Source Code
Latest 25 from a total of 49 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Claim Token | 24373680 | 13 days ago | IN | 0 ETH | 0.00002164 | ||||
| Claim Token | 24373674 | 13 days ago | IN | 0 ETH | 0.0001557 | ||||
| Claim Token | 24373094 | 13 days ago | IN | 0 ETH | 0.0000526 | ||||
| Claim Token | 24360329 | 15 days ago | IN | 0 ETH | 0.00008296 | ||||
| Claim Token | 24359597 | 15 days ago | IN | 0 ETH | 0.00008507 | ||||
| Claim Token | 24357079 | 16 days ago | IN | 0 ETH | 0.00377801 | ||||
| Claim Token | 24354656 | 16 days ago | IN | 0 ETH | 0.00009549 | ||||
| Claim Token | 24343444 | 18 days ago | IN | 0 ETH | 0.00009836 | ||||
| Claim Token | 24340978 | 18 days ago | IN | 0 ETH | 0.0008329 | ||||
| Claim Token | 24339575 | 18 days ago | IN | 0 ETH | 0.00006161 | ||||
| Claim Token | 24339558 | 18 days ago | IN | 0 ETH | 0.0000718 | ||||
| Claim Token | 24336219 | 19 days ago | IN | 0 ETH | 0.00001095 | ||||
| Claim Token | 24336216 | 19 days ago | IN | 0 ETH | 0.00006695 | ||||
| Claim Token | 24336215 | 19 days ago | IN | 0 ETH | 0.0000738 | ||||
| Claim Token | 24258090 | 29 days ago | IN | 0 ETH | 0.00141106 | ||||
| Claim Token | 24189109 | 39 days ago | IN | 0 ETH | 0.00002337 | ||||
| Claim Token | 24186131 | 39 days ago | IN | 0 ETH | 0.00001944 | ||||
| Claim Token | 24161781 | 43 days ago | IN | 0 ETH | 0.00281038 | ||||
| Claim Token | 24121526 | 48 days ago | IN | 0 ETH | 0.00286226 | ||||
| Claim Token | 24040523 | 60 days ago | IN | 0 ETH | 0.00175543 | ||||
| Claim Token | 23962758 | 71 days ago | IN | 0 ETH | 0.00033534 | ||||
| Claim Token | 23889398 | 81 days ago | IN | 0 ETH | 0.00004444 | ||||
| Claim Token | 23801561 | 93 days ago | IN | 0 ETH | 0.00010484 | ||||
| Claim Token | 23796410 | 94 days ago | IN | 0 ETH | 0.00033147 | ||||
| Claim Token | 23639723 | 116 days ago | IN | 0 ETH | 0.00009172 |
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x6101a060 | 22141328 | 326 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
FeeDistributor
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
import {Math} from "openzeppelin-contracts/utils/math/Math.sol";
import {SafeCast} from "openzeppelin-contracts/utils/math/SafeCast.sol";
import {ERC20} from "solmate/tokens/ERC20.sol";
import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol";
import {ReentrancyGuard} from "solmate/utils/ReentrancyGuard.sol";
import "./lib/OptionalOnlyCaller.sol";
import "./interfaces/IVotingEscrow.sol";
import "./interfaces/IFeeDistributor.sol";
// solhint-disable not-rely-on-time
/**
* @title Fee Distributor
* @notice Distributes any tokens transferred to the contract (e.g. Protocol fees and any token emissions) among vetoken
* holders proportionally based on a snapshot of the week at which the tokens are sent to the FeeDistributor contract.
* @dev Supports distributing arbitrarily many different tokens. In order to start distributing a new token to vetoken
* holders simply transfer the tokens to the `FeeDistributor` contract and then call `checkpointToken`.
*/
contract FeeDistributor is IFeeDistributor, OptionalOnlyCaller, ReentrancyGuard {
/// -----------------------------------------------------------------------
/// Library usage
/// -----------------------------------------------------------------------
using SafeTransferLib for ERC20;
/// -----------------------------------------------------------------------
/// Errors
/// -----------------------------------------------------------------------
error FeeDistributor__InputLengthMismatch();
error FeeDistributor__VotingEscrowZeroTotalSupply();
error FeeDistributor__CannotStartBeforeCurrentWeek();
/// -----------------------------------------------------------------------
/// Immutable params
/// -----------------------------------------------------------------------
uint256 private immutable _startTime;
IVotingEscrow private immutable _votingEscrow;
/// -----------------------------------------------------------------------
/// Storage variables
/// -----------------------------------------------------------------------
// Global State
uint256 private _timeCursor;
mapping(uint256 => uint256) private _veSupplyCache;
// Token State
// `startTime` and `timeCursor` are both timestamps so comfortably fit in a uint64.
// `cachedBalance` will comfortably fit the total supply of any meaningful token.
// Should more than 2^128 tokens be sent to this contract then checkpointing this token will fail until enough
// tokens have been claimed to bring the total balance back below 2^128.
struct TokenState {
uint64 startTime;
uint64 timeCursor;
uint128 cachedBalance;
}
mapping(ERC20 => TokenState) private _tokenState;
mapping(ERC20 => mapping(uint256 => uint256)) private _tokensPerWeek;
// User State
// `startTime` and `timeCursor` are timestamps so will comfortably fit in a uint64.
// For `lastEpochCheckpointed` to overflow would need over 2^128 transactions to the VotingEscrow contract.
struct UserState {
uint64 startTime;
uint64 timeCursor;
uint128 lastEpochCheckpointed;
}
mapping(address => UserState) internal _userState;
mapping(address => mapping(uint256 => uint256)) private _userBalanceAtTimestamp;
mapping(address => mapping(ERC20 => uint256)) private _userTokenTimeCursor;
/// -----------------------------------------------------------------------
/// Constructor
/// -----------------------------------------------------------------------
constructor(IVotingEscrow votingEscrow, uint256 startTime) EIP712("FeeDistributor", "1") {
_votingEscrow = votingEscrow;
startTime = _roundDownTimestamp(startTime);
uint256 currentWeek = _roundDownTimestamp(block.timestamp);
if (startTime < currentWeek) {
revert FeeDistributor__CannotStartBeforeCurrentWeek();
}
if (startTime == currentWeek) {
// We assume that `votingEscrow` has been deployed in a week previous to this one.
// If `votingEscrow` did not have a non-zero supply at the beginning of the current week
// then any tokens which are distributed this week will be lost permanently.
if (votingEscrow.totalSupply(currentWeek) == 0) {
revert FeeDistributor__VotingEscrowZeroTotalSupply();
}
}
_startTime = startTime;
_timeCursor = startTime;
}
/// -----------------------------------------------------------------------
/// View functions
/// -----------------------------------------------------------------------
/**
* @notice Returns the VotingEscrow (vetoken) token contract
*/
function getVotingEscrow() external view override returns (IVotingEscrow) {
return _votingEscrow;
}
/**
* @notice Returns the global time cursor representing the most earliest uncheckpointed week.
*/
function getTimeCursor() external view override returns (uint256) {
return _timeCursor;
}
/**
* @notice Returns the user-level time cursor representing the most earliest uncheckpointed week.
* @param user - The address of the user to query.
*/
function getUserTimeCursor(address user) external view override returns (uint256) {
return _userState[user].timeCursor;
}
/**
* @notice Returns the token-level time cursor storing the timestamp at up to which tokens have been distributed.
* @param token - The ERC20 token address to query.
*/
function getTokenTimeCursor(ERC20 token) external view override returns (uint256) {
return _tokenState[token].timeCursor;
}
/**
* @notice Returns the user-level time cursor storing the timestamp of the latest token distribution claimed.
* @param user - The address of the user to query.
* @param token - The ERC20 token address to query.
*/
function getUserTokenTimeCursor(address user, ERC20 token) external view override returns (uint256) {
return _getUserTokenTimeCursor(user, token);
}
/**
* @notice Returns the user's cached balance of vetoken as of the provided timestamp.
* @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
* This function requires `user` to have been checkpointed past `timestamp` so that their balance is cached.
* @param user - The address of the user of which to read the cached balance of.
* @param timestamp - The timestamp at which to read the `user`'s cached balance at.
*/
function getUserBalanceAtTimestamp(address user, uint256 timestamp) external view override returns (uint256) {
return _userBalanceAtTimestamp[user][timestamp];
}
/**
* @notice Returns the cached total supply of vetoken as of the provided timestamp.
* @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
* This function requires the contract to have been checkpointed past `timestamp` so that the supply is cached.
* @param timestamp - The timestamp at which to read the cached total supply at.
*/
function getTotalSupplyAtTimestamp(uint256 timestamp) external view override returns (uint256) {
return _veSupplyCache[timestamp];
}
/**
* @notice Returns the FeeDistributor's cached balance of `token`.
*/
function getTokenLastBalance(ERC20 token) external view override returns (uint256) {
return _tokenState[token].cachedBalance;
}
/**
* @notice Returns the amount of `token` which the FeeDistributor received in the week beginning at `timestamp`.
* @param token - The ERC20 token address to query.
* @param timestamp - The timestamp corresponding to the beginning of the week of interest.
*/
function getTokensDistributedInWeek(ERC20 token, uint256 timestamp) external view override returns (uint256) {
return _tokensPerWeek[token][timestamp];
}
/// -----------------------------------------------------------------------
/// User actions
/// -----------------------------------------------------------------------
// Depositing
/**
* @notice Deposits tokens to be distributed in the current week.
* @dev Sending tokens directly to the FeeDistributor instead of using `depositToken` may result in tokens being
* retroactively distributed to past weeks, or for the distribution to carry over to future weeks.
*
* If for some reason `depositToken` cannot be called, in order to ensure that all tokens are correctly distributed
* manually call `checkpointToken` before and after the token transfer.
* @param token - The ERC20 token address to distribute.
* @param amount - The amount of tokens to deposit.
*/
function depositToken(ERC20 token, uint256 amount) external override nonReentrant {
_checkpointToken(token, false);
token.safeTransferFrom(msg.sender, address(this), amount);
_checkpointToken(token, true);
}
/**
* @notice Deposits tokens to be distributed in the current week.
* @dev A version of `depositToken` which supports depositing multiple `tokens` at once.
* See `depositToken` for more details.
* @param tokens - An array of ERC20 token addresses to distribute.
* @param amounts - An array of token amounts to deposit.
