Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 260 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Fund Agreement | 19570065 | 336 days ago | IN | 0 ETH | 0.00252743 | ||||
Fund Agreement | 19570050 | 336 days ago | IN | 0 ETH | 0.00286492 | ||||
Fund Agreement | 19570049 | 336 days ago | IN | 0 ETH | 0.0027677 | ||||
Fund Agreement | 19570049 | 336 days ago | IN | 0 ETH | 0.0027677 | ||||
Fund Agreement | 19570049 | 336 days ago | IN | 0 ETH | 0.0027677 | ||||
Fund Agreement | 19570049 | 336 days ago | IN | 0 ETH | 0.00879902 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00275358 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00275485 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00275421 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00275485 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00275421 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00275421 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00275486 | ||||
Fund Agreement | 19570047 | 336 days ago | IN | 0 ETH | 0.00276913 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247732 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247732 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247675 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.01888239 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247732 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247675 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247732 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247732 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247732 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247732 | ||||
Fund Agreement | 19570046 | 336 days ago | IN | 0 ETH | 0.00247675 |
Loading...
Loading
Minimal Proxy Contract for 0x49b6b308a35bcf4240b112bdefd2400e86e8cdd1
Contract Name:
DCBCrowdfunding
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 10000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT //** DCB Crowdfunding Contract */ //** Author: Aceson & Aaron 2023.3 */ pragma solidity 0.8.19; import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol"; import "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol"; import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol"; import "openzeppelin-contracts/contracts/security/ReentrancyGuard.sol"; import "openzeppelin-contracts/contracts/proxy/utils/Initializable.sol"; import "openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol"; import "./interfaces/IDCBCrowdfunding.sol"; import "./interfaces/IDCBInvestments.sol"; import "./interfaces/IDCBPlatformVesting.sol"; import "layerzero/interfaces/ILayerZeroReceiver.sol"; contract DCBCrowdfunding is IDCBCrowdfunding, Initializable, ReentrancyGuard, ILayerZeroReceiver { using SafeERC20 for IERC20; address[] private _participants; //total number of participants address[] private _registeredUsers; //total number of registered users IDCBInvestments public investment; //investment contract IDCBPlatformVesting public vesting; //vesting contract AgreementInfo public dcbAgreement; //agreement info IERC20 public saleToken; //sale token address public layerZero; //layer zero contract mapping(address => InvestorAllocation) public userAllocation; //user allocation uint256 public totalShares; address public tierMigratorAddr; uint16 internal nativeChainId; uint32[3] public durations; uint8 public constant VERSION = 1; event UserRegistered(address user); event BulkUserRegustered(address[] users); event EditAgreement(Params p); modifier onlyManager() { require(investment.hasRole(keccak256("MANAGER_ROLE"), msg.sender), "Only manager"); _; } function initialize(Params calldata p) external initializer { require(p.totalTokenOnSale > 0 && p.hardcap > 0 && p.startDate >= block.timestamp, "Invalid input"); investment = IDCBInvestments(p.investmentAddr); vesting = IDCBPlatformVesting(p.vestingAddr); saleToken = IERC20(p.saleTokenAddr); layerZero = p.layerZeroAddr; tierMigratorAddr = p.tierMigratorAddr; nativeChainId = p.nativeChainId; durations = p.durations; uint32 totalDuration = p.durations[0] + p.durations[1] + p.durations[2]; require(totalDuration > 0, "Invalid duration"); /** * generate the new agreement */ dcbAgreement.totalTokenOnSale = p.totalTokenOnSale; dcbAgreement.hardcap = p.hardcap; dcbAgreement.createDate = uint32(block.timestamp); dcbAgreement.startDate = p.startDate; dcbAgreement.endDate = p.startDate + totalDuration; dcbAgreement.token = IERC20(p.paymentToken); dcbAgreement.totalInvestFund = 0; dcbAgreement.minTier = p.minTier; /** * emit the agreement generation event */ emit CreateAgreement(p); } /** * @dev function to edit agreement * * @param p Params of agreement */ function setParams(Params calldata p) external { require(msg.sender == address(investment), "Only factory"); require(p.totalTokenOnSale > 0 && p.hardcap > 0 && p.startDate >= block.timestamp, "Invalid input"); saleToken = IERC20(p.saleTokenAddr); layerZero = p.layerZeroAddr; tierMigratorAddr = p.tierMigratorAddr; nativeChainId = p.nativeChainId; durations = p.durations; uint32 