Diff Checker

Contract Name:
SlaveTokenProduct

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";
import "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
 * Argent and Gnosis Safe.
 *
 * _Available since v4.1._
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
        return
            (error == ECDSA.RecoverError.NoError && recovered == signer) ||
            isValidERC1271SignatureNow(signer, hash, signature);
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;

interface IMessageStruct {
    struct launchParams {
        uint64 earliestArrivalTimestamp;
        uint64 latestArrivalTimestamp;
        address relayer;
        address sender;
        uint256 value;
        uint64 destChainid;
        bytes additionParams;
        bytes message;
    }

    struct landingParams {
        bytes32 messageId;
        uint64 earliestArrivalTimestamp;
        uint64 latestArrivalTimestamp;
        uint64 srcChainid;
        bytes32 srcTxHash;
        uint256 srcContract;
        uint32 srcChainNonce;
        uint256 sender;
        uint256 value;
        bytes additionParams;
        bytes message;
    }

    struct launchEnhanceParams {
        uint64 earliestArrivalTimestamp;
        uint64 latestArrivalTimestamp;
        address relayer;
        address sender;
        uint256[] value;
        uint64[] destChainid;
        bytes[] additionParams;
        bytes[] message;
    }

    struct RollupMessageStruct {
        SignedMessageBase base;
        IMessageStruct.launchParams params;
    }

    struct SignedMessageBase {
        uint64 srcChainId;
        uint24 nonceLaunch;
        bytes32 srcTxHash;
        bytes32 destTxHash;
        uint64 srcTxTimestamp;
        uint64 destTxTimestamp;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

enum ActionType {
    buyPing,
    buyPong,
    sellPing,
    sellPong,
    crossPing,
    stakePing,
    unStakePing,
    unStakePong
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IChannelSlave {
    function paramsEstimateGas(uint value, bytes memory params) external view returns (uint);

    function paramsEmit2LaunchPad(uint bridgeFee, uint value, bytes memory params, address sender) external payable;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IProductBase} from "./IProductBase.sol";

interface IFactoryBase {
    function getChannelAddress() external view returns (address);

    function getProduct(string memory symbol_) external view returns (IProductBase);

    function getSymbol(address _addr) external view returns (string memory);

    function existProduct(address _addr) external view returns (bool);

    function getShortByLong(address longAddr) external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IFactoryBase} from "./IFactoryBase.sol";

interface IFactorySlave is IFactoryBase {}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IProductBase {
    function actionCall(
        uint64 srcChainId,
        address sender,
        uint8 action,
        uint pongFee,
        bytes memory params
    ) external payable;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

import {ActionType} from "../constants/ActionType.sol";

import {IFactoryBase} from "../interface/IFactoryBase.sol";
import {IProductBase} from "../interface/IProductBase.sol";

abstract contract LikwidProduct is ERC20, Ownable, ReentrancyGuard, IProductBase {
    error NotImplement();
    using Strings for uint256;

    event MessageReceived(uint64 _srcChainId, address _srcAddress, uint value, bytes _payload);
    event PongfeeFailed(uint64 _srcChainId, address _srcAddress, uint8 _action, uint _pongFee, uint _expectPongFee);

    event Swap(address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, uint nonce);

    event AssetLocked(
        ActionType _action,
        uint64 _srcChainId,
        address _owner,
        uint _lockedNative,
        uint _lockedToken,
        uint nonce
    );

    event Crossed(uint64 _srcChainId, address _sender, address _to, uint _token, uint nonce);
    event Unlocked(address _owner, address _to, uint _native, uint _token);
    event Stake(address indexed sender, uint64 _srcChainId, uint tokenIn, uint tokenOut, uint nonce);

    mapping(uint => mapping(address => mapping(uint => bool))) public crossNoncePing;
    mapping(uint => mapping(address => uint)) public crossNonce;

    bool public launched;
    uint public messageReceived;
    address public feeAddress;
    uint public omniSupply;
    uint public launchFunds;
    uint public launchTime;
    uint public launchHardCap;
    address public creatorAddr;
    address public airdropAddr;

