ETH Price: $3,912.89 (+0.90%)

Contract

0x014E49891531Ef2C30545Fc726B17903db8FbFbc
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

More Info

Private Name Tags

ContractCreator

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Transfer Ownersh...216165992025-01-13 15:56:47283 days ago1736783807IN
0x014E4989...3db8FbFbc
0 ETH0.000407214.21763668
Set Batch Distri...216163342025-01-13 15:03:23284 days ago1736780603IN
0x014E4989...3db8FbFbc
0 ETH0.0012888527.07113716

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
UprisingAirdropDistributorAfterInit

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../VestingUtils.sol";
import "../Errors.sol";


interface IOldDistributor {
    function slotInfos(bytes32 userVestingId) external view returns (uint256, uint256, uint128, uint128, uint32, uint32, uint32, bool);
}

/**
 * @title UprisingAirdropDistributor
 * @author @trmaphi
 * @notice This contract is used to patch the old uprising airdrop distributor.
 */
contract UprisingAirdropDistributorAfterInit is Ownable {
    /// From Distributor    
    using SafeERC20 for IERC20;
    address public batchDistributor;
    IERC20 public immutable paymentToken;
    IOldDistributor public oldDistributor;

    // userVestingId => SlotInfo
    mapping(bytes32 => SlotInfo) public _slotInfos;

    // 10_000 = 100%
    uint256 public constant BASIC_POINT_DECIMALS = 10_000;

    struct VestingConfig {
        uint32 initClaimPercent;
        uint32 intervalPercent;
        uint32 intervalDays;
        uint128 initDeadline;
    }
    
    struct SlotInfo {
        uint256 amount;
        uint256 claimed;
        uint128 initDeadline; // The timestamp of the deadline of the airdrop even with amount still available, user won't be able to claim
        uint128 startTime;
        uint32 initClaimPercent;
        uint32 intervalPercent;
        uint32 intervalDays;
        bool initialized;
    }
    
    event DistributorUpdated(address indexed oldDistributor, address indexed newDistributor);
    event Claimed(address indexed caller, bytes32 indexed userVestingId, address indexed recipient, uint256 amount);
    /// From Distributor

    event SlotInitialized(address indexed initializer, address indexed recipient, uint256 amount);

    constructor(address _paymentToken, address _oldDistributor) Ownable(msg.sender) {
        if (_paymentToken == address(0) || _oldDistributor == address(0)) revert ZeroAddress();
        paymentToken = IERC20(_paymentToken);
        oldDistributor = IOldDistributor(_oldDistributor);
    }

    modifier onlyBatchDistributor() {
        require(batchDistributor == msg.sender, "Caller is not the batch distributor");
        _;
    }

    /**
     * Get the slot info of a user, using the old distributor if the slot is not initialized
     * @param userVestingId The user vesting id
     * @return The slot info
     */
    function slotInfos(bytes32 userVestingId) external view returns (SlotInfo memory) {
        if (_slotInfos[userVestingId].amount == 0) {
            (
                uint256 amount,
                uint256 claimed,
                uint128 initDeadline,
                uint128 startTime,
                uint32 initClaimPercent,
                uint32 intervalPercent,
                uint32 intervalDays,
                bool initialized
            ) = oldDistributor.slotInfos(userVestingId);
            return SlotInfo({
                amount: amount,
                claimed: claimed,
                initDeadline: initDeadline,
                startTime: startTime,
                initClaimPercent: initClaimPercent,
                intervalPercent: intervalPercent,
                intervalDays: intervalDays,
                initialized: initialized
            });
        }
        
        return _slotInfos[userVestingId];
    }

    /**
     * @notice Claim the airdrop
     */
    function setBatchDistributor(address newDistributor) external onlyOwner {        
        batchDistributor = newDistributor;
        emit DistributorUpdated(batchDistributor, newDistributor);
    }

    /**
     * @notice Initialize the claim for a user
     * @param caller The caller of the function forwarded from the batch distributor
     * @param proofs The merkle proof for the user
     * @param recipient The recipient of the airdrop
     */
    function initClaim(address caller, bytes calldata proofs, address recipient) external onlyBatchDistributor {
        revert DeadlinePassed();
    }

    /**
     * @notice Claim the airdrop
     * @dev
     * - Requirement:
     *      - Caller MUST be the one initialized the claim
     */
    function _verifyCaller(address caller, bytes32 userVestingId) internal view {
        if (caller != VestingUtils.bytes32ToAddress(userVestingId)) revert InvalidCaller();
    }