*/
function depositTokens(ERC20[] calldata tokens, uint256[] calldata amounts) external override nonReentrant {
if (tokens.length != amounts.length) {
revert FeeDistributor__InputLengthMismatch();
}
uint256 length = tokens.length;
for (uint256 i = 0; i < length;) {
_checkpointToken(tokens[i], false);
tokens[i].safeTransferFrom(msg.sender, address(this), amounts[i]);
_checkpointToken(tokens[i], true);
unchecked {
++i;
}
}
}
// Checkpointing
/**
* @notice Caches the total supply of vetoken at the beginning of each week.
* This function will be called automatically before claiming tokens to ensure the contract is properly updated.
*/
function checkpoint() external override nonReentrant {
_checkpointTotalSupply();
}
/**
* @notice Caches the user's balance of vetoken at the beginning of each week.
* This function will be called automatically before claiming tokens to ensure the contract is properly updated.
* @param user - The address of the user to be checkpointed.
*/
function checkpointUser(address user) external override nonReentrant {
_checkpointUserBalance(user);
}
/**
* @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
* @dev Any `token` balance held by the FeeDistributor above that which is returned by `getTokenLastBalance`
* will be distributed evenly across the time period since `token` was last checkpointed.
*
* This function will be called automatically before claiming tokens to ensure the contract is properly updated.
* @param token - The ERC20 token address to be checkpointed.
*/
function checkpointToken(ERC20 token) external override nonReentrant {
_checkpointToken(token, true);
}
/**
* @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
* @dev A version of `checkpointToken` which supports checkpointing multiple tokens.
* See `checkpointToken` for more details.
* @param tokens - An array of ERC20 token addresses to be checkpointed.
*/
function checkpointTokens(ERC20[] calldata tokens) external override nonReentrant {
uint256 tokensLength = tokens.length;
for (uint256 i = 0; i < tokensLength;) {
_checkpointToken(tokens[i], true);
unchecked {
++i;
}
}
}
// Claiming
/**
* @notice Claims all pending distributions of the provided token for a user.
* @dev It's not necessary to explicitly checkpoint before calling this function, it will ensure the FeeDistributor
* is up to date before calculating the amount of tokens to be claimed.
* @param user - The user on behalf of which to claim.
* @param token - The ERC20 token address to be claimed.
* @return The amount of `token` sent to `user` as a result of claiming.
*/
function claimToken(address user, ERC20 token)
external
override
nonReentrant
optionalOnlyCaller(user)
returns (uint256)
{
_checkpointTotalSupply();
_checkpointUserBalance(user);
_checkpointToken(token, false);
uint256 amount = _claimToken(user, token);
return amount;
}
/**
* @notice Claims a number of tokens on behalf of a user.
* @dev A version of `claimToken` which supports claiming multiple `tokens` on behalf of `user`.
* See `claimToken` for more details.
* @param user - The user on behalf of which to claim.
* @param tokens - An array of ERC20 token addresses to be claimed.
* @return An array of the amounts of each token in `tokens` sent to `user` as a result of claiming.
*/
function claimTokens(address user, ERC20[] calldata tokens)
external
override
nonReentrant
optionalOnlyCaller(user)
returns (uint256[] memory)
{
_checkpointTotalSupply();
_checkpointUserBalance(user);
uint256 tokensLength = tokens.length;
uint256[] memory amounts = new uint256[](tokensLength);
for (uint256 i = 0; i < tokensLength;) {
_checkpointToken(tokens[i], false);
amounts[i] = _claimToken(user, tokens[i]);
unchecked {
++i;
}
}
return amounts;
}
/// -----------------------------------------------------------------------
/// Internal functions
/// -----------------------------------------------------------------------
/**
* @dev It is required that both the global, token and user state have been properly checkpointed
* before calling this function.
*/
function _claimToken(address user, ERC20 token) internal returns (uint256) {
TokenState storage tokenState = _tokenState[token];
uint256 nextUserTokenWeekToClaim = _getUserTokenTimeCursor(user, token);
// The first week which cannot be correctly claimed is the earliest of:
// - A) The global or user time cursor (whichever is earliest), rounded up to the end of the week.
// - B) The token time cursor, rounded down to the beginning of the week.
//
// This prevents the two failure modes:
// - A) A user may claim a week for which we have not processed their balance, resulting in tokens being locked.
// - B) A user may claim a week which then receives more tokens to be distributed. However the user has
// already claimed for that week so their share of these new tokens are lost.
uint256 firstUnclaimableWeek = Math.min(
_roundUpTimestamp(Math.min(_timeCursor, _userState[user].timeCursor)),
_roundDownTimestamp(tokenState.timeCursor)
);
mapping(uint256 => uint256) storage tokensPerWeek = _tokensPerWeek[token];
mapping(uint256 => uint256) storage userBalanceAtTimestamp = _userBalanceAtTimestamp[user];
uint256 amount;
for (uint256 i = 0; i < 20;) {
// We clearly cannot claim for `firstUnclaimableWeek` and so we break here.
if (nextUserTokenWeekToClaim >= firstUnclaimableWeek) break;
unchecked {
amount += (tokensPerWeek[nextUserTokenWeekToClaim] * userBalanceAtTimestamp[nextUserTokenWeekToClaim])
/ _veSupplyCache[nextUserTokenWeekToClaim];
nextUserTokenWeekToClaim += 1 weeks;
++i;
}
}
// Update the stored user-token time cursor to prevent this user claiming this week again.
_userTokenTimeCursor[user][token] = nextUserTokenWeekToClaim;
if (amount > 0) {
unchecked {
// For a token to be claimable it must have been added to the cached balance so this is safe.
tokenState.cachedBalance = uint128(tokenState.cachedBalance - amount);
}
token.safeTransfer(user, amount);
emit TokensClaimed(user, token, amount, nextUserTokenWeekToClaim);
}
return amount;
}
/**
* @dev Calculate the amount of `token` to be distributed to `_votingEscrow` holders since the last checkpoint.
*/
function _checkpointToken(ERC20 token, bool force) internal {
TokenState storage tokenState = _tokenState[token];
uint256 lastTokenTime = tokenState.timeCursor;
uint256 timeSinceLastCheckpoint;
if (lastTokenTime == 0) {
// If it's the first time we're checkpointing this token then start distributing from now.
// Also mark at which timestamp users should start attempts to claim this token from.
lastTokenTime = block.timestamp;
tokenState.startTime = uint64(_roundDownTimestamp(block.timestamp));
// Prevent someone from assigning tokens to an inaccessible week.
require(block.timestamp > _startTime, "Fee distribution has not started yet");
} else {
unchecked {
timeSinceLastCheckpoint = block.timestamp - lastTokenTime;
if (!force) {
// Checkpointing N times within a single week is completely equivalent to checkpointing once at the end.
// We then want to get as close as possible to a single checkpoint every Wed 23:59 UTC to save gas.
// We then skip checkpointing if we're in the same week as the previous checkpoint.
bool alreadyCheckpointedThisWeek =
_roundDownTimestamp(block.timestamp) == _roundDownTimestamp(lastTokenTime);
// However we want to ensure that all of this week's fees are assigned to the current week without
// overspilling into the next week. To mitigate this, we checkpoint if we're near the end of the week.
bool nearingEndOfWeek = _roundUpTimestamp(block.timestamp) - block.timestamp < 1 days;
// This ensures that we checkpoint once at the beginning of the week and again for each user interaction
// towards the end of the week to give an accurate final reading of the balance.
if (alreadyCheckpointedThisWeek && !nearingEndOfWeek) {
return;
}
}
}
}
tokenState.timeCursor = uint64(block.timestamp);
uint256 tokenBalance = token.balanceOf(address(this));
uint256 newTokensToDistribute = tokenBalance - tokenState.cachedBalance;
if (newTokensToDistribute == 0) return;
require(tokenBalance <= type(uint128).max, "Maximum token balance exceeded");
tokenState.cachedBalance = uint128(tokenBalance);
uint256 firstIncompleteWeek = _roundDownTimestamp(lastTokenTime);
uint256 nextWeek = 0;
// Distribute `newTokensToDistribute` evenly across the time period from `lastTokenTime` to now.
// These tokens are assigned to weeks proportionally to how much of this period falls into each week.
mapping(uint256 => uint256) storage tokensPerWeek = _tokensPerWeek[token];
for (uint256 i = 0; i < 20;) {
unchecked {
// This is safe as we're incrementing a timestamp.
nextWeek = firstIncompleteWeek + 1 weeks;
if (block.timestamp < nextWeek) {
// `firstIncompleteWeek` is now the beginning of the current week, i.e. this is the final iteration.
if (timeSinceLastCheckpoint == 0 && block.timestamp == lastTokenTime) {
tokensPerWeek[firstIncompleteWeek] += newTokensToDistribute;
} else {
// block.timestamp >= lastTokenTime by definition.
tokensPerWeek[firstIncompleteWeek] +=
(newTokensToDistribute * (block.timestamp - lastTokenTime)) / timeSinceLastCheckpoint;
}
// As we've caught up to the present then we should now break.
break;
} else {
// We've gone a full week or more without checkpointing so need to distribute tokens to previous weeks.
if (timeSinceLastCheckpoint == 0 && nextWeek == lastTokenTime) {
// It shouldn't be possible to enter this block
tokensPerWeek[firstIncompleteWeek] += newTokensToDistribute;
} else {
// nextWeek > lastTokenTime by definition.
tokensPerWeek[firstIncompleteWeek] +=
(newTokensToDistribute * (nextWeek - lastTokenTime)) / timeSinceLastCheckpoint;
}
}
// We've now "checkpointed" up to the beginning of next week so must update timestamps appropriately.
lastTokenTime = nextWeek;
firstIncompleteWeek = nextWeek;
++i;
}
}
emit TokenCheckpointed(token, newTokensToDistribute, lastTokenTime);
}
/**
* @dev Cache the `user`'s balance of `_votingEscrow` at the beginning of each new week
*/
function _checkpointUserBalance(address user) internal {
uint256 maxUserEpoch = _votingEscrow.user_point_epoch(user);
// If user has no epochs then they have never locked vetoken.
// They clearly will not then receive fees.
if (maxUserEpoch == 0) return;
UserState storage userState = _userState[user];
// `nextWeekToCheckpoint` represents the timestamp of the beginning of the first week
// which we haven't checkpointed the user's VotingEscrow balance yet.
uint256 nextWeekToCheckpoint = userState.timeCursor;
uint256 userEpoch;
if (nextWeekToCheckpoint == 0) {
// First checkpoint for user so need to do the initial binary search
userEpoch = _findTimestampUserEpoch(user, _startTime, 0, maxUserEpoch);
} else {
if (nextWeekToCheckpoint >= block.timestamp) {
// User has checkpointed the current week already so perform early return.
