Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0.01 ETH
Eth Value
$32.89 (@ $3,289.17/ETH)More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 119 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw To | 21636023 | 2 days ago | IN | 0 ETH | 0.00036427 | ||||
Deposit For | 21614691 | 5 days ago | IN | 0.009 ETH | 0.00032611 | ||||
Withdraw To | 21472094 | 25 days ago | IN | 0 ETH | 0.00019878 | ||||
Withdraw To | 21472090 | 25 days ago | IN | 0 ETH | 0.000319 | ||||
Withdraw To | 21437941 | 30 days ago | IN | 0 ETH | 0.00120719 | ||||
Deposit For | 21422655 | 32 days ago | IN | 0.044 ETH | 0.00098289 | ||||
Withdraw To | 21400494 | 35 days ago | IN | 0 ETH | 0.00040137 | ||||
Deposit For | 21400463 | 35 days ago | IN | 0.05 ETH | 0.00060036 | ||||
Deposit For | 21391910 | 36 days ago | IN | 0.01 ETH | 0.00054811 | ||||
Deposit For | 21385223 | 37 days ago | IN | 0.02 ETH | 0.00075305 | ||||
Deposit For | 21374839 | 39 days ago | IN | 0.098 ETH | 0.00110794 | ||||
Deposit For | 21324342 | 46 days ago | IN | 1.115 ETH | 0.00151406 | ||||
Deposit For | 21307396 | 48 days ago | IN | 0.08 ETH | 0.00046922 | ||||
Deposit For | 21280171 | 52 days ago | IN | 0.1 ETH | 0.00178647 | ||||
Withdraw To | 21259230 | 55 days ago | IN | 0 ETH | 0.00059663 | ||||
Deposit For | 21252984 | 56 days ago | IN | 0.048 ETH | 0.00053309 | ||||
Deposit For | 21252739 | 56 days ago | IN | 0.0015 ETH | 0.0008462 | ||||
Deposit For | 21217325 | 61 days ago | IN | 0.05 ETH | 0.0009547 | ||||
Deposit For | 21180289 | 66 days ago | IN | 0.7 ETH | 0.0042814 | ||||
Deposit For | 21179181 | 66 days ago | IN | 0.1 ETH | 0.00402176 | ||||
Deposit For | 21172565 | 67 days ago | IN | 0.03 ETH | 0.00144242 | ||||
Deposit For | 21172398 | 67 days ago | IN | 0.01 ETH | 0.00137158 | ||||
Withdraw To | 21171418 | 67 days ago | IN | 0 ETH | 0.00119371 | ||||
Deposit For | 21171402 | 67 days ago | IN | 0.005 ETH | 0.00168581 | ||||
Deposit For | 21120955 | 74 days ago | IN | 0.1 ETH | 0.00026027 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
21614691 | 5 days ago | 0.009 ETH | ||||
21440010 | 30 days ago | 1.0458528 ETH | ||||
21440010 | 30 days ago | 1.0458528 ETH | ||||
21432854 | 31 days ago | 1.0458528 ETH | ||||
21432854 | 31 days ago | 1.0458528 ETH | ||||
21422655 | 32 days ago | 0.044 ETH | ||||
21421376 | 32 days ago | 0.00626814 ETH | ||||
21421376 | 32 days ago | 0.00626814 ETH | ||||
21400463 | 35 days ago | 0.05 ETH | ||||
21391910 | 36 days ago | 0.01 ETH | ||||
21385223 | 37 days ago | 0.02 ETH | ||||
21374839 | 39 days ago | 0.098 ETH | ||||
21343090 | 43 days ago | 0.00285288 ETH | ||||
21343090 | 43 days ago | 0.00285288 ETH | ||||
21324342 | 46 days ago | 1.115 ETH | ||||
21307396 | 48 days ago | 0.08 ETH | ||||
21280171 | 52 days ago | 0.1 ETH | ||||
21252984 | 56 days ago | 0.048 ETH | ||||
21252739 | 56 days ago | 0.0015 ETH | ||||
21244770 | 57 days ago | 0.00304579 ETH | ||||
21244770 | 57 days ago | 0.00304579 ETH | ||||
21238377 | 58 days ago | 0.01772507 ETH | ||||
21238377 | 58 days ago | 0.01772507 ETH | ||||
21232611 | 59 days ago | 0.00153624 ETH | ||||
21232611 | 59 days ago | 0.00153624 ETH |
Loading...
Loading
Contract Name:
VerifyingSingletonPaymaster
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 800 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.17; /* solhint-disable reason-string */ /* solhint-disable no-inline-assembly */ import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import {UserOperation, UserOperationLib} from "@account-abstraction/contracts/interfaces/UserOperation.sol"; import "../BasePaymaster.sol"; import {PaymasterHelpers, PaymasterData, PaymasterContext} from "./PaymasterHelpers.sol"; import {VerifyingPaymasterErrors} from "../common/Errors.sol"; /** * @title A sample paymaster that uses external service to decide whether to pay for the UserOp. * @dev The paymaster trusts an external signer to sign the transaction. * The calling user must pass the UserOp to that external signer first, which performs whatever * off-chain verification before signing the UserOp. * @notice That this signature is NOT a replacement for wallet signature: * - The paymaster signs to agree to PAY for GAS. * - The wallet signs to prove identity and wallet ownership. */ contract VerifyingSingletonPaymaster is BasePaymaster, ReentrancyGuard, VerifyingPaymasterErrors { using ECDSA for bytes32; using UserOperationLib for UserOperation; using PaymasterHelpers for UserOperation; using PaymasterHelpers for bytes; using PaymasterHelpers for PaymasterData; // Gas used in EntryPoint._handlePostOp() method (including this#postOp() call) uint256 private unaccountedEPGasOverhead; mapping(address => uint256) public paymasterIdBalances; address public verifyingSigner; event EPGasOverheadChanged( uint256 indexed _oldValue, uint256 indexed _newValue ); event VerifyingSignerChanged( address indexed _oldSigner, address indexed _newSigner, address indexed _actor ); event GasDeposited(address indexed _paymasterId, uint256 indexed _value); event GasWithdrawn( address indexed _paymasterId, address indexed _to, uint256 indexed _value ); event GasBalanceDeducted( address indexed _paymasterId, uint256 indexed _charge ); constructor( address _owner, IEntryPoint _entryPoint, address _verifyingSigner ) payable BasePaymaster(_owner, _entryPoint) { if (address(_entryPoint) == address(0)) revert EntryPointCannotBeZero(); if (_verifyingSigner == address(0)) revert VerifyingSignerCannotBeZero(); assembly { sstore(verifyingSigner.slot, _verifyingSigner) } unaccountedEPGasOverhead = 12000; } /** * @dev Add a deposit for this paymaster and given paymasterId (Dapp Depositor address), used for paying for transaction fees * @param paymasterId dapp identifier for which deposit is being made */ function depositFor(address paymasterId) external payable nonReentrant { if (paymasterId == address(0)) revert PaymasterIdCannotBeZero(); if (msg.value == 0) revert DepositCanNotBeZero(); paymasterIdBalances[paymasterId] = paymasterIdBalances[paymasterId] + msg.value; entryPoint.depositTo{value: msg.value}(address(this)); emit GasDeposited(paymasterId, msg.value); } /** * @dev get the current deposit for paymasterId (Dapp Depositor address) * @param paymasterId dapp identifier */ function getBalance( address paymasterId ) external view returns (uint256 balance) { balance = paymasterIdBalances[paymasterId]; } /** @dev Override the default implementation. */ function deposit() public payable virtual override { revert("user DepositFor instead"); } /** * @dev Withdraws the specified amount of gas tokens from the paymaster's balance and transfers them to the specified address. * @param withdrawAddress The address to which the gas tokens should be transferred. * @param amount The amount of gas tokens to withdraw. */ function withdrawTo( address payable withdrawAddress, uint256 amount ) public override nonReentrant { if (withdrawAddress == address(0)) revert CanNotWithdrawToZeroAddress(); uint256 currentBalance = paymasterIdBalances[msg.sender]; if (amount > currentBalance) revert InsufficientBalance(amount, currentBalance); paymasterIdBalances[msg.sender] = paymasterIdBalances[msg.sender] - amount; entryPoint.withdrawTo(withdrawAddress, amount); emit GasWithdrawn(msg.sender, withdrawAddress, amount); } /** * @dev Set a new verifying signer address. * Can only be called