ETH Price: $3,435.71 (-1.47%)

Contract

0x00000f79B7FaF42EEBAdbA19aCc07cD08Af44789
 

Overview

ETH Balance

0.01 ETH

Eth Value

$34.36 (@ $3,435.71/ETH)

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Withdraw To214720942024-12-24 11:40:5943 hrs ago1735040459IN
Biconomy : Verifying Paymaster V1.1.0
0 ETH0.000198786.79566445
Withdraw To214720902024-12-24 11:40:1143 hrs ago1735040411IN
Biconomy : Verifying Paymaster V1.1.0
0 ETH0.0003196.53829557
Withdraw To214379412024-12-19 17:04:356 days ago1734627875IN
Biconomy : Verifying Paymaster V1.1.0
0 ETH0.0012071924.74272742
Deposit For214226552024-12-17 13:48:238 days ago1734443303IN
Biconomy : Verifying Paymaster V1.1.0
0.044 ETH0.0009828920.47153589
Withdraw To214004942024-12-14 11:35:3511 days ago1734176135IN
Biconomy : Verifying Paymaster V1.1.0
0 ETH0.000401379.1293189
Deposit For214004632024-12-14 11:29:2311 days ago1734175763IN
Biconomy : Verifying Paymaster V1.1.0
0.05 ETH0.000600369.22028381
Deposit For213919102024-12-13 6:50:4713 days ago1734072647IN
Biconomy : Verifying Paymaster V1.1.0
0.01 ETH0.0005481111.41589957
Deposit For213852232024-12-12 8:26:3513 days ago1733991995IN
Biconomy : Verifying Paymaster V1.1.0
0.02 ETH0.0007530515.68440931
Deposit For213748392024-12-10 21:38:1115 days ago1733866691IN
Biconomy : Verifying Paymaster V1.1.0
0.098 ETH0.0011079423.07584353
Deposit For213243422024-12-03 20:23:4722 days ago1733257427IN
Biconomy : Verifying Paymaster V1.1.0
1.115 ETH0.0015140623.25286185
Deposit For213073962024-12-01 11:35:1124 days ago1733052911IN
Biconomy : Verifying Paymaster V1.1.0
0.08 ETH0.000469229.77291131
Deposit For212801712024-11-27 16:06:1128 days ago1732723571IN
Biconomy : Verifying Paymaster V1.1.0
0.1 ETH0.0017864737.20822669
Withdraw To212592302024-11-24 17:55:3531 days ago1732470935IN
Biconomy : Verifying Paymaster V1.1.0
0 ETH0.0005966313.56656208
Deposit For212529842024-11-23 20:59:5932 days ago1732395599IN
Biconomy : Verifying Paymaster V1.1.0
0.048 ETH0.0005330911.10313753
Deposit For212527392024-11-23 20:10:3532 days ago1732392635IN
Biconomy : Verifying Paymaster V1.1.0
0.0015 ETH0.000846212.99588289
Deposit For212173252024-11-18 21:34:5937 days ago1731965699IN
Biconomy : Verifying Paymaster V1.1.0
0.05 ETH0.000954719.88433497
Deposit For211802892024-11-13 17:33:3542 days ago1731519215IN
Biconomy : Verifying Paymaster V1.1.0
0.7 ETH0.004281489.17187715
Deposit For211791812024-11-13 13:50:3542 days ago1731505835IN
Biconomy : Verifying Paymaster V1.1.0
0.1 ETH0.0040217661.7659103
Deposit For211725652024-11-12 15:42:1143 days ago1731426131IN
Biconomy : Verifying Paymaster V1.1.0
0.03 ETH0.0014424230.04243117
Deposit For211723982024-11-12 15:08:1143 days ago1731424091IN
Biconomy : Verifying Paymaster V1.1.0
0.01 ETH0.0013715828.56694939
Withdraw To211714182024-11-12 11:51:3543 days ago1731412295IN
Biconomy : Verifying Paymaster V1.1.0
0 ETH0.0011937127.15079922
Deposit For211714022024-11-12 11:48:2343 days ago1731412103IN
Biconomy : Verifying Paymaster V1.1.0
0.005 ETH0.0016858125.89534261
Deposit For211209552024-11-05 10:49:1150 days ago1730803751IN
Biconomy : Verifying Paymaster V1.1.0
0.1 ETH0.000260275.42100828
Deposit For210635322024-10-28 10:27:3558 days ago1730111255IN
Biconomy : Verifying Paymaster V1.1.0
0.001 ETH0.000592789.10561816
Withdraw To210632482024-10-28 9:30:4758 days ago1730107847IN
Biconomy : Verifying Paymaster V1.1.0
0 ETH0.000319157.25723733
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block
From
To
214400102024-12-20 0:00:116 days ago1734652811
Biconomy : Verifying Paymaster V1.1.0
1.0458528 ETH
214400102024-12-20 0:00:116 days ago1734652811
Biconomy : Verifying Paymaster V1.1.0
1.0458528 ETH
214328542024-12-19 0:00:237 days ago1734566423
Biconomy : Verifying Paymaster V1.1.0
1.0458528 ETH
214328542024-12-19 0:00:237 days ago1734566423
Biconomy : Verifying Paymaster V1.1.0
1.0458528 ETH
214226552024-12-17 13:48:238 days ago1734443303
Biconomy : Verifying Paymaster V1.1.0
0.044 ETH
214213762024-12-17 9:31:478 days ago1734427907
Biconomy : Verifying Paymaster V1.1.0
0.00626814 ETH
214213762024-12-17 9:31:478 days ago1734427907
Biconomy : Verifying Paymaster V1.1.0
0.00626814 ETH
214004632024-12-14 11:29:2311 days ago1734175763
Biconomy : Verifying Paymaster V1.1.0
0.05 ETH
213919102024-12-13 6:50:4713 days ago1734072647
Biconomy : Verifying Paymaster V1.1.0
0.01 ETH
213852232024-12-12 8:26:3513 days ago1733991995
Biconomy : Verifying Paymaster V1.1.0
0.02 ETH
213748392024-12-10 21:38:1115 days ago1733866691
Biconomy : Verifying Paymaster V1.1.0
0.098 ETH
213430902024-12-06 11:15:1119 days ago1733483711
Biconomy : Verifying Paymaster V1.1.0
0.00285288 ETH
213430902024-12-06 11:15:1119 days ago1733483711
Biconomy : Verifying Paymaster V1.1.0
0.00285288 ETH
213243422024-12-03 20:23:4722 days ago1733257427
Biconomy : Verifying Paymaster V1.1.0
1.115 ETH
213073962024-12-01 11:35:1124 days ago1733052911
Biconomy : Verifying Paymaster V1.1.0
0.08 ETH
212801712024-11-27 16:06:1128 days ago1732723571
Biconomy : Verifying Paymaster V1.1.0
0.1 ETH
212529842024-11-23 20:59:5932 days ago1732395599
Biconomy : Verifying Paymaster V1.1.0
0.048 ETH
212527392024-11-23 20:10:3532 days ago1732392635
Biconomy : Verifying Paymaster V1.1.0
0.0015 ETH
212447702024-11-22 17:30:2333 days ago1732296623
Biconomy : Verifying Paymaster V1.1.0
0.00304579 ETH
212447702024-11-22 17:30:2333 days ago1732296623
Biconomy : Verifying Paymaster V1.1.0
0.00304579 ETH
212383772024-11-21 20:04:4734 days ago1732219487
Biconomy : Verifying Paymaster V1.1.0
0.01772507 ETH
212383772024-11-21 20:04:4734 days ago1732219487
Biconomy : Verifying Paymaster V1.1.0
0.01772507 ETH
212326112024-11-21 0:45:1135 days ago1732149911
Biconomy : Verifying Paymaster V1.1.0
0.00153624 ETH
212326112024-11-21 0:45:1135 days ago1732149911
Biconomy : Verifying Paymaster V1.1.0
0.00153624 ETH
212246402024-11-19 22:02:3536 days ago1732053755
Biconomy : Verifying Paymaster V1.1.0
0.00559547 ETH
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
VerifyingSingletonPaymaster