    address public factoryAddress;

    function setFeeAddress(address addr) public virtual onlyOwner {
        feeAddress = addr;
    }

    function setAirdropAddr(address addr) public virtual onlyOwner {
        airdropAddr = addr;
    }

    function setCreatorAddr(address addr) public virtual onlyOwner {
        creatorAddr = addr;
    }

    function setLaunchHardCap(uint amount) public virtual onlyOwner {
        launchHardCap = amount;
    }

    function setLaunchTime(uint launchTime_) public virtual onlyOwner {
        launchTime = launchTime_;
    }

    uint version = 7 ether;
    uint public nativeMax = 5 ether;
    uint public nativeMin = 0.0001 ether;
    uint public tokenMin = 1 ether;
    uint public nativeTotal = 50 ether;

    function setNativeTotal(uint amount) public virtual onlyOwner {
        nativeTotal = amount;
    }

    function setNativeMax(uint amount) public virtual onlyOwner {
        nativeMax = amount;
    }

    function setNativeMin(uint amount) public virtual onlyOwner {
        nativeMin = amount;
    }

    function setTokenMin(uint amount) public virtual onlyOwner {
        tokenMin = amount;
    }

    function nowTime() public view returns (uint) {
        return block.timestamp;
    }

    function getVersion() public view returns (uint) {
        return version;
    }

    constructor(
        string memory _name,
        string memory _symbol,
        address _ownerAddr,
        address _factoryAddress,
        uint _omniSupply,
        uint _launchFunds,
        uint _launchTime,
        uint _launchHardCap,
        address _creatorAddr
    ) ERC20(_name, _symbol) {
        launched = false;
        feeAddress = _ownerAddr;
        airdropAddr = _ownerAddr;
        omniSupply = _omniSupply;
        launchFunds = _launchFunds;
        launchTime = _launchTime;
        launchHardCap = _launchHardCap;
        creatorAddr = _creatorAddr;
        factoryAddress = _factoryAddress;
        require(launchFunds > 0, "launch funds err");
        require(omniSupply > 0, "total supply init err");
    }

    function transferNative(address to, uint amount) internal {
        (bool success, ) = to.call{value: amount}("");
        require(success, string.concat("Product Transfer failed.", amount.toString()));
    }

    function action_func(uint64, address, uint8, uint, bytes memory) internal virtual {
        revert NotImplement();
    }

    function actionCall(
        uint64 srcChainId,
        address sender,
        uint8 action,
        uint pongFee,
        bytes memory params
    ) external payable {
        require(
            _msgSender() == IFactoryBase(factoryAddress).getChannelAddress(),
            "LikwidProduct: caller must be channel"
        );
        emit MessageReceived(srcChainId, sender, msg.value, params);
        action_func(srcChainId, sender, action, pongFee, params);
    }

    function _transfer(address from, address to, uint256 amount) internal virtual override {
        if (_msgSender() != address(this) && to == address(this)) {
            revert("Unsupported");
        } else {
            super._transfer(from, to, amount);
        }
    }

    function _crossPingSignature(
        uint nonce,
        uint64 dstChainId,
        address target,
        uint token
    ) internal view virtual returns (bytes memory) {
        return abi.encode(uint8(ActionType.crossPing), symbol(), 0, abi.encode(nonce, dstChainId, target, token));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {LikwidProduct} from "./LikwidProduct.sol";
import {IMessageStruct} from "@vizing/contracts/interface/IMessageStruct.sol";
import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";

import {ActionType} from "../constants/ActionType.sol";

import {IFactorySlave} from "../interface/IFactorySlave.sol";
import {IChannelSlave} from "../interface/IChannelSlave.sol";

contract SlaveTokenProduct is LikwidProduct {
    IFactorySlave public _factory;
    IChannelSlave public _channel;
    address public signer;
    uint public launchLimit;