by the owner of the contract. * @param _newVerifyingSigner The new address to be set as the verifying signer. * @notice If _newVerifyingSigner is set to zero address, it will revert with an error. * After setting the new signer address, it will emit an event VerifyingSignerChanged. */ function setSigner(address _newVerifyingSigner) external payable onlyOwner { if (_newVerifyingSigner == address(0)) revert VerifyingSignerCannotBeZero(); address oldSigner = verifyingSigner; assembly { sstore(verifyingSigner.slot, _newVerifyingSigner) } emit VerifyingSignerChanged(oldSigner, _newVerifyingSigner, msg.sender); } function setUnaccountedEPGasOverhead(uint256 value) external onlyOwner { uint256 oldValue = unaccountedEPGasOverhead; unaccountedEPGasOverhead = value; emit EPGasOverheadChanged(oldValue, value); } /** * @dev This method is called by the off-chain service, to sign the request. * It is called on-chain from the validatePaymasterUserOp, to validate the signature. * @notice That this signature covers all fields of the UserOperation, except the "paymasterAndData", * which will carry the signature itself. * @return hash we're going to sign off-chain (and validate on-chain) */ function getHash( UserOperation calldata userOp, address paymasterId, uint48 validUntil, uint48 validAfter ) public view returns (bytes32) { //can't use userOp.hash(), since it contains also the paymasterAndData itself. address sender = userOp.getSender(); return keccak256( abi.encode( sender, userOp.nonce, keccak256(userOp.initCode), keccak256(userOp.callData), userOp.callGasLimit, userOp.verificationGasLimit, userOp.preVerificationGas, userOp.maxFeePerGas, userOp.maxPriorityFeePerGas, block.chainid, address(this), paymasterId, validUntil, validAfter ) ); } /** * @dev Verify that an external signer signed the paymaster data of a user operation. * The paymaster data is expected to be the paymaster and a signature over the entire request parameters. * @param userOp The UserOperation struct that represents the current user operation. * userOpHash The hash of the UserOperation struct. * @param requiredPreFund The required amount of pre-funding for the paymaster. * @return context A context string returned by the entry point after successful validation. * @return validationData An integer returned by the entry point after successful validation. */ function _validatePaymasterUserOp( UserOperation calldata userOp, bytes32 /*userOpHash*/, uint256 requiredPreFund ) internal override returns (bytes memory context, uint256 validationData) { PaymasterData memory paymasterData = userOp._decodePaymasterData(); bytes32 hash = getHash( userOp, paymasterData.paymasterId, paymasterData.validUntil, paymasterData.validAfter ); uint256 sigLength = paymasterData.signatureLength; // we only "require" it here so that the revert reason on invalid signature will be of "VerifyingPaymaster", and not "ECDSA" if (sigLength != 65) revert InvalidPaymasterSignatureLength(sigLength); //don't revert on signature failure: return SIG_VALIDATION_FAILED if ( verifyingSigner != hash.toEthSignedMessageHash().recover(paymasterData.signature) ) { // empty context and sigFailed with time range provided return ( "", _packValidationData( true, paymasterData.validUntil, paymasterData.validAfter ) ); } if (requiredPreFund > paymasterIdBalances[paymasterData.paymasterId]) revert InsufficientBalance( requiredPreFund, paymasterIdBalances[paymasterData.paymasterId] ); return ( userOp.paymasterContext( paymasterData, userOp.maxFeePerGas, userOp.maxPriorityFeePerGas ), _packValidationData( false, paymasterData.validUntil, paymasterData.validAfter ) ); } function getGasPrice( uint256 maxFeePerGas, uint256 maxPriorityFeePerGas ) internal view returns (uint256) { if (maxFeePerGas == maxPriorityFeePerGas) { //legacy mode (for networks that don't support basefee opcode) return maxFeePerGas; } return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Executes the paymaster's payment conditions * @param mode tells whether the op succeeded, reverted, or if the op succeeded but cause the postOp to revert * @param context payment conditions signed by the paymaster in `validatePaymasterUserOp` * @param actualGasCost amount to be paid to the entry point in wei */ function _postOp( PostOpMode mode, bytes calldata context, uint256 actualGasCost ) internal virtual override { PaymasterContext memory data = context._decodePaymasterContext(); address extractedPaymasterId = data.paymasterId; uint256 effectiveGasPrice = getGasPrice( data.maxFeePerGas, data.maxPriorityFeePerGas ); uint256 balToDeduct = actualGasCost + unaccountedEPGasOverhead * effectiveGasPrice; paymasterIdBalances[extractedPaymasterId] = paymasterIdBalances[extractedPaymasterId] - balToDeduct; emit GasBalanceDeducted(extractedPaymasterId, balToDeduct); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ /** * returned data from validateUserOp. * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData` * @param aggregator - address(0) - the account validated the signature by itself. * address(1) - the account failed to validate the signature. * otherwise - this is an address of a signature aggregator that must be used to validate the signature. * @param validAfter - this UserOp is valid only after this timestamp. * @param validaUntil - this UserOp is valid only up to this timestamp. */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } //extract sigFailed, validAfter, validUntil. // also convert zero validUntil to type(uint48).max function _parseValidationData(uint validationData) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } // intersect account and paymaster ranges. function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) { ValidationData memory accountValidationData = _parseValidationData(validationData); ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData); address aggregator = accountValidationData.aggregator; if (aggregator == address(0)) { aggregator = pmValidationData.aggregator; } uint48 validAfter = accountValidationData.validAfter; uint48 validUntil = accountValidationData.validUntil; uint48 pmValidAfter = pmValidationData.validAfter; uint48 pmValidUntil = pmValidationData.validUntil; if (validAfter < pmValidAfter) validAfter = pmValidAfter; if (validUntil > pmValidUntil) validUntil = pmValidUntil; return ValidationData(aggregator, validAfter, validUntil); } /** * helper to pack the return value for validateUserOp * @param data - the ValidationData to pack */ function _packValidationData(ValidationData memory data) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * helper to pack the return value for validateUserOp, when not using an aggregator * @param sigFailed - true for signature failure, false for success * @param validUntil last timestamp this UserOperation is valid (or zero for infinite) * @param validAfter first timestamp this UserOperation is valid */ function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) { return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * validate aggregated signature. * revert if the aggregated signature does not match the given list of operations. */ function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view; /** * validate signature of a single userOp * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp the userOperation received from the user. * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig" */ function validateUserOpSignature(UserOperation calldata userOp) external view returns (bytes memory sigForUserOp); /** * aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code perform this aggregation * @param userOps array of UserOperations to collect the signatures from. * @return aggregatedSignature the aggregated signature */ function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature); }
/** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "./UserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; import "./INonceManager.sol"; interface IEntryPoint is IStakeManager, INonceManager { /*** * An event emitted after each successful request * @param userOpHash - unique identifier for the request (hash its entire content, except signature). * @param sender - the account that generates this request. * @param paymaster - if non-null, the paymaster that pays for this request. * @param nonce - the nonce value from the request. * @param success - true if the sender transaction succeeded, false if reverted. * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution). */ event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed); /** * account "sender" was deployed. * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow. * @param sender the account that is deployed * @param factory the factory used to deploy this account (in the initCode) * @param paymaster the paymaster used by this UserOp */ event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster); /** * An event emitted if the UserOperation "callData" reverted with non-zero length * @param userOpHash the request unique identifier. * @param sender the sender of this request * @param nonce the nonce used in the request * @param revertReason - the return bytes from the (reverted) call to "callData". */ event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason); /** * an event emitted by handleOps(), before starting the execution loop. * any event emitted before this event, is part of the validation. */ event BeforeExecution(); /** * signature aggregator used by the following UserOperationEvents within this bundle. */ event SignatureAggregatorChanged(address indexed aggregator); /** * a custom revert error of handleOps, to identify the offending op. * NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero) * @param reason - revert reason * The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. * Should be caught in off-chain handleOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. */ error FailedOp(uint256 opIndex, string reason); /** * error case when a signature aggregator fails to verify the aggregated signature it had created. */ error SignatureValidationFailed(address aggregator); /** * Successful result from simulateValidation. * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) */ error ValidationResult(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo); /** * Successful result from simulateValidation, if the account returns a signature aggregator * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator) * bundler MUST use it to verify the signature, or reject the UserOperation */ error ValidationResultWithAggregation(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo, AggregatorStakeInfo aggregatorInfo); /** * return value of getSenderAddress */ error SenderAddressResult(address sender); /** * return value of simulateHandleOp */ error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult); //UserOps handled, per aggregator struct UserOpsPerAggregator { UserOperation[] userOps; // aggregator address IAggregator aggregator; // aggregated signature bytes signature; } /** * Execute a batch of UserOperation. * no signature aggregator is used. * if any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops the operations to execute * @param beneficiary the address to receive the fees */ function handleOps(UserOperation[] calldata ops, address payable beneficiary) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts) * @param beneficiary the address to receive the fees */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * generate a request Id - unique identifier for this request. * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid. */ function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32); /** * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp. * @dev this method always revert. Successful result is ValidationResult error. other errors are failures. * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data. * @param userOp the user operation to validate. */ function simulateValidation(UserOperation calldata userOp) external; /** * gas and return values during simulation * @param preOpGas the gas used for validation (including preValidationGas) * @param prefund the required prefund for this operation * @param sigFailed validateUserOp's (or paymaster's) signature check failed * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range) * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range) * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; bool sigFailed; uint48 validAfter; uint48 validUntil; bytes paymasterContext; } /** * returned aggregated signature info. * the aggregator returned by the account, and its current stake. */ struct AggregatorStakeInfo { address aggregator; StakeInfo stakeInfo; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * this method always revert, and returns the address in SenderAddressResult error * @param initCode the constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; /** * simulate full execution of a UserOperation (including both validation and target execution) * this method will always revert with "ExecutionResult". * it performs full validation of the UserOperation, but ignores signature error. * an optional target address is called after the userop succeeds, and its value is returned * (before the entire call is reverted) * Note that in order to collect the the success/failure of the target call, it must be executed * with trace enabled to track the emitted events. * @param op the UserOperation to simulate * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult * are set to the return from that call. * @param targetCallData callData to pass to target address */ function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; interface INonceManager { /** * Return the next nonce for this sender. * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop) * But UserOp with different keys can come with arbitrary order. * * @param sender the account address * @param key the high 192 bit of the nonce * @return nonce a full nonce to pass for next UserOp with this sender. */ function getNonce(address sender, uint192 key) external view returns (uint256 nonce); /** * Manually increment the nonce of the sender. * This method is exposed just for completeness.. * Account does NOT need to call it, neither during validation, nor elsewhere, * as the EntryPoint will update the nonce regardless. * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future * UserOperations will not pay extra for the first transaction with a given key. */ function incrementNonce(uint192 key) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; /** * the interface exposed by a paymaster contract, who agrees to pay the gas for user's operations. * a paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction. */ interface IPaymaster { enum PostOpMode { opSucceeded, // user op succeeded opReverted, // user op reverted. still has to pay for gas. postOpReverted //user op succeeded, but caused postOp to revert. Now it's a 2nd call, after user's op was deliberately reverted. } /** * payment validation: check if paymaster agrees to pay. * Must verify sender is the entryPoint. * Revert to reject this request. * Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted) * The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns. * @param userOp the user operation * @param userOpHash hash of the user's request data. * @param maxCost the maximum cost of this transaction (based on maximum gas and gas price from userOp) * @return context value to send to a postOp * zero length to signify postOp is not required. * @return validationData signature and time-range of this operation, encoded the same as the return value of validateUserOperation * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost) external returns (bytes memory context, uint256 validationData); /** * post-operation handler. * Must verify sender is the entryPoint * @param mode enum with the following options: * opSucceeded - user operation succeeded. * opReverted - user op reverted. still has to pay for gas. * postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert. * Now this is the 2nd call, after user's op was deliberately reverted. * @param context - the context value returned by validatePaymasterUserOp * @param actualGasCost - actual gas used so far (without this postOp call). */ function postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) external; }
// SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.12; /** * manage deposits and stakes. * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account) * stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited( address indexed account, uint256 totalDeposit ); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); /// Emitted when stake or unstake delay are modified event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); /// Emitted once a stake is scheduled for withdrawal event StakeUnlocked( address indexed account, uint256 withdrawTime ); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit the entity's deposit * @param staked true if this entity is staked. * @param stake actual amount of ether staked for this entity. * @param unstakeDelaySec minimum delay to withdraw the stake. * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps) * and the rest fit into a 2nd cell. * 112 bit allows for 10^15 eth * 48 bit for full timestamp * 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint112 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } //API struct used by getStakeInfo and simulateValidation struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /// @return info - full deposit information of given account function getDepositInfo(address account) external view returns (DepositInfo memory info); /// @return the deposit (for gas payment) of the account function balanceOf(address account) external view returns (uint256); /** * add to the deposit of the given account */ function depositTo(address account) external payable; /** * add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn. */ function addStake(uint32 _unstakeDelaySec) external payable; /** * attempt to unlock the stake. * the value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * withdraw from the (unlocked) stake. * must first call unlockStake and wait for the unstakeDelay to pass * @param withdrawAddress the address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * withdraw from the deposit. * @param withdrawAddress the address to send withdrawn value. * @param withdrawAmount the amount to withdraw. */ function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ import {calldataKeccak} from "../core/Helpers.sol"; /** * User Operation struct * @param sender the sender account of this request. * @param nonce unique value the sender uses to verify it is not a replay. * @param initCode if set, the account contract will be created by this constructor/ * @param callData the method call to execute on this account. * @param callGasLimit the gas limit passed to the callData method call. * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp. * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead. * @param maxFeePerGas same as EIP-1559 gas parameter. * @param maxPriorityFeePerGas same as EIP-1559 gas parameter. * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender. * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct UserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; uint256 callGasLimit; uint256 verificationGasLimit; uint256 preVerificationGas; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; bytes paymasterAndData; bytes signature; } /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { function getSender(UserOperation calldata userOp) internal pure returns (address) { address data; //read sender from userOp, which is first userOp member (saves 800 gas...) assembly {data := calldataload(userOp)} return address(uint160(data)); } //relayer/block builder might submit the TX with higher priorityFee, but the user should not // pay above what he signed for. function gasPrice(UserOperation calldata userOp) internal view returns (uint256) { unchecked { uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; if (maxFeePerGas == maxPriorityFeePerGas) { //legacy mode (for networks that don't support basefee opcode) return maxFeePerGas; } return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) { address sender = getSender(userOp); uint256 nonce = userOp.nonce; bytes32 hashInitCode = calldataKeccak(userOp.initCode); bytes32 hashCallData = calldataKeccak(userOp.callData); uint256 callGasLimit = userOp.callGasLimit; uint256 verificationGasLimit = userOp.verificationGasLimit; uint256 preVerificationGas = userOp.preVerificationGas; uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData); return abi.encode( sender, nonce, hashInitCode, hashCallData, callGasLimit, verificationGasLimit, preVerificationGas, maxFeePerGas, maxPriorityFeePerGas, hashPaymasterAndData ); } function hash(UserOperation calldata userOp) internal pure returns (bytes32) { return keccak256(pack(userOp)); } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.17; /* solhint-disable reason-string */ import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import {IPaymaster} from "@account-abstraction/contracts/interfaces/IPaymaster.sol"; import {IEntryPoint} from "@account-abstraction/contracts/interfaces/IEntryPoint.sol"; import {UserOperation, UserOperationLib} from "@account-abstraction/contracts/interfaces/UserOperation.sol"; import "@account-abstraction/contracts/core/Helpers.sol"; // can import specific revert errors as per need /** * Helper class for creating a paymaster. * provides helper methods for staking. * validates that the postOp is called only by the entryPoint */ // @notice Could have Ownable2Step abstract contract BasePaymaster is IPaymaster, Ownable { IEntryPoint public immutable entryPoint; constructor(address _owner, IEntryPoint _entryPoint) { entryPoint = _entryPoint; _transferOwnership(_owner); } /// @inheritdoc IPaymaster function