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 800 runs

Other Settings:
default evmVersion
File 1 of 17 : VerifyingSingletonPaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.17;

/* solhint-disable reason-string */
/* solhint-disable no-inline-assembly */
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {UserOperation, UserOperationLib} from "@account-abstraction/contracts/interfaces/UserOperation.sol";
import "../BasePaymaster.sol";
import {PaymasterHelpers, PaymasterData, PaymasterContext} from "./PaymasterHelpers.sol";
import {VerifyingPaymasterErrors} from "../common/Errors.sol";

/**
 * @title A sample paymaster that uses external service to decide whether to pay for the UserOp.
 * @dev The paymaster trusts an external signer to sign the transaction.
 * The calling user must pass the UserOp to that external signer first, which performs whatever
 * off-chain verification before signing the UserOp.
 * @notice That this signature is NOT a replacement for wallet signature:
 *  - The paymaster signs to agree to PAY for GAS.
 *  - The wallet signs to prove identity and wallet ownership.
 */
contract VerifyingSingletonPaymaster is
    BasePaymaster,
    ReentrancyGuard,
    VerifyingPaymasterErrors
{
    using ECDSA for bytes32;
    using UserOperationLib for UserOperation;
    using PaymasterHelpers for UserOperation;
    using PaymasterHelpers for bytes;
    using PaymasterHelpers for PaymasterData;

    // Gas used in EntryPoint._handlePostOp() method (including this#postOp() call)
    uint256 private unaccountedEPGasOverhead;
    mapping(address => uint256) public paymasterIdBalances;

    address public verifyingSigner;

    event EPGasOverheadChanged(
        uint256 indexed _oldValue,
        uint256 indexed _newValue
    );

    event VerifyingSignerChanged(
        address indexed _oldSigner,
        address indexed _newSigner,
        address indexed _actor
    );
    event GasDeposited(address indexed _paymasterId, uint256 indexed _value);
    event GasWithdrawn(
        address indexed _paymasterId,
        address indexed _to,
        uint256 indexed _value
    );
    event GasBalanceDeducted(
        address indexed _paymasterId,
        uint256 indexed _charge
    );

    constructor(
        address _owner,
        IEntryPoint _entryPoint,
        address _verifyingSigner
    ) payable BasePaymaster(_owner, _entryPoint) {
        if (address(_entryPoint) == address(0)) revert EntryPointCannotBeZero();
        if (_verifyingSigner == address(0))
            revert VerifyingSignerCannotBeZero();
        assembly {
            sstore(verifyingSigner.slot, _verifyingSigner)
        }
        unaccountedEPGasOverhead = 12000;
    }

    /**
     * @dev Add a deposit for this paymaster and given paymasterId (Dapp Depositor address), used for paying for transaction fees
     * @param paymasterId dapp identifier for which deposit is being made
     */
    function depositFor(address paymasterId) external payable nonReentrant {
        if (paymasterId == address(0)) revert PaymasterIdCannotBeZero();
        if (msg.value == 0) revert DepositCanNotBeZero();
        paymasterIdBalances[paymasterId] =
            paymasterIdBalances[paymasterId] +
            msg.value;
        entryPoint.depositTo{value: msg.value}(address(this));
        emit GasDeposited(paymasterId, msg.value);
    }

    /**
     * @dev get the current deposit for paymasterId (Dapp Depositor address)
     * @param paymasterId dapp identifier
     */
    function getBalance(
        address paymasterId
    ) external view returns (uint256 balance) {
        balance = paymasterIdBalances[paymasterId];
    }

    /**
     @dev Override the default implementation.
     */
    function deposit() public payable virtual override {
        revert("user DepositFor instead");
    }

    /**
     * @dev Withdraws the specified amount of gas tokens from the paymaster's balance and transfers them to the specified address.
     * @param withdrawAddress The address to which the gas tokens should be transferred.
     * @param amount The amount of gas tokens to withdraw.
     */
    function withdrawTo(
        address payable withdrawAddress,
        uint256 amount
    ) public override nonReentrant {
        if (withdrawAddress == address(0)) revert CanNotWithdrawToZeroAddress();
        uint256 currentBalance = paymasterIdBalances[msg.sender];
        if (amount > currentBalance)
            revert InsufficientBalance(amount, currentBalance);
        paymasterIdBalances[msg.sender] =
            paymasterIdBalances[msg.sender] -
            amount;
        entryPoint.withdrawTo(withdrawAddress, amount);
        emit GasWithdrawn(msg.sender, withdrawAddress, amount);
    }

    /**
     * @dev Set a new verifying signer address.
     * Can only be called by the owner of the contract.
     * @param _newVerifyingSigner The new address to be set as the verifying signer.
     * @notice If _newVerifyingSigner is set to zero address, it will revert with an error.
     * After setting the new signer address, it will emit an event VerifyingSignerChanged.
     */
    function setSigner(address _newVerifyingSigner) external payable onlyOwner {
        if (_newVerifyingSigner == address(0))
            revert VerifyingSignerCannotBeZero();
        address oldSigner = verifyingSigner;
        assembly {
            sstore(verifyingSigner.slot, _newVerifyingSigner)
        }
        emit VerifyingSignerChanged(oldSigner, _newVerifyingSigner, msg.sender);
    }

    function setUnaccountedEPGasOverhead(uint256 value) external onlyOwner {
        uint256 oldValue = unaccountedEPGasOverhead;
        unaccountedEPGasOverhead = value;
        emit EPGasOverheadChanged(oldValue, value);
    }

    /**
     * @dev This method is called by the off-chain service, to sign the request.
     * It is called on-chain from the validatePaymasterUserOp, to validate the signature.
     * @notice That this signature covers all fields of the UserOperation, except the "paymasterAndData",
     * which will carry the signature itself.
     * @return hash we're going to sign off-chain (and validate on-chain)
     */
    function getHash(
        UserOperation calldata userOp,
        address paymasterId,
        uint48 validUntil,
        uint48 validAfter
    ) public view returns (bytes32) {
        //can't use userOp.hash(), since it contains also the paymasterAndData itself.
        address sender = userOp.getSender();
        return
            keccak256(
                abi.encode(
                    sender,
                    userOp.nonce,
                    keccak256(userOp.initCode),
                    keccak256(userOp.callData),
                    userOp.callGasLimit,
                    userOp.verificationGasLimit,
                    userOp.preVerificationGas,
                    userOp.maxFeePerGas,
                    userOp.maxPriorityFeePerGas,
                    block.chainid,
                    address(this),
                    paymasterId,
                    validUntil,
                    validAfter
                )
            );
    }

    /**
     * @dev Verify that an external signer signed the paymaster data of a user operation.
     * The paymaster data is expected to be the paymaster and a signature over the entire request parameters.
     * @param userOp The UserOperation struct that represents the current user operation.
     * userOpHash The hash of the UserOperation struct.
     * @param requiredPreFund The required amount of pre-funding for the paymaster.
     * @return context A context string returned by the entry point after successful validation.
     * @return validationData An integer returned by the entry point after successful validation.
     */
    function _validatePaymasterUserOp(
        UserOperation calldata userOp,
        bytes32 /*userOpHash*/,
        uint256 requiredPreFund
    ) internal override returns (bytes memory context, uint256 validationData) {
        PaymasterData memory paymasterData = userOp._decodePaymasterData();
        bytes32 hash = getHash(
            userOp,
            paymasterData.paymasterId,
            paymasterData.validUntil,
            paymasterData.validAfter
        );
        uint256 sigLength = paymasterData.signatureLength;
        // we only "require" it here so that the revert reason on invalid signature will be of "VerifyingPaymaster", and not "ECDSA"
        if (sigLength != 65) revert InvalidPaymasterSignatureLength(sigLength);
        //don't revert on signature failure: return SIG_VALIDATION_FAILED
        if (
            verifyingSigner !=
            hash.toEthSignedMessageHash().recover(paymasterData.signature)
        ) {
            // empty context and sigFailed with time range provided
            return (
                "",
                _packValidationData(
                    true,
                    paymasterData.validUntil,
                    paymasterData.validAfter
                )
            );
        }
        if (requiredPreFund > paymasterIdBalances[paymasterData.paymasterId])
            revert InsufficientBalance(
                requiredPreFund,
                paymasterIdBalances[paymasterData.paymasterId]
            );
        return (
            userOp.paymasterContext(
                paymasterData,
                userOp.maxFeePerGas,
                userOp.maxPriorityFeePerGas
            ),
            _packValidationData(
                false,
                paymasterData.validUntil,
                paymasterData.validAfter
            )
        );
    }

    function getGasPrice(
        uint256 maxFeePerGas,
        uint256 maxPriorityFeePerGas
    ) internal view returns (uint256) {
        if (maxFeePerGas == maxPriorityFeePerGas) {
            //legacy mode (for networks that don't support basefee opcode)
            return maxFeePerGas;
        }
        return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
    }

