More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 356 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Assess | 21575719 | 5 days ago | IN | 0 ETH | 0.00138421 | ||||
Assess | 21468300 | 20 days ago | IN | 0 ETH | 0.00153802 | ||||
Assess | 21151702 | 64 days ago | IN | 0 ETH | 0.00123041 | ||||
Assess | 20936818 | 94 days ago | IN | 0 ETH | 0.00199942 | ||||
Withdraw Multipl... | 20791560 | 114 days ago | IN | 0 ETH | 0.00260948 | ||||
Withdraw Multipl... | 20764385 | 118 days ago | IN | 0 ETH | 0.00211492 | ||||
Assess | 20721812 | 124 days ago | IN | 0 ETH | 0.0004614 | ||||
Assess | 20506970 | 154 days ago | IN | 0 ETH | 0.0003076 | ||||
Assess | 20356567 | 175 days ago | IN | 0 ETH | 0.00246083 | ||||
Withdraw Multipl... | 20238008 | 191 days ago | IN | 0 ETH | 0.00426412 | ||||
Withdraw Multipl... | 20168758 | 201 days ago | IN | 0 ETH | 0.00118005 | ||||
Withdraw Multipl... | 20167108 | 201 days ago | IN | 0 ETH | 0.00094019 | ||||
Assess | 20077357 | 214 days ago | IN | 0 ETH | 0.00215322 | ||||
Withdraw Multipl... | 20077284 | 214 days ago | IN | 0 ETH | 0.00292178 | ||||
Withdraw Multipl... | 20075700 | 214 days ago | IN | 0 ETH | 0.0043838 | ||||
Withdraw Multipl... | 20071081 | 215 days ago | IN | 0 ETH | 0.00308515 | ||||
Assess | 19862700 | 244 days ago | IN | 0 ETH | 0.00230703 | ||||
Withdraw Multipl... | 19731666 | 262 days ago | IN | 0 ETH | 0.00226506 | ||||
Withdraw Multipl... | 19710279 | 265 days ago | IN | 0 ETH | 0.00223411 | ||||
Assess | 19648249 | 274 days ago | IN | 0 ETH | 0.00461406 | ||||
Withdraw Multipl... | 19603153 | 280 days ago | IN | 0 ETH | 0.00295767 | ||||
Withdraw Multipl... | 19554236 | 287 days ago | IN | 0 ETH | 0.00420733 | ||||
Withdraw Multipl... | 19547844 | 288 days ago | IN | 0 ETH | 0.0054165 | ||||
Withdraw Multipl... | 19531722 | 290 days ago | IN | 0 ETH | 0.00385907 | ||||
Withdraw Multipl... | 19511616 | 293 days ago | IN | 0 ETH | 0.00380991 |
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
14181064 | 1067 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xdc694367a9b32768b6d3b5df34f062a7d29c9230
Contract Name:
TranchedPool
Compiler Version
v0.6.12+commit.27d51765
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/drafts/IERC20Permit.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/Math.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "../../interfaces/ITranchedPool.sol"; import "../../interfaces/IERC20withDec.sol"; import "../../interfaces/IV2CreditLine.sol"; import "../../interfaces/IPoolTokens.sol"; import "./GoldfinchConfig.sol"; import "./BaseUpgradeablePausable.sol"; import "./ConfigHelper.sol"; import "../../library/SafeERC20Transfer.sol"; import "./TranchingLogic.sol"; contract TranchedPool is BaseUpgradeablePausable, ITranchedPool, SafeERC20Transfer { GoldfinchConfig public config; using ConfigHelper for GoldfinchConfig; using TranchingLogic for PoolSlice; using TranchingLogic for TrancheInfo; bytes32 public constant LOCKER_ROLE = keccak256("LOCKER_ROLE"); bytes32 public constant SENIOR_ROLE = keccak256("SENIOR_ROLE"); uint256 public constant FP_SCALING_FACTOR = 1e18; uint256 public constant SECONDS_PER_DAY = 60 * 60 * 24; uint256 public constant ONE_HUNDRED = 100; // Need this because we cannot call .div on a literal 100 uint256 public constant NUM_TRANCHES_PER_SLICE = 2; uint256 public juniorFeePercent; bool public drawdownsPaused; uint256[] public allowedUIDTypes; uint256 public totalDeployed; uint256 public fundableAt; PoolSlice[] public poolSlices; event DepositMade(address indexed owner, uint256 indexed tranche, uint256 indexed tokenId, uint256 amount); event WithdrawalMade( address indexed owner, uint256 indexed tranche, uint256 indexed tokenId, uint256 interestWithdrawn, uint256 principalWithdrawn ); event GoldfinchConfigUpdated(address indexed who, address configAddress); event TranchedPoolAssessed(address indexed pool); event PaymentApplied( address indexed payer, address indexed pool, uint256 interestAmount, uint256 principalAmount, uint256 remainingAmount, uint256 reserveAmount ); // Note: This has to exactly match the even in the TranchingLogic library for events to be emitted // correctly event SharePriceUpdated( address indexed pool, uint256 indexed tranche, uint256 principalSharePrice, int256 principalDelta, uint256 interestSharePrice, int256 interestDelta ); event ReserveFundsCollected(address indexed from, uint256 amount); event CreditLineMigrated(address indexed oldCreditLine, address indexed newCreditLine); event DrawdownMade(address indexed borrower, uint256 amount); event DrawdownsPaused(address indexed pool); event DrawdownsUnpaused(address indexed pool); event EmergencyShutdown(address indexed pool); event TrancheLocked(address indexed pool, uint256 trancheId, uint256 lockedUntil); event SliceCreated(address indexed pool, uint256 sliceId); function initialize( address _config, address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays, uint256 _fundableAt, uint256[] calldata _allowedUIDTypes ) public override initializer { require(address(_config) != address(0) && address(_borrower) != address(0), "Config/borrower invalid"); config = GoldfinchConfig(_config); address owner = config.protocolAdminAddress(); require(owner != address(0), "Owner invalid"); __BaseUpgradeablePausable__init(owner); _initializeNextSlice(_fundableAt); createAndSetCreditLine( _borrower, _limit, _interestApr, _paymentPeriodInDays, _termInDays, _lateFeeApr, _principalGracePeriodInDays ); createdAt = block.timestamp; juniorFeePercent = _juniorFeePercent; if (_allowedUIDTypes.length == 0) { uint256[1] memory defaultAllowedUIDTypes = [config.getGo().ID_TYPE_0()]; allowedUIDTypes = defaultAllowedUIDTypes; } else { allowedUIDTypes = _allowedUIDTypes; } _setupRole(LOCKER_ROLE, _borrower); _setupRole(LOCKER_ROLE, owner); _setRoleAdmin(LOCKER_ROLE, OWNER_ROLE); _setRoleAdmin(SENIOR_ROLE, OWNER_ROLE); // Give the senior pool the ability to deposit into the senior pool _setupRole(SENIOR_ROLE, address(config.getSeniorPool())); // Unlock self for infinite amount bool success = config.getUSDC().approve(address(this), uint256(-1)); require(success, "Failed to approve USDC"); } function setAllowedUIDTypes(uint256[] calldata ids) public onlyLocker { require( poolSlices[0].juniorTranche.principalDeposited == 0 && poolSlices[0].seniorTranche.principalDeposited == 0, "Must not have balance" ); allowedUIDTypes = ids; } /** * @notice Deposit a USDC amount into the pool for a tranche. Mints an NFT to the caller representing the position * @param tranche The number representing the tranche to deposit into * @param amount The USDC amount to tranfer from the caller to the pool * @return tokenId The tokenId of the NFT */ function deposit(uint256 tranche, uint256 amount) public override nonReentrant whenNotPaused returns (uint256 tokenId) { TrancheInfo storage trancheInfo = getTrancheInfo(tranche); require(trancheInfo.lockedUntil == 0, "Tranche locked"); require(amount > 0, "Must deposit > zero"); require(config.getGo().goOnlyIdTypes(msg.sender, allowedUIDTypes), "Address not go-listed"); require(block.timestamp > fundableAt, "Not open for funding"); // senior tranche ids are always odd numbered if (_isSeniorTrancheId(trancheInfo.id)) { require(hasRole(SENIOR_ROLE, _msgSender()), "Req SENIOR_ROLE"); } trancheInfo.principalDeposited = trancheInfo.principalDeposited.add(amount); IPoolTokens.MintParams memory params = IPoolTokens.MintParams({tranche: tranche, principalAmount: amount}); tokenId = config.getPoolTokens().mint(params, msg.sender); safeERC20TransferFrom(config.getUSDC(), msg.sender, address(this), amount); emit DepositMade(msg.sender, tranche, tokenId, amount); return tokenId; } function depositWithPermit( uint256 tranche, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public override returns (uint256 tokenId) { IERC20Permit(config.usdcAddress()).permit(msg.sender, address(this), amount, deadline, v, r, s); return deposit(tranche, amount); } /** * @notice Withdraw an already deposited amount if the funds are available * @param tokenId The NFT representing the position * @param amount The amount to withdraw (must be <= interest+principal currently available to withdraw) * @return interestWithdrawn The interest amount that was withdrawn * @return principalWithdrawn The principal amount that was withdrawn */ function withdraw(uint256 tokenId, uint256 amount) public override nonReentrant whenNotPaused returns (uint256 interestWithdrawn, uint256 principalWithdrawn) { IPoolTokens.TokenInfo memory tokenInfo = config.getPoolTokens().getTokenInfo(tokenId); TrancheInfo storage trancheInfo = getTrancheInfo(tokenInfo.tranche); return _withdraw(trancheInfo, tokenInfo, tokenId, amount); } /** * @notice Withdraw from many tokens (that the sender owns) in a single transaction * @param tokenIds An array of tokens ids representing the position * @param amounts An array of amounts to withdraw from the corresponding tokenIds */ function withdrawMultiple(uint256[] calldata tokenIds, uint256[] calldata amounts) public override { require(tokenIds.length == amounts.length, "TokensIds and Amounts mismatch"); for (uint256 i = 0; i < amounts.length; i++) { withdraw(tokenIds[i], amounts[i]); } } /** * @notice Similar to withdraw but will withdraw all available funds * @param tokenId The NFT representing the position * @return interestWithdrawn The interest amount that was withdrawn * @return principalWithdrawn The principal amount that was withdrawn */ function withdrawMax(uint256 tokenId) external override nonReentrant whenNotPaused returns (uint256 interestWithdrawn, uint256 principalWithdrawn) { IPoolTokens.TokenInfo memory tokenInfo = config.getPoolTokens().getTokenInfo(tokenId); TrancheInfo storage trancheInfo = getTrancheInfo(tokenInfo.tranche); (uint256 interestRedeemable, uint256 principalRedeemable) = redeemableInterestAndPrincipal(trancheInfo, tokenInfo); uint256 amount = interestRedeemable.add(principalRedeemable); return _withdraw(trancheInfo, tokenInfo, tokenId, amount); } /** * @notice Draws down the funds (and locks the pool) to the borrower address. Can only be called by the borrower * @param amount The amount to drawdown from the creditline (must be < limit) */ function drawdown(uint256 amount) external override onlyLocker whenNotPaused { require(!drawdownsPaused, "Drawdowns are paused"); if (!locked()) { // Assumes the senior pool has invested already (saves the borrower a separate transaction to lock the pool) _lockPool(); } // Drawdown only draws down from the current slice for simplicity. It's harder to account for how much // money is available from previous slices since depositors can redeem after unlock. PoolSlice storage currentSlice = poolSlices[poolSlices.length.sub(1)]; uint256 amountAvailable = sharePriceToUsdc( currentSlice.juniorTranche.principalSharePrice, currentSlice.juniorTranche.principalDeposited ); amountAvailable = amountAvailable.add( sharePriceToUsdc(currentSlice.seniorTranche.principalSharePrice, currentSlice.seniorTranche.principalDeposited) ); require(amount <= amountAvailable, "Insufficient funds in slice"); creditLine.drawdown(amount); // Update the share price to reflect the amount remaining in the pool uint256 amountRemaining = amountAvailable.sub(amount); uint256 oldJuniorPrincipalSharePrice = currentSlice.juniorTranche.principalSharePrice; uint256 oldSeniorPrincipalSharePrice = currentSlice.seniorTranche.principalSharePrice; currentSlice.juniorTranche.principalSharePrice = currentSlice.juniorTranche.calculateExpectedSharePrice( amountRemaining, currentSlice ); currentSlice.seniorTranche.principalSharePrice = currentSlice.seniorTranche.calculateExpectedSharePrice( amountRemaining, currentSlice ); currentSlice.principalDeployed = currentSlice.principalDeployed.add(amount); totalDeployed = totalDeployed.add(amount); address borrower = creditLine.borrower(); safeERC20TransferFrom(config.getUSDC(), address(this), borrower, amount); emit DrawdownMade(borrower, amount); emit SharePriceUpdated( address(this), currentSlice.juniorTranche.id, currentSlice.juniorTranche.principalSharePrice, int256(oldJuniorPrincipalSharePrice.sub(currentSlice.juniorTranche.principalSharePrice)) * -1, currentSlice.juniorTranche.interestSharePrice, 0 ); emit SharePriceUpdated( address(this), currentSlice.seniorTranche.id, currentSlice.seniorTranche.principalSharePrice, int256(oldSeniorPrincipalSharePrice.sub(currentSlice.seniorTranche.principalSharePrice)) * -1, currentSlice.seniorTranche.interestSharePrice, 0 ); } /** * @notice Locks the junior tranche, preventing more junior deposits. Gives time for the senior to determine how * much to invest (ensure leverage ratio cannot change for the period) */ function lockJuniorCapital() external override onlyLocker whenNotPaused { _lockJuniorCapital(poolSlices.length.sub(1)); } /** * @notice Locks the pool (locks both senior and junior tranches and starts the