Source Code
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
Contract Name:
UprisingAirdropDistributorAfterInit
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../VestingUtils.sol";
import "../Errors.sol";
interface IOldDistributor {
function slotInfos(bytes32 userVestingId) external view returns (uint256, uint256, uint128, uint128, uint32, uint32, uint32, bool);
}
/**
* @title UprisingAirdropDistributor
* @author @trmaphi
* @notice This contract is used to patch the old uprising airdrop distributor.
*/
contract UprisingAirdropDistributorAfterInit is Ownable {
/// From Distributor
using SafeERC20 for IERC20;
address public batchDistributor;
IERC20 public immutable paymentToken;
IOldDistributor public oldDistributor;
// userVestingId => SlotInfo
mapping(bytes32 => SlotInfo) public _slotInfos;
// 10_000 = 100%
uint256 public constant BASIC_POINT_DECIMALS = 10_000;
struct VestingConfig {
uint32 initClaimPercent;
uint32 intervalPercent;
uint32 intervalDays;
uint128 initDeadline;
}
struct SlotInfo {
uint256 amount;
uint256 claimed;
uint128 initDeadline; // The timestamp of the deadline of the airdrop even with amount still available, user won't be able to claim
uint128 startTime;
uint32 initClaimPercent;
uint32 intervalPercent;
uint32 intervalDays;
bool initialized;
}
event DistributorUpdated(address indexed oldDistributor, address indexed newDistributor);
event Claimed(address indexed caller, bytes32 indexed userVestingId, address indexed recipient, uint256 amount);
/// From Distributor
event SlotInitialized(address indexed initializer, address indexed recipient, uint256 amount);
constructor(address _paymentToken, address _oldDistributor) Ownable(msg.sender) {
if (_paymentToken == address(0) || _oldDistributor == address(0)) revert ZeroAddress();
paymentToken = IERC20(_paymentToken);
oldDistributor = IOldDistributor(_oldDistributor);
}
modifier onlyBatchDistributor() {
require(batchDistributor == msg.sender, "Caller is not the batch distributor");
_;
}
/**
* Get the slot info of a user, using the old distributor if the slot is not initialized
* @param userVestingId The user vesting id
* @return The slot info
*/
function slotInfos(bytes32 userVestingId) external view returns (SlotInfo memory) {
if (_slotInfos[userVestingId].amount == 0) {
(
uint256 amount,
uint256 claimed,
uint128 initDeadline,
uint128 startTime,
uint32 initClaimPercent,
uint32 intervalPercent,
uint32 intervalDays,
bool initialized
) = oldDistributor.slotInfos(userVestingId);
return SlotInfo({
amount: amount,
claimed: claimed,
initDeadline: initDeadline,
startTime: startTime,
initClaimPercent: initClaimPercent,
intervalPercent: intervalPercent,
intervalDays: intervalDays,
initialized: initialized
});
}
return _slotInfos[userVestingId];
}
/**
* @notice Claim the airdrop
*/
function setBatchDistributor(address newDistributor) external onlyOwner {
batchDistributor = newDistributor;
emit DistributorUpdated(batchDistributor, newDistributor);
}
/**
* @notice Initialize the claim for a user
* @param caller The caller of the function forwarded from the batch distributor
* @param proofs The merkle proof for the user
* @param recipient The recipient of the airdrop
*/
function initClaim(address caller, bytes calldata proofs, address recipient) external onlyBatchDistributor {
revert DeadlinePassed();
}
/**
* @notice Claim the airdrop
* @dev
* - Requirement:
* - Caller MUST be the one initialized the claim
*/
function _verifyCaller(address caller, bytes32 userVestingId) internal view {
if (caller != VestingUtils.bytes32ToAddress(userVestingId)) revert InvalidCaller();
}
/**
* @notice Claim the airdrop for a user
* @param caller The caller of the function forwarded from the batch distributor
* @param userVestingId The user vesting id
* @param recipient The recipient of the airdrop
*/
function claim(address caller, bytes32 userVestingId, address recipient) external onlyBatchDistributor {
SlotInfo memory slot = this.slotInfos(userVestingId);
if (_slotInfos[userVestingId].amount == 0) {
_slotInfos[userVestingId] = slot;
}
// Check if the slot is initialized
if (!slot.initialized) revert DeadlinePassed();
if (_slotInfos[userVestingId].claimed >= _slotInfos[userVestingId].amount) revert AlreadyClaimed();
_verifyCaller(caller, userVestingId);
uint256 claimAmount = _calculateClaimAmount(userVestingId);
if (claimAmount == 0) revert AlreadyClaimed();
_transferToRecipient(userVestingId, recipient, claimAmount);
