ETH Price: $2,828.10 (-3.18%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Age:1H
Reset Filter

Transaction Hash
Method
Block
From
To

There are no matching entries

Update your filters to view other transactions

Age:1H
Reset Filter

Advanced mode:
Parent Transaction Hash Method Block
From
To

There are no matching entries

Update your filters to view other transactions

View All Internal Transactions
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
RLPEncode

Compiler Version
v0.5.11+commit.c082d0b4

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
/**
 *Submitted for verification at Etherscan.io on 2020-05-30
*/

/**
Matic network contracts
*/

pragma solidity ^0.5.2;


/**
 * @title SafeMath
 * @dev Unsigned math operations with safety checks that revert on error
 */
library SafeMath {
    /**
     * @dev Multiplies two unsigned integers, reverts on overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b);

        return c;
    }

    /**
     * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend).
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Adds two unsigned integers, reverts on overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a);

        return c;
    }

    /**
     * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo),
     * reverts when dividing by zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b != 0);
        return a % b;
    }
}

library BytesLib {
    function concat(bytes memory _preBytes, bytes memory _postBytes)
        internal
        pure
        returns (bytes memory)
    {
        bytes memory tempBytes;
        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(
                0x40,
                and(
                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                    not(31) // Round down to the nearest 32 bytes.
                )
            )
        }
        return tempBytes;
    }

    function slice(bytes memory _bytes, uint256 _start, uint256 _length)
        internal
        pure
        returns (bytes memory)
    {
        require(_bytes.length >= (_start + _length));
        bytes memory tempBytes;
        assembly {
            switch iszero(_length)
                case 0 {
                    // Get a location of some free memory and store it in tempBytes as
                    // Solidity does for memory variables.
                    tempBytes := mload(0x40)

                    // The first word of the slice result is potentially a partial
                    // word read from the original array. To read it, we calculate
                    // the length of that partial word and start copying that many
                    // bytes into the array. The first word we copy will start with
                    // data we don't care about, but the last `lengthmod` bytes will
                    // land at the beginning of the contents of the new array. When
                    // we're done copying, we overwrite the full first word with
                    // the actual length of the slice.
                    let lengthmod := and(_length, 31)

                    // The multiplication in the next line is necessary
                    // because when slicing multiples of 32 bytes (lengthmod == 0)
                    // the following copy loop was copying the origin's length
                    // and then ending prematurely not copying everything it should.
                    let mc := add(
                        add(tempBytes, lengthmod),
                        mul(0x20, iszero(lengthmod))
                    )
                    let end := add(mc, _length)

                    for {
                        // The multiplication in the next line has the same exact purpose
                        // as the one above.
                        let cc := add(
                            add(
                                add(_bytes, lengthmod),
                                mul(0x20, iszero(lengthmod))
                            ),
                            _start
                        )
                    } lt(mc, end) {
                        mc := add(mc, 0x20)
                        cc := add(cc, 0x20)
                    } {
                        mstore(mc, mload(cc))
                    }

                    mstore(tempBytes, _length)

                    //update free-memory pointer
                    //allocating the array padded to 32 bytes like the compiler does now
                    mstore(0x40, and(add(mc, 31), not(31)))
                }
                //if we want a zero-length slice let's just return a zero-length array
                default {
                    tempBytes := mload(0x40)
                    mstore(0x40, add(tempBytes, 0x20))
                }
        }

        return tempBytes;
    }

    // Pad a bytes array to 32 bytes
    function leftPad(bytes memory _bytes) internal pure returns (bytes memory) {
        // may underflow if bytes.length < 32. Hence using SafeMath.sub
        bytes memory newBytes = new bytes(SafeMath.sub(32, _bytes.length));
        return concat(newBytes, _bytes);
    }

    function toBytes32(bytes memory b) internal pure returns (bytes32) {
        require(b.length >= 32, "Bytes array should atleast be 32 bytes");
        bytes32 out;
        for (uint256 i = 0; i < 32; i++) {
            out |= bytes32(b[i] & 0xFF) >> (i * 8);
        }
        return out;
    }

    function toBytes4(bytes memory b) internal pure returns (bytes4 result) {
        assembly {
            result := mload(add(b, 32))
        }
    }

    function fromBytes32(bytes32 x) internal pure returns (bytes memory) {
        bytes memory b = new bytes(32);
        for (uint256 i = 0; i < 32; i++) {
            b[i] = bytes1(uint8(uint256(x) / (2**(8 * (31 - i)))));
        }
        return b;
    }