    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Executes the paymaster's payment conditions
     * @param mode tells whether the op succeeded, reverted, or if the op succeeded but cause the postOp to revert
     * @param context payment conditions signed by the paymaster in `validatePaymasterUserOp`
     * @param actualGasCost amount to be paid to the entry point in wei
     */
    function _postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost
    ) internal virtual override {
        PaymasterContext memory data = context._decodePaymasterContext();
        address extractedPaymasterId = data.paymasterId;
        uint256 effectiveGasPrice = getGasPrice(
            data.maxFeePerGas,
            data.maxPriorityFeePerGas
        );
        uint256 balToDeduct = actualGasCost +
            unaccountedEPGasOverhead *
            effectiveGasPrice;
        paymasterIdBalances[extractedPaymasterId] =
            paymasterIdBalances[extractedPaymasterId] -
            balToDeduct;
        emit GasBalanceDeducted(extractedPaymasterId, balToDeduct);
    }
}

File 2 of 17 : Helpers.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

/**
 * returned data from validateUserOp.
 * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
 * @param aggregator - address(0) - the account validated the signature by itself.
 *              address(1) - the account failed to validate the signature.
 *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
 * @param validAfter - this UserOp is valid only after this timestamp.
 * @param validaUntil - this UserOp is valid only up to this timestamp.
 */
    struct ValidationData {
        address aggregator;
        uint48 validAfter;
        uint48 validUntil;
    }

//extract sigFailed, validAfter, validUntil.
// also convert zero validUntil to type(uint48).max
    function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
        address aggregator = address(uint160(validationData));
        uint48 validUntil = uint48(validationData >> 160);
        if (validUntil == 0) {
            validUntil = type(uint48).max;
        }
        uint48 validAfter = uint48(validationData >> (48 + 160));
        return ValidationData(aggregator, validAfter, validUntil);
    }

// intersect account and paymaster ranges.
    function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
        ValidationData memory accountValidationData = _parseValidationData(validationData);
        ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
        address aggregator = accountValidationData.aggregator;
        if (aggregator == address(0)) {
            aggregator = pmValidationData.aggregator;
        }
        uint48 validAfter = accountValidationData.validAfter;
        uint48 validUntil = accountValidationData.validUntil;
        uint48 pmValidAfter = pmValidationData.validAfter;
        uint48 pmValidUntil = pmValidationData.validUntil;

        if (validAfter < pmValidAfter) validAfter = pmValidAfter;
        if (validUntil > pmValidUntil) validUntil = pmValidUntil;
        return ValidationData(aggregator, validAfter, validUntil);
    }

/**
 * helper to pack the return value for validateUserOp
 * @param data - the ValidationData to pack
 */
    function _packValidationData(ValidationData memory data) pure returns (uint256) {
        return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
    }

/**
 * helper to pack the return value for validateUserOp, when not using an aggregator
 * @param sigFailed - true for signature failure, false for success
 * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
 * @param validAfter first timestamp this UserOperation is valid
 */
    function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
        return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
    }

/**
 * keccak function over calldata.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 */
    function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
        assembly {
            let mem := mload(0x40)
            let len := data.length
            calldatacopy(mem, data.offset, len)
            ret := keccak256(mem, len)
        }
    }

File 3 of 17 : IAggregator.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

import "./UserOperation.sol";

/**
 * Aggregated Signatures validator.
 */
interface IAggregator {

    /**
     * validate aggregated signature.
     * revert if the aggregated signature does not match the given list of operations.
     */
    function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view;

    /**
     * validate signature of a single userOp
     * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation
     * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps.
     * @param userOp the userOperation received from the user.
     * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps.
     *    (usually empty, unless account and aggregator support some kind of "multisig"
     */
    function validateUserOpSignature(UserOperation calldata userOp)
    external view returns (bytes memory sigForUserOp);

    /**
     * aggregate multiple signatures into a single value.
     * This method is called off-chain to calculate the signature to pass with handleOps()
     * bundler MAY use optimized custom code perform this aggregation
     * @param userOps array of UserOperations to collect the signatures from.
     * @return aggregatedSignature the aggregated signature
     */
    function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature);
}

File 4 of 17 : IEntryPoint.sol
/**
 ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
 ** Only one instance required on each chain.
 **/
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable avoid-low-level-calls */
/* solhint-disable no-inline-assembly */
/* solhint-disable reason-string */

import "./UserOperation.sol";
import "./IStakeManager.sol";
import "./IAggregator.sol";
import "./INonceManager.sol";

interface IEntryPoint is IStakeManager, INonceManager {

    /***
     * An event emitted after each successful request
     * @param userOpHash - unique identifier for the request (hash its entire content, except signature).
     * @param sender - the account that generates this request.
     * @param paymaster - if non-null, the paymaster that pays for this request.
     * @param nonce - the nonce value from the request.
     * @param success - true if the sender transaction succeeded, false if reverted.
     * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation.
     * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution).
     */
    event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed);

    /**
     * account "sender" was deployed.
     * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow.
     * @param sender the account that is deployed
     * @param factory the factory used to deploy this account (in the initCode)
     * @param paymaster the paymaster used by this UserOp
     */
    event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster);

    /**
     * An event emitted if the UserOperation "callData" reverted with non-zero length
     * @param userOpHash the request unique identifier.
     * @param sender the sender of this request
     * @param nonce the nonce used in the request
     * @param revertReason - the return bytes from the (reverted) call to "callData".
     */
    event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason);

    /**
     * an event emitted by handleOps(), before starting the execution loop.
     * any event emitted before this event, is part of the validation.
     */
    event BeforeExecution();

    /**
     * signature aggregator used by the following UserOperationEvents within this bundle.
     */
    event SignatureAggregatorChanged(address indexed aggregator);

    /**
     * a custom revert error of handleOps, to identify the offending op.
     *  NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it.
     *  @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero)
     *  @param reason - revert reason
     *      The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues,
     *      so a failure can be attributed to the correct entity.
     *   Should be caught in off-chain handleOps simulation and not happen on-chain.
     *   Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts.
     */
    error FailedOp(uint256 opIndex, string reason);

    /**
     * error case when a signature aggregator fails to verify the aggregated signature it had created.
     */
    error SignatureValidationFailed(address aggregator);

    /**
     * Successful result from simulateValidation.
     * @param returnInfo gas and time-range returned values
     * @param senderInfo stake information about the sender
     * @param factoryInfo stake information about the factory (if any)
     * @param paymasterInfo stake information about the paymaster (if any)
     */
    error ValidationResult(ReturnInfo returnInfo,
        StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo);

    /**
     * Successful result from simulateValidation, if the account returns a signature aggregator
     * @param returnInfo gas and time-range returned values
     * @param senderInfo stake information about the sender
     * @param factoryInfo stake information about the factory (if any)
     * @param paymasterInfo stake information about the paymaster (if any)
     * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator)
     *      bundler MUST use it to verify the signature, or reject the UserOperation
     */
    error ValidationResultWithAggregation(ReturnInfo returnInfo,
        StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo,
        AggregatorStakeInfo aggregatorInfo);