// This prevents a user from processing epochs created later in this week, however this is not an issue
// as if a significant number of these builds up then the user will skip past them with a binary search.
return;
}
// Otherwise use the value saved from last time
userEpoch = userState.lastEpochCheckpointed;
unchecked {
// This optimizes a scenario common for power users, which have frequent `VotingEscrow` interactions in
// the same week. We assume that any such user is also claiming fees every week, and so we only perform
// a binary search here rather than integrating it into the main search algorithm, effectively skipping
// most of the week's irrelevant checkpoints.
// The slight tradeoff is that users who have multiple infrequent `VotingEscrow` interactions and also don't
// claim frequently will also perform the binary search, despite it not leading to gas savings.
if (maxUserEpoch - userEpoch > 20) {
userEpoch = _findTimestampUserEpoch(user, nextWeekToCheckpoint, userEpoch, maxUserEpoch);
}
}
}
// Epoch 0 is always empty so bump onto the next one so that we start on a valid epoch.
if (userEpoch == 0) {
userEpoch = 1;
}
IVotingEscrow.Point memory nextUserPoint = _votingEscrow.user_point_history(user, userEpoch);
// If this is the first checkpoint for the user, calculate the first week they're eligible for.
// i.e. the timestamp of the first Thursday after they locked.
// If this is earlier then the first distribution then fast forward to then.
if (nextWeekToCheckpoint == 0) {
// Disallow checkpointing before `startTime`.
require(block.timestamp > _startTime, "Fee distribution has not started yet");
nextWeekToCheckpoint = Math.max(_startTime, _roundUpTimestamp(nextUserPoint.ts));
userState.startTime = uint64(nextWeekToCheckpoint);
}
// It's safe to increment `userEpoch` and `nextWeekToCheckpoint` in this loop as epochs and timestamps
// are always much smaller than 2^256 and are being incremented by small values.
IVotingEscrow.Point memory currentUserPoint;
for (uint256 i = 0; i < 50;) {
unchecked {
if (nextWeekToCheckpoint >= nextUserPoint.ts && userEpoch <= maxUserEpoch) {
// The week being considered is contained in a user epoch after that described by `currentUserPoint`.
// We then shift `nextUserPoint` into `currentUserPoint` and query the Point for the next user epoch.
// We do this in order to step though epochs until we find the first epoch starting after
// `nextWeekToCheckpoint`, making the previous epoch the one that contains `nextWeekToCheckpoint`.
userEpoch += 1;
currentUserPoint = nextUserPoint;
if (userEpoch > maxUserEpoch) {
nextUserPoint = IVotingEscrow.Point(0, 0, 0, 0);
} else {
nextUserPoint = _votingEscrow.user_point_history(user, userEpoch);
}
} else {
// The week being considered lies inside the user epoch described by `oldUserPoint`
// we can then use it to calculate the user's balance at the beginning of the week.
if (nextWeekToCheckpoint >= block.timestamp) {
// Break if we're trying to cache the user's balance at a timestamp in the future.
// We only perform this check here to ensure that we can still process checkpoints created
// in the current week.
break;
}
int128 dt = SafeCast.toInt128(SafeCast.toInt256(nextWeekToCheckpoint - currentUserPoint.ts));
uint256 userBalance = currentUserPoint.bias > currentUserPoint.slope * dt
? uint256(SafeCast.toUint256(currentUserPoint.bias - currentUserPoint.slope * dt))
: 0;
// User's lock has expired and they haven't relocked yet.
if (userBalance == 0 && userEpoch > maxUserEpoch) {
nextWeekToCheckpoint = _roundUpTimestamp(block.timestamp);
break;
}
// User had a nonzero lock and so is eligible to collect fees.
_userBalanceAtTimestamp[user][nextWeekToCheckpoint] = userBalance;
nextWeekToCheckpoint += 1 weeks;
}
++i;
}
}
// We subtract off 1 from the userEpoch to step back once so that on the next attempt to checkpoint
// the current `currentUserPoint` will be loaded as `nextUserPoint`. This ensures that we can't skip over the
// user epoch containing `nextWeekToCheckpoint`.
unchecked {
// userEpoch > 0 so this is safe.
userState.lastEpochCheckpointed = uint64(userEpoch - 1);
}
userState.timeCursor = uint64(nextWeekToCheckpoint);
}
/**
* @dev Cache the totalSupply of VotingEscrow token at the beginning of each new week
*/
function _checkpointTotalSupply() internal {
uint256 nextWeekToCheckpoint = _timeCursor;
uint256 weekStart = _roundDownTimestamp(block.timestamp);
// We expect `timeCursor == weekStart + 1 weeks` when fully up to date.
if (nextWeekToCheckpoint > weekStart || weekStart == block.timestamp) {
// We've already checkpointed up to this week so perform early return
return;
}
_votingEscrow.checkpoint();
// Step through the each week and cache the total supply at beginning of week on this contract
for (uint256 i = 0; i < 20;) {
unchecked {
if (nextWeekToCheckpoint > weekStart) break;
_veSupplyCache[nextWeekToCheckpoint] = _votingEscrow.totalSupply(nextWeekToCheckpoint);
// This is safe as we're incrementing a timestamp
nextWeekToCheckpoint += 1 weeks;
++i;
}
}
// Update state to the end of the current week (`weekStart` + 1 weeks)
_timeCursor = nextWeekToCheckpoint;
}
// Helper functions
/**
* @dev Wrapper around `_userTokenTimeCursor` which returns the start timestamp for `token`
* if `user` has not attempted to interact with it previously.
*/
function _getUserTokenTimeCursor(address user, ERC20 token) internal view returns (uint256) {
uint256 userTimeCursor = _userTokenTimeCursor[user][token];
if (userTimeCursor > 0) return userTimeCursor;
// This is the first time that the user has interacted with this token.
// We then start from the latest out of either when `user` first locked vetoken or `token` was first checkpointed.
return Math.max(_userState[user].startTime, _tokenState[token].startTime);
}
/**
* @dev Return the user epoch number for `user` corresponding to the provided `timestamp`
*/
function _findTimestampUserEpoch(address user, uint256 timestamp, uint256 minUserEpoch, uint256 maxUserEpoch)
internal
view
returns (uint256)
{
uint256 min = minUserEpoch;
uint256 max = maxUserEpoch;
// Perform binary search through epochs to find epoch containing `timestamp`
for (uint256 i = 0; i < 128;) {
unchecked {
if (min >= max) break;
// Algorithm assumes that inputs are less than 2^128 so this operation is safe.
// +2 avoids getting stuck in min == mid < max
uint256 mid = (min + max + 2) / 2;
IVotingEscrow.Point memory pt = _votingEscrow.user_point_history(user, mid);
if (pt.ts <= timestamp) {
min = mid;
} else {
// max > min so this is safe.
max = mid - 1;
}
}
}
return min;
}
/**
* @dev Rounds the provided timestamp down to the beginning of the previous week (Thurs 00:00 UTC)
*/
function _roundDownTimestamp(uint256 timestamp) private pure returns (uint256) {
unchecked {
// Division by zero or overflows are impossible here.
return (timestamp / 1 weeks) * 1 weeks;
}
}
/**
* @dev Rounds the provided timestamp up to the beginning of the next week (Thurs 00:00 UTC)
*/
function _roundUpTimestamp(uint256 timestamp) private pure returns (uint256) {
unchecked {
// Overflows are impossible here for all realistic inputs.
return _roundDownTimestamp(timestamp + 1 weeks - 1);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²āµā¶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²āµā¶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²āµā¶ and mod 2²āµā¶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²āµā¶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²āµā¶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²āµā¶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²āµā¶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²āµā¶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²āµā¶. Now that denominator is an odd number, it has an inverse modulo 2²āµā¶ such
// that denominator * inv ā” 1 mod 2²āµā¶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ā” 1 mod 2ā“.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2āø
inverse *= 2 - denominator * inverse; // inverse mod 2¹ā¶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2ā¶ā“
inverse *= 2 - denominator * inverse; // inverse mod 2¹²āø
inverse *= 2 - denominator * inverse; // inverse mod 2²āµā¶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²āµā¶. Since the preconditions guarantee that the outcome is
// less than 2²āµā¶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ā” 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ā” 1 mod p`. As a consequence, we have `a * a**(p-2) ā” 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ⤠sqrt(a) < 2**e`). We know that `e ⤠128` because `(2¹²āø)² = 2²āµā¶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ⤠sqrt(a) < 2**e ā (2**(e-1))² ⤠a < (2**e)² ā 2**(2*e-2) ⤠a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ⤠sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ⤠2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ⤠2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ⤠2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_nā“ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_nā“ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_nā“ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ā„ 0
// Which proves that for all n ℠1, sqrt(a) ⤠x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ⤠(2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ⤠2**(2*e-4) / (3 * 2**(e-1))
// ⤠2**(e-3) / 3
// ⤠2**(e-3-log2(3))
// ⤠2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ⤠sqrt(a) ⤠x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ⤠(2**(e-k))² / (2 * 2**(e-1))
// ⤠2**(2*e-2*k) / 2**e
// ⤠2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ⤠2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ⤠2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ⤠2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ⤠2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ⤠2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ⤠2**(e-144) -- general case with k = 72
// Because e ⤠128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ⤠2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {ERC20} from "../tokens/ERC20.sol";
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
success := call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
success := iszero(or(iszero(extcodesize(token)), returndatasize()))
}
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
success := iszero(or(iszero(extcodesize(token)), returndatasize()))
}
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
success := iszero(or(iszero(extcodesize(token)), returndatasize()))
}
}
require(success, "APPROVE_FAILED");
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Gas optimized reentrancy protection for smart contracts.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol)
abstract contract ReentrancyGuard {
uint256 private locked = 1;
modifier nonReentrant() virtual {
require(locked == 1, "REENTRANCY");
locked = 2;
_;
locked = 1;
}
}// SPDX-License-Identifier: GPL-3.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
import "./EOASignaturesValidator.sol";
import "../interfaces/IOptionalOnlyCaller.sol";
abstract contract OptionalOnlyCaller is IOptionalOnlyCaller, EOASignaturesValidator {
error OptionalOnlyCaller__SenderNotAllowed();
mapping(address => bool) private _isOnlyCallerEnabled;
uint256 private constant INVALID_SIGNATURE_ERROR = 1;
bytes32 private constant _SET_ONLY_CALLER_CHECK_TYPEHASH =
keccak256("SetOnlyCallerCheck(address user,bool enabled,uint256 nonce)");
/**
* @dev Reverts if the verification mechanism is enabled and the given address is not the caller.