    constructor(
        string memory _name,
        string memory _symbol,
        address _ownerAddr,
        address _factoryAddress,
        uint _omniSupply,
        uint _launchFunds,
        uint _launchTime,
        uint _launchHardCap,
        address _creatorAddr,
        address _signer,
        bytes memory params
    )
        LikwidProduct(
            _name,
            _symbol,
            _ownerAddr,
            _factoryAddress,
            _omniSupply,
            _launchFunds,
            _launchTime,
            _launchHardCap,
            _creatorAddr
        )
    {
        signer = _signer;
        _factory = IFactorySlave(_factoryAddress);
        _channel = IChannelSlave(_factory.getChannelAddress());
        if (params.length > 0) {
            (, , launchLimit, signSwitch) = abi.decode(params, (uint, uint, uint, bool));
        }
    }

    mapping(address => uint) public depositPing;
    mapping(address => uint) public buyNonce;
    mapping(address => mapping(uint => bool)) public buyNoncePong;

    mapping(address => uint) public sellNonce;
    mapping(address => mapping(uint => bool)) public sellNoncePong;

    function setSigner(address addr_) external onlyOwner {
        signer = addr_;
    }

    function setLaunched(bool _launched) external {
        require(signer == _msgSender() || owner() == _msgSender(), "only signer/owner call");
        launched = _launched;
    }

    function depositTotal(address sender) public view returns (uint) {
        uint amount;
        if (sender == creatorAddr) {
            amount = launchLimit * 10;
        } else {
            amount = launchLimit;
        }
        if (amount == 0) {
            amount = launchFunds / 100;
        }
        if (amount > launchFunds) {
            amount = launchFunds;
        }
        return amount;
    }

    function action_func(uint64 srcChainId, address sender, uint8 action, uint, bytes memory params) internal override {
        if (action == uint8(ActionType.buyPong)) {
            (uint nonce, address target, uint native, uint token, bool masterLaunch) = abi.decode(
                params,
                (uint, address, uint, uint, bool)
            );
            slave_buy(srcChainId, sender, target, native, token, masterLaunch, nonce);
        } else if (action == uint8(ActionType.sellPong)) {
            (uint nonce, address target, uint token, uint native) = abi.decode(params, (uint, address, uint, uint));
            slave_sell(srcChainId, sender, target, native, token, nonce);
        } else if (action == uint8(ActionType.unStakePong)) {
            (uint nonce, address target, uint token) = abi.decode(params, (uint, address, uint));
            slave_unstake(target, token, nonce);
        } else if (action == uint8(ActionType.crossPing)) {
            (uint nonce, uint64 chainid, address to, uint token) = abi.decode(params, (uint, uint64, address, uint));
            slave_cross(srcChainId, sender, chainid, to, token, nonce);
        } else revert NotImplement();
    }

    //----slave call
    function slave_buy(
        uint64,
        address,
        address target,
        uint native,
        uint token,
        bool masterLaunch,
        uint nonce
    ) internal {
        require(!buyNoncePong[target][nonce], "nonce repetition");
        if (!launched) {
            launched = masterLaunch;
        }
        buyNoncePong[target][nonce] = true;
        if (token > 0) _mint(target, token);
        if (native > 0) transferNative(target, native);
    }

    function slave_sell(uint64, address, address target, uint native, uint, uint nonce) internal {
        require(!sellNoncePong[target][nonce], "nonce repetition");
        sellNoncePong[target][nonce] = true;
        if (!launched) {
            if (native < depositPing[target]) {
                depositPing[target] -= native;
            } else {
                depositPing[target] = 0;
            }
        }
        // if (token > 0) _mint(target, token);
        if (native > 0) transferNative(target, native);
    }

