ETH Price: $2,602.27 (-1.69%)

Contract

0x0287CA0D49910fdB820c1b571E4EFb8f01369817
 

Overview

ETH Balance

0.323999999 ETH

Eth Value

$843.14 (@ $2,602.27/ETH)

Token Holdings

Transaction Hash
Method
Block
From
To
Pay208626452024-09-30 9:43:111 hr ago1727689391IN
0x0287CA0D...f01369817
0.0035 ETH0.0006087310.19429968
Pay208542662024-09-29 5:40:1129 hrs ago1727588411IN
0x0287CA0D...f01369817
0.0035 ETH0.000341695.72112831
Pay208207292024-09-24 13:23:115 days ago1727184191IN
0x0287CA0D...f01369817
0.1035 ETH0.0015953726.70660894
Pay208094352024-09-22 23:34:357 days ago1727048075IN
0x0287CA0D...f01369817
0.0035 ETH0.000482388.07680599
Pay208093622024-09-22 23:19:597 days ago1727047199IN
0x0287CA0D...f01369817
0.0035 ETH0.00044657.47745653
Pay208070272024-09-22 15:30:597 days ago1727019059IN
0x0287CA0D...f01369817
0.0035 ETH0.0006143110.28569747
Pay207981072024-09-21 9:38:359 days ago1726911515IN
0x0287CA0D...f01369817
0.0035 ETH0.0008610714.42020979
Pay207977312024-09-21 8:23:119 days ago1726906991IN
0x0287CA0D...f01369817
0.0035 ETH0.000557589.33582429
Pay207584222024-09-15 20:30:5914 days ago1726432259IN
0x0287CA0D...f01369817
0.0035 ETH0.000241034.03739242
Pay207389822024-09-13 3:23:3517 days ago1726197815IN
0x0287CA0D...f01369817
0.0035 ETH0.000085471.43114314
Pay207388282024-09-13 2:52:4717 days ago1726195967IN
0x0287CA0D...f01369817
0.0035 ETH0.000150322.51698654
Pay207336032024-09-12 9:20:5918 days ago1726132859IN
0x0287CA0D...f01369817
0.0035 ETH0.000153652.57275789
Pay207243952024-09-11 2:29:5919 days ago1726021799IN
0x0287CA0D...f01369817
0.0035 ETH0.00019813.3169818
Pay207242492024-09-11 2:00:3519 days ago1726020035IN
0x0287CA0D...f01369817
0.0035 ETH0.000198613.3255026
Pay206844232024-09-05 12:35:5924 days ago1725539759IN
0x0287CA0D...f01369817
0.0035 ETH0.000204593.42568441
Pay206755622024-09-04 6:56:2326 days ago1725432983IN
0x0287CA0D...f01369817
0.0035 ETH0.000073931.2379495
Pay206752172024-09-04 5:46:3526 days ago1725428795IN
0x0287CA0D...f01369817
0.0035 ETH0.000045450.76128667
Pay206724162024-09-03 20:22:5926 days ago1725394979IN
0x0287CA0D...f01369817
0.0035 ETH0.000129782.1729801
Pay206718562024-09-03 18:30:4726 days ago1725388247IN
0x0287CA0D...f01369817
0.0035 ETH0.00008881.48691802
Pay206718072024-09-03 18:20:5926 days ago1725387659IN
0x0287CA0D...f01369817
0.0035 ETH0.000093491.56534995
Pay206714572024-09-03 17:10:4726 days ago1725383447IN
0x0287CA0D...f01369817
0.0035 ETH0.000130792.19003584
Pay206693372024-09-03 10:04:5927 days ago1725357899IN
0x0287CA0D...f01369817
0.0035 ETH0.000153112.56414361
Pay206394942024-08-30 6:06:4731 days ago1724998007IN
0x0287CA0D...f01369817
0.0035 ETH0.000078281.3108113
Transfer206342842024-08-29 12:37:1131 days ago1724935031IN
0x0287CA0D...f01369817
0 ETH0.000158674.32580773
Pay206273152024-08-28 13:13:5932 days ago1724850839IN
0x0287CA0D...f01369817
0.0035 ETH0.000185293.10243062
View all transactions

Latest 4 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
206342842024-08-29 12:37:1131 days ago1724935031
0x0287CA0D...f01369817
5.8345 ETH
205817642024-08-22 4:28:5939 days ago1724300939
0x0287CA0D...f01369817
0 ETH
201121782024-06-17 14:43:11104 days ago1718635391
0x0287CA0D...f01369817
0.1805 ETH
200241932024-06-05 7:40:11117 days ago1717573211
0x0287CA0D...f01369817
0.000001 ETH
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xb9CF7cD9...fC3098cA6
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
PaymentAcceptance