emit Claimed(caller, userVestingId, recipient, claimAmount);
}
/**
* @notice Calculate the claimable amount for a user
* @param userVestingId The user vesting id
* @return The claimable amount
*/
function _calculateClaimAmount(bytes32 userVestingId) internal view returns (uint256) {
SlotInfo memory slot = _slotInfos[userVestingId];
// Calculate time elapsed since vesting started
uint256 timeElapsed = (block.timestamp - slot.startTime) / (slot.intervalDays * 1 days);
// Calculate total percentage
uint256 currentPercent = (timeElapsed * slot.intervalPercent) + slot.initClaimPercent;
if (currentPercent > BASIC_POINT_DECIMALS) currentPercent = BASIC_POINT_DECIMALS;
// Calculate total vested amount
uint256 totalVestedAmount = (slot.amount * currentPercent) / BASIC_POINT_DECIMALS;
// Calculate remaining claimable amount
uint256 amountToClaim = totalVestedAmount - slot.claimed;
return amountToClaim;
}
/**
* @notice Transfer the airdrop to the recipient
* @param userVestingId The user vesting id
* @param recipient The recipient of the airdrop
* @param amount The amount to transfer
*/
function _transferToRecipient(bytes32 userVestingId, address recipient, uint256 amount) internal {
_slotInfos[userVestingId].claimed += amount;
paymentToken.safeTransfer(recipient, amount);
}
/**
* @notice Emergency function to recover wrong tokens
* @param _token The token to recover
* @param _amount The amount to recover
*/
function recoverToken(address _token, uint256 _amount) external onlyOwner {
IERC20(_token).safeTransfer(owner(), _amount);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
pragma solidity ^0.8.20;
/**
* @dev Library of standard hash functions.
*
* _Available since v5.1._
*/
library Hashes {
/**
* @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
*
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/
function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
assembly ("memory-safe") {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProof(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function processProof(
bytes32[] memory proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProofCalldata(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function processProofCalldata(
bytes32[] calldata proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProof(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; error InvalidSignature(); error AlreadyClaimed(); error ZeroAddress(); error DeadlinePassed(); error InvalidProofs(); error RootHashAlreadySet(); error SlotExists(); error InvalidRecipient(); error InvalidCaller(); error VestingConfigNotSet(); error InvalidVestingConfig(); error EmptyArray(); error InvalidUserVestingId();
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
library VestingUtils {
/**
* @dev Converts an address to bytes32.
* @param _addr The address to convert.
* @return The bytes32 representation of the address.
*/
function addressToBytes32(address _addr) internal pure returns (bytes32) {
return bytes32(uint256(uint160(_addr)));
}
/**
* @dev Converts bytes32 to an address.
* @param _b The bytes32 value to convert.
* @return The address representation of bytes32.
*/
function bytes32ToAddress(bytes32 _b) internal pure returns (address) {
return address(uint160(uint256(_b)));
}
}{
"optimizer": {
"enabled": true,
"runs": 200
},
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_paymentToken","type":"address"},{"internalType":"address","name":"_oldDistributor","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"DeadlinePassed","type":"error"},{"inputs":[],"name":"InvalidCaller","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"bytes32","name":"userVestingId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldDistributor","type":"address"},{"indexed":true,"internalType":"address","name":"newDistributor","type":"address"}],"name":"DistributorUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"initializer","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SlotInitialized","type":"event"},{"inputs":[],"name":"BASIC_POINT_DECIMALS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"_slotInfos","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"},{"internalType":"uint128","name":"initDeadline","type":"uint128"},{"internalType":"uint128","name":"startTime","type":"uint128"},{"internalType":"uint32","name":"initClaimPercent","type":"uint32"},{"internalType":"uint32","name":"intervalPercent","type":"uint32"},{"internalType":"uint32","name":"intervalDays","type":"uint32"},{"internalType":"bool","name":"initialized","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"batchDistributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"bytes32","name":"userVestingId","type":"bytes32"},{"internalType":"address","name":"recipient","type":"address"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"bytes","name":"proofs","type":"bytes"},{"internalType":"address","name":"recipient","type":"address"}],"name":"initClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"oldDistributor","outputs":[{"internalType":"contract