    // ----Signature---

    function _buyPingSignature(
        uint nonce,
        address target,
        uint pongFee,
        uint amountIn
    ) internal view returns (bytes memory) {
        return abi.encode(uint8(ActionType.buyPing), symbol(), pongFee, abi.encode(nonce, target, amountIn));
    }

    function _sellPingSignature(
        uint nonce,
        address target,
        uint pongFee,
        uint amountIn
    ) internal view returns (bytes memory) {
        return abi.encode(uint8(ActionType.sellPing), symbol(), pongFee, abi.encode(nonce, target, amountIn));
    }

    uint public cutShortTime = 600; //10 minute

    function setCutShortTime(uint time) public onlyOwner {
        cutShortTime = time;
    }

    function getHash(
        string memory biz,
        string memory symbol,
        uint amount,
        address sender
    ) public pure returns (bytes32) {
        return keccak256(abi.encodePacked(biz, symbol, amount, sender));
    }

    bool public signSwitch = false;

    function setSignSwitch(bool pause_) public onlyOwner {
        signSwitch = pause_;
    }

    //----_buy

    function buyPingEstimateGas(uint pongFee, address target, uint amountIn) public view returns (uint pingFee) {
        uint nonce = buyNonce[_msgSender()];
        pingFee = _channel.paramsEstimateGas(pongFee, _buyPingSignature(nonce + 1, target, pongFee, amountIn));
    }

    uint public swapTime = 100; //60 minute

    function setSwapTime(uint time) public onlyOwner {
        swapTime = time;
    }

    function _buy(uint pongFee, address to) internal {
        uint pingFee = buyPingEstimateGas(pongFee, to, msg.value);
        if (pongFee == 0) {
            pongFee = pingFee;
        }
        uint amountIn = msg.value - pingFee - pongFee;
        require(amountIn >= nativeMin, "the amount cannot be too small");
        require(amountIn <= nativeMax, "the amount cannot be too large");
        if (!launched) {
            depositPing[_msgSender()] += amountIn;
            require(depositPing[_msgSender()] <= depositTotal(_msgSender()), "pay too much");
        }
        uint nonce = buyNonce[_msgSender()];
        _channel.paramsEmit2LaunchPad{value: msg.value}(
            pingFee,
            amountIn + pongFee,
            _buyPingSignature(nonce + 1, to, pongFee, amountIn),
            _msgSender()
        );
        buyNonce[_msgSender()]++;
    }

    //----_sell

    function sellPingEstimateGas(uint pongFee, address target, uint amountIn) public view returns (uint pingFee) {
        uint nonce = sellNonce[_msgSender()];

        pingFee = _channel.paramsEstimateGas(pongFee, _sellPingSignature(nonce + 1, target, pongFee, amountIn));
    }

    function _sell(uint pongFee, address from, address to, uint amountIn) internal {
        require(amountIn > 0, "amount in err.");
        require(balanceOf(from) >= amountIn, "sell amount exceeds balance");
        uint pingFee = sellPingEstimateGas(pongFee, to, amountIn);
        if (pongFee == 0) {
            pongFee = pingFee;
        }
        require(msg.value >= pingFee + pongFee, "bridge fee not enough");

        require(amountIn >= tokenMin, "the amount cannot be too small");

        uint nonce = sellNonce[_msgSender()];
        bytes memory params = _sellPingSignature(nonce + 1, to, pongFee, amountIn);

        _burn(from, amountIn);
        _channel.paramsEmit2LaunchPad{value: msg.value}(pingFee, pongFee, params, _msgSender());
        sellNonce[_msgSender()]++;
    }

    //----314token
    function getReserves() public pure returns (uint, uint) {
        revert NotImplement();
    }

    function getAmountOut(uint, bool) public pure returns (uint) {
        revert NotImplement();
    }

    bool public swapPause = false;

    function setSwapPause(bool pause_) public onlyOwner {
        swapPause = pause_;
    }

    function swapExactETHForTokens(uint pongFee, address to, bytes calldata signature) external payable nonReentrant {
        require(!swapPause, "swap pause");
        if (signSwitch && !launched) {
            bytes32 hash = getHash("buy", symbol(), msg.value, _msgSender());
            require(SignatureChecker.isValidSignatureNow(signer, hash, signature), "verify error");
        }