totalDuration = p.durations[0] + p.durations[1] + p.durations[2]; require(totalDuration > 0, "Invalid duration"); /** * generate the new agreement */ dcbAgreement.totalTokenOnSale = p.totalTokenOnSale; dcbAgreement.hardcap = p.hardcap; dcbAgreement.startDate = p.startDate; dcbAgreement.endDate = p.startDate + totalDuration; dcbAgreement.token = IERC20(p.paymentToken); dcbAgreement.minTier = p.minTier; /** * emit the agreement generation event */ emit EditAgreement(p); } /** * @dev function to set sale token * * @param _token Address of token */ function setToken(address _token) external { require(msg.sender == address(investment), "Only factory"); saleToken = IERC20(_token); } /** * @dev function to register user for allocation * * @param _user Address of user * @param _tier Tier of user * @param _multi Multiplier of user * @param _shares Shares of user */ function registerForAllocation( address _user, uint8 _tier, uint8 _multi, uint256 _shares ) public override returns (bool) { require(msg.sender == (layerZero) || msg.sender == tierMigratorAddr, "Invalid sender"); uint256 oldShares = userAllocation[_user].shares; uint256 oldDeposits = userAllocation[_user].deposits; bool eventHasStarted = block.timestamp >= dcbAgreement.startDate; if (eventHasStarted) { require(oldShares == 0, "Already registered for GA"); } if (oldDeposits != _shares) { userAllocation[_user].deposits = _shares; } if (eventHasStarted || _tier < dcbAgreement.minTier) { _shares = 0; } if (!userAllocation[_user].active) _registeredUsers.push(_user); userAllocation[_user].active = true; userAllocation[_user].tier = _tier; userAllocation[_user].multi = _multi; if (oldShares != _shares) { userAllocation[_user].shares = _shares; totalShares = totalShares - oldShares + _shares; } emit UserRegistered(_user); return true; } /** * @dev callback function from layer zero * * @param _id Chain id of source * @param _srcAddress Address of source * param Null value * @param data Data to be decoded */ function lzReceive(uint16 _id, bytes calldata _srcAddress, uint64, bytes memory data) public override { require( _id == nativeChainId && keccak256(_srcAddress) == keccak256(abi.encodePacked(tierMigratorAddr, address(this))), "Invalid source" ); address user; uint8 tier; uint8 multi; uint256 shares; // solhint-disable-next-line no-inline-assembly assembly { // Extract the address from data (first 20 bytes) user := mload(add(data, 20)) // Extract the first uint8 (21st byte) tier := byte(0, mload(add(data, 52))) // Extract the second uint8 (22nd byte) multi := byte(0, mload(add(data, 53))) // Extract the third uint256 (last 32 bytes) shares := mload(add(data, 54)) } registerForAllocation(user, tier, multi, shares); } /** * @dev function to register users in bulk * * @param _users Users to register * @param _tierOfUser Tier of users * @param _multiOfUser Multiplier of users * @param _depositsOfUser Deposits of users */ function registerByManager( address[] calldata _users, uint8[] calldata _tierOfUser, uint8[] calldata _multiOfUser, uint256[] calldata _depositsOfUser ) external onlyManager { require( (_users.length == _tierOfUser.length) && (_tierOfUser.length == _multiOfUser.length) && (_depositsOfUser.length == _tierOfUser.length), "Invalid input" ); uint256 len = _users.length; require(uint32(block.timestamp) <= dcbAgreement.startDate, "Registration closed"); uint256 totalShare; uint256 minTier = dcbAgreement.minTier; for (uint256 i = 0; i < len; ++i) { require(!userAllocation[_users[i]].active, "Already registered"); InvestorAllocation storage investor = userAllocation[_users[i]]; investor.active = true; investor.tier = _tierOfUser[i]; investor.multi = _multiOfUser[i]; investor.deposits = _depositsOfUser[i]; _registeredUsers.push(_users[i]); uint256 share = _tierOfUser[i] < minTier ? 0 : _depositsOfUser[i]; if (share > 0) { totalShare = totalShare + share; investor.shares = share; } } totalShares = totalShares + totalShare; emit BulkUserRegustered(_users); } /** * * @dev function to fund the agreement * * @param {_investFund} Amount of fund to invest * * @return {bool} return status of operation * */ function fundAgreement(uint256 _investFund) external override nonReentrant returns (bool) { /** * Check if user have registered */ require(userAllocation[msg.sender].active, "User not registered"); /** * check if project has provided tokens */ require( saleToken.balanceOf(address(vesting)) >= dcbAgreement.totalTokenOnSale, "Tokens not received from project" ); /** * check if investor is willing to invest any funds */ require(_investFund > 0, "You cannot invest 0"); /** * check if startDate has started */ require(uint32(block.timestamp) >= dcbAgreement.startDate, "Crowdfunding not open"); /** * check if endDate has already passed */ require(uint32(block.timestamp) < dcbAgreement.endDate, "Crowdfunding ended"); require(dcbAgreement.totalInvestFund + _investFund <= dcbAgreement.hardcap, "Hardcap already met"); bool isGa; uint256 multi = 1; // First round - GA - 1x allocation if (uint32(block.timestamp) < dcbAgreement.startDate + durations[0]) { isGa = true; // Second round - FCFS - 2x allocation } else if (uint32(block.timestamp) < dcbAgreement.startDate + durations[0] + durations[1]) { multi = 2; // Third round - FCFS - 10x allocation } else { multi = 10; } // Allocation of user uint256 alloc = getUserAllocation(msg.sender, isGa); // during FCFS users get multiplied allocation require( dcbAgreement.investorList[msg.sender].investAmount + _investFund <= alloc * multi, "Amount greater than allocation" ); if (dcbAgreement.investorList[msg.sender].active == 0) { /** * add new investor to investor list for specific agreeement */ dcbAgreement.investorList[msg.sender].wallet = msg.sender; dcbAgreement.investorList[msg.sender].investAmount = _investFund; dcbAgreement.investorList[msg.sender].joinDate = uint32(block.timestamp); dcbAgreement.investorList[msg.sender].active = 1; _participants.push(msg.sender); } // user has already deposited so update the deposit else { dcbAgreement.investorList[msg.sender].investAmount = dcbAgreement.investorList[msg.sender].investAmount + _investFund; } dcbAgreement.totalInvestFund = dcbAgreement.totalInvestFund + _investFund; uint256 value = dcbAgreement.investorList[msg.sender].investAmount; uint256 numTokens = (value * dcbAgreement.totalTokenOnSale) / (dcbAgreement.hardcap); require(numTokens > 0, "Tokens cannot be 0"); investment.setUserInvestment(msg.sender, address(this), value); vesting.setCrowdfundingWhitelist(msg.sender, numTokens, value); emit NewInvestment(msg.sender, _investFund); return true; } /** * * @dev getter function for list of participants * * @return {address[]} return total participants of crowdfunding * */ function getParticipants() external view returns (address[] memory) { return _participants; } /** * * @dev getter function for list of registered users * * @return {address[]} return total participants registered for crowdfunding * */ function getRegisteredUsers() external view returns (address[] memory) { return _registeredUsers; } /** * @dev getter function for user investment * * @param _address address of user * @return investAmount Investment amount of user * @return joinDate Join date of user */ function userInvestment(address _address) external view override returns (uint256 investAmount, uint256 joinDate) { investAmount = dcbAgreement.investorList[_address].investAmount; joinDate = dcbAgreement.investorList[_address].joinDate; } /** * @dev getter function for ticket value of shares * * @param _shares shares of user * * @return return allocation for shares */ function getAllocationForShares(uint256 _shares) public view returns (uint256) { if (totalShares == 0) return 0; return ((_shares * dcbAgreement.hardcap) / totalShares); } /** * * @dev getter function for allocation of a user * * @param _address Address of the user * * @return return total participant count of crowdfunding * */ function getUserAllocation(address _address, bool _isGa) public view override returns (uint256) { if (totalShares == 0) return 0; uint256 shares = _isGa ? userAllocation[_address].shares : userAllocation[_address].deposits; return (shares * dcbAgreement.hardcap) / totalShares; } /** * * @dev getter function for agreement info * * @return return agreement info * */ function getInfo() public view override returns (uint256, uint256, uint256, uint256, uint256, uint256) { return ( dcbAgreement.hardcap, dcbAgreement.createDate, dcbAgreement.startDate, dcbAgreement.endDate, dcbAgreement.totalInvestFund, _participants.length ); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; interface ILayerZeroReceiver { // @notice LayerZero endpoint will invoke this function to deliver the message on the destination // @param _srcChainId - the source endpoint identifier // @param _srcAddress - the source sending contract address from the source chain // @param _nonce - the ordered message nonce // @param _payload - the signed payload is the UA bytes has encoded to be sent function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT //** DCB Crowdfunding Interface */ //** Author: Aceson & Aaron 2023.3 */ import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol"; pragma solidity 0.8.19; interface IDCBCrowdfunding { struct Params { uint8 minTier; uint16 nativeChainId; uint32 startDate; address investmentAddr; address tierMigratorAddr; address vestingAddr; address paymentToken; address saleTokenAddr; address layerZeroAddr; uint256 totalTokenOnSale; uint256 hardcap; uint32[3] durations; } struct InvestorInfo { uint8 active; uint32 joinDate; address wallet; uint256 investAmount; } struct InvestorAllocation { uint8 tier; uint8 multi; uint256 shares; uint256 deposits; bool active; } /** * * @dev AgreementInfo will have information about agreement. * It will contains agreement details between innovator and investor. * For now, innovatorWallet will reflect owner of the platform. * */ struct AgreementInfo { uint8 minTier; IERC20 token; uint32 createDate; uint32 startDate; uint32 endDate; uint256 totalTokenOnSale; uint256 hardcap; uint256 totalInvestFund; mapping(address => InvestorInfo) investorList; } /** * * @dev this event will call when new agreement generated. * this is called when innovator create a new agreement but for now, * it is calling when owner create new agreement * */ event CreateAgreement(Params); /** * * @dev it is calling when new investor joinning to the existing agreement * */ event NewInvestment(address wallet, uint256 amount); /** * * inherit functions will be used in contract * */ function registerForAllocation(address _user, uint8 _tier, uint8 _multi, uint256 _shares) external returns (bool); function registerByManager( address[] calldata _users, uint8[] calldata _tierOfUser, uint8[] calldata _multiOfUser, uint256[] calldata _depositsOfUser ) external; function initialize(Params memory p) external; function setParams(Params calldata p) external; function setToken(address _token) external; function fundAgreement(uint256 _investFund) external returns (bool); function userInvestment(address _address) external view returns (uint256 investAmount, uint256 joinDate); function getInfo() external view returns ( uint256 hardcap, uint256 createDate, uint256 startDate, uint256 endDate, uint256 totalInvestFund, uint256 totalParticipants ); function getParticipants() external view returns (address[] memory); function getUserAllocation(address _address, bool _isGa) external view returns (uint256); }
// SPDX-License-Identifier: UNLICENSED //** DCB Investments Interface */ //** Author Aaron & Aceson : DCB 2023.2 */ pragma solidity 0.8.19; interface IDCBInvestments { event DistributionClaimed(address _user, address _event); event ImplementationsChanged(address _newVesting, address _newTokenClaim, address _newCrowdfunding); event Initialized(uint8 version); event ManagerRoleSet(address _user, bool _status); event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); event UserInvestmentSet(address _address, address _event, uint256 _amount); function changeImplementations(address _newVesting, address _newTokenClaim, address _newCrowdfunding) external; function changeVestingStartTime(address _event, uint256 _newTime) external; function claimDistribution(address _event) external returns (bool); function crowdfundingImpl() external view returns (address); function events(address) external view returns ( string memory name, address paymentToken, address tokenAddress, address vestingAddress, uint8 eventType ); function eventsList(uint256) external view returns (address); function getRoleAdmin(bytes32 role) external view returns (bytes32); function getUserInvestments(address _address) external view returns (address[] memory); function grantRole(bytes32 role, address account) external; function hasRole(bytes32 role, address account) external view returns (bool); function initialize() external; function numUserInvestments(address) external view returns (uint256); function renounceRole(bytes32 role, address account) external; function revokeRole(bytes32 role, address account) external; function setManagerRole(address _user, bool _status) external; function setUserInvestment(address _address, address _event, uint256 _amount) external returns (bool); function supportsInterface(bytes4 interfaceId) external view returns (bool); function tokenClaimImpl() external view returns (address); function userAmount(address, address) external view returns (uint256); function vestingImpl() external view returns (address); }
// SPDX-License-Identifier: MIT //** DCB Vesting Interface */ pragma solidity 0.8.19; interface IDCBPlatformVesting { struct VestingInfo { uint256 cliff; uint256 start; uint256 duration; uint256 initialUnlockPercent; } struct VestingPool { uint256 cliff; uint256 start; uint256 duration; uint256 initialUnlockPercent; WhitelistInfo[] whitelistPool; mapping(address => HasWhitelist) hasWhitelist; } /** * * @dev WhiteInfo is the struct type which store whitelist information * */ struct WhitelistInfo { address wallet; uint256 amount; uint256 distributedAmount; uint256 value; // price * amount in decimals of payment token uint256 joinDate; uint256 refundDate; bool refunded; } struct HasWhitelist { uint256 arrIdx; bool active; } struct ContractSetup { address _innovator; address _vestedToken; address _paymentToken; uint32 _nativeChainId; uint256 _totalTokenOnSale; uint256 _gracePeriod; uint256[] _refundFees; } struct VestingSetup { uint256 _startTime; uint256 _cliff; uint256 _duration; uint256 _initialUnlockPercent; } struct BuybackSetup { address router; address[] path; } event Claim(address indexed token, uint256 amount, uint256 time); event SetWhitelist(address indexed wallet, uint256 amount, uint256 value); event Refund(address indexed wallet, uint256 amount); function initializeCrowdfunding(ContractSetup memory c, VestingSetup memory p, BuybackSetup memory b) external; function initializeTokenClaim(address _token, VestingSetup memory p, uint32 _nativeChainId) external; function setCrowdfundingWhitelist(address _wallet, uint256 _amount, uint256 _value) external; function setTokenClaimWhitelist(address _wallet, uint256 _amount) external; function