ERC-20
Lido
Overview
Max Total Supply
511.946446108347042735 B-stETH-STABLE
Holders
1,202 ( -0.083%)
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
0.000096984141315575 B-stETH-STABLEValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
MetaStablePool
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-pool-utils/contracts/oracle/PoolPriceOracle.sol"; import "@balancer-labs/v2-pool-utils/contracts/interfaces/IRateProvider.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "../StablePool.sol"; import "./OracleMiscData.sol"; import "./StableOracleMath.sol"; /** * @dev StablePool suitable for assets with proportional prices (i.e. with slow-changing exchange rates between them). * Requires an external feed of these exchange rates. * * It additionally features a price oracle. */ contract MetaStablePool is StablePool, StableOracleMath, PoolPriceOracle { using WordCodec for bytes32; using FixedPoint for uint256; using OracleMiscData for bytes32; IRateProvider private immutable _rateProvider0; IRateProvider private immutable _rateProvider1; // Price rate caches are used to avoid querying the price rate for a token every time we need to work with it. // Data is stored with the following structure: // // [ expires | duration | price rate value ] // [ uint64 | uint64 | uint128 ] bytes32 private _priceRateCache0; bytes32 private _priceRateCache1; uint256 private constant _PRICE_RATE_CACHE_VALUE_OFFSET = 0; uint256 private constant _PRICE_RATE_CACHE_DURATION_OFFSET = 128; uint256 private constant _PRICE_RATE_CACHE_EXPIRES_OFFSET = 128 + 64; event OracleEnabledChanged(bool enabled); event PriceRateProviderSet(IERC20 indexed token, IRateProvider indexed provider, uint256 cacheDuration); event PriceRateCacheUpdated(IERC20 indexed token, uint256 rate); // The constructor arguments are received in a struct to work around stack-too-deep issues struct NewPoolParams { IVault vault; string name; string symbol; IERC20[] tokens; IRateProvider[] rateProviders; uint256[] priceRateCacheDuration; uint256 amplificationParameter; uint256 swapFeePercentage; uint256 pauseWindowDuration; uint256 bufferPeriodDuration; bool oracleEnabled; address owner; } constructor(NewPoolParams memory params) StablePool( params.vault, params.name, params.symbol, params.tokens, params.amplificationParameter, params.swapFeePercentage, params.pauseWindowDuration, params.bufferPeriodDuration, params.owner ) { _require(params.tokens.length == 2, Errors.NOT_TWO_TOKENS); InputHelpers.ensureInputLengthMatch( params.tokens.length, params.rateProviders.length, params.priceRateCacheDuration.length ); // Set providers and initialise cache. We can't use `_setToken0PriceRateCache` as it relies on immutable // variables, which cannot be read from during construction. IRateProvider rateProvider0 = params.rateProviders[0]; _rateProvider0 = rateProvider0; if (rateProvider0 != IRateProvider(address(0))) { (bytes32 cache, uint256 rate) = _getNewPriceRateCache(rateProvider0, params.priceRateCacheDuration[0]); _priceRateCache0 = cache; emit PriceRateCacheUpdated(params.tokens[0], rate); } emit PriceRateProviderSet(params.tokens[0], rateProvider0, params.priceRateCacheDuration[0]); IRateProvider rateProvider1 = params.rateProviders[1]; _rateProvider1 = rateProvider1; if (rateProvider1 != IRateProvider(address(0))) { (bytes32 cache, uint256 rate) = _getNewPriceRateCache(rateProvider1, params.priceRateCacheDuration[1]); _priceRateCache1 = cache; emit PriceRateCacheUpdated(params.tokens[1], rate); } emit PriceRateProviderSet(params.tokens[1], rateProvider1, params.priceRateCacheDuration[1]); _setOracleEnabled(params.oracleEnabled); } // Swap /** * Override to make sure sender is vault */ function onSwap( SwapRequest memory request, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) public virtual override onlyVault(request.poolId) returns (uint256) { _cachePriceRatesIfNecessary(); return super.onSwap(request, balances, indexIn, indexOut); } /** * Override to make sure sender is vault */ function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override onlyVault(request.poolId) returns (uint256) { _cachePriceRatesIfNecessary(); return super.onSwap(request, balanceTokenIn, balanceTokenOut); } /** * Update price oracle with the pre-swap balances */ function _onSwapGivenIn( SwapRequest memory request, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override returns (uint256) { _updateOracle(request.lastChangeBlock, balances[0], balances[1]); return super._onSwapGivenIn(request, balances, indexIn, indexOut); } /** * Update price oracle with the pre-swap balances */ function _onSwapGivenOut( SwapRequest memory request, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override returns (uint256) { _updateOracle(request.lastChangeBlock, balances[0], balances[1]); return super._onSwapGivenOut(request, balances, indexIn, indexOut); } // Join /** * @dev Update cached total supply and invariant using the results after the join that will be used for * future oracle updates. * Note this function does not perform any safety checks about joins, it relies on upper implementations for that. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) { _cachePriceRatesIfNecessary(); (amountsIn, dueProtocolFeeAmounts) = super.onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData ); _cacheInvariantAndSupply(); } /** * @dev Update price oracle with the pre-join balances */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256, uint256[] memory, uint256[] memory ) { _updateOracle(lastChangeBlock, balances[0], balances[1]); return super._onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); } // Exit /** * @dev Update cached total supply and invariant using the results after the exit that will be used for * future oracle updates. * Note this function does not perform any safety checks about exits, it relies on upper implementations for that. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) { _cachePriceRatesIfNecessary(); (amountsOut, dueProtocolFeeAmounts) = super.onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData ); // If the contract is paused, the oracle is not updated to avoid extra calculations and reduce potential errors. if (_isNotPaused()) { _cacheInvariantAndSupply(); } } /** * @dev Update price oracle with the pre-exit balances */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // If the contract is paused, the oracle is not updated to avoid extra calculations and reduce potential errors. if (_isNotPaused()) { _updateOracle(lastChangeBlock, balances[0], balances[1]); } return super._onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); } // Oracle function getOracleMiscData() external view returns ( int256 logInvariant, int256 logTotalSupply, uint256 oracleSampleCreationTimestamp, uint256 oracleIndex, bool oracleEnabled ) { bytes32 miscData = _getMiscData(); logInvariant = miscData.logInvariant(); logTotalSupply = miscData.logTotalSupply(); oracleSampleCreationTimestamp = miscData.oracleSampleCreationTimestamp(); oracleIndex = miscData.oracleIndex(); oracleEnabled = miscData.oracleEnabled(); } /** * @dev Balancer Governance can always enable the Oracle, even if it was originally not enabled. This allows for * Pools that unexpectedly drive much more volume and liquidity than expected to serve as Price Oracles. * * Note that the Oracle can only be enabled - it can never be disabled. */ function enableOracle() external whenNotPaused authenticate { _setOracleEnabled(true); // Cache log invariant and supply only if the pool was initialized if (totalSupply() > 0) { _cacheInvariantAndSupply(); } } function _setOracleEnabled(bool enabled) internal { _setMiscData(_getMiscData().setOracleEnabled(enabled)); emit OracleEnabledChanged(enabled); } /** * @dev Updates the Price Oracle based on the Pool's current state (balances, BPT supply and invariant). Must be * called on *all* state-changing functions with the balances *before* the state change happens, and with * `lastChangeBlock` as the number of the block in which any of the balances last changed. */ function _updateOracle( uint256 lastChangeBlock, uint256 balance0, uint256 balance1 ) internal { bytes32 miscData = _getMiscData(); (uint256 currentAmp, ) = _getAmplificationParameter(); if (miscData.oracleEnabled() && block.number > lastChangeBlock) { (int256 logSpotPrice, int256 logBptPrice) = StableOracleMath._calcLogPrices( currentAmp, balance0, balance1, miscData.logTotalSupply() ); uint256 oracleCurrentIndex = miscData.oracleIndex(); uint256 oracleCurrentSampleInitialTimestamp = miscData.oracleSampleCreationTimestamp(); uint256 oracleUpdatedIndex = _processPriceData( oracleCurrentSampleInitialTimestamp, oracleCurrentIndex, logSpotPrice, logBptPrice, miscData.logInvariant() ); if (oracleCurrentIndex != oracleUpdatedIndex) { // solhint-disable not-rely-on-time miscData = miscData.setOracleIndex(oracleUpdatedIndex); miscData = miscData.setOracleSampleCreationTimestamp(block.timestamp); _setMiscData(miscData); } } } /** * @dev Stores the logarithm of the invariant and BPT total supply, to be later used in each oracle update. Because * it is stored in miscData, which is read in all operations (including swaps), this saves gas by not requiring to * compute or read these values when updating the oracle. * * This function must be called by all actions that update the invariant and BPT supply (joins and exits). Swaps * also alter the invariant due to collected swap fees, but this growth is considered negligible and not accounted * for. */ function _cacheInvariantAndSupply() internal { bytes32 miscData = _getMiscData(); if (miscData.oracleEnabled()) { miscData = miscData.setLogInvariant(LogCompression.toLowResLog(_lastInvariant)); miscData = miscData.setLogTotalSupply(LogCompression.toLowResLog(totalSupply())); _setMiscData(miscData); } } function _getOracleIndex() internal view override returns (uint256) { return _getMiscData().oracleIndex(); } // Scaling factors /** * @dev Overrides scaling factor getter to introduce the token's price rate * Note that it may update the price rate cache if necessary. */ function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { uint256 baseScalingFactor = super._scalingFactor(token); uint256 priceRate = _priceRate(token); // Given there is no generic direction for this rounding, it simply follows the same strategy as the BasePool. return baseScalingFactor.mulDown(priceRate); } /** * @dev Overrides scaling factor getter to introduce the tokens' price rate. * Note that it may update the price rate cache if necessary. */ function _scalingFactors() internal view virtual override returns (uint256[] memory scalingFactors) { // There is no need to check the arrays length since both are based on `_getTotalTokens` // Given there is no generic direction for this rounding, it simply follows the same strategy as the BasePool. scalingFactors = super._scalingFactors(); scalingFactors[0] = scalingFactors[0].mulDown(_priceRate(_token0)); scalingFactors[1] = scalingFactors[1].mulDown(_priceRate(_token1)); } // Price rates /** * @dev Returns the rate providers configured for each token (in the same order as registered). */ function getRateProviders() external view returns (IRateProvider[] memory providers) { providers = new IRateProvider[](2); providers[0] = _getRateProvider0(); providers[1] = _getRateProvider1(); } /** * @dev Returns the cached value for token's rate */ function getPriceRateCache(IERC20 token) external view returns ( uint256 rate, uint256 duration, uint256 expires ) { if (_isToken0(token)) return _getPriceRateCache(_getPriceRateCache0()); if (_isToken1(token)) return _getPriceRateCache(_getPriceRateCache1()); _revert(Errors.INVALID_TOKEN); } /** * @dev Sets a new duration for a token price rate cache. It reverts if there was no rate provider set initially. * Note this function also updates the current cached value. * @param duration Number of seconds until the current rate of token price is fetched again. */ function setPriceRateCacheDuration(IERC20 token, uint256 duration) external authenticate { if (_isToken0WithRateProvider(token)) { _updateToken0PriceRateCache(duration); emit PriceRateProviderSet(token, _getRateProvider0(), duration); } else if (_isToken1WithRateProvider(token)) { _updateToken1PriceRateCache(duration); emit PriceRateProviderSet(token, _getRateProvider1(), duration); } else { _revert(Errors.INVALID_TOKEN); } } function updatePriceRateCache(IERC20 token) external { if (_isToken0WithRateProvider(token)) { _updateToken0PriceRateCache(); } else if (_isToken1WithRateProvider(token)) { _updateToken1PriceRateCache(); } else { _revert(Errors.INVALID_TOKEN); } } /** * @dev Returns the list of price rates for each token. All price rates are fixed-point values with 18 decimals. * In case there is no rate provider for a token it returns 1e18. */ function _priceRate(IERC20 token) internal view virtual returns (uint256) { // Given that this function is only used by `onSwap` which can only be called by the vault in the case of a // Meta Stable Pool, we can be sure the vault will not forward a call with an invalid `token` param. if (_isToken0WithRateProvider(token)) { return _getPriceRateCacheValue(_getPriceRateCache0()); } else if (_isToken1WithRateProvider(token)) { return _getPriceRateCacheValue(_getPriceRateCache1()); } else { return FixedPoint.ONE; } } function _cachePriceRatesIfNecessary() internal { _cachePriceRate0IfNecessary(); _cachePriceRate1IfNecessary(); } function _cachePriceRate0IfNecessary() private { if (_getRateProvider0() != IRateProvider(address(0))) { (uint256 duration, uint256 expires) = _getPriceRateCacheTimestamps(_getPriceRateCache0()); if (block.timestamp > expires) { _updateToken0PriceRateCache(duration); } } } function _cachePriceRate1IfNecessary() private { if (_getRateProvider1() != IRateProvider(address(0))) { (uint256 duration, uint256 expires) = _getPriceRateCacheTimestamps(_getPriceRateCache1()); if (block.timestamp > expires) { _updateToken1PriceRateCache(duration); } } } /** * @dev Decodes a price rate cache into rate value, duration and expiration time */ function _getPriceRateCache(bytes32 cache) private pure returns ( uint256 rate, uint256 duration, uint256 expires ) { rate = _getPriceRateCacheValue(cache); (duration, expires) = _getPriceRateCacheTimestamps(cache); } /** * @dev Decodes the rate value for a price rate cache */ function _getPriceRateCacheValue(bytes32 cache) private pure returns (uint256) { return cache.decodeUint128(_PRICE_RATE_CACHE_VALUE_OFFSET); } /** * @dev Decodes the duration for a price rate cache */ function _getPriceRateCacheDuration(bytes32 cache) private pure returns (uint256) { return cache.decodeUint64(_PRICE_RATE_CACHE_DURATION_OFFSET); } /** * @dev Decodes the duration and expiration timestamp for a price rate cache */ function _getPriceRateCacheTimestamps(bytes32 cache) private pure returns (uint256 duration, uint256 expires) { duration = _getPriceRateCacheDuration(cache); expires = cache.decodeUint64(_PRICE_RATE_CACHE_EXPIRES_OFFSET); } function _updateToken0PriceRateCache() private { _updateToken0PriceRateCache(_getPriceRateCacheDuration(_getPriceRateCache0())); } function _updateToken0PriceRateCache(uint256 duration) private { (bytes32 cache, uint256 rate) = _getNewPriceRateCache(_getRateProvider0(), duration); _setToken0PriceRateCache(cache, rate); } function _updateToken1PriceRateCache() private { _updateToken1PriceRateCache(_getPriceRateCacheDuration(_getPriceRateCache1())); } function _updateToken1PriceRateCache(uint256 duration) private { (bytes32 cache, uint256 rate) = _getNewPriceRateCache(_getRateProvider1(), duration); _setToken1PriceRateCache(cache, rate); } function _setToken0PriceRateCache(bytes32 cache, uint256 rate) private { _priceRateCache0 = cache; emit PriceRateCacheUpdated(_token0, rate); } function _setToken1PriceRateCache(bytes32 cache, uint256 rate) private { _priceRateCache1 = cache; emit PriceRateCacheUpdated(_token1, rate); } /** * @dev Fetches the current price rate from a provider and builds a new price rate cache */ function _getNewPriceRateCache(IRateProvider provider, uint256 duration) private view returns (bytes32 cache, uint256 rate) { rate = provider.getRate(); _require(rate < 2**128, Errors.PRICE_RATE_OVERFLOW); cache = WordCodec.encodeUint(uint128(rate), _PRICE_RATE_CACHE_VALUE_OFFSET) | WordCodec.encodeUint(uint64(duration), _PRICE_RATE_CACHE_DURATION_OFFSET) | WordCodec.encodeUint(uint64(block.timestamp + duration), _PRICE_RATE_CACHE_EXPIRES_OFFSET); } function _isToken0WithRateProvider(IERC20 token) internal view returns (bool) { return _isToken0(token) && _getRateProvider0() != IRateProvider(address(0)); } function _isToken1WithRateProvider(IERC20 token) internal view returns (bool) { return _isToken1(token) && _getRateProvider1() != IRateProvider(address(0)); } function _getRateProvider0() internal view returns (IRateProvider) { return _rateProvider0; } function _getRateProvider1() internal view returns (IRateProvider) { return _rateProvider1; } function _getPriceRateCache0() internal view returns (bytes32) { return _priceRateCache0; } function _getPriceRateCache1() internal view returns (bytes32) { return _priceRateCache1; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol"; import "./MetaStablePool.sol"; contract MetaStablePoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow { constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(MetaStablePool).creationCode) { // solhint-disable-previous-line no-empty-blocks } /** * @dev Deploys a new `MetaStablePool`. */ function create( string memory name, string memory symbol, IERC20[] memory tokens, uint256 amplificationParameter, IRateProvider[] memory rateProviders, uint256[] memory priceRateCacheDuration, uint256 swapFeePercentage, bool oracleEnabled, address owner ) external returns (address) { (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration(); return _create( abi.encode( MetaStablePool.NewPoolParams({ vault: getVault(), name: name, symbol: symbol, tokens: tokens, rateProviders: rateProviders, priceRateCacheDuration: priceRateCacheDuration, amplificationParameter: amplificationParameter, swapFeePercentage: swapFeePercentage, pauseWindowDuration: pauseWindowDuration, bufferPeriodDuration: bufferPeriodDuration, oracleEnabled: oracleEnabled, owner: owner }) ) ); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; /** * @dev Same as `BasePoolFactory`, for Pools whose creation code is so large that the factory cannot hold it. */ abstract contract BasePoolSplitCodeFactory is BaseSplitCodeFactory { IVault private immutable _vault; mapping(address => bool) private _isPoolFromFactory; event PoolCreated(address indexed pool); constructor(IVault vault, bytes memory creationCode) BaseSplitCodeFactory(creationCode) { _vault = vault; } /** * @dev Returns the Vault's address. */ function getVault() public view returns (IVault) { return _vault; } /** * @dev Returns true if `pool` was created by this factory. */ function isPoolFromFactory(address pool) external view returns (bool) { return _isPoolFromFactory[pool]; } function _create(bytes memory constructorArgs) internal override returns (address) { address pool = super._create(constructorArgs); _isPoolFromFactory[pool] = true; emit PoolCreated(pool); return pool; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; /** * @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract. * * By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this * factory will share the same Pause Window end time, after which both old and new Pools will not be pausable. */ contract FactoryWidePauseWindow { // This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply. // solhint-disable not-rely-on-time uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _BUFFER_PERIOD_DURATION = 30 days; // Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes // zero. uint256 private immutable _poolsPauseWindowEndTime; constructor() { _poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION; } /** * @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this * factory. * * `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and * `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable. */ function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { uint256 currentTime = block.timestamp; if (currentTime < _poolsPauseWindowEndTime) { // The buffer period is always the same since its duration is related to how much time is needed to respond // to a potential emergency. The Pause Window duration however decreases as the end time approaches. pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic. bufferPeriodDuration = _BUFFER_PERIOD_DURATION; } else { // After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not // pausable in the first place). pauseWindowDuration = 0; bufferPeriodDuration = 0; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BalancerErrors.sol"; import "./CodeDeployer.sol"; /** * @dev Base factory for contracts whose creation code is so large that the factory cannot hold it. This happens when * the contract's creation code grows close to 24kB. * * Note that this factory cannot help with contracts that have a *runtime* (deployed) bytecode larger than 24kB. */ abstract contract BaseSplitCodeFactory { // The contract's creation code is stored as code in two separate addresses, and retrieved via `extcodecopy`. This // means this factory supports contracts with creation code of up to 48kB. // We rely on inline-assembly to achieve this, both to make the entire operation highly gas efficient, and because // `extcodecopy` is not available in Solidity. // solhint-disable no-inline-assembly address private immutable _creationCodeContractA; uint256 private immutable _creationCodeSizeA; address private immutable _creationCodeContractB; uint256 private immutable _creationCodeSizeB; /** * @dev The creation code of a contract Foo can be obtained inside Solidity with `type(Foo).creationCode`. */ constructor(bytes memory creationCode) { uint256 creationCodeSize = creationCode.length; // We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents // (A), and another with the remaining half (B). // We store the lengths in both immutable and stack variables, since immutable variables cannot be read during // construction. uint256 creationCodeSizeA = creationCodeSize / 2; _creationCodeSizeA = creationCodeSizeA; uint256 creationCodeSizeB = creationCodeSize - creationCodeSizeA; _creationCodeSizeB = creationCodeSizeB; // To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with // the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving // `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place. // Memory: [ code length ] [ A.data ] [ B.data ] // Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore // the original length. bytes memory creationCodeA; assembly { creationCodeA := creationCode mstore(creationCodeA, creationCodeSizeA) } // Memory: [ A.length ] [ A.data ] [ B.data ] // ^ creationCodeA _creationCodeContractA = CodeDeployer.deploy(creationCodeA); // Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new' // memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last // byte to later restore it. bytes memory creationCodeB; bytes32 lastByteA; assembly { // `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's // last 32 bytes. creationCodeB := add(creationCode, creationCodeSizeA) lastByteA := mload(creationCodeB) mstore(creationCodeB, creationCodeSizeB) } // Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ] // ^ creationCodeA ^ creationCodeB _creationCodeContractB = CodeDeployer.deploy(creationCodeB); // We now restore the original contents of `creationCode` by writing back the original length and A's last byte. assembly { mstore(creationCodeA, creationCodeSize) mstore(creationCodeB, lastByteA) } } /** * @dev Returns the two addresses where the creation code of the contract crated by this factory is stored. */ function getCreationCodeContracts() public view returns (address contractA, address contractB) { return (_creationCodeContractA, _creationCodeContractB); } /** * @dev Returns the creation code of the contract this factory creates. */ function getCreationCode() public view returns (bytes memory) { return _getCreationCodeWithArgs(""); } /** * @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`. */ function _getCreationCodeWithArgs(bytes memory constructorArgs) private view returns (bytes memory code) { // This function exists because `abi.encode()` cannot be instructed to place its result at a specific address. // We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but // cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code, // which would be prohibitively expensive. // Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the // creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be // overly long) right after the end of the creation code. // Immutable variables cannot be used in assembly, so we store them in the stack first. address creationCodeContractA = _creationCodeContractA; uint256 creationCodeSizeA = _creationCodeSizeA; address creationCodeContractB = _creationCodeContractB; uint256 creationCodeSizeB = _creationCodeSizeB; uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB; uint256 constructorArgsSize = constructorArgs.length; uint256 codeSize = creationCodeSize + constructorArgsSize; assembly { // First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of // `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length. code := mload(0x40) mstore(0x40, add(code, add(codeSize, 32))) // We now store the length of the code plus constructor arguments. mstore(code, codeSize) // Next, we concatenate the creation code stored in A and B. let dataStart := add(code, 32) extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA) extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB) } // Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this // copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`. uint256 constructorArgsDataPtr; uint256 constructorArgsCodeDataPtr; assembly { constructorArgsDataPtr := add(constructorArgs, 32) constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize) } _memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize); } /** * @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the * contract's constructor arguments, in order. */ function _create(bytes memory constructorArgs) internal virtual returns (address) { bytes memory creationCode = _getCreationCodeWithArgs(constructorArgs); address destination; assembly { destination := create(0, add(creationCode, 32), mload(creationCode)) } if (destination == address(0)) { // Bubble up inner revert reason // solhint-disable-next-line no-inline-assembly assembly { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } return destination; } // From // https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol function _memcpy( uint256 dest, uint256 src, uint256 len ) private pure { // Copy word-length chunks while possible for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } // Copy remaining bytes uint256 mask = 256**(32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; /** * @dev Library used to deploy contracts with specific code. This can be used for long-term storage of immutable data as * contract code, which can be retrieved via the `extcodecopy` opcode. */ library CodeDeployer { // During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and // `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be // stored as its code. // // We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode // sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the // full code 32 bytes long: // // contract CodeDeployer { // constructor() payable { // uint256 size; // assembly { // size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long // codecopy(0, 32, size) // copy all appended data to memory at position 0 // return(0, size) // return appended data for it to be stored as code // } // } // } // // More specifically, it is composed of the following opcodes (plus padding): // // [1] PUSH1 0x20 // [2] CODESIZE // [3] SUB // [4] DUP1 // [6] PUSH1 0x20 // [8] PUSH1 0x00 // [9] CODECOPY // [11] PUSH1 0x00 // [12] RETURN // // The padding is just the 0xfe sequence (invalid opcode). bytes32 private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe; /** * @dev Deploys a contract with `code` as its code, returning the destination address. * * Reverts if deployment fails. */ function deploy(bytes memory code) internal returns (address destination) { bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE; // solhint-disable-next-line no-inline-assembly assembly { let codeLength := mload(code) // `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply // replace it with the deployer creation code (which is exactly 32 bytes long). mstore(code, deployerCreationCode) // At this point, `code` now points to the deployer creation code immediately followed by `code`'s data // contents. This is exactly what the deployer expects to receive when created. destination := create(0, code, add(codeLength, 32)) // Finally, we restore the original length in order to not mutate `code`. mstore(code, codeLength) } // The create opcode returns the zero address when contract creation fails, so we revert if this happens. _require(destination != address(0), Errors.CODE_DEPLOYMENT_FAILED); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "../interfaces/IPriceOracle.sol"; import "../interfaces/IPoolPriceOracle.sol"; import "./Buffer.sol"; import "./Samples.sol"; import "./QueryProcessor.sol"; /** * @dev This module allows Pools to access historical pricing information. * * It uses a 1024 long circular buffer to store past data, where the data within each sample is the result of * accumulating live data for no more than two minutes. Therefore, assuming the worst case scenario where new data is * updated in every single block, the oldest samples in the buffer (and therefore largest queryable period) will * be slightly over 34 hours old. * * Usage of this module requires the caller to keep track of two variables: the latest circular buffer index, and the * timestamp when the index last changed. Aditionally, access to the latest circular buffer index must be exposed by * implementing `_getOracleIndex`. * * This contract relies on the `QueryProcessor` linked library to reduce bytecode size. */ abstract contract PoolPriceOracle is IPoolPriceOracle, IPriceOracle { using Buffer for uint256; using Samples for bytes32; // Each sample in the buffer accumulates information for up to 2 minutes. This is simply to reduce the size of the // buffer: small time deviations will not have any significant effect. // solhint-disable not-rely-on-time uint256 private constant _MAX_SAMPLE_DURATION = 2 minutes; // We use a mapping to simulate an array: the buffer won't grow or shrink, and since we will always use valid // indexes using a mapping saves gas by skipping the bounds checks. mapping(uint256 => bytes32) internal _samples; // IPoolPriceOracle function getSample(uint256 index) external view override returns ( int256 logPairPrice, int256 accLogPairPrice, int256 logBptPrice, int256 accLogBptPrice, int256 logInvariant, int256 accLogInvariant, uint256 timestamp ) { _require(index < Buffer.SIZE, Errors.ORACLE_INVALID_INDEX); bytes32 sample = _getSample(index); return sample.unpack(); } function getTotalSamples() external pure override returns (uint256) { return Buffer.SIZE; } // IPriceOracle function getLargestSafeQueryWindow() external pure override returns (uint256) { return 34 hours; } function getLatest(Variable variable) external view override returns (uint256) { return QueryProcessor.getInstantValue(_samples, variable, _getOracleIndex()); } function getTimeWeightedAverage(OracleAverageQuery[] memory queries) external view override returns (uint256[] memory results) { results = new uint256[](queries.length); uint256 latestIndex = _getOracleIndex(); for (uint256 i = 0; i < queries.length; ++i) { results[i] = QueryProcessor.getTimeWeightedAverage(_samples, queries[i], latestIndex); } } function getPastAccumulators(OracleAccumulatorQuery[] memory queries) external view override returns (int256[] memory results) { results = new int256[](queries.length); uint256 latestIndex = _getOracleIndex(); OracleAccumulatorQuery memory query; for (uint256 i = 0; i < queries.length; ++i) { query = queries[i]; results[i] = _getPastAccumulator(query.variable, latestIndex, query.ago); } } // Internal functions /** * @dev Processes new price and invariant data, updating the latest sample or creating a new one. * * Receives the new logarithms of values to store: `logPairPrice`, `logBptPrice` and `logInvariant`, as well the * index of the latest sample and the timestamp of its creation. * * Returns the index of the latest sample. If different from `latestIndex`, the caller should also store the * timestamp, and pass it on future calls to this function. */ function _processPriceData( uint256 latestSampleCreationTimestamp, uint256 latestIndex, int256 logPairPrice, int256 logBptPrice, int256 logInvariant ) internal returns (uint256) { // Read latest sample, and compute the next one by updating it with the newly received data. bytes32 sample = _getSample(latestIndex).update(logPairPrice, logBptPrice, logInvariant, block.timestamp); // We create a new sample if more than _MAX_SAMPLE_DURATION seconds have elapsed since the creation of the // latest one. In other words, no sample accumulates data over a period larger than _MAX_SAMPLE_DURATION. bool newSample = block.timestamp - latestSampleCreationTimestamp >= _MAX_SAMPLE_DURATION; latestIndex = newSample ? latestIndex.next() : latestIndex; // Store the updated or new sample. _samples[latestIndex] = sample; return latestIndex; } function _getPastAccumulator( IPriceOracle.Variable variable, uint256 latestIndex, uint256 ago ) internal view returns (int256) { return QueryProcessor.getPastAccumulator(_samples, variable, latestIndex, ago); } function _findNearestSample(uint256 lookUpDate, uint256 offset) internal view returns (bytes32 prev, bytes32 next) { return QueryProcessor.findNearestSample(_samples, lookUpDate, offset); } /** * @dev Returns the sample that corresponds to a given `index`. * * Using this function instead of accessing storage directly results in denser bytecode (since the storage slot is * only computed here). */ function _getSample(uint256 index) internal view returns (bytes32) { return _samples[index]; } /** * @dev Virtual function to be implemented by derived contracts. Must return the current index of the oracle * circular buffer. */ function _getOracleIndex() internal view virtual returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IRateProvider { function getRate() external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../math/LogExpMath.sol"; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. */ library LogCompression { int256 private constant _LOG_COMPRESSION_FACTOR = 1e14; int256 private constant _HALF_LOG_COMPRESSION_FACTOR = 0.5e14; /** * @dev Returns the natural logarithm of `value`, dropping most of the decimal places to arrive at a value that, * when passed to `fromLowResLog`, will have a maximum relative error of ~0.05% compared to `value`. * * Values returned from this function should not be mixed with other fixed-point values (as they have a different * number of digits), but can be added or subtracted. Use `fromLowResLog` to undo this process and return to an * 18 decimal places fixed point value. * * Because so much precision is lost, the logarithmic values can be stored using much fewer bits than the original * value required. */ function toLowResLog(uint256 value) internal pure returns (int256) { int256 ln = LogExpMath.ln(int256(value)); // Rounding division for signed numerator int256 lnWithError = (ln > 0 ? ln + _HALF_LOG_COMPRESSION_FACTOR : ln - _HALF_LOG_COMPRESSION_FACTOR); return lnWithError / _LOG_COMPRESSION_FACTOR; } /** * @dev Restores `value` from logarithmic space. `value` is expected to be the result of a call to `toLowResLog`, * any other function that returns 4 decimals fixed point logarithms, or the sum of such values. */ function fromLowResLog(int256 value) internal pure returns (uint256) { return uint256(LogExpMath.exp(value * _LOG_COMPRESSION_FACTOR)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseGeneralPool.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "@balancer-labs/v2-pool-utils/contracts/interfaces/IRateProvider.sol"; import "./StableMath.sol"; import "./StablePoolUserDataHelpers.sol"; contract StablePool is BaseGeneralPool, BaseMinimalSwapInfoPool, StableMath, IRateProvider { using WordCodec for bytes32; using FixedPoint for uint256; using StablePoolUserDataHelpers for bytes; // This contract uses timestamps to slowly update its Amplification parameter over time. These changes must occur // over a minimum time period much larger than the blocktime, making timestamp manipulation a non-issue. // solhint-disable not-rely-on-time // Amplification factor changes must happen over a minimum period of one day, and can at most divide or multiple the // current value by 2 every day. // WARNING: this only limits *a single* amplification change to have a maximum rate of change of twice the original // value daily. It is possible to perform multiple amplification changes in sequence to increase this value more // rapidly: for example, by doubling the value every day it can increase by a factor of 8 over three days (2^3). uint256 private constant _MIN_UPDATE_TIME = 1 days; uint256 private constant _MAX_AMP_UPDATE_DAILY_RATE = 2; bytes32 private _packedAmplificationData; event AmpUpdateStarted(uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime); event AmpUpdateStopped(uint256 currentValue); uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; IERC20 internal immutable _token4; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; uint256 internal immutable _scalingFactor3; uint256 internal immutable _scalingFactor4; // To track how many tokens are owed to the Vault as protocol fees, we measure and store the value of the invariant // after every join and exit. All invariant growth that happens between join and exit events is due to swap fees. uint256 internal _lastInvariant; // Because the invariant depends on the amplification parameter, and this value may change over time, we should only // compare invariants that were computed using the same value. We therefore store it whenever we store // _lastInvariant. uint256 internal _lastInvariantAmp; enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT } constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256 amplificationParameter, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Because we're inheriting from both BaseGeneralPool and BaseMinimalSwapInfoPool we can choose any // specialization setting. Since this Pool never registers or deregisters any tokens after construction, // picking Two Token when the Pool only has two tokens is free gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.GENERAL, name, symbol, tokens, new address[](tokens.length), swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { _require(amplificationParameter >= _MIN_AMP, Errors.MIN_AMP); _require(amplificationParameter <= _MAX_AMP, Errors.MAX_AMP); uint256 totalTokens = tokens.length; _totalTokens = totalTokens; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = tokens[0]; _token1 = tokens[1]; _token2 = totalTokens > 2 ? tokens[2] : IERC20(0); _token3 = totalTokens > 3 ? tokens[3] : IERC20(0); _token4 = totalTokens > 4 ? tokens[4] : IERC20(0); _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; _scalingFactor4 = totalTokens > 4 ? _computeScalingFactor(tokens[4]) : 0; uint256 initialAmp = Math.mul(amplificationParameter, _AMP_PRECISION); _setAmplificationData(initialAmp); } function getLastInvariant() external view returns (uint256 lastInvariant, uint256 lastInvariantAmp) { lastInvariant = _lastInvariant; lastInvariantAmp = _lastInvariantAmp; } // Base Pool handlers // Swap - General Pool specialization (from BaseGeneralPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 amountOut = StableMath._calcOutGivenIn(currentAmp, balances, indexIn, indexOut, swapRequest.amount); return amountOut; } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 amountIn = StableMath._calcInGivenOut(currentAmp, balances, indexIn, indexOut, swapRequest.amount); return amountIn; } // Swap - Two Token Pool specialization (from BaseMinimalSwapInfoPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); } function _getSwapBalanceArrays( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) private view returns ( uint256[] memory balances, uint256 indexIn, uint256 indexOut ) { balances = new uint256[](2); if (_isToken0(swapRequest.tokenIn)) { indexIn = 0; indexOut = 1; balances[0] = balanceTokenIn; balances[1] = balanceTokenOut; } else { // _token0 == swapRequest.tokenOut indexOut = 0; indexIn = 1; balances[0] = balanceTokenOut; balances[1] = balanceTokenIn; } } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. StablePool.JoinKind kind = userData.joinKind(); _require(kind == StablePool.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(amountsIn.length, _getTotalTokens()); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariantAfterJoin = StableMath._calculateInvariant(currentAmp, amountsIn, true); // Set the initial BPT to the value of the invariant. uint256 bptAmountOut = invariantAfterJoin; _updateLastInvariant(invariantAfterJoin, currentAmp); return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas to // calculate the fee amounts during each individual swap. uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _updateInvariantAfterJoin(balances, amountsIn); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { JoinKind kind = userData.joinKind(); if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, scalingFactors, userData); } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountOut = StableMath._calcBptOutGivenExactTokensIn( currentAmp, balances, amountsIn, totalSupply(), getSwapFeePercentage() ); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); uint256[] memory amountsIn = new uint256[](_getTotalTokens()); (uint256 currentAmp, ) = _getAmplificationParameter(); amountsIn[tokenIndex] = StableMath._calcTokenInGivenExactBptOut( currentAmp, balances, tokenIndex, bptAmountOut, totalSupply(), getSwapFeePercentage() ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating fee amounts during each individual swap dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fee amounts due in future joins and exits. _updateInvariantAfterExit(balances, amountsOut); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { ExitKind kind = userData.exitKind(); if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, userData); } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else { // ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT return _exitBPTInForExactTokensOut(balances, scalingFactors, userData); } } function _exitExactBPTInForTokenOut(uint256[] memory balances, bytes memory userData) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); // We exit in a single token, so initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token (uint256 currentAmp, ) = _getAmplificationParameter(); amountsOut[tokenIndex] = StableMath._calcTokenOutGivenExactBptIn( currentAmp, balances, tokenIndex, bptAmountIn, totalSupply(), getSwapFeePercentage() ); return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = StableMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountIn = StableMath._calcBptInGivenExactTokensOut( currentAmp, balances, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); return (bptAmountIn, amountsOut); } // Helpers /** * @dev Stores the last measured invariant, and the amplification parameter used to compute it. */ function _updateLastInvariant(uint256 invariant, uint256 amplificationParameter) private { _lastInvariant = invariant; _lastInvariantAmp = amplificationParameter; } /** * @dev Returns the amount of protocol fees to pay, given the value of the last stored invariant and the current * balances. */ function _getDueProtocolFeeAmounts(uint256[] memory balances, uint256 protocolSwapFeePercentage) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // Instead of paying the protocol swap fee in all tokens proportionally, we will pay it in a single one. This // will reduce gas costs for single asset joins and exits, as at most only two Pool balances will change (the // token joined/exited, and the token in which fees will be paid). // The protocol fee is charged using the token with the highest balance in the pool. uint256 chosenTokenIndex = 0; uint256 maxBalance = balances[0]; for (uint256 i = 1; i < _getTotalTokens(); ++i) { uint256 currentBalance = balances[i]; if (currentBalance > maxBalance) { chosenTokenIndex = i; maxBalance = currentBalance; } } // Set the fee amount to pay in the selected token dueProtocolFeeAmounts[chosenTokenIndex] = StableMath._calcDueTokenProtocolSwapFeeAmount( _lastInvariantAmp, balances, _lastInvariant, chosenTokenIndex, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Computes and stores the value of the invariant after a join, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterJoin(uint256[] memory balances, uint256[] memory amountsIn) private { _mutateAmounts(balances, amountsIn, FixedPoint.add); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp); } /** * @dev Computes and stores the value of the invariant after an exit, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterExit(uint256[] memory balances, uint256[] memory amountsOut) private { _mutateAmounts(balances, amountsOut, FixedPoint.sub); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view override returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // When calculating the current BPT rate, we may not have paid the protocol fees, therefore // the invariant should be smaller than its current value. Then, we round down overall. (uint256 currentAmp, ) = _getAmplificationParameter(); _upscaleArray(balances, _scalingFactors()); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances, false); return invariant.divDown(totalSupply()); } // Amplification /** * @dev Begins changing the amplification parameter to `rawEndValue` over time. The value will change linearly until * `endTime` is reached, when it will be `rawEndValue`. * * NOTE: Internally, the amplification parameter is represented using higher precision. The values returned by * `getAmplificationParameter` have to be corrected to account for this when comparing to `rawEndValue`. */ function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external authenticate { _require(rawEndValue >= _MIN_AMP, Errors.MIN_AMP); _require(rawEndValue <= _MAX_AMP, Errors.MAX_AMP); uint256 duration = Math.sub(endTime, block.timestamp); _require(duration >= _MIN_UPDATE_TIME, Errors.AMP_END_TIME_TOO_CLOSE); (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(!isUpdating, Errors.AMP_ONGOING_UPDATE); uint256 endValue = Math.mul(rawEndValue, _AMP_PRECISION); // daily rate = (endValue / currentValue) / duration * 1 day // We perform all multiplications first to not reduce precision, and round the division up as we want to avoid // large rates. Note that these are regular integer multiplications and divisions, not fixed point. uint256 dailyRate = endValue > currentValue ? Math.divUp(Math.mul(1 days, endValue), Math.mul(currentValue, duration)) : Math.divUp(Math.mul(1 days, currentValue), Math.mul(endValue, duration)); _require(dailyRate <= _MAX_AMP_UPDATE_DAILY_RATE, Errors.AMP_RATE_TOO_HIGH); _setAmplificationData(currentValue, endValue, block.timestamp, endTime); } /** * @dev Stops the amplification parameter change process, keeping the current value. */ function stopAmplificationParameterUpdate() external authenticate { (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(isUpdating, Errors.AMP_NO_ONGOING_UPDATE); _setAmplificationData(currentValue); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(StablePool.startAmplificationParameterUpdate.selector)) || (actionId == getActionId(StablePool.stopAmplificationParameterUpdate.selector)) || super._isOwnerOnlyAction(actionId); } function getAmplificationParameter() external view returns ( uint256 value, bool isUpdating, uint256 precision ) { (value, isUpdating) = _getAmplificationParameter(); precision = _AMP_PRECISION; } function _getAmplificationParameter() internal view returns (uint256 value, bool isUpdating) { (uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime) = _getAmplificationData(); // Note that block.timestamp >= startTime, since startTime is set to the current time when an update starts if (block.timestamp < endTime) { isUpdating = true; // We can skip checked arithmetic as: // - block.timestamp is always larger or equal to startTime // - endTime is alawys larger than startTime // - the value delta is bounded by the largest amplification paramater, which never causes the // multiplication to overflow. // This also means that the following computation will never revert nor yield invalid results. if (endValue > startValue) { value = startValue + ((endValue - startValue) * (block.timestamp - startTime)) / (endTime - startTime); } else { value = startValue - ((startValue - endValue) * (block.timestamp - startTime)) / (endTime - startTime); } } else { isUpdating = false; value = endValue; } } function _getMaxTokens() internal pure override returns (uint256) { return _MAX_STABLE_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _totalTokens; } function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (_isToken0(token)) { return _getScalingFactor0(); } else if (_isToken1(token)) { return _getScalingFactor1(); } else if (token == _token2) { return _getScalingFactor2(); } else if (token == _token3) { return _getScalingFactor3(); } else if (token == _token4) { return _getScalingFactor4(); } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { if (totalTokens > 0) { scalingFactors[0] = _getScalingFactor0(); } else { return scalingFactors; } if (totalTokens > 1) { scalingFactors[1] = _getScalingFactor1(); } else { return scalingFactors; } if (totalTokens > 