IOldDistributor","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paymentToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newDistributor","type":"address"}],"name":"setBatchDistributor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"userVestingId","type":"bytes32"}],"name":"slotInfos","outputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"},{"internalType":"uint128","name":"initDeadline","type":"uint128"},{"internalType":"uint128","name":"startTime","type":"uint128"},{"internalType":"uint32","name":"initClaimPercent","type":"uint32"},{"internalType":"uint32","name":"intervalPercent","type":"uint32"},{"internalType":"uint32","name":"intervalDays","type":"uint32"},{"internalType":"bool","name":"initialized","type":"bool"}],"internalType":"struct UprisingAirdropDistributorAfterInit.SlotInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60a060405234801561001057600080fd5b50604051620011043803806200110483398101604081905261003191610130565b338061005757604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b610060816100c4565b506001600160a01b038216158061007e57506001600160a01b038116155b1561009c5760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b03918216608052600280546001600160a01b03191691909216179055610163565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b038116811461012b57600080fd5b919050565b6000806040838503121561014357600080fd5b61014c83610114565b915061015a60208401610114565b90509250929050565b608051610f7e62000186600039600081816101170152610a180152610f7e6000f3fe608060405234801561001057600080fd5b50600436106100cf5760003560e01c80638da5cb5b1161008c578063a5eb206e11610066578063a5eb206e1461026f578063b29a814014610282578063c56d541214610295578063f2fde38b146102a857600080fd5b80638da5cb5b1461023457806397cce6f6146102455780639f4b76c01461025857600080fd5b80631503050e146100d45780632475cab7146100fd5780633013ce291461011257806368f4f6e514610151578063715018a6146102195780637708cd7114610221575b600080fd5b6100e76100e2366004610b08565b6102bb565b6040516100f49190610b21565b60405180910390f35b61011061010b366004610bbd565b610483565b005b6101397f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020016100f4565b6101c461015f366004610b08565b600360208190526000918252604090912080546001820154600283015492909301549092916001600160801b0380821692600160801b909204169063ffffffff808216916401000000008104821691600160401b82041690600160601b900460ff1688565b6040805198895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e0820152610100016100f4565b6101106104d7565b600154610139906001600160a01b031681565b6000546001600160a01b0316610139565b610110610253366004610bdf565b6104eb565b61026161271081565b6040519081526020016100f4565b61011061027d366004610c73565b610537565b610110610290366004610caf565b61077e565b600254610139906001600160a01b031681565b6101106102b6366004610bbd565b6107b0565b6040805161010081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e081019190915260008281526003602052604081205490036103f157600254604051630a81828760e11b81526004810184905260009182918291829182918291829182916001600160a01b0390911690631503050e9060240161010060405180830381865afa15801561036c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103909190610d14565b604080516101008101825298895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e08201529a9950505050505050505050565b506000908152600360208181526040928390208351610100810185528154815260018201549281019290925260028101546001600160801b0380821695840195909552600160801b9004909316606082015291015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c0830152600160601b900460ff16151560e082015290565b61048b6107ee565b600180546001600160a01b0319166001600160a01b03831690811790915560405181907f111a961d91cf441fe07e7bfddc128b30ab56974d1a76851e969e0642fdb2dd5090600090a350565b6104df6107ee565b6104e9600061081b565b565b6001546001600160a01b0316331461051e5760405162461bcd60e51b815260040161051590610d9d565b60405180910390fd5b60405163387b2e5560e11b815260040160405