    /**
     * @notice Claim the airdrop for a user
     * @param caller The caller of the function forwarded from the batch distributor
     * @param userVestingId The user vesting id
     * @param recipient The recipient of the airdrop
     */
    function claim(address caller, bytes32 userVestingId, address recipient) external onlyBatchDistributor {
        SlotInfo memory slot = this.slotInfos(userVestingId);
        if (_slotInfos[userVestingId].amount == 0) {
            _slotInfos[userVestingId] = slot;
        }
        // Check if the slot is initialized
        if (!slot.initialized) revert DeadlinePassed();

        if (_slotInfos[userVestingId].claimed >= _slotInfos[userVestingId].amount) revert AlreadyClaimed();
        _verifyCaller(caller, userVestingId);
        uint256 claimAmount = _calculateClaimAmount(userVestingId);
        if (claimAmount == 0) revert AlreadyClaimed();
        _transferToRecipient(userVestingId, recipient, claimAmount);
        emit Claimed(caller, userVestingId, recipient, claimAmount);
    }

    /**
     * @notice Calculate the claimable amount for a user
     * @param userVestingId The user vesting id
     * @return The claimable amount
     */
    function _calculateClaimAmount(bytes32 userVestingId) internal view returns (uint256) {
        SlotInfo memory slot = _slotInfos[userVestingId];        
        // Calculate time elapsed since vesting started
        uint256 timeElapsed = (block.timestamp - slot.startTime) / (slot.intervalDays * 1 days);
        
        // Calculate total percentage
        uint256 currentPercent = (timeElapsed * slot.intervalPercent) + slot.initClaimPercent;
        if (currentPercent > BASIC_POINT_DECIMALS) currentPercent = BASIC_POINT_DECIMALS;

        // Calculate total vested amount
        uint256 totalVestedAmount = (slot.amount * currentPercent) / BASIC_POINT_DECIMALS;
        
        // Calculate remaining claimable amount
        uint256 amountToClaim = totalVestedAmount - slot.claimed;
        
        return amountToClaim;
    }

    /**
     * @notice Transfer the airdrop to the recipient
     * @param userVestingId The user vesting id
     * @param recipient The recipient of the airdrop
     * @param amount The amount to transfer
     */
    function _transferToRecipient(bytes32 userVestingId, address recipient, uint256 amount) internal {
        _slotInfos[userVestingId].claimed += amount;
        paymentToken.safeTransfer(recipient, amount);
    }

    /**
     * @notice Emergency function to recover wrong tokens
     * @param _token The token to recover
     * @param _amount The amount to recover
     */
    function recoverToken(address _token, uint256 _amount) external onlyOwner {
        IERC20(_token).safeTransfer(owner(), _amount);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 4 of 16 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 5 of 16 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}

File 13 of 16 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 15 of 16 : Errors.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

error InvalidSignature();
error AlreadyClaimed();
error ZeroAddress();
error DeadlinePassed();
error InvalidProofs();
error RootHashAlreadySet();
error SlotExists();
error InvalidRecipient();
error InvalidCaller();
error VestingConfigNotSet();
error InvalidVestingConfig();
error EmptyArray();
error InvalidUserVestingId();

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

library VestingUtils {
    /**
     * @dev Converts an address to bytes32.
     * @param _addr The address to convert.
     * @return The bytes32 representation of the address.
     */
    function addressToBytes32(address _addr) internal pure returns (bytes32) {
        return bytes32(uint256(uint160(_addr)));
    }

