Contract Name:
SlaveTokenProduct
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*
* _Available since v4.1._
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
import "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Gnosis Safe.
*
* _Available since v4.1._
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
interface IMessageStruct {
struct launchParams {
uint64 earliestArrivalTimestamp;
uint64 latestArrivalTimestamp;
address relayer;
address sender;
uint256 value;
uint64 destChainid;
bytes additionParams;
bytes message;
}
struct landingParams {
bytes32 messageId;
uint64 earliestArrivalTimestamp;
uint64 latestArrivalTimestamp;
uint64 srcChainid;
bytes32 srcTxHash;
uint256 srcContract;
uint32 srcChainNonce;
uint256 sender;
uint256 value;
bytes additionParams;
bytes message;
}
struct launchEnhanceParams {
uint64 earliestArrivalTimestamp;
uint64 latestArrivalTimestamp;
address relayer;
address sender;
uint256[] value;
uint64[] destChainid;
bytes[] additionParams;
bytes[] message;
}
struct RollupMessageStruct {
SignedMessageBase base;
IMessageStruct.launchParams params;
}
struct SignedMessageBase {
uint64 srcChainId;
uint24 nonceLaunch;
bytes32 srcTxHash;
bytes32 destTxHash;
uint64 srcTxTimestamp;
uint64 destTxTimestamp;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
enum ActionType {
buyPing,
buyPong,
sellPing,
sellPong,
crossPing,
stakePing,
unStakePing,
unStakePong
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IChannelSlave {
function paramsEstimateGas(uint value, bytes memory params) external view returns (uint);
function paramsEmit2LaunchPad(uint bridgeFee, uint value, bytes memory params, address sender) external payable;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IProductBase} from "./IProductBase.sol";
interface IFactoryBase {
function getChannelAddress() external view returns (address);
function getProduct(string memory symbol_) external view returns (IProductBase);
function getSymbol(address _addr) external view returns (string memory);
function existProduct(address _addr) external view returns (bool);
function getShortByLong(address longAddr) external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IFactoryBase} from "./IFactoryBase.sol";
interface IFactorySlave is IFactoryBase {}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IProductBase {
function actionCall(
uint64 srcChainId,
address sender,
uint8 action,
uint pongFee,
bytes memory params
) external payable;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ActionType} from "../constants/ActionType.sol";
import {IFactoryBase} from "../interface/IFactoryBase.sol";
import {IProductBase} from "../interface/IProductBase.sol";
abstract contract LikwidProduct is ERC20, Ownable, ReentrancyGuard, IProductBase {
error NotImplement();
using Strings for uint256;
event MessageReceived(uint64 _srcChainId, address _srcAddress, uint value, bytes _payload);
event PongfeeFailed(uint64 _srcChainId, address _srcAddress, uint8 _action, uint _pongFee, uint _expectPongFee);
event Swap(address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, uint nonce);
event AssetLocked(
ActionType _action,
uint64 _srcChainId,
address _owner,
uint _lockedNative,
uint _lockedToken,
uint nonce
);
event Crossed(uint64 _srcChainId, address _sender, address _to, uint _token, uint nonce);
event Unlocked(address _owner, address _to, uint _native, uint _token);
event Stake(address indexed sender, uint64 _srcChainId, uint tokenIn, uint tokenOut, uint nonce);
mapping(uint => mapping(address => mapping(uint => bool))) public crossNoncePing;
mapping(uint => mapping(address => uint)) public crossNonce;
bool public launched;
uint public messageReceived;
address public feeAddress;
uint public omniSupply;
uint public launchFunds;
uint public launchTime;
uint public launchHardCap;
address public creatorAddr;
address public airdropAddr;
address public factoryAddress;
function setFeeAddress(address addr) public virtual onlyOwner {
feeAddress = addr;
}
function setAirdropAddr(address addr) public virtual onlyOwner {
airdropAddr = addr;
}
function setCreatorAddr(address addr) public virtual onlyOwner {
creatorAddr = addr;
}
function setLaunchHardCap(uint amount) public virtual onlyOwner {
launchHardCap = amount;
}
function setLaunchTime(uint launchTime_) public virtual onlyOwner {
launchTime = launchTime_;
}
uint version = 7 ether;
uint public nativeMax = 5 ether;