drawdown period). Beyond the drawdown * period, any unused capital is available to withdraw by all depositors */ function lockPool() external override onlyLocker whenNotPaused { _lockPool(); } function setFundableAt(uint256 newFundableAt) external override onlyLocker { fundableAt = newFundableAt; } function initializeNextSlice(uint256 _fundableAt) external override onlyLocker whenNotPaused { require(locked(), "Current slice still active"); require(!creditLine.isLate(), "Creditline is late"); require(creditLine.withinPrincipalGracePeriod(), "Beyond principal grace period"); _initializeNextSlice(_fundableAt); emit SliceCreated(address(this), poolSlices.length.sub(1)); } /** * @notice Triggers an assessment of the creditline and the applies the payments according the tranche waterfall */ function assess() external override whenNotPaused { _assess(); } /** * @notice Allows repaying the creditline. Collects the USDC amount from the sender and triggers an assess * @param amount The amount to repay */ function pay(uint256 amount) external override whenNotPaused { require(amount > 0, "Must pay more than zero"); collectPayment(amount); _assess(); } /** * @notice Migrates to a new goldfinch config address */ function updateGoldfinchConfig() external onlyAdmin { config = GoldfinchConfig(config.configAddress()); creditLine.updateGoldfinchConfig(); emit GoldfinchConfigUpdated(msg.sender, address(config)); } /** * @notice Pauses the pool and sweeps any remaining funds to the treasury reserve. */ function emergencyShutdown() public onlyAdmin { if (!paused()) { pause(); } IERC20withDec usdc = config.getUSDC(); address reserveAddress = config.reserveAddress(); // Sweep any funds to community reserve uint256 poolBalance = usdc.balanceOf(address(this)); if (poolBalance > 0) { safeERC20Transfer(usdc, reserveAddress, poolBalance); } uint256 clBalance = usdc.balanceOf(address(creditLine)); if (clBalance > 0) { safeERC20TransferFrom(usdc, address(creditLine), reserveAddress, clBalance); } emit EmergencyShutdown(address(this)); } /** * @notice Pauses all drawdowns (but not deposits/withdraws) */ function pauseDrawdowns() public onlyAdmin { drawdownsPaused = true; emit DrawdownsPaused(address(this)); } /** * @notice Unpause drawdowns */ function unpauseDrawdowns() public onlyAdmin { drawdownsPaused = false; emit DrawdownsUnpaused(address(this)); } /** * @notice Migrates the accounting variables from the current creditline to a brand new one * @param _borrower The borrower address * @param _maxLimit The new max limit * @param _interestApr The new interest APR * @param _paymentPeriodInDays The new payment period in days * @param _termInDays The new term in days * @param _lateFeeApr The new late fee APR */ function migrateCreditLine( address _borrower, uint256 _maxLimit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays ) public onlyAdmin { require(_borrower != address(0), "Borrower must not be empty"); require(_paymentPeriodInDays != 0, "Payment period invalid"); require(_termInDays != 0, "Term must not be empty"); address originalClAddr = address(creditLine); createAndSetCreditLine( _borrower, _maxLimit, _interestApr, _paymentPeriodInDays, _termInDays, _lateFeeApr, _principalGracePeriodInDays ); address newClAddr = address(creditLine); TranchingLogic.migrateAccountingVariables(originalClAddr, newClAddr); TranchingLogic.closeCreditLine(originalClAddr); address originalBorrower = IV2CreditLine(originalClAddr).borrower(); address newBorrower = IV2CreditLine(newClAddr).borrower(); // Ensure Roles if (originalBorrower != newBorrower) { revokeRole(LOCKER_ROLE, originalBorrower); grantRole(LOCKER_ROLE, newBorrower); } // Transfer any funds to new CL uint256 clBalance = config.getUSDC().balanceOf(originalClAddr); if (clBalance > 0) { safeERC20TransferFrom(config.getUSDC(), originalClAddr, newClAddr, clBalance); } emit CreditLineMigrated(originalClAddr, newClAddr); } /** * @notice Migrates to a new creditline without copying the accounting variables */ function migrateAndSetNewCreditLine(address newCl) public onlyAdmin { require(newCl != address(0), "Creditline cannot be empty"); address originalClAddr = address(creditLine); // Transfer any funds to new CL uint256 clBalance = config.getUSDC().balanceOf(originalClAddr); if (clBalance > 0) { safeERC20TransferFrom(config.getUSDC(), originalClAddr, newCl, clBalance); } TranchingLogic.closeCreditLine(originalClAddr); // set new CL creditLine = IV2CreditLine(newCl); // sanity check that the new address is in fact a creditline creditLine.limit(); emit CreditLineMigrated(originalClAddr, address(creditLine)); } // CreditLine proxy method function setLimit(uint256 newAmount) external onlyAdmin { return creditLine.setLimit(newAmount); } function setMaxLimit(uint256 newAmount) external onlyAdmin { return creditLine.setMaxLimit(newAmount); } function getTranche(uint256 tranche) public view override returns (TrancheInfo memory) { return getTrancheInfo(tranche); } function numSlices() public view returns (uint256) { return poolSlices.length; } /** * @notice Converts USDC amounts to share price * @param amount The USDC amount to convert * @param totalShares The total shares outstanding * @return The share price of the input amount */ function usdcToSharePrice(uint256 amount, uint256 totalShares) public pure returns (uint256) { return TranchingLogic.usdcToSharePrice(amount, totalShares); } /** * @notice Converts share price to USDC amounts * @param sharePrice The share price to convert * @param totalShares The total shares outstanding * @return The USDC amount of the input share price */ function sharePriceToUsdc(uint256 sharePrice, uint256 totalShares) public pure returns (uint256) { return TranchingLogic.sharePriceToUsdc(sharePrice, totalShares); } /** * @notice Returns the total junior capital deposited * @return The total USDC amount deposited into all junior tranches */ function totalJuniorDeposits() external view override returns (uint256) { uint256 total; for (uint256 i = 0; i < poolSlices.length; i++) { total = total.add(poolSlices[i].juniorTranche.principalDeposited); } return total; } /** * @notice Determines the amount of interest and principal redeemable by a particular tokenId * @param tokenId The token representing the position * @return interestRedeemable The interest available to redeem * @return principalRedeemable The principal available to redeem */ function availableToWithdraw(uint256 tokenId) public view override returns (uint256 interestRedeemable, uint256 principalRedeemable) { IPoolTokens.TokenInfo memory tokenInfo = config.getPoolTokens().getTokenInfo(tokenId); TrancheInfo storage trancheInfo = getTrancheInfo(tokenInfo.tranche); if (currentTime() > trancheInfo.lockedUntil) { return redeemableInterestAndPrincipal(trancheInfo, tokenInfo); } else { return (0, 0); } } /* Internal functions */ function _withdraw( TrancheInfo storage trancheInfo, IPoolTokens.TokenInfo memory tokenInfo, uint256 tokenId, uint256 amount ) internal returns (uint256 interestWithdrawn, uint256 principalWithdrawn) { require(config.getPoolTokens().isApprovedOrOwner(msg.sender, tokenId), "Not token owner"); require(config.getGo().goOnlyIdTypes(msg.sender, allowedUIDTypes), "Address not go-listed"); require(amount > 0, "Must withdraw more than zero"); (uint256 interestRedeemable, uint256 principalRedeemable) = redeemableInterestAndPrincipal(trancheInfo, tokenInfo); uint256 netRedeemable = interestRedeemable.add(principalRedeemable); require(amount <= netRedeemable, "Invalid redeem amount"); require(currentTime() > trancheInfo.lockedUntil, "Tranche is locked"); // If the tranche has not been locked, ensure the deposited amount is correct if (trancheInfo.lockedUntil == 0) { trancheInfo.principalDeposited = trancheInfo.principalDeposited.sub(amount); } uint256 interestToRedeem = Math.min(interestRedeemable, amount); uint256 principalToRedeem = Math.min(principalRedeemable, amount.sub(interestToRedeem)); config.getPoolTokens().redeem(tokenId, principalToRedeem, interestToRedeem); safeERC20TransferFrom(config.getUSDC(), address(this), msg.sender, principalToRedeem.add(interestToRedeem)); emit WithdrawalMade(msg.sender, tokenInfo.tranche, tokenId, interestToRedeem, principalToRedeem); return (interestToRedeem, principalToRedeem); } function _isSeniorTrancheId(uint256 trancheId) internal pure returns (bool) { return trancheId.mod(NUM_TRANCHES_PER_SLICE) == 1; } function redeemableInterestAndPrincipal(TrancheInfo storage trancheInfo, IPoolTokens.TokenInfo memory tokenInfo) internal view returns (uint256 interestRedeemable, uint256 principalRedeemable) { // This supports withdrawing before or after locking because principal share price starts at 1 // and is set to 0 on lock. Interest share price is always 0 until interest payments come back, when it increases uint256 maxPrincipalRedeemable = sharePriceToUsdc(trancheInfo.principalSharePrice, tokenInfo.principalAmount); // The principalAmount is used as the totalShares because we want the interestSharePrice to be expressed as a // percent of total loan value e.g. if the interest is 10% APR, the interestSharePrice should approach a max of 0.1. uint256 maxInterestRedeemable = sharePriceToUsdc(trancheInfo.interestSharePrice, tokenInfo.principalAmount); interestRedeemable = maxInterestRedeemable.sub(tokenInfo.interestRedeemed); principalRedeemable = maxPrincipalRedeemable.sub(tokenInfo.principalRedeemed); return (interestRedeemable, principalRedeemable); } function _lockJuniorCapital(uint256 sliceId) internal { require(!locked(), "Pool already locked"); require(poolSlices[sliceId].juniorTranche.lockedUntil == 0, "Junior tranche already locked"); uint256 lockedUntil = currentTime().add(config.getDrawdownPeriodInSeconds()); poolSlices[sliceId].juniorTranche.lockedUntil = lockedUntil; emit TrancheLocked(address(this), poolSlices[sliceId].juniorTranche.id, lockedUntil); } function _lockPool() internal { uint256 sliceId = poolSlices.length.sub(1); require(poolSlices[sliceId].juniorTranche.lockedUntil > 0, "Junior tranche must be locked"); // Allow locking the pool only once; do not allow extending the lock of an // already-locked pool. Otherwise the locker could keep the pool locked // indefinitely, preventing withdrawals. require(poolSlices[sliceId].seniorTranche.lockedUntil == 0, "Lock cannot be extended"); uint256 currentTotal = poolSlices[sliceId].juniorTranche.principalDeposited.add( poolSlices[sliceId].seniorTranche.principalDeposited ); creditLine.setLimit(Math.min(creditLine.limit().add(currentTotal), creditLine.maxLimit())); // We start the drawdown period, so backers can withdraw unused capital after borrower draws down uint256 lockPeriod = config.getDrawdownPeriodInSeconds(); poolSlices[sliceId].seniorTranche.lockedUntil = currentTime().add(lockPeriod); poolSlices[sliceId].juniorTranche.lockedUntil = currentTime().add(lockPeriod); emit TrancheLocked( address(this), poolSlices[sliceId].seniorTranche.id, poolSlices[sliceId].seniorTranche.lockedUntil ); emit TrancheLocked( address(this), poolSlices[sliceId].juniorTranche.id, poolSlices[sliceId].juniorTranche.lockedUntil ); } function _initializeNextSlice(uint256 newFundableAt) internal { uint256 numSlices = poolSlices.length; require(numSlices < 5, "Cannot exceed 5 slices"); poolSlices.push( PoolSlice({ seniorTranche: TrancheInfo({ id: numSlices.mul(NUM_TRANCHES_PER_SLICE).add(1), principalSharePrice: usdcToSharePrice(1, 1), interestSharePrice: 0, principalDeposited: 0, lockedUntil: 0 }), juniorTranche: TrancheInfo({ id: numSlices.mul(NUM_TRANCHES_PER_SLICE).add(2), principalSharePrice: usdcToSharePrice(1, 1), interestSharePrice: 0, principalDeposited: 0, lockedUntil: 0 }), totalInterestAccrued: 0, principalDeployed: 0 }) ); fundableAt = newFundableAt; } function collectInterestAndPrincipal( address from, uint256 interest, uint256 principal ) internal returns (uint256 totalReserveAmount) { safeERC20TransferFrom(config.getUSDC(), from, address(this), principal.add(interest), "Failed to collect payment"); uint256 reserveFeePercent = ONE_HUNDRED.div(config.getReserveDenominator()); // Convert the denonminator to percent ApplyResult memory result = TranchingLogic.applyToAllSeniorTranches( poolSlices, interest, principal, reserveFeePercent, totalDeployed, creditLine, juniorFeePercent ); totalReserveAmount = result.reserveDeduction.add( TranchingLogic.applyToAllJuniorTranches( poolSlices, result.interestRemaining, result.principalRemaining, reserveFeePercent, totalDeployed, creditLine ) ); sendToReserve(totalReserveAmount); return totalReserveAmount; } // If the senior tranche of the current slice is locked, then the pool is not open to any more deposits // (could throw off leverage ratio) function locked() internal view returns (bool) { return poolSlices[poolSlices.length.sub(1)].seniorTranche.lockedUntil > 0; } function createAndSetCreditLine( address _borrower, uint256 _maxLimit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays ) internal { address _creditLine = config.getGoldfinchFactory().createCreditLine(); creditLine = IV2CreditLine(_creditLine); creditLine.initialize( address(config), address(this), // Set self as the owner _borrower, _maxLimit, _interestApr, _paymentPeriodInDays, _termInDays, _lateFeeApr, _principalGracePeriodInDays ); } function getTrancheInfo(uint256 trancheId) internal view returns (TrancheInfo storage) { require(trancheId > 0 && trancheId <= poolSlices.length.mul(NUM_TRANCHES_PER_SLICE), "Unsupported tranche"); uint256 sliceId = ((trancheId.add(trancheId.mod(NUM_TRANCHES_PER_SLICE))).div(NUM_TRANCHES_PER_SLICE)).sub(1); PoolSlice storage slice = poolSlices[sliceId]; TrancheInfo storage trancheInfo = trancheId.mod(NUM_TRANCHES_PER_SLICE) == 1 ? slice.seniorTranche : slice.juniorTranche; return trancheInfo; } function currentTime() internal view virtual returns (uint256) { return block.timestamp; } function sendToReserve(uint256 amount) internal { emit ReserveFundsCollected(address(this), amount); safeERC20TransferFrom( config.getUSDC(), address(this), config.reserveAddress(), amount, "Failed to send to reserve" ); } function collectPayment(uint256 amount) internal { safeERC20TransferFrom(config.getUSDC(), msg.sender, address(creditLine), amount, "Failed to collect payment"); } function _assess() internal { // We need to make sure the pool is locked before we allocate rewards to ensure it's not // possible to game rewards by sandwiching an interest payment to an unlocked pool // It also causes issues trying to allocate payments to an empty slice (divide by zero) require(locked(), "Pool is not locked"); uint256 interestAccrued = creditLine.totalInterestAccrued(); (uint256 paymentRemaining, uint256 interestPayment, uint256 principalPayment) = creditLine.assess(); interestAccrued = creditLine.totalInterestAccrued().sub(interestAccrued); // Split the interest accrued proportionally across slices so we know how much interest goes to each slice // We need this because the slice start at different times, so we cannot retroactively allocate the interest // linearly uint256[] memory principalPaymentsPerSlice = new uint256[](poolSlices.length); for (uint256 i = 0; i < poolSlices.length; i++) { uint256 interestForSlice = TranchingLogic.scaleByFraction( interestAccrued, poolSlices[i].principalDeployed, totalDeployed ); principalPaymentsPerSlice[i] = TranchingLogic.scaleByFraction( principalPayment, poolSlices[i].principalDeployed, totalDeployed ); poolSlices[i].totalInterestAccrued = poolSlices[i].totalInterestAccrued.add(interestForSlice); } if (interestPayment > 0 || principalPayment > 0) { uint256 reserveAmount = collectInterestAndPrincipal( address(creditLine), interestPayment, principalPayment.add(paymentRemaining) ); for (uint256 i = 0; i < poolSlices.length; i++) { poolSlices[i].principalDeployed = poolSlices[i].principalDeployed.sub(principalPaymentsPerSlice[i]); totalDeployed = totalDeployed.sub(principalPaymentsPerSlice[i]); } config.getBackerRewards().allocateRewards(interestPayment); emit PaymentApplied( creditLine.borrower(), address(this), interestPayment, principalPayment, paymentRemaining, reserveAmount ); } emit TranchedPoolAssessed(address(this)); } modifier onlyLocker() { require(hasRole(LOCKER_ROLE, msg.sender), "Must have locker role"); _; } }
pragma solidity ^0.6.0; import "../Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract ContextUpgradeSafe is Initializable { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; }
pragma solidity >=0.4.24 <0.7.0; /** * @title Initializable * * @dev Helper contract to support initializer functions. To use it, replace * the constructor with a function that has the `initializer` modifier. * WARNING: Unlike constructors, initializer functions must be manually * invoked. This applies both to deploying an Initializable contract, as well * as extending an Initializable contract via inheritance. * WARNING: When used with inheritance, manual care must be taken to not invoke * a parent initializer twice, or ensure that all initializers are idempotent, * because this is not dealt with automatically as with constructors. */ contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private initializing; /** * @dev Modifier to use in the initializer function of a contract. */ modifier initializer() { require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized"); bool isTopLevelCall = !initializing; if (isTopLevelCall) { initializing = true; initialized = true; } _; if (isTopLevelCall) { initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function isConstructor() private view returns (bool) { // extcodesize checks the size of the code stored in an address, and // address returns the current address. Since the code is still not // deployed when running a constructor, any checks on its code size will // yield zero, making it an effective way to detect if a contract is // under construction or not. address self = address(this); uint256 cs; assembly { cs := extcodesize(self) } return cs == 0; } // Reserved storage space to allow for layout changes in the future. uint256[50] private ______gap; }
pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, _msgSender())); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. */ abstract contract AccessControlUpgradeSafe is Initializable, ContextUpgradeSafe { function __AccessControl_init() internal initializer { __Context_init_unchained(); __AccessControl_init_unchained(); } function __AccessControl_init_unchained() internal initializer { } using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } uint256[49] private __gap; }
pragma solidity ^0.6.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
pragma solidity ^0.6.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } }
pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
pragma solidity ^0.6.0; /** * @title SignedSafeMath * @dev Signed math operations with safety checks that revert on error. */ library SignedSafeMath { int256 constant private _INT256_MIN = -2**255; /** * @dev Multiplies two signed integers, reverts on overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Integer division of two signed integers truncating the quotient, reverts on division by zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Subtracts two signed integers, reverts on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Adds two signed integers, reverts on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } }
pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
pragma solidity ^0.6.2; import "../../introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of NFTs in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the NFT specified by `tokenId`. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */ function transferFrom(address from, address to, uint256 tokenId) external; function approve(address to, uint256 tokenId) external; function getApproved(uint256 tokenId) external view returns (address operator); function setApprovalForAll(address operator, bool _approved) external; function isApprovedForAll(address owner, address operator) external view returns (bool); function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; }
pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } }
pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } }
pragma solidity ^0.6.0; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ contract PausableUpgradeSafe is Initializable, ContextUpgradeSafe { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!_paused, "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(_paused, "Pausable: not paused"); _; } /** * @dev Triggers stopped state. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; }
pragma solidity ^0.6.0; import "../Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuardUpgradeSafe is Initializable { bool private _notEntered; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { // Storing an initial non-zero value makes deployment a bit more // expensive, but in exchange the refund on every call to nonReentrant // will be lower in amount. Since refunds are capped to a percetange of // the total transaction's gas, it is best to keep them low in cases // like this one, to increase the likelihood of the full refund coming // into effect. _notEntered = true; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_notEntered, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _notEntered = false; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _notEntered = true; } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: AGPL-3.0-only // solhint-disable // Imported from https://github.com/UMAprotocol/protocol/blob/4d1c8cc47a4df5e79f978cb05647a7432e111a3d/packages/core/contracts/common/implementation/FixedPoint.sol pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SignedSafeMath.sol"; /** * @title Library for fixed point arithmetic on uints */ library FixedPoint { using SafeMath for uint256; using SignedSafeMath for int256; // Supports 18 decimals. E.g., 1e18 represents "1", 5e17 represents "0.5". // For unsigned values: // This can represent a value up to (2^256 - 1)/10^18 = ~10^59. 10^59 will be stored internally as uint256 10^77. uint256 private constant FP_SCALING_FACTOR = 10**18; // --------------------------------------- UNSIGNED ----------------------------------------------------------------------------- struct Unsigned { uint256 rawValue; } /** * @notice Constructs an `Unsigned` from an unscaled uint, e.g., `b=5` gets stored internally as `5**18`. * @param a uint to convert into a FixedPoint. * @return the converted FixedPoint. */ function fromUnscaledUint(uint256 a) internal pure returns (Unsigned memory) { return Unsigned(a.mul(FP_SCALING_FACTOR)); } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if equal, or False. */ function isEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue == fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if equal, or False. */ function isEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue == b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a > b`, or False. */ function isGreaterThan(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue > b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a > b`, or False. */ function isGreaterThan(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue > fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a > b`, or False. */ function isGreaterThan(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue > b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue >= b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue >= fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue >= b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a < b`, or False. */ function isLessThan(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue < b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a < b`, or False. */ function isLessThan(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue < fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a < b`, or False. */ function isLessThan(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue < b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue <= b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue <= fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue <= b.rawValue; } /** * @notice The minimum of `a` and `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return the minimum of `a` and `b`. */ function min(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return a.rawValue < b.rawValue ? a : b; } /** * @notice The maximum of `a` and `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return the maximum of `a` and `b`. */ function max(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return a.rawValue > b.rawValue ? a : b; } /** * @notice Adds two `Unsigned`s, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the sum of `a` and `b`. */ function add(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.add(b.rawValue)); } /** * @notice Adds an `Unsigned` to an unscaled uint, reverting on overflow. * @param a a FixedPoint. * @param b a uint256. * @return the sum of `a` and `b`. */ function add(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return add(a, fromUnscaledUint(b)); } /** * @notice Subtracts two `Unsigned`s, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the difference of `a` and `b`. */ function sub(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.sub(b.rawValue)); } /** * @notice Subtracts an unscaled uint256 from an `Unsigned`, reverting on overflow. * @param a a FixedPoint. * @param b a uint256. * @return the difference of `a` and `b`. */ function sub(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return sub(a, fromUnscaledUint(b)); } /** * @notice Subtracts an `Unsigned` from an unscaled uint256, reverting on overflow. * @param a a uint256. * @param b a FixedPoint. * @return the difference of `a` and `b`. */ function sub(uint256 a, Unsigned memory b) internal pure returns (Unsigned memory) { return sub(fromUnscaledUint(a), b); } /** * @notice Multiplies two `Unsigned`s, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mul(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { // There are two caveats with this computation: // 1. Max output for the represented number is ~10^41, otherwise an intermediate value overflows. 