    /**
     * @dev Converts bytes32 to an address.
     * @param _b The bytes32 value to convert.
     * @return The address representation of bytes32.
     */
    function bytes32ToAddress(bytes32 _b) internal pure returns (address) {
        return address(uint160(uint256(_b)));
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_paymentToken","type":"address"},{"internalType":"address","name":"_oldDistributor","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"DeadlinePassed","type":"error"},{"inputs":[],"name":"InvalidCaller","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"bytes32","name":"userVestingId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldDistributor","type":"address"},{"indexed":true,"internalType":"address","name":"newDistributor","type":"address"}],"name":"DistributorUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"initializer","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SlotInitialized","type":"event"},{"inputs":[],"name":"BASIC_POINT_DECIMALS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"_slotInfos","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"},{"internalType":"uint128","name":"initDeadline","type":"uint128"},{"internalType":"uint128","name":"startTime","type":"uint128"},{"internalType":"uint32","name":"initClaimPercent","type":"uint32"},{"internalType":"uint32","name":"intervalPercent","type":"uint32"},{"internalType":"uint32","name":"intervalDays","type":"uint32"},{"internalType":"bool","name":"initialized","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"batchDistributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"bytes32","name":"userVestingId","type":"bytes32"},{"internalType":"address","name":"recipient","type":"address"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"bytes","name":"proofs","type":"bytes"},{"internalType":"address","name":"recipient","type":"address"}],"name":"initClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"oldDistributor","outputs":[{"internalType":"contract IOldDistributor","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paymentToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newDistributor","type":"address"}],"name":"setBatchDistributor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"userVestingId","type":"bytes32"}],"name":"slotInfos","outputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"},{"internalType":"uint128","name":"initDeadline","type":"uint128"},{"internalType":"uint128","name":"startTime","type":"uint128"},{"internalType":"uint32","name":"initClaimPercent","type":"uint32"},{"internalType":"uint32","name":"intervalPercent","type":"uint32"},{"internalType":"uint32","name":"intervalDays","type":"uint32"},{"internalType":"bool","name":"initialized","type":"bool"}],"internalType":"struct UprisingAirdropDistributorAfterInit.SlotInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a060405234801561001057600080fd5b50604051620011043803806200110483398101604081905261003191610130565b338061005757604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b610060816100c4565b506001600160a01b038216158061007e57506001600160a01b038116155b1561009c5760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b03918216608052600280546001600160a01b03191691909216179055610163565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b038116811461012b57600080fd5b919050565b6000806040838503121561014357600080fd5b61014c83610114565b915061015a60208401610114565b90509250929050565b608051610f7e62000186600039600081816101170152610a180152610f7e6000f3fe608060405234801561001057600080fd5b50600436106100cf5760003560e01c80638da5cb5b1161008c578063a5eb206e11610066578063a5eb206e1461026f578063b29a814014610282578063c56d541214610295578063f2fde38b146102a857600080fd5b80638da5cb5b1461023457806397cce6f6146102455780639f4b76c01461025857600080fd5b80631503050e146100d45780632475cab7146100fd5780633013ce291461011257806368f4f6e514610151578063715018a6146102195780637708cd7114610221575b600080fd5b6100e76100e2366004610b08565b6102bb565b6040516100f49190610b21565b60405180910390f35b61011061010b366004610bbd565b610483565b005b6101397f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020016100f4565b6101c461015f366004610b08565b600360208190526000918252604090912080546001820154600283015492909301549092916001600160801b0380821692600160801b909204169063ffffffff808216916401000000008104821691600160401b82041690600160601b900460ff1688565b6040805198895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e0820152610100016100f4565b6101106104d7565b600154610139906001600160a01b031681565b6000546001600160a01b0316610139565b610110610253366004610bdf565b6104eb565b61026161271081565b6040519081526020016100f4565b61011061027d366004610c73565b610537565b610110610290366004610caf565b61077e565b600254610139906001600160a01b031681565b6101106102b6366004610bbd565b6107b0565b6040805161010081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e081019190915260008281526003602052604081205490036103f157600254604051630a81828760e11b81526004810184905260009182918291829182918291829182916001600160a01b0390911690631503050e9060240161010060405180830381865afa15801561036c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103909190610d14565b604080516101008101825298895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e08201529a9950505050505050505050565b506000908152600360208181526040928390208351610100810185528154815260018201549281019290925260028101546001600160801b0380821695840195909552600160801b9004909316606082015291015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c0830152600160601b900460ff16151560e082015290565b61048b6107ee