* @param user - Address to validate as the only allowed caller, if the verification is enabled.
*/
modifier optionalOnlyCaller(address user) {
_verifyCaller(user);
_;
}
function setOnlyCallerCheck(bool enabled) external override {
_setOnlyCallerCheck(msg.sender, enabled);
}
function setOnlyCallerCheckWithSignature(address user, bool enabled, bytes memory signature) external override {
bytes32 structHash = keccak256(abi.encode(_SET_ONLY_CALLER_CHECK_TYPEHASH, user, enabled, getNextNonce(user)));
_ensureValidSignature(user, structHash, signature, INVALID_SIGNATURE_ERROR);
_setOnlyCallerCheck(user, enabled);
}
function _setOnlyCallerCheck(address user, bool enabled) private {
_isOnlyCallerEnabled[user] = enabled;
emit OnlyCallerOptIn(user, enabled);
}
function isOnlyCallerEnabled(address user) external view override returns (bool) {
return _isOnlyCallerEnabled[user];
}
function _verifyCaller(address user) private view {
if (_isOnlyCallerEnabled[user]) {
if (msg.sender != user) {
revert OptionalOnlyCaller__SenderNotAllowed();
}
}
}
}// SPDX-License-Identifier: GPL-3.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.6.11;
pragma experimental ABIEncoderV2;
// For compatibility, we're keeping the same function names as in the original Curve code, including the mixed-case
// naming convention.
// solhint-disable func-name-mixedcase
interface IVotingEscrow {
struct Point {
int128 bias;
int128 slope; // - dweight / dt
uint256 ts;
uint256 blk; // block
}
function epoch() external view returns (uint256);
function totalSupply(uint256 timestamp) external view returns (uint256);
function user_point_epoch(address user) external view returns (uint256);
function point_history(uint256 timestamp) external view returns (Point memory);
function user_point_history(address user, uint256 timestamp) external view returns (Point memory);
function checkpoint() external;
function admin() external view returns (address);
function smart_wallet_checker() external view returns (address);
function commit_smart_wallet_checker(address newSmartWalletChecker) external;
function apply_smart_wallet_checker() external;
}// SPDX-License-Identifier: GPL-3.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
import {ERC20} from "solmate/tokens/ERC20.sol";
import "./IVotingEscrow.sol";
/**
* @title Fee Distributor
* @notice Distributes any tokens transferred to the contract (e.g. Protocol fees and any BAL emissions) among veBAL
* holders proportionally based on a snapshot of the week at which the tokens are sent to the FeeDistributor contract.
* @dev Supports distributing arbitrarily many different tokens. In order to start distributing a new token to veBAL
* holders simply transfer the tokens to the `FeeDistributor` contract and then call `checkpointToken`.
*/
interface IFeeDistributor {
event TokenCheckpointed(ERC20 token, uint256 amount, uint256 lastCheckpointTimestamp);
event TokensClaimed(address user, ERC20 token, uint256 amount, uint256 userTokenTimeCursor);
/**
* @notice Returns the VotingEscrow (veBAL) token contract
*/
function getVotingEscrow() external view returns (IVotingEscrow);
/**
* @notice Returns the global time cursor representing the most earliest uncheckpointed week.
*/
function getTimeCursor() external view returns (uint256);
/**
* @notice Returns the user-level time cursor representing the most earliest uncheckpointed week.
* @param user - The address of the user to query.
*/
function getUserTimeCursor(address user) external view returns (uint256);
/**
* @notice Returns the token-level time cursor storing the timestamp at up to which tokens have been distributed.
* @param token - The ERC20 token address to query.
*/
function getTokenTimeCursor(ERC20 token) external view returns (uint256);
/**
* @notice Returns the user-level time cursor storing the timestamp of the latest token distribution claimed.
* @param user - The address of the user to query.
* @param token - The ERC20 token address to query.
*/
function getUserTokenTimeCursor(address user, ERC20 token) external view returns (uint256);
/**
* @notice Returns the user's cached balance of veBAL as of the provided timestamp.
* @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
* This function requires `user` to have been checkpointed past `timestamp` so that their balance is cached.
* @param user - The address of the user of which to read the cached balance of.
* @param timestamp - The timestamp at which to read the `user`'s cached balance at.
*/
function getUserBalanceAtTimestamp(address user, uint256 timestamp) external view returns (uint256);
/**
* @notice Returns the cached total supply of veBAL as of the provided timestamp.
* @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
* This function requires the contract to have been checkpointed past `timestamp` so that the supply is cached.
* @param timestamp - The timestamp at which to read the cached total supply at.
*/
function getTotalSupplyAtTimestamp(uint256 timestamp) external view returns (uint256);
/**
* @notice Returns the FeeDistributor's cached balance of `token`.
*/
function getTokenLastBalance(ERC20 token) external view returns (uint256);
/**
* @notice Returns the amount of `token` which the FeeDistributor received in the week beginning at `timestamp`.
* @param token - The ERC20 token address to query.
* @param timestamp - The timestamp corresponding to the beginning of the week of interest.
*/
function getTokensDistributedInWeek(ERC20 token, uint256 timestamp) external view returns (uint256);
// Depositing
/**
* @notice Deposits tokens to be distributed in the current week.
* @dev Sending tokens directly to the FeeDistributor instead of using `depositTokens` may result in tokens being
* retroactively distributed to past weeks, or for the distribution to carry over to future weeks.
*
* If for some reason `depositTokens` cannot be called, in order to ensure that all tokens are correctly distributed
* manually call `checkpointToken` before and after the token transfer.
* @param token - The ERC20 token address to distribute.
* @param amount - The amount of tokens to deposit.
*/
function depositToken(ERC20 token, uint256 amount) external;
/**
* @notice Deposits tokens to be distributed in the current week.
* @dev A version of `depositToken` which supports depositing multiple `tokens` at once.
* See `depositToken` for more details.
* @param tokens - An array of ERC20 token addresses to distribute.
* @param amounts - An array of token amounts to deposit.
*/
function depositTokens(ERC20[] calldata tokens, uint256[] calldata amounts) external;
// Checkpointing
/**
* @notice Caches the total supply of veBAL at the beginning of each week.
* This function will be called automatically before claiming tokens to ensure the contract is properly updated.
*/
function checkpoint() external;
/**
* @notice Caches the user's balance of veBAL at the beginning of each week.
* This function will be called automatically before claiming tokens to ensure the contract is properly updated.
* @param user - The address of the user to be checkpointed.
*/
function checkpointUser(address user) external;
/**
* @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
* @dev Any `token` balance held by the FeeDistributor above that which is returned by `getTokenLastBalance`
* will be distributed evenly across the time period since `token` was last checkpointed.
*
* This function will be called automatically before claiming tokens to ensure the contract is properly updated.
* @param token - The ERC20 token address to be checkpointed.
*/
function checkpointToken(ERC20 token) external;
/**
* @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
* @dev A version of `checkpointToken` which supports checkpointing multiple tokens.
* See `checkpointToken` for more details.
* @param tokens - An array of ERC20 token addresses to be checkpointed.
*/
function checkpointTokens(ERC20[] calldata tokens) external;
// Claiming
/**
* @notice Claims all pending distributions of the provided token for a user.
* @dev It's not necessary to explicitly checkpoint before calling this function, it will ensure the FeeDistributor
* is up to date before calculating the amount of tokens to be claimed.
* @param user - The user on behalf of which to claim.
* @param token - The ERC20 token address to be claimed.
* @return The amount of `token` sent to `user` as a result of claiming.
*/
function claimToken(address user, ERC20 token) external returns (uint256);
/**
* @notice Claims a number of tokens on behalf of a user.
* @dev A version of `claimToken` which supports claiming multiple `tokens` on behalf of `user`.
* See `claimToken` for more details.
* @param user - The user on behalf of which to claim.
* @param tokens - An array of ERC20 token addresses to be claimed.
* @return An array of the amounts of each token in `tokens` sent to `user` as a result of claiming.
*/
function claimTokens(address user, ERC20[] calldata tokens) external returns (uint256[] memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: GPL-3.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
import "openzeppelin-contracts/utils/cryptography/EIP712.sol";
import "../interfaces/ISignaturesValidator.sol";
/**
* @dev Utility for signing Solidity function calls.
*/
abstract contract EOASignaturesValidator is ISignaturesValidator, EIP712 {
error EOASignaturesValidator__ExpiredSignature();
error EOASignaturesValidator__MalformedSignature();
error EOASignaturesValidator__RevertWithErrorCode(uint256 errorCode);
// Replay attack prevention for each account.
mapping(address => uint256) internal _nextNonce;
function getDomainSeparator() public view override returns (bytes32) {
return _domainSeparatorV4();
}
function getNextNonce(address account) public view override returns (uint256) {
return _nextNonce[account];
}
function _ensureValidSignature(address account, bytes32 structHash, bytes memory signature, uint256 errorCode)
internal
{
return _ensureValidSignature(account, structHash, signature, type(uint256).max, errorCode);
}
function _ensureValidSignature(
address account,
bytes32 structHash,
bytes memory signature,
uint256 deadline,
uint256 errorCode
) internal {
bytes32 digest = _hashTypedDataV4(structHash);
if (!_isValidSignature(account, digest, signature)) {
revert EOASignaturesValidator__RevertWithErrorCode(errorCode);
}
// We could check for the deadline before validating the signature, but this leads to saner error processing (as
// we only care about expired deadlines if the signature is correct) and only affects the gas cost of the revert
// scenario, which will only occur infrequently, if ever.
// The deadline is timestamp-based: it should not be relied upon for sub-minute accuracy.
// solhint-disable-next-line not-rely-on-time
if (deadline < block.timestamp) {
revert EOASignaturesValidator__ExpiredSignature();
}
// We only advance the nonce after validating the signature. This is irrelevant for this module, but it can be
// important in derived contracts that override _isValidSignature (e.g. SignaturesValidator), as we want for
// the observable state to still have the current nonce as the next valid one.
_nextNonce[account] += 1;
}
function _isValidSignature(address account, bytes32 digest, bytes memory signature)
internal
view
virtual
returns (bool)
{
if (signature.length != 65) {
revert EOASignaturesValidator__MalformedSignature();
}
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the r, s and v signature parameters, and the only way to get them is to use assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
address recoveredAddress = ecrecover(digest, v, r, s);
// ecrecover returns the zero address on recover failure, so we need to handle that explicitly.
return (recoveredAddress != address(0) && recoveredAddress == account);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.6.11;
/**
* @dev Interface for the OptionalOnlyCaller helper, used to opt in to a caller
* verification for a given address to methods that are otherwise callable by any address.