    /**
     * return value of getSenderAddress
     */
    error SenderAddressResult(address sender);

    /**
     * return value of simulateHandleOp
     */
    error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult);

    //UserOps handled, per aggregator
    struct UserOpsPerAggregator {
        UserOperation[] userOps;

        // aggregator address
        IAggregator aggregator;
        // aggregated signature
        bytes signature;
    }

    /**
     * Execute a batch of UserOperation.
     * no signature aggregator is used.
     * if any account requires an aggregator (that is, it returned an aggregator when
     * performing simulateValidation), then handleAggregatedOps() must be used instead.
     * @param ops the operations to execute
     * @param beneficiary the address to receive the fees
     */
    function handleOps(UserOperation[] calldata ops, address payable beneficiary) external;

    /**
     * Execute a batch of UserOperation with Aggregators
     * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts)
     * @param beneficiary the address to receive the fees
     */
    function handleAggregatedOps(
        UserOpsPerAggregator[] calldata opsPerAggregator,
        address payable beneficiary
    ) external;

    /**
     * generate a request Id - unique identifier for this request.
     * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
     */
    function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32);

    /**
     * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp.
     * @dev this method always revert. Successful result is ValidationResult error. other errors are failures.
     * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data.
     * @param userOp the user operation to validate.
     */
    function simulateValidation(UserOperation calldata userOp) external;

    /**
     * gas and return values during simulation
     * @param preOpGas the gas used for validation (including preValidationGas)
     * @param prefund the required prefund for this operation
     * @param sigFailed validateUserOp's (or paymaster's) signature check failed
     * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range)
     * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range)
     * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp)
     */
    struct ReturnInfo {
        uint256 preOpGas;
        uint256 prefund;
        bool sigFailed;
        uint48 validAfter;
        uint48 validUntil;
        bytes paymasterContext;
    }

    /**
     * returned aggregated signature info.
     * the aggregator returned by the account, and its current stake.
     */
    struct AggregatorStakeInfo {
        address aggregator;
        StakeInfo stakeInfo;
    }

    /**
     * Get counterfactual sender address.
     *  Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
     * this method always revert, and returns the address in SenderAddressResult error
     * @param initCode the constructor code to be passed into the UserOperation.
     */
    function getSenderAddress(bytes memory initCode) external;


    /**
     * simulate full execution of a UserOperation (including both validation and target execution)
     * this method will always revert with "ExecutionResult".
     * it performs full validation of the UserOperation, but ignores signature error.
     * an optional target address is called after the userop succeeds, and its value is returned
     * (before the entire call is reverted)
     * Note that in order to collect the the success/failure of the target call, it must be executed
     * with trace enabled to track the emitted events.
     * @param op the UserOperation to simulate
     * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult
     *        are set to the return from that call.
     * @param targetCallData callData to pass to target address
     */
    function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external;
}

File 5 of 17 : INonceManager.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

interface INonceManager {

    /**
     * Return the next nonce for this sender.
     * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop)
     * But UserOp with different keys can come with arbitrary order.
     *
     * @param sender the account address
     * @param key the high 192 bit of the nonce
     * @return nonce a full nonce to pass for next UserOp with this sender.
     */
    function getNonce(address sender, uint192 key)
    external view returns (uint256 nonce);

    /**
     * Manually increment the nonce of the sender.
     * This method is exposed just for completeness..
     * Account does NOT need to call it, neither during validation, nor elsewhere,
     * as the EntryPoint will update the nonce regardless.
     * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future
     * UserOperations will not pay extra for the first transaction with a given key.
     */
    function incrementNonce(uint192 key) external;
}

File 6 of 17 : IPaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

import "./UserOperation.sol";

/**
 * the interface exposed by a paymaster contract, who agrees to pay the gas for user's operations.
 * a paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
 */
interface IPaymaster {

    enum PostOpMode {
        opSucceeded, // user op succeeded
        opReverted, // user op reverted. still has to pay for gas.
        postOpReverted //user op succeeded, but caused postOp to revert. Now it's a 2nd call, after user's op was deliberately reverted.
    }

    /**
     * payment validation: check if paymaster agrees to pay.
     * Must verify sender is the entryPoint.
     * Revert to reject this request.
     * Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted)
     * The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns.
     * @param userOp the user operation
     * @param userOpHash hash of the user's request data.
     * @param maxCost the maximum cost of this transaction (based on maximum gas and gas price from userOp)
     * @return context value to send to a postOp
     *      zero length to signify postOp is not required.
     * @return validationData signature and time-range of this operation, encoded the same as the return value of validateUserOperation
     *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
     *         otherwise, an address of an "authorizer" contract.
     *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
     *      <6-byte> validAfter - first timestamp this operation is valid
     *      Note that the validation code cannot use block.timestamp (or block.number) directly.
     */
    function validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost)
    external returns (bytes memory context, uint256 validationData);

    /**
     * post-operation handler.
     * Must verify sender is the entryPoint
     * @param mode enum with the following options:
     *      opSucceeded - user operation succeeded.
     *      opReverted  - user op reverted. still has to pay for gas.
     *      postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
     *                       Now this is the 2nd call, after user's op was deliberately reverted.
     * @param context - the context value returned by validatePaymasterUserOp
     * @param actualGasCost - actual gas used so far (without this postOp call).
     */
    function postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) external;
}

File 7 of 17 : IStakeManager.sol
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.12;

/**
 * manage deposits and stakes.
 * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account)
 * stake is value locked for at least "unstakeDelay" by the staked entity.
 */
interface IStakeManager {

    event Deposited(
        address indexed account,
        uint256 totalDeposit
    );

    event Withdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    /// Emitted when stake or unstake delay are modified
    event StakeLocked(
        address indexed account,
        uint256 totalStaked,
        uint256 unstakeDelaySec
    );

    /// Emitted once a stake is scheduled for withdrawal
    event StakeUnlocked(
        address indexed account,
        uint256 withdrawTime
    );

    event StakeWithdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    /**
     * @param deposit the entity's deposit
     * @param staked true if this entity is staked.
     * @param stake actual amount of ether staked for this entity.
     * @param unstakeDelaySec minimum delay to withdraw the stake.
     * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked
     * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps)
     *    and the rest fit into a 2nd cell.
     *    112 bit allows for 10^15 eth
     *    48 bit for full timestamp
     *    32 bit allows 150 years for unstake delay
     */
    struct DepositInfo {
        uint112 deposit;
        bool staked;
        uint112 stake;
        uint32 unstakeDelaySec;
        uint48 withdrawTime;
    }

    //API struct used by getStakeInfo and simulateValidation
    struct StakeInfo {
        uint256 stake;
        uint256 unstakeDelaySec;
    }

    /// @return info - full deposit information of given account
    function getDepositInfo(address account) external view returns (DepositInfo memory info);

    /// @return the deposit (for gas payment) of the account
    function balanceOf(address account) external view returns (uint256);

    /**
     * add to the deposit of the given account
     */
    function depositTo(address account) external payable;

    /**
     * add to the account's stake - amount and delay
     * any pending unstake is first cancelled.
     * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn.
     */
    function addStake(uint32 _unstakeDelaySec) external payable;

    /**
     * attempt to unlock the stake.
     * the value can be withdrawn (using withdrawStake) after the unstake delay.
     */
    function unlockStake() external;

    /**
     * withdraw from the (unlocked) stake.
     * must first call unlockStake and wait for the unstakeDelay to pass
     * @param withdrawAddress the address to send withdrawn value.
     */
    function withdrawStake(address payable withdrawAddress) external;

    /**
     * withdraw from the deposit.
     * @param withdrawAddress the address to send withdrawn value.
     * @param withdrawAmount the amount to withdraw.
     */
    function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external;
}