565b600180546001600160a01b0319166001600160a01b03831690811790915560405181907f111a961d91cf441fe07e7bfddc128b30ab56974d1a76851e969e0642fdb2dd5090600090a350565b6104df6107ee565b6104e9600061081b565b565b6001546001600160a01b0316331461051e5760405162461bcd60e51b815260040161051590610d9d565b60405180910390fd5b60405163387b2e5560e11b815260040160405180910390fd5b6001546001600160a01b031633146105615760405162461bcd60e51b815260040161051590610d9d565b604051630a81828760e11b8152600481018390526000903090631503050e9060240161010060405180830381865afa1580156105a1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c59190610de0565b6000848152600360205260408120549192500361069057600083815260036020818152604092839020845181559084015160018201559183015160608401516001600160801b03908116600160801b02911617600283015560808301519101805460a084015160c085015160e08601511515600160601b0260ff60601b1963ffffffff928316600160401b02166cffffffffff0000000000000000199383166401000000000267ffffffffffffffff1990951692909616919091179290921716929092179190911790555b8060e001516106b25760405163387b2e5560e11b815260040160405180910390fd5b60008381526003602052604090208054600190910154106106e657604051630c8d9eab60e31b815260040160405180910390fd5b6106f0848461086b565b60006106fb8461089d565b90508060000361071e57604051630c8d9eab60e31b815260040160405180910390fd5b6107298484836109e4565b826001600160a01b031684866001600160a01b03167febedbd8e16e0d9c5ce0f788408af6900750a64cb9bbff179405dedaf531ea4b08460405161076f91815260200190565b60405180910390a45050505050565b6107866107ee565b6107ac61079b6000546001600160a01b031690565b6001600160a01b0384169083610a44565b5050565b6107b86107ee565b6001600160a01b0381166107e257604051631e4fbdf760e01b815260006004820152602401610515565b6107eb8161081b565b50565b6000546001600160a01b031633146104e95760405163118cdaa760e01b8152336004820152602401610515565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b806001600160a01b0316826001600160a01b0316146107ac576040516348f5c3ed60e01b815260040160405180910390fd5b60008181526003602081815260408084208151610100810183528154815260018201549381019390935260028101546001600160801b0380821693850193909352600160801b900490911660608301529091015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c08301819052600160601b90910460ff16151560e0830152829061093d9062015180610ebb565b63ffffffff1682606001516001600160801b03164261095c9190610ee3565b6109669190610efc565b90506000826080015163ffffffff168360a0015163ffffffff168361098b9190610f1e565b6109959190610f35565b90506127108111156109a657506127105b60006127108285600001516109bb9190610f1e565b6109c59190610efc565b905060008460200151826109d99190610ee3565b979650505050505050565b60008381526003602052604081206001018054839290610a05908490610f35565b90915550610a3f90506001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168383610a44565b505050565b604080516001600160a01b03841660248201526044808201849052825180830390910181526064909101909152602080820180516001600160e01b031663a9059cbb60e01b1781528251610a3f938793909260009283929183919082885af180610ab4576040513d6000823e3d81fd5b50506000513d91508115610acc578060011415610ad9565b6001600160a01b0384163b155b15610b0257604051635274afe760e01b81526001600160a01b0385166004820152602401610515565b50505050565b600060208284031215610b1a57600080fd5b5035919050565b600061010082019050825182526020830151602083015260408301516001600160801b0380821660408501528060608601511660608501525050608083015163ffffffff80821660808501528060a08601511660a08501528060c08601511660c0850152505060e0830151610b9a60e084018215159052565b5092915050565b80356001600160a01b0381168114610bb857600080fd5b919050565b600060208284031215610bcf57600080fd5b610bd882610ba1565b9392505050565b60008060008060608587031215610bf557600080fd5b610bfe85610ba1565b9350602085013567ffffffffffffffff80821115610c1b57600080fd5b818701915087601f830112610c2f57600080fd5b813581811115610c3e57600080fd5b886020828501011115610c5057600080fd5b602083019550809450505050610c6860408601610ba1565b905092959194509250565b600080600060608486031215610c8857600080fd5b610c9184610ba1565b925060208401359150610ca660408501610ba1565b90509250925092565b60008060408385031215610cc257600080fd5b610ccb83610ba1565b946020939093013593505050565b80516001600160801b0381168114610bb857600080fd5b805163ffffffff81168114610bb857600080fd5b80518015158114610bb857600080fd5b600080600080600080600080610100898b031215610d3157600080fd5b8851975060208901519650610d4860408a01610cd9565b9550610d5660608a01610cd9565b9450610d6460808a01610cf0565b9350610d7260a08a01610cf0565b9250610d8060c08a01610cf0565b9150610d8e60e08a01610d04565b90509295985092959890939650565b60208082526023908201527f43616c6c6572206973206e6f74207468652062617463682064697374726962756040820152623a37b960e91b606082015260800190565b6000610100808385031215610df457600080fd5b6040519081019067ffffffffffffffff82118183101715610e2557634e487b7160e01b600052604160045260246000fd5b816040528351815260208401516020820152610e4360408501610cd9565b6040820152610e5460608501610cd9565b6060820152610e6560808501610cf0565b6080820152610e7660a08501610cf0565b60a0820152610e8760c08501610cf0565b60c0820152610e9860e08501610d04565b60e0820152949350505050565b634e487b7160e01b600052601160045260246000fd5b63ffffffff818116838216028082169190828114610edb57610edb610ea5565b505092915050565b81810381811115610ef657610ef6610ea5565b92915050565b600082610f1957634e487b7160e01b600052601260045260246000fd5b500490565b8082028115828204841417610ef657610ef6610ea5565b80820180821115610ef657610ef6610ea556fea2646970667358221220ccd3e893c0154fe4592f2e35533313c788f495e07ec9ee57c443b6546cdbc5fd64736f6c63430008140033000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374000000000000000000000000e1a11ae29be1699811b0d20c5a9d2031f9049054