*/
interface IOptionalOnlyCaller {
/**
* @dev Emitted every time setOnlyCallerCheck is called.
*/
event OnlyCallerOptIn(address user, bool enabled);
/**
* @dev Enables / disables verification mechanism for caller.
* @param enabled - True if caller verification shall be enabled, false otherwise.
*/
function setOnlyCallerCheck(bool enabled) external;
function setOnlyCallerCheckWithSignature(address user, bool enabled, bytes memory signature) external;
/**
* @dev Returns true if caller verification is enabled for the given user, false otherwise.
*/
function isOnlyCallerEnabled(address user) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @inheritdoc IERC5267
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: GPL-3.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.6.11;
/**
* @dev Interface for the SignatureValidator helper, used to support meta-transactions.
*/
interface ISignaturesValidator {
/**
* @dev Returns the EIP712 domain separator.
*/
function getDomainSeparator() external view returns (bytes32);
/**
* @dev Returns the next nonce used by an address to sign messages.
*/
function getNextNonce(address user) external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}{
"remappings": [
"openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"create3-factory/=lib/create3-factory/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"solmate/=lib/solmate/src/"
],
"optimizer": {
"enabled": true,
"runs": 1000000
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IVotingEscrow","name":"votingEscrow","type":"address"},{"internalType":"uint256","name":"startTime","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EOASignaturesValidator__ExpiredSignature","type":"error"},{"inputs":[],"name":"EOASignaturesValidator__MalformedSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"errorCode","type":"uint256"}],"name":"EOASignaturesValidator__RevertWithErrorCode","type":"error"},{"inputs":[],"name":"FeeDistributor__CannotStartBeforeCurrentWeek","type":"error"},{"inputs":[],"name":"FeeDistributor__InputLengthMismatch","type":"error"},{"inputs":[],"name":"FeeDistributor__VotingEscrowZeroTotalSupply","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"OptionalOnlyCaller__SenderNotAllowed","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"int256","name":"value","type":"int256"}],"name":"SafeCastOverflowedIntDowncast","type":"error"},{"inputs":[{"internalType":"int256","name":"value","type":"int256"}],"name":"SafeCastOverflowedIntToUint","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintToInt","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"OnlyCallerOptIn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract ERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lastCheckpointTimestamp","type":"uint256"}],"name":"TokenCheckpointed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"contract ERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"userTokenTimeCursor","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"inputs":[],"name":"checkpoint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ERC20","name":"token","type":"address"}],"name":"checkpointToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ERC20[]","name":"tokens","type":"address[]"}],"name":"checkpointTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"checkpointUser","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"contract ERC20","name":"token","type":"address"}],"name":"claimToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"contract ERC20[]","name":"tokens","type":"address[]"}],"name":"claimTokens","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"depositToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"depositTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDomainSeparator","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getNextNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ERC20","name":"token","type":"address"}],"name":"getTokenLastBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ERC20","name":"token","type":"address"}],"name":"getTokenTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ERC20","name":"token","type":"address"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getTokensDistributedInWeek","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getTotalSupplyAtTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getUserBalanceAtTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"contract ERC20","name":"token","type":"address"}],"name":"getUserTokenTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVotingEscrow","outputs":[{"internalType":"contract IVotingEscrow","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"isOnlyCallerEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"setOnlyCallerCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"bool","name":"enabled","type":"bool"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"setOnlyCallerCheckWithSignature","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
6101a06040526001600455348015610015575f5ffd5b5060405161315238038061315283398101604081905261003491610274565b604080518082018252600e81526d2332b2a234b9ba3934b13aba37b960911b602080830191909152825180840190935260018352603160f81b908301529061007c825f6101fc565b6101205261008b8160016101fc565b61014052815160208084019190912060e052815190820120610100524660a05261011760e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c0526001600160a01b0382166101805262093a809081900481029042819004028082101561015f576040516344473c4960e01b815260040160405180910390fd5b8082036101ec5760405163bd85b03960e01b8152600481018290526001600160a01b0384169063bd85b03990602401602060405180830381865afa1580156101a9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101cd91906102ab565b5f036101ec57604051636e5832e160e01b815260040160405180910390fd5b506101608190526005555061046c565b5f602083511015610217576102108361022e565b9050610228565b81610222848261035a565b5060ff90505b92915050565b5f5f829050601f81511115610261578260405163305a27a960e01b81526004016102589190610414565b60405180910390fd5b805161026c82610449565b179392505050565b5f5f60408385031215610285575f5ffd5b82516001600160a01b038116811461029b575f5ffd5b6020939093015192949293505050565b5f602082840312156102bb575f5ffd5b5051919050565b634e487b7160e01b5f52604160045260245ffd5b600181811c908216806102ea57607f821691505b60208210810361030857634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561035557805f5260205f20601f840160051c810160208510156103335750805b601f840160051c820191505b81811015610352575f815560010161033f565b50505b505050565b81516001600160401b03811115610373576103736102c2565b6103878161038184546102d6565b8461030e565b6020601f8211600181146103b9575f83156103a25750848201515b5f19600385901b1c1916600184901b178455610352565b5f84815260208120601f198516915b828110156103e857878501518255602094850194600190920191016103c8565b508482101561040557868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b80516020808301519190811015610308575f1960209190910360031b1b16919050565b60805160a05160c05160e0516101005161012051610140516101605161018051612c426105105f395f81816101a201528181610cf101528181610e8d015281816110eb015281816119e801528181611aa30152611fe601525f8181610db601528181610f0301528181610fb4015261132c01525f61192201525f6118f601525f611efc01525f611ed401525f611e2f01525f611e5901525f611e830152612c425ff3fe608060405234801561000f575f5ffd5b5060043610610184575f3560e01c806388720467116100dd578063ca31879d11610088578063e811f44b11610063578063e811f44b146104c2578063ed24911d146104d5578063fcaa54ee146104dd575f5ffd5b8063ca31879d1461042b578063d3dc4ca11461043e578063de681faf14610480575f5ffd5b8063a1648aa5116100b8578063a1648aa514610390578063acbc1428146103d8578063c2c4c5c114610423575f5ffd5b8063887204671461032857806390193b7c14610348578063905d10ac1461037d575f5ffd5b80634f3c50901161013d57806382aa5ad41161011857806382aa5ad4146102ba57806384b0196e146102c2578063876e69a1146102dd575f5ffd5b80634f3c5090146102755780637b8d6221146102945780638050a7ee146102a7575f5ffd5b80632308805b1161016d5780632308805b146101e6578063338b5dea1461024f5780633902b9bc14610262575f5ffd5b806308b0308a1461018857806314866e08146101d1575b5f5ffd5b60405173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001681526020015b60405180910390f35b6101e46101df3660046125f1565b6104f0565b005b6102416101f43660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526007602052604090205470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1690565b6040519081526020016101c8565b6101e461025d366004612613565b610577565b6101e46102703660046125f1565b610628565b61024161028336600461263d565b5f9081526006602052604090205490565b6101e46102a236600461269c565b6106a4565b6102416102b5366004612708565b610832565b600554610241565b6102ca610846565b6040516101c897969594939291906127c5565b6102416102eb3660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526009602052604090205468010000000000000000900467ffffffffffffffff1690565b61033b61033636600461285b565b6108a4565b6040516101c891906128ac565b6102416103563660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526002602052604090205490565b6101e461038b3660046128be565b6109fd565b6103c861039e3660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526003602052604090205460ff1690565b60405190151581526020016101c8565b6102416103e63660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526007602052604090205468010000000000000000900467ffffffffffffffff1690565b6101e4610aa1565b610241610439366004612708565b610b21565b61024161044c366004612613565b73ffffffffffffffffffffffffffffffffffffffff919091165f908152600860209081526040808320938352929052205490565b61024161048e366004612613565b73ffffffffffffffffffffffffffffffffffffffff919091165f908152600a60209081526040808320938352929052205490565b6101e46104d036600461290c565b610bd1565b610241610bde565b6101e46104eb3660046129a1565b610bec565b600454600114610561576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e43590000000000000000000000000000000000000000000060448201526064015b60405180910390fd5b600260045561056f81610caa565b506001600455565b6004546001146105e3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b60026004556105f2825f6112a4565b61061473ffffffffffffffffffffffffffffffffffffffff831633308461175f565b61061f8260016112a4565b50506001600455565b600454600114610694576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b600260045561056f8160016112a4565b600454600114610710576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b600260045582811461074e576040517fb0208d4900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b825f5b818110156108255761078986868381811061076e5761076e612a75565b905060200201602081019061078391906125f1565b5f6112a4565b6107ec33308686858181106107a0576107a0612a75565b905060200201358989868181106107b9576107b9612a75565b90506020020160208101906107ce91906125f1565b73ffffffffffffffffffffffffffffffffffffffff1692919061175f565b61081d86868381811061080157610801612a75565b905060200201602081019061081691906125f1565b60016112a4565b600101610751565b5050600160045550505050565b5f61083d8383611859565b90505b92915050565b5f6060805f5f5f60606108576118ef565b61085f61191b565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b6060600454600114610912576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b60026004558361092181611948565b6109296119c4565b61093285610caa565b825f8167ffffffffffffffff81111561094d5761094d612925565b604051908082528060200260200182016040528015610976578160200160208202803683370190505b5090505f5b828110156109ed5761099887878381811061076e5761076e612a75565b6109c8888888848181106109ae576109ae612a75565b90506020020160208101906109c391906125f1565b611b46565b8282815181106109da576109da612a75565b602090810291909101015260010161097b565b5060016004559695505050505050565b600454600114610a69576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b6002600455805f5b81811015610a9657610a8e84848381811061080157610801612a75565b600101610a71565b505060016004555050565b600454600114610b0d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