Compiler Version
v0.8.16+commit.07a7930e

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 9 : PaymentAcceptance.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.16;

import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";

contract PaymentAcceptance is Ownable, ReentrancyGuard {
    using Address for address payable;
    address private signer;

    struct Order {
        uint128 orderUid;
        uint256 price;
        uint256 mintDeadlineBlockNo;
        uint256 chainId;
        address buyer;
    }

    struct Signature {
        bytes32 r;
        bytes32 s;
        uint8 v;
    }

    mapping(uint128 => bool) private isCompletedOrders;

    event PaymentCompleted(uint128 indexed orderUid, address indexed buyer);
    event UpdateSigner(address indexed signer);

    constructor(address _signer) {
        signer = _signer;
        emit UpdateSigner(signer);
    }

    function pay(
        Order memory order,
        Signature memory signature
    ) external payable nonReentrant {
        require(order.buyer == _msgSender(), "Only buyer can call this function");
        require(
            !isCompletedOrders[order.orderUid],
            "Order already completed"
        );
        require(
            order.chainId == block.chainid,
            "Order chainId is not valid"
        );
        require(
            verifyOrderSignature(order, signature),
            "Invalid order signature"
        );
        require(
            block.number <= order.mintDeadlineBlockNo,
            "Mint deadline exceeded"
        );
        require(msg.value == order.price, "Incorrect payment amount");

        isCompletedOrders[order.orderUid] = true;

        emit PaymentCompleted(order.orderUid, order.buyer);
    }

    function transfer(address payable _to, uint256 _weiAmount) external onlyOwner nonReentrant {
        require(
            address(this).balance >= _weiAmount,
            "Insufficient balance in contract"
        );

        _to.sendValue(_weiAmount);
    }

    function verifyOrderSignature(
        Order memory order,
        Signature memory signature
    ) private view returns (bool) {
        bytes32 orderHash = keccak256(abi.encode(order));
        bytes32 prefixedHash = ECDSA.toEthSignedMessageHash(orderHash);
        address recoveredSigner = ECDSA.recover(
            prefixedHash,
            signature.v,
            signature.r,
            signature.s
        );

        return recoveredSigner == signer;
    }

    function setSigner(address _signer) external onlyOwner {
        signer = _signer;
        emit UpdateSigner(signer);
    }

    function getSigner() public view returns (address) {
        return signer;
    }
}

File 2 of 9 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 9 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 4 of 9 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 5 of 9 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 6 of 9 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 7 of 9 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 8 of 9 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 9 of 9 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint128","name":"orderUid","type":"uint128"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"}],"name":"PaymentCompleted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"signer","type":"address"}],"name":"UpdateSigner","type":"event"},{"inputs":[],"name":"getSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"orderUid","type":"uint128"},{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"mintDeadlineBlockNo","type":"uint256"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"buyer","type":"address"}],"internalType":"struct PaymentAcceptance.Order","name":"order","type":"tuple"},{"components":[{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"},{"internalType":"uint8","name":"v","type":"uint8"}],"internalType":"struct PaymentAcceptance.Signature","name":"signature","type":"tuple"}],"name":"pay","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_to","type":"address"},{"internalType":"uint256","name":"_weiAmount","type":"uint256"}],"name":"transfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Deployed Bytecode