validatePaymasterUserOp( UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost ) external override returns (bytes memory context, uint256 validationData) { _requireFromEntryPoint(); return _validatePaymasterUserOp(userOp, userOpHash, maxCost); } function _validatePaymasterUserOp( UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost ) internal virtual returns (bytes memory context, uint256 validationData); /// @inheritdoc IPaymaster function postOp( PostOpMode mode, bytes calldata context, uint256 actualGasCost ) external override { _requireFromEntryPoint(); _postOp(mode, context, actualGasCost); } /** * post-operation handler. * (verified to be called only through the entryPoint) * @dev if subclass returns a non-empty context from validatePaymasterUserOp, it must also implement this method. * @param mode enum with the following options: * opSucceeded - user operation succeeded. * opReverted - user op reverted. still has to pay for gas. * postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert. * Now this is the 2nd call, after user's op was deliberately reverted. * @param context - the context value returned by validatePaymasterUserOp * @param actualGasCost - actual gas used so far (without this postOp call). */ function _postOp( PostOpMode mode, bytes calldata context, uint256 actualGasCost ) internal virtual { (mode, context, actualGasCost); // unused params // subclass must override this method if validatePaymasterUserOp returns a context revert("must override"); } /** * add a deposit for this paymaster, used for paying for transaction fees */ function deposit() external payable virtual; /** * withdraw value from the deposit * @param withdrawAddress target to send to * @param amount to withdraw */ function withdrawTo( address payable withdrawAddress, uint256 amount ) external virtual; /** * add stake for this paymaster. * This method can also carry eth value to add to the current stake. * @param unstakeDelaySec - the unstake delay for this paymaster. Can only be increased. */ function addStake(uint32 unstakeDelaySec) external payable onlyOwner { entryPoint.addStake{value: msg.value}(unstakeDelaySec); } /** * return current paymaster's deposit on the entryPoint. */ function getDeposit() public view returns (uint256) { return entryPoint.balanceOf(address(this)); } /** * unlock the stake, in order to withdraw it. * The paymaster can't serve requests once unlocked, until it calls addStake again */ function unlockStake() external onlyOwner { entryPoint.unlockStake(); } /** * withdraw the entire paymaster's stake. * stake must be unlocked first (and then wait for the unstakeDelay to be over) * @param withdrawAddress the address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external onlyOwner { entryPoint.withdrawStake(withdrawAddress); } /// validate the call is made from a valid entrypoint function _requireFromEntryPoint() internal virtual { require(msg.sender == address(entryPoint), "Sender not EntryPoint"); } }
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity 0.8.17; contract BasePaymasterErrors { /** * @notice Throws at onlyEntryPoint when msg.sender is not an EntryPoint set for this paymaster * @param caller address that tried to call protected method */ error CallerIsNotAnEntryPoint(address caller); } contract VerifyingPaymasterErrors { /** * @notice Throws when the Entrypoint address provided is address(0) */ error EntryPointCannotBeZero(); /** * @notice Throws when the verifiying signer address provided is address(0) */ error VerifyingSignerCannotBeZero(); /** * @notice Throws when the paymaster address provided is address(0) */ error PaymasterIdCannotBeZero(); /** * @notice Throws when the 0 has been provided as deposit */ error DepositCanNotBeZero(); /** * @notice Throws when trying to withdraw to address(0) */ error CanNotWithdrawToZeroAddress(); /** * @notice Throws when trying to withdraw more than balance available * @param amountRequired required balance * @param currentBalance available balance */ error InsufficientBalance(uint256 amountRequired, uint256 currentBalance); /** * @notice Throws when signature provided has invalid length * @param sigLength length oif the signature provided */ error InvalidPaymasterSignatureLength(uint256 sigLength); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.17; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {UserOperation} from "@account-abstraction/contracts/interfaces/UserOperation.sol"; struct PaymasterData { address paymasterId; uint48 validUntil; uint48 validAfter; bytes signature; uint256 signatureLength; } struct PaymasterContext { address paymasterId; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; } /** * @title PaymasterHelpers - helper functions for paymasters */ library PaymasterHelpers { using ECDSA for bytes32; /** * @dev Encodes the paymaster context: paymasterId and gasPrice * @param op UserOperation object * @param data PaymasterData passed */ function paymasterContext( UserOperation calldata op, PaymasterData memory data, uint256 maxFeePerGas, uint256 maxPriorityFeePerGas ) internal pure returns (bytes memory context) { return abi.encode(data.paymasterId, maxFeePerGas, maxPriorityFeePerGas); } /** * @dev Decodes paymaster data assuming it follows PaymasterData */ function _decodePaymasterData( UserOperation calldata op ) internal pure returns (PaymasterData memory) { bytes calldata paymasterAndData = op.paymasterAndData; ( address paymasterId, uint48 validUntil, uint48 validAfter, bytes memory signature ) = abi.decode(paymasterAndData[20:], (address, uint48, uint48, bytes)); return PaymasterData( paymasterId, validUntil, validAfter, signature, signature.length ); } /** * @dev Decodes paymaster context assuming it follows PaymasterContext */ function _decodePaymasterContext( bytes memory context ) internal pure returns (PaymasterContext memory) { ( address paymasterId, uint256 maxFeePerGas, uint256 maxPriorityFeePerGas ) = abi.decode(context, (address, uint256, uint256)); return PaymasterContext(paymasterId, maxFeePerGas, maxPriorityFeePerGas); } }
{ "optimizer": { "enabled": true, "runs": 800 }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"contract IEntryPoint","name":"_entryPoint","type":"address"},{"internalType":"address","name":"_verifyingSigner","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"CanNotWithdrawToZeroAddress","type":"error"},{"inputs":[],"name":"DepositCanNotBeZero","type":"error"},{"inputs":[],"name":"EntryPointCannotBeZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountRequired","type":"uint256"},{"internalType":"uint256","name":"currentBalance","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[{"internalType":"uint256","name":"sigLength","type":"uint256"}],"name":"InvalidPaymasterSignatureLength","type":"error"},{"inputs":[],"name":"PaymasterIdCannotBeZero","type":"error"},{"inputs":[],"name":"VerifyingSignerCannotBeZero","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_oldValue","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"_newValue","type":"uint256"}],"name":"EPGasOverheadChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"uint256","name":"_charge","type":"uint256"}],"name":"GasBalanceDeducted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"uint256","name":"_value","type":"uint256"}],"name":"GasDeposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"address","name":"_to","type":"address"