File 8 of 17 : UserOperation.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

import {calldataKeccak} from "../core/Helpers.sol";

/**
 * User Operation struct
 * @param sender the sender account of this request.
     * @param nonce unique value the sender uses to verify it is not a replay.
     * @param initCode if set, the account contract will be created by this constructor/
     * @param callData the method call to execute on this account.
     * @param callGasLimit the gas limit passed to the callData method call.
     * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
     * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
     * @param maxFeePerGas same as EIP-1559 gas parameter.
     * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
     * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
     * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
     */
    struct UserOperation {

        address sender;
        uint256 nonce;
        bytes initCode;
        bytes callData;
        uint256 callGasLimit;
        uint256 verificationGasLimit;
        uint256 preVerificationGas;
        uint256 maxFeePerGas;
        uint256 maxPriorityFeePerGas;
        bytes paymasterAndData;
        bytes signature;
    }

/**
 * Utility functions helpful when working with UserOperation structs.
 */
library UserOperationLib {

    function getSender(UserOperation calldata userOp) internal pure returns (address) {
        address data;
        //read sender from userOp, which is first userOp member (saves 800 gas...)
        assembly {data := calldataload(userOp)}
        return address(uint160(data));
    }

    //relayer/block builder might submit the TX with higher priorityFee, but the user should not
    // pay above what he signed for.
    function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
    unchecked {
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        if (maxFeePerGas == maxPriorityFeePerGas) {
            //legacy mode (for networks that don't support basefee opcode)
            return maxFeePerGas;
        }
        return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
    }
    }

    function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
        address sender = getSender(userOp);
        uint256 nonce = userOp.nonce;
        bytes32 hashInitCode = calldataKeccak(userOp.initCode);
        bytes32 hashCallData = calldataKeccak(userOp.callData);
        uint256 callGasLimit = userOp.callGasLimit;
        uint256 verificationGasLimit = userOp.verificationGasLimit;
        uint256 preVerificationGas = userOp.preVerificationGas;
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);

        return abi.encode(
            sender, nonce,
            hashInitCode, hashCallData,
            callGasLimit, verificationGasLimit, preVerificationGas,
            maxFeePerGas, maxPriorityFeePerGas,
            hashPaymasterAndData
        );
    }

    function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
        return keccak256(pack(userOp));
    }

    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }
}

File 9 of 17 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 10 of 17 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 11 of 17 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 12 of 17 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 13 of 17 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

File 14 of 17 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 15 of 17 : BasePaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.17;

/* solhint-disable reason-string */

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {IPaymaster} from "@account-abstraction/contracts/interfaces/IPaymaster.sol";
import {IEntryPoint} from "@account-abstraction/contracts/interfaces/IEntryPoint.sol";
import {UserOperation, UserOperationLib} from "@account-abstraction/contracts/interfaces/UserOperation.sol";
import "@account-abstraction/contracts/core/Helpers.sol";

// can import specific revert errors as per need

/**
 * Helper class for creating a paymaster.
 * provides helper methods for staking.
 * validates that the postOp is called only by the entryPoint
 */
// @notice Could have Ownable2Step
abstract contract BasePaymaster is IPaymaster, Ownable {
    IEntryPoint public immutable entryPoint;

    constructor(address _owner, IEntryPoint _entryPoint) {
        entryPoint = _entryPoint;
        _transferOwnership(_owner);
    }

    /// @inheritdoc IPaymaster
    function validatePaymasterUserOp(
        UserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) external override returns (bytes memory context, uint256 validationData) {
        _requireFromEntryPoint();
        return _validatePaymasterUserOp(userOp, userOpHash, maxCost);
    }

    function _validatePaymasterUserOp(
        UserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) internal virtual returns (bytes memory context, uint256 validationData);

    /// @inheritdoc IPaymaster
    function postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost
    ) external override {
        _requireFromEntryPoint();
        _postOp(mode, context, actualGasCost);
    }

    /**
     * post-operation handler.
     * (verified to be called only through the entryPoint)
     * @dev if subclass returns a non-empty context from validatePaymasterUserOp, it must also implement this method.
     * @param mode enum with the following options:
     *      opSucceeded - user operation succeeded.
     *      opReverted  - user op reverted. still has to pay for gas.
     *      postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
     *                       Now this is the 2nd call, after user's op was deliberately reverted.
     * @param context - the context value returned by validatePaymasterUserOp
     * @param actualGasCost - actual gas used so far (without this postOp call).
     */
    function _postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost
    ) internal virtual {
        (mode, context, actualGasCost); // unused params
        // subclass must override this method if validatePaymasterUserOp returns a context
        revert("must override");
    }

    /**
     * add a deposit for this paymaster, used for paying for transaction fees
     */
    function deposit() external payable virtual;

    /**
     * withdraw value from the deposit
     * @param withdrawAddress target to send to
     * @param amount to withdraw
     */
    function withdrawTo(
        address payable withdrawAddress,
        uint256 amount
    ) external virtual;

    /**
     * add stake for this paymaster.
     * This method can also carry eth value to add to the current stake.
     * @param unstakeDelaySec - the unstake delay for this paymaster. Can only be increased.
     */
    function addStake(uint32 unstakeDelaySec) external payable onlyOwner {
        entryPoint.addStake{value: msg.value}(unstakeDelaySec);
    }

    /**
     * return current paymaster's deposit on the entryPoint.
     */
    function getDeposit() public view returns (uint256) {
        return entryPoint.balanceOf(address(this));
    }

    /**
     * unlock the stake, in order to withdraw it.
     * The paymaster can't serve requests once unlocked, until it calls addStake again
     */
    function unlockStake() external onlyOwner {
        entryPoint.unlockStake();
    }

    /**
     * withdraw the entire paymaster's stake.
     * stake must be unlocked first (and then wait for the unstakeDelay to be over)
     * @param withdrawAddress the address to send withdrawn value.
     */
    function withdrawStake(address payable withdrawAddress) external onlyOwner {
        entryPoint.withdrawStake(withdrawAddress);
    }

    /// validate the call is made from a valid entrypoint
    function _requireFromEntryPoint() internal virtual {
        require(msg.sender == address(entryPoint), "Sender not EntryPoint");
    }
}

File 16 of 17 : Errors.sol
// SPDX-License-Identifier: LGPL-3.0-only
pragma solidity 0.8.17;

contract BasePaymasterErrors {
    /**
     * @notice Throws at onlyEntryPoint when msg.sender is not an EntryPoint set for this paymaster
     * @param caller address that tried to call protected method
     */
    error CallerIsNotAnEntryPoint(address caller);
}

contract VerifyingPaymasterErrors {
    /**
     * @notice Throws when the Entrypoint address provided is address(0)
     */
    error EntryPointCannotBeZero();

    /**
     * @notice Throws when the verifiying signer address provided is address(0)
     */
    error VerifyingSignerCannotBeZero();

    /**
     * @notice Throws when the paymaster address provided is address(0)
     */
    error PaymasterIdCannotBeZero();

    /**
     * @notice Throws when the 0 has been provided as deposit
     */
    error DepositCanNotBeZero();

    /**
     * @notice Throws when trying to withdraw to address(0)
     */
    error CanNotWithdrawToZeroAddress();

    /**
     * @notice Throws when trying to withdraw more than balance available
     * @param amountRequired required balance
     * @param currentBalance available balance
     */
    error InsufficientBalance(uint256 amountRequired, uint256 currentBalance);

    /**
     * @notice Throws when signature provided has invalid length
     * @param sigLength length oif the signature provided
     */
    error InvalidPaymasterSignatureLength(uint256 sigLength);
}

File 17 of 17 : PaymasterHelpers.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.17;

import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {UserOperation} from "@account-abstraction/contracts/interfaces/UserOperation.sol";

struct PaymasterData {
    address paymasterId;
    uint48 validUntil;
    uint48 validAfter;
    bytes signature;
    uint256 signatureLength;
}

struct PaymasterContext {
    address paymasterId;
    uint256 maxFeePerGas;
    uint256 maxPriorityFeePerGas;
}