10^41 is // stored internally as a uint256 ~10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 1.4 * 2e-18 = 2.8e-18, which // would round to 3, but this computation produces the result 2. // No need to use SafeMath because FP_SCALING_FACTOR != 0. return Unsigned(a.rawValue.mul(b.rawValue) / FP_SCALING_FACTOR); } /** * @notice Multiplies an `Unsigned` and an unscaled uint256, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint. * @param b a uint256. * @return the product of `a` and `b`. */ function mul(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.mul(b)); } /** * @notice Multiplies two `Unsigned`s and "ceil's" the product, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mulCeil(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { uint256 mulRaw = a.rawValue.mul(b.rawValue); uint256 mulFloor = mulRaw / FP_SCALING_FACTOR; uint256 mod = mulRaw.mod(FP_SCALING_FACTOR); if (mod != 0) { return Unsigned(mulFloor.add(1)); } else { return Unsigned(mulFloor); } } /** * @notice Multiplies an `Unsigned` and an unscaled uint256 and "ceil's" the product, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mulCeil(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { // Since b is an int, there is no risk of truncation and we can just mul it normally return Unsigned(a.rawValue.mul(b)); } /** * @notice Divides one `Unsigned` by an `Unsigned`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { // There are two caveats with this computation: // 1. Max value for the number dividend `a` represents is ~10^41, otherwise an intermediate value overflows. // 10^41 is stored internally as a uint256 10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 2 / 3 = 0.6 repeating, which // would round to 0.666666666666666667, but this computation produces the result 0.666666666666666666. return Unsigned(a.rawValue.mul(FP_SCALING_FACTOR).div(b.rawValue)); } /** * @notice Divides one `Unsigned` by an unscaled uint256, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return the quotient of `a` divided by `b`. */ function div(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.div(b)); } /** * @notice Divides one unscaled uint256 by an `Unsigned`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a uint256 numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(uint256 a, Unsigned memory b) internal pure returns (Unsigned memory) { return div(fromUnscaledUint(a), b); } /** * @notice Divides one `Unsigned` by an `Unsigned` and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function divCeil(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { uint256 aScaled = a.rawValue.mul(FP_SCALING_FACTOR); uint256 divFloor = aScaled.div(b.rawValue); uint256 mod = aScaled.mod(b.rawValue); if (mod != 0) { return Unsigned(divFloor.add(1)); } else { return Unsigned(divFloor); } } /** * @notice Divides one `Unsigned` by an unscaled uint256 and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return the quotient of `a` divided by `b`. */ function divCeil(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { // Because it is possible that a quotient gets truncated, we can't just call "Unsigned(a.rawValue.div(b))" // similarly to mulCeil with a uint256 as the second parameter. Therefore we need to convert b into an Unsigned. // This creates the possibility of overflow if b is very large. return divCeil(a, fromUnscaledUint(b)); } /** * @notice Raises an `Unsigned` to the power of an unscaled uint256, reverting on overflow. E.g., `b=2` squares `a`. * @dev This will "floor" the result. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return output is `a` to the power of `b`. */ function pow(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory output) { output = fromUnscaledUint(1); for (uint256 i = 0; i < b; i = i.add(1)) { output = mul(output, a); } } // ------------------------------------------------- SIGNED ------------------------------------------------------------- // Supports 18 decimals. E.g., 1e18 represents "1", 5e17 represents "0.5". // For signed values: // This can represent a value up (or down) to +-(2^255 - 1)/10^18 = ~10^58. 10^58 will be stored internally as int256 10^76. int256 private constant SFP_SCALING_FACTOR = 10**18; struct Signed { int256 rawValue; } function fromSigned(Signed memory a) internal pure returns (Unsigned memory) { require(a.rawValue >= 0, "Negative value provided"); return Unsigned(uint256(a.rawValue)); } function fromUnsigned(Unsigned memory a) internal pure returns (Signed memory) { require(a.rawValue <= uint256(type(int256).max), "Unsigned too large"); return Signed(int256(a.rawValue)); } /** * @notice Constructs a `Signed` from an unscaled int, e.g., `b=5` gets stored internally as `5**18`. * @param a int to convert into a FixedPoint.Signed. * @return the converted FixedPoint.Signed. */ function fromUnscaledInt(int256 a) internal pure returns (Signed memory) { return Signed(a.mul(SFP_SCALING_FACTOR)); } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint.Signed. * @param b a int256. * @return True if equal, or False. */ function isEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue == fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if equal, or False. */ function isEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue == b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a > b`, or False. */ function isGreaterThan(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue > b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a > b`, or False. */ function isGreaterThan(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue > fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a > b`, or False. */ function isGreaterThan(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue > b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue >= b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue >= fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue >= b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a < b`, or False. */ function isLessThan(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue < b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a < b`, or False. */ function isLessThan(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue < fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is less than `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a < b`, or False. */ function isLessThan(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue < b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue <= b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue <= fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue <= b.rawValue; } /** * @notice The minimum of `a` and `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the minimum of `a` and `b`. */ function min(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return a.rawValue < b.rawValue ? a : b; } /** * @notice The maximum of `a` and `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the maximum of `a` and `b`. */ function max(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return a.rawValue > b.rawValue ? a : b; } /** * @notice Adds two `Signed`s, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the sum of `a` and `b`. */ function add(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return Signed(a.rawValue.add(b.rawValue)); } /** * @notice Adds an `Signed` to an unscaled int, reverting on overflow. * @param a a FixedPoint.Signed. * @param b an int256. * @return the sum of `a` and `b`. */ function add(Signed memory a, int256 b) internal pure returns (Signed memory) { return add(a, fromUnscaledInt(b)); } /** * @notice Subtracts two `Signed`s, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the difference of `a` and `b`. */ function sub(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return Signed(a.rawValue.sub(b.rawValue)); } /** * @notice Subtracts an unscaled int256 from an `Signed`, reverting on overflow. * @param a a FixedPoint.Signed. * @param b an int256. * @return the difference of `a` and `b`. */ function sub(Signed memory a, int256 b) internal pure returns (Signed memory) { return sub(a, fromUnscaledInt(b)); } /** * @notice Subtracts an `Signed` from an unscaled int256, reverting on overflow. * @param a an int256. * @param b a FixedPoint.Signed. * @return the difference of `a` and `b`. */ function sub(int256 a, Signed memory b) internal pure returns (Signed memory) { return sub(fromUnscaledInt(a), b); } /** * @notice Multiplies two `Signed`s, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mul(Signed memory a, Signed memory b) internal pure returns (Signed memory) { // There are two caveats with this computation: // 1. Max output for the represented number is ~10^41, otherwise an intermediate value overflows. 10^41 is // stored internally as an int256 ~10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 1.4 * 2e-18 = 2.8e-18, which // would round to 3, but this computation produces the result 2. // No need to use SafeMath because SFP_SCALING_FACTOR != 0. return Signed(a.rawValue.mul(b.rawValue) / SFP_SCALING_FACTOR); } /** * @notice Multiplies an `Signed` and an unscaled int256, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint.Signed. * @param b an int256. * @return the product of `a` and `b`. */ function mul(Signed memory a, int256 b) internal pure returns (Signed memory) { return Signed(a.rawValue.mul(b)); } /** * @notice Multiplies two `Signed`s and "ceil's" the product, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mulAwayFromZero(Signed memory a, Signed memory b) internal pure returns (Signed memory) { int256 mulRaw = a.rawValue.mul(b.rawValue); int256 mulTowardsZero = mulRaw / SFP_SCALING_FACTOR; // Manual mod because SignedSafeMath doesn't support it. int256 mod = mulRaw % SFP_SCALING_FACTOR; if (mod != 0) { bool isResultPositive = isLessThan(a, 0) == isLessThan(b, 0); int256 valueToAdd = isResultPositive ? int256(1) : int256(-1); return Signed(mulTowardsZero.add(valueToAdd)); } else { return Signed(mulTowardsZero); } } /** * @notice Multiplies an `Signed` and an unscaled int256 and "ceil's" the product, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mulAwayFromZero(Signed memory a, int256 b) internal pure returns (Signed memory) { // Since b is an int, there is no risk of truncation and we can just mul it normally return Signed(a.rawValue.mul(b)); } /** * @notice Divides one `Signed` by an `Signed`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(Signed memory a, Signed memory b) internal pure returns (Signed memory) { // There are two caveats with this computation: // 1. Max value for the number dividend `a` represents is ~10^41, otherwise an intermediate value overflows. // 10^41 is stored internally as an int256 10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 2 / 3 = 0.6 repeating, which // would round to 0.666666666666666667, but this computation produces the result 0.666666666666666666. return Signed(a.rawValue.mul(SFP_SCALING_FACTOR).div(b.rawValue)); } /** * @notice Divides one `Signed` by an unscaled int256, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b an int256 denominator. * @return the quotient of `a` divided by `b`. */ function div(Signed memory a, int256 b) internal pure returns (Signed memory) { return Signed(a.rawValue.div(b)); } /** * @notice Divides one unscaled int256 by an `Signed`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a an int256 numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(int256 a, Signed memory b) internal pure returns (Signed memory) { return div(fromUnscaledInt(a), b); } /** * @notice Divides one `Signed` by an `Signed` and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function divAwayFromZero(Signed memory a, Signed memory b) internal pure returns (Signed memory) { int256 aScaled = a.rawValue.mul(SFP_SCALING_FACTOR); int256 divTowardsZero = aScaled.div(b.rawValue); // Manual mod because SignedSafeMath doesn't support it. int256 mod = aScaled % b.rawValue; if (mod != 0) { bool isResultPositive = isLessThan(a, 0) == isLessThan(b, 0); int256 valueToAdd = isResultPositive ? int256(1) : int256(-1); return Signed(divTowardsZero.add(valueToAdd)); } else { return Signed(divTowardsZero); } } /** * @notice Divides one `Signed` by an unscaled int256 and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b an int256 denominator. * @return the quotient of `a` divided by `b`. */ function divAwayFromZero(Signed memory a, int256 b) internal pure returns (Signed memory) { // Because it is possible that a quotient gets truncated, we can't just call "Signed(a.rawValue.div(b))" // similarly to mulCeil with an int256 as the second parameter. Therefore we need to convert b into an Signed. // This creates the possibility of overflow if b is very large. return divAwayFromZero(a, fromUnscaledInt(b)); } /** * @notice Raises an `Signed` to the power of an unscaled uint256, reverting on overflow. E.g., `b=2` squares `a`. * @dev This will "floor" the result. * @param a a FixedPoint.Signed. * @param b a uint256 (negative exponents are not allowed). * @return output is `a` to the power of `b`. */ function pow(Signed memory a, uint256 b) internal pure returns (Signed memory output) { output = fromUnscaledInt(1); for (uint256 i = 0; i < b; i = i.add(1)) { output = mul(output, a); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IBackerRewards { function allocateRewards(uint256 _interestPaymentAmount) external; function setPoolTokenAccRewardsPerPrincipalDollarAtMint(address poolAddress, uint256 tokenId) external; }