b6002600455610b1a6119c4565b6001600455565b5f600454600114610b8e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b600260045582610b9d81611948565b610ba56119c4565b610bae84610caa565b610bb8835f6112a4565b5f610bc38585611b46565b600160045595945050505050565b610bdb3382611d89565b50565b5f610be7611e16565b905090565b5f7fbd291ffccec065968fe20c5f8debdad73ab50837733f357eeae8814178015a908484610c3b8773ffffffffffffffffffffffffffffffffffffffff165f9081526002602052604090205490565b60408051602081019590955273ffffffffffffffffffffffffffffffffffffffff9093169284019290925215156060830152608082015260a001604051602081830303815290604052805190602001209050610c9a8482846001611f4c565b610ca48484611d89565b50505050565b6040517f010ae75700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82811660048301525f917f00000000000000000000000000000000000000000000000000000000000000009091169063010ae75790602401602060405180830381865afa158015610d38573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d5c9190612aa2565b9050805f03610d69575050565b73ffffffffffffffffffffffffffffffffffffffff82165f908152600960205260408120805490916801000000000000000090910467ffffffffffffffff1690818103610de357610ddc857f00000000000000000000000000000000000000000000000000000000000000005f87611f79565b9050610e34565b428210610df1575050505050565b50815470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1660148185031115610e3457610e3185838387611f79565b90505b805f03610e3f575060015b6040517f28d09d4700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8681166004830152602482018390525f917f0000000000000000000000000000000000000000000000000000000000000000909116906328d09d4790604401608060405180830381865afa158015610ed4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ef89190612aca565b9050825f0361101a577f00000000000000000000000000000000000000000000000000000000000000004211610faf576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f46656520646973747269627574696f6e20686173206e6f74207374617274656460448201527f20796574000000000000000000000000000000000000000000000000000000006064820152608401610558565b610fe57f0000000000000000000000000000000000000000000000000000000000000000610fe0836040015161207e565b612092565b84547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001667ffffffffffffffff821617855592505b604080516080810182525f8082526020820181905291810182905260608101829052905b6032811015611219578260400151851015801561105b5750868411155b1561115b576001840193508291508684111561109f5760405180608001604052805f600f0b81526020015f600f0b81526020015f81526020015f8152509250611211565b6040517f28d09d4700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8981166004830152602482018690527f000000000000000000000000000000000000000000000000000000000000000016906328d09d4790604401608060405180830381865afa158015611130573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111549190612aca565b9250611211565b42851015611219575f61117b611176846040015188036120a1565b612103565b90505f81846020015102600f0b845f0151600f0b1361119a575f6111b1565b6111b182856020015102855f015103600f0b612150565b9050801580156111c057508886115b156111d7576111ce4261207e565b96505050611219565b73ffffffffffffffffffffffffffffffffffffffff8a165f908152600a602090815260408083208a84529091529020555062093a80909401935b60010161103e565b5050835467ffffffffffffffff93841668010000000000000000027fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff7001000000000000000000000000000000007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9095018616949094029390931693169290921717909155505050565b73ffffffffffffffffffffffffffffffffffffffff82165f908152600760205260408120805490916801000000000000000090910467ffffffffffffffff16908181036113dd5742915062093a808083040283547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001667ffffffffffffffff919091161783557f000000000000000000000000000000000000000000000000000000000000000042116113d8576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f46656520646973747269627574696f6e20686173206e6f74207374617274656460448201527f20796574000000000000000000000000000000000000000000000000000000006064820152608401610558565b61142b565b81420390508361142b575f62093a808084040262093a8042819004021490505f620151804261140b4261207e565b0310905081801561141a575080155b156114285750505050505050565b50505b82547fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff16680100000000000000004267ffffffffffffffff16021783556040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201525f9073ffffffffffffffffffffffffffffffffffffffff8716906370a0823190602401602060405180830381865afa1580156114d2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114f69190612aa2565b84549091505f9061152d9070010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1683612b68565b9050805f0361153f5750505050505050565b6fffffffffffffffffffffffffffffffff8211156115b9576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601e60248201527f4d6178696d756d20746f6b656e2062616c616e636520657863656564656400006044820152606401610558565b84546fffffffffffffffffffffffffffffffff8084167001000000000000000000000000000000000291161785555f6115f88562093a80908190040290565b73ffffffffffffffffffffffffffffffffffffffff89165f90815260086020526040812091925090815b60148110156116fb578362093a8001925082421015611695578615801561164857508742145b15611665575f8481526020839052604090208054860190556116fb565b8688420386028161167857611678612b7b565b5f86815260208590526040902080549290910490910190556116fb565b861580156116a257508783145b156116bf575f8481526020839052604090208054860190556116eb565b868884038602816116d2576116d2612b7b565b5f86815260208590526040902080549290910490910190555b9196508692508291600101611622565b506040805173ffffffffffffffffffffffffffffffffffffffff8c168152602081018690529081018890527f9b7f1a85a4c9b4e59e1b6527d9969c50cdfb3a1a467d0c4a51fb0ed8bf07f1309060600160405180910390a150505050505050505050565b5f6040517f23b872dd00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8516600482015273ffffffffffffffffffffffffffffffffffffffff8416602482015282604482015260205f6064835f8a5af191505080601f3d1160015f5114161516156117eb5750833b153d17155b80611852576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f5452414e534645525f46524f4d5f4641494c45440000000000000000000000006044820152606401610558565b5050505050565b73ffffffffffffffffffffffffffffffffffffffff8083165f908152600b60209081526040808320938516835292905290812054801561189a579050610840565b73ffffffffffffffffffffffffffffffffffffffff8085165f90815260096020908152604080832054938716835260079091529020546118e79167ffffffffffffffff9081169116612092565b949350505050565b6060610be77f00000000000000000000000000000000000000000000000000000000000000005f61218e565b6060610be77f0000000000000000000000000000000000000000000000000000000000000000600161218e565b73ffffffffffffffffffffffffffffffffffffffff81165f9081526003602052604090205460ff1615610bdb573373ffffffffffffffffffffffffffffffffffffffff821614610bdb576040517ff93014bb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60055462093a804281900402808211806119dd57504281145b156119e6575050565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663c2c4c5c16040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611a4b575f5ffd5b505af1158015611a5d573d5f5f3e3d5ffd5b505f925050505b6014811015611b3f57818311611b3f576040517fbd85b039000000000000000000000000000000000000000000000000000000008152600481018490527f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff169063bd85b03990602401602060405180830381865afa158015611afd573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b219190612aa2565b5f8481526006602052604090205562093a8090920191600101611a64565b5050600555565b73ffffffffffffffffffffffffffffffffffffffff81165f90815260076020526040812081611b758585611859565b60055473ffffffffffffffffffffffffffffffffffffffff87165f9081526009602052604081205492935091611bfb91611bce91611bc9919068010000000000000000900467ffffffffffffffff16612237565b61207e565b8454611bf69068010000000000000000900467ffffffffffffffff1662093a80908190040290565b612237565b73ffffffffffffffffffffffffffffffffffffffff8087165f908152600860209081526040808320938b168352600a9091528120929350909190805b6014811015611c8c5784861015611c8c575f8681526006602090815260408083205486835281842054928890529220540281611c7557611c75612b7b565b62093a809790970196049190910190600101611c37565b5073ffffffffffffffffffffffffffffffffffffffff808a165f908152600b60209081526040808320938c168352929052208590558015611d7d5785546fffffffffffffffffffffffffffffffff70010000000000000000000000000000000080830482168490038216029116178655611d1d73ffffffffffffffffffffffffffffffffffffffff89168a83612246565b6040805173ffffffffffffffffffffffffffffffffffffffff808c1682528a166020820152908101829052606081018690527fff097c7d8b1957a4ff09ef1361b5fb54dcede3941ba836d0beb9d10bec725de69060800160405180910390a15b98975050505050505050565b73ffffffffffffffffffffffffffffffffffffffff82165f8181526003602090815260409182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168515159081179091558251938452908301527fac9874a7a931a3f5c9f202c6d9cf40de5d21506993c9f9c38ca8265add89584c910160405180910390a15050565b5f3073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016148015611e7b57507f000000000000000000000000000000000000000000000000000000000000000046145b15611ea557507f000000000000000000000000000000000000000000000000000000000000000090565b610be7604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b610ca48484847fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8561231d565b5f8282825b60808110156120725781831015612072576040517f28d09d4700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8981166004830152600284860181010460248301819052915f917f000000000000000000000000000000000000000000000000000000000000000016906328d09d4790604401608060405180830381865afa15801561202b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061204f9190612aca565b9050888160400151116120645781945061206b565b6001820393505b5050611f7e565b50909695505050505050565b5f62093a8062093a7f830181900402610840565b5f82821882841102821861083d565b5f7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8211156120ff576040517f24775e0600000000000000000000000000000000000000000000000000000000815260048101839052602401610558565b5090565b80600f81900b811461214b576040517f327269a70000000000000000000000000000000000000000000000000000000081526080600482015260248101839052604401610558565b919050565b5f5f8212156120ff576040517fa8ce443200000000000000000000000000000000000000000000000000000000815260048101839052602401610558565b606060ff83146121a8576121a1836123e9565b9050610840565b8180546121b490612ba8565b80601f01602080910402602001604051908101604052809291908181526020018280546121e090612ba8565b801561222b5780601f106122025761010080835404028352916020019161222b565b820191905f5260205f20905b81548152906001019060200180831161220e57829003601f168201915b50505050509050610840565b5f82821882841002821861083d565b5f6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416600482015282602482015260205f6044835f895af191505080601f3d1160015f5114161516156122b65750823b153d17155b80610ca4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f5452414e534645525f4641494c454400000000000000000000000000000000006044820152606401610558565b5f61232785612426565b905061233486828661246d565b61236d576040517fe9a06b8b00000000000000000000000000000000000000000000000000000000815260048101839052602401610558565b428310156123a7576040517f922f30c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff86165f9081526002602052604081208054600192906123dc908490612bf9565b9091555050505050505050565b60605f6123f583612590565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f610840612432611e16565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f81516041146124a9576040517f98af90f600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60208281015160408085015160608087015183515f8082529681018086528a905290861a938101849052908101849052608081018290529293909260019060a0016020604051602081039080840390855afa15801561250a573d5f5f3e3d5ffd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff811615801590611d7d57508773ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161498975050505050505050565b5f60ff8216601f811115610840576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff81168114610bdb575f5ffd5b5f60208284031215612601575f5ffd5b813561260c816125d0565b9392505050565b5f5f60408385031215612624575f5ffd5b823561262f816125d0565b946020939093013593505050565b5f6020828403121561264d575f5ffd5b5035919050565b5f5f83601f840112612664575f5ffd5b50813567ffffffffffffffff81111561267b575f5ffd5b6020830191508360208260051b8501011115612695575f5ffd5b9250929050565b5f5f5f5f604085870312156126af575f5ffd5b843567ffffffffffffffff8111156126c5575f5ffd5b6126d187828801612654565b909550935050602085013567ffffffffffffffff8111156126f0575f5ffd5b6126fc87828801612654565b95989497509550505050565b5f5f60408385031215612719575f5ffd5b8235612724816125d0565b91506020830135612734816125d0565b809150509250929050565b5f81518084528060208401602086015e5f6020828601015260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011685010191505092915050565b5f8151808452602084019350602083015f5b828110156127bb57815186526020958601959091019060010161279d565b5093949350505050565b7fff000000000000000000000000000000000000000000000000000000000000008816815260e060208201525f6127ff60e083018961273f565b8281036040840152612811818961273f565b905086606084015273ffffffffffffffffffffffffffffffffffffffff861660808401528460a084015282810360c084015261284d818561278b565b9a9950505050505050505050565b5f5f5f6040848603121561286d575f5ffd5b8335612878816125d0565b9250602084013567ffffffffffffffff811115612893575f5ffd5b61289f86828701612654565b9497909650939450505050565b602081525f61083d602083018461278b565b5f5f602083850312156128cf575f5ffd5b823567ffffffffffffffff8111156128e5575f5ffd5b6128f185828601612654565b90969095509350505050565b8035801515811461214b575f5ffd5b5f6020828403121561291c575f5ffd5b61083d826128fd565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff8111828210171561299957612999612925565b604052919050565b5f5f5f606084860312156129b3575f5ffd5b83356129be816125d0565b92506129cc602085016128fd565b9150604084013567ffffffffffffffff8111156129e7575f5ffd5b8401601f810186136129f7575f5ffd5b803567ffffffffffffffff811115612a1157612a11612925565b612a4260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601612952565b818152876020838501011115612a56575f5ffd5b816020840160208301375f602083830101528093505050509250925092565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f60208284031215612ab2575f5ffd5b5051919050565b8051600f81900b811461214b575f5ffd5b5f6080828403128015612adb575f5ffd5b506040516080810167ffffffffffffffff81118282101715612aff57612aff612925565b604052612b0b83612ab9565b8152612b1960208401612ab9565b6020820152604083810151908201526060928301519281019290925250919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b8181038181111561084057610840612b3b565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b600181811c90821680612bbc57607f821691505b602082108103612bf3577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b50919050565b8082018082111561084057610840612b3b56fea26469706673582212203128fca6b361f3bc73f010d5c80c6d8b66f02b0bcb09273c4dc625af3a7d465c64736f6c634300081c003300000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf770000000000000000000000000000000000000000000000000000000067f02c30
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610184575f3560e01c806388720467116100dd578063ca31879d11610088578063e811f44b11610063578063e811f44b146104c2578063ed24911d146104d5578063fcaa54ee146104dd575f5ffd5b8063ca31879d1461042b578063d3dc4ca11461043e578063de681faf14610480575f5ffd5b8063a1648aa5116100b8578063a1648aa514610390578063acbc1428146103d8578063c2c4c5c114610423575f5ffd5b8063887204671461032857806390193b7c14610348578063905d10ac1461037d575f5ffd5b80634f3c50901161013d57806382aa5ad41161011857806382aa5ad4146102ba57806384b0196e146102c2578063876e69a1146102dd575f5ffd5b80634f3c5090146102755780637b8d6221146102945780638050a7ee146102a7575f5ffd5b80632308805b1161016d5780632308805b146101e6578063338b5dea1461024f5780633902b9bc14610262575f5ffd5b806308b0308a1461018857806314866e08146101d1575b5f5ffd5b60405173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf771681526020015b60405180910390f35b6101e46101df3660046125f1565b6104f0565b005b6102416101f43660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526007602052604090205470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1690565b6040519081526020016101c8565b6101e461025d366004612613565b610577565b6101e46102703660046125f1565b610628565b61024161028336600461263d565b5f9081526006602052604090205490565b6101e46102a236600461269c565b6106a4565b6102416102b5366004612708565b610832565b600554610241565b6102ca610846565b6040516101c897969594939291906127c5565b6102416102eb3660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526009602052604090205468010000000000000000900467ffffffffffffffff1690565b61033b61033636600461285b565b6108a4565b6040516101c891906128ac565b6102416103563660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526002602052604090205490565b6101e461038b3660046128be565b6109fd565b6103c861039e3660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526003602052604090205460ff1690565b60405190151581526020016101c8565b6102416103e63660046125f1565b73ffffffffffffffffffffffffffffffffffffffff165f9081526007602052604090205468010000000000000000900467ffffffffffffffff1690565b6101e4610aa1565b610241610439366004612708565b610b21565b61024161044c366004612613565b73ffffffffffffffffffffffffffffffffffffffff919091165f908152600860209081526040808320938352929052205490565b61024161048e366004612613565b73ffffffffffffffffffffffffffffffffffffffff919091165f908152600a60209081526040808320938352929052205490565b6101e46104d036600461290c565b610bd1565b610241610bde565b6101e46104eb3660046129a1565b610bec565b600454600114610561576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e43590000000000000000000000000000000000000000000060448201526064015b60405180910390fd5b600260045561056f81610caa565b506001600455565b6004546001146105e3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b60026004556105f2825f6112a4565b61061473ffffffffffffffffffffffffffffffffffffffff831633308461175f565b61061f8260016112a4565b50506001600455565b600454600114610694576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b600260045561056f8160016112a4565b600454600114610710576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b600260045582811461074e576040517fb0208d4900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b825f5b818110156108255761078986868381811061076e5761076e612a75565b905060200201602081019061078391906125f1565b5f6112a4565b6107ec33308686858181106107a0576107a0612a75565b905060200201358989868181106107b9576107b9612a75565b90506020020160208101906107ce91906125f1565b73ffffffffffffffffffffffffffffffffffffffff1692919061175f565b61081d86868381811061080157610801612a75565b905060200201602081019061081691906125f1565b60016112a4565b600101610751565b5050600160045550505050565b5f61083d8383611859565b90505b92915050565b5f6060805f5f5f60606108576118ef565b61085f61191b565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b6060600454600114610912576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b60026004558361092181611948565b6109296119c4565b61093285610caa565b825f8167ffffffffffffffff81111561094d5761094d612925565b604051908082528060200260200182016040528015610976578160200160208202803683370190505b5090505f5b828110156109ed5761099887878381811061076e5761076e612a75565b6109c8888888848181106109ae576109ae612a75565b90506020020160208101906109c391906125f1565b611b46565b8282815181106109da576109da612a75565b602090810291909101015260010161097b565b5060016004559695505050505050565b600454600114610a69576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b6002600455805f5b81811015610a9657610a8e84848381811061080157610801612a75565b600101610a71565b505060016004555050565b600454600114610b0d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b6002600455610b1a6119c4565b6001600455565b5f600454600114610b8e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f5245454e5452414e4359000000000000000000000000000000000000000000006044820152606401610558565b600260045582610b9d81611948565b610ba56119c4565b610bae84610caa565b610bb8835f6112a4565b5f610bc38585611b46565b600160045595945050505050565b610bdb3382611d89565b50565b5f610be7611e16565b905090565b5f7fbd291ffccec065968fe20c5f8debdad73ab50837733f357eeae8814178015a908484610c3b8773ffffffffffffffffffffffffffffffffffffffff165f9081526002602052604090205490565b60408051602081019590955273ffffffffffffffffffffffffffffffffffffffff9093169284019290925215156060830152608082015260a001604051602081830303815290604052805190602001209050610c9a8482846001611f4c565b610ca48484611d89565b50505050565b6040517f010ae75700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82811660048301525f917f00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf779091169063010ae75790602401602060405180830381865afa158015610d38573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d5c9190612aa2565b9050805f03610d69575050565b73ffffffffffffffffffffffffffffffffffffffff82165f908152600960205260408120805490916801000000000000000090910467ffffffffffffffff1690818103610de357610ddc857f0000000000000000000000000000000000000000000000000000000067edcf805f87611f79565b9050610e34565b428210610df1575050505050565b50815470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1660148185031115610e3457610e3185838387611f79565b90505b805f03610e3f575060015b6040517f28d09d4700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8681166004830152602482018390525f917f00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf77909116906328d09d4790604401608060405180830381865afa158015610ed4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ef89190612aca565b9050825f0361101a577f0000000000000000000000000000000000000000000000000000000067edcf804211610faf576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f46656520646973747269627574696f6e20686173206e6f74207374617274656460448201527f20796574000000000000000000000000000000000000000000000000000000006064820152608401610558565b610fe57f0000000000000000000000000000000000000000000000000000000067edcf80610fe0836040015161207e565b612092565b84547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001667ffffffffffffffff821617855592505b604080516080810182525f8082526020820181905291810182905260608101829052905b6032811015611219578260400151851015801561105b5750868411155b1561115b576001840193508291508684111561109f5760405180608001604052805f600f0b81526020015f600f0b81526020015f81526020015f8152509250611211565b6040517f28d09d4700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8981166004830152602482018690527f00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf7716906328d09d4790604401608060405180830381865afa158015611130573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111549190612aca565b9250611211565b42851015611219575f61117b611176846040015188036120a1565b612103565b90505f81846020015102600f0b845f0151600f0b1361119a575f6111b1565b6111b182856020015102855f015103600f0b612150565b9050801580156111c057508886115b156111d7576111ce4261207e565b96505050611219565b73ffffffffffffffffffffffffffffffffffffffff8a165f908152600a602090815260408083208a84529091529020555062093a80909401935b60010161103e565b5050835467ffffffffffffffff93841668010000000000000000027fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff7001000000000000000000000000000000007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9095018616949094029390931693169290921717909155505050565b73ffffffffffffffffffffffffffffffffffffffff82165f908152600760205260408120805490916801000000000000000090910467ffffffffffffffff16908181036113dd5742915062093a808083040283547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001667ffffffffffffffff919091161783557f0000000000000000000000000000000000000000000000000000000067edcf8042116113d8576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f46656520646973747269627574696f6e20686173206e6f74207374617274656460448201527f20796574000000000000000000000000000000000000000000000000000000006064820152608401610