uint public nativeMin = 0.0001 ether;
uint public tokenMin = 1 ether;
uint public nativeTotal = 50 ether;
function setNativeTotal(uint amount) public virtual onlyOwner {
nativeTotal = amount;
}
function setNativeMax(uint amount) public virtual onlyOwner {
nativeMax = amount;
}
function setNativeMin(uint amount) public virtual onlyOwner {
nativeMin = amount;
}
function setTokenMin(uint amount) public virtual onlyOwner {
tokenMin = amount;
}
function nowTime() public view returns (uint) {
return block.timestamp;
}
function getVersion() public view returns (uint) {
return version;
}
constructor(
string memory _name,
string memory _symbol,
address _ownerAddr,
address _factoryAddress,
uint _omniSupply,
uint _launchFunds,
uint _launchTime,
uint _launchHardCap,
address _creatorAddr
) ERC20(_name, _symbol) {
launched = false;
feeAddress = _ownerAddr;
airdropAddr = _ownerAddr;
omniSupply = _omniSupply;
launchFunds = _launchFunds;
launchTime = _launchTime;
launchHardCap = _launchHardCap;
creatorAddr = _creatorAddr;
factoryAddress = _factoryAddress;
require(launchFunds > 0, "launch funds err");
require(omniSupply > 0, "total supply init err");
}
function transferNative(address to, uint amount) internal {
(bool success, ) = to.call{value: amount}("");
require(success, string.concat("Product Transfer failed.", amount.toString()));
}
function action_func(uint64, address, uint8, uint, bytes memory) internal virtual {
revert NotImplement();
}
function actionCall(
uint64 srcChainId,
address sender,
uint8 action,
uint pongFee,
bytes memory params
) external payable {
require(
_msgSender() == IFactoryBase(factoryAddress).getChannelAddress(),
"LikwidProduct: caller must be channel"
);
emit MessageReceived(srcChainId, sender, msg.value, params);
action_func(srcChainId, sender, action, pongFee, params);
}
function _transfer(address from, address to, uint256 amount) internal virtual override {
if (_msgSender() != address(this) && to == address(this)) {
revert("Unsupported");
} else {
super._transfer(from, to, amount);
}
}
function _crossPingSignature(
uint nonce,
uint64 dstChainId,
address target,
uint token
) internal view virtual returns (bytes memory) {
return abi.encode(uint8(ActionType.crossPing), symbol(), 0, abi.encode(nonce, dstChainId, target, token));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {LikwidProduct} from "./LikwidProduct.sol";
import {IMessageStruct} from "@vizing/contracts/interface/IMessageStruct.sol";
import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {ActionType} from "../constants/ActionType.sol";
import {IFactorySlave} from "../interface/IFactorySlave.sol";
import {IChannelSlave} from "../interface/IChannelSlave.sol";
contract SlaveTokenProduct is LikwidProduct {
IFactorySlave public _factory;
IChannelSlave public _channel;
address public signer;
uint public launchLimit;
constructor(
string memory _name,
string memory _symbol,
address _ownerAddr,
address _factoryAddress,
uint _omniSupply,
uint _launchFunds,
uint _launchTime,
uint _launchHardCap,
address _creatorAddr,
address _signer,
bytes memory params
)
LikwidProduct(
_name,
_symbol,
_ownerAddr,
_factoryAddress,
_omniSupply,
_launchFunds,
_launchTime,
_launchHardCap,
_creatorAddr
)
{
signer = _signer;
_factory = IFactorySlave(_factoryAddress);
_channel = IChannelSlave(_factory.getChannelAddress());
if (params.length > 0) {
(, , launchLimit, signSwitch) = abi.decode(params, (uint, uint, uint, bool));
}
}
mapping(address => uint) public depositPing;
mapping(address => uint) public buyNonce;
mapping(address => mapping(uint => bool)) public buyNoncePong;
mapping(address => uint) public sellNonce;
mapping(address => mapping(uint => bool)) public sellNoncePong;
function setSigner(address addr_) external onlyOwner {
signer = addr_;
}
function setLaunched(bool _launched) external {
require(signer == _msgSender() || owner() == _msgSender(), "only signer/owner call");
launched = _launched;
}
function depositTotal(address sender) public view returns (uint) {
uint amount;
if (sender == creatorAddr) {
amount = launchLimit * 10;
} else {
amount = launchLimit;
}
if (amount == 0) {
amount = launchFunds / 100;
}
if (amount > launchFunds) {
amount = launchFunds;
}
return amount;
}
function action_func(uint64 srcChainId, address sender, uint8 action, uint, bytes memory params) internal override {
if (action == uint8(ActionType.buyPong)) {