},{"indexed":true,"internalType":"uint256","name":"_value","type":"uint256"}],"name":"GasWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"_newSigner","type":"address"},{"indexed":true,"internalType":"address","name":"_actor","type":"address"}],"name":"VerifyingSignerChanged","type":"event"},{"inputs":[{"internalType":"uint32","name":"unstakeDelaySec","type":"uint32"}],"name":"addStake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"paymasterId","type":"address"}],"name":"depositFor","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"paymasterId","type":"address"}],"name":"getBalance","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"address","name":"paymasterId","type":"address"},{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"uint48","name":"validAfter","type":"uint48"}],"name":"getHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"paymasterIdBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPaymaster.PostOpMode","name":"mode","type":"uint8"},{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"actualGasCost","type":"uint256"}],"name":"postOp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newVerifyingSigner","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"setUnaccountedEPGasOverhead","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"maxCost","type":"uint256"}],"name":"validatePaymasterUserOp","outputs":[{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"verifyingSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"}],"name":"withdrawStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTo","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a0601f6200155238819003918201601f19168301916001600160401b038311848410176200011857808492606094604052833981010312620001135762000047816200012e565b6020820151916001600160a01b0391828416919082850362000113576200007560406200008a93016200012e565b94620000813362000143565b60805262000143565b60018055156200010157811615620000ef57600455612ee06002556040516113c790816200018b82396080518181816103910152818161043b015281816104d101528181610544015281816105c601528181610a0701528181610afc0152610c690152f35b604051638fc6a93160e01b8152600490fd5b60405163091748f960e21b8152600490fd5b600080fd5b634e487b7160e01b600052604160045260246000fd5b51906001600160a01b03821682036200011357565b600080546001600160a01b039283166001600160a01b03198216811783559216907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a356fe6040608081526004908136101561001557600080fd5b600091823560e01c9081630396cb6014610aca578163205c28781461099357816323d9ac9b1461096c5781635e1e7b54146108eb5781636c19e7831461087c578163715018a6146108155781638da5cb5b146107ef578163a40a7ddc146107c8578163a9a234091461067b578163aa67c91914610568578163b0d691fe1461052457838263bb9fe6bf146104ac578263c23a5cea1461040c57508163c399ec881461035c578163d0e30db014610308578163deeb3874146102be578163f2fde38b146101d4578163f465c77e1461012f575063f8b2cb4f146100f657600080fd5b3461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b1681526003845220549051908152f35b5080fd5b919050346101d0576060916003199083823601126101c85780359167ffffffffffffffff83116101cc576101609083360301126101c85761017c91610172610c5f565b6044359101610ec0565b8291925194859383855280518094860152815b8481106101b15750508383018501526020830152601f01601f19168101030190f35b60208282018101518983018901528896500161018f565b8480fd5b8580fd5b8280fd5b9050346101d05760203660031901126101d0576101ef610b5a565b906101f8610b83565b6001600160a01b038092169283156102555750506000548273ffffffffffffffffffffffffffffffffffffffff19821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b906020608492519162461bcd60e51b8352820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152fd5b83903461012b57602036600319011261012b57356102da610b83565b600254816002557f0b2f957fc0a9306310238ef9a212935360e98fe3f8bc525f4cb69d38b1efa8598380a380f35b9050828060031936011261035957506020606492519162461bcd60e51b8352820152601760248201527f75736572204465706f736974466f7220696e73746561640000000000000000006044820152fd5b80fd5b919050346101d057826003193601126101d0578051916370a0823160e01b835230908301526020826024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa9182156104025783926103cb575b6020838351908152f35b9091506020813d82116103fa575b816103e660209383610c3d565b810103126101d057602092505190386103c1565b3d91506103d9565b81513d85823e3d90fd5b809184346104a85760203660031901126104a857610428610b5a565b610430610b83565b6001600160a01b03807f000000000000000000000000000000000000000000000000000000000000000016803b156101cc578592836024928651978895869463611d2e7560e11b865216908401525af190811561049f575061048f5750f35b61049890610bdb565b6103595780f35b513d84823e3d90fd5b5050fd5b809184346104a857826003193601126104a8576104c7610b83565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001691823b1561051f57815163bb9fe6bf60e01b81529284918491829084905af190811561049f575061048f5750f35b505050fd5b50503461012b578160031936011261012b57602090516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b905060203660031901126101d05761057e610b5a565b91610587610cf9565b6001600160a01b0380931692831561066d57341561065f579084929184845260036020526105b83483862054610cd6565b8585526003602052828520557f00000000000000000000000000000000000000000000000000000000000000001691823b1561065b578390602483518095819363b760faf960e01b8352309083015234905af190811561049f5750610647575b505034907f1dbbf474736d6415d6a265fabee708fe6e988f6fd0c9d870ded36cab380898dd8380a36001805580f35b61065090610bdb565b61012b578138610618565b8380fd5b50516333a6177160e11b8152fd5b50516355cd1c6560e11b8152fd5b9050346101d05760603660031901126101d0576003813510156101d05767ffffffffffffffff6024358181116101c857366023820112156101c857808301359182116101c85736602483830101116101c8576106e3916106d9610c5f565b6024369201610d8f565b90838380516106f181610c05565b828152826020820152015260608280518101031261065b576020820151916001600160a01b0383168093036101c8578060608561074b930151910151908186805161073b81610c05565b8781528360208201520152611369565b906002548281029281840414901517156107b5575061076c90604435610cd6565b9181845260036020526107828382862054610d4f565b9082855260036020528420557f5dc1c754041954fe976773fa441397a7928c7127a1c83904214a7d25633990078380a380f35b634e487b7160e01b855260119052602484fd5b50503461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b50503461012b578160031936011261012b576001600160a01b0360209254169051908152f35b833461035957806003193601126103595761082e610b83565b60006001600160a01b03815473ffffffffffffffffffffffffffffffffffffffff1981168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b91905060203660031901126101d057610893610b5a565b61089b610b83565b6001600160a01b038082169283156108dc5750835416925533917fe1f62c0e6d7bb6d470828565415bf2e87dbfea50e52d2d753788b529bd0c6d628480a480f35b51638fc6a93160e01b81528490fd5b9050346101d057600319926080368501126103595781359367ffffffffffffffff851161012b5761016090853603011261035957506024356001600160a01b03811681036109675760443565ffffffffffff918282168203610967576064359283168303610967576020956109609401610dd6565b9051908152f35b600080fd5b828434610359578060031936011261035957506001600160a01b0360209254169051908152f35b9050346101d057816003193601126101d0576109ad610b5a565b90602435926109ba610cf9565b6001600160a01b03809316928315610abc57338652600360205281862054808611610aa057509085929133845260036020526109f98683862054610d4f565b3385526003602052828520557f00000000000000000000000000000000000000000000000000000000000000001691823b1561065b578460448592838551968794859363040b850f60e31b85528401528a60248401525af