2) { scalingFactors[2] = _getScalingFactor2(); } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _getScalingFactor3(); } else { return scalingFactors; } if (totalTokens > 4) { scalingFactors[4] = _getScalingFactor4(); } else { return scalingFactors; } } return scalingFactors; } function _setAmplificationData(uint256 value) private { _setAmplificationData(value, value, block.timestamp, block.timestamp); emit AmpUpdateStopped(value); } function _setAmplificationData( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) private { _packedAmplificationData = WordCodec.encodeUint(uint64(startValue), 0) | WordCodec.encodeUint(uint64(endValue), 64) | WordCodec.encodeUint(uint64(startTime), 64 * 2) | WordCodec.encodeUint(uint64(endTime), 64 * 3); emit AmpUpdateStarted(startValue, endValue, startTime, endTime); } function _getAmplificationData() private view returns ( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) { startValue = _packedAmplificationData.decodeUint64(0); endValue = _packedAmplificationData.decodeUint64(64); startTime = _packedAmplificationData.decodeUint64(64 * 2); endTime = _packedAmplificationData.decodeUint64(64 * 3); } function _isToken0(IERC20 token) internal view returns (bool) { return token == _token0; } function _isToken1(IERC20 token) internal view returns (bool) { return token == _token1; } function _getScalingFactor0() internal view returns (uint256) { return _scalingFactor0; } function _getScalingFactor1() internal view returns (uint256) { return _scalingFactor1; } function _getScalingFactor2() internal view returns (uint256) { return _scalingFactor2; } function _getScalingFactor3() internal view returns (uint256) { return _scalingFactor3; } function _getScalingFactor4() internal view returns (uint256) { return _scalingFactor4; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; /** * @dev This module provides an interface to store different pieces of information used by pools with a price oracle. * * These pieces of information are all kept together in a single storage slot to reduce the number of storage reads. In * particular, it stores reduced-precision versions of the total BPT supply and invariant, which lets us not access * nor compute these values when producing oracle updates during a swap. * * Data is stored with the following structure: * * [### not used ### | oracle enabled | oracle index | oracle sample initial timestamp | log supply | log invariant ] * [ uint170 | bool | uint10 | uint31 | int22 | int22 ] * * Note that we are not using the most-significant 170 bits. */ library OracleMiscData { using WordCodec for bytes32; using WordCodec for uint256; uint256 private constant _LOG_INVARIANT_OFFSET = 0; uint256 private constant _LOG_TOTAL_SUPPLY_OFFSET = 22; uint256 private constant _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET = 44; uint256 private constant _ORACLE_INDEX_OFFSET = 75; uint256 private constant _ORACLE_ENABLED_OFFSET = 85; /** * @dev Returns the cached logarithm of the invariant. */ function logInvariant(bytes32 data) internal pure returns (int256) { return data.decodeInt22(_LOG_INVARIANT_OFFSET); } /** * @dev Returns the cached logarithm of the total supply. */ function logTotalSupply(bytes32 data) internal pure returns (int256) { return data.decodeInt22(_LOG_TOTAL_SUPPLY_OFFSET); } /** * @dev Returns the timestamp of the creation of the oracle's latest sample. */ function oracleSampleCreationTimestamp(bytes32 data) internal pure returns (uint256) { return data.decodeUint31(_ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET); } /** * @dev Returns the index of the oracle's latest sample. */ function oracleIndex(bytes32 data) internal pure returns (uint256) { return data.decodeUint10(_ORACLE_INDEX_OFFSET); } /** * @dev Returns true if the oracle is enabled. */ function oracleEnabled(bytes32 data) internal pure returns (bool) { return data.decodeBool(_ORACLE_ENABLED_OFFSET); } /** * @dev Sets the logarithm of the invariant in `data`, returning the updated value. */ function setLogInvariant(bytes32 data, int256 _logInvariant) internal pure returns (bytes32) { return data.insertInt22(_logInvariant, _LOG_INVARIANT_OFFSET); } /** * @dev Sets the logarithm of the total supply in `data`, returning the updated value. */ function setLogTotalSupply(bytes32 data, int256 _logTotalSupply) internal pure returns (bytes32) { return data.insertInt22(_logTotalSupply, _LOG_TOTAL_SUPPLY_OFFSET); } /** * @dev Sets the timestamp of the creation of the oracle's latest sample in `data`, returning the updated value. */ function setOracleSampleCreationTimestamp(bytes32 data, uint256 _initialTimestamp) internal pure returns (bytes32) { return data.insertUint31(_initialTimestamp, _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET); } /** * @dev Sets the index of the oracle's latest sample in `data`, returning the updated value. */ function setOracleIndex(bytes32 data, uint256 _oracleIndex) internal pure returns (bytes32) { return data.insertUint10(_oracleIndex, _ORACLE_INDEX_OFFSET); } /** * @dev Enables or disables the oracle in `data`, returning the updated value. */ function setOracleEnabled(bytes32 data, bool _oracleEnabled) internal pure returns (bytes32) { return data.insertBool(_oracleEnabled, _ORACLE_ENABLED_OFFSET); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol"; import "../StableMath.sol"; contract StableOracleMath is StableMath { using FixedPoint for uint256; /** * @dev Calculates the spot price of token Y and BPT in token X. */ function _calcLogPrices( uint256 amplificationParameter, uint256 balanceX, uint256 balanceY, int256 logBptTotalSupply ) internal pure returns (int256 logSpotPrice, int256 logBptPrice) { uint256 spotPrice = _calcSpotPrice(amplificationParameter, balanceX, balanceY); logBptPrice = _calcLogBptPrice(spotPrice, balanceX, balanceY, logBptTotalSupply); logSpotPrice = LogCompression.toLowResLog(spotPrice); } /** * @dev Calculates the spot price of token Y in token X. */ function _calcSpotPrice( uint256 amplificationParameter, uint256 balanceX, uint256 balanceY ) internal pure returns (uint256) { /************************************************************************************************************** // // // 2.a.x.y + a.y^2 + b.y // // spot price Y/X = - dx/dy = ----------------------- // // 2.a.x.y + a.x^2 + b.x // // // // n = 2 // // a = amp param * n // // b = D + a.(S - D) // // D = invariant // // S = sum of balances but x,y = 0 since x and y are the only tokens // **************************************************************************************************************/ uint256 invariant = _calculateInvariant(amplificationParameter, _balances(balanceX, balanceY), true); uint256 a = (amplificationParameter * 2) / _AMP_PRECISION; uint256 b = Math.mul(invariant, a).sub(invariant); uint256 axy2 = Math.mul(a * 2, balanceX).mulDown(balanceY); // n = 2 // dx = a.x.y.2 + a.y^2 - b.y uint256 derivativeX = axy2.add(Math.mul(a, balanceY).mulDown(balanceY)).sub(b.mulDown(balanceY)); // dy = a.x.y.2 + a.x^2 - b.x uint256 derivativeY = axy2.add(Math.mul(a, balanceX).mulDown(balanceX)).sub(b.mulDown(balanceX)); // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A // result of zero is therefore only possible with zero balances, which are prevented via other means. return derivativeX.divUp(derivativeY); } /** * @dev Calculates the price of BPT in token X. `logBptTotalSupply` should be the result of calling * `LogCompression.toLowResLog` with the current BPT supply, and `spotPrice` the price of token * Y in token X (obtainable via `_calcSpotPrice()`. * * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog` * to recover the original value. */ function _calcLogBptPrice( uint256 spotPrice, uint256 balanceX, uint256 balanceY, int256 logBptTotalSupply ) internal pure returns (int256) { /************************************************************************************************************** // // // balance X + (spot price Y/X * balance Y) // // BPT price = ------------------------------------------ // // total supply // // // // ln(BPT price) = ln(balance X + (spot price Y/X * balance Y)) - ln(totalSupply) // **************************************************************************************************************/ // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log // space. We use `mulUp` as it prevents the result from being zero, which would make the logarithm revert. A // result of zero is therefore only possible with zero balances, which are prevented via other means. uint256 totalBalanceX = balanceX.add(spotPrice.mulUp(balanceY)); int256 logTotalBalanceX = LogCompression.toLowResLog(totalBalanceX); // Because we're subtracting two values in log space, this value has a larger error (+-0.0001 instead of // +-0.00005), which results in a final larger relative error of around 0.1%. return logTotalBalanceX - logBptTotalSupply; } function _balances(uint256 balanceX, uint256 balanceY) private pure returns (uint256[] memory balances) { balances = new uint256[](2); balances[0] = balanceX; balances[1] = balanceY; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; /** * @dev Interface for querying historical data from a Pool that can be used as a Price Oracle. * * This lets third parties retrieve average prices of tokens held by a Pool over a given period of time, as well as the * price of the Pool share token (BPT) and invariant. Since the invariant is a sensible measure of Pool liquidity, it * can be used to compare two different price sources, and choose the most liquid one. * * Once the oracle is fully initialized, all queries are guaranteed to succeed as long as they require no data that * is not older than the largest safe query window. */ interface IPriceOracle { // The three values that can be queried: // // - PAIR_PRICE: the price of the tokens in the Pool, expressed as the price of the second token in units of the // first token. For example, if token A is worth $2, and token B is worth $4, the pair price will be 2.0. // Note that the price is computed *including* the tokens decimals. This means that the pair price of a Pool with // DAI and USDC will be close to 1.0, despite DAI having 18 decimals and USDC 6. // // - BPT_PRICE: the price of the Pool share token (BPT), in units of the first token. // Note that the price is computed *including* the tokens decimals. This means that the BPT price of a Pool with // USDC in which BPT is worth $5 will be 5.0, despite the BPT having 18 decimals and USDC 6. // // - INVARIANT: the value of the Pool's invariant, which serves as a measure of its liquidity. enum Variable { PAIR_PRICE, BPT_PRICE, INVARIANT } /** * @dev Returns the time average weighted price corresponding to each of `queries`. Prices are represented as 18 * decimal fixed point values. */ function getTimeWeightedAverage(OracleAverageQuery[] memory queries) external view returns (uint256[] memory results); /** * @dev Returns latest sample of `variable`. Prices are represented as 18 decimal fixed point values. */ function getLatest(Variable variable) external view returns (uint256); /** * @dev Information for a Time Weighted Average query. * * Each query computes the average over a window of duration `secs` seconds that ended `ago` seconds ago. For * example, the average over the past 30 minutes is computed by settings secs to 1800 and ago to 0. If secs is 1800 * and ago is 1800 as well, the average between 60 and 30 minutes ago is computed instead. */ struct OracleAverageQuery { Variable variable; uint256 secs; uint256 ago; } /** * @dev Returns largest time window that can be safely queried, where 'safely' means the Oracle is guaranteed to be * able to produce a result and not revert. * * If a query has a non-zero `ago` value, then `secs + ago` (the oldest point in time) must be smaller than this * value for 'safe' queries. */ function getLargestSafeQueryWindow() external view returns (uint256); /** * @dev Returns the accumulators corresponding to each of `queries`. */ function getPastAccumulators(OracleAccumulatorQuery[] memory queries) external view returns (int256[] memory results); /** * @dev Information for an Accumulator query. * * Each query estimates the accumulator at a time `ago` seconds ago. */ struct OracleAccumulatorQuery { Variable variable; uint256 ago; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IPoolPriceOracle { /** * @dev Returns the raw data of the sample at `index`. */ function getSample(uint256 index) external view returns ( int256 logPairPrice, int256 accLogPairPrice, int256 logBptPrice, int256 accLogBptPrice, int256 logInvariant, int256 accLogInvariant, uint256 timestamp ); /** * @dev Returns the total number of samples. */ function getTotalSamples() external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; library Buffer { // The buffer is a circular storage structure with 1024 slots. // solhint-disable-next-line private-vars-leading-underscore uint256 internal constant SIZE = 1024; /** * @dev Returns the index of the element before the one pointed by `index`. */ function prev(uint256 index) internal pure returns (uint256) { return sub(index, 1); } /** * @dev Returns the index of the element after the one pointed by `index`. */ function next(uint256 index) internal pure returns (uint256) { return add(index, 1); } /** * @dev Returns the index of an element `offset` slots after the one pointed by `index`. */ function add(uint256 index, uint256 offset) internal pure returns (uint256) { return (index + offset) % SIZE; } /** * @dev Returns the index of an element `offset` slots before the one pointed by `index`. */ function sub(uint256 index, uint256 offset) internal pure returns (uint256) { return (index + SIZE - offset) % SIZE; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "../interfaces/IPriceOracle.sol"; /** * @dev This library provides functions to help manipulating samples for Pool Price Oracles. It handles updates, * encoding, and decoding of samples. * * Each sample holds the timestamp of its last update, plus information about three pieces of data: the price pair, the * price of BPT (the associated Pool token), and the invariant. * * Prices and invariant are not stored directly: instead, we store their logarithm. These are known as the 'instant' * values: the exact value at that timestamp. * * Additionally, for each value we keep an accumulator with the sum of all past values, each weighted by the time * elapsed since the previous update. This lets us later subtract accumulators at different points in time and divide by * the time elapsed between them, arriving at the geometric mean of the values (also known as log-average). * * All samples are stored in a single 256 bit word with the following structure: * * [ log pair price | bpt price | invariant | timestamp ] * [ instant | accumulator | instant | accumulator | instant | accumulator | ] * [ int22 | int53 | int22 | int53 | int22 | int53 | uint31 ] * MSB LSB * * Assuming the timestamp doesn't overflow (which holds until the year 2038), the largest elapsed time is 2^31, which * means the largest possible accumulator value is 2^21 * 2^31, which can be represented using a signed 53 bit integer. */ library Samples { using WordCodec for int256; using WordCodec for uint256; using WordCodec for bytes32; uint256 internal constant _TIMESTAMP_OFFSET = 0; uint256 internal constant _ACC_LOG_INVARIANT_OFFSET = 31; uint256 internal constant _INST_LOG_INVARIANT_OFFSET = 84; uint256 internal constant _ACC_LOG_BPT_PRICE_OFFSET = 106; uint256 internal constant _INST_LOG_BPT_PRICE_OFFSET = 159; uint256 internal constant _ACC_LOG_PAIR_PRICE_OFFSET = 181; uint256 internal constant _INST_LOG_PAIR_PRICE_OFFSET = 234; /** * @dev Updates a sample, accumulating the new data based on the elapsed time since the previous update. Returns the * updated sample. * * IMPORTANT: This function does not perform any arithmetic checks. In particular, it assumes the caller will never * pass values that cannot be represented as 22 bit signed integers. Additionally, it also assumes * `currentTimestamp` is greater than `sample`'s timestamp. */ function update( bytes32 sample, int256 instLogPairPrice, int256 instLogBptPrice, int256 instLogInvariant, uint256 currentTimestamp ) internal pure returns (bytes32) { // Because elapsed can be represented as a 31 bit unsigned integer, and the received values can be represented // as 22 bit signed integers, we don't need to perform checked arithmetic. int256 elapsed = int256(currentTimestamp - timestamp(sample)); int256 accLogPairPrice = _accLogPairPrice(sample) + instLogPairPrice * elapsed; int256 accLogBptPrice = _accLogBptPrice(sample) + instLogBptPrice * elapsed; int256 accLogInvariant = _accLogInvariant(sample) + instLogInvariant * elapsed; return pack( instLogPairPrice, accLogPairPrice, instLogBptPrice, accLogBptPrice, instLogInvariant, accLogInvariant, currentTimestamp ); } /** * @dev Returns the instant value stored in `sample` for `variable`. */ function instant(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) { if (variable == IPriceOracle.Variable.PAIR_PRICE) { return _instLogPairPrice(sample); } else if (variable == IPriceOracle.Variable.BPT_PRICE) { return _instLogBptPrice(sample); } else { // variable == IPriceOracle.Variable.INVARIANT return _instLogInvariant(sample); } } /** * @dev Returns the accumulator value stored in `sample` for `variable`. */ function accumulator(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) { if (variable == IPriceOracle.Variable.PAIR_PRICE) { return _accLogPairPrice(sample); } else if (variable == IPriceOracle.Variable.BPT_PRICE) { return _accLogBptPrice(sample); } else { // variable == IPriceOracle.Variable.INVARIANT return _accLogInvariant(sample); } } /** * @dev Returns `sample`'s timestamp. */ function timestamp(bytes32 sample) internal pure returns (uint256) { return sample.decodeUint31(_TIMESTAMP_OFFSET); } /** * @dev Returns `sample`'s instant value for the logarithm of the pair price. */ function _instLogPairPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt22(_INST_LOG_PAIR_PRICE_OFFSET); } /** * @dev Returns `sample`'s accumulator of the logarithm of the pair price. */ function _accLogPairPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET); } /** * @dev Returns `sample`'s instant value for the logarithm of the BPT price. */ function _instLogBptPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt22(_INST_LOG_BPT_PRICE_OFFSET); } /** * @dev Returns `sample`'s accumulator of the logarithm of the BPT price. */ function _accLogBptPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt53(_ACC_LOG_BPT_PRICE_OFFSET); } /** * @dev Returns `sample`'s instant value for the logarithm of the invariant. */ function _instLogInvariant(bytes32 sample) private pure returns (int256) { return sample.decodeInt22(_INST_LOG_INVARIANT_OFFSET); } /** * @dev Returns `sample`'s accumulator of the logarithm of the invariant. */ function _accLogInvariant(bytes32 sample) private pure returns (int256) { return sample.decodeInt53(_ACC_LOG_INVARIANT_OFFSET); } /** * @dev Returns a sample created by packing together its components. */ function pack( int256 instLogPairPrice, int256 accLogPairPrice, int256 instLogBptPrice, int256 accLogBptPrice, int256 instLogInvariant, int256 accLogInvariant, uint256 _timestamp ) internal pure returns (bytes32) { return instLogPairPrice.encodeInt22(_INST_LOG_PAIR_PRICE_OFFSET) | accLogPairPrice.encodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET) | instLogBptPrice.encodeInt22(_INST_LOG_BPT_PRICE_OFFSET) | accLogBptPrice.encodeInt53(_ACC_LOG_BPT_PRICE_OFFSET) | instLogInvariant.encodeInt22(_INST_LOG_INVARIANT_OFFSET) | accLogInvariant.encodeInt53(_ACC_LOG_INVARIANT_OFFSET) | _timestamp.encodeUint(_TIMESTAMP_OFFSET); // Using 31 bits } /** * @dev Unpacks a sample into its components. */ function unpack(bytes32 sample) internal pure returns ( int256 logPairPrice, int256 accLogPairPrice, int256 logBptPrice, int256 accLogBptPrice, int256 logInvariant, int256 accLogInvariant, uint256 _timestamp ) { logPairPrice = _instLogPairPrice(sample); accLogPairPrice = _accLogPairPrice(sample); logBptPrice = _instLogBptPrice(sample); accLogBptPrice = _accLogBptPrice(sample); logInvariant = _instLogInvariant(sample); accLogInvariant = _accLogInvariant(sample); _timestamp = timestamp(sample); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol"; import "../interfaces/IPriceOracle.sol"; import "./Buffer.sol"; import "./Samples.sol"; /** * @dev Auxiliary library for PoolPriceOracle, offloading most of the query code to reduce bytecode size by using this * as a linked library. The downside is an extra DELEGATECALL is added (2600 gas as of the Berlin hardfork), but the * bytecode size gains are so big (specially of the oracle contract does not use `LogCompression.fromLowResLog`) that * it is worth it. */ library QueryProcessor { using Buffer for uint256; using Samples for bytes32; using LogCompression for int256; /** * @dev Returns the value for `variable` at the indexed sample. */ function getInstantValue( mapping(uint256 => bytes32) storage samples, IPriceOracle.Variable variable, uint256 index ) external view returns (uint256) { bytes32 sample = samples[index]; _require(sample.timestamp() > 0, Errors.ORACLE_NOT_INITIALIZED); int256 rawInstantValue = sample.instant(variable); return LogCompression.fromLowResLog(rawInstantValue); } /** * @dev Returns the time average weighted price corresponding to `query`. */ function getTimeWeightedAverage( mapping(uint256 => bytes32) storage samples, IPriceOracle.OracleAverageQuery memory query, uint256 latestIndex ) external view returns (uint256) { _require(query.secs != 0, Errors.ORACLE_BAD_SECS); int256 beginAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago + query.secs); int256 endAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago); return LogCompression.fromLowResLog((endAccumulator - beginAccumulator) / int256(query.secs)); } /** * @dev Returns the value of the accumulator for `variable` `ago` seconds ago. `latestIndex` must be the index of * the latest sample in the buffer. * * Reverts under the following conditions: * - if the buffer is empty. * - if querying past information and the buffer has not been fully initialized. * - if querying older information than available in the buffer. Note that a full buffer guarantees queries for the * past 34 hours will not revert. * * If requesting information for a timestamp later than the latest one, it is extrapolated using the latest * available data. * * When no exact information is available for the requested past timestamp (as usually happens, since at most one * timestamp is stored every two minutes), it is estimated by performing linear interpolation using the closest * values. This process is guaranteed to complete performing at most 10 storage reads. */ function getPastAccumulator( mapping(uint256 => bytes32) storage samples, IPriceOracle.Variable variable, uint256 latestIndex, uint256 ago ) public view returns (int256) { // solhint-disable not-rely-on-time // `ago` must not be before the epoch. _require(block.timestamp >= ago, Errors.ORACLE_INVALID_SECONDS_QUERY); uint256 lookUpTime = block.timestamp - ago; bytes32 latestSample = samples[latestIndex]; uint256 latestTimestamp = latestSample.timestamp(); // The latest sample only has a non-zero timestamp if no data was ever processed and stored in the buffer. _require(latestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED); if (latestTimestamp <= lookUpTime) { // The accumulator at times ahead of the latest one are computed by extrapolating the latest data. This is // equivalent to the instant value not changing between the last timestamp and the look up time. // We can use unchecked arithmetic since the accumulator can be represented in 53 bits, timestamps in 31 // bits, and the instant value in 22 bits. uint256 elapsed = lookUpTime - latestTimestamp; return latestSample.accumulator(variable) + (latestSample.instant(variable) * int256(elapsed)); } else { // The look up time is before the latest sample, but we need to make sure that it is not before the oldest // sample as well. // Since we use a circular buffer, the oldest sample is simply the next one. uint256 oldestIndex = latestIndex.next(); { // Local scope used to prevent stack-too-deep errors. bytes32 oldestSample = samples[oldestIndex]; uint256 oldestTimestamp = oldestSample.timestamp(); // For simplicity's sake, we only perform past queries if the buffer has been fully initialized. This // means the oldest sample must have a non-zero timestamp. _require(oldestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED); // The only remaining condition to check is for the look up time to be between the oldest and latest // timestamps. _require(oldestTimestamp <= lookUpTime, Errors.ORACLE_QUERY_TOO_OLD); } // Perform binary search to find nearest samples to the desired timestamp. (bytes32 prev, bytes32 next) = findNearestSample(samples, lookUpTime, oldestIndex); // `next`'s timestamp is guaranteed to be larger than `prev`'s, so we can skip checked arithmetic. uint256 samplesTimeDiff = next.timestamp() - prev.timestamp(); if (samplesTimeDiff > 0) { // We estimate the accumulator at the requested look up time by interpolating linearly between the // previous and next accumulators. // We can use unchecked arithmetic since the accumulators can be represented in 53 bits, and timestamps // in 31 bits. int256 samplesAccDiff = next.accumulator(variable) - prev.accumulator(variable); uint256 elapsed = lookUpTime - prev.timestamp(); return prev.accumulator(variable) + ((samplesAccDiff * int256(elapsed)) / int256(samplesTimeDiff)); } else { // Rarely, one of the samples will have the exact requested look up time, which is indicated by `prev` // and `next` being the same. In this case, we simply return the accumulator at that point in time. return prev.accumulator(variable); } } } /** * @dev Finds the two samples with timestamps before and after `lookUpDate`. If one of the samples matches exactly, * both `prev` and `next` will be it. `offset` is the index of the oldest sample in the buffer. * * Assumes `lookUpDate` is greater or equal than the timestamp of the oldest sample, and less or equal than the * timestamp of the latest sample. */ function findNearestSample( mapping(uint256 => bytes32) storage samples, uint256 lookUpDate, uint256 offset ) public view returns (bytes32 prev, bytes32 next) { // We're going to perform a binary search in the circular buffer, which requires it to be sorted. To achieve // this, we offset all buffer accesses by `offset`, making the first element the oldest one. // Auxiliary variables in a typical binary search: we will look at some value `mid` between `low` and `high`, // periodically increasing `low` or decreasing `high` until we either find a match or determine the element is // not in the array. uint256 low = 0; uint256 high = Buffer.SIZE - 1; uint256 mid; // If the search fails and no sample has a timestamp of `lookUpDate` (as is the most common scenario), `sample` // will be either the sample with the largest timestamp smaller than `lookUpDate`, or the one with the smallest // timestamp larger than `lookUpDate`. bytes32 sample; uint256 sampleTimestamp; while (low <= high) { // Mid is the floor of the average. uint256 midWithoutOffset = (high + low) / 2; // Recall that the buffer is not actually sorted: we need to apply the offset to access it in a sorted way. mid = midWithoutOffset.add(offset); sample = samples[mid]; sampleTimestamp = sample.timestamp(); if (sampleTimestamp < lookUpDate) { // If the mid sample is bellow the look up date, then increase the low index to start from there. low = midWithoutOffset + 1; } else if (sampleTimestamp > lookUpDate) { // If the mid sample is above the look up date, then decrease the high index to start from there. // We can skip checked arithmetic: it is impossible for `high` to ever be 0, as a scenario where `low` // equals 0 and `high` equals 1 would result in `low` increasing to 1 in the previous `if` clause. high = midWithoutOffset - 1; } else { // sampleTimestamp == lookUpDate // If we have an exact match, return the sample as both `prev` and `next`. return (sample, sample); } } // In case we reach here, it means we didn't find exactly the sample we where looking for. return sampleTimestamp < lookUpDate ? (sample, samples[mid.next()]) : (samples[mid.prev()], sample); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_5 = 2**(5) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_16 = 2**(16) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_32 = 2**(32) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; uint256 private constant _MASK_128 = 2**(128) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes. */ function insertUint5( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes. */ function insertUint16( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes. */ function insertUint32( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Bytes /** * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_5; } /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_16; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_32; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } /** * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_128; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IGeneralPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IGeneralPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the General * specialization setting. */ abstract contract BaseGeneralPool is IGeneralPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) public virtual override returns (uint256) { _validateIndexes(indexIn, indexOut, _getTotalTokens()); uint256[] memory scalingFactors = _scalingFactors(); return swapRequest.kind == IVault.SwapKind.GIVEN_IN ? _swapGivenIn(swapRequest, balances, indexIn, indexOut, scalingFactors) : _swapGivenOut(swapRequest, balances, indexIn, indexOut, scalingFactors); } function _swapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal returns (uint256) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. swapRequest.amount = _subtractSwapFeeAmount(swapRequest.amount); _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexIn]); uint256 amountOut = _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactors[indexOut]); } function _swapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal returns (uint256) { _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexOut]); uint256 amountIn = _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactors[indexIn]); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. return _addSwapFeeAmount(amountIn); } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. The swap fee has already been deducted from * `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual returns (uint256); function _validateIndexes( uint256 indexIn, uint256 indexOut, uint256 limit ) private pure { _require(indexIn < limit && indexOut < limit, Errors.OUT_OF_BOUNDS); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. request.amount = _subtractSwapFeeAmount(request.amount); // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. return _addSwapFeeAmount(amountIn); } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; // This is a contract to emulate file-level functions. Convert to a library // after the migration to solc v0.7.1. // solhint-disable private-vars-leading-underscore // solhint-disable var-name-mixedcase contract StableMath { using FixedPoint for uint256; uint256 internal constant _MIN_AMP = 1; uint256 internal constant _MAX_AMP = 5000; uint256 internal constant _AMP_PRECISION = 1e3; uint256 internal constant _MAX_STABLE_TOKENS = 5; // Note on unchecked arithmetic: // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic (the // Math library), including: // - the number of tokens is bounded by _MAX_STABLE_TOKENS // - the amplification parameter is bounded by _MAX_AMP * _AMP_PRECISION, which fits in 23 bits // - the token balances are bounded by 2^112 (guaranteed by the Vault) times 1e18 (the maximum scaling factor), // which fits in 172 bits // // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow. // Computes the invariant given the current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) function _calculateInvariant( uint256 amplificationParameter, uint256[] memory balances, bool roundUp ) internal pure returns (uint256) { /********************************************************************************************** // invariant // // D = invariant D^(n+1) // // A = amplification coefficient A n^n S + D = A D n^n + ----------- // // S = sum of balances n^n P // // P = product of balances // // n = number of tokens // *********x************************************************************************************/ // We support rounding up or down. uint256 sum = 0; uint256 numTokens = balances.length; for (uint256 i = 0; i < numTokens; i++) { sum = sum.add(balances[i]); } if (sum == 0) { return 0; } uint256 prevInvariant = 0; uint256 invariant = sum; uint256 ampTimesTotal = amplificationParameter * numTokens; for (uint256 i = 0; i < 255; i++) { uint256 P_D = balances[0] * numTokens; for (uint256 j = 1; j < numTokens; j++) { P_D = Math.div(Math.mul(Math.mul(P_D, balances[j]), numTokens), invariant, roundUp); } prevInvariant = invariant; invariant = Math.div( Math.mul(Math.mul(numTokens, invariant), invariant).add( Math.div(Math.mul(Math.mul(ampTimesTotal, sum), P_D), _AMP_PRECISION, roundUp) ), Math.mul(numTokens + 1, invariant).add( // No need to use checked arithmetic for the amp precision, the amp is guaranteed to be at least 1 Math.div(Math.mul(ampTimesTotal - _AMP_PRECISION, P_D), _AMP_PRECISION, !roundUp) ), roundUp ); if (invariant > prevInvariant) { if (invariant - prevInvariant <= 1) { return invariant; } } else if (prevInvariant - invariant <= 1) { return invariant; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } // Computes how many tokens can be taken out of a pool if `tokenAmountIn` are sent, given the current balances. // The amplification parameter equals: A n^(n-1) function _calcOutGivenIn( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountIn ) internal pure returns (uint256) { /************************************************************************************************************** // outGivenIn token x for y - polynomial equation to solve // // ay = amount out to calculate // // by = balance token out // // y = by - ay (finalBalanceOut) // // D = invariant D D^(n+1) // // A = amplification coefficient y^2 + ( S - ---------- - D) * y - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but y // // P = product of final balances but y // **************************************************************************************************************/ // Amount out, so we round down overall. // Given that we need to have a greater final balance out, the invariant needs to be rounded up uint256 invariant = _calculateInvariant(amplificationParameter, balances, true); balances[tokenIndexIn] = balances[tokenIndexIn].add(tokenAmountIn); uint256 finalBalanceOut = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexOut ); // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before // calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexIn] = balances[tokenIndexIn] - tokenAmountIn; return balances[tokenIndexOut].sub(finalBalanceOut).sub(1); } // Computes how many tokens must be sent to a pool if `tokenAmountOut` are sent given the // current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) function _calcInGivenOut( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountOut ) internal pure returns (uint256) { /************************************************************************************************************** // inGivenOut token x for y - polynomial equation to solve // // ax = amount in to calculate // // bx = balance token in // // x = bx + ax (finalBalanceIn) // // D = invariant D D^(n+1) // // A = amplification coefficient x^2 + ( S - ---------- - D) * x - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but x // // P = product of final balances but x // **************************************************************************************************************/ // Amount in, so we round up overall. // Given that we need to have a greater final balance in, the invariant needs to be rounded up uint256 invariant = _calculateInvariant(amplificationParameter, balances, true); balances[tokenIndexOut] = balances[tokenIndexOut].sub(tokenAmountOut); uint256 finalBalanceIn = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexIn ); // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right // before calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexOut] = balances[tokenIndexOut] + tokenAmountOut; return finalBalanceIn.sub(balances[tokenIndexIn]).add(1); } function _calcBptOutGivenExactTokensIn( uint256 amp, uint256[] memory balances, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT out, so we round down overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token, relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); // The weighted sum of token balance ratios without fee uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divDown(sumBalances); balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; // Check if the balance ratio is greater than the ideal ratio to charge fees or not if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } else { amountInWithoutFee = amountsIn[i]; } newBalances[i] = balances[i].add(amountInWithoutFee); } // Get current and new invariants, taking swap fees into account uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // If the invariant didn't increase for any reason, we simply don't mint BPT if (invariantRatio > FixedPoint.ONE) { return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE); } else { return 0; } } function _calcTokenInGivenExactBptOut( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token in, so we round up overall. // Get the current invariant uint256 currentInvariant = _calculateInvariant(amp, balances, true); // Calculate new invariant uint256 newInvariant = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount in without fee. uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountInWithoutFee = newBalanceTokenIndex.sub(balances[tokenIndex]); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } /* Flow of calculations: amountsTokenOut -> amountsOutProportional -> amountOutPercentageExcess -> amountOutBeforeFee -> newInvariant -> amountBPTIn */ function _calcBptInGivenExactTokensOut( uint256 amp, uint256[] memory balances, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT in, so we round up overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divUp(sumBalances); balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add(balanceRatiosWithoutFee[i].mulUp(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } else { amountOutWithFee = amountsOut[i]; } newBalances[i] = balances[i].sub(amountOutWithFee); } // Get current and new invariants, taking into account swap fees uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // return amountBPTIn return bptTotalSupply.mulUp(invariantRatio.complement()); } function _calcTokenOutGivenExactBptIn( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token out, so we round down overall. // Get the current and new invariants. Since we need a bigger new invariant, we round the current one up. uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount out without fee uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 bptTotalSupply ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = tokenAmountOut / bptIn \ // // b = tokenBalance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ bptTotalSupply / // // bpt = bptTotalSupply // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } // The amplification parameter equals: A n^(n-1) function _calcDueTokenProtocolSwapFeeAmount( uint256 amplificationParameter, uint256[] memory balances, uint256 lastInvariant, uint256 tokenIndex, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /************************************************************************************************************** // oneTokenSwapFee - polynomial equation to solve // // af = fee amount to calculate in one token // // bf = balance of fee token // // f = bf - af (finalBalanceFeeToken) // // D = old invariant D D^(n+1) // // A = amplification coefficient f^2 + ( S - ---------- - D) * f - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but f // // P = product of final balances but f // **************************************************************************************************************/ // Protocol swap fee amount, so we round down overall. uint256 finalBalanceFeeToken = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, lastInvariant, tokenIndex ); if (balances[tokenIndex] <= finalBalanceFeeToken) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // Result is rounded down uint256 accumulatedTokenSwapFees = balances[tokenIndex] - finalBalanceFeeToken; return accumulatedTokenSwapFees.mulDown(protocolSwapFeePercentage).divDown(FixedPoint.ONE); } // Private functions // This function calculates the balance of a given token (tokenIndex) // given all the other balances and the invariant function _getTokenBalanceGivenInvariantAndAllOtherBalances( uint256 amplificationParameter, uint256[] memory balances, uint256 invariant, uint256 tokenIndex ) internal pure returns (uint256) { // Rounds result up overall uint256 ampTimesTotal = amplificationParameter * balances.length; uint256 sum = balances[0]; uint256 P_D = balances[0] * balances.length; for (uint256 j = 1; j < balances.length; j++) { P_D = Math.divDown(Math.mul(Math.mul(P_D, balances[j]), balances.length), invariant); sum = sum.add(balances[j]); } // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]` sum = sum - balances[tokenIndex]; uint256 inv2 = Math.mul(invariant, invariant); // We remove the balance fromm c by multiplying it uint256 c = Math.mul( Math.mul(Math.divUp(inv2, Math.mul(ampTimesTotal, P_D)), _AMP_PRECISION), balances[tokenIndex] ); uint256 b = sum.add(Math.mul(Math.divDown(invariant, ampTimesTotal), _AMP_PRECISION)); // We iterate to find the balance uint256 prevTokenBalance = 0; // We multiply the first iteration outside the loop with the invariant to set the value of the // initial approximation. uint256 tokenBalance = Math.divUp(inv2.add(c), invariant.add(b)); for (uint256 i = 0; i < 255; i++) { prevTokenBalance = tokenBalance; tokenBalance = Math.divUp( Math.mul(tokenBalance, tokenBalance).add(c), Math.mul(tokenBalance, 2).add(b).sub(invariant) ); if (tokenBalance > prevTokenBalance) { if (tokenBalance - prevTokenBalance <= 1) { return tokenBalance; } } else if (prevTokenBalance - tokenBalance <= 1) { return tokenBalance; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./StablePool.sol"; library StablePoolUserDataHelpers { function joinKind(bytes memory self) internal pure returns (StablePool.JoinKind) { return abi.decode(self, (StablePool.JoinKind)); } function exitKind(bytes memory self) internal pure returns (StablePool.ExitKind) { return abi.decode(self, (StablePool.ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (StablePool.JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (StablePool.JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (StablePool.JoinKind, uint256, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (StablePool.ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (StablePool.ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (StablePool.ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol"; import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using WordCodec for bytes32; using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% uint256 private constant _MINIMUM_BPT = 1e6; // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; IVault private immutable _vault; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _vault = vault; _poolId = poolId; } // Getters / Setters function getVault() public view returns (IVault) { return _vault; } function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from // ever being fully drained. _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _MINIMUM_BPT); _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's * lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev IPools with the General specialization setting should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will * grant to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IGeneralPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library */ library Math { /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` */ contract BalancerPoolToken is ERC20, ERC20Permit { constructor(string memory tokenName, string memory tokenSymbol) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { // solhint-disable-previous-line no-empty-blocks } // Overrides /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "libraries": { "@balancer-labs/v2-pool-utils/contracts/oracle/QueryProcessor.sol": { "QueryProcessor": "0x469b58680774aac9ad66447efb4ef634756a2cc5" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"contract IRateProvider[]","name":"rateProviders","type":"address[]"},{"internalType":"uint256[]","name":"priceRateCacheDuration","type":"uint256[]"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"bool","name":"oracleEnabled","type":"bool"},{"internalType":"address","name":"owner","type":"address"}],"internalType":"struct MetaStablePool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"AmpUpdateStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"currentValue","type":"uint256"}],"name":"AmpUpdateStopped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"OracleEnabledChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"rate","type":"uint256"}],"name":"PriceRateCacheUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":true,"internalType":"contract IRateProvider","name":"provider","type":"address"},{"indexed":false,"internalType":"uint256","name":"cacheDuration","type":"uint256"}],"name":"PriceRateProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmplificationParameter","outputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bool","name":"isUpdating","type":"bool"},{"internalType":"uint256","name":"precision","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLargestSafeQueryWindow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"lastInvariant","type":"uint256"},{"internalType":"uint256","name":"lastInvariantAmp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"}],"name":"getLatest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOracleMiscData","outputs":[{"internalType":"int256","name":"logInvariant","type":"int256"},{"internalType":"int256","name":"logTotalSupply","type":"int256"},{"internalType":"uint256","name":"oracleSampleCreationTimestamp","type":"uint256"},{"internalType":"uint256","name":"oracleIndex","type":"uint256"},{"internalType":"bool","name":"oracleEnabled","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"},{"internalType":"uint256","name":"ago","type":"uint256"}],"internalType":"struct IPriceOracle.OracleAccumulatorQuery[]","name":"queries","type":"tuple[]"}],"name":"getPastAccumulators","outputs":[{"internalType":"int256[]","name":"results","type":"int256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getPriceRateCache","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"expires","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRateProviders","outputs":[{"internalType":"contract IRateProvider[]","name":"providers","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getSample","outputs":[{"internalType":"int256","name":"logPairPrice","type":"int256"},{"internalType":"int256","name":"accLogPairPrice","type":"int256"},{"internalType":"int256","name":"logBptPrice","type":"int256"},{"internalType":"int256","name":"accLogBptPrice","type":"int256"},{"internalType":"int256","name":"logInvariant","type":"int256"},{"internalType":"int256","name":"accLogInvariant","type":"int256"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"},{"internalType":"uint256","name":"secs","type":"uint256"},{"internalType":"uint256","name":"ago","type":"uint256"}],"internalType":"struct