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100cf5760003560e01c80638da5cb5b1161008c578063a5eb206e11610066578063a5eb206e1461026f578063b29a814014610282578063c56d541214610295578063f2fde38b146102a857600080fd5b80638da5cb5b1461023457806397cce6f6146102455780639f4b76c01461025857600080fd5b80631503050e146100d45780632475cab7146100fd5780633013ce291461011257806368f4f6e514610151578063715018a6146102195780637708cd7114610221575b600080fd5b6100e76100e2366004610b08565b6102bb565b6040516100f49190610b21565b60405180910390f35b61011061010b366004610bbd565b610483565b005b6101397f000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd37481565b6040516001600160a01b0390911681526020016100f4565b6101c461015f366004610b08565b600360208190526000918252604090912080546001820154600283015492909301549092916001600160801b0380821692600160801b909204169063ffffffff808216916401000000008104821691600160401b82041690600160601b900460ff1688565b6040805198895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e0820152610100016100f4565b6101106104d7565b600154610139906001600160a01b031681565b6000546001600160a01b0316610139565b610110610253366004610bdf565b6104eb565b61026161271081565b6040519081526020016100f4565b61011061027d366004610c73565b610537565b610110610290366004610caf565b61077e565b600254610139906001600160a01b031681565b6101106102b6366004610bbd565b6107b0565b6040805161010081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e081019190915260008281526003602052604081205490036103f157600254604051630a81828760e11b81526004810184905260009182918291829182918291829182916001600160a01b0390911690631503050e9060240161010060405180830381865afa15801561036c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103909190610d14565b604080516101008101825298895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e08201529a9950505050505050505050565b506000908152600360208181526040928390208351610100810185528154815260018201549281019290925260028101546001600160801b0380821695840195909552600160801b9004909316606082015291015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c0830152600160601b900460ff16151560e082015290565b61048b6107ee565b600180546001600160a01b0319166001600160a01b03831690811790915560405181907f111a961d91cf441fe07e7bfddc128b30ab56974d1a76851e969e0642fdb2dd5090600090a350565b6104df6107ee565b6104e9600061081b565b565b6001546001600160a01b0316331461051e5760405162461bcd60e51b815260040161051590610d9d565b60405180910390fd5b60405163387b2e5560e11b815260040160405180910390fd5b6001546001600160a01b031633146105615760405162461bcd60e51b815260040161051590610d9d565b604051630a81828760e11b8152600481018390526000903090631503050e9060240161010060405180830381865afa1580156105a1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c59190610de0565b6000848152600360205260408120549192500361069057600083815260036020818152604092839020845181559084015160018201559183015160608401516001600160801b03908116600160801b02911617600283015560808301519101805460a084015160c085015160e08601511515600160601b0260ff60601b1963ffffffff928316600160401b02166cffffffffff0000000000000000199383166401000000000267ffffffffffffffff1990951692909616919091179290921716929092179190911790555b8060e001516106b25760405163387b2e5560e11b815260040160405180910390fd5b60008381526003602052604090208054600190910154106106e657604051630c8d9eab60e31b815260040160405180910390fd5b6106f0848461086b565b60006106fb8461089d565b90508060000361071e57604051630c8d9eab60e31b815260040160405180910390fd5b6107298484836109e4565b826001600160a01b031684866001600160a01b03167febedbd8e16e0d9c5ce0f788408af6900750a64cb9bbff179405dedaf531ea4b08460405161076f91815260200190565b60405180910390a45050505050565b6107866107ee565b6107ac61079b6000546001600160a01b031690565b6001600160a01b0384169083610a44565b5050565b6107b86107ee565b6001600160a01b0381166107e257604051631e4fbdf760e01b815260006004820152602401610515565b6107eb8161081b565b50565b6000546001600160a01b031633146104e95760405163118cdaa760e01b8152336004820152602401610515565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b806001600160a01b0316826001600160a01b0316146107ac576040516348f5c3ed60e01b815260040