        _buy(pongFee, to);
    }

    function swapExactTokensForETH(uint pongFee, uint amountIn, address to) external payable nonReentrant {
        require(!swapPause, "swap pause");
        _sell(pongFee, _msgSender(), to, amountIn);
    }

    function slave_cross(uint64 srcChainId, address, uint64 dstChainId, address to, uint token, uint nonce) internal {
        require(!crossNoncePing[srcChainId][to][nonce], "nonce repetition");
        crossNoncePing[srcChainId][to][nonce] = true;
        require(dstChainId == block.chainid, "chain id err");
        if (token > 0) _mint(to, token);
        emit Crossed(srcChainId, to, to, token, nonce);
    }

    function crossToEstimateGas(uint64 dstChainId, address to, uint amount) public view returns (uint pingFee) {
        uint nonce = crossNonce[dstChainId][to];
        pingFee = _channel.paramsEstimateGas(0, _crossPingSignature(nonce + 1, dstChainId, to, amount));
    }

    function crossTo(uint64 dstChainId, address to, uint amount) external payable {
        address owner = _msgSender();
        require(balanceOf(owner) >= amount, "insufficient balance");
        _burn(owner, amount);
        uint nonce = crossNonce[block.chainid][_msgSender()];
        uint pingFee = crossToEstimateGas(dstChainId, to, amount);
        _channel.paramsEmit2LaunchPad{value: msg.value}(
            pingFee,
            0,
            _crossPingSignature(nonce + 1, dstChainId, to, amount),
            _msgSender()
        );
        crossNonce[block.chainid][_msgSender()]++;
    }

    mapping(address => mapping(uint => bool)) public unStakeNoncePing;
    mapping(address => uint) public unStakeNonce;

    function _stakePingSignature(address target, uint token, uint duration) internal view returns (bytes memory) {
        return abi.encode(uint8(ActionType.stakePing), symbol(), 0, abi.encode(target, token, duration));
    }

    function stakePingEstimateGas(address target, uint token, uint duration) public view returns (uint pingFee) {
        pingFee = _channel.paramsEstimateGas(0, _stakePingSignature(target, token, duration));
    }

    function stake(uint token, uint duration) external payable nonReentrant {
        require(token > 0, "token in err.");
        address target = _msgSender();
        require(balanceOf(target) >= token, "stake amount exceeds balance");
        uint pingFee = stakePingEstimateGas(target, token, duration);
        require(msg.value >= pingFee, "bridge fee not enough");

        bytes memory params = _stakePingSignature(target, token, duration);

        _burn(target, token);
        _channel.paramsEmit2LaunchPad{value: msg.value}(pingFee, 0, params, _msgSender());
    }

    function slave_unstake(address target, uint token, uint nonce) internal {
        require(!unStakeNoncePing[target][nonce], "nonce repetition");
        unStakeNoncePing[target][nonce] = true;
        if (token > 0) _mint(target, token);
    }

    function _unStakePingSignature(
        uint nonce,
        address target,
        uint pongFee,
        uint token
    ) internal view returns (bytes memory) {
        return abi.encode(uint8(ActionType.unStakePing), symbol(), pongFee, abi.encode(nonce, target, token));
    }

    function unStakePingEstimateGas(uint pongFee, address target, uint token) public view returns (uint pingFee) {
        uint nonce = unStakeNonce[_msgSender()];
        pingFee = _channel.paramsEstimateGas(pongFee, _unStakePingSignature(nonce + 1, target, pongFee, token));
    }

    function unStake(uint pongFee, uint token) external payable nonReentrant {
        require(token > 0, "token in err.");
        address target = _msgSender();
        uint pingFee = unStakePingEstimateGas(pongFee, target, token);
        require(msg.value >= pingFee + pongFee, "bridge fee not enough");

        uint nonce = unStakeNonce[target];
        bytes memory params = _unStakePingSignature(nonce + 1, target, pongFee, token);

        _channel.paramsEmit2LaunchPad{value: msg.value}(pingFee, pongFee, params, _msgSender());
        unStakeNonce[target]++;
    }

    /**
     * @dev Fallback function to buy tokens with ETH.
     */
    receive() external payable {
        _buy(0, _msgSender());
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):