// SPDX-License-Identifier: MIT // Taken from https://github.com/compound-finance/compound-protocol/blob/master/contracts/CTokenInterfaces.sol pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IERC20withDec.sol"; interface ICUSDCContract is IERC20withDec { /*** User Interface ***/ function mint(uint256 mintAmount) external returns (uint256); function redeem(uint256 redeemTokens) external returns (uint256); function redeemUnderlying(uint256 redeemAmount) external returns (uint256); function borrow(uint256 borrowAmount) external returns (uint256); function repayBorrow(uint256 repayAmount) external returns (uint256); function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256); function liquidateBorrow( address borrower, uint256 repayAmount, address cTokenCollateral ) external returns (uint256); function getAccountSnapshot(address account) external view returns ( uint256, uint256, uint256, uint256 ); function balanceOfUnderlying(address owner) external returns (uint256); function exchangeRateCurrent() external returns (uint256); /*** Admin Functions ***/ function _addReserves(uint256 addAmount) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract ICreditDesk { uint256 public totalWritedowns; uint256 public totalLoansOutstanding; function setUnderwriterGovernanceLimit(address underwriterAddress, uint256 limit) external virtual; function drawdown(address creditLineAddress, uint256 amount) external virtual; function pay(address creditLineAddress, uint256 amount) external virtual; function assessCreditLine(address creditLineAddress) external virtual; function applyPayment(address creditLineAddress, uint256 amount) external virtual; function getNextPaymentAmount(address creditLineAddress, uint256 asOfBLock) external view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface ICreditLine { function borrower() external view returns (address); function limit() external view returns (uint256); function maxLimit() external view returns (uint256); function interestApr() external view returns (uint256); function paymentPeriodInDays() external view returns (uint256); function principalGracePeriodInDays() external view returns (uint256); function termInDays() external view returns (uint256); function lateFeeApr() external view returns (uint256); function isLate() external view returns (bool); function withinPrincipalGracePeriod() external view returns (bool); // Accounting variables function balance() external view returns (uint256); function interestOwed() external view returns (uint256); function principalOwed() external view returns (uint256); function termEndTime() external view returns (uint256); function nextDueTime() external view returns (uint256); function interestAccruedAsOf() external view returns (uint256); function lastFullPaymentTime() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/IERC20.sol"; /* Only addition is the `decimals` function, which we need, and which both our Fidu and USDC use, along with most ERC20's. */ /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20withDec is IERC20 { /** * @dev Returns the number of decimals used for the token */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IERC20withDec.sol"; interface IFidu is IERC20withDec { function mintTo(address to, uint256 amount) external; function burnFrom(address to, uint256 amount) external; function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract IGo { uint256 public constant ID_TYPE_0 = 0; uint256 public constant ID_TYPE_1 = 1; uint256 public constant ID_TYPE_2 = 2; uint256 public constant ID_TYPE_3 = 3; uint256 public constant ID_TYPE_4 = 4; uint256 public constant ID_TYPE_5 = 5; uint256 public constant ID_TYPE_6 = 6; uint256 public constant ID_TYPE_7 = 7; uint256 public constant ID_TYPE_8 = 8; uint256 public constant ID_TYPE_9 = 9; uint256 public constant ID_TYPE_10 = 10; /// @notice Returns the address of the UniqueIdentity contract. function uniqueIdentity() external virtual returns (address); function go(address account) public view virtual returns (bool); function goOnlyIdTypes(address account, uint256[] calldata onlyIdTypes) public view virtual returns (bool); function goSeniorPool(address account) public view virtual returns (bool); function updateGoldfinchConfig() external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IGoldfinchConfig { function getNumber(uint256 index) external returns (uint256); function getAddress(uint256 index) external returns (address); function setAddress(uint256 index, address newAddress) external returns (address); function setNumber(uint256 index, uint256 newNumber) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IGoldfinchFactory { function createCreditLine() external returns (address); function createBorrower(address owner) external returns (address); function createPool( address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256[] calldata _allowedUIDTypes ) external returns (address); function createMigratedPool( address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256[] calldata _allowedUIDTypes ) external returns (address); function updateGoldfinchConfig() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract IPool { uint256 public sharePrice; function deposit(uint256 amount) external virtual; function withdraw(uint256 usdcAmount) external virtual; function withdrawInFidu(uint256 fiduAmount) external virtual; function collectInterestAndPrincipal( address from, uint256 interest, uint256 principal ) public virtual; function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool); function drawdown(address to, uint256 amount) public virtual returns (bool); function sweepToCompound() public virtual; function sweepFromCompound() public virtual; function distributeLosses(address creditlineAddress, int256 writedownDelta) external virtual; function assets() public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC721/IERC721.sol"; interface IPoolTokens is IERC721 { event TokenMinted( address indexed owner, address indexed pool, uint256 indexed tokenId, uint256 amount, uint256 tranche ); event TokenRedeemed( address indexed owner, address indexed pool, uint256 indexed tokenId, uint256 principalRedeemed, uint256 interestRedeemed, uint256 tranche ); event TokenBurned(address indexed owner, address indexed pool, uint256 indexed tokenId); struct TokenInfo { address pool; uint256 tranche; uint256 principalAmount; uint256 principalRedeemed; uint256 interestRedeemed; } struct MintParams { uint256 principalAmount; uint256 tranche; } function mint(MintParams calldata params, address to) external returns (uint256); function redeem( uint256 tokenId, uint256 principalRedeemed, uint256 interestRedeemed ) external; function burn(uint256 tokenId) external; function onPoolCreated(address newPool) external; function getTokenInfo(uint256 tokenId) external view returns (TokenInfo memory); function validPool(address sender) external view returns (bool); function isApprovedOrOwner(address spender, uint256 tokenId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ITranchedPool.sol"; abstract contract ISeniorPool { uint256 public sharePrice; uint256 public totalLoansOutstanding; uint256 public totalWritedowns; function deposit(uint256 amount) external virtual returns (uint256 depositShares); function depositWithPermit( uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual returns (uint256 depositShares); function withdraw(uint256 usdcAmount) external virtual returns (uint256 amount); function withdrawInFidu(uint256 fiduAmount) external virtual returns (uint256 amount); function sweepToCompound() public virtual; function sweepFromCompound() public virtual; function invest(ITranchedPool pool) public virtual; function estimateInvestment(ITranchedPool pool) public view virtual returns (uint256); function redeem(uint256 tokenId) public virtual; function writedown(uint256 tokenId) public virtual; function calculateWritedown(uint256 tokenId) public view virtual returns (uint256 writedownAmount); function assets() public view virtual returns (uint256); function getNumShares(uint256 amount) public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ISeniorPool.sol"; import "./ITranchedPool.sol"; abstract contract ISeniorPoolStrategy { function getLeverageRatio(ITranchedPool pool) public view virtual returns (uint256); function invest(ISeniorPool seniorPool, ITranchedPool pool) public view virtual returns (uint256 amount); function estimateInvestment(ISeniorPool seniorPool, ITranchedPool pool) public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IV2CreditLine.sol"; abstract contract ITranchedPool { IV2CreditLine public creditLine; uint256 public createdAt; enum Tranches { Reserved, Senior, Junior } struct TrancheInfo { uint256 id; uint256 principalDeposited; uint256 principalSharePrice; uint256 interestSharePrice; uint256 lockedUntil; } struct PoolSlice { TrancheInfo seniorTranche; TrancheInfo juniorTranche; uint256 totalInterestAccrued; uint256 principalDeployed; } struct SliceInfo { uint256 reserveFeePercent; uint256 interestAccrued; uint256 principalAccrued; } struct ApplyResult { uint256 interestRemaining; uint256 principalRemaining; uint256 reserveDeduction; uint256 oldInterestSharePrice; uint256 oldPrincipalSharePrice; } function initialize( address _config, address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays, uint256 _fundableAt, uint256[] calldata _allowedUIDTypes ) public virtual; function getTranche(uint256 tranche) external view virtual returns (TrancheInfo memory); function pay(uint256 amount) external virtual; function lockJuniorCapital() external virtual; function lockPool() external virtual; function initializeNextSlice(uint256 _fundableAt) external virtual; function totalJuniorDeposits() external view virtual returns (uint256); function drawdown(uint256 amount) external virtual; function setFundableAt(uint256 timestamp) external virtual; function deposit(uint256 tranche, uint256 amount) external virtual returns (uint256 tokenId); function assess() external virtual; function depositWithPermit( uint256 tranche, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual returns (uint256 tokenId); function availableToWithdraw(uint256 tokenId) external view virtual returns (uint256 interestRedeemable, uint256 principalRedeemable); function withdraw(uint256 tokenId, uint256 amount) external virtual returns (uint256 interestWithdrawn, uint256 principalWithdrawn); function withdrawMax(uint256 tokenId) external virtual returns (uint256 interestWithdrawn, uint256 principalWithdrawn); function withdrawMultiple(uint256[] calldata tokenIds, uint256[] calldata amounts) external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ICreditLine.sol"; abstract contract IV2CreditLine is ICreditLine { function principal() external view virtual returns (uint256); function totalInterestAccrued() external view virtual returns (uint256); function termStartTime() external view virtual returns (uint256); function setLimit(uint256 newAmount) external virtual; function setMaxLimit(uint256 newAmount) external virtual; function setBalance(uint256 newBalance) external virtual; function setPrincipal(uint256 _principal) external virtual; function setTotalInterestAccrued(uint256 _interestAccrued) external virtual; function drawdown(uint256 amount) external virtual; function assess() external virtual returns ( uint256, uint256, uint256 ); function initialize( address _config, address owner, address _borrower, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays ) public virtual; function setTermEndTime(uint256 newTermEndTime) external virtual; function setNextDueTime(uint256 newNextDueTime) external virtual; function setInterestOwed(uint256 newInterestOwed) external virtual; function setPrincipalOwed(uint256 newPrincipalOwed) external virtual; function setInterestAccruedAsOf(uint256 