558565b61142b565b81420390508361142b575f62093a808084040262093a8042819004021490505f620151804261140b4261207e565b0310905081801561141a575080155b156114285750505050505050565b50505b82547fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff16680100000000000000004267ffffffffffffffff16021783556040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201525f9073ffffffffffffffffffffffffffffffffffffffff8716906370a0823190602401602060405180830381865afa1580156114d2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114f69190612aa2565b84549091505f9061152d9070010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1683612b68565b9050805f0361153f5750505050505050565b6fffffffffffffffffffffffffffffffff8211156115b9576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601e60248201527f4d6178696d756d20746f6b656e2062616c616e636520657863656564656400006044820152606401610558565b84546fffffffffffffffffffffffffffffffff8084167001000000000000000000000000000000000291161785555f6115f88562093a80908190040290565b73ffffffffffffffffffffffffffffffffffffffff89165f90815260086020526040812091925090815b60148110156116fb578362093a8001925082421015611695578615801561164857508742145b15611665575f8481526020839052604090208054860190556116fb565b8688420386028161167857611678612b7b565b5f86815260208590526040902080549290910490910190556116fb565b861580156116a257508783145b156116bf575f8481526020839052604090208054860190556116eb565b868884038602816116d2576116d2612b7b565b5f86815260208590526040902080549290910490910190555b9196508692508291600101611622565b506040805173ffffffffffffffffffffffffffffffffffffffff8c168152602081018690529081018890527f9b7f1a85a4c9b4e59e1b6527d9969c50cdfb3a1a467d0c4a51fb0ed8bf07f1309060600160405180910390a150505050505050505050565b5f6040517f23b872dd00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8516600482015273ffffffffffffffffffffffffffffffffffffffff8416602482015282604482015260205f6064835f8a5af191505080601f3d1160015f5114161516156117eb5750833b153d17155b80611852576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f5452414e534645525f46524f4d5f4641494c45440000000000000000000000006044820152606401610558565b5050505050565b73ffffffffffffffffffffffffffffffffffffffff8083165f908152600b60209081526040808320938516835292905290812054801561189a579050610840565b73ffffffffffffffffffffffffffffffffffffffff8085165f90815260096020908152604080832054938716835260079091529020546118e79167ffffffffffffffff9081169116612092565b949350505050565b6060610be77f4665654469737472696275746f7200000000000000000000000000000000000e5f61218e565b6060610be77f3100000000000000000000000000000000000000000000000000000000000001600161218e565b73ffffffffffffffffffffffffffffffffffffffff81165f9081526003602052604090205460ff1615610bdb573373ffffffffffffffffffffffffffffffffffffffff821614610bdb576040517ff93014bb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60055462093a804281900402808211806119dd57504281145b156119e6575050565b7f00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf7773ffffffffffffffffffffffffffffffffffffffff1663c2c4c5c16040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611a4b575f5ffd5b505af1158015611a5d573d5f5f3e3d5ffd5b505f925050505b6014811015611b3f57818311611b3f576040517fbd85b039000000000000000000000000000000000000000000000000000000008152600481018490527f00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf7773ffffffffffffffffffffffffffffffffffffffff169063bd85b03990602401602060405180830381865afa158015611afd573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b219190612aa2565b5f8481526006602052604090205562093a8090920191600101611a64565b5050600555565b73ffffffffffffffffffffffffffffffffffffffff81165f90815260076020526040812081611b758585611859565b60055473ffffffffffffffffffffffffffffffffffffffff87165f9081526009602052604081205492935091611bfb91611bce91611bc9919068010000000000000000900467ffffffffffffffff16612237565b61207e565b8454611bf69068010000000000000000900467ffffffffffffffff1662093a80908190040290565b612237565b73ffffffffffffffffffffffffffffffffffffffff8087165f908152600860209081526040808320938b168352600a9091528120929350909190805b6014811015611c8c5784861015611c8c575f8681526006602090815260408083205486835281842054928890529220540281611c7557611c75612b7b565b62093a809790970196049190910190600101611c37565b5073ffffffffffffffffffffffffffffffffffffffff808a165f908152600b60209081526040808320938c168352929052208590558015611d7d5785546fffffffffffffffffffffffffffffffff70010000000000000000000000000000000080830482168490038216029116178655611d1d73ffffffffffffffffffffffffffffffffffffffff89168a83612246565b6040805173ffffffffffffffffffffffffffffffffffffffff808c1682528a166020820152908101829052606081018690527fff097c7d8b1957a4ff09ef1361b5fb54dcede3941ba836d0beb9d10bec725de69060800160405180910390a15b98975050505050505050565b73ffffffffffffffffffffffffffffffffffffffff82165f8181526003602090815260409182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168515159081179091558251938452908301527fac9874a7a931a3f5c9f202c6d9cf40de5d21506993c9f9c38ca8265add89584c910160405180910390a15050565b5f3073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000dd5e3922232566fdac8cb8bf4e7e4b70e816148015611e7b57507f000000000000000000000000000000000000000000000000000000000000000146145b15611ea557507f9b6fb3da5ec68c1ad2a489bf9a4e7b1f6a21fb84eee862d69d317a85aac4893390565b610be7604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0618c188edbe06a8ffa15e11b4f74493cfd6f23aba7fab610364d908072aac99918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b610ca48484847fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8561231d565b5f8282825b60808110156120725781831015612072576040517f28d09d4700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8981166004830152600284860181010460248301819052915f917f00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf7716906328d09d4790604401608060405180830381865afa15801561202b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061204f9190612aca565b9050888160400151116120645781945061206b565b6001820393505b5050611f7e565b50909695505050505050565b5f62093a8062093a7f830181900402610840565b5f82821882841102821861083d565b5f7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8211156120ff576040517f24775e0600000000000000000000000000000000000000000000000000000000815260048101839052602401610558565b5090565b80600f81900b811461214b576040517f327269a70000000000000000000000000000000000000000000000000000000081526080600482015260248101839052604401610558565b919050565b5f5f8212156120ff576040517fa8ce443200000000000000000000000000000000000000000000000000000000815260048101839052602401610558565b606060ff83146121a8576121a1836123e9565b9050610840565b8180546121b490612ba8565b80601f01602080910402602001604051908101604052809291908181526020018280546121e090612ba8565b801561222b5780601f106122025761010080835404028352916020019161222b565b820191905f5260205f20905b81548152906001019060200180831161220e57829003601f168201915b50505050509050610840565b5f82821882841002821861083d565b5f6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416600482015282602482015260205f6044835f895af191505080601f3d1160015f5114161516156122b65750823b153d17155b80610ca4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f5452414e534645525f4641494c454400000000000000000000000000000000006044820152606401610558565b5f61232785612426565b905061233486828661246d565b61236d576040517fe9a06b8b00000000000000000000000000000000000000000000000000000000815260048101839052602401610558565b428310156123a7576040517f922f30c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff86165f9081526002602052604081208054600192906123dc908490612bf9565b9091555050505050505050565b60605f6123f583612590565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f610840612432611e16565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f81516041146124a9576040517f98af90f600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60208281015160408085015160608087015183515f8082529681018086528a905290861a938101849052908101849052608081018290529293909260019060a0016020604051602081039080840390855afa15801561250a573d5f5f3e3d5ffd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff811615801590611d7d57508773ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161498975050505050505050565b5f60ff8216601f811115610840576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff81168114610bdb575f5ffd5b5f60208284031215612601575f5ffd5b813561260c816125d0565b9392505050565b5f5f60408385031215612624575f5ffd5b823561262f816125d0565b946020939093013593505050565b5f6020828403121561264d575f5ffd5b5035919050565b5f5f83601f840112612664575f5ffd5b50813567ffffffffffffffff81111561267b575f5ffd5b6020830191508360208260051b8501011115612695575f5ffd5b9250929050565b5f5f5f5f604085870312156126af575f5ffd5b843567ffffffffffffffff8111156126c5575f5ffd5b6126d187828801612654565b909550935050602085013567ffffffffffffffff8111156126f0575f5ffd5b6126fc87828801612654565b95989497509550505050565b5f5f60408385031215612719575f5ffd5b8235612724816125d0565b91506020830135612734816125d0565b809150509250929050565b5f81518084528060208401602086015e5f6020828601015260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011685010191505092915050565b5f8151808452602084019350602083015f5b828110156127bb57815186526020958601959091019060010161279d565b5093949350505050565b7fff000000000000000000000000000000000000000000000000000000000000008816815260e060208201525f6127ff60e083018961273f565b8281036040840152612811818961273f565b905086606084015273ffffffffffffffffffffffffffffffffffffffff861660808401528460a084015282810360c084015261284d818561278b565b9a9950505050505050505050565b5f5f5f6040848603121561286d575f5ffd5b8335612878816125d0565b9250602084013567ffffffffffffffff811115612893575f5ffd5b61289f86828701612654565b9497909650939450505050565b602081525f61083d602083018461278b565b5f5f602083850312156128cf575f5ffd5b823567ffffffffffffffff8111156128e5575f5ffd5b6128f185828601612654565b90969095509350505050565b8035801515811461214b575f5ffd5b5f6020828403121561291c575f5ffd5b61083d826128fd565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff8111828210171561299957612999612925565b604052919050565b5f5f5f606084860312156129b3575f5ffd5b83356129be816125d0565b92506129cc602085016128fd565b9150604084013567ffffffffffffffff8111156129e7575f5ffd5b8401601f810186136129f7575f5ffd5b803567ffffffffffffffff811115612a1157612a11612925565b612a4260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601612952565b818152876020838501011115612a56575f5ffd5b816020840160208301375f602083830101528093505050509250925092565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f60208284031215612ab2575f5ffd5b5051919050565b8051600f81900b811461214b575f5ffd5b5f6080828403128015612adb575f5ffd5b506040516080810167ffffffffffffffff81118282101715612aff57612aff612925565b604052612b0b83612ab9565b8152612b1960208401612ab9565b6020820152604083810151908201526060928301519281019290925250919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b8181038181111561084057610840612b3b565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b600181811c90821680612bbc57607f821691505b602082108103612bf3577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b50919050565b8082018082111561084057610840612b3b56fea26469706673582212203128fca6b361f3bc73f010d5c80c6d8b66f02b0bcb09273c4dc625af3a7d465c64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf770000000000000000000000000000000000000000000000000000000067f02c30
-----Decoded View---------------
Arg [0] : votingEscrow (address): 0x00000042877f4a1cC0693383ebdAc7c0e0A1bf77
Arg [1] : startTime (uint256): 1743793200
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000042877f4a1cc0693383ebdac7c0e0a1bf77
Arg [1] : 0000000000000000000000000000000000000000000000000000000067f02c30
Loading...
Loading
Loading...
Loading
Net Worth in USD
$2,626.42
Net Worth in ETH
1.322078
Token Allocations
WETH
100.00%
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| ETH | 100.00% | $1,986.58 | 1.3221 | $2,626.42 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.