    function fromUint(uint256 _num) internal pure returns (bytes memory _ret) {
        _ret = new bytes(32);
        assembly {
            mstore(add(_ret, 32), _num)
        }
    }

    function toUint(bytes memory _bytes, uint256 _start)
        internal
        pure
        returns (uint256)
    {
        require(_bytes.length >= (_start + 32));
        uint256 tempUint;
        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }
        return tempUint;
    }

    function toAddress(bytes memory _bytes, uint256 _start)
        internal
        pure
        returns (address)
    {
        require(_bytes.length >= (_start + 20));
        address tempAddress;
        assembly {
            tempAddress := div(
                mload(add(add(_bytes, 0x20), _start)),
                0x1000000000000000000000000
            )
        }

        return tempAddress;
    }
}

// Library for RLP encoding a list of bytes arrays.
// Modeled after ethereumjs/rlp (https://github.com/ethereumjs/rlp)
// [Very] modified version of Sam Mayo's library.
library RLPEncode {
    // Encode an item (bytes memory)
    function encodeItem(bytes memory self)
        internal
        pure
        returns (bytes memory)
    {
        bytes memory encoded;
        if (self.length == 1 && uint8(self[0] & 0xFF) < 0x80) {
            encoded = new bytes(1);
            encoded = self;
        } else {
            encoded = BytesLib.concat(encodeLength(self.length, 128), self);
        }
        return encoded;
    }

    // Encode a list of items
    function encodeList(bytes[] memory self)
        internal
        pure
        returns (bytes memory)
    {
        bytes memory encoded;
        for (uint256 i = 0; i < self.length; i++) {
            encoded = BytesLib.concat(encoded, encodeItem(self[i]));
        }
        return BytesLib.concat(encodeLength(encoded.length, 192), encoded);
    }

    // Hack to encode nested lists. If you have a list as an item passed here, included
    // pass = true in that index. E.g.
    // [item, list, item] --> pass = [false, true, false]
    // function encodeListWithPasses(bytes[] memory self, bool[] pass) internal pure returns (bytes memory) {
    //   bytes memory encoded;
    //   for (uint i=0; i < self.length; i++) {
    // 		if (pass[i] == true) {
    // 			encoded = BytesLib.concat(encoded, self[i]);
    // 		} else {
    // 			encoded = BytesLib.concat(encoded, encodeItem(self[i]));
    // 		}
    //   }
    //   return BytesLib.concat(encodeLength(encoded.length, 192), encoded);
    // }

    // Generate the prefix for an item or the entire list based on RLP spec
    function encodeLength(uint256 L, uint256 offset)
        internal
        pure
        returns (bytes memory)
    {
        if (L < 56) {
            bytes memory prefix = new bytes(1);
            prefix[0] = bytes1(uint8(L + offset));
            return prefix;
        } else {
            // lenLen is the length of the hex representation of the data length
            uint256 lenLen;
            uint256 i = 0x1;

            while (L / i != 0) {
                lenLen++;
                i *= 0x100;
            }

            bytes memory prefix0 = getLengthBytes(offset + 55 + lenLen);
            bytes memory prefix1 = getLengthBytes(L);
            return BytesLib.concat(prefix0, prefix1);
        }
    }

    function getLengthBytes(uint256 x) internal pure returns (bytes memory b) {
        // Figure out if we need 1 or two bytes to express the length.
        // 1 byte gets us to max 255
        // 2 bytes gets us to max 65535 (no payloads will be larger than this)
        uint256 nBytes = 1;
        if (x > 255) {
            nBytes = 2;
        }

        b = new bytes(nBytes);
        // Encode the length and return it
        for (uint256 i = 0; i < nBytes; i++) {
            b[i] = bytes1(uint8(x / (2**(8 * (nBytes - 1 - i)))));
        }
    }
}

Contract Security Audit

Contract ABI

API
[]

60556023600b82828239805160001a607314601657fe5b30600052607381538281f3fe73000000000000000000000000000000000000000030146080604052600080fdfea265627a7a72315820fbcc026061c9559b48ca50e67a2d2f377023d2766693d8f8d5aed92ad0a7ee8d64736f6c634300050b0032

Deployed Bytecode

0x73021c2bf4d2941ce3d593e07317ec355937bae49530146080604052600080fdfea265627a7a72315820fbcc026061c9559b48ca50e67a2d2f377023d2766693d8f8d5aed92ad0a7ee8d64736f6c634300050b0032

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.