newInterestAccruedAsOf) external virtual; function setWritedownAmount(uint256 newWritedownAmount) external virtual; function setLastFullPaymentTime(uint256 newLastFullPaymentTime) external virtual; function setLateFeeApr(uint256 newLateFeeApr) external virtual; function updateGoldfinchConfig() external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/IERC20.sol"; /** * @title Safe ERC20 Transfer * @notice Reverts when transfer is not successful * @author Goldfinch */ abstract contract SafeERC20Transfer { function safeERC20Transfer( IERC20 erc20, address to, uint256 amount, string memory message ) internal { require(to != address(0), "Can't send to zero address"); bool success = erc20.transfer(to, amount); require(success, message); } function safeERC20Transfer( IERC20 erc20, address to, uint256 amount ) internal { safeERC20Transfer(erc20, to, amount, "Failed to transfer ERC20"); } function safeERC20TransferFrom( IERC20 erc20, address from, address to, uint256 amount, string memory message ) internal { require(to != address(0), "Can't send to zero address"); bool success = erc20.transferFrom(from, to, amount); require(success, message); } function safeERC20TransferFrom( IERC20 erc20, address from, address to, uint256 amount ) internal { string memory message = "Failed to transfer ERC20"; safeERC20TransferFrom(erc20, from, to, amount, message); } function safeERC20Approve( IERC20 erc20, address spender, uint256 allowance, string memory message ) internal { bool success = erc20.approve(spender, allowance); require(success, message); } function safeERC20Approve( IERC20 erc20, address spender, uint256 allowance ) internal { string memory message = "Failed to approve ERC20"; safeERC20Approve(erc20, spender, allowance, message); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/Initializable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "./PauserPausable.sol"; /** * @title BaseUpgradeablePausable contract * @notice This is our Base contract that most other contracts inherit from. It includes many standard * useful abilities like ugpradeability, pausability, access control, and re-entrancy guards. * @author Goldfinch */ contract BaseUpgradeablePausable is Initializable, AccessControlUpgradeSafe, PauserPausable, ReentrancyGuardUpgradeSafe { bytes32 public constant OWNER_ROLE = keccak256("OWNER_ROLE"); using SafeMath for uint256; // Pre-reserving a few slots in the base contract in case we need to add things in the future. // This does not actually take up gas cost or storage cost, but it does reserve the storage slots. // See OpenZeppelin's use of this pattern here: // https://github.com/OpenZeppelin/openzeppelin-contracts-ethereum-package/blob/master/contracts/GSN/Context.sol#L37 uint256[50] private __gap1; uint256[50] private __gap2; uint256[50] private __gap3; uint256[50] private __gap4; // solhint-disable-next-line func-name-mixedcase function __BaseUpgradeablePausable__init(address owner) public initializer { require(owner != address(0), "Owner cannot be the zero address"); __AccessControl_init_unchained(); __Pausable_init_unchained(); __ReentrancyGuard_init_unchained(); _setupRole(OWNER_ROLE, owner); _setupRole(PAUSER_ROLE, owner); _setRoleAdmin(PAUSER_ROLE, OWNER_ROLE); _setRoleAdmin(OWNER_ROLE, OWNER_ROLE); } function isAdmin() public view returns (bool) { return hasRole(OWNER_ROLE, _msgSender()); } modifier onlyAdmin() { require(isAdmin(), "Must have admin role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./GoldfinchConfig.sol"; import "../../interfaces/IPool.sol"; import "../../interfaces/IFidu.sol"; import "../../interfaces/ISeniorPool.sol"; import "../../interfaces/ISeniorPoolStrategy.sol"; import "../../interfaces/ICreditDesk.sol"; import "../../interfaces/IERC20withDec.sol"; import "../../interfaces/ICUSDCContract.sol"; import "../../interfaces/IPoolTokens.sol"; import "../../interfaces/IBackerRewards.sol"; import "../../interfaces/IGoldfinchFactory.sol"; import "../../interfaces/IGo.sol"; /** * @title ConfigHelper * @notice A convenience library for getting easy access to other contracts and constants within the * protocol, through the use of the GoldfinchConfig contract * @author Goldfinch */ library ConfigHelper { function getPool(GoldfinchConfig config) internal view returns (IPool) { return IPool(poolAddress(config)); } function getSeniorPool(GoldfinchConfig config) internal view returns (ISeniorPool) { return ISeniorPool(seniorPoolAddress(config)); } function getSeniorPoolStrategy(GoldfinchConfig config) internal view returns (ISeniorPoolStrategy) { return ISeniorPoolStrategy(seniorPoolStrategyAddress(config)); } function getUSDC(GoldfinchConfig config) internal view returns (IERC20withDec) { return IERC20withDec(usdcAddress(config)); } function getCreditDesk(GoldfinchConfig config) internal view returns (ICreditDesk) { return ICreditDesk(creditDeskAddress(config)); } function getFidu(GoldfinchConfig config) internal view returns (IFidu) { return IFidu(fiduAddress(config)); } function getCUSDCContract(GoldfinchConfig config) internal view returns (ICUSDCContract) { return ICUSDCContract(cusdcContractAddress(config)); } function getPoolTokens(GoldfinchConfig config) internal view returns (IPoolTokens) { return IPoolTokens(poolTokensAddress(config)); } function getBackerRewards(GoldfinchConfig config) internal view returns (IBackerRewards) { return IBackerRewards(backerRewardsAddress(config)); } function getGoldfinchFactory(GoldfinchConfig config) internal view returns (IGoldfinchFactory) { return IGoldfinchFactory(goldfinchFactoryAddress(config)); } function getGFI(GoldfinchConfig config) internal view returns (IERC20withDec) { return IERC20withDec(gfiAddress(config)); } function getGo(GoldfinchConfig config) internal view returns (IGo) { return IGo(goAddress(config)); } function oneInchAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.OneInch)); } function creditLineImplementationAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CreditLineImplementation)); } function trustedForwarderAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TrustedForwarder)); } function configAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GoldfinchConfig)); } function poolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Pool)); } function poolTokensAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.PoolTokens)); } function backerRewardsAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.BackerRewards)); } function seniorPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.SeniorPool)); } function seniorPoolStrategyAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.SeniorPoolStrategy)); } function creditDeskAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CreditDesk)); } function goldfinchFactoryAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GoldfinchFactory)); } function gfiAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GFI)); } function fiduAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Fidu)); } function cusdcContractAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CUSDCContract)); } function usdcAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.USDC)); } function tranchedPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TranchedPoolImplementation)); } function migratedTranchedPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.MigratedTranchedPoolImplementation)); } function reserveAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TreasuryReserve)); } function protocolAdminAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.ProtocolAdmin)); } function borrowerImplementationAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.BorrowerImplementation)); } function goAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Go)); } function stakingRewardsAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.StakingRewards)); } function getReserveDenominator(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.ReserveDenominator)); } function getWithdrawFeeDenominator(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.WithdrawFeeDenominator)); } function getLatenessGracePeriodInDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LatenessGracePeriodInDays)); } function getLatenessMaxDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LatenessMaxDays)); } function getDrawdownPeriodInSeconds(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.DrawdownPeriodInSeconds)); } function getTransferRestrictionPeriodInDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.TransferRestrictionPeriodInDays)); } function getLeverageRatio(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LeverageRatio)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; /** * @title ConfigOptions * @notice A central place for enumerating the configurable options of our GoldfinchConfig contract * @author Goldfinch */ library ConfigOptions { // NEVER EVER CHANGE THE ORDER OF THESE! // You can rename or append. But NEVER change the order. enum Numbers { TransactionLimit, TotalFundsLimit, MaxUnderwriterLimit, ReserveDenominator, WithdrawFeeDenominator, LatenessGracePeriodInDays, LatenessMaxDays, DrawdownPeriodInSeconds, TransferRestrictionPeriodInDays, LeverageRatio } enum Addresses { Pool, CreditLineImplementation, GoldfinchFactory, CreditDesk, Fidu, USDC, TreasuryReserve, ProtocolAdmin, OneInch, TrustedForwarder, CUSDCContract, GoldfinchConfig, PoolTokens, TranchedPoolImplementation, SeniorPool, SeniorPoolStrategy, MigratedTranchedPoolImplementation, BorrowerImplementation, GFI, Go, BackerRewards, StakingRewards } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./BaseUpgradeablePausable.sol"; import "../../interfaces/IGoldfinchConfig.sol"; import "./ConfigOptions.sol"; /** * @title GoldfinchConfig * @notice This contract stores mappings of useful "protocol config state", giving a central place * for all other contracts to access it. For example, the TransactionLimit, or the PoolAddress. These config vars * are enumerated in the `ConfigOptions` library, and can only be changed by admins of the protocol. * Note: While this inherits from BaseUpgradeablePausable, it is not deployed as an upgradeable contract (this * is mostly to save gas costs of having each call go through a proxy) * @author Goldfinch */ contract GoldfinchConfig is BaseUpgradeablePausable { bytes32 public constant GO_LISTER_ROLE = keccak256("GO_LISTER_ROLE"); mapping(uint256 => address) public addresses; mapping(uint256 => uint256) public numbers; mapping(address => bool) public goList; event AddressUpdated(address owner, uint256 index, address oldValue, address newValue); event NumberUpdated(address owner, uint256 index, uint256 oldValue, uint256 newValue); event GoListed(address indexed member); event NoListed(address indexed member); bool public valuesInitialized; function initialize(address owner) public initializer { require(owner != address(0), "Owner address cannot be empty"); __BaseUpgradeablePausable__init(owner); _setupRole(GO_LISTER_ROLE, owner); _setRoleAdmin(GO_LISTER_ROLE, OWNER_ROLE); } function setAddress(uint256 addressIndex, address newAddress) public onlyAdmin { require(addresses[addressIndex] == address(0), "Address has already been initialized"); emit AddressUpdated(msg.sender, addressIndex, addresses[addressIndex], newAddress); addresses[addressIndex] = newAddress; } function setNumber(uint256 index, uint256 newNumber) public onlyAdmin { emit NumberUpdated(msg.sender, index, numbers[index], newNumber); numbers[index] = newNumber; } function setTreasuryReserve(address newTreasuryReserve) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.TreasuryReserve); emit AddressUpdated(msg.sender, key, addresses[key], newTreasuryReserve); addresses[key] = newTreasuryReserve; } function setSeniorPoolStrategy(address newStrategy) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.SeniorPoolStrategy); emit AddressUpdated(msg.sender, key, addresses[key], newStrategy); addresses[key] = newStrategy; } function setCreditLineImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.CreditLineImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setTranchedPoolImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.TranchedPoolImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setBorrowerImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.BorrowerImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setGoldfinchConfig(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.GoldfinchConfig); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function initializeFromOtherConfig( address _initialConfig, uint256 numbersLength, uint256 addressesLength ) public onlyAdmin { require(!valuesInitialized, "Already initialized values"); IGoldfinchConfig initialConfig = IGoldfinchConfig(_initialConfig); for (uint256 i = 0; i < numbersLength; i++) { setNumber(i, initialConfig.getNumber(i)); } for (uint256 i = 0; i < addressesLength; i++) { if (getAddress(i) == address(0)) { setAddress(i, initialConfig.getAddress(i)); } } valuesInitialized = true; } /** * @dev Adds a user to go-list * @param _member address to add to go-list */ function addToGoList(address _member) public onlyGoListerRole { goList[_member] = true; emit GoListed(_member); } /** * @dev removes a user from go-list * @param _member address to remove from go-list */ function removeFromGoList(address _member) public onlyGoListerRole { goList[_member] = false; emit NoListed(_member); } /** * @dev adds many users to go-list at once * @param _members addresses to ad to go-list */ function bulkAddToGoList(address[] calldata _members) external onlyGoListerRole { for (uint256 i = 0; i < _members.length; i++) { addToGoList(_members[i]); } } /** * @dev removes many users from go-list at once * @param _members addresses to remove from go-list */ function bulkRemoveFromGoList(address[] calldata _members) external onlyGoListerRole { for (uint256 i = 0; i < _members.length; i++) { removeFromGoList(_members[i]); } } /* Using custom getters in case we want to change underlying implementation later, or add checks or validations later on. */ function getAddress(uint256 index) public view returns (address) { return addresses[index]; } function getNumber(uint256 index) public view returns (uint256) { return numbers[index]; } modifier onlyGoListerRole() { require(hasRole(GO_LISTER_ROLE, _msgSender()), "Must have go-lister role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/utils/Pausable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; /** * @title PauserPausable * @notice Inheriting from OpenZeppelin's Pausable contract, this does small * augmentations to make it work with a PAUSER_ROLE, leveraging the AccessControl contract. * It is meant to be inherited. * @author Goldfinch */ contract PauserPausable is AccessControlUpgradeSafe, PausableUpgradeSafe { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); // solhint-disable-next-line func-name-mixedcase function __PauserPausable__init() public initializer { __Pausable_init_unchained(); } /** * @dev Pauses all functions guarded by Pause * * See {Pausable-_pause}. * * Requirements: * * - the caller must have the PAUSER_ROLE. */ function pause() public onlyPauserRole { _pause(); } /** * @dev Unpauses the contract * * See {Pausable-_unpause}. * * Requirements: * * - the caller must have the Pauser role */ function unpause() public onlyPauserRole { _unpause(); } modifier onlyPauserRole() { require(hasRole(PAUSER_ROLE, _msgSender()), "Must have pauser role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "../../interfaces/IV2CreditLine.sol"; import "../../interfaces/ITranchedPool.sol"; import "../../interfaces/IPoolTokens.sol"; import "../../external/FixedPoint.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/Math.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; /** * @title TranchingLogic * @notice Library for handling the payments waterfall * @author Goldfinch */ library TranchingLogic { using SafeMath for uint256; using FixedPoint for FixedPoint.Unsigned; using FixedPoint for uint256; event SharePriceUpdated( address indexed pool, uint256 indexed tranche, uint256 principalSharePrice, int256 principalDelta, uint256 interestSharePrice, int256 interestDelta ); uint256 public constant FP_SCALING_FACTOR = 1e18; uint256 public constant ONE_HUNDRED = 100; // Need this because we cannot call .div on a literal 100 function usdcToSharePrice(uint256 amount, uint256 totalShares) public pure returns (uint256) { return totalShares == 0 ? 0 : amount.mul(FP_SCALING_FACTOR).div(totalShares); } function sharePriceToUsdc(uint256 sharePrice, uint256 totalShares) public pure returns (uint256) { return sharePrice.mul(totalShares).div(FP_SCALING_FACTOR); } function redeemableInterestAndPrincipal( ITranchedPool.TrancheInfo storage trancheInfo, IPoolTokens.TokenInfo memory tokenInfo ) public view returns (uint256 interestRedeemable, uint256 principalRedeemable) { // This supports withdrawing before or after locking because principal share price starts at 1 // and is set to 0 on lock. Interest share price is always 0 until interest payments come back, when it increases uint256 maxPrincipalRedeemable = sharePriceToUsdc(trancheInfo.principalSharePrice, tokenInfo.principalAmount); // The principalAmount is used as the totalShares because we want the interestSharePrice to be expressed as a // percent of total loan value e.g. if the interest is 10% APR, the interestSharePrice should approach a max of 0.1. uint256 maxInterestRedeemable = sharePriceToUsdc(trancheInfo.interestSharePrice, tokenInfo.principalAmount); interestRedeemable = maxInterestRedeemable.sub(tokenInfo.interestRedeemed); principalRedeemable = maxPrincipalRedeemable.sub(tokenInfo.principalRedeemed); return (interestRedeemable, principalRedeemable); } function calculateExpectedSharePrice( ITranchedPool.TrancheInfo memory tranche, uint256 amount, ITranchedPool.PoolSlice memory slice ) public pure returns (uint256) { uint256 sharePrice = usdcToSharePrice(amount, tranche.principalDeposited); return scaleByPercentOwnership(tranche, sharePrice, slice); } function scaleForSlice( ITranchedPool.PoolSlice memory slice, uint256 amount, uint256 totalDeployed ) public pure returns (uint256) { return scaleByFraction(amount, slice.principalDeployed, totalDeployed); } // We need to create this struct so we don't run into a stack too deep error due to too many variables function getSliceInfo( ITranchedPool.PoolSlice memory slice, IV2CreditLine creditLine, uint256 totalDeployed, uint256 reserveFeePercent ) public view returns (ITranchedPool.SliceInfo memory) { (uint256 interestAccrued, uint256 principalAccrued) = getTotalInterestAndPrincipal( slice, creditLine, totalDeployed ); return ITranchedPool.SliceInfo({ reserveFeePercent: reserveFeePercent, interestAccrued: interestAccrued, principalAccrued: principalAccrued }); } function getTotalInterestAndPrincipal( ITranchedPool.PoolSlice memory slice, IV2CreditLine creditLine, uint256 totalDeployed ) public view returns (uint256 interestAccrued, uint256 principalAccrued) { principalAccrued = creditLine.principalOwed(); // In addition to principal actually owed, we need to account for early principal payments // If the borrower pays back 5K early on a 10K loan, the actual principal accrued should be // 5K (balance- deployed) + 0 (principal owed) principalAccrued = totalDeployed.sub(creditLine.balance()).add(principalAccrued); // Now we need to scale that correctly for the slice we're interested in principalAccrued = scaleForSlice(slice, principalAccrued, totalDeployed); // Finally, we need to account for partial drawdowns. e.g. If 20K was deposited, and only 10K was drawn down, // Then principal accrued should start at 10K (total deposited - principal deployed), not 0. This is because // share price starts at 1, and is decremented by what was drawn down. uint256 totalDeposited = slice.seniorTranche.principalDeposited.add(slice.juniorTranche.principalDeposited); principalAccrued = totalDeposited.sub(slice.principalDeployed).add(principalAccrued); return (slice.totalInterestAccrued, principalAccrued); } function scaleByFraction( uint256 amount, uint256 fraction, uint256 total ) public pure returns (uint256) { FixedPoint.Unsigned memory totalAsFixedPoint = FixedPoint.fromUnscaledUint(total); FixedPoint.Unsigned memory fractionAsFixedPoint = FixedPoint.fromUnscaledUint(fraction); return fractionAsFixedPoint.div(totalAsFixedPoint).mul(amount).div(FP_SCALING_FACTOR).rawValue; } function applyToAllSeniorTranches( ITranchedPool.PoolSlice[] storage poolSlices, uint256 interest, uint256 principal, uint256 reserveFeePercent, uint256 totalDeployed, IV2CreditLine creditLine, uint256 juniorFeePercent ) public returns (ITranchedPool.ApplyResult memory) { ITranchedPool.ApplyResult memory seniorApplyResult; for (uint256 i = 0; i < poolSlices.length; i++) { ITranchedPool.SliceInfo memory sliceInfo = getSliceInfo( poolSlices[i], creditLine, totalDeployed, reserveFeePercent ); // Since slices cannot be created when the loan is late, all interest collected can be assumed to split // pro-rata across the slices. So we scale the interest and principal to the slice ITranchedPool.ApplyResult memory applyResult = applyToSeniorTranche( poolSlices[i], scaleForSlice(poolSlices[i], interest, totalDeployed), scaleForSlice(poolSlices[i], principal, totalDeployed), juniorFeePercent, sliceInfo ); emitSharePriceUpdatedEvent(poolSlices[i].seniorTranche, applyResult); seniorApplyResult.interestRemaining = seniorApplyResult.interestRemaining.add(applyResult.interestRemaining); seniorApplyResult.principalRemaining = seniorApplyResult.principalRemaining.add(applyResult.principalRemaining); seniorApplyResult.reserveDeduction = seniorApplyResult.reserveDeduction.add(applyResult.reserveDeduction); } return seniorApplyResult; } function applyToAllJuniorTranches( ITranchedPool.PoolSlice[] storage poolSlices, uint256 interest, uint256 principal, uint256 reserveFeePercent, uint256 totalDeployed, IV2CreditLine creditLine ) public returns (uint256 totalReserveAmount) { for (uint256 i = 0; i < poolSlices.length; i++) { ITranchedPool.SliceInfo memory sliceInfo = getSliceInfo( poolSlices[i], creditLine, totalDeployed, reserveFeePercent ); // Any remaining interest and principal is then shared pro-rata with the junior slices ITranchedPool.ApplyResult memory applyResult = applyToJuniorTranche( poolSlices[i], scaleForSlice(poolSlices[i], interest, totalDeployed), scaleForSlice(poolSlices[i], principal, totalDeployed), sliceInfo ); emitSharePriceUpdatedEvent(poolSlices[i].juniorTranche, applyResult); totalReserveAmount = totalReserveAmount.add(applyResult.reserveDeduction); } return totalReserveAmount; } function emitSharePriceUpdatedEvent( ITranchedPool.TrancheInfo memory tranche, ITranchedPool.ApplyResult memory applyResult ) internal { emit SharePriceUpdated( address(this), tranche.id, tranche.principalSharePrice, int256(tranche.principalSharePrice.sub(applyResult.oldPrincipalSharePrice)), tranche.interestSharePrice, int256(tranche.interestSharePrice.sub(applyResult.oldInterestSharePrice)) ); } function applyToSeniorTranche( ITranchedPool.PoolSlice storage slice, uint256 interestRemaining, uint256 principalRemaining, uint256 juniorFeePercent, ITranchedPool.SliceInfo memory sliceInfo ) public returns (ITranchedPool.ApplyResult memory) { // First determine the expected share price for the senior tranche. This is the gross amount the senior // tranche should receive. uint256 expectedInterestSharePrice = calculateExpectedSharePrice( slice.seniorTranche, sliceInfo.interestAccrued, slice ); uint256 expectedPrincipalSharePrice = calculateExpectedSharePrice( slice.seniorTranche, sliceInfo.principalAccrued, slice ); // Deduct the junior fee and the protocol reserve uint256 desiredNetInterestSharePrice = scaleByFraction( expectedInterestSharePrice, ONE_HUNDRED.sub(juniorFeePercent.add(sliceInfo.reserveFeePercent)), ONE_HUNDRED ); // Collect protocol fee interest received (we've subtracted this from the senior portion above) uint256 reserveDeduction = scaleByFraction(interestRemaining, sliceInfo.reserveFeePercent, ONE_HUNDRED); interestRemaining = interestRemaining.sub(reserveDeduction); uint256 oldInterestSharePrice = slice.seniorTranche.interestSharePrice; uint256 oldPrincipalSharePrice = slice.seniorTranche.principalSharePrice; // Apply the interest remaining so we get up to the netInterestSharePrice (interestRemaining, principalRemaining) = applyBySharePrice( slice.seniorTranche, interestRemaining, principalRemaining, desiredNetInterestSharePrice, expectedPrincipalSharePrice ); return ITranchedPool.ApplyResult({ interestRemaining: interestRemaining, principalRemaining: principalRemaining, reserveDeduction: reserveDeduction, oldInterestSharePrice: oldInterestSharePrice, oldPrincipalSharePrice: oldPrincipalSharePrice }); } function applyToJuniorTranche( ITranchedPool.PoolSlice storage slice, uint256 interestRemaining, uint256 principalRemaining, ITranchedPool.SliceInfo memory sliceInfo ) public returns (ITranchedPool.ApplyResult memory) { // Then fill up the junior tranche with all the interest remaining, upto the principal share price uint256 expectedInterestSharePrice = slice.juniorTranche.interestSharePrice.add( usdcToSharePrice(interestRemaining, slice.juniorTranche.principalDeposited) ); uint256 expectedPrincipalSharePrice = calculateExpectedSharePrice( slice.juniorTranche, sliceInfo.principalAccrued, slice ); uint256 oldInterestSharePrice = slice.juniorTranche.interestSharePrice; uint256 oldPrincipalSharePrice = slice.juniorTranche.principalSharePrice; (interestRemaining, principalRemaining) = applyBySharePrice( slice.juniorTranche, interestRemaining, principalRemaining, expectedInterestSharePrice, expectedPrincipalSharePrice ); // All remaining interest and principal is applied towards the junior tranche as interest