180910390fd5b6001546001600160a01b031633146105615760405162461bcd60e51b815260040161051590610d9d565b604051630a81828760e11b8152600481018390526000903090631503050e9060240161010060405180830381865afa1580156105a1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c59190610de0565b6000848152600360205260408120549192500361069057600083815260036020818152604092839020845181559084015160018201559183015160608401516001600160801b03908116600160801b02911617600283015560808301519101805460a084015160c085015160e08601511515600160601b0260ff60601b1963ffffffff928316600160401b02166cffffffffff0000000000000000199383166401000000000267ffffffffffffffff1990951692909616919091179290921716929092179190911790555b8060e001516106b25760405163387b2e5560e11b815260040160405180910390fd5b60008381526003602052604090208054600190910154106106e657604051630c8d9eab60e31b815260040160405180910390fd5b6106f0848461086b565b60006106fb8461089d565b90508060000361071e57604051630c8d9eab60e31b815260040160405180910390fd5b6107298484836109e4565b826001600160a01b031684866001600160a01b03167febedbd8e16e0d9c5ce0f788408af6900750a64cb9bbff179405dedaf531ea4b08460405161076f91815260200190565b60405180910390a45050505050565b6107866107ee565b6107ac61079b6000546001600160a01b031690565b6001600160a01b0384169083610a44565b5050565b6107b86107ee565b6001600160a01b0381166107e257604051631e4fbdf760e01b815260006004820152602401610515565b6107eb8161081b565b50565b6000546001600160a01b031633146104e95760405163118cdaa760e01b8152336004820152602401610515565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b806001600160a01b0316826001600160a01b0316146107ac576040516348f5c3ed60e01b815260040160405180910390fd5b60008181526003602081815260408084208151610100810183528154815260018201549381019390935260028101546001600160801b0380821693850193909352600160801b900490911660608301529091015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c08301819052600160601b90910460ff16151560e0830152829061093d9062015180610ebb565b63ffffffff1682606001516001600160801b03164261095c9190610ee3565b6109669190610efc565b90506000826080015163ffffffff168360a0015163ffffffff168361098b9190610f1e565b6109959190610f35565b90506127108111156109a657506127105b60006127108285600001516109bb9190610f1e565b6109c59190610efc565b905060008460200151826109d99190610ee3565b979650505050505050565b60008381526003602052604081206001018054839290610a05908490610f35565b90915550610a3f90506001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168383610a44565b505050565b604080516001600160a01b03841660248201526044808201849052825180830390910181526064909101909152602080820180516001600160e01b031663a9059cbb60e01b1781528251610a3f938793909260009283929183919082885af180610ab4576040513d6000823e3d81fd5b50506000513d91508115610acc578060011415610ad9565b6001600160a01b0384163b155b15610b0257604051635274afe760e01b81526001600160a01b0385166004820152602401610515565b50505050565b600060208284031215610b1a57600080fd5b5035919050565b600061010082019050825182526020830151602083015260408301516001600160801b0380821660408501528060608601511660608501525050608083015163ffffffff80821660808501528060a08601511660a08501528060c08601511660c0850152505060e0830151610b9a60e084018215159052565b5092915050565b80356001600160a01b0381168114610bb857600080fd5b919050565b600060208284031215610bcf57600080fd5b610bd882610ba1565b9392505050565b60008060008060608587031215610bf557600080fd5b610bfe85610ba1565b9350602085013567ffffffffffffffff80821115610c1b57600080fd5b818701915087601f830112610c2f57600080fd5b813581811115610c3e57600080fd5b886020828501011115610c5057600080fd5b602083019550809450505050610c6860408601610ba1565b905092959194509250565b600080600060608486031215610c8857600080fd5b610c9184610ba1565b925060208401359150610ca660408501610ba1565b90509250925092565b60008060408385031215610cc257600080fd5b610ccb83610ba1565b946020939093013593505050565b80516001600160801b0381168114610bb857600080fd5b805163ffffffff81168114610bb857600080fd5b80518015158114610bb857600080fd5b600080600080600080600080610100898b031215610d3157600080fd5b8851975060208901519650610d4860408a01610cd9565b9550610d5660608a01610cd9565b9450610d6460808a01610cf0565b9350610d7260a08a01610cf0565b9250610d8060c08a01610cf0565b9150610d8e60e08a01610d04565b90509295985092959890939650565b60208082526023908201527f43616c6c6572206973206e6f74207468652062617463682064697374726962756040820152623a37b960e91b606082015260800190565b6000610100808385031215610df457600080fd5b6040519081019067ffffffffffffffff82118183101715610e2557634e487b7160e01b600052604160045260246000fd5b816040528351815260208401516020820152610e4360408501