Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0 ETH
Eth Value
$0.00Token Holdings
More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 214,497 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Claim | 20976390 | 37 days ago | IN | 0 ETH | 0.00028617 | ||||
Claim | 20976243 | 37 days ago | IN | 0 ETH | 0.00027982 | ||||
Claim | 20976243 | 37 days ago | IN | 0 ETH | 0.00028123 | ||||
Claim | 20976243 | 37 days ago | IN | 0 ETH | 0.00028607 | ||||
Claim | 20976243 | 37 days ago | IN | 0 ETH | 0.00028431 | ||||
Claim | 20873551 | 52 days ago | IN | 0 ETH | 0.00025154 | ||||
Claim | 20873518 | 52 days ago | IN | 0 ETH | 0.00026643 | ||||
Claim | 20873408 | 52 days ago | IN | 0 ETH | 0.00031778 | ||||
Claim | 20806644 | 61 days ago | IN | 0 ETH | 0.00076527 | ||||
Withdraw | 20766254 | 67 days ago | IN | 0 ETH | 0.00006549 | ||||
Claim | 20711312 | 74 days ago | IN | 0 ETH | 0.00015854 | ||||
Claim | 20708288 | 75 days ago | IN | 0 ETH | 0.00006228 | ||||
Accept Ownership | 20707014 | 75 days ago | IN | 0 ETH | 0.00004808 | ||||
Accept Ownership | 20706960 | 75 days ago | IN | 0 ETH | 0.00005691 | ||||
Claim | 20704460 | 75 days ago | IN | 0 ETH | 0.00017402 | ||||
Claim | 20704260 | 75 days ago | IN | 0 ETH | 0.00017982 | ||||
Claim | 20704257 | 75 days ago | IN | 0 ETH | 0.00013325 | ||||
Claim | 20704158 | 75 days ago | IN | 0 ETH | 0.00020136 | ||||
Claim | 20704140 | 75 days ago | IN | 0 ETH | 0.00019434 | ||||
Claim | 20704105 | 75 days ago | IN | 0 ETH | 0.00016388 | ||||
Claim | 20704037 | 75 days ago | IN | 0 ETH | 0.00018418 | ||||
Claim | 20704035 | 75 days ago | IN | 0 ETH | 0.00014401 | ||||
Claim | 20704033 | 75 days ago | IN | 0 ETH | 0.00019708 | ||||
Claim | 20704026 | 75 days ago | IN | 0 ETH | 0.00019963 | ||||
Claim | 20704022 | 75 days ago | IN | 0 ETH | 0.00019272 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
SignedDistributor
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 10000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; /* Built with ♥ by ░██╗░░░░░░░██╗░█████╗░███╗░░██╗██████╗░███████╗██████╗░██╗░░░░░░█████╗░███╗░░██╗██████╗░ ░██║░░██╗░░██║██╔══██╗████╗░██║██╔══██╗██╔════╝██╔══██╗██║░░░░░██╔══██╗████╗░██║██╔══██╗ ░╚██╗████╗██╔╝██║░░██║██╔██╗██║██║░░██║█████╗░░██████╔╝██║░░░░░███████║██╔██╗██║██║░░██║ ░░████╔═████║░██║░░██║██║╚████║██║░░██║██╔══╝░░██╔══██╗██║░░░░░██╔══██║██║╚████║██║░░██║ ░░╚██╔╝░╚██╔╝░╚█████╔╝██║░╚███║██████╔╝███████╗██║░░██║███████╗██║░░██║██║░╚███║██████╔╝ ░░░╚═╝░░░╚═╝░░░╚════╝░╚═╝░░╚══╝╚═════╝░╚══════╝╚═╝░░╚═╝╚══════╝╚═╝░░╚═╝╚═╝░░╚══╝╚═════╝░ https://defi.sucks */ import {ISignedDistributor} from 'interfaces/ISignedDistributor.sol'; import {Ownable, Ownable2Step} from 'openzeppelin/access/Ownable2Step.sol'; import {IERC20} from 'openzeppelin/token/ERC20/IERC20.sol'; import {ECDSA} from 'openzeppelin/utils/cryptography/ECDSA.sol'; import {MerkleProof} from 'openzeppelin/utils/cryptography/MerkleProof.sol'; import {MessageHashUtils} from 'openzeppelin/utils/cryptography/MessageHashUtils.sol'; contract SignedDistributor is ISignedDistributor, Ownable2Step { using ECDSA for bytes32; using MessageHashUtils for bytes32; /// @inheritdoc ISignedDistributor bytes32 public immutable MERKLE_ROOT; /// @inheritdoc ISignedDistributor IERC20 public immutable TOKEN; /// @inheritdoc ISignedDistributor address public signer; /// @inheritdoc ISignedDistributor mapping(address => bool) public hasClaimed; // solhint-disable-next-line no-unused-vars constructor(bytes32 _merkleRoot, address _signer, address _token, address _owner) Ownable(_owner) { MERKLE_ROOT = _merkleRoot; TOKEN = IERC20(_token); _updateSigner(_signer); } /// @inheritdoc ISignedDistributor function claim(uint256 amount, bytes32[] calldata merkleProof, bytes calldata signature) external { if (amount == 0) revert InvalidAmount(); if (signature.length == 0) revert InvalidSignature(); if (hasClaimed[msg.sender]) revert AlreadyClaimed(); // Verify the signature bytes32 _messageHash = keccak256(bytes.concat(keccak256(abi.encode(msg.sender, amount)))); bytes32 _ethSignedMessageHash = _messageHash.toEthSignedMessageHash(); address _recoveredSigner = _ethSignedMessageHash.recover(signature); if (_recoveredSigner != signer) revert InvalidSigner(); // Verify the merkle proof if (!MerkleProof.verify(merkleProof, MERKLE_ROOT, _messageHash)) revert InvalidProof(); // Mark as claimed and send the tokens hasClaimed[msg.sender] = true; TOKEN.transfer({to: msg.sender, value: amount}); emit Claimed(msg.sender, amount); } /// @inheritdoc ISignedDistributor function withdraw() external onlyOwner { uint256 _remainingBalance = TOKEN.balanceOf(address(this)); TOKEN.transfer({to: owner(), value: _remainingBalance}); emit Withdrawn(owner(), _remainingBalance); } /// @inheritdoc ISignedDistributor function updateSigner(address