(uint nonce, address target, uint native, uint token, bool masterLaunch) = abi.decode(
params,
(uint, address, uint, uint, bool)
);
slave_buy(srcChainId, sender, target, native, token, masterLaunch, nonce);
} else if (action == uint8(ActionType.sellPong)) {
(uint nonce, address target, uint token, uint native) = abi.decode(params, (uint, address, uint, uint));
slave_sell(srcChainId, sender, target, native, token, nonce);
} else if (action == uint8(ActionType.unStakePong)) {
(uint nonce, address target, uint token) = abi.decode(params, (uint, address, uint));
slave_unstake(target, token, nonce);
} else if (action == uint8(ActionType.crossPing)) {
(uint nonce, uint64 chainid, address to, uint token) = abi.decode(params, (uint, uint64, address, uint));
slave_cross(srcChainId, sender, chainid, to, token, nonce);
} else revert NotImplement();
}
//----slave call
function slave_buy(
uint64,
address,
address target,
uint native,
uint token,
bool masterLaunch,
uint nonce
) internal {
require(!buyNoncePong[target][nonce], "nonce repetition");
if (!launched) {
launched = masterLaunch;
}
buyNoncePong[target][nonce] = true;
if (token > 0) _mint(target, token);
if (native > 0) transferNative(target, native);
}
function slave_sell(uint64, address, address target, uint native, uint, uint nonce) internal {
require(!sellNoncePong[target][nonce], "nonce repetition");
sellNoncePong[target][nonce] = true;
if (!launched) {
if (native < depositPing[target]) {
depositPing[target] -= native;
} else {
depositPing[target] = 0;
}
}
// if (token > 0) _mint(target, token);
if (native > 0) transferNative(target, native);
}
// ----Signature---
function _buyPingSignature(
uint nonce,
address target,
uint pongFee,
uint amountIn
) internal view returns (bytes memory) {
return abi.encode(uint8(ActionType.buyPing), symbol(), pongFee, abi.encode(nonce, target, amountIn));
}
function _sellPingSignature(
uint nonce,
address target,
uint pongFee,
uint amountIn
) internal view returns (bytes memory) {
return abi.encode(uint8(ActionType.sellPing), symbol(), pongFee, abi.encode(nonce, target, amountIn));
}
uint public cutShortTime = 600; //10 minute
function setCutShortTime(uint time) public onlyOwner {
cutShortTime = time;
}
function getHash(
string memory biz,
string memory symbol,
uint amount,
address sender
) public pure returns (bytes32) {
return keccak256(abi.encodePacked(biz, symbol, amount, sender));
}
bool public signSwitch = false;
function setSignSwitch(bool pause_) public onlyOwner {
signSwitch = pause_;
}
//----_buy
function buyPingEstimateGas(uint pongFee, address target, uint amountIn) public view returns (uint pingFee) {
uint nonce = buyNonce[_msgSender()];
pingFee = _channel.paramsEstimateGas(pongFee, _buyPingSignature(nonce + 1, target, pongFee, amountIn));
}
uint public swapTime = 100; //60 minute
function setSwapTime(uint time) public onlyOwner {
swapTime = time;
}
function _buy(uint pongFee, address to) internal {
uint pingFee = buyPingEstimateGas(pongFee, to, msg.value);
if (pongFee == 0) {
pongFee = pingFee;
}
uint amountIn = msg.value - pingFee - pongFee;
require(amountIn >= nativeMin, "the amount cannot be too small");
require(amountIn <= nativeMax, "the amount cannot be too large");
if (!launched) {
depositPing[_msgSender()] += amountIn;
require(depositPing[_msgSender()] <= depositTotal(_msgSender()), "pay too much");
}
uint nonce = buyNonce[_msgSender()];
_channel.paramsEmit2LaunchPad{value: msg.value}(
pingFee,
amountIn + pongFee,
_buyPingSignature(nonce + 1, to, pongFee, amountIn),
_msgSender()
);
buyNonce[_msgSender()]++;
}
//----_sell
function sellPingEstimateGas(uint pongFee, address target, uint amountIn) public view returns (uint pingFee) {
uint nonce = sellNonce[_msgSender()];
pingFee = _channel.paramsEstimateGas(pongFee, _sellPingSignature(nonce + 1, target, pongFee, amountIn));
}
function _sell(uint pongFee, address from, address to, uint amountIn) internal {
require(amountIn > 0, "amount in err.");
require(balanceOf(from) >= amountIn, "sell amount exceeds balance");
uint pingFee = sellPingEstimateGas(pongFee, to, amountIn);
if (pongFee == 0) {
pongFee = pingFee;
}
require(msg.value >= pingFee + pongFee, "bridge fee not enough");
require(amountIn >= tokenMin, "the amount cannot be too small");
uint nonce = sellNonce[_msgSender()];
bytes memory params = _sellPingSignature(nonce + 1, to, pongFee, amountIn);
_burn(from, amountIn);