0x6080604052600436106100705760003560e01c80638da5cb5b1161004e5780638da5cb5b146100e0578063a9059cbb1461010b578063cf4d482c14610134578063f2fde38b1461015057610070565b80636c19e78314610075578063715018a61461009e5780637ac3c02f146100b5575b600080fd5b34801561008157600080fd5b5061009c60048036038101906100979190610cdd565b610179565b005b3480156100aa57600080fd5b506100b361022a565b005b3480156100c157600080fd5b506100ca61023e565b6040516100d79190610d19565b60405180910390f35b3480156100ec57600080fd5b506100f5610268565b6040516101029190610d19565b60405180910390f35b34801561011757600080fd5b50610132600480360381019061012d9190610da8565b610291565b005b61014e60048036038101906101499190611020565b610319565b005b34801561015c57600080fd5b5061017760048036038101906101729190610cdd565b6105fd565b005b610181610680565b80600260006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550600260009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167fc58fcf255cfb5f40bd578a618869378f650ef76609640fa0818a31e0c6e7102a60405160405180910390a250565b610232610680565b61023c60006106fe565b565b6000600260009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b610299610680565b6102a16107c2565b804710156102e4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102db906110be565b60405180910390fd5b61030d818373ffffffffffffffffffffffffffffffffffffffff1661081190919063ffffffff16565b610315610905565b5050565b6103216107c2565b61032961090e565b73ffffffffffffffffffffffffffffffffffffffff16826080015173ffffffffffffffffffffffffffffffffffffffff161461039a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161039190611150565b60405180910390fd5b6003600083600001516fffffffffffffffffffffffffffffffff166fffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff1615610423576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161041a906111bc565b60405180910390fd5b46826060015114610469576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161046090611228565b60405180910390fd5b6104738282610916565b6104b2576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104a990611294565b60405180910390fd5b81604001514311156104f9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104f090611300565b60405180910390fd5b8160200151341461053f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016105369061136c565b60405180910390fd5b60016003600084600001516fffffffffffffffffffffffffffffffff166fffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff021916908315150217905550816080015173ffffffffffffffffffffffffffffffffffffffff1682600001516fffffffffffffffffffffffffffffffff167f7b8f6523e5739aa7afb69cccd21f65a5fcff6a94d4307b054c646b42afef7e1b60405160405180910390a36105f9610905565b5050565b610605610680565b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610674576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161066b906113fe565b60405180910390fd5b61067d816106fe565b50565b61068861090e565b73ffffffffffffffffffffffffffffffffffffffff166106a6610268565b73ffffffffffffffffffffffffffffffffffffffff16146106fc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106f39061146a565b60405180910390fd5b565b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050816000806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b600260015403610807576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016107fe906114d6565b60405180910390fd5b6002600181905550565b80471015610854576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161084b90611542565b60405180910390fd5b60008273ffffffffffffffffffffffffffffffffffffffff168260405161087a90611593565b60006040518083038185875af1925050503d80600081146108b7576040519150601f19603f3d011682016040523d82523d6000602084013e6108bc565b606091505b5050905080610900576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108f79061161a565b60405180910390fd5b505050565b60018081905550565b600033905090565b6000808360405160200161092a91906116cf565b604051602081830303815290604052805190602001209050600061094d826109c7565b90506000610969828660400151876000015188602001516109fd565b9050600260009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614935050505092915050565b60007f19457468657265756d205369676e6564204d6573736167653a0a33320000000060005281601c52603c6000209050919050565b6000806000610a0e87878787610a28565b91509150610a1b81610b0a565b8192505050949350505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08360001c1115610a63576000600391509150610b01565b600060018787878760405160008152602001604052604051610a889493929190611708565b6020604051602081039080840390855afa158015610aaa573d6000803e3d6000fd5b505050602060405103519050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610af857600060019250925050610b01565b80600092509250505b94509492505050565b60006004811115610b1e57610b1d61174d565b5b816004811115610b3157610b3061174d565b5b0315610c6d5760016004811115610b4b57610b4a61174d565b5b816004811115610b5e57610b5d61174d565b5b03610b9e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b95906117c8565b60405180910390fd5b60026004811115610bb257610bb161174d565b5b816004811115610bc557610bc461174d565b5b03610c05576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610bfc90611834565b60405180910390fd5b60036004811115610c1957610c1861174d565b5b816004811115610c2c57610c2b61174d565b5b03610c6c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c63906118c6565b60405180910390fd5b5b50565b6000604051905090565b600080fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000610caa82610c7f565b9050919050565b610cba81610c9f565b8114610cc557600080fd5b50565b600081359050610cd781610cb1565b92915050565b600060208284031215610cf357610cf2610c7a565b5b6000610d0184828501610cc8565b91505092915050565b610d1381610c9f565b82525050565b6000602082019050610d2e6000830184610d0a565b92915050565b6000610d3f82610c7f565b9050919050565b610d4f81610d34565b8114610d5a57600080fd5b50565b600081359050610d6c81610d46565b92915050565b6000819050919050565b610d8581610d72565b8114610d9057600080fd5b50565b600081359050610