newSigner) external onlyOwner { _updateSigner(newSigner); } /** * @notice Updates the signer address * @param newSigner The new signer address */ function _updateSigner(address newSigner) internal { if (newSigner == address(0)) revert InvalidNewSigner(); address _oldSigner = signer; signer = newSigner; emit SignerUpdated(_oldSigner, newSigner); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; import {IERC20} from 'openzeppelin/token/ERC20/IERC20.sol'; /** * @title Signed Distributor Contract * @author Wonderland * @notice This contract is used to distribute tokens to users based on a merkle root and a signature */ interface ISignedDistributor { /*/////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ /** * @notice Emitted when a user claims their tokens * @param account The account that claimed the tokens * @param amount The amount of tokens claimed */ event Claimed(address indexed account, uint256 amount); /** * @notice Emitted when the owner withdraws tokens from the contract * @param account The account that withdrew the tokens * @param amount The amount of tokens withdrawn */ event Withdrawn(address indexed account, uint256 amount); /** * @notice Emitted when the signer is updated by the owner * @param oldSigner The old signer address * @param newSigner The new signer address */ event SignerUpdated(address indexed oldSigner, address indexed newSigner); /*/////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /** * @notice Throws if the input amount is zero */ error InvalidAmount(); /** * @notice Throws if the input signature is invalid */ error InvalidSignature(); /** * @notice Throws if the user has already claimed their tokens */ error AlreadyClaimed(); /** * @notice Throws if the recovered signer is different from the expected signer */ error InvalidSigner(); /** * @notice Throws if the merkle verification fails */ error InvalidProof(); /** * @notice Throws if the new signer address is invalid */ error InvalidNewSigner(); /*/////////////////////////////////////////////////////////////// LOGIC //////////////////////////////////////////////////////////////*/ /** * @notice Claims the tokens for the sender * @param amount The amount of tokens to claim * @param merkleProof The merkle proof for the claim * @param signature The signature for verification of the claim data */ function claim(uint256 amount, bytes32[] calldata merkleProof, bytes calldata signature) external; /** * @notice Sends the remaining tokens to the owner * @dev Only callable by the owner */ function withdraw() external; /** * @notice Updates the signer address * @param newSigner The new signer address * @dev Only callable by the owner */ function updateSigner(address newSigner) external; /*/////////////////////////////////////////////////////////////// VARIABLES //////////////////////////////////////////////////////////////*/ /** * @notice The root of the merkle tree * @return _merkleRoot The root of the merkle tree */ // solhint-disable-next-line func-name-mixedcase function MERKLE_ROOT() external view returns (bytes32 _merkleRoot); /** * @notice The token being distributed * @return _token The address of the token */ // solhint-disable-next-line func-name-mixedcase function TOKEN() external view returns (IERC20 _token); /** * @notice The address of the signer * @return _signer The address of the signer */ function signer() external view returns (address _signer); /** * @notice Returns whether the user has claimed their tokens * @param _user The address of the user * @return _claimed Whether the user has claimed their tokens */ function hasClaimed(address _user) external view returns (bool _claimed); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.20; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Sorts the pair (a, b) and hashes the result. */ function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "ds-test/=node_modules/ds-test/src/", "forge-std/=node_modules/forge-std/src/", "openzeppelin/=node_modules/@openzeppelin/contracts/", "contracts/=src/contracts/", "interfaces/=src/interfaces/", "@openzeppelin/=node_modules/@openzeppelin/", "solhint/=node_modules/solhint/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"address","name":"_signer","type":"address"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidNewSigner","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"MERKLE_ROOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TOKEN","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"updateSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60c06040523480156200001157600080fd5b506040516200125b3803806200125b83398101604081905262000034916200019c565b806001600160a01b0381166200006457604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b6200006f8162000097565b5060808490526001600160a01b03821660a0526200008d83620000