IPriceOracle.OracleAverageQuery[]","name":"queries","type":"tuple[]"}],"name":"getTimeWeightedAverage","outputs":[{"internalType":"uint256[]","name":"results","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalSamples","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"},{"internalType":"uint256[]","name":"dueProtocolFeeAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"},{"internalType":"uint256[]","name":"dueProtocolFeeAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"indexIn","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256","name":"balanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"balanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"setPriceRateCacheDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawEndValue","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"startAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"updatePriceRateCache","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6103606040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620074d0380380620074d08339810160408190526200005a91620010a1565b805160208201516040830151606084015160c085015160e0860151610100870151610120880151610160890151855189906002146200009b5760006200009e565b60025b8989898a516001600160401b0381118015620000b957600080fd5b50604051908082528060200260200182016040528015620000e4578160200160208202803683370190505b506040805180820190915260018152603160f81b602080830191909152336080526001600160601b031960608a901b1660a05285518c928c928c928c92859285928c928c92849283929183918691620001439160039185019062000de9565b5080516200015990600490602084019062000de9565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005250620001b86276a70083111561019462000833565b620001cc62278d0082111561019562000833565b4290910161014081905201610160528551620001ee906002111560c862000833565b62000208620001fc62000848565b8751111560c962000833565b6200021e866200084d60201b620013d91760201c565b620002298462000859565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200025a908d90600401620012e7565b602060405180830381600087803b1580156200027557600080fd5b505af11580156200028a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002b0919062001088565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002e59084908b908b906004016200124b565b600060405180830381600087803b1580156200030057600080fd5b505af115801562000315573d6000803e3d6000fd5b5050505060609a909a1b6001600160601b031916610180525050506101a0969096525062000352945050506001881015915061012c905062000833565b6200036561138886111561012d62000833565b85516101c0819052865187906000906200037b57fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b8152505086600181518110620003ae57fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b8152505060028111620003e4576000620003fb565b86600281518110620003f257fe5b60200260200101515b60601b6001600160601b03191661022052600381116200041d57600062000434565b866003815181106200042b57fe5b60200260200101515b60601b6001600160601b0319166102405260048111620004565760006200046d565b866004815181106200046457fe5b60200260200101515b6001600160a01b0316610260816001600160a01b031660601b81525050620004b0876000815181106200049c57fe5b6020026020010151620008e560201b60201c565b610280528651620004c990889060019081106200049c57fe5b6102a05260028111620004de576000620004f0565b620004f0876002815181106200049c57fe5b6102c052600381116200050557600062000517565b62000517876003815181106200049c57fe5b6102e052600481116200052c5760006200053e565b6200053e876004815181106200049c57fe5b6103008181525050600062000561876103e86200099160201b620013e31760201c565b90506200056e81620009c2565b50505050505050505050506200059481606001515160021460d26200083360201b60201c565b620005bb8160600151518260800151518360a001515162000a0160201b620014071760201c565b60008160800151600081518110620005cf57fe5b60209081029190910101516001600160601b0319606082901b166103205290506001600160a01b0381161562000686576000806200062d838560a001516000815181106200061957fe5b602002602001015162000a2160201b60201c565b9150915081600d8190555083606001516000815181106200064a57fe5b60200260200101516001600160a01b031660008051602062007490833981519152826040516200067b9190620012fc565b60405180910390a250505b806001600160a01b03168260600151600081518110620006a257fe5b60200260200101516001600160a01b0316600080516020620074b08339815191528460a00151600081518110620006d557fe5b6020026020010151604051620006ec9190620012fc565b60405180910390a3600082608001516001815181106200070857fe5b60209081029190910101516001600160601b0319606082901b166103405290506001600160a01b03811615620007ab5760008062000752838660a001516001815181106200061957fe5b9150915081600e8190555084606001516001815181106200076f57fe5b60200260200101516001600160a01b03166000805160206200749083398151915282604051620007a09190620012fc565b60405180910390a250505b806001600160a01b03168360600151600181518110620007c757fe5b60200260200101516001600160a01b0316600080516020620074b08339815191528560a00151600181518110620007fa57fe5b6020026020010151604051620008119190620012fc565b60405180910390a36101408301516200082a9062000b1f565b50505062001389565b816200084457620008448162000b7d565b5050565b600590565b80620008448162000bd0565b6200086e64e8d4a5100082101560cb62000833565b6200088667016345785d8a000082111560ca62000833565b620008a58160c060085462000c5a60201b62001424179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90620008da908390620012fc565b60405180910390a150565b600080826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200092257600080fd5b505afa15801562000937573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200095d91906200121d565b60ff16905060006200097c60128362000c6f60201b620014391760201c565b600a0a670de0b6b3a764000002949350505050565b6000828202620009b9841580620009b1575083858381620009ae57fe5b04145b600362000833565b90505b92915050565b620009d08180428062000c87565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a023381604051620008da9190620012fc565b62000a1c828414801562000a1457508183145b606762000833565b505050565b600080836001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b15801562000a5e57600080fd5b505afa15801562000a73573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000a99919062001088565b905062000aaf600160801b821061014962000833565b62000ad28342016001600160401b031660c062000d5760201b6200144f1760201c565b62000af3846001600160401b0316608062000d5760201b6200144f1760201c565b62000b14836001600160801b0316600062000d5760201b6200144f1760201c565b171791509250929050565b62000b4c62000b468262000b3262000d5b565b62000d6160201b620014531790919060201c565b62000d80565b7f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead181604051620008da919062001240565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60028151101562000be15762000c57565b60008160008151811062000bf157fe5b602002602001015190506000600190505b825181101562000a1c57600083828151811062000c1b57fe5b6020026020010151905062000c4c816001600160a01b0316846001600160a01b03161060656200083360201b60201c565b915060010162000c02565b50565b6001600160401b03811b1992909216911b1790565b600062000c8183831115600162000833565b50900390565b62000ca8816001600160401b031660c062000d5760201b6200144f1760201c565b62000cc9836001600160401b0316608062000d5760201b6200144f1760201c565b62000cea856001600160401b0316604062000d5760201b6200144f1760201c565b62000d0b876001600160401b0316600062000d5760201b6200144f1760201c565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf29062000d4990869086908690869062001305565b60405180910390a150505050565b1b90565b60085490565b6000620009b98260558562000da560201b6200145d179092919060201c565b62000d9f81600060085462000dce60201b62001484179092919060201c565b60085550565b60006001821b198416828462000dbd57600062000dc0565b60015b60ff16901b17949350505050565b6001600160c01b03828116821b90821b198416179392505050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000e2c57805160ff191683800117855562000e5c565b8280016001018555821562000e5c579182015b8281111562000e5c57825182559160200191906001019062000e3f565b5062000e6a92915062000e6e565b5090565b5b8082111562000e6a576000815560010162000e6f565b8051620009bc8162001373565b600082601f83011262000ea3578081fd5b815162000eba62000eb48262001347565b62001320565b81815291506020808301908481018184028601820187101562000edc57600080fd5b60005b8481101562000f0857815162000ef58162001373565b8452928201929082019060010162000edf565b505050505092915050565b600082601f83011262000f24578081fd5b815162000f3562000eb48262001347565b81815291506020808301908481018184028601820187101562000f5757600080fd5b60005b8481101562000f0857815162000f708162001373565b8452928201929082019060010162000f5a565b600082601f83011262000f94578081fd5b815162000fa562000eb48262001347565b81815291506020808301908481018184028601820187101562000fc757600080fd5b60005b8481101562000f085781518452928201929082019060010162000fca565b80518015158114620009bc57600080fd5b600082601f8301126200100a578081fd5b81516001600160401b0381111562001020578182fd5b602062001036601f8301601f1916820162001320565b925081835284818386010111156200104d57600080fd5b60005b828110156200106d57848101820151848201830152810162001050565b828111156200107f5760008284860101525b50505092915050565b6000602082840312156200109a578081fd5b5051919050565b600060208284031215620010b3578081fd5b81516001600160401b0380821115620010ca578283fd5b8184019150610180808387031215620010e1578384fd5b620010ec8162001320565b9050620010fa868462000e85565b81526020830151828111156200110e578485fd5b6200111c8782860162000ff9565b60208301525060408301518281111562001134578485fd5b620011428782860162000ff9565b6040830152506060830151828111156200115a578485fd5b620011688782860162000e92565b60608301525060808301518281111562001180578485fd5b6200118e8782860162000f13565b60808301525060a083015182811115620011a6578485fd5b620011b48782860162000f83565b60a08301525060c0838101519082015260e08084015190820152610100808401519082015261012080840151908201526101409150620011f78683850162000fe8565b8282015261016091506200120e8683850162000e85565b91810191909152949350505050565b6000602082840312156200122f578081fd5b815160ff81168114620009b9578182fd5b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b81811015620012975762001284855162001367565b835293830193918301916001016200126f565b505084810360408601528551808252908201925081860190845b81811015620012d957620012c6835162001367565b85529383019391830191600101620012b1565b509298975050505050505050565b6020810160038310620012f657fe5b91905290565b90815260200190565b93845260208401929092526040830152606082015260800190565b6040518181016001600160401b03811182821017156200133f57600080fd5b604052919050565b60006001600160401b038211156200135d578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811462000c5757600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c6102605160601c610280516102a0516102c0516102e051610300516103205160601c6103405160601c615fe4620014ac600039806117d85250806117b452508061348e52508061346a5250806134465250806134225250806133fe5250806139e75250806139a552508061396352508061171f528061262e52806132495250806116b752806125d352806131dd525080611cf5525080610b59525080610f2052508061166f52508061164b525080611240525080611ad1525080611b13525080611af2525080610efc525080610e865250615fe46000f3fe608060405234801561001057600080fd5b50600436106102a05760003560e01c80636daccffa11610167578063a457c2d7116100ce578063b867ee5a11610087578063b867ee5a146105d1578063d505accf146105f3578063d5c096c414610606578063dd62ed3e14610619578063eb0f24d61461062c578063ffd088eb14610634576102a0565b8063a457c2d714610575578063a9059cbb14610588578063aaabadc51461059b578063b10be739146105a3578063b48b5b40146105b6578063b7710251146105be576102a0565b8063893d20e811610120578063893d20e8146105145780638d928af81461052957806395d89b41146105315780639b02cdde146105395780639d2c110c1461054f578063a0daaed014610562576102a0565b80636daccffa1461049057806370a08231146104a757806374f3b009146104ba5780637ecebe00146104db578063851c1bb3146104ee57806387ec681714610501576102a0565b80632f1a0bc91161020b57806350dd6ed9116101c457806350dd6ed91461040657806355c67628146104195780636028bfd41461042157806360d1507c14610442578063679aefce146104685780636b84323914610470576102a0565b80632f1a0bc9146103a8578063313ce567146103bb5780633644e515146103d057806338e9922e146103d857806338fff2d0146103eb57806339509351146103f3576102a0565b80631dccd8301161025d5780631dccd830146103375780631dd746ea146103575780631ed4eddc1461035f578063238a2d591461037857806323b872dd1461038d578063292c914a146103a0576102a0565b806301ec954a146102a557806306fdde03146102ce578063095ea7b3146102e357806316c38b3c1461030357806318160ddd146103185780631c0de05114610320575b600080fd5b6102b86102b33660046159fd565b61063c565b6040516102c59190615ced565b60405180910390f35b6102d661069c565b6040516102c59190615ea0565b6102f66102f13660046154e7565b610733565b6040516102c59190615cca565b610316610311366004615755565b61074a565b005b6102b861075e565b610328610764565b6040516102c593929190615cd5565b61034a61034536600461569b565b61078d565b6040516102c59190615c92565b61034a6108b0565b6103676108bf565b6040516102c5959493929190615df3565b610380610911565b6040516102c59190615c0d565b6102f661039b366004615432565b61099e565b610316610a14565b6103166103b6366004615ad0565b610a48565b6103c3610b2b565b6040516102c59190615f21565b6102b8610b34565b6103166103e6366004615ab8565b610b3e565b6102b8610b57565b6102f66104013660046154e7565b610b7b565b610316610414366004615873565b610bb6565b6102b8610bd4565b61043461042f36600461578d565b610be5565b6040516102c5929190615eb3565b610455610450366004615ab8565b610c1c565b6040516102c59796959493929190615dc3565b6102b8610c65565b61048361047e3660046155dd565b610d43565b6040516102c59190615c5a565b610498610df9565b6040516102c593929190615ecc565b6102b86104b53660046153de565b610e14565b6104cd6104c836600461578d565b610e33565b6040516102c5929190615ca5565b6102b86104e93660046153de565b610e67565b6102b86104fc36600461582f565b610e82565b61043461050f36600461578d565b610ed4565b61051c610efa565b6040516102c59190615bf9565b61051c610f1e565b6102d6610f42565b610541610fa3565b6040516102c5929190615ee2565b6102b861055d366004615a6d565b610fad565b6103166105703660046153de565b610fe6565b6102f66105833660046154e7565b611022565b6102f66105963660046154e7565b611060565b61051c61106d565b6102b86105b13660046159c9565b611077565b6102b861110c565b6103166105cc3660046154e7565b611112565b6105e46105df3660046153de565b6111b2565b6040516102c593929190615ef0565b610316610601366004615472565b61120b565b6104cd61061436600461578d565b611354565b6102b86106273660046153fa565b61137b565b6103166113a6565b6102b86113d2565b6000846080015161066961064e610f1e565b6001600160a01b0316336001600160a01b03161460cd61149f565b61067e610674610b57565b82146101f461149f565b6106866114ad565b610692868686866114bd565b9695505050505050565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b820191906000526020600020905b81548152906001019060200180831161070b57829003601f168201915b505050505090505b90565b6000610740338484611518565b5060015b92915050565b610752611580565b61075b816115ae565b50565b60025490565b600080600061077161162c565b15925061077c611649565b915061078661166d565b9050909192565b606081516001600160401b03811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060006107dd611691565b905060005b83518110156108a95773469b58680774aac9ad66447efb4ef634756a2cc56379eaef82600c86848151811061081357fe5b6020026020010151856040518463ffffffff1660e01b815260040161083a93929190615e64565b60206040518083038186803b15801561085257600080fd5b505af4158015610866573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061088a91906159e5565b83828151811061089657fe5b60209081029190910101526001016107e2565b5050919050565b60606108ba6116a3565b905090565b6000806000806000806108d061176c565b90506108db81611772565b95506108e68161177e565b94506108f18161178b565b93506108fc81611798565b9250610907816117a5565b9150509091929394565b60408051600280825260608083018452926020830190803683370190505090506109396117b2565b8160008151811061094657fe5b60200260200101906001600160a01b031690816001600160a01b03168152505061096e6117d6565b8160018151811061097b57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505090565b6000806109ab853361137b565b90506109cf336001600160a01b03871614806109c75750838210155b61019e61149f565b6109da8585856117fa565b336001600160a01b038616148015906109f557506000198114155b15610a0757610a078533858403611518565b60019150505b9392505050565b610a1c6118da565b610a24611580565b610a2e60016118ed565b6000610a3861075e565b1115610a4657610a46611936565b565b610a50611580565b610a60600183101561012c61149f565b610a7161138883111561012d61149f565b6000610a7d8242611439565b9050610a916201518082101561013d61149f565b600080610a9c61198c565b91509150610aad811561013e61149f565b6000610abb866103e86113e3565b90506000838211610aea57610ae5610ad662015180866113e3565b610ae084886113e3565b611a00565b610b04565b610b04610afa62015180846113e3565b610ae086886113e3565b9050610b16600282111561013f61149f565b610b2284834289611a33565b50505050505050565b60055460ff1690565b60006108ba611acd565b610b46611580565b610b4e6118da565b61075b81611b6a565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091610740918590610bb19086611bd5565b611518565b610bbe611580565b610bc66118da565b610bd08282611be7565b5050565b6008546000906108ba9060c0611ce6565b60006060610bfb8651610bf6611cf3565b611d17565b610c1089898989898989611d24611d8e611def565b97509795505050505050565b6000806000806000806000610c37610400891061013b61149f565b6000610c4289611f12565b9050610c4d81611f24565b959f949e50929c50909a509850965090945092505050565b60006060610c71610f1e565b6001600160a01b031663f94d4668610c87610b57565b6040518263ffffffff1660e01b8152600401610ca39190615ced565b60006040518083038186803b158015610cbb57600080fd5b505afa158015610ccf573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610cf79190810190615512565b509150506000610d0561198c565b509050610d1982610d146116a3565b611f87565b6000610d2782846000611fe8565b9050610d3b610d3461075e565b8290612184565b935050505090565b606081516001600160401b0381118015610d5c57600080fd5b50604051908082528060200260200182016040528015610d86578160200160208202803683370190505b5090506000610d93611691565b9050610d9d6151aa565b60005b8451811015610df157848181518110610db557fe5b60200260200101519150610dd282600001518484602001516121d5565b848281518110610dde57fe5b6020908102919091010152600101610da0565b505050919050565b6000806000610e0661198c565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b606080610e3e6114ad565b610e4d89898989898989612266565b9092509050610e5a61162c565b15610c1057610c10611936565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610eb7929190615bb6565b604051602081830303815290604052805190602001209050919050565b60006060610ee58651610bf6611cf3565b610c10898989898989896122e461230a611def565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b600a54600b549091565b60008360800151610fbf61064e610f1e565b610fca610674610b57565b610fd26114ad565b610fdd85858561236b565b95945050505050565b610fef81612452565b1561100157610ffc61247f565b61075b565b61100a81612497565b1561101757610ffc6124b3565b61075b6101356124c6565b60008061102f338561137b565b90508083106110495761104433856000611518565b611056565b6110563385858403611518565b5060019392505050565b60006107403384846117fa565b60006108ba612519565b600073469b58680774aac9ad66447efb4ef634756a2cc5630397bee0600c8461109e611691565b6040518463ffffffff1660e01b81526004016110bc93929190615e18565b60206040518083038186803b1580156110d457600080fd5b505af41580156110e8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061074491906159e5565b61040090565b61111a611580565b61112382612452565b156111885761113181612593565b6111396117b2565b6001600160a01b0316826001600160a01b03167fca6c2c5b6b44b5f3f0c08f0e28e5b6deda1cb38c3fe1113e8031d926c1e8c6d08360405161117b9190615ced565b60405180910390a3610bd0565b61119182612497565b156111a75761119f816125b5565b6111396117d6565b610bd06101356124c6565b60008060006111c0846125d1565b156111e0576111d56111d0612603565b612609565b925092509250611204565b6111e98461262c565b156111f9576111d56111d061265e565b6112046101356124c6565b9193909250565b6112198442111560d161149f565b6001600160a01b0387166000908152600660209081526040808320549051909291611270917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101615d15565b604051602081830303815290604052805190602001209050600061129382612664565b90506000600182888888604051600081526020016040526040516112ba9493929190615da5565b6020604051602081039080840390855afa1580156112dc573d6000803e3d6000fd5b5050604051601f190151915061131e90506001600160a01b0382161580159061131657508b6001600160a01b0316826001600160a01b0316145b6101f861149f565b6001600160a01b038b1660009081526006602052604090206001850190556113478b8b8b611518565b5050505050505050505050565b60608061135f6114ad565b61136e89898989898989612680565b9092509050610c10611936565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113ae611580565b6000806113b961198c565b915091506113c98161014061149f565b610bd0826127a4565b6201de2090565b80610bd0816127df565b6000828202610a0d8415806114005750838583816113fd57fe5b04145b600361149f565b61141f828414801561141857508183145b606761149f565b505050565b6001600160401b03811b1992909216911b1790565b600061144983831115600161149f565b50900390565b1b90565b6000610a0d838360555b60006001821b1984168284611473576000611476565b60015b60ff16901b17949350505050565b6001600160c01b03828116821b90821b198416179392505050565b81610bd057610bd0816124c6565b6114b5612858565b610a46612898565b60006114d183836114cc611cf3565b6128d3565b60606114db6116a3565b90506000865160018111156114ec57fe5b14611503576114fe86868686856128eb565b610692565b6106928686868685612960565b949350505050565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611573908590615ced565b60405180910390a3505050565b60006115976000356001600160e01b031916610e82565b905061075b6115a682336129c4565b61019161149f565b80156115ce576115c96115bf611649565b421061019361149f565b6115e3565b6115e36115d961166d565b42106101a961149f565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611621908390615cca565b60405180910390a150565b600061163661166d565b4211806108ba57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006108ba61169e61176c565b611798565b60606116ad612ab4565b90506116fe6116db7f0000000000000000000000000000000000000000000000000000000000000000612bea565b826000815181106116e857fe5b6020026020010151612c3990919063ffffffff16565b8160008151811061170b57fe5b6020026020010181815250506117506117437f0000000000000000000000000000000000000000000000000000000000000000612bea565b826001815181106116e857fe5b8160018151811061175d57fe5b60200260200101818152505090565b60085490565b60006107448282612c65565b6000610744826016612c65565b600061074482602c612c8c565b600061074482604b612c96565b6000610744826055612c9e565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b6118116001600160a01b038416151561019861149f565b6118286001600160a01b038316151561019961149f565b61183383838361141f565b6001600160a01b03831660009081526020819052604090205461185990826101a0612ca8565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546118889082611bd5565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611573908590615ced565b610a466118e561162c565b61019261149f565b611907611902826118fc61176c565b90611453565b612cbe565b7f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead1816040516116219190615cca565b600061194061176c565b905061194b816117a5565b1561075b5761196561195e600a54612cd3565b8290612d13565b905061198161197a61197561075e565b612cd3565b8290612d20565b905061075b81612cbe565b60008060008060008061199d612d2e565b9350935093509350804210156119f05760019450838311156119d45781810382420385850302816119ca57fe5b04840195506119eb565b81810382420384860302816119e557fe5b04840395505b6119f8565b600094508295505b505050509091565b6000611a0f821515600461149f565b82611a1c57506000610744565b816001840381611a2857fe5b046001019050610744565b611a47816001600160401b031660c061144f565b611a5b836001600160401b0316608061144f565b611a6f856001600160401b0316604061144f565b611a83876001600160401b0316600061144f565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf290611abf908690869086908690615f06565b60405180910390a150505050565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611b3a612d85565b30604051602001611b4f959493929190615d49565b60405160208183030381529060405280519060200120905090565b611b7d64e8d4a5100082101560cb61149f565b611b9367016345785d8a000082111560ca61149f565b600854611ba2908260c0611424565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611621908390615ced565b6000828201610a0d848210158361149f565b6000611bf1610b57565b90506000611bfd610f1e565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611c2a929190615d8e565b60806040518083038186803b158015611c4257600080fd5b505afa158015611c56573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c7a9190615af1565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d49250611cae915085908790600401615d75565b600060405180830381600087803b158015611cc857600080fd5b505af1158015611cdc573d6000803e3d6000fd5b5050505050505050565b1c6001600160401b031690565b7f000000000000000000000000000000000000000000000000000000000000000090565b610bd0818314606761149f565b6000606080611d3161162c565b15611d6957611d698789600081518110611d4757fe5b60200260200101518a600181518110611d5c57fe5b6020026020010151612d89565b611d798b8b8b8b8b8b8b8b612e3e565b9250925092505b985098509895505050505050565b60005b611d99611cf3565b81101561141f57611dd0838281518110611daf57fe5b6020026020010151838381518110611dc357fe5b6020026020010151612184565b838281518110611ddc57fe5b6020908102919091010152600101611d91565b333014611ead576000306001600160a01b0316600036604051611e13929190615bce565b6000604051808303816000865af19150503d8060008114611e50576040519150601f19603f3d011682016040523d82523d6000602084013e611e55565b606091505b505090508060008114611e6457fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114611e8f573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611eb76116a3565b9050611ec38782611f87565b60006060611edb8c8c8c8c8c8c898d8d63ffffffff16565b5091509150611eee81848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b6000908152600c602052604090205490565b6000806000806000806000611f3888612ed3565b9650611f4388612ee0565b9550611f4e88612eed565b9450611f5988612efa565b9350611f6488612f07565b9250611f6f88612f14565b9150611f7a88612f21565b9050919395979092949650565b60005b611f92611cf3565b81101561141f57611fc9838281518110611fa857fe5b6020026020010151838381518110611fbc57fe5b6020026020010151612c39565b838281518110611fd557fe5b6020908102919091010152600101611f8a565b81516000908190815b818110156120295761201f86828151811061200857fe5b602002602001015184611bd590919063ffffffff16565b9250600101611ff1565b508161203a57600092505050610a0d565b600082878302825b60ff81101561216c576000858a60008151811061205b57fe5b60200260200101510290506000600190505b868110156120af576120a561209e612098848e858151811061208b57fe5b60200260200101516113e3565b896113e3565b868c612f2d565b915060010161206d565b508394506121226120f16120d86120cf6120c9878c6113e3565b856113e3565b6103e88d612f2d565b6120eb6120e58a896113e3565b886113e3565b90611bd5565b61211c61210f6121056103e88803866113e3565b6103e88e15612f2d565b6120eb8a600101896113e3565b8b612f2d565b93508484111561214a576001858503116121455783975050505050505050610a0d565b612163565b6001848603116121635783975050505050505050610a0d565b50600101612042565b506121786101426124c6565b50505050509392505050565b6000612193821515600461149f565b826121a057506000610744565b670de0b6b3a7640000838102906121c3908583816121ba57fe5b0414600561149f565b8281816121cc57fe5b04915050610744565b6040516334171a8560e01b815260009073469b58680774aac9ad66447efb4ef634756a2cc5906334171a859061221690600c90889088908890600401615e39565b60206040518083038186803b15801561222e57600080fd5b505af4158015612242573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061151091906159e5565b6060808861227561064e610f1e565b612280610674610b57565b606061228a6116a3565b90506122968882611f87565b60006060806122ab8e8e8e8e8e8e8a8f611d24565b9250925092506122bb8d84612f4d565b6122c58285611d8e565b6122cf8185611d8e565b909550935050505b5097509795505050505050565b60006060806122fa8789600081518110611d4757fe5b611d798b8b8b8b8b8b8b8b612f57565b60005b612315611cf3565b81101561141