da281610d7c565b92915050565b60008060408385031215610dbf57610dbe610c7a565b5b6000610dcd85828601610d5d565b9250506020610dde85828601610d93565b9150509250929050565b600080fd5b6000601f19601f8301169050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b610e3682610ded565b810181811067ffffffffffffffff82111715610e5557610e54610dfe565b5b80604052505050565b6000610e68610c70565b9050610e748282610e2d565b919050565b60006fffffffffffffffffffffffffffffffff82169050919050565b610e9e81610e79565b8114610ea957600080fd5b50565b600081359050610ebb81610e95565b92915050565b600060a08284031215610ed757610ed6610de8565b5b610ee160a0610e5e565b90506000610ef184828501610eac565b6000830152506020610f0584828501610d93565b6020830152506040610f1984828501610d93565b6040830152506060610f2d84828501610d93565b6060830152506080610f4184828501610cc8565b60808301525092915050565b6000819050919050565b610f6081610f4d565b8114610f6b57600080fd5b50565b600081359050610f7d81610f57565b92915050565b600060ff82169050919050565b610f9981610f83565b8114610fa457600080fd5b50565b600081359050610fb681610f90565b92915050565b600060608284031215610fd257610fd1610de8565b5b610fdc6060610e5e565b90506000610fec84828501610f6e565b600083015250602061100084828501610f6e565b602083015250604061101484828501610fa7565b60408301525092915050565b600080610100838503121561103857611037610c7a565b5b600061104685828601610ec1565b92505060a061105785828601610fbc565b9150509250929050565b600082825260208201905092915050565b7f496e73756666696369656e742062616c616e636520696e20636f6e7472616374600082015250565b60006110a8602083611061565b91506110b382611072565b602082019050919050565b600060208201905081810360008301526110d78161109b565b9050919050565b7f4f6e6c792062757965722063616e2063616c6c20746869732066756e6374696f60008201527f6e00000000000000000000000000000000000000000000000000000000000000602082015250565b600061113a602183611061565b9150611145826110de565b604082019050919050565b600060208201905081810360008301526111698161112d565b9050919050565b7f4f7264657220616c726561647920636f6d706c65746564000000000000000000600082015250565b60006111a6601783611061565b91506111b182611170565b602082019050919050565b600060208201905081810360008301526111d581611199565b9050919050565b7f4f7264657220636861696e4964206973206e6f742076616c6964000000000000600082015250565b6000611212601a83611061565b915061121d826111dc565b602082019050919050565b6000602082019050818103600083015261124181611205565b9050919050565b7f496e76616c6964206f72646572207369676e6174757265000000000000000000600082015250565b600061127e601783611061565b915061128982611248565b602082019050919050565b600060208201905081810360008301526112ad81611271565b9050919050565b7f4d696e7420646561646c696e6520657863656564656400000000000000000000600082015250565b60006112ea601683611061565b91506112f5826112b4565b602082019050919050565b60006020820190508181036000830152611319816112dd565b9050919050565b7f496e636f7272656374207061796d656e7420616d6f756e740000000000000000600082015250565b6000611356601883611061565b915061136182611320565b602082019050919050565b6000602082019050818103600083015261138581611349565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160008201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b60006113e8602683611061565b91506113f38261138c565b604082019050919050565b60006020820190508181036000830152611417816113db565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572600082015250565b6000611454602083611061565b915061145f8261141e565b602082019050919050565b6000602082019050818103600083015261148381611447565b9050919050565b7f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00600082015250565b60006114c0601f83611061565b91506114cb8261148a565b602082019050919050565b600060208201905081810360008301526114ef816114b3565b9050919050565b7f416464726573733a20696e73756666696369656e742062616c616e6365000000600082015250565b600061152c601d83611061565b9150611537826114f6565b602082019050919050565b6000602082019050818103600083015261155b8161151f565b9050919050565b600081905092915050565b50565b600061157d600083611562565b91506115888261156d565b600082019050919050565b600061159e82611570565b9150819050919050565b7f416464726573733a20756e61626c6520746f2073656e642076616c75652c207260008201527f6563697069656e74206d61792068617665207265766572746564000000000000602082015250565b6000611604603a83611061565b915061160f826115a8565b604082019050919050565b60006020820190508181036000830152611633816115f7565b9050919050565b61164381610e79565b82525050565b61165281610d72565b82525050565b61166181610c9f565b82525050565b60a08201600082015161167d600085018261163a565b5060208201516116906020850182611649565b5060408201516116a36040850182611649565b5060608201516116b66060850182611649565b5060808201516116c96080850182611658565b50505050565b600060a0820190506116e46000830184611667565b92915050565b6116f381610f4d565b82525050565b61170281610f83565b82525050565b600060808201905061171d60008301876116ea565b61172a60208301866116f9565b61173760408301856116ea565b61174460608301846116ea565b95945050505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b7f45434453413a20696e76616c6964207369676e61747572650000000000000000600082015250565b60006117b2601883611061565b91506117bd8261177c565b602082019050919050565b600060208201905081810360008301526117e1816117a5565b9050919050565b7f45434453413a20696e76616c6964207369676e6174757265206c656e67746800600082015250565b600061181e601f83611061565b9150611829826117e8565b602082019050919050565b6000602082019050818103600083015261184d81611811565b9050919050565b7f45434453413a20696e76616c6964207369676e6174757265202773272076616c60008201527f7565000000000000000000000000000000000000000000000000000000000000602082015250565b60006118b0602283611061565b91506118bb82611854565b604082019050919050565b600060208201905081810360008301526118df816118a3565b905091905056fea26469706673582212204bba13aa8c18c4c0681174a79023fc341a36ef6eeefeb09e43bb6ac03ce57e2164736f6c63430008100033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.