b5565b50505050620001f0565b600180546001600160a01b0319169055620000b2816200012f565b50565b6001600160a01b038116620000dd57604051633875382760e11b815260040160405180910390fd5b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb90600090a35050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b03811681146200019757600080fd5b919050565b60008060008060808587031215620001b357600080fd5b84519350620001c5602086016200017f565b9250620001d5604086016200017f565b9150620001e5606086016200017f565b905092959194509250565b60805160a05161102962000232600039600081816101aa0152818161027a015281816102fe01526107ec015260008181610132015261071c01526110296000f3fe608060405234801561001057600080fd5b50600436106100d45760003560e01c806382bfefc811610081578063a7ecd37e1161005b578063a7ecd37e146101fd578063e30c397814610210578063f2fde38b1461022e57600080fd5b806382bfefc8146101a55780638da5cb5b146101cc5780639a15bf92146101ea57600080fd5b8063715018a6116100b2578063715018a61461016257806373b2e80e1461016a57806379ba50971461019d57600080fd5b8063238ac933146100d95780633ccfd60b1461012357806351e75e8b1461012d575b600080fd5b6002546100f99073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b61012b610241565b005b6101547f000000000000000000000000000000000000000000000000000000000000000081565b60405190815260200161011a565b61012b610459565b61018d610178366004610e30565b60036020526000908152604090205460ff1681565b604051901515815260200161011a565b61012b61046d565b6100f97f000000000000000000000000000000000000000000000000000000000000000081565b60005473ffffffffffffffffffffffffffffffffffffffff166100f9565b61012b6101f8366004610eaf565b6104e9565b61012b61020b366004610e30565b6108ae565b60015473ffffffffffffffffffffffffffffffffffffffff166100f9565b61012b61023c366004610e30565b6108bf565b61024961096f565b6040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526000907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa1580156102d6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102fa9190610f5a565b90507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663a9059cbb61035760005473ffffffffffffffffffffffffffffffffffffffff1690565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff9091166004820152602481018490526044016020604051808303816000875af11580156103c9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103ed9190610f73565b5060005473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d58260405161044e91815260200190565b60405180910390a250565b61046161096f565b61046b60006109c2565b565b600154339073ffffffffffffffffffffffffffffffffffffffff1681146104dd576040517f118cdaa700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff821660048201526024015b60405180910390fd5b6104e6816109c2565b50565b84600003610523576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600081900361055e576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b3360009081526003602052604090205460ff16156105a8576040517f646cf55800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60408051336020820152908101869052600090606001604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050600061064a827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061069085858080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525086939250506109f39050565b60025490915073ffffffffffffffffffffffffffffffffffffffff8083169116146106e7576040517f815e1d6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6107478787808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152507f00000000000000000000000000000000000000000000000000000000000000009250879150610a1d9050565b61077d576040517f09bde33900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b336000818152600360205260409081902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055517fa9059cbb0000000000000000000000000000000000000000000000000000000081526004810191909152602481018990527f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff169063a9059cbb906044016020604051808303816000875af115801561084a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061086e9190610f73565b5060405188815233907fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a9060200160405180910390a25050505050505050565b6108b661096f565b6104e681610a33565b6108c761096f565b6001805473ffffffffffffffffffffffffffffffffffffffff83167fffffffffffffffffffffffff0000000000000000000000000000000000000000909116811790915561092a60005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b60005473ffffffffffffffffffffffffffffffffffffffff16331461046b576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016104d4565b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001690556104e681610af7565b600080600080610a038686610b6c565b925092509250610a138282610bb9565b5090949350505050565b600082610a2a8584610cc1565b14949350505050565b73ffffffffffffffffffffffffffffffffffffffff8116610a80576040517f70ea704e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb90600090a35050565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