610cd9565b6040820152610e5460608501610cd9565b6060820152610e6560808501610cf0565b6080820152610e7660a08501610cf0565b60a0820152610e8760c08501610cf0565b60c0820152610e9860e08501610d04565b60e0820152949350505050565b634e487b7160e01b600052601160045260246000fd5b63ffffffff818116838216028082169190828114610edb57610edb610ea5565b505092915050565b81810381811115610ef657610ef6610ea5565b92915050565b600082610f1957634e487b7160e01b600052601260045260246000fd5b500490565b8082028115828204841417610ef657610ef6610ea5565b80820180821115610ef657610ef6610ea556fea2646970667358221220ccd3e893c0154fe4592f2e35533313c788f495e07ec9ee57c443b6546cdbc5fd64736f6c63430008140033000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374000000000000000000000000e1a11ae29be1699811b0d20c5a9d2031f9049054
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100cf5760003560e01c80638da5cb5b1161008c578063a5eb206e11610066578063a5eb206e1461026f578063b29a814014610282578063c56d541214610295578063f2fde38b146102a857600080fd5b80638da5cb5b1461023457806397cce6f6146102455780639f4b76c01461025857600080fd5b80631503050e146100d45780632475cab7146100fd5780633013ce291461011257806368f4f6e514610151578063715018a6146102195780637708cd7114610221575b600080fd5b6100e76100e2366004610b08565b6102bb565b6040516100f49190610b21565b60405180910390f35b61011061010b366004610bbd565b610483565b005b6101397f000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd37481565b6040516001600160a01b0390911681526020016100f4565b6101c461015f366004610b08565b600360208190526000918252604090912080546001820154600283015492909301549092916001600160801b0380821692600160801b909204169063ffffffff808216916401000000008104821691600160401b82041690600160601b900460ff1688565b6040805198895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e0820152610100016100f4565b6101106104d7565b600154610139906001600160a01b031681565b6000546001600160a01b0316610139565b610110610253366004610bdf565b6104eb565b61026161271081565b6040519081526020016100f4565b61011061027d366004610c73565b610537565b610110610290366004610caf565b61077e565b600254610139906001600160a01b031681565b6101106102b6366004610bbd565b6107b0565b6040805161010081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e081019190915260008281526003602052604081205490036103f157600254604051630a81828760e11b81526004810184905260009182918291829182918291829182916001600160a01b0390911690631503050e9060240161010060405180830381865afa15801561036c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103909190610d14565b604080516101008101825298895260208901979097526001600160801b039586169688019690965293909216606086015263ffffffff908116608086015290811660a08501521660c0830152151560e08201529a9950505050505050505050565b506000908152600360208181526040928390208351610100810185528154815260018201549281019290925260028101546001600160801b0380821695840195909552600160801b9004909316606082015291015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c0830152600160601b900460ff16151560e082015290565b61048b6107ee565b600180546001600160a01b0319166001600160a01b03831690811790915560405181907f111a961d91cf441fe07e7bfddc128b30ab56974d1a76851e969e0642fdb2dd5090600090a350565b6104df6107ee565b6104e9600061081b565b565b6001546001600160a01b0316331461051e5760405162461bcd60e51b815260040161051590610d9d565b60405180910390fd5b60405163387b2e5560e11b815260040160405180910390fd5b6001546001600160a01b031633146105615760405162461bcd60e51b815260040161051590610d9d565b604051630a81828760e11b8152600481018390526000903090631503050e9060240161010060405180830381865afa1580156105a1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c59190610de0565b6000848152600360205260408120549192500361069057600083815260036020818152604092839020845181559084015160018201559183015160608401516001600160801b03908116600160801b02911617600283015560808301519101805460a084015160c085015160e08601511515600160601b0260ff60601b1963ffffffff928316600160401b02166cffffffffff0000000000000000199383166401000000000267ffffffffffffffff1990951692909616919091179290921716929092179190911790555b8060e001516106b25760405163387b2e5560e11b815260040160405180910390fd5b60008381526003602052604090208054600190910154106106e657604051630c8d9eab60e31b815260040160405180910390fd5b6106f0848461086b565b60006106fb8461089d565b90508060000361071e57604051630c8d9eab60e31b815260040160405180910390fd5b6107298484836109e4565b826001600160a01b031684866001600160a01b03167febedbd8e16e0d9c5ce0f788408af6900750a64cb9bbff179405dedaf531ea4b08460405161076f91815260200190565b60405180910390a45050505050565b6107866107ee565b6107ac61079b6000546001600160a01