_channel.paramsEmit2LaunchPad{value: msg.value}(pingFee, pongFee, params, _msgSender());
sellNonce[_msgSender()]++;
}
//----314token
function getReserves() public pure returns (uint, uint) {
revert NotImplement();
}
function getAmountOut(uint, bool) public pure returns (uint) {
revert NotImplement();
}
bool public swapPause = false;
function setSwapPause(bool pause_) public onlyOwner {
swapPause = pause_;
}
function swapExactETHForTokens(uint pongFee, address to, bytes calldata signature) external payable nonReentrant {
require(!swapPause, "swap pause");
if (signSwitch && !launched) {
bytes32 hash = getHash("buy", symbol(), msg.value, _msgSender());
require(SignatureChecker.isValidSignatureNow(signer, hash, signature), "verify error");
}
_buy(pongFee, to);
}
function swapExactTokensForETH(uint pongFee, uint amountIn, address to) external payable nonReentrant {
require(!swapPause, "swap pause");
_sell(pongFee, _msgSender(), to, amountIn);
}
function slave_cross(uint64 srcChainId, address, uint64 dstChainId, address to, uint token, uint nonce) internal {
require(!crossNoncePing[srcChainId][to][nonce], "nonce repetition");
crossNoncePing[srcChainId][to][nonce] = true;
require(dstChainId == block.chainid, "chain id err");
if (token > 0) _mint(to, token);
emit Crossed(srcChainId, to, to, token, nonce);
}
function crossToEstimateGas(uint64 dstChainId, address to, uint amount) public view returns (uint pingFee) {
uint nonce = crossNonce[dstChainId][to];
pingFee = _channel.paramsEstimateGas(0, _crossPingSignature(nonce + 1, dstChainId, to, amount));
}
function crossTo(uint64 dstChainId, address to, uint amount) external payable {
address owner = _msgSender();
require(balanceOf(owner) >= amount, "insufficient balance");
_burn(owner, amount);
uint nonce = crossNonce[block.chainid][_msgSender()];
uint pingFee = crossToEstimateGas(dstChainId, to, amount);
_channel.paramsEmit2LaunchPad{value: msg.value}(
pingFee,
0,
_crossPingSignature(nonce + 1, dstChainId, to, amount),
_msgSender()
);
crossNonce[block.chainid][_msgSender()]++;
}
mapping(address => mapping(uint => bool)) public unStakeNoncePing;
mapping(address => uint) public unStakeNonce;
function _stakePingSignature(address target, uint token, uint duration) internal view returns (bytes memory) {
return abi.encode(uint8(ActionType.stakePing), symbol(), 0, abi.encode(target, token, duration));
}
function stakePingEstimateGas(address target, uint token, uint duration) public view returns (uint pingFee) {
pingFee = _channel.paramsEstimateGas(0, _stakePingSignature(target, token, duration));
}
function stake(uint token, uint duration) external payable nonReentrant {
require(token > 0, "token in err.");
address target = _msgSender();
require(balanceOf(target) >= token, "stake amount exceeds balance");
uint pingFee = stakePingEstimateGas(target, token, duration);
require(msg.value >= pingFee, "bridge fee not enough");
bytes memory params = _stakePingSignature(target, token, duration);
_burn(target, token);
_channel.paramsEmit2LaunchPad{value: msg.value}(pingFee, 0, params, _msgSender());
}
function slave_unstake(address target, uint token, uint nonce) internal {
require(!unStakeNoncePing[target][nonce], "nonce repetition");
unStakeNoncePing[target][nonce] = true;
if (token > 0) _mint(target, token);
}
function _unStakePingSignature(
uint nonce,
address target,
uint pongFee,
uint token
) internal view returns (bytes memory) {
return abi.encode(uint8(ActionType.unStakePing), symbol(), pongFee, abi.encode(nonce, target, token));
}
function unStakePingEstimateGas(uint pongFee, address target, uint token) public view returns (uint pingFee) {
uint nonce = unStakeNonce[_msgSender()];
pingFee = _channel.paramsEstimateGas(pongFee, _unStakePingSignature(nonce + 1, target, pongFee, token));
}
function unStake(uint pongFee, uint token) external payable nonReentrant {
require(token > 0, "token in err.");
address target = _msgSender();
uint pingFee = unStakePingEstimateGas(pongFee, target, token);
require(msg.value >= pingFee + pongFee, "bridge fee not enough");
uint nonce = unStakeNonce[target];
bytes memory params = _unStakePingSignature(nonce + 1, target, pongFee, token);
_channel.paramsEmit2LaunchPad{value: msg.value}(pingFee, pongFee, params, _msgSender());
unStakeNonce[target]++;
}
/**
* @dev Fallback function to buy tokens with ETH.
*/
receive() external payable {
_buy(0, _msgSender());
}
}