008060008351604103610ba65760208401516040850151606086015160001a610b9888828585610d04565b955095509550505050610bb2565b50508151600091506002905b9250925092565b6000826003811115610bcd57610bcd610f95565b03610bd6575050565b6001826003811115610bea57610bea610f95565b03610c21576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002826003811115610c3557610c35610f95565b03610c6f576040517ffce698f7000000000000000000000000000000000000000000000000000000008152600481018290526024016104d4565b6003826003811115610c8357610c83610f95565b03610cbd576040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600481018290526024016104d4565b5050565b600081815b8451811015610cfc57610cf282868381518110610ce557610ce5610fc4565b6020026020010151610dfe565b9150600101610cc6565b509392505050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610d3f5750600091506003905082610df4565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610d93573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610dea57506000925060019150829050610df4565b9250600091508190505b9450945094915050565b6000818310610e1a576000828152602084905260409020610e29565b60008381526020839052604090205b9392505050565b600060208284031215610e4257600080fd5b813573ffffffffffffffffffffffffffffffffffffffff81168114610e2957600080fd5b60008083601f840112610e7857600080fd5b50813567ffffffffffffffff811115610e9057600080fd5b602083019150836020828501011115610ea857600080fd5b9250929050565b600080600080600060608688031215610ec757600080fd5b85359450602086013567ffffffffffffffff80821115610ee657600080fd5b818801915088601f830112610efa57600080fd5b813581811115610f0957600080fd5b8960208260051b8501011115610f1e57600080fd5b602083019650809550506040880135915080821115610f3c57600080fd5b50610f4988828901610e66565b969995985093965092949392505050565b600060208284031215610f6c57600080fd5b5051919050565b600060208284031215610f8557600080fd5b81518015158114610e2957600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea2646970667358221220b1304f06719277f460b9bb5184d5a5db55c17fd4bda98f1d2cdc581de08649c664736f6c6343000817003384312359709a9fafd25ebf43476f409db1ee2028de35a89215feb99fafa962ce00000000000000000000000051e7ac4f8086f2b913e0e4af05003b06181e4994000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f83000000000000000000000000bb00dda2832850a43840a3a86515e3fe226865f2
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100d45760003560e01c806382bfefc811610081578063a7ecd37e1161005b578063a7ecd37e146101fd578063e30c397814610210578063f2fde38b1461022e57600080fd5b806382bfefc8146101a55780638da5cb5b146101cc5780639a15bf92146101ea57600080fd5b8063715018a6116100b2578063715018a61461016257806373b2e80e1461016a57806379ba50971461019d57600080fd5b8063238ac933146100d95780633ccfd60b1461012357806351e75e8b1461012d575b600080fd5b6002546100f99073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b61012b610241565b005b6101547f84312359709a9fafd25ebf43476f409db1ee2028de35a89215feb99fafa962ce81565b60405190815260200161011a565b61012b610459565b61018d610178366004610e30565b60036020526000908152604090205460ff1681565b604051901515815260200161011a565b61012b61046d565b6100f97f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8381565b60005473ffffffffffffffffffffffffffffffffffffffff166100f9565b61012b6101f8366004610eaf565b6104e9565b61012b61020b366004610e30565b6108ae565b60015473ffffffffffffffffffffffffffffffffffffffff166100f9565b61012b61023c366004610e30565b6108bf565b61024961096f565b6040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526000907f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8373ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa1580156102d6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102fa9190610f5a565b90507f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8373ffffffffffffffffffffffffffffffffffffffff1663a9059cbb61035760005473ffffffffffffffffffffffffffffffffffffffff1690565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff9091166004820152602481018490526044016020604051808303816000875af11580156103c9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103ed9190610f73565b5060005473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d58260405161044e91815260200190565b60405180910390a250565b61046161096f565b61046b60006109c2565b565b600154339073ffffffffffffffffffffffffffffffffffffffff1681146104dd576040517f118cdaa700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff821660048201526024015b60405180910390fd5b6104e6816109c2565b50565b84600003610523576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600081900361055e576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b3360009081526003602052604090205460ff16156105a8576040517f646cf55800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60408051336020820152908101869052600090606001604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050600061064a827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061069085858080