ETH Price: $2,187.01 (+5.27%)

Contract

0x0405D8B07a276cD844479Ee38957E4400d069ae8
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Fund Agreement195700652024-04-02 19:04:23336 days ago1712084663IN
0x0405D8B0...00d069ae8
0 ETH0.0025274348.59432903
Fund Agreement195700502024-04-02 19:01:23336 days ago1712084483IN
0x0405D8B0...00d069ae8
0 ETH0.0028649255.08303288
Fund Agreement195700492024-04-02 19:01:11336 days ago1712084471IN
0x0405D8B0...00d069ae8
0 ETH0.002767753.21388803
Fund Agreement195700492024-04-02 19:01:11336 days ago1712084471IN
0x0405D8B0...00d069ae8
0 ETH0.002767753.21388803
Fund Agreement195700492024-04-02 19:01:11336 days ago1712084471IN
0x0405D8B0...00d069ae8
0 ETH0.002767753.21388803
Fund Agreement195700492024-04-02 19:01:11336 days ago1712084471IN
0x0405D8B0...00d069ae8
0 ETH0.0087990253.21388803
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027535852.93009329
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027548552.95455961
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027542152.95455961
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027548552.95455961
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027542152.95455961
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027542152.95455961
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027548652.95482215
Fund Agreement195700472024-04-02 19:00:47336 days ago1712084447IN
0x0405D8B0...00d069ae8
0 ETH0.0027691353.22909329
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024773247.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024773247.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024767547.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0188823947.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024773247.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024767547.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024773247.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024773247.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024773247.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024773247.61979536
Fund Agreement195700462024-04-02 19:00:35336 days ago1712084435IN
0x0405D8B0...00d069ae8
0 ETH0.0024767547.61979536
View all transactions

Latest 3 internal transactions

Advanced mode:
Parent Transaction Hash Block
From
To
195616682024-04-01 14:47:23338 days ago1711982843  Contract Creation0 ETH
195613452024-04-01 13:42:23338 days ago1711978943  Contract Creation0 ETH
195612662024-04-01 13:26:23338 days ago1711977983  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x49b6b308a35bcf4240b112bdefd2400e86e8cdd1

Contract Name:
DCBCrowdfunding

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 18 : DCBCrowdfunding.sol
// SPDX-License-Identifier: MIT

//** DCB Crowdfunding Contract */
//** Author: Aceson & Aaron 2023.3 */

pragma solidity 0.8.19;

import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import "openzeppelin-contracts/contracts/security/ReentrancyGuard.sol";
import "openzeppelin-contracts/contracts/proxy/utils/Initializable.sol";
import "openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol";

import "./interfaces/IDCBCrowdfunding.sol";
import "./interfaces/IDCBInvestments.sol";
import "./interfaces/IDCBPlatformVesting.sol";
import "layerzero/interfaces/ILayerZeroReceiver.sol";

contract DCBCrowdfunding is IDCBCrowdfunding, Initializable, ReentrancyGuard, ILayerZeroReceiver {
    using SafeERC20 for IERC20;

    address[] private _participants; //total number of participants
    address[] private _registeredUsers; //total number of registered users
    IDCBInvestments public investment; //investment contract
    IDCBPlatformVesting public vesting; //vesting contract

    AgreementInfo public dcbAgreement; //agreement info
    IERC20 public saleToken; //sale token
    address public layerZero; //layer zero contract

    mapping(address => InvestorAllocation) public userAllocation; //user allocation

    uint256 public totalShares;
    address public tierMigratorAddr;
    uint16 internal nativeChainId;
    uint32[3] public durations;

    uint8 public constant VERSION = 1;

    event UserRegistered(address user);
    event BulkUserRegustered(address[] users);
    event EditAgreement(Params p);

    modifier onlyManager() {
        require(investment.hasRole(keccak256("MANAGER_ROLE"), msg.sender), "Only manager");
        _;
    }