f5761234c83828151811061232b57fe5b602002602001015183838151811061233f57fe5b6020026020010151612fb0565b83828151811061235857fe5b602090810291909101015260010161230d565b60008061237b8560200151612ffe565b9050600061238c8660400151612ffe565b905060008651600181111561239d57fe5b1415612403576123b08660600151613023565b60608701526123bf8583613044565b94506123cb8482613044565b93506123db866060015183613044565b606087015260006123ed878787613050565b90506123f98183613089565b9350505050610a0d565b61240d8583613044565b94506124198482613044565b9350612429866060015182613044565b6060870152600061243b878787613095565b905061244781846130c4565b90506123f9816130d0565b600061245d826125d1565b80156107445750600061246e6117b2565b6001600160a01b0316141592915050565b610a4661249261248d612603565b6130f6565b612593565b60006124a28261262c565b80156107445750600061246e6117d6565b610a466124c161248d61265e565b6125b5565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6000612523610f1e565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561255b57600080fd5b505afa15801561256f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ba9190615857565b6000806125a76125a16117b2565b84613103565b9150915061141f82826131d4565b6000806125c36125a16117d6565b9150915061141f8282613240565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b600d5490565b6000806000612617846132a0565b9250612622846132ac565b9395909450915050565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b600e5490565b600061266e611acd565b82604051602001610eb7929190615bde565b6060808861268f61064e610f1e565b61269a610674610b57565b60606126a46116a3565b90506126ae61075e565b61275457600060606126c38d8d8d868b6132cc565b915091506126d8620f424083101560cc61149f565b6126e66000620f424061335b565b6126f58b620f4240840361335b565b6126ff818461230a565b80612708611cf3565b6001600160401b038111801561271d57600080fd5b50604051908082528060200260200182016040528015612747578160200160208202803683370190505b50955095505050506122d7565b61275e8882611f87565b60006060806127738e8e8e8e8e8e8a8f6122e4565b9250925092506127838c8461335b565b61278d828561230a565b6127978185611d8e565b90955093506122d7915050565b6127b081824242611a33565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516116219190615ced565b6002815110156127ee5761075b565b6000816000815181106127fd57fe5b602002602001015190506000600190505b825181101561141f57600083828151811061282557fe5b6020026020010151905061284e816001600160a01b0316846001600160a01b031610606561149f565b915060010161280e565b60006128626117b2565b6001600160a01b031614610a465760008061288361287e612603565b6132ac565b9150915080421115610bd057610bd082612593565b60006128a26117d6565b6001600160a01b031614610a46576000806128be61287e61265e565b9150915080421115610bd057610bd0826125b5565b61141f81841080156128e457508183105b606461149f565b60006128f78583611f87565b612918866060015183858151811061290b57fe5b6020026020010151613044565b6060870152600061292b87878787613365565b905061294a8184878151811061293d57fe5b60200260200101516130c4565b9050612955816130d0565b979650505050505050565b600061296f8660600151613023565b606087015261297e8583611f87565b612992866060015183868151811061290b57fe5b606087015260006129a58787878761339d565b9050612955818486815181106129b757fe5b6020026020010151613089565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6129e3610efa565b6001600160a01b0316141580156129fe57506129fe836133c0565b15612a2657612a0b610efa565b6001600160a01b0316336001600160a01b0316149050610744565b612a2e612519565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612a5d93929190615cf6565b60206040518083038186803b158015612a7557600080fd5b505afa158015612a89573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612aad9190615771565b9050610744565b60606000612ac0611cf3565b90506060816001600160401b0381118015612ada57600080fd5b50604051908082528060200260200182016040528015612b04578160200160208202803683370190505b5090508115612b3357612b156133fc565b81600081518110612b2257fe5b602002602001018181525050612b3c565b91506107309050565b6001821115612b3357612b4d613420565b81600181518110612b5a57fe5b6020026020010181815250506002821115612b3357612b77613444565b81600281518110612b8457fe5b6020026020010181815250506003821115612b3357612ba1613468565b81600381518110612bae57fe5b6020026020010181815250506004821115612b3357612bcb61348c565b81600481518110612bd857fe5b60200260200101818152505091505090565b6000612bf582612452565b15612c1157612c0a612c05612603565b6132a0565b9050610e2e565b612c1a82612497565b15612c2a57612c0a612c0561265e565b50670de0b6b3a7640000610e2e565b6000828202612c538415806114005750838583816113fd57fe5b670de0b6b3a764000090049392505050565b600082821c623fffff16621fffff8113612c7f5780611510565b623fffff19179392505050565b1c637fffffff1690565b1c6103ff1690565b1c60019081161490565b6000612cb7848411158361149f565b5050900390565b600854612ccd90826000611484565b60085550565b600080612cdf836134b0565b90506000808213612cf857652d79883d20008203612d02565b652d79883d200082015b655af3107a40009005949350505050565b6000610a0d83838361350d565b6000610a0d8383601661350d565b600080600080612d4a6000600954611ce690919063ffffffff16565b600954909450612d5b906040611ce6565b600954909350612d6c906080611ce6565b600954909250612d7d9060c0611ce6565b905090919293565b4690565b6000612d9361176c565b90506000612d9f61198c565b509050612dab826117a5565b8015612db657508443115b15612e3757600080612dd2838787612dcd8861177e565b613524565b915091506000612de185611798565b90506000612dee8661178b565b90506000612e0782848787612e028c611772565b613559565b9050808314612e3157612e1a87826135b0565b9650612e2687426135be565b9650612e3187612cbe565b50505050505b5050505050565b6000606080612e4b61162c565b15612e6e57612e5a88876135cc565b9050612e6988826114396136b8565b612eb9565b612e76611cf3565b6001600160401b0381118015612e8b57600080fd5b50604051908082528060200260200182016040528015612eb5578160200160208202803683370190505b5090505b612ec4888686613723565b9093509150611d80888361378f565b60006107448260ea612c65565b60006107448260b56137be565b600061074482609f612c65565b600061074482606a6137be565b6000610744826054612c65565b600061074482601f6137be565b60006107448282612c8c565b600081612f4357612f3e84846137f1565b611510565b6115108484611a00565b610bd08282613811565b6000606080612f646118da565b6060612f7089886135cc565b9050612f7f89826114396136b8565b60006060612f8e8b89896138cd565b91509150612f9c8b82613926565b909d909c50909a5098505050505050505050565b6000612fbf821515600461149f565b82612fcc57506000610744565b670de0b6b3a764000083810290612fe6908583816121ba57fe5b826001820381612ff257fe5b04600101915050610744565b60008061300a83613933565b9050600061301784612bea565b90506115108282612c39565b600080613038613031610bd4565b8490613a32565b9050610a0d8382611439565b6000610a0d8383612c39565b600061306761305d611cf3565b60021460d261149f565b6060600080613077878787613a6e565b9250925092506129558784848461339d565b6000610a0d8383612184565b60006130a261305d611cf3565b60606000806130b2878787613a6e565b92509250925061295587848484613365565b6000610a0d8383612fb0565b60006107446130ef6130e0610bd4565b670de0b6b3a764000090611439565b8390612fb0565b6000610744826080611ce6565b600080836001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b15801561313f57600080fd5b505afa158015613153573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061317791906159e5565b905061318b600160801b821061014961149f565b6131a18342016001600160401b031660c061144f565b6131b5846001600160401b0316608061144f565b6131c9836001600160801b0316600061144f565b171791509250929050565b81600d819055507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60405180910390a25050565b81600e819055507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60006107448282613b2f565b6000806132b8836130f6565b91506132c58360c0611ce6565b9050915091565b600060606132d86118da565b60006132e384613b3c565b90506132fe60008260028111156132f657fe5b1460ce61149f565b606061330985613b52565b90506133188151610bf6611cf3565b6133228187611f87565b600061332c61198c565b509050600061333d82846001611fe8565b90508061334a8184613b68565b9b929a509198505050505050505050565b610bd08282613b73565b60006133918560a001518560008151811061337c57fe5b602002602001015186600181518110611d5c57fe5b610fdd85858585613c01565b60006133b48560a001518560008151811061337c57fe5b610fdd85858585613c2b565b60006133d2632f1a0bc960e01b610e82565b8214806133ed57506133ea637587926b60e11b610e82565b82145b80610744575061074482613c55565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006134c060008313606461149f565b670c7d713b49da0000821380156134de5750670f43fc2c04ee000082125b1561350457670de0b6b3a76400006134f583613c87565b816134fc57fe5b059050610e2e565b612c0a82613da5565b623fffff828116821b90821b198416179392505050565b6000806000613534878787614144565b905061354281878787614203565b915061354d81612cd3565b92505094509492505050565b6000806135758585854261356c8b611f12565b9392919061422e565b905060784288900310158061358a5786613593565b61359387614280565b6000818152600c6020526040902092909255509695505050505050565b6000610a0d8383604b61428d565b6000610a0d8383602c61429d565b6060806135d7611cf3565b6001600160401b03811180156135ec57600080fd5b50604051908082528060200260200182016040528015613616578160200160208202803683370190505b50905082613625579050610744565b6000808560008151811061363557fe5b602002602001015190506000600190505b61364e611cf3565b81101561368557600087828151811061366357fe5b602002602001015190508281111561367c578193508092505b50600101613646565b50613697600b5487600a5485896142af565b8383815181106136a357fe5b60209081029190910101525090949350505050565b60005b6136c3611cf3565b81101561371d576136fe8482815181106136d957fe5b60200260200101518483815181106136ed57fe5b60200260200101518463ffffffff16565b84828151811061370a57fe5b60209081029190910101526001016136bb565b50505050565b60006060600061373284613b3c565b9050600081600281111561374257fe5b141561375c57613752868561432f565b9250925050613787565b600181600281111561376a57fe5b141561377a5761375286856143f9565b61375286868661442b565b505b935093915050565b61379c82826114396136b8565b60006137a661198c565b50905061141f6137b882856001611fe8565b82613b68565b600082821c661fffffffffffff16660fffffffffffff81136137e05780611510565b661fffffffffffff19179392505050565b6000613800821515600461149f565b81838161380957fe5b049392505050565b6138286001600160a01b038316151561019b61149f565b6138348260008361141f565b6001600160a01b03821660009081526020819052604090205461385a90826101a1612ca8565b6001600160a01b03831660009081526020819052604090205560025461388090826144a7565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b60405180910390a35050565b6000606060006138dc84613b3c565b905060018160028111156138ec57fe5b14156138fd576137528686866144b5565b600281600281111561390b57fe5b141561391b57613752868561451f565b6137856101366124c6565b61379c8282611bd56136b8565b600061393e826125d1565b1561394b57612c0a6133fc565b6139548261262c565b1561396157612c0a613420565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139a357612c0a613444565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139e557612c0a613468565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415613a2757612c0a61348c565b610e2e6101356124c6565b6000828202613a4c8415806114005750838583816113fd57fe5b80613a5b576000915050610744565b670de0b6b3a76400006000198201612ff2565b60408051600280825260608281019093526000918291816020016020820280368337019050509250613aa386602001516125d1565b15613ae95760009150600190508483600081518110613abe57fe5b6020026020010181815250508383600181518110613ad857fe5b602002602001018181525050613b26565b60009050600191508383600081518110613aff57fe5b6020026020010181815250508483600181518110613b1957fe5b6020026020010181815250505b93509350939050565b1c6001600160801b031690565b60008180602001905181019061074491906158c0565b606081806020019051810190610a0d9190615985565b600a91909155600b55565b613b7f6000838361141f565b600254613b8c9082611bd5565b6002556001600160a01b038216600090815260208190526040902054613bb29082611bd5565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b6000613c0b6118da565b6000613c1561198c565b5090506000612955828787878b606001516145b3565b6000613c356118da565b6000613c3f61198c565b5090506000612955828787878b6060015161466b565b6000613c67631c74c91760e11b610e82565b8214806107445750613c7f6350dd6ed960e01b610e82565b909114919050565b670de0b6b3a7640000026000806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281613cc257fe5b05905060006a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613de157613dd7826a0c097ce7bc90715b34b9f160241b81613dd157fe5b05613da5565b6000039050610e2e565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e3257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613e6a576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613eb2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613eed576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f2457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f5b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613f905768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613fbb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312613ff0576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614025576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614059576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac831261408d576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140b057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60008061415c85614155868661470d565b6001611fe8565b90506103e86002860204600061417c8361417681856113e3565b90611439565b9050600061419786614191856002028a6113e3565b90612c39565b905060006141c06141a88489612c39565b6141766141b98a614191898d6113e3565b8590611bd5565b905060006141e96141d1858b612c39565b6141766141e28c6141918a8f6113e3565b8690611bd5565b90506141f58282612fb0565b9a9950505050505050505050565b6000806142136141e28786613a32565b9050600061422082612cd3565b939093039695505050505050565b60008061423a87612f21565b83039050600081870261424c89612ee0565b019050600082870261425d8a612efa565b019050600083870261426e8b612f14565b0190506141f589848a858b868c614767565b60006107448260016147c7565b6103ff811b1992909216911b1790565b637fffffff811b1992909216911b1790565b6000806142be878787876147cf565b9050808685815181106142cd57fe5b6020026020010151116142e4576000915050610fdd565b6000818786815181106142f357fe5b6020026020010151039050614323670de0b6b3a764000061431d8684612c3990919063ffffffff16565b90612184565b98975050505050505050565b6000606061433b6118da565b60008061434785614978565b9150915061435f614356611cf3565b8210606461149f565b6060614369611cf3565b6001600160401b038111801561437e57600080fd5b506040519080825280602002602001820160405280156143a8578160200160208202803683370190505b50905060006143b561198c565b5090506143d4818985876143c761075e565b6143cf610bd4565b61499a565b8284815181106143e057fe5b6020908102919091010152509196919550909350505050565b60006060600061440884614ab6565b9050606061441e868361441961075e565b614acc565b9196919550909350505050565b600060606144376118da565b6060600061444485614b67565b915091506144558251610bf6611cf3565b61445f8287611f87565b600061446961198c565b5090506000614489828a8661447c61075e565b614484610bd4565b614b7f565b90506144998382111560cf61149f565b989297509195505050505050565b6000610a0d83836001612ca8565b600060608060006144c585614b67565b915091506144db6144d4611cf3565b8351611d17565b6144e58287611f87565b60006144ef61198c565b509050600061450f828a8661450261075e565b61450a610bd4565b614e13565b90506144998382101560d061149f565b6000606060008061452f85614978565b9150915061453e614356611cf3565b6060614548611cf3565b6001600160401b038111801561455d57600080fd5b50604051908082528060200260200182016040528015614587578160200160208202803683370190505b509050600061459461198c565b5090506143d4818985876145a661075e565b6145ae610bd4565b615089565b6000806145c287876001611fe8565b90506145ea838786815181106145d457fe5b602002602001015161143990919063ffffffff16565b8685815181106145f657fe5b6020026020010181815250506000614610888884896147cf565b90508387868151811061461f57fe5b60200260200101510187868151811061463457fe5b60200260200101818152505061432360016120eb89898151811061465457fe5b60200260200101518461143990919063ffffffff16565b60008061467a87876001611fe8565b90506146a28387878151811061468c57fe5b6020026020010151611bd590919063ffffffff16565b8686815181106146ae57fe5b60200260200101818152505060006146c8888884886147cf565b9050838787815181106146d757fe5b6020026020010151038787815181106146ec57fe5b6020026020010181815250506143236001614176838a89815181106145d457fe5b6040805160028082526060808301845292602083019080368337019050509050828160008151811061473b57fe5b602002602001018181525050818160018151811061475557fe5b60200260200101818152505092915050565b6000614773828261144f565b61477e84601f615166565b614789866054615177565b61479488606a615166565b61479f8a609f615177565b6147aa8c60b5615166565b6147b58e60ea615177565b17171717171798975050505050505050565b016103ff1690565b6000808451860290506000856000815181106147e757fe5b60200260200101519050600086518760008151811061480257fe5b60200260200101510290506000600190505b875181101561485b5761484061483a614833848b858151811061208b57fe5b8a516113e3565b886137f1565b915061485188828151811061200857fe5b9250600101614814565b5086858151811061486857fe5b602002602001015182039150600061488087886113e3565b905060006148ac6148a061489884610ae089886113e3565b6103e86113e3565b8a898151811061208b57fe5b905060006148c06141e26148988b896137f1565b90506000806148dc6148d28686611bd5565b610ae08d86611bd5565b905060005b60ff81101561495c578192506149116148fe866120eb85866113e3565b610ae08e614176886120eb8860026113e3565b91508282111561493a57600183830311614935575097506115109650505050505050565b614954565b600182840311614954575097506115109650505050505050565b6001016148e1565b506149686101426124c6565b5050505050505050949350505050565b6000808280602001905181019061498f919061594f565b909590945092505050565b6000806149a988886001611fe8565b905060006149cb826149c5876149bf818b611439565b90612fb0565b90613a32565b905060006149db8a8a848b6147cf565b905060006149ef828b8b815181106145d457fe5b90506000805b8b51811015614a2e57614a248c8281518110614a0d57fe5b602002602001015183611bd590919063ffffffff16565b91506001016149f5565b506000614a57828d8d81518110614a4157fe5b602002602001015161218490919063ffffffff16565b90506000614a6482615184565b90506000614a728583613a32565b90506000614a808683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612c39565b8290611bd5565b99505050505050505050509695505050505050565b600081806020019051810190610a0d9190615922565b60606000614ada8484612184565b9050606085516001600160401b0381118015614af557600080fd5b50604051908082528060200260200182016040528015614b1f578160200160208202803683370190505b50905060005b8651811015614b5d57614b3e838883815181106116e857fe5b828281518110614b4a57fe5b6020908102919091010152600101614b25565b5095945050505050565b606060008280602001905181019061498f91906158dc565b600080805b8651811015614ba657614b9c878281518110614a0d57fe5b9150600101614b84565b50606085516001600160401b0381118015614bc057600080fd5b50604051908082528060200260200182016040528015614bea578160200160208202803683370190505b5090506000805b8851811015614cb1576000614c22858b8481518110614c0c57fe5b6020026020010151612fb090919063ffffffff16565b9050614c5e8a8381518110614c3357fe5b60200260200101516149bf8b8581518110614c4a57fe5b60200260200101518d86815181106145d457fe5b848381518110614c6a57fe5b602002602001018181525050614ca6614c9f82868581518110614c8957fe5b6020026020010151613a3290919063ffffffff16565b8490611bd5565b925050600101614bf1565b50606088516001600160401b0381118015614ccb57600080fd5b50604051908082528060200260200182016040528015614cf5578160200160208202803683370190505b50905060005b8951811015614dc0576000848281518110614d1257fe5b6020026020010151841115614d79576000614d3b614d2f86615184565b8d85815181106116e857fe5b90506000614d4f828d86815181106145d457fe5b9050614d70614d6982670de0b6b3a76400008d9003612fb0565b8390611bd5565b92505050614d90565b898281518110614d8557fe5b602002602001015190505b614da0818c84815181106145d457fe5b838381518110614dac57fe5b602090810291909101015250600101614cfb565b506000614dcf8b8b6001611fe8565b90506000614ddf8c846000611fe8565b90506000614ded8284612184565b9050614e02614dfb82615184565b8b90613a32565b9d9c50505050505050505050505050565b600080805b8651811015614e3a57614e30878281518110614a0d57fe5b9150600101614e18565b50606085516001600160401b0381118015614e5457600080fd5b50604051908082528060200260200182016040528015614e7e578160200160208202803683370190505b5090506000805b8851811015614f12576000614ea0858b8481518110614a4157fe5b9050614edc8a8381518110614eb157fe5b602002602001015161431d8b8581518110614ec857fe5b60200260200101518d868151811061468c57fe5b848381518110614ee857fe5b602002602001018181525050614f07614c9f828685815181106116e857fe5b925050600101614e85565b50606088516001600160401b0381118015614f2c57600080fd5b50604051908082528060200260200182016040528015614f56578160200160208202803683370190505b50905060005b895181101561501757600083858381518110614f7457fe5b60200260200101511115614fd0576000614f99614d2f86670de0b6b3a7640000611439565b90506000614fad828d86815181106145d457fe5b9050614fc7614d6982670de0b6b3a76400008d9003612c39565b92505050614fe7565b898281518110614fdc57fe5b602002602001015190505b614ff7818c848151811061468c57fe5b83838151811061500357fe5b602090810291909101015250600101614f5c565b5060006150268b8b6001611fe8565b905060006150368c846000611fe8565b905060006150448284612184565b9050670de0b6b3a76400008111156150795761506b8a670de0b6b3a763ffff198301612c39565b975050505050505050610fdd565b6000975050505050505050610fdd565b60008061509888886001611fe8565b905060006150ae826149c5876149bf818b611bd5565b905060006150be8a8a848b6147cf565b905060006150e88a8a815181106150d157fe5b60200260200101518361143990919063ffffffff16565b90506000805b8b51811015615110576151068c8281518110614a0d57fe5b91506001016150ee565b506000615123828d8d81518110614a4157fe5b9050600061513082615184565b9050600061513e8583613a32565b9050600061514c8683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612fb0565b661fffffffffffff91909116901b90565b623fffff91909116901b90565b6000670de0b6b3a7640000821061519c576000610744565b50670de0b6b3a76400000390565b604080518082019091526000808252602082015290565b803561074481615f7e565b600082601f8301126151dc578081fd5b81356151ef6151ea82615f55565b615f2f565b81815291506020808301908481018184028601820187101561521057600080fd5b60005b8481101561522f57813584529282019290820190600101615213565b505050505092915050565b600082601f83011261524a578081fd5b81516152586151ea82615f55565b81815291506020808301908481018184028601820187101561527957600080fd5b60005b8481101561522f5781518452928201929082019060010161527c565b600082601f8301126152a8578081fd5b81356001600160401b038111156152bd578182fd5b6152d0601f8201601f1916602001615f2f565b91508082528360208285010111156152e757600080fd5b8060208401602084013760009082016020015292915050565b80356002811061074457600080fd5b803561074481615fa1565b600061012080838503121561532d578182fd5b61533681615f2f565b9150506153438383615300565b815261535283602084016151c1565b602082015261536483604084016151c1565b6040820152606082013560608201526080820135608082015260a082013560a08201526153948360c084016151c1565b60c08201526153a68360e084016151c1565b60e0820152610100808301356001600160401b038111156153c657600080fd5b6153d285828601615298565b82840152505092915050565b6000602082840312156153ef578081fd5b8135610a0d81615f7e565b6000806040838503121561540c578081fd5b823561541781615f7e565b9150602083013561542781615f7e565b809150509250929050565b600080600060608486031215615446578081fd5b833561545181615f7e565b9250602084013561546181615f7e565b929592945050506040919091013590565b600080600080600080600060e0888a03121561548c578485fd5b873561549781615f7e565b965060208801356154a781615f7e565b95506040880135945060608801359350608088013560ff811681146154ca578384fd5b9699959850939692959460a0840135945060c09093013592915050565b600080604083850312156154f9578182fd5b823561550481615f7e565b946020939093013593505050565b600080600060608486031215615526578081fd5b83516001600160401b038082111561553c578283fd5b818601915086601f83011261554f578283fd5b815161555d6151ea82615f55565b80828252602080830192508086018b82838702890101111561557d578788fd5b8796505b848710156155a857805161559481615f7e565b845260019690960195928101928101615581565b5089015190975093505050808211156155bf578283fd5b506155cc8682870161523a565b925050604084015190509250925092565b600060208083850312156155ef578182fd5b82356001600160401b03811115615604578283fd5b8301601f81018513615614578283fd5b80356156226151ea82615f55565b818152838101908385016040808502860187018a1015615640578788fd5b8795505b8486101561568d5780828b03121561565a578788fd5b61566381615f2f565b61566d8b8461530f565b815282880135888201528452600195909501949286019290810190615644565b509098975050505050505050565b600060208083850312156156ad578182fd5b82356001600160401b038111156156c2578283fd5b8301601f810185136156d2578283fd5b80356156e06151ea82615f55565b818152838101908385016060808502860187018a10156156fe578788fd5b8795505b8486101561568d5780828b031215615718578788fd5b61572181615f2f565b61572b8b8461530f565b81528288013588820152604080840135908201528452600195909501949286019290810190615702565b600060208284031215615766578081fd5b8135610a0d81615f93565b600060208284031215615782578081fd5b8151610a0d81615f93565b600080600080600080600060e0888a0312156157a7578081fd5b8735965060208801356157b981615f7e565b955060408801356157c981615f7e565b945060608801356001600160401b03808211156157e4578283fd5b6157f08b838c016151cc565b955060808a0135945060a08a0135935060c08a0135915080821115615813578283fd5b506158208a828b01615298565b91505092959891949750929550565b600060208284031215615840578081fd5b81356001600160e01b031981168114610a0d578182fd5b600060208284031215615868578081fd5b8151610a0d81615f7e565b60008060408385031215615885578182fd5b823561589081615f7e565b915060208301356001600160401b038111156158aa578182fd5b6158b685828601615298565b9150509250929050565b6000602082840312156158d1578081fd5b8151610a0d81615fa1565b6000806000606084860312156158f0578081fd5b83516158fb81615fa1565b60208501519093506001600160401b03811115615916578182fd5b6155cc8682870161523a565b60008060408385031215615934578182fd5b825161593f81615fa1565b6020939093015192949293505050565b600080600060608486031215615963578081