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525086939250506109f39050565b60025490915073ffffffffffffffffffffffffffffffffffffffff8083169116146106e7576040517f815e1d6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6107478787808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152507f84312359709a9fafd25ebf43476f409db1ee2028de35a89215feb99fafa962ce9250879150610a1d9050565b61077d576040517f09bde33900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b336000818152600360205260409081902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055517fa9059cbb0000000000000000000000000000000000000000000000000000000081526004810191909152602481018990527f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8373ffffffffffffffffffffffffffffffffffffffff169063a9059cbb906044016020604051808303816000875af115801561084a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061086e9190610f73565b5060405188815233907fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a9060200160405180910390a25050505050505050565b6108b661096f565b6104e681610a33565b6108c761096f565b6001805473ffffffffffffffffffffffffffffffffffffffff83167fffffffffffffffffffffffff0000000000000000000000000000000000000000909116811790915561092a60005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b60005473ffffffffffffffffffffffffffffffffffffffff16331461046b576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016104d4565b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001690556104e681610af7565b600080600080610a038686610b6c565b925092509250610a138282610bb9565b5090949350505050565b600082610a2a8584610cc1565b14949350505050565b73ffffffffffffffffffffffffffffffffffffffff8116610a80576040517f70ea704e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb90600090a35050565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008060008351604103610ba65760208401516040850151606086015160001a610b9888828585610d04565b955095509550505050610bb2565b50508151600091506002905b9250925092565b6000826003811115610bcd57610bcd610f95565b03610bd6575050565b6001826003811115610bea57610bea610f95565b03610c21576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002826003811115610c3557610c35610f95565b03610c6f576040517ffce698f7000000000000000000000000000000000000000000000000000000008152600481018290526024016104d4565b6003826003811115610c8357610c83610f95565b03610cbd576040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600481018290526024016104d4565b5050565b600081815b8451811015610cfc57610cf282868381518110610ce557610ce5610fc4565b6020026020010151610dfe565b9150600101610cc6565b509392505050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610d3f5750600091506003905082610df4565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610d93573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610dea57506000925060019150829050610df4565b9250600091508190505b9450945094915050565b6000818310610e1a576000828152602084905260409020610e29565b60008381526020839052604090205b9392505050565b600060208284031215610e4257600080fd5b813573ffffffffffffffffffffffffffffffffffffffff81168114610e2957600080fd5b60008083601f840112610e7857600080fd5b50813567ffffffffffffffff811115610e9057600080fd5b602083019150836020828501011115610ea857600080fd5b9250929050565b600080600080600060608688031215610ec757600080fd5b85359450602086013567ffffffffffffffff80821115610ee657600080fd5b818801915088601f830112610efa57600080fd5b813581811115610f0957600080fd5b8960208260051b8501011115610f1e57600080fd5b602083019650809550506040880135915080821115610f3c57600080fd5b50610f4988828901610e66565b969995985093965092949392505050565b600060208284031215610f6c57600080fd5b5051919050565b600060208284031215610f8557600080fd5b81518015158114610e2957600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea2646970667358221220b1304f06719277f460b9bb5184d5a5db55c17fd4bda98f1d2cdc581de08649c664736f6c63430008170033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
84312359709a9fafd25ebf43476f409db1ee2028de35a89215feb99fafa962ce00000000000000000000000051e7ac4f8086f2b913e0e4af05003b06181e4994000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f83000000000000000000000000bb00dda2832850a43840a3a86515e3fe226865f2
-----Decoded View---------------
Arg [0] : _merkleRoot (bytes32): 0x84312359709a9fafd25ebf43476f409db1ee2028de35a89215feb99fafa962ce
Arg [1] : _signer (address): 0x51e7Ac4F8086F2b913e0e4aF05003b06181E4994
Arg [2] : _token (address): 0xec53bF9167f50cDEB3Ae105f56099aaaB9061F83
Arg [3] : _owner (address): 0xbb00DDa2832850a43840A3A86515E3Fe226865F2
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 84312359709a9fafd25ebf43476f409db1ee2028de35a89215feb99fafa962ce
Arg [1] : 00000000000000000000000051e7ac4f8086f2b913e0e4af05003b06181e4994
Arg [2] : 000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f83
Arg [3] : 000000000000000000000000bb00dda2832850a43840a3a86515e3fe226865f2
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.