160405180910390fd5b60008181526003602081815260408084208151610100810183528154815260018201549381019390935260028101546001600160801b0380821693850193909352600160801b900490911660608301529091015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c08301819052600160601b90910460ff16151560e0830152829061093d9062015180610ebb565b63ffffffff1682606001516001600160801b03164261095c9190610ee3565b6109669190610efc565b90506000826080015163ffffffff168360a0015163ffffffff168361098b9190610f1e565b6109959190610f35565b90506127108111156109a657506127105b60006127108285600001516109bb9190610f1e565b6109c59190610efc565b905060008460200151826109d99190610ee3565b979650505050505050565b60008381526003602052604081206001018054839290610a05908490610f35565b90915550610a3f90506001600160a01b037f000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374168383610a44565b505050565b604080516001600160a01b03841660248201526044808201849052825180830390910181526064909101909152602080820180516001600160e01b031663a9059cbb60e01b1781528251610a3f938793909260009283929183919082885af180610ab4576040513d6000823e3d81fd5b50506000513d91508115610acc578060011415610ad9565b6001600160a01b0384163b155b15610b0257604051635274afe760e01b81526001600160a01b0385166004820152602401610515565b50505050565b600060208284031215610b1a57600080fd5b5035919050565b600061010082019050825182526020830151602083015260408301516001600160801b0380821660408501528060608601511660608501525050608083015163ffffffff80821660808501528060a08601511660a08501528060c08601511660c0850152505060e0830151610b9a60e084018215159052565b5092915050565b80356001600160a01b0381168114610bb857600080fd5b919050565b600060208284031215610bcf57600080fd5b610bd882610ba1565b9392505050565b60008060008060608587031215610bf557600080fd5b610bfe85610ba1565b9350602085013567ffffffffffffffff80821115610c1b57600080fd5b818701915087601f830112610c2f57600080fd5b813581811115610c3e57600080fd5b886020828501011115610c5057600080fd5b602083019550809450505050610c6860408601610ba1565b905092959194509250565b600080600060608486031215610c8857600080fd5b610c9184610ba1565b925060208401359150610ca660408501610ba1565b90509250925092565b60008060408385031215610cc257600080fd5b610ccb83610ba1565b946020939093013593505050565b80516001600160801b0381168114610bb857600080fd5b805163ffffffff81168114610bb857600080fd5b80518015158114610bb857600080fd5b600080600080600080600080610100898b031215610d3157600080fd5b8851975060208901519650610d4860408a01610cd9565b9550610d5660608a01610cd9565b9450610d6460808a01610cf0565b9350610d7260a08a01610cf0565b9250610d8060c08a01610cf0565b9150610d8e60e08a01610d04565b90509295985092959890939650565b60208082526023908201527f43616c6c6572206973206e6f74207468652062617463682064697374726962756040820152623a37b960e91b606082015260800190565b6000610100808385031215610df457600080fd5b6040519081019067ffffffffffffffff82118183101715610e2557634e487b7160e01b600052604160045260246000fd5b816040528351815260208401516020820152610e4360408501610cd9565b6040820152610e5460608501610cd9565b6060820152610e6560808501610cf0565b6080820152610e7660a08501610cf0565b60a0820152610e8760c08501610cf0565b60c0820152610e9860e08501610d04565b60e0820152949350505050565b634e487b7160e01b600052601160045260246000fd5b63ffffffff818116838216028082169190828114610edb57610edb610ea5565b505092915050565b81810381811115610ef657610ef6610ea5565b92915050565b600082610f1957634e487b7160e01b600052601260045260246000fd5b500490565b8082028115828204841417610ef657610ef6610ea5565b80820180821115610ef657610ef6610ea556fea2646970667358221220ccd3e893c0154fe4592f2e35533313c788f495e07ec9ee57c443b6546cdbc5fd64736f6c63430008140033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374000000000000000000000000e1a11ae29be1699811b0d20c5a9d2031f9049054

-----Decoded View---------------
Arg [0] : _paymentToken (address): 0x946fb08103b400d1c79e07acCCDEf5cfd26cd374
Arg [1] : _oldDistributor (address): 0xe1a11aE29bE1699811B0D20C5A9D2031F9049054

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374
Arg [1] : 000000000000000000000000e1a11ae29be1699811b0d20c5a9d2031f9049054


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.