/**
 * @title PaymasterHelpers - helper functions for paymasters
 */
library PaymasterHelpers {
    using ECDSA for bytes32;

    /**
     * @dev Encodes the paymaster context: paymasterId and gasPrice
     * @param op UserOperation object
     * @param data PaymasterData passed
     */
    function paymasterContext(
        UserOperation calldata op,
        PaymasterData memory data,
        uint256 maxFeePerGas,
        uint256 maxPriorityFeePerGas
    ) internal pure returns (bytes memory context) {
        return abi.encode(data.paymasterId, maxFeePerGas, maxPriorityFeePerGas);
    }

    /**
     * @dev Decodes paymaster data assuming it follows PaymasterData
     */
    function _decodePaymasterData(
        UserOperation calldata op
    ) internal pure returns (PaymasterData memory) {
        bytes calldata paymasterAndData = op.paymasterAndData;
        (
            address paymasterId,
            uint48 validUntil,
            uint48 validAfter,
            bytes memory signature
        ) = abi.decode(paymasterAndData[20:], (address, uint48, uint48, bytes));
        return
            PaymasterData(
                paymasterId,
                validUntil,
                validAfter,
                signature,
                signature.length
            );
    }

    /**
     * @dev Decodes paymaster context assuming it follows PaymasterContext
     */
    function _decodePaymasterContext(
        bytes memory context
    ) internal pure returns (PaymasterContext memory) {
        (
            address paymasterId,
            uint256 maxFeePerGas,
            uint256 maxPriorityFeePerGas
        ) = abi.decode(context, (address, uint256, uint256));
        return
            PaymasterContext(paymasterId, maxFeePerGas, maxPriorityFeePerGas);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 800
  },
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"contract IEntryPoint","name":"_entryPoint","type":"address"},{"internalType":"address","name":"_verifyingSigner","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"CanNotWithdrawToZeroAddress","type":"error"},{"inputs":[],"name":"DepositCanNotBeZero","type":"error"},{"inputs":[],"name":"EntryPointCannotBeZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountRequired","type":"uint256"},{"internalType":"uint256","name":"currentBalance","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[{"internalType":"uint256","name":"sigLength","type":"uint256"}],"name":"InvalidPaymasterSignatureLength","type":"error"},{"inputs":[],"name":"PaymasterIdCannotBeZero","type":"error"},{"inputs":[],"name":"VerifyingSignerCannotBeZero","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_oldValue","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"_newValue","type":"uint256"}],"name":"EPGasOverheadChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"uint256","name":"_charge","type":"uint256"}],"name":"GasBalanceDeducted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"uint256","name":"_value","type":"uint256"}],"name":"GasDeposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"address","name":"_to","type":"address"},{"indexed":true,"internalType":"uint256","name":"_value","type":"uint256"}],"name":"GasWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"_newSigner","type":"address"},{"indexed":true,"internalType":"address","name":"_actor","type":"address"}],"name":"VerifyingSignerChanged","type":"event"},{"inputs":[{"internalType":"uint32","name":"unstakeDelaySec","type":"uint32"}],"name":"addStake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"paymasterId","type":"address"}],"name":"depositFor","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"paymasterId","type":"address"}],"name":"getBalance","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"address","name":"paymasterId","type":"address"},{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"uint48","name":"validAfter","type":"uint48"}],"name":"getHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"paymasterIdBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPaymaster.PostOpMode","name":"mode","type":"uint8"},{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"actualGasCost","type":"uint256"}],"name":"postOp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newVerifyingSigner","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"setUnaccountedEPGasOverhead","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"maxCost","type":"uint256"}],"name":"validatePaymasterUserOp","outputs":[{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"verifyingSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"}],"name":"withdrawStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTo","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a0601f6200155238819003918201601f19168301916001600160401b038311848410176200011857808492606094604052833981010312620001135762000047816200012e565b6020820151916001600160a01b0391828416919082850362000113576200007560406200008a93016200012e565b94620000813362000143565b60805262000143565b60018055156200010157811615620000ef57600455612ee06002556040516113c790816200018b82396080518181816103910152818161043b015281816104d101528181610544015281816105c601528181610a0701528181610afc0152610c690152f35b604051638fc6a93160e01b8152600490fd5b60405163091748f960e21b8152600490fd5b600080fd5b634e487b7160e01b600052604160045260246000fd5b51906001600160a01b03821682036200011357565b600080546001600160a01b039283166001600160a01b03198216811783559216907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a356fe6040608081526004908136101561001557600080fd5b600091823560e01c9081630396cb6014610aca578163205c28781461099357816323d9ac9b1461096c5781635e1e7b54146108eb5781636c19e7831461087c578163715018a6146108155781638da5cb5b146107ef578163a40a7ddc146107c8578163a9a234091461067b578163aa67c91914610568578163b0d691fe1461052457838263bb9fe6bf146104ac578263c23a5cea1461040c57508163c399ec881461035c578163d0e30db014610308578163deeb3874146102be578163f2fde38b146101d4578163f465c77e1461012f575063f8b2cb4f146100f657600080fd5b3461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b1681526003845220549051908152f35b5080fd5b919050346101d0576060916003199083823601126101c85780359167ffffffffffffffff83116101cc576101609083360301126101c85761017c91610172610c5f565b6044359101610ec0565b8291925194859383855280518094860152815b8481106101b15750508383018501526020830152601f01601f19168101030190f35b60208282018101518983018901528896500161018f565b8480fd5b8580fd5b8280fd5b9050346101d05760203660031901126101d0576101ef610b5a565b906101f8610b83565b6001600160a01b038092169283156102555750506000548273ffffffffffffffffffffffffffffffffffffffff19821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b906020608492519162461bcd60e51b8352820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152fd5b83903461012b57602036600319011261012b57356102da610b83565b600254816002557f0b2f957fc0a9306310238ef9a212935360e98fe3f8bc525f4cb69d38b1efa8598380a380f35b9050828060031936011261035957506020606492519162461bcd60e51b8352820152601760248201527f75736572204465706f736974466f7220696e73746561640000000000000000006044820152fd5b80fd5b919050346101d057826003193601126101d0578051916370a0823160e01b835230908301526020826024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa9182156104025783926103cb575b6020838351908152f35b9091506020813d82116103fa575b816103e660209383610c3d565b810103126101d057602092505190386103c1565b3d91506103d9565b81513d85823e3d90fd5b809184346104a85760203660031901126104a857610428610b5a565b610430610b83565b6001600160a01b03807