fd5b835161596e81615fa1565b602085015160409095015190969495509392505050565b60008060408385031215615997578182fd5b82516159a281615fa1565b60208401519092506001600160401b038111156159bd578182fd5b6158b68582860161523a565b6000602082840312156159da578081fd5b8135610a0d81615fa1565b6000602082840312156159f6578081fd5b5051919050565b60008060008060808587031215615a12578182fd5b84356001600160401b0380821115615a28578384fd5b615a348883890161531a565b95506020870135915080821115615a49578384fd5b50615a56878288016151cc565b949794965050505060408301359260600135919050565b600080600060608486031215615a81578081fd5b83356001600160401b03811115615a96578182fd5b615aa28682870161531a565b9660208601359650604090950135949350505050565b600060208284031215615ac9578081fd5b5035919050565b60008060408385031215615ae2578182fd5b50508035926020909101359150565b60008060008060808587031215615b06578182fd5b8451935060208501519250604085015191506060850151615b2681615f7e565b939692955090935050565b6000815180845260208085019450808401835b83811015615b6057815187529582019590820190600101615b44565b509495945050505050565b60008151808452815b81811015615b9057602081850181015186830182015201615b74565b81811115615ba15782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015615c4e5783516001600160a01b031683529284019291840191600101615c29565b50909695505050505050565b6020808252825182820181905260009190848201906040850190845b81811015615c4e57835183529284019291840191600101615c76565b600060208252610a0d6020830184615b31565b600060408252615cb86040830185615b31565b8281036020840152610fdd8185615b31565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526115106040830184615b6b565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b968752602087019590955260408601939093526060850191909152608084015260a083015260c082015260e00190565b9485526020850193909352604084019190915260608301521515608082015260a00190565b83815260608101615e2884615f74565b602082019390935260400152919050565b84815260808101615e4985615f74565b84602083015283604083015282606083015295945050505050565b838152825160a0820190615e7781615f74565b806020840152506020840151604083015260408401516060830152826080830152949350505050565b600060208252610a0d6020830184615b6b565b6000838252604060208301526115106040830184615b31565b9283529015156020830152604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b6040518181016001600160401b0381118282101715615f4d57600080fd5b604052919050565b60006001600160401b03821115615f6a578081fd5b5060209081020190565b6003811061075b57fe5b6001600160a01b038116811461075b57600080fd5b801515811461075b57600080fd5b6003811061075b57600080fdfea264697066735822122044502cf530b7900edafa18cb886436fdae711dd37bb442b33f34a42b6235128c64736f6c63430007010033c1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affcca6c2c5b6b44b5f3f0c08f0e28e5b6deda1cb38c3fe1113e8031d926c1e8c6d00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c0000000000000000000000000000000000000000000000000000000000000003200000000000000000000000000000000000000000000000000016bcc41e9000000000000000000000000000000000000000000000000000000000000007563080000000000000000000000000000000000000000000000000000000000278d0000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001a42616c616e63657220737445544820537461626c6520506f6f6c000000000000000000000000000000000000000000000000000000000000000000000000000e422d73744554482d535441424c4500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000000000000000000000000000000000000000000200000000000000000000000072d07d7dca67b8a406ad1ec34ce969c90bfee768000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000002a300000000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102a05760003560e01c80636daccffa11610167578063a457c2d7116100ce578063b867ee5a11610087578063b867ee5a146105d1578063d505accf146105f3578063d5c096c414610606578063dd62ed3e14610619578063eb0f24d61461062c578063ffd088eb14610634576102a0565b8063a457c2d714610575578063a9059cbb14610588578063aaabadc51461059b578063b10be739146105a3578063b48b5b40146105b6578063b7710251146105be576102a0565b8063893d20e811610120578063893d20e8146105145780638d928af81461052957806395d89b41146105315780639b02cdde146105395780639d2c110c1461054f578063a0daaed014610562576102a0565b80636daccffa1461049057806370a08231146104a757806374f3b009146104ba5780637ecebe00146104db578063851c1bb3146104ee57806387ec681714610501576102a0565b80632f1a0bc91161020b57806350dd6ed9116101c457806350dd6ed91461040657806355c67628146104195780636028bfd41461042157806360d1507c14610442578063679aefce146104685780636b84323914610470576102a0565b80632f1a0bc9146103a8578063313ce567146103bb5780633644e515146103d057806338e9922e146103d857806338fff2d0146103eb57806339509351146103f3576102a0565b80631dccd8301161025d5780631dccd830146103375780631dd746ea146103575780631ed4eddc1461035f578063238a2d591461037857806323b872dd1461038d578063292c914a146103a0576102a0565b806301ec954a146102a557806306fdde03146102ce578063095ea7b3146102e357806316c38b3c1461030357806318160ddd146103185780631c0de05114610320575b600080fd5b6102b86102b33660046159fd565b61063c565b6040516102c59190615ced565b60405180910390f35b6102d661069c565b6040516102c59190615ea0565b6102f66102f13660046154e7565b610733565b6040516102c59190615cca565b610316610311366004615755565b61074a565b005b6102b861075e565b610328610764565b6040516102c593929190615cd5565b61034a61034536600461569b565b61078d565b6040516102c59190615c92565b61034a6108b0565b6103676108bf565b6040516102c5959493929190615df3565b610380610911565b6040516102c59190615c0d565b6102f661039b366004615432565b61099e565b610316610a14565b6103166103b6366004615ad0565b610a48565b6103c3610b2b565b6040516102c59190615f21565b6102b8610b34565b6103166103e6366004615ab8565b610b3e565b6102b8610b57565b6102f66104013660046154e7565b610b7b565b610316610414366004615873565b610bb6565b6102b8610bd4565b61043461042f36600461578d565b610be5565b6040516102c5929190615eb3565b610455610450366004615ab8565b610c1c565b6040516102c59796959493929190615dc3565b6102b8610c65565b61048361047e3660046155dd565b610d43565b6040516102c59190615c5a565b610498610df9565b6040516102c593929190615ecc565b6102b86104b53660046153de565b610e14565b6104cd6104c836600461578d565b610e33565b6040516102c5929190615ca5565b6102b86104e93660046153de565b610e67565b6102b86104fc36600461582f565b610e82565b61043461050f36600461578d565b610ed4565b61051c610efa565b6040516102c59190615bf9565b61051c610f1e565b6102d6610f42565b610541610fa3565b6040516102c5929190615ee2565b6102b861055d366004615a6d565b610fad565b6103166105703660046153de565b610fe6565b6102f66105833660046154e7565b611022565b6102f66105963660046154e7565b611060565b61051c61106d565b6102b86105b13660046159c9565b611077565b6102b861110c565b6103166105cc3660046154e7565b611112565b6105e46105df3660046153de565b6111b2565b6040516102c593929190615ef0565b610316610601366004615472565b61120b565b6104cd61061436600461578d565b611354565b6102b86106273660046153fa565b61137b565b6103166113a6565b6102b86113d2565b6000846080015161066961064e610f1e565b6001600160a01b0316336001600160a01b03161460cd61149f565b61067e610674610b57565b82146101f461149f565b6106866114ad565b610692868686866114bd565b9695505050505050565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b820191906000526020600020905b81548152906001019060200180831161070b57829003601f168201915b505050505090505b90565b6000610740338484611518565b5060015b92915050565b610752611580565b61075b816115ae565b50565b60025490565b600080600061077161162c565b15925061077c611649565b915061078661166d565b9050909192565b606081516001600160401b03811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060006107dd611691565b905060005b83518110156108a95773469b58680774aac9ad66447efb4ef634756a2cc56379eaef82600c86848151811061081357fe5b6020026020010151856040518463ffffffff1660e01b815260040161083a93929190615e64565b60206040518083038186803b15801561085257600080fd5b505af4158015610866573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061088a91906159e5565b83828151811061089657fe5b60209081029190910101526001016107e2565b5050919050565b60606108ba6116a3565b905090565b6000806000806000806108d061176c565b90506108db81611772565b95506108e68161177e565b94506108f18161178b565b93506108fc81611798565b9250610907816117a5565b9150509091929394565b60408051600280825260608083018452926020830190803683370190505090506109396117b2565b8160008151811061094657fe5b60200260200101906001600160a01b031690816001600160a01b03168152505061096e6117d6565b8160018151811061097b57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505090565b6000806109ab853361137b565b90506109cf336001600160a01b03871614806109c75750838210155b61019e61149f565b6109da8585856117fa565b336001600160a01b038616148015906109f557506000198114155b15610a0757610a078533858403611518565b60019150505b9392505050565b610a1c6118da565b610a24611580565b610a2e60016118ed565b6000610a3861075e565b1115610a4657610a46611936565b565b610a50611580565b610a60600183101561012c61149f565b610a7161138883111561012d61149f565b6000610a7d8242611439565b9050610a916201518082101561013d61149f565b600080610a9c61198c565b91509150610aad811561013e61149f565b6000610abb866103e86113e3565b90506000838211610aea57610ae5610ad662015180866113e3565b610ae084886113e3565b611a00565b610b04565b610b04610afa62015180846113e3565b610ae086886113e3565b9050610b16600282111561013f61149f565b610b2284834289611a33565b50505050505050565b60055460ff1690565b60006108ba611acd565b610b46611580565b610b4e6118da565b61075b81611b6a565b7f32296969ef14eb0c6d29669c550d4a044913023000020000000000000000008090565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091610740918590610bb19086611bd5565b611518565b610bbe611580565b610bc66118da565b610bd08282611be7565b5050565b6008546000906108ba9060c0611ce6565b60006060610bfb8651610bf6611cf3565b611d17565b610c1089898989898989611d24611d8e611def565b97509795505050505050565b6000806000806000806000610c37610400891061013b61149f565b6000610c4289611f12565b9050610c4d81611f24565b959f949e50929c50909a509850965090945092505050565b60006060610c71610f1e565b6001600160a01b031663f94d4668610c87610b57565b6040518263ffffffff1660e01b8152600401610ca39190615ced565b60006040518083038186803b158015610cbb57600080fd5b505afa158015610ccf573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610cf79190810190615512565b509150506000610d0561198c565b509050610d1982610d146116a3565b611f87565b6000610d2782846000611fe8565b9050610d3b610d3461075e565b8290612184565b935050505090565b606081516001600160401b0381118015610d5c57600080fd5b50604051908082528060200260200182016040528015610d86578160200160208202803683370190505b5090506000610d93611691565b9050610d9d6151aa565b60005b8451811015610df157848181518110610db557fe5b60200260200101519150610dd282600001518484602001516121d5565b848281518110610dde57fe5b6020908102919091010152600101610da0565b505050919050565b6000806000610e0661198c565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b606080610e3e6114ad565b610e4d89898989898989612266565b9092509050610e5a61162c565b15610c1057610c10611936565b6001600160a01b031660009081526006602052604090205490565b60007f00000000000000000000000067d27634e44793fe63c467035e31ea8635117cd482604051602001610eb7929190615bb6565b604051602081830303815290604052805190602001209050919050565b60006060610ee58651610bf6611cf3565b610c10898989898989896122e461230a611def565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b600a54600b549091565b60008360800151610fbf61064e610f1e565b610fca610674610b57565b610fd26114ad565b610fdd85858561236b565b95945050505050565b610fef81612452565b1561100157610ffc61247f565b61075b565b61100a81612497565b1561101757610ffc6124b3565b61075b6101356124c6565b60008061102f338561137b565b90508083106110495761104433856000611518565b611056565b6110563385858403611518565b5060019392505050565b60006107403384846117fa565b60006108ba612519565b600073469b58680774aac9ad66447efb4ef634756a2cc5630397bee0600c8461109e611691565b6040518463ffffffff1660e01b81526004016110bc93929190615e18565b60206040518083038186803b1580156110d457600080fd5b505af41580156110e8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061074491906159e5565b61040090565b61111a611580565b61112382612452565b156111885761113181612593565b6111396117b2565b6001600160a01b0316826001600160a01b03167fca6c2c5b6b44b5f3f0c08f0e28e5b6deda1cb38c3fe1113e8031d926c1e8c6d08360405161117b9190615ced565b60405180910390a3610bd0565b61119182612497565b156111a75761119f816125b5565b6111396117d6565b610bd06101356124c6565b60008060006111c0846125d1565b156111e0576111d56111d0612603565b612609565b925092509250611204565b6111e98461262c565b156111f9576111d56111d061265e565b6112046101356124c6565b9193909250565b6112198442111560d161149f565b6001600160a01b0387166000908152600660209081526040808320549051909291611270917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101615d15565b604051602081830303815290604052805190602001209050600061129382612664565b90506000600182888888604051600081526020016040526040516112ba9493929190615da5565b6020604051602081039080840390855afa1580156112dc573d6000803e3d6000fd5b5050604051601f190151915061131e90506001600160a01b0382161580159061131657508b6001600160a01b0316826001600160a01b0316145b6101f861149f565b6001600160a01b038b1660009081526006602052604090206001850190556113478b8b8b611518565b5050505050505050505050565b60608061135f6114ad565b61136e89898989898989612680565b9092509050610c10611936565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113ae611580565b6000806113b961198c565b915091506113c98161014061149f565b610bd0826127a4565b6201de2090565b80610bd0816127df565b6000828202610a0d8415806114005750838583816113fd57fe5b04145b600361149f565b61141f828414801561141857508183145b606761149f565b505050565b6001600160401b03811b1992909216911b1790565b600061144983831115600161149f565b50900390565b1b90565b6000610a0d838360555b60006001821b1984168284611473576000611476565b60015b60ff16901b17949350505050565b6001600160c01b03828116821b90821b198416179392505050565b81610bd057610bd0816124c6565b6114b5612858565b610a46612898565b60006114d183836114cc611cf3565b6128d3565b60606114db6116a3565b90506000865160018111156114ec57fe5b14611503576114fe86868686856128eb565b610692565b6106928686868685612960565b949350505050565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611573908590615ced565b60405180910390a3505050565b60006115976000356001600160e01b031916610e82565b905061075b6115a682336129c4565b61019161149f565b80156115ce576115c96115bf611649565b421061019361149f565b6115e3565b6115e36115d961166d565b42106101a961149f565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611621908390615cca565b60405180910390a150565b600061163661166d565b4211806108ba57505060075460ff161590565b7f00000000000000000000000000000000000000000000000000000000618c0e0890565b7f0000000000000000000000000000000000000000000000000000000061b39b0890565b60006108ba61169e61176c565b611798565b60606116ad612ab4565b90506116fe6116db7f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0612bea565b826000815181106116e857fe5b6020026020010151612c3990919063ffffffff16565b8160008151811061170b57fe5b6020026020010181815250506117506117437f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2612bea565b826001815181106116e857fe5b8160018151811061175d57fe5b60200260200101818152505090565b60085490565b60006107448282612c65565b6000610744826016612c65565b600061074482602c612c8c565b600061074482604b612c96565b6000610744826055612c9e565b7f00000000000000000000000072d07d7dca67b8a406ad1ec34ce969c90bfee76890565b7f000000000000000000000000000000000000000000000000000000000000000090565b6118116001600160a01b038416151561019861149f565b6118286001600160a01b038316151561019961149f565b61183383838361141f565b6001600160a01b03831660009081526020819052604090205461185990826101a0612ca8565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546118889082611bd5565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611573908590615ced565b610a466118e561162c565b61019261149f565b611907611902826118fc61176c565b90611453565b612cbe565b7f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead1816040516116219190615cca565b600061194061176c565b905061194b816117a5565b1561075b5761196561195e600a54612cd3565b8290612d13565b905061198161197a61197561075e565b612cd3565b8290612d20565b905061075b81612cbe565b60008060008060008061199d612d2e565b9350935093509350804210156119f05760019450838311156119d45781810382420385850302816119ca57fe5b04840195506119eb565b81810382420384860302816119e557fe5b04840395505b6119f8565b600094508295505b505050509091565b6000611a0f821515600461149f565b82611a1c57506000610744565b816001840381611a2857fe5b046001019050610744565b611a47816001600160401b031660c061144f565b611a5b836001600160401b0316608061144f565b611a6f856001600160401b0316604061144f565b611a83876001600160401b0316600061144f565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf290611abf908690869086908690615f06565b60405180910390a150505050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7ff7b56db4c30a4e599d4c27fa1aa956111800838bc7383d912e2bd2425da147697fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6611b3a612d85565b30604051602001611b4f959493929190615d49565b60405160208183030381529060405280519060200120905090565b611b7d64e8d4a5100082101560cb61149f565b611b9367016345785d8a000082111560ca61149f565b600854611ba2908260c0611424565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611621908390615ced565b6000828201610a0d848210158361149f565b6000611bf1610b57565b90506000611bfd610f1e565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611c2a929190615d8e565b60806040518083038186803b158015611c4257600080fd5b505afa158015611c56573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c7a9190615af1565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d49250611cae915085908790600401615d75565b600060405180830381600087803b158015611cc857600080fd5b505af1158015611cdc573d6000803e3d6000fd5b5050505050505050565b1c6001600160401b031690565b7f000000000000000000000000000000000000000000000000000000000000000290565b610bd0818314606761149f565b6000606080611d3161162c565b15611d6957611d698789600081518110611d4757fe5b60200260200101518a600181518110611d5c57fe5b6020026020010151612d89565b611d798b8b8b8b8b8b8b8b612e3e565b9250925092505b985098509895505050505050565b60005b611d99611cf3565b81101561141f57611dd0838281518110611daf57fe5b6020026020010151838381518110611dc357fe5b6020026020010151612184565b838281518110611ddc57fe5b6020908102919091010152600101611d91565b333014611ead576000306001600160a01b0316600036604051611e13929190615bce565b6000604051808303816000865af19150503d8060008114611e50576040519150601f19603f3d011682016040523d82523d6000602084013e611e55565b606091505b505090508060008114611e6457fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114611e8f573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611eb76116a3565b9050611ec38782611f87565b60006060611edb8c8c8c8c8c8c898d8d63ffffffff16565b5091509150611eee81848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b6000908152600c602052604090205490565b6000806000806000806000611f3888612ed3565b9650611f4388612ee0565b9550611f4e88612eed565b9450611f5988612efa565b9350611f6488612f07565b9250611f6f88612f14565b9150611f7a88612f21565b9050919395979092949650565b60005b611f92611cf3565b81101561141f57611fc9838281518110611fa857fe5b6020026020010151838381518110611fbc57fe5b6020026020010151612c39565b838281518110611fd557fe5b6020908102919091010152600101611f8a565b81516000908190815b818110156120295761201f86828151811061200857fe5b602002602001015184611bd590919063ffffffff16565b9250600101611ff1565b508161203a57600092505050610a0d565b600082878302825b60ff81101561216c576000858a60008151811061205b57fe5b60200260200101510290506000600190505b868110156120af576120a561209e612098848e858151811061208b57fe5b60200260200101516113e3565b896113e3565b868c612f2d565b915060010161206d565b508394506121226120f16120d86120cf6120c9878c6113e3565b856113e3565b6103e88d612f2d565b6120eb6120e58a896113e3565b886113e3565b90611bd5565b61211c61210f6121056103e88803866113e3565b6103e88e15612f2d565b6120eb8a600101896113e3565b8b612f2d565b93508484111561214a576001858503116121455783975050505050505050610a0d565b612163565b6001848603116121635783975050505050505050610a0d565b50600101612042565b506121786101426124c6565b50505050509392505050565b6000612193821515600461149f565b826121a057506000610744565b670de0b6b3a7640000838102906121c3908583816121ba57fe5b0414600561149f565b8281816121cc57fe5b04915050610744565b6040516334171a8560e01b815260009073469b58680774aac9ad66447efb4ef634756a2cc5906334171a859061221690600c90889088908890600401615e39565b60206040518083038186803b15801561222e57600080fd5b505af4158015612242573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061151091906159e5565b6060808861227561064e610f1e565b612280610674610b57565b606061228a6116a3565b90506122968882611f87565b60006060806122ab8e8e8e8e8e8e8a8f611d24565b9250925092506122bb8d84612f4d565b6122c58285611d8e565b6122cf8185611d8e565b909550935050505b5097509795505050505050565b60006060806122fa8789600081518110611d4757fe5b611d798b8b8b8b8b8b8b8b612f57565b60005b612315611cf3565b81101561141f5761234c83828151811061232b57fe5b602002602001015183838151811061233f57fe5b6020026020010151612fb0565b83828151811061235857fe5b602090810291909101015260010161230d565b60008061237b8560200151612ffe565b9050600061238c8660400151612ffe565b905060008651600181111561239d57fe5b1415612403576123b08660600151613023565b60608701526123bf8583613044565b94506123cb8482613044565b93506123db866060015183613044565b606087015260006123ed878787613050565b90506123f98183613089565b9350505050610a0d565b61240d8583613044565b94506124198482613044565b9350612429866060015182613044565b6060870152600061243b878787613095565b905061244781846130c4565b90506123f9816130d0565b600061245d826125d1565b80156107445750600061246e6117b2565b6001600160a01b0316141592915050565b610a4661249261248d612603565b6130f6565b612593565b60006124a28261262c565b80156107445750600061246e6117d6565b610a466124c161248d61265e565b6125b5565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6000612523610f1e565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561255b57600080fd5b505afa15801561256f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ba9190615857565b6000806125a76125a16117b2565b84613103565b9150915061141f82826131d4565b6000806125c36125a16117d6565b9150915061141f8282613240565b7f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca06001600160a01b0390811691161490565b600d5490565b6000806000612617846132a0565b9250612622846132ac565b9395909450915050565b7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b0390811691161490565b600e5490565b600061266e611acd565b82604051602001610eb7929190615bde565b6060808861268f61064e610f1e565b61269a610674610b57565b60606126a46116a3565b90506126ae61075e565b61275457600060606126c38d8d8d868b6132cc565b915091506126d8620f424083101560cc61149f565b6126e66000620f424061335b565b6126f58b620f4240840361335b565b6126ff818461230a565b80612708611cf3565b6001600160401b038111801561271d57600080fd5b50604051908082528060200260200182016040528015612747578160200160208202803683370190505b50955095505050506122d7565b61275e8882611f87565b60006060806127738e8e8e8e8e8e8a8f6122e4565b9250925092506127838c8461335b565b61278d828561230a565b6127978185611d8e565b90955093506122d7915050565b6127b081824242611a33565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516116219190615ced565b6002815110156127ee5761075b565b6000816000815181106127fd57fe5b602002602001015190506000600190505b825181101561141f57600083828151811061282557fe5b6020026020010151905061284e816001600160a01b0316846001600160a01b031610606561149f565b915060010161280e565b60006128626117b2565b6001600160a01b031614610a465760008061288361287e612603565b6132ac565b9150915080421115610bd057610bd082612593565b60006128a26117d6565b6001600160a01b031614610a46576000806128be61287e61265e565b9150915080421115610bd057610bd0826125b5565b61141f81841080156128e457508183105b606461149f565b60006128f78583611f87565b612918866060015183858151811061290b57fe5b6020026020010151613044565b6060870152600061292b87878787613365565b905061294a8184878151811061293d57fe5b60200260200101516130c4565b9050612955816130d0565b979650505050505050565b600061296f8660600151613023565b606087015261297e8583611f87565b612992866060015183868151811061290b57fe5b606087015260006129a58787878761339d565b9050612955818486815181106129b757fe5b6020026020010151613089565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6129e3610efa565b6001600160a01b0316141580156129fe57506129fe836133c0565b15612a2657612a0b610efa565b6001600160a01b0316336001600160a01b0316149050610744565b612a2e612519565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612a5d93929190615cf6565b60206040518083038186803b158015612a7557600080fd5b505afa158015612a89573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612aad9190615771565b9050610744565b60606000612ac0611cf3565b90506060816001600160401b0381118015612ada57600080fd5b50604051908082528060200260200182016040528015612b04578160200160208202803683370190505b5090508115612b3357612b156133fc565b81600081518110612b2257fe5b602002602001018181525050612b3c565b91506107309050565b6001821115612b3357612b4d613420565b81600181518110612b5a57fe5b6020026020010181815250506002821115612b3357612b77613444565b81600281518110612b8457fe5b6020026020010181815250506003821115612b3357612ba1613468565b81600381518110612bae57fe5b6020026020010181815250506004821115612b3357612bcb61348c565b81600481518110612bd857fe5b60200260200101818152505091505090565b6000612bf582612452565b15612c1157612c0a612c05612603565b6132a0565b9050610e2e565b612c1a82612497565b15612c2a57612c0a612c0561265e565b50670de0b6b3a7640000610e2e565b6000828202612c538415806114005750838583816113fd57fe5b670de0b6b3a764000090049392505050565b600082821c623fffff16621fffff8113612c7f5780611510565b623fffff19179392505050565b1c637fffffff1690565b1c6103ff1690565b1c60019081161490565b6000612cb7848411158361149f565b5050900390565b600854612ccd90826000611484565b60085550565b600080612cdf836134b0565b90506000808213612cf857652d79883d20008203612d02565b652d79883d200082015b655af3107a40009005949350505050565b6000610a0d83838361350d565b6000610a0d8383601661350d565b600080600080612