interestRemaining = interestRemaining.add(principalRemaining); // Since any principal remaining is treated as interest (there is "extra" interest to be distributed) // we need to make sure to collect the protocol fee on the additional interest (we only deducted the // fee on the original interest portion) uint256 reserveDeduction = scaleByFraction(principalRemaining, sliceInfo.reserveFeePercent, ONE_HUNDRED); interestRemaining = interestRemaining.sub(reserveDeduction); principalRemaining = 0; (interestRemaining, principalRemaining) = applyByAmount( slice.juniorTranche, interestRemaining.add(principalRemaining), 0, interestRemaining.add(principalRemaining), 0 ); return ITranchedPool.ApplyResult({ interestRemaining: interestRemaining, principalRemaining: principalRemaining, reserveDeduction: reserveDeduction, oldInterestSharePrice: oldInterestSharePrice, oldPrincipalSharePrice: oldPrincipalSharePrice }); } function applyBySharePrice( ITranchedPool.TrancheInfo storage tranche, uint256 interestRemaining, uint256 principalRemaining, uint256 desiredInterestSharePrice, uint256 desiredPrincipalSharePrice ) public returns (uint256, uint256) { uint256 desiredInterestAmount = desiredAmountFromSharePrice( desiredInterestSharePrice, tranche.interestSharePrice, tranche.principalDeposited ); uint256 desiredPrincipalAmount = desiredAmountFromSharePrice( desiredPrincipalSharePrice, tranche.principalSharePrice, tranche.principalDeposited ); return applyByAmount(tranche, interestRemaining, principalRemaining, desiredInterestAmount, desiredPrincipalAmount); } function applyByAmount( ITranchedPool.TrancheInfo storage tranche, uint256 interestRemaining, uint256 principalRemaining, uint256 desiredInterestAmount, uint256 desiredPrincipalAmount ) public returns (uint256, uint256) { uint256 totalShares = tranche.principalDeposited; uint256 newSharePrice; (interestRemaining, newSharePrice) = applyToSharePrice( interestRemaining, tranche.interestSharePrice, desiredInterestAmount, totalShares ); tranche.interestSharePrice = newSharePrice; (principalRemaining, newSharePrice) = applyToSharePrice( principalRemaining, tranche.principalSharePrice, desiredPrincipalAmount, totalShares ); tranche.principalSharePrice = newSharePrice; return (interestRemaining, principalRemaining); } function migrateAccountingVariables(address originalClAddr, address newClAddr) public { IV2CreditLine originalCl = IV2CreditLine(originalClAddr); IV2CreditLine newCl = IV2CreditLine(newClAddr); // Copy over all accounting variables newCl.setBalance(originalCl.balance()); newCl.setLimit(originalCl.limit()); newCl.setInterestOwed(originalCl.interestOwed()); newCl.setPrincipalOwed(originalCl.principalOwed()); newCl.setTermEndTime(originalCl.termEndTime()); newCl.setNextDueTime(originalCl.nextDueTime()); newCl.setInterestAccruedAsOf(originalCl.interestAccruedAsOf()); newCl.setLastFullPaymentTime(originalCl.lastFullPaymentTime()); newCl.setTotalInterestAccrued(originalCl.totalInterestAccrued()); } function closeCreditLine(address originalCl) public { // Close out old CL IV2CreditLine oldCreditLine = IV2CreditLine(originalCl); oldCreditLine.setBalance(0); oldCreditLine.setLimit(0); oldCreditLine.setMaxLimit(0); } function desiredAmountFromSharePrice( uint256 desiredSharePrice, uint256 actualSharePrice, uint256 totalShares ) public pure returns (uint256) { // If the desired share price is lower, then ignore it, and leave it unchanged if (desiredSharePrice < actualSharePrice) { desiredSharePrice = actualSharePrice; } uint256 sharePriceDifference = desiredSharePrice.sub(actualSharePrice); return sharePriceToUsdc(sharePriceDifference, totalShares); } function applyToSharePrice( uint256 amountRemaining, uint256 currentSharePrice, uint256 desiredAmount, uint256 totalShares ) public pure returns (uint256, uint256) { // If no money left to apply, or don't need any changes, return the original amounts if (amountRemaining == 0 || desiredAmount == 0) { return (amountRemaining, currentSharePrice); } if (amountRemaining < desiredAmount) { // We don't have enough money to adjust share price to the desired level. So just use whatever amount is left desiredAmount = amountRemaining; } uint256 sharePriceDifference = usdcToSharePrice(desiredAmount, totalShares); return (amountRemaining.sub(desiredAmount), currentSharePrice.add(sharePriceDifference)); } function scaleByPercentOwnership( ITranchedPool.TrancheInfo memory tranche, uint256 amount, ITranchedPool.PoolSlice memory slice ) public pure returns (uint256) { uint256 totalDeposited = slice.juniorTranche.principalDeposited.add(slice.seniorTranche.principalDeposited); return scaleByFraction(amount, tranche.principalDeposited, totalDeposited); } }
{ "evmVersion": "istanbul", "libraries": { "contracts/protocol/core/TranchedPool.sol:TranchedPool": { "TranchingLogic": "0x01bfa2248a6c1aA65e7032951d368241FF70b649" } }, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 100 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldCreditLine","type":"address"},{"indexed":true,"internalType":"address","name":"newCreditLine","type":"address"}],"name":"CreditLineMigrated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"uint256","name":"tranche","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DepositMade","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DrawdownMade","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"DrawdownsPaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"DrawdownsUnpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"EmergencyShutdown","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"who","type":"address"},{"indexed":false,"internalType":"address","name":"configAddress","type":"address"}],"name":"GoldfinchConfigUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"interestAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"principalAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"remainingAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"reserveAmount","type":"uint256"}],"name":"PaymentApplied","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ReserveFundsCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"uint256","name":"tranche","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"indexed":false,"internalType":"int256","name":"principalDelta","type":"int256"},{"indexed":false,"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"indexed":false,"internalType":"int256","name":"interestDelta","type":"int256"}],"name":"SharePriceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"sliceId","type":"uint256"}],"name":"SliceCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"trancheId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"name":"TrancheLocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"TranchedPoolAssessed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"uint256","name":"tranche","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"interestWithdrawn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"principalWithdrawn","type":"uint256"}],"name":"WithdrawalMade","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FP_SCALING_FACTOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LOCKER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NUM_TRANCHES_PER_SLICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ONE_HUNDRED","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OWNER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SECONDS_PER_DAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SENIOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"__BaseUpgradeablePausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"__PauserPausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allowedUIDTypes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"assess","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"availableToWithdraw","outputs":[{"internalType":"uint256","name":"interestRedeemable","type":"uint256"},{"internalType":"uint256","name":"principalRedeemable","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"contract GoldfinchConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"createdAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"creditLine","outputs":[{"internalType":"contract IV2CreditLine","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tranche","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tranche","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"depositWithPermit","outputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"drawdown","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"drawdownsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyShutdown","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fundableAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tranche","type":"uint256"}],"name":"getTranche","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"principalDeposited","type":"uint256"},{"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"internalType":"struct ITranchedPool.TrancheInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_config","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_juniorFeePercent","type":"uint256"},{"internalType":"uint256","name":"_limit","type":"uint256"},{"internalType":"uint256","name":"_interestApr","type":"uint256"},{"internalType":"uint256","name":"_paymentPeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_termInDays","type":"uint256"},{"internalType":"uint256","name":"_lateFeeApr","type":"uint256"},{"internalType":"uint256","name":"_principalGracePeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_fundableAt","type":"uint256"},{"internalType":"uint256[]","name":"_allowedUIDTypes","type":"uint256[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fundableAt","type":"uint256"}],"name":"initializeNextSlice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isAdmin","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"juniorFeePercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockJuniorCapital","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lockPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newCl","type":"address"}],"name":"migrateAndSetNewCreditLine","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_maxLimit","type":"uint256"},{"internalType":"uint256","name":"_interestApr","type":"uint256"},{"internalType":"uint256","name":"_paymentPeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_termInDays","type":"uint256"},{"internalType":"uint256","name":"_lateFeeApr","type":"uint256"},{"internalType":"uint256","name":"_principalGracePeriodInDays","type":"uint256"}],"name":"migrateCreditLine","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"numSlices","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pauseDrawdowns","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"pay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolSlices","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"principalDeposited","type":"uint256"},{"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"internalType":"struct ITranchedPool.TrancheInfo","name":"seniorTranche","type":"tuple"},{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"principalDeposited","type":"uint256"},{"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"internalType":"struct ITranchedPool.TrancheInfo","name":"juniorTranche","type":"tuple"},{"internalType":"uint256","name":"totalInterestAccrued","type":"uint256"},{"internalType":"uint256","name":"principalDeployed","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"setAllowedUIDTypes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newFundableAt","type":"uint256"}],"name":"setFundableAt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"}],"name":"setLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"}],"name":"setMaxLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharePrice","type":"uint256"},{"internalType":"uint256","name":"totalShares","type":"uint256"}],"name":"sharePriceToUsdc","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"totalDeployed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalJuniorDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpauseDrawdowns","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updateGoldfinchConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"totalShares","type":"uint256"}],"name":"usdcToSharePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"interestWithdrawn","type":"uint256"},{"internalType":"uint256","name":"principalWithdrawn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"withdrawMax","outputs":[{"internalType":"uint256","name":"interestWithdrawn","type":"uint256"},{"internalType":"uint256","name":"principalWithdrawn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"withdrawMultiple","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 100.00% | $0.999844 | 19,323.2303 | $19,320.22 |
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.