f000000000000000000000000000000000000000000000000000000000000000016803b156101cc578592836024928651978895869463611d2e7560e11b865216908401525af190811561049f575061048f5750f35b61049890610bdb565b6103595780f35b513d84823e3d90fd5b5050fd5b809184346104a857826003193601126104a8576104c7610b83565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001691823b1561051f57815163bb9fe6bf60e01b81529284918491829084905af190811561049f575061048f5750f35b505050fd5b50503461012b578160031936011261012b57602090516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b905060203660031901126101d05761057e610b5a565b91610587610cf9565b6001600160a01b0380931692831561066d57341561065f579084929184845260036020526105b83483862054610cd6565b8585526003602052828520557f00000000000000000000000000000000000000000000000000000000000000001691823b1561065b578390602483518095819363b760faf960e01b8352309083015234905af190811561049f5750610647575b505034907f1dbbf474736d6415d6a265fabee708fe6e988f6fd0c9d870ded36cab380898dd8380a36001805580f35b61065090610bdb565b61012b578138610618565b8380fd5b50516333a6177160e11b8152fd5b50516355cd1c6560e11b8152fd5b9050346101d05760603660031901126101d0576003813510156101d05767ffffffffffffffff6024358181116101c857366023820112156101c857808301359182116101c85736602483830101116101c8576106e3916106d9610c5f565b6024369201610d8f565b90838380516106f181610c05565b828152826020820152015260608280518101031261065b576020820151916001600160a01b0383168093036101c8578060608561074b930151910151908186805161073b81610c05565b8781528360208201520152611369565b906002548281029281840414901517156107b5575061076c90604435610cd6565b9181845260036020526107828382862054610d4f565b9082855260036020528420557f5dc1c754041954fe976773fa441397a7928c7127a1c83904214a7d25633990078380a380f35b634e487b7160e01b855260119052602484fd5b50503461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b50503461012b578160031936011261012b576001600160a01b0360209254169051908152f35b833461035957806003193601126103595761082e610b83565b60006001600160a01b03815473ffffffffffffffffffffffffffffffffffffffff1981168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b91905060203660031901126101d057610893610b5a565b61089b610b83565b6001600160a01b038082169283156108dc5750835416925533917fe1f62c0e6d7bb6d470828565415bf2e87dbfea50e52d2d753788b529bd0c6d628480a480f35b51638fc6a93160e01b81528490fd5b9050346101d057600319926080368501126103595781359367ffffffffffffffff851161012b5761016090853603011261035957506024356001600160a01b03811681036109675760443565ffffffffffff918282168203610967576064359283168303610967576020956109609401610dd6565b9051908152f35b600080fd5b828434610359578060031936011261035957506001600160a01b0360209254169051908152f35b9050346101d057816003193601126101d0576109ad610b5a565b90602435926109ba610cf9565b6001600160a01b03809316928315610abc57338652600360205281862054808611610aa057509085929133845260036020526109f98683862054610d4f565b3385526003602052828520557f00000000000000000000000000000000000000000000000000000000000000001691823b1561065b578460448592838551968794859363040b850f60e31b85528401528a60248401525af190811561049f5750610a8c575b5050337f926a144b6fffc1d73f115b81af7ec66a7c12aed0ff73197c39a683753fc1d9258480a46001805580f35b610a9590610bdb565b6101d0578238610a5e565b836044918785519263cf47918160e01b84528301526024820152fd5b50516392bc9df360e01b8152fd5b91905060203660031901126101d05782823563ffffffff811680910361012b57610af2610b83565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001693843b156101d05760249084519586938492621cb65b60e51b845283015234905af190811561049f5750610b4e575080f35b610b5790610bdb565b80f35b600435906001600160a01b038216820361096757565b359065ffffffffffff8216820361096757565b6001600160a01b03600054163303610b9757565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b67ffffffffffffffff8111610bef57604052565b634e487b7160e01b600052604160045260246000fd5b6060810190811067ffffffffffffffff821117610bef57604052565b60a0810190811067ffffffffffffffff821117610bef57604052565b90601f8019910116810190811067ffffffffffffffff821117610bef57604052565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163303610c9157565b60405162461bcd60e51b815260206004820152601560248201527f53656e646572206e6f7420456e747279506f696e7400000000000000000000006044820152606490fd5b91908201809211610ce357565b634e487b7160e01b600052601160045260246000fd5b600260015414610d0a576002600155565b60405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606490fd5b91908203918211610ce357565b903590601e1981360301821215610967570180359067ffffffffffffffff82116109675760200191813603831361096757565b92919267ffffffffffffffff8211610bef5760405191610db9601f8201601f191660200184610c3d565b829481845281830111610967578281602093846000960137010152565b91929092610df1610dea6040850185610d5c565b3691610d8f565b60208151910120610e08610dea6060860186610d5c565b60208151910120946040519460208601966001600160a01b03938483351689526020830135604089015260608801526080870152608081013560a087015260a081013560c087015260c081013560e08701526101009060e081013582880152013561012086015246610140860152306101608601521661018084015265ffffffffffff8091166101a08401526101c091168183015281526101e0810181811067ffffffffffffffff821117610bef5760405251902090565b60408051939290610ed085610c21565b600090818652816080602097828982015282848201526060808201520152610efc610120850185610d5c565b8060149492941161012b578301946080848703601319011261012b576014840135946001600160a01b039081871680970361065b57610f3d60348701610b70565b97610f4a60548801610b70565b90607488013567ffffffffffffffff98898211611184570181603382011215611180578c9392918160346014610f839401359101610d8f565b90610fc8825191895195610f9687610c21565b8c87528601809c65ffffffffffff9e8f168092528b88019e8f9316809352606088019586526080880194855289610dd6565b90516041810361116957506110316110298e9387938460045416958c51908101917f19457468657265756d205369676e6564204d6573736167653a0a3332000000008352603c820152603c815261101e81610c05565b5190209051906112a2565b919091611188565b16036110f85782825116855260038b528585205481116110d2575090610100929151168451998a015260e0810135848a015201356060880152606087526080870192878410908411176110be5750917fffffffffffff00000000000000000000000000000000000000000000000000009165ffffffffffff60a01b935251925160d01b169160a01b161790565b634e487b7160e01b81526041600452602490fd5b8580868560449551168152205490519163cf47918160e01b835260048301526024820152fd5b50505050929365ffffffffffff60a01b7fffffffffffff0000000000000000000000000000000000000000000000000000600193989651925160d01b169160a01b1617179480519384019184831090831117611155575281529190565b634e487b7160e01b83526041600452602483fd5b60249089519063e4b52b1760e01b82526004820152fd5b8680fd5b8780fd5b600581101561128c57806111995750565b600181036111e65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606490fd5b600281036112335760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606490fd5b60031461123c57565b60405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608490fd5b634e487b7160e01b600052602160045260246000fd5b9060418151146000146112d0576112cc916020820151906060604084015193015160001a906112da565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831161135d5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156113505781516001600160a01b0381161561134a579190565b50600190565b50604051903d90823e3d90fd5b50505050600090600390565b9080821461138d5761137c904890610cd6565b80821015611388575090565b905090565b509056fea2646970667358221220f6c64e9a161434c576df27c969a232a97b849a51f008004d1ee430df8948683964736f6c634300081100330000000000000000000000002cf491602ad22944d9047282abc00d3e52f56b370000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789000000000000000000000000c6dab8652e5e9749523ba948f42d5944584e4e73