d4a6000600954611ce690919063ffffffff16565b600954909450612d5b906040611ce6565b600954909350612d6c906080611ce6565b600954909250612d7d9060c0611ce6565b905090919293565b4690565b6000612d9361176c565b90506000612d9f61198c565b509050612dab826117a5565b8015612db657508443115b15612e3757600080612dd2838787612dcd8861177e565b613524565b915091506000612de185611798565b90506000612dee8661178b565b90506000612e0782848787612e028c611772565b613559565b9050808314612e3157612e1a87826135b0565b9650612e2687426135be565b9650612e3187612cbe565b50505050505b5050505050565b6000606080612e4b61162c565b15612e6e57612e5a88876135cc565b9050612e6988826114396136b8565b612eb9565b612e76611cf3565b6001600160401b0381118015612e8b57600080fd5b50604051908082528060200260200182016040528015612eb5578160200160208202803683370190505b5090505b612ec4888686613723565b9093509150611d80888361378f565b60006107448260ea612c65565b60006107448260b56137be565b600061074482609f612c65565b600061074482606a6137be565b6000610744826054612c65565b600061074482601f6137be565b60006107448282612c8c565b600081612f4357612f3e84846137f1565b611510565b6115108484611a00565b610bd08282613811565b6000606080612f646118da565b6060612f7089886135cc565b9050612f7f89826114396136b8565b60006060612f8e8b89896138cd565b91509150612f9c8b82613926565b909d909c50909a5098505050505050505050565b6000612fbf821515600461149f565b82612fcc57506000610744565b670de0b6b3a764000083810290612fe6908583816121ba57fe5b826001820381612ff257fe5b04600101915050610744565b60008061300a83613933565b9050600061301784612bea565b90506115108282612c39565b600080613038613031610bd4565b8490613a32565b9050610a0d8382611439565b6000610a0d8383612c39565b600061306761305d611cf3565b60021460d261149f565b6060600080613077878787613a6e565b9250925092506129558784848461339d565b6000610a0d8383612184565b60006130a261305d611cf3565b60606000806130b2878787613a6e565b92509250925061295587848484613365565b6000610a0d8383612fb0565b60006107446130ef6130e0610bd4565b670de0b6b3a764000090611439565b8390612fb0565b6000610744826080611ce6565b600080836001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b15801561313f57600080fd5b505afa158015613153573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061317791906159e5565b905061318b600160801b821061014961149f565b6131a18342016001600160401b031660c061144f565b6131b5846001600160401b0316608061144f565b6131c9836001600160801b0316600061144f565b171791509250929050565b81600d819055507f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca06001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60405180910390a25050565b81600e819055507f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60006107448282613b2f565b6000806132b8836130f6565b91506132c58360c0611ce6565b9050915091565b600060606132d86118da565b60006132e384613b3c565b90506132fe60008260028111156132f657fe5b1460ce61149f565b606061330985613b52565b90506133188151610bf6611cf3565b6133228187611f87565b600061332c61198c565b509050600061333d82846001611fe8565b90508061334a8184613b68565b9b929a509198505050505050505050565b610bd08282613b73565b60006133918560a001518560008151811061337c57fe5b602002602001015186600181518110611d5c57fe5b610fdd85858585613c01565b60006133b48560a001518560008151811061337c57fe5b610fdd85858585613c2b565b60006133d2632f1a0bc960e01b610e82565b8214806133ed57506133ea637587926b60e11b610e82565b82145b80610744575061074482613c55565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006134c060008313606461149f565b670c7d713b49da0000821380156134de5750670f43fc2c04ee000082125b1561350457670de0b6b3a76400006134f583613c87565b816134fc57fe5b059050610e2e565b612c0a82613da5565b623fffff828116821b90821b198416179392505050565b6000806000613534878787614144565b905061354281878787614203565b915061354d81612cd3565b92505094509492505050565b6000806135758585854261356c8b611f12565b9392919061422e565b905060784288900310158061358a5786613593565b61359387614280565b6000818152600c6020526040902092909255509695505050505050565b6000610a0d8383604b61428d565b6000610a0d8383602c61429d565b6060806135d7611cf3565b6001600160401b03811180156135ec57600080fd5b50604051908082528060200260200182016040528015613616578160200160208202803683370190505b50905082613625579050610744565b6000808560008151811061363557fe5b602002602001015190506000600190505b61364e611cf3565b81101561368557600087828151811061366357fe5b602002602001015190508281111561367c578193508092505b50600101613646565b50613697600b5487600a5485896142af565b8383815181106136a357fe5b60209081029190910101525090949350505050565b60005b6136c3611cf3565b81101561371d576136fe8482815181106136d957fe5b60200260200101518483815181106136ed57fe5b60200260200101518463ffffffff16565b84828151811061370a57fe5b60209081029190910101526001016136bb565b50505050565b60006060600061373284613b3c565b9050600081600281111561374257fe5b141561375c57613752868561432f565b9250925050613787565b600181600281111561376a57fe5b141561377a5761375286856143f9565b61375286868661442b565b505b935093915050565b61379c82826114396136b8565b60006137a661198c565b50905061141f6137b882856001611fe8565b82613b68565b600082821c661fffffffffffff16660fffffffffffff81136137e05780611510565b661fffffffffffff19179392505050565b6000613800821515600461149f565b81838161380957fe5b049392505050565b6138286001600160a01b038316151561019b61149f565b6138348260008361141f565b6001600160a01b03821660009081526020819052604090205461385a90826101a1612ca8565b6001600160a01b03831660009081526020819052604090205560025461388090826144a7565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b60405180910390a35050565b6000606060006138dc84613b3c565b905060018160028111156138ec57fe5b14156138fd576137528686866144b5565b600281600281111561390b57fe5b141561391b57613752868561451f565b6137856101366124c6565b61379c8282611bd56136b8565b600061393e826125d1565b1561394b57612c0a6133fc565b6139548261262c565b1561396157612c0a613420565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139a357612c0a613444565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139e557612c0a613468565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415613a2757612c0a61348c565b610e2e6101356124c6565b6000828202613a4c8415806114005750838583816113fd57fe5b80613a5b576000915050610744565b670de0b6b3a76400006000198201612ff2565b60408051600280825260608281019093526000918291816020016020820280368337019050509250613aa386602001516125d1565b15613ae95760009150600190508483600081518110613abe57fe5b6020026020010181815250508383600181518110613ad857fe5b602002602001018181525050613b26565b60009050600191508383600081518110613aff57fe5b6020026020010181815250508483600181518110613b1957fe5b6020026020010181815250505b93509350939050565b1c6001600160801b031690565b60008180602001905181019061074491906158c0565b606081806020019051810190610a0d9190615985565b600a91909155600b55565b613b7f6000838361141f565b600254613b8c9082611bd5565b6002556001600160a01b038216600090815260208190526040902054613bb29082611bd5565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b6000613c0b6118da565b6000613c1561198c565b5090506000612955828787878b606001516145b3565b6000613c356118da565b6000613c3f61198c565b5090506000612955828787878b6060015161466b565b6000613c67631c74c91760e11b610e82565b8214806107445750613c7f6350dd6ed960e01b610e82565b909114919050565b670de0b6b3a7640000026000806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281613cc257fe5b05905060006a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613de157613dd7826a0c097ce7bc90715b34b9f160241b81613dd157fe5b05613da5565b6000039050610e2e565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e3257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613e6a576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613eb2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613eed576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f2457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f5b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613f905768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613fbb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312613ff0576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614025576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614059576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac831261408d576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140b057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60008061415c85614155868661470d565b6001611fe8565b90506103e86002860204600061417c8361417681856113e3565b90611439565b9050600061419786614191856002028a6113e3565b90612c39565b905060006141c06141a88489612c39565b6141766141b98a614191898d6113e3565b8590611bd5565b905060006141e96141d1858b612c39565b6141766141e28c6141918a8f6113e3565b8690611bd5565b90506141f58282612fb0565b9a9950505050505050505050565b6000806142136141e28786613a32565b9050600061422082612cd3565b939093039695505050505050565b60008061423a87612f21565b83039050600081870261424c89612ee0565b019050600082870261425d8a612efa565b019050600083870261426e8b612f14565b0190506141f589848a858b868c614767565b60006107448260016147c7565b6103ff811b1992909216911b1790565b637fffffff811b1992909216911b1790565b6000806142be878787876147cf565b9050808685815181106142cd57fe5b6020026020010151116142e4576000915050610fdd565b6000818786815181106142f357fe5b6020026020010151039050614323670de0b6b3a764000061431d8684612c3990919063ffffffff16565b90612184565b98975050505050505050565b6000606061433b6118da565b60008061434785614978565b9150915061435f614356611cf3565b8210606461149f565b6060614369611cf3565b6001600160401b038111801561437e57600080fd5b506040519080825280602002602001820160405280156143a8578160200160208202803683370190505b50905060006143b561198c565b5090506143d4818985876143c761075e565b6143cf610bd4565b61499a565b8284815181106143e057fe5b6020908102919091010152509196919550909350505050565b60006060600061440884614ab6565b9050606061441e868361441961075e565b614acc565b9196919550909350505050565b600060606144376118da565b6060600061444485614b67565b915091506144558251610bf6611cf3565b61445f8287611f87565b600061446961198c565b5090506000614489828a8661447c61075e565b614484610bd4565b614b7f565b90506144998382111560cf61149f565b989297509195505050505050565b6000610a0d83836001612ca8565b600060608060006144c585614b67565b915091506144db6144d4611cf3565b8351611d17565b6144e58287611f87565b60006144ef61198c565b509050600061450f828a8661450261075e565b61450a610bd4565b614e13565b90506144998382101560d061149f565b6000606060008061452f85614978565b9150915061453e614356611cf3565b6060614548611cf3565b6001600160401b038111801561455d57600080fd5b50604051908082528060200260200182016040528015614587578160200160208202803683370190505b509050600061459461198c565b5090506143d4818985876145a661075e565b6145ae610bd4565b615089565b6000806145c287876001611fe8565b90506145ea838786815181106145d457fe5b602002602001015161143990919063ffffffff16565b8685815181106145f657fe5b6020026020010181815250506000614610888884896147cf565b90508387868151811061461f57fe5b60200260200101510187868151811061463457fe5b60200260200101818152505061432360016120eb89898151811061465457fe5b60200260200101518461143990919063ffffffff16565b60008061467a87876001611fe8565b90506146a28387878151811061468c57fe5b6020026020010151611bd590919063ffffffff16565b8686815181106146ae57fe5b60200260200101818152505060006146c8888884886147cf565b9050838787815181106146d757fe5b6020026020010151038787815181106146ec57fe5b6020026020010181815250506143236001614176838a89815181106145d457fe5b6040805160028082526060808301845292602083019080368337019050509050828160008151811061473b57fe5b602002602001018181525050818160018151811061475557fe5b60200260200101818152505092915050565b6000614773828261144f565b61477e84601f615166565b614789866054615177565b61479488606a615166565b61479f8a609f615177565b6147aa8c60b5615166565b6147b58e60ea615177565b17171717171798975050505050505050565b016103ff1690565b6000808451860290506000856000815181106147e757fe5b60200260200101519050600086518760008151811061480257fe5b60200260200101510290506000600190505b875181101561485b5761484061483a614833848b858151811061208b57fe5b8a516113e3565b886137f1565b915061485188828151811061200857fe5b9250600101614814565b5086858151811061486857fe5b602002602001015182039150600061488087886113e3565b905060006148ac6148a061489884610ae089886113e3565b6103e86113e3565b8a898151811061208b57fe5b905060006148c06141e26148988b896137f1565b90506000806148dc6148d28686611bd5565b610ae08d86611bd5565b905060005b60ff81101561495c578192506149116148fe866120eb85866113e3565b610ae08e614176886120eb8860026113e3565b91508282111561493a57600183830311614935575097506115109650505050505050565b614954565b600182840311614954575097506115109650505050505050565b6001016148e1565b506149686101426124c6565b5050505050505050949350505050565b6000808280602001905181019061498f919061594f565b909590945092505050565b6000806149a988886001611fe8565b905060006149cb826149c5876149bf818b611439565b90612fb0565b90613a32565b905060006149db8a8a848b6147cf565b905060006149ef828b8b815181106145d457fe5b90506000805b8b51811015614a2e57614a248c8281518110614a0d57fe5b602002602001015183611bd590919063ffffffff16565b91506001016149f5565b506000614a57828d8d81518110614a4157fe5b602002602001015161218490919063ffffffff16565b90506000614a6482615184565b90506000614a728583613a32565b90506000614a808683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612c39565b8290611bd5565b99505050505050505050509695505050505050565b600081806020019051810190610a0d9190615922565b60606000614ada8484612184565b9050606085516001600160401b0381118015614af557600080fd5b50604051908082528060200260200182016040528015614b1f578160200160208202803683370190505b50905060005b8651811015614b5d57614b3e838883815181106116e857fe5b828281518110614b4a57fe5b6020908102919091010152600101614b25565b5095945050505050565b606060008280602001905181019061498f91906158dc565b600080805b8651811015614ba657614b9c878281518110614a0d57fe5b9150600101614b84565b50606085516001600160401b0381118015614bc057600080fd5b50604051908082528060200260200182016040528015614bea578160200160208202803683370190505b5090506000805b8851811015614cb1576000614c22858b8481518110614c0c57fe5b6020026020010151612fb090919063ffffffff16565b9050614c5e8a8381518110614c3357fe5b60200260200101516149bf8b8581518110614c4a57fe5b60200260200101518d86815181106145d457fe5b848381518110614c6a57fe5b602002602001018181525050614ca6614c9f82868581518110614c8957fe5b6020026020010151613a3290919063ffffffff16565b8490611bd5565b925050600101614bf1565b50606088516001600160401b0381118015614ccb57600080fd5b50604051908082528060200260200182016040528015614cf5578160200160208202803683370190505b50905060005b8951811015614dc0576000848281518110614d1257fe5b6020026020010151841115614d79576000614d3b614d2f86615184565b8d85815181106116e857fe5b90506000614d4f828d86815181106145d457fe5b9050614d70614d6982670de0b6b3a76400008d9003612fb0565b8390611bd5565b92505050614d90565b898281518110614d8557fe5b602002602001015190505b614da0818c84815181106145d457fe5b838381518110614dac57fe5b602090810291909101015250600101614cfb565b506000614dcf8b8b6001611fe8565b90506000614ddf8c846000611fe8565b90506000614ded8284612184565b9050614e02614dfb82615184565b8b90613a32565b9d9c50505050505050505050505050565b600080805b8651811015614e3a57614e30878281518110614a0d57fe5b9150600101614e18565b50606085516001600160401b0381118015614e5457600080fd5b50604051908082528060200260200182016040528015614e7e578160200160208202803683370190505b5090506000805b8851811015614f12576000614ea0858b8481518110614a4157fe5b9050614edc8a8381518110614eb157fe5b602002602001015161431d8b8581518110614ec857fe5b60200260200101518d868151811061468c57fe5b848381518110614ee857fe5b602002602001018181525050614f07614c9f828685815181106116e857fe5b925050600101614e85565b50606088516001600160401b0381118015614f2c57600080fd5b50604051908082528060200260200182016040528015614f56578160200160208202803683370190505b50905060005b895181101561501757600083858381518110614f7457fe5b60200260200101511115614fd0576000614f99614d2f86670de0b6b3a7640000611439565b90506000614fad828d86815181106145d457fe5b9050614fc7614d6982670de0b6b3a76400008d9003612c39565b92505050614fe7565b898281518110614fdc57fe5b602002602001015190505b614ff7818c848151811061468c57fe5b83838151811061500357fe5b602090810291909101015250600101614f5c565b5060006150268b8b6001611fe8565b905060006150368c846000611fe8565b905060006150448284612184565b9050670de0b6b3a76400008111156150795761506b8a670de0b6b3a763ffff198301612c39565b975050505050505050610fdd565b6000975050505050505050610fdd565b60008061509888886001611fe8565b905060006150ae826149c5876149bf818b611bd5565b905060006150be8a8a848b6147cf565b905060006150e88a8a815181106150d157fe5b60200260200101518361143990919063ffffffff16565b90506000805b8b51811015615110576151068c8281518110614a0d57fe5b91506001016150ee565b506000615123828d8d81518110614a4157fe5b9050600061513082615184565b9050600061513e8583613a32565b9050600061514c8683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612fb0565b661fffffffffffff91909116901b90565b623fffff91909116901b90565b6000670de0b6b3a7640000821061519c576000610744565b50670de0b6b3a76400000390565b604080518082019091526000808252602082015290565b803561074481615f7e565b600082601f8301126151dc578081fd5b81356151ef6151ea82615f55565b615f2f565b81815291506020808301908481018184028601820187101561521057600080fd5b60005b8481101561522f57813584529282019290820190600101615213565b505050505092915050565b600082601f83011261524a578081fd5b81516152586151ea82615f55565b81815291506020808301908481018184028601820187101561527957600080fd5b60005b8481101561522f5781518452928201929082019060010161527c565b600082601f8301126152a8578081fd5b81356001600160401b038111156152bd578182fd5b6152d0601f8201601f1916602001615f2f565b91508082528360208285010111156152e757600080fd5b8060208401602084013760009082016020015292915050565b80356002811061074457600080fd5b803561074481615fa1565b600061012080838503121561532d578182fd5b61533681615f2f565b9150506153438383615300565b815261535283602084016151c1565b602082015261536483604084016151c1565b6040820152606082013560608201526080820135608082015260a082013560a08201526153948360c084016151c1565b60c08201526153a68360e084016151c1565b60e0820152610100808301356001600160401b038111156153c657600080fd5b6153d285828601615298565b82840152505092915050565b6000602082840312156153ef578081fd5b8135610a0d81615f7e565b6000806040838503121561540c578081fd5b823561541781615f7e565b9150602083013561542781615f7e565b809150509250929050565b600080600060608486031215615446578081fd5b833561545181615f7e565b9250602084013561546181615f7e565b929592945050506040919091013590565b600080600080600080600060e0888a03121561548c578485fd5b873561549781615f7e565b965060208801356154a781615f7e565b95506040880135945060608801359350608088013560ff811681146154ca578384fd5b9699959850939692959460a0840135945060c09093013592915050565b600080604083850312156154f9578182fd5b823561550481615f7e565b946020939093013593505050565b600080600060608486031215615526578081fd5b83516001600160401b038082111561553c578283fd5b818601915086601f83011261554f578283fd5b815161555d6151ea82615f55565b80828252602080830192508086018b82838702890101111561557d578788fd5b8796505b848710156155a857805161559481615f7e565b845260019690960195928101928101615581565b5089015190975093505050808211156155bf578283fd5b506155cc8682870161523a565b925050604084015190509250925092565b600060208083850312156155ef578182fd5b82356001600160401b03811115615604578283fd5b8301601f81018513615614578283fd5b80356156226151ea82615f55565b818152838101908385016040808502860187018a1015615640578788fd5b8795505b8486101561568d5780828b03121561565a578788fd5b61566381615f2f565b61566d8b8461530f565b815282880135888201528452600195909501949286019290810190615644565b509098975050505050505050565b600060208083850312156156ad578182fd5b82356001600160401b038111156156c2578283fd5b8301601f810185136156d2578283fd5b80356156e06151ea82615f55565b818152838101908385016060808502860187018a10156156fe578788fd5b8795505b8486101561568d5780828b031215615718578788fd5b61572181615f2f565b61572b8b8461530f565b81528288013588820152604080840135908201528452600195909501949286019290810190615702565b600060208284031215615766578081fd5b8135610a0d81615f93565b600060208284031215615782578081fd5b8151610a0d81615f93565b600080600080600080600060e0888a0312156157a7578081fd5b8735965060208801356157b981615f7e565b955060408801356157c981615f7e565b945060608801356001600160401b03808211156157e4578283fd5b6157f08b838c016151cc565b955060808a0135945060a08a0135935060c08a0135915080821115615813578283fd5b506158208a828b01615298565b91505092959891949750929550565b600060208284031215615840578081fd5b81356001600160e01b031981168114610a0d578182fd5b600060208284031215615868578081fd5b8151610a0d81615f7e565b60008060408385031215615885578182fd5b823561589081615f7e565b915060208301356001600160401b038111156158aa578182fd5b6158b685828601615298565b9150509250929050565b6000602082840312156158d1578081fd5b8151610a0d81615fa1565b6000806000606084860312156158f0578081fd5b83516158fb81615fa1565b60208501519093506001600160401b03811115615916578182fd5b6155cc8682870161523a565b60008060408385031215615934578182fd5b825161593f81615fa1565b6020939093015192949293505050565b600080600060608486031215615963578081fd5b835161596e81615fa1565b602085015160409095015190969495509392505050565b60008060408385031215615997578182fd5b82516159a281615fa1565b60208401519092506001600160401b038111156159bd578182fd5b6158b68582860161523a565b6000602082840312156159da578081fd5b8135610a0d81615fa1565b6000602082840312156159f6578081fd5b5051919050565b60008060008060808587031215615a12578182fd5b84356001600160401b0380821115615a28578384fd5b615a348883890161531a565b95506020870135915080821115615a49578384fd5b50615a56878288016151cc565b949794965050505060408301359260600135919050565b600080600060608486031215615a81578081fd5b83356001600160401b03811115615a96578182fd5b615aa28682870161531a565b9660208601359650604090950135949350505050565b600060208284031215615ac9578081fd5b5035919050565b60008060408385031215615ae2578182fd5b50508035926020909101359150565b60008060008060808587031215615b06578182fd5b8451935060208501519250604085015191506060850151615b2681615f7e565b939692955090935050565b6000815180845260208085019450808401835b83811015615b6057815187529582019590820190600101615b44565b509495945050505050565b60008151808452815b81811015615b9057602081850181015186830182015201615b74565b81811115615ba15782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015615c4e5783516001600160a01b031683529284019291840191600101615c29565b50909695505050505050565b6020808252825182820181905260009190848201906040850190845b81811015615c4e57835183529284019291840191600101615c76565b600060208252610a0d6020830184615b31565b600060408252615cb86040830185615b31565b8281036020840152610fdd8185615b31565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526115106040830184615b6b565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b968752602087019590955260408601939093526060850191909152608084015260a083015260c082015260e00190565b9485526020850193909352604084019190915260608301521515608082015260a00190565b83815260608101615e2884615f74565b602082019390935260400152919050565b84815260808101615e4985615f74565b84602083015283604083015282606083015295945050505050565b838152825160a0820190615e7781615f74565b806020840152506020840151604083015260408401516060830152826080830152949350505050565b600060208252610a0d6020830184615b6b565b6000838252604060208301526115106040830184615b31565b9283529015156020830152604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b6040518181016001600160401b0381118282101715615f4d57600080fd5b604052919050565b60006001600160401b03821115615f6a578081fd5b5060209081020190565b6003811061075b57fe5b6001600160a01b038116811461075b57600080fd5b801515811461075b57600080fd5b6003811061075b57600080fdfea264697066735822122044502cf530b7900edafa18cb886436fdae711dd37bb442b33f34a42b6235128c64736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c0000000000000000000000000000000000000000000000000000000000000003200000000000000000000000000000000000000000000000000016bcc41e9000000000000000000000000000000000000000000000000000000000000007563080000000000000000000000000000000000000000000000000000000000278d0000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001a42616c616e63657220737445544820537461626c6520506f6f6c000000000000000000000000000000000000000000000000000000000000000000000000000e422d73744554482d535441424c4500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000000000000000000000000000000000000000000200000000000000000000000072d07d7dca67b8a406ad1ec34ce969c90bfee768000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000002a300000000000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
-----Encoded View---------------
26 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000260
Arg [6] : 00000000000000000000000000000000000000000000000000000000000002c0
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000032
Arg [8] : 00000000000000000000000000000000000000000000000000016bcc41e90000
Arg [9] : 0000000000000000000000000000000000000000000000000000000000756308
Arg [10] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [11] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [13] : 000000000000000000000000000000000000000000000000000000000000001a
Arg [14] : 42616c616e63657220737445544820537461626c6520506f6f6c000000000000
Arg [15] : 000000000000000000000000000000000000000000000000000000000000000e
Arg [16] : 422d73744554482d535441424c45000000000000000000000000000000000000
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [18] : 0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0
Arg [19] : 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
Arg [20] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [21] : 00000000000000000000000072d07d7dca67b8a406ad1ec34ce969c90bfee768
Arg [22] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [23] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [24] : 0000000000000000000000000000000000000000000000000000000000002a30
Arg [25] : 0000000000000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.