b031690565b6001600160a01b0384169083610a44565b5050565b6107b86107ee565b6001600160a01b0381166107e257604051631e4fbdf760e01b815260006004820152602401610515565b6107eb8161081b565b50565b6000546001600160a01b031633146104e95760405163118cdaa760e01b8152336004820152602401610515565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b806001600160a01b0316826001600160a01b0316146107ac576040516348f5c3ed60e01b815260040160405180910390fd5b60008181526003602081815260408084208151610100810183528154815260018201549381019390935260028101546001600160801b0380821693850193909352600160801b900490911660608301529091015463ffffffff80821660808401526401000000008204811660a0840152600160401b82041660c08301819052600160601b90910460ff16151560e0830152829061093d9062015180610ebb565b63ffffffff1682606001516001600160801b03164261095c9190610ee3565b6109669190610efc565b90506000826080015163ffffffff168360a0015163ffffffff168361098b9190610f1e565b6109959190610f35565b90506127108111156109a657506127105b60006127108285600001516109bb9190610f1e565b6109c59190610efc565b905060008460200151826109d99190610ee3565b979650505050505050565b60008381526003602052604081206001018054839290610a05908490610f35565b90915550610a3f90506001600160a01b037f000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374168383610a44565b505050565b604080516001600160a01b03841660248201526044808201849052825180830390910181526064909101909152602080820180516001600160e01b031663a9059cbb60e01b1781528251610a3f938793909260009283929183919082885af180610ab4576040513d6000823e3d81fd5b50506000513d91508115610acc578060011415610ad9565b6001600160a01b0384163b155b15610b0257604051635274afe760e01b81526001600160a01b0385166004820152602401610515565b50505050565b600060208284031215610b1a57600080fd5b5035919050565b600061010082019050825182526020830151602083015260408301516001600160801b0380821660408501528060608601511660608501525050608083015163ffffffff80821660808501528060a08601511660a08501528060c08601511660c0850152505060e0830151610b9a60e084018215159052565b5092915050565b80356001600160a01b0381168114610bb857600080fd5b919050565b600060208284031215610bcf57600080fd5b610bd882610ba1565b9392505050565b60008060008060608587031215610bf557600080fd5b610bfe85610ba1565b9350602085013567ffffffffffffffff80821115610c1b57600080fd5b818701915087601f830112610c2f57600080fd5b813581811115610c3e57600080fd5b886020828501011115610c5057600080fd5b602083019550809450505050610c6860408601610ba1565b905092959194509250565b600080600060608486031215610c8857600080fd5b610c9184610ba1565b925060208401359150610ca660408501610ba1565b90509250925092565b60008060408385031215610cc257600080fd5b610ccb83610ba1565b946020939093013593505050565b80516001600160801b0381168114610bb857600080fd5b805163ffffffff81168114610bb857600080fd5b80518015158114610bb857600080fd5b600080600080600080600080610100898b031215610d3157600080fd5b8851975060208901519650610d4860408a01610cd9565b9550610d5660608a01610cd9565b9450610d6460808a01610cf0565b9350610d7260a08a01610cf0565b9250610d8060c08a01610cf0565b9150610d8e60e08a01610d04565b90509295985092959890939650565b60208082526023908201527f43616c6c6572206973206e6f74207468652062617463682064697374726962756040820152623a37b960e91b606082015260800190565b6000610100808385031215610df457600080fd5b6040519081019067ffffffffffffffff82118183101715610e2557634e487b7160e01b600052604160045260246000fd5b816040528351815260208401516020820152610e4360408501610cd9565b6040820152610e5460608501610cd9565b6060820152610e6560808501610cf0565b6080820152610e7660a08501610cf0565b60a0820152610e8760c08501610cf0565b60c0820152610e9860e08501610d04565b60e0820152949350505050565b634e487b7160e01b600052601160045260246000fd5b63ffffffff818116838216028082169190828114610edb57610edb610ea5565b505092915050565b81810381811115610ef657610ef6610ea5565b92915050565b600082610f1957634e487b7160e01b600052601260045260246000fd5b500490565b8082028115828204841417610ef657610ef6610ea5565b80820180821115610ef657610ef6610ea556fea2646970667358221220ccd3e893c0154fe4592f2e35533313c788f495e07ec9ee57c443b6546cdbc5fd64736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374000000000000000000000000e1a11ae29be1699811b0d20c5a9d2031f9049054
-----Decoded View---------------
Arg [0] : _paymentToken (address): 0x946fb08103b400d1c79e07acCCDEf5cfd26cd374
Arg [1] : _oldDistributor (address): 0xe1a11aE29bE1699811B0D20C5A9D2031F9049054
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000946fb08103b400d1c79e07acccdef5cfd26cd374
Arg [1] : 000000000000000000000000e1a11ae29be1699811b0d20c5a9d2031f9049054
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.