Deployed Bytecode

0x6040608081526004908136101561001557600080fd5b600091823560e01c9081630396cb6014610aca578163205c28781461099357816323d9ac9b1461096c5781635e1e7b54146108eb5781636c19e7831461087c578163715018a6146108155781638da5cb5b146107ef578163a40a7ddc146107c8578163a9a234091461067b578163aa67c91914610568578163b0d691fe1461052457838263bb9fe6bf146104ac578263c23a5cea1461040c57508163c399ec881461035c578163d0e30db014610308578163deeb3874146102be578163f2fde38b146101d4578163f465c77e1461012f575063f8b2cb4f146100f657600080fd5b3461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b1681526003845220549051908152f35b5080fd5b919050346101d0576060916003199083823601126101c85780359167ffffffffffffffff83116101cc576101609083360301126101c85761017c91610172610c5f565b6044359101610ec0565b8291925194859383855280518094860152815b8481106101b15750508383018501526020830152601f01601f19168101030190f35b60208282018101518983018901528896500161018f565b8480fd5b8580fd5b8280fd5b9050346101d05760203660031901126101d0576101ef610b5a565b906101f8610b83565b6001600160a01b038092169283156102555750506000548273ffffffffffffffffffffffffffffffffffffffff19821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b906020608492519162461bcd60e51b8352820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152fd5b83903461012b57602036600319011261012b57356102da610b83565b600254816002557f0b2f957fc0a9306310238ef9a212935360e98fe3f8bc525f4cb69d38b1efa8598380a380f35b9050828060031936011261035957506020606492519162461bcd60e51b8352820152601760248201527f75736572204465706f736974466f7220696e73746561640000000000000000006044820152fd5b80fd5b919050346101d057826003193601126101d0578051916370a0823160e01b835230908301526020826024816001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789165afa9182156104025783926103cb575b6020838351908152f35b9091506020813d82116103fa575b816103e660209383610c3d565b810103126101d057602092505190386103c1565b3d91506103d9565b81513d85823e3d90fd5b809184346104a85760203660031901126104a857610428610b5a565b610430610b83565b6001600160a01b03807f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278916803b156101cc578592836024928651978895869463611d2e7560e11b865216908401525af190811561049f575061048f5750f35b61049890610bdb565b6103595780f35b513d84823e3d90fd5b5050fd5b809184346104a857826003193601126104a8576104c7610b83565b6001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891691823b1561051f57815163bb9fe6bf60e01b81529284918491829084905af190811561049f575061048f5750f35b505050fd5b50503461012b578160031936011261012b57602090516001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789168152f35b905060203660031901126101d05761057e610b5a565b91610587610cf9565b6001600160a01b0380931692831561066d57341561065f579084929184845260036020526105b83483862054610cd6565b8585526003602052828520557f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891691823b1561065b578390602483518095819363b760faf960e01b8352309083015234905af190811561049f5750610647575b505034907f1dbbf474736d6415d6a265fabee708fe6e988f6fd0c9d870ded36cab380898dd8380a36001805580f35b61065090610bdb565b61012b578138610618565b8380fd5b50516333a6177160e11b8152fd5b50516355cd1c6560e11b8152fd5b9050346101d05760603660031901126101d0576003813510156101d05767ffffffffffffffff6024358181116101c857366023820112156101c857808301359182116101c85736602483830101116101c8576106e3916106d9610c5f565b6024369201610d8f565b90838380516106f181610c05565b828152826020820152015260608280518101031261065b576020820151916001600160a01b0383168093036101c8578060608561074b930151910151908186805161073b81610c05565b8781528360208201520152611369565b906002548281029281840414901517156107b5575061076c90604435610cd6565b9181845260036020526107828382862054610d4f565b9082855260036020528420557f5dc1c754041954fe976773fa441397a7928c7127a1c83904214a7d25633990078380a380f35b634e487b7160e01b855260119052602484fd5b50503461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b50503461012b578160031936011261012b576001600160a01b0360209254169051908152f35b833461035957806003193601126103595761082e610b83565b60006001600160a01b03815473ffffffffffffffffffffffffffffffffffffffff1981168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b91905060203660031901126101d057610893610b5a565b61089b610b83565b6001600160a01b038082169283156108dc5750835416925533917fe1f62c0e6d7bb6d470828565415bf2e87dbfea50e52d2d753788b529bd0c6d628480a480f35b51638fc6a93160e01b81528490fd5b9050346101d057600319926080368501126103595781359367ffffffffffffffff851161012b5761016090853603011261035957506024356001600160a01b03811681036109675760443565ffffffffffff918282168203610967576064359283168303610967576020956109609401610dd6565b9051908152f35b600080fd5b828434610359578060031936011261035957506001600160a01b0360209254169051908152f35b9050346101d057816003193601126101d0576109ad610b5a565b90602435926109ba610cf9565b6001600160a01b03809316928315610abc57338652600360205281862054808611610aa057509085929133845260036020526109f98683862054610d4f565b3385526003602052828520557f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891691823b1561065b578460448592838551968794859363040b850f60e31b85528401528a60248401525af190811561049f5750610a8c575b5050337f926a144b6fffc1d73f115b81af7ec66a7c12aed0ff73197c39a683753fc1d9258480a46001805580f35b610a9590610bdb565b6101d0578238610a5e565b836044918785519263cf47918160e01b84528301526024820152fd5b50516392bc9df360e01b8152fd5b91905060203660031901126101d05782823563ffffffff811680910361012b57610af2610b83565b6001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891693843b156101d05760249084519586938492621cb65b60e51b845283015234905af190811561049f5750610b4e575080f35b610b5790610bdb565b80f35b600435906001600160a01b038216820361096757565b359065ffffffffffff8216820361096757565b6001600160a01b03600054163303610b9757565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b67ffffffffffffffff8111610bef57604052565b634e487b7160e01b600052604160045260246000fd5b6060810190811067ffffffffffffffff821117610bef57604052565b60a0810190811067ffffffffffffffff821117610bef57604052565b90601f8019910116810190811067ffffffffffffffff821117610bef57604052565b6001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789163303610c9157565b60405162461bcd60e51b815260206004820152601560248201527f53656e646572206e6f7420456e747279506f696e7400000000000000000000006044820152606490fd5b91908201809211610ce357565b634e487b7160e01b600052601160045260246000fd5b600260015414610d0a576002600155565b60405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606490fd5b91908203918211610ce357565b903590601e1981360301821215610967570180359067ffffffffffffffff82116109675760200191813603831361096757565b92919267ffffffffffffffff8211610bef5760405191610db9601f8201601f191660200184610c3d565b829481845281830111610967578281602093846000960137010152565b91929092610df1610dea6040850185610d5c565b3691610d8f565b60208151910120610e08610dea6060860186610d5c565b60208151910120946040519460208601966001600160a01b03938483351689526020830135604089015260608801526080870152608081013560a087015260a081013560c087015260c081013560e08701526101009060e081013582880152013561012086015246610140860152306101608601521661018084015265ffffffffffff8091166101a08401526101c091168183015281526101e0810181811067ffffffffffffffff821117610bef5760405251902090565b60408051939290610ed085610c21565b600090818652816080602097828982015282848201526060808201520152610efc610120850185610d5c565b8060149492941161012b578301946080848703601319011261012b576014840135946001600160a01b039081871680970361065b57610f3d60348701610b70565b97610f4a60548801610b70565b90607488013567ffffffffffffffff98898211611184570181603382011215611180578c9392918160346014610f839401359101610d8f565b90610fc8825191895195610f9687610c21565b8c87528601809c65ffffffffffff9e8f168092528b88019e8f9316809352606088019586526080880194855289610dd6565b90516041810361116957506110316110298e9387938460045416958c51908101917f19457468657265756d205369676e6564204d6573736167653a0a3332000000008352603c820152603c815261101e81610c05565b5190209051906112a2565b919091611188565b16036110f85782825116855260038b528585205481116110d2575090610100929151168451998a015260e0810135848a015201356060880152606087526080870192878410908411176110be5750917fffffffffffff00000000000000000000000000000000000000000000000000009165ffffffffffff60a01b935251925160d01b169160a01b161790565b634e487b7160e01b81526041600452602490fd5b8580868560449551168152205490519163cf47918160e01b835260048301526024820152fd5b50505050929365ffffffffffff60a01b7fffffffffffff0000000000000000000000000000000000000000000000000000600193989651925160d01b169160a01b1617179480519384019184831090831117611155575281529190565b634e487b7160e01b83526041600452602483fd5b60249089519063e4b52b1760e01b82526004820152fd5b8680fd5b8780fd5b600581101561128c57806111995750565b600181036111e65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606490fd5b600281036112335760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606490fd5b60031461123c57565b60405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608490fd5b634e487b7160e01b600052602160045260246000fd5b9060418151146000146112d0576112cc916020820151906060604084015193015160001a906112da565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831161135d5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156113505781516001600160a01b0381161561134a579190565b50600190565b50604051903d90823e3d90fd5b50505050600090600390565b9080821461138d5761137c904890610cd6565b80821015611388575090565b905090565b509056fea2646970667358221220f6c64e9a161434c576df27c969a232a97b849a51f008004d1ee430df8948683964736f6c63430008110033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000002cf491602ad22944d9047282abc00d3e52f56b370000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789000000000000000000000000c6dab8652e5e9749523ba948f42d5944584e4e73

-----Decoded View---------------
Arg [0] : _owner (address): 0x2cf491602ad22944D9047282aBC00D3e52F56B37
Arg [1] : _entryPoint (address): 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789
Arg [2] : _verifyingSigner (address): 0xC6dAB8652E5E9749523bA948F42d5944584E4e73

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 0000000000000000000000002cf491602ad22944d9047282abc00d3e52f56b37
Arg [1] : 0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Arg [2] : 000000000000000000000000c6dab8652e5e9749523ba948f42d5944584e4e73


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.