claimDistribution(address _wallet) external returns (bool); function getWhitelist(address _wallet) external view returns (WhitelistInfo memory); function getWhitelistPool() external view returns (WhitelistInfo[] memory); function transferOwnership(address _newOwner) external; function setVestingParams( uint256 _cliff, uint256 _start, uint256 _duration, uint256 _initialUnlockPercent ) external; function setCrowdFundingParams(ContractSetup calldata c) external; function setToken(address _newToken) external; function rescueTokens(address _receiver, uint256 _amount) external; /** * * inherit functions will be used in contract * */ function getVestAmount(address _wallet) external view returns (uint256); function getReleasableAmount(address _wallet) external view returns (uint256); function getVestingInfo() external view returns (VestingInfo memory); }
{ "metadata": { "bytecodeHash": "none" }, "optimizer": { "enabled": true, "runs": 10000 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [ "@prb/test/=lib/prb-math/lib/prb-test/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "src/=src/", "v2-periphery/=lib/v2-periphery/contracts/", "layerzero/=lib/LayerZero/contracts/", "LayerZero/=lib/LayerZero/contracts/", "prb-math/=lib/prb-math/src/", "prb-test/=lib/prb-test/src/" ], "libraries": {} }
Contract ABI
API[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address[]","name":"users","type":"address[]"}],"name":"BulkUserRegustered","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"indexed":false,"internalType":"struct IDCBCrowdfunding.Params","name":"","type":"tuple"}],"name":"CreateAgreement","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"indexed":false,"internalType":"struct IDCBCrowdfunding.Params","name":"p","type":"tuple"}],"name":"EditAgreement","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"wallet","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"NewInvestment","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"}],"name":"UserRegistered","type":"event"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dcbAgreement","outputs":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint32","name":"createDate","type":"uint32"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"uint32","name":"endDate","type":"uint32"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint256","name":"totalInvestFund","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"durations","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_investFund","type":"uint256"}],"name":"fundAgreement","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"getAllocationForShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInfo","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getParticipants","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRegisteredUsers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"},{"internalType":"bool","name":"_isGa","type":"bool"}],"name":"getUserAllocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"internalType":"struct IDCBCrowdfunding.Params","name":"p","type":"tuple"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"investment","outputs":[{"internalType":"contract IDCBInvestments","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"layerZero","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"_id","type":"uint16"},{"internalType":"bytes","name":"_srcAddress","type":"bytes"},{"internalType":"uint64","name":"","type":"uint64"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"lzReceive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_users","type":"address[]"},{"internalType":"uint8[]","name":"_tierOfUser","type":"uint8[]"},{"internalType":"uint8[]","name":"_multiOfUser","type":"uint8[]"},{"internalType":"uint256[]","name":"_depositsOfUser","type":"uint256[]"}],"name":"registerByManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint8","name":"_tier","type":"uint8"},{"internalType":"uint8","name":"_multi","type":"uint8"},{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"registerForAllocation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"saleToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"internalType":"struct IDCBCrowdfunding.Params","name":"p","type":"tuple"}],"name":"setParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"setToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tierMigratorAddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userAllocation","outputs":[{"internalType":"uint8","name":"tier","type":"uint8"},{"internalType":"uint8","name":"multi","type":"uint8"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"deposits","type":"uint256"},{"internalType":"bool","name":"active","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"userInvestment","outputs":[{"internalType":"uint256","name":"investAmount","type":"uint256"},{"internalType":"uint256","name":"joinDate","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vesting","outputs":[{"internalType":"contract IDCBPlatformVesting","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.