190811561049f5750610a8c575b5050337f926a144b6fffc1d73f115b81af7ec66a7c12aed0ff73197c39a683753fc1d9258480a46001805580f35b610a9590610bdb565b6101d0578238610a5e565b836044918785519263cf47918160e01b84528301526024820152fd5b50516392bc9df360e01b8152fd5b91905060203660031901126101d05782823563ffffffff811680910361012b57610af2610b83565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001693843b156101d05760249084519586938492621cb65b60e51b845283015234905af190811561049f5750610b4e575080f35b610b5790610bdb565b80f35b600435906001600160a01b038216820361096757565b359065ffffffffffff8216820361096757565b6001600160a01b03600054163303610b9757565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b67ffffffffffffffff8111610bef57604052565b634e487b7160e01b600052604160045260246000fd5b6060810190811067ffffffffffffffff821117610bef57604052565b60a0810190811067ffffffffffffffff821117610bef57604052565b90601f8019910116810190811067ffffffffffffffff821117610bef57604052565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163303610c9157565b60405162461bcd60e51b815260206004820152601560248201527f53656e646572206e6f7420456e747279506f696e7400000000000000000000006044820152606490fd5b91908201809211610ce357565b634e487b7160e01b600052601160045260246000fd5b600260015414610d0a576002600155565b60405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606490fd5b91908203918211610ce357565b903590601e1981360301821215610967570180359067ffffffffffffffff82116109675760200191813603831361096757565b92919267ffffffffffffffff8211610bef5760405191610db9601f8201601f191660200184610c3d565b829481845281830111610967578281602093846000960137010152565b91929092610df1610dea6040850185610d5c565b3691610d8f565b60208151910120610e08610dea6060860186610d5c565b60208151910120946040519460208601966001600160a01b03938483351689526020830135604089015260608801526080870152608081013560a087015260a081013560c087015260c081013560e08701526101009060e081013582880152013561012086015246610140860152306101608601521661018084015265ffffffffffff8091166101a08401526101c091168183015281526101e0810181811067ffffffffffffffff821117610bef5760405251902090565b60408051939290610ed085610c21565b600090818652816080602097828982015282848201526060808201520152610efc610120850185610d5c565b8060149492941161012b578301946080848703601319011261012b576014840135946001600160a01b039081871680970361065b57610f3d60348701610b70565b97610f4a60548801610b70565b90607488013567ffffffffffffffff98898211611184570181603382011215611180578c9392918160346014610f839401359101610d8f565b90610fc8825191895195610f9687610c21565b8c87528601809c65ffffffffffff9e8f168092528b88019e8f9316809352606088019586526080880194855289610dd6565b90516041810361116957506110316110298e9387938460045416958c51908101917f19457468657265756d205369676e6564204d6573736167653a0a3332000000008352603c820152603c815261101e81610c05565b5190209051906112a2565b919091611188565b16036110f85782825116855260038b528585205481116110d2575090610100929151168451998a015260e0810135848a015201356060880152606087526080870192878410908411176110be5750917fffffffffffff00000000000000000000000000000000000000000000000000009165ffffffffffff60a01b935251925160d01b169160a01b161790565b634e487b7160e01b81526041600452602490fd5b8580868560449551168152205490519163cf47918160e01b835260048301526024820152fd5b50505050929365ffffffffffff60a01b7fffffffffffff0000000000000000000000000000000000000000000000000000600193989651925160d01b169160a01b1617179480519384019184831090831117611155575281529190565b634e487b7160e01b83526041600452602483fd5b60249089519063e4b52b1760e01b82526004820152fd5b8680fd5b8780fd5b600581101561128c57806111995750565b600181036111e65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606490fd5b600281036112335760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606490fd5b60031461123c57565b60405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608490fd5b634e487b7160e01b600052602160045260246000fd5b9060418151146000146112d0576112cc916020820151906060604084015193015160001a906112da565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831161135d5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156113505781516001600160a01b0381161561134a579190565b50600190565b50604051903d90823e3d90fd5b50505050600090600390565b9080821461138d5761137c904890610cd6565b80821015611388575090565b905090565b509056fea2646970667358221220f6c64e9a161434c576df27c969a232a97b849a51f008004d1ee430df8948683964736f6c634300081100330000000000000000000000002cf491602ad22944d9047282abc00d3e52f56b370000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789000000000000000000000000c6dab8652e5e9749523ba948f42d5944584e4e73
Deployed Bytecode
0x6040608081526004908136101561001557600080fd5b600091823560e01c9081630396cb6014610aca578163205c28781461099357816323d9ac9b1461096c5781635e1e7b54146108eb5781636c19e7831461087c578163715018a6146108155781638da5cb5b146107ef578163a40a7ddc146107c8578163a9a234091461067b578163aa67c91914610568578163b0d691fe1461052457838263bb9fe6bf146104ac578263c23a5cea1461040c57508163c399ec881461035c578163d0e30db014610308578163deeb3874146102be578163f2fde38b146101d4578163f465c77e1461012f575063f8b2cb4f146100f657600080fd5b3461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b1681526003845220549051908152f35b5080fd5b919050346101d0576060916003199083823601126101c85780359167ffffffffffffffff83116101cc576101609083360301126101c85761017c91610172610c5f565b6044359101610ec0565b8291925194859383855280518094860152815b8481106101b15750508383018501526020830152601f01601f19168101030190f35b60208282018101518983018901528896500161018f565b8480fd5b8580fd5b8280fd5b9050346101d05760203660031901126101d0576101ef610b5a565b906101f8610b83565b6001600160a01b038092169283156102555750506000548273ffffffffffffffffffffffffffffffffffffffff19821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b906020608492519162461bcd60e51b8352820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152fd5b83903461012b57602036600319011261012b57356102da610b83565b600254816002557f0b2f957fc0a9306310238ef9a212935360e98fe3f8bc525f4cb69d38b1efa8598380a380f35b9050828060031936011261035957506020606492519162461bcd60e51b8352820152601760248201527f75736572204465706f736974466f7220696e73746561640000000000000000006044820152fd5b80fd5b919050346101d057826003193601126101d0578051916370a0823160e01b835230908301526020826024816001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789165afa9182156104025783926103cb575b6020838351908152f35b9091506020813d82116103fa575b816103e660209383610c3d565b810103126101d057602092505190386103c1565b3d91506103d9565b81513d85823e3d90fd5b809184346104a85760203660031901126104a857610428610b5a565b610430610b83565b6001600160a01b03807f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278916803b156101cc578592836024928651978895869463611d2e7560e11b865216908401525af190811561049f575061048f5750f35b61049890610bdb565b6103595780f35b513d84823e3d90fd5b5050fd5b809184346104a857826003193601126104a8576104c7610b83565b6001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891691823b1561051f57815163bb9fe6bf60e01b81529284918491829084905af190811561049f575061048f5750f35b505050fd5b50503461012b578160031936011261012b57602090516001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789168152f35b905060203660031901126101d05761057e610b5a565b91610587610cf9565b6001600160a01b0380931692831561066d57341561065f579084929184845260036020526105b83483862054610cd6565b8585526003602052828520557f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891691823b1561065b578390602483518095819363b760faf960e01b8352309083015234905af190811561049f5750610647575b505034907f1dbbf474736d6415d6a265fabee708fe6e988f6fd0c9d870ded36cab380898dd8380a36001805580f35b61065090610bdb565b61012b578138610618565b8380fd5b50516333a6177160e11b8152fd5b50516355cd1c6560e11b8152fd5b9050346101d05760603660031901126101d0576003813510156101d05767ffffffffffffffff6024358181116101c857366023820112156101c857808301359182116101c85736602483830101116101c8576106e3916106d9610c5f565b6024369201610d8f565b90838380516106f181610c05565b828152826020820152015260608280518101031261065b576020820151916001600160a01b0383168093036101c8578060608561074b930151910151908186805161073b81610c05565b8781528360208201520152611369565b906002548281029281840414901517156107b5575061076c90604435610cd6565b9181845260036020526107828382862054610d4f565b9082855260036020528420557f5dc1c754041954fe976773fa441397a7928c7127a1c83904214a7d25633990078380a380f35b634e487b7160e01b855260119052602484fd5b50503461012b57602036600319011261012b57806020926001600160a01b0361011b610b5a565b50503461012b578160031936011261012b576001600160a01b0360209254169051908152f35b833461035957806003193601126103595761082e610b83565b60006001600160a01b03815473ffffffffffffffffffffffffffffffffffffffff1981168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b91905060203660031901126101d057610893610b5a565b61089b610b83565b6001600160a01b038082169283156108dc5750835416925533917fe1f62c0e6d7bb6d470828565415bf2e87dbfea50e52d2d753788b529bd0c6d628480a480f35b51638fc6a93160e01b81528490fd5b9050346101d057600319926080368501126103595781359367ffffffffffffffff851161012b5761016090853603011261035957506024356001600160a01b03811681036109675760443565ffffffffffff918282168203610967576064359283168303610967576020956109609401610dd6565b9051908152f35b600080fd5b828434610359578060031936011261035957506001600160a01b0360209254169051908152f35b9050346101d057816003193601126101d0576109ad610b5a565b90602435926109ba610cf9565b6001600160a01b03809316928315610abc57338652600360205281862054808611610aa057509085929133845260036020526109f98683862054610d4f565b3385526003602052828520557f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891691823b1561065b578460448592838551968794859363040b850f60e31b85528401528a60248401525af190811561049f5750610a8c575b5050337f926a144b6fffc1d73f115b81af7ec66a7c12aed0ff73197c39a683753fc1d9258480a46001805580f35b610a9590610bdb565b6101d0578238610a5e565b836044918785519263cf47918160e01b84528301526024820152fd5b50516392bc9df360e01b8152fd5b91905060203660031901126101d05782823563ffffffff811680910361012b57610af2610b83565b6001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891693843b156101d05760249084519586938492621cb65b60e51b845283015234905af190811561049f5750610b4e575080f35b610b5790610bdb565b80f35b600435906001600160a01b038216820361096757565b359065ffffffffffff8216820361096757565b6001600160a01b03600054163303610b9757565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b67ffffffffffffffff8111610bef57604052565b634e487b7160e01b600052604160045260246000fd5b6060810190811067ffffffffffffffff821117610bef57604052565b60a0810190811067ffffffffffffffff821117610bef57604052565b90601f8019910116810190811067ffffffffffffffff821117610bef57604052565b6001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789163303610c9157565b60405162461bcd60e51b815260206004820152601560248201527f53656e646572206e6f7420456e747279506f696e7400000000000000000000006044820152606490fd5b91908201809211610ce357565b634e487b7160e01b600052601160045260246000fd5b600260015414610d0a576002600155565b60405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606490fd5b91908203918211610ce357565b903590601e1981360301821215610967570180359067ffffffffffffffff82116109675760200191813603831361096757565b92919267ffffffffffffffff8211610bef5760405191610db9601f8201601f191660200184610c3d565b829481845281830111610967578281602093846000960137010152565b91929092610df1610dea6040850185610d5c565b3691610d8f565b60208151910120610e08610dea6060860186610d5c565b60208151910120946040519460208601966001600160a01b03938483351689526020830135604089015260608801526080870152608081013560a087015260a081013560c087015260c081013560e08701526101009060e081013582880152013561012086015246610140860152306101608601521661018084015265ffffffffffff8091166101a08401526101c091168183015281526101e0810181811067ffffffffffffffff821117610bef5760405251902090565b60408051939290610ed085610c21565b600090818652816080602097828982015282848201526060808201520152610efc610120850185610d5c565b8060149492941161012b578301946080848703601319011261012b576014840135946001600160a01b039081871680970361065b57610f3d60348701610b70565b97610f4a60548801610b70565b90607488013567ffffffffffffffff98898211611184570181603382011215611180578c9392918160346014610f839401359101610d8f565b90610fc8825191895195610f9687610c21565b8c87528601809c65ffffffffffff9e8f168092528b88019e8f9316809352606088019586526080880194855289610dd6565b90516041810361116957506110316110298e9387938460045416958c51908101917f19457468657265756d205369676e6564204d6573736167653a0a3332000000008352603c820152603c815261101e81610c05565b5190209051906112a2565b919091611188565b16036110f85782825116855260038b528585205481116110d2575090610100929151168451998a015260e0810135848a015201356060880152606087526080870192878410908411176110be5750917fffffffffffff00000000000000000000000000000000000000000000000000009165ffffffffffff60a01b935251925160d01b169160a01b161790565b634e487b7160e01b81526041600452602490fd5b8580868560449551168152205490519163cf47918160e01b835260048301526024820152fd5b50505050929365ffffffffffff60a01b7fffffffffffff0000000000000000000000000000000000000000000000000000600193989651925160d01b169160a01b1617179480519384019184831090831117611155575281529190565b634e487b7160e01b83526041600452602483fd5b60249089519063e4b52b1760e01b82526004820152fd5b8680fd5b8780fd5b600581101561128c57806111995750565b600181036111e65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606490fd5b600281036112335760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606490fd5b60031461123c57565b60405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608490fd5b634e487b7160e01b600052602160045260246000fd5b9060418151146000146112d0576112cc916020820151906060604084015193015160001a906112da565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831161135d5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156113505781516001600160a01b0381161561134a579190565b50600190565b50604051903d90823e3d90fd5b50505050600090600390565b9080821461138d5761137c904890610cd6565b80821015611388575090565b905090565b509056fea2646970667358221220f6c64e9a161434c576df27c969a232a97b849a51f008004d1ee430df8948683964736f6c63430008110033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000002cf491602ad22944d9047282abc00d3e52f56b370000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789000000000000000000000000c6dab8652e5e9749523ba948f42d5944584e4e73
-----Decoded View---------------
Arg [0] : _owner (address): 0x2cf491602ad22944D9047282aBC00D3e52F56B37
Arg [1] : _entryPoint (address): 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789
Arg [2] : _verifyingSigner (address): 0xC6dAB8652E5E9749523bA948F42d5944584E4e73
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 0000000000000000000000002cf491602ad22944d9047282abc00d3e52f56b37
Arg [1] : 0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Arg [2] : 000000000000000000000000c6dab8652e5e9749523ba948f42d5944584e4e73
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | Ether (ETH) | 100.00% | $3,288.22 | 0.01 | $32.88 |
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.