    function initialize(Params calldata p) external initializer {
        require(p.totalTokenOnSale > 0 && p.hardcap > 0 && p.startDate >= block.timestamp, "Invalid input");
        investment = IDCBInvestments(p.investmentAddr);
        vesting = IDCBPlatformVesting(p.vestingAddr);
        saleToken = IERC20(p.saleTokenAddr);
        layerZero = p.layerZeroAddr;
        tierMigratorAddr = p.tierMigratorAddr;
        nativeChainId = p.nativeChainId;
        durations = p.durations;
        uint32 totalDuration = p.durations[0] + p.durations[1] + p.durations[2];
        require(totalDuration > 0, "Invalid duration");

        /**
         * generate the new agreement
         */
        dcbAgreement.totalTokenOnSale = p.totalTokenOnSale;
        dcbAgreement.hardcap = p.hardcap;
        dcbAgreement.createDate = uint32(block.timestamp);
        dcbAgreement.startDate = p.startDate;
        dcbAgreement.endDate = p.startDate + totalDuration;
        dcbAgreement.token = IERC20(p.paymentToken);
        dcbAgreement.totalInvestFund = 0;
        dcbAgreement.minTier = p.minTier;

        /**
         * emit the agreement generation event
         */
        emit CreateAgreement(p);
    }

    /**
     * @dev function to edit agreement
     *
     * @param p  Params of agreement
     */
    function setParams(Params calldata p) external {
        require(msg.sender == address(investment), "Only factory");
        require(p.totalTokenOnSale > 0 && p.hardcap > 0 && p.startDate >= block.timestamp, "Invalid input");
        saleToken = IERC20(p.saleTokenAddr);
        layerZero = p.layerZeroAddr;
        tierMigratorAddr = p.tierMigratorAddr;
        nativeChainId = p.nativeChainId;
        durations = p.durations;
        uint32 totalDuration = p.durations[0] + p.durations[1] + p.durations[2];
        require(totalDuration > 0, "Invalid duration");

        /**
         * generate the new agreement
         */
        dcbAgreement.totalTokenOnSale = p.totalTokenOnSale;
        dcbAgreement.hardcap = p.hardcap;
        dcbAgreement.startDate = p.startDate;
        dcbAgreement.endDate = p.startDate + totalDuration;
        dcbAgreement.token = IERC20(p.paymentToken);
        dcbAgreement.minTier = p.minTier;

        /**
         * emit the agreement generation event
         */
        emit EditAgreement(p);
    }

    /**
     * @dev function to set sale token
     *
     * @param _token  Address of token
     */
    function setToken(address _token) external {
        require(msg.sender == address(investment), "Only factory");
        saleToken = IERC20(_token);
    }

    /**
     * @dev function to register user for allocation
     *
     * @param _user  Address of user
     * @param _tier  Tier of user
     * @param _multi  Multiplier of user
     * @param _shares  Shares of user
     */
    function registerForAllocation(
        address _user,
        uint8 _tier,
        uint8 _multi,
        uint256 _shares
    )
        public
        override
        returns (bool)
    {
        require(msg.sender == (layerZero) || msg.sender == tierMigratorAddr, "Invalid sender");
        uint256 oldShares = userAllocation[_user].shares;
        uint256 oldDeposits = userAllocation[_user].deposits;

        bool eventHasStarted = block.timestamp >= dcbAgreement.startDate;

        if (eventHasStarted) {
            require(oldShares == 0, "Already registered for GA");
        }

        if (oldDeposits != _shares) {
            userAllocation[_user].deposits = _shares;
        }

        if (eventHasStarted || _tier < dcbAgreement.minTier) {
            _shares = 0;
        }

        if (!userAllocation[_user].active) _registeredUsers.push(_user);
        userAllocation[_user].active = true;
        userAllocation[_user].tier = _tier;
        userAllocation[_user].multi = _multi;

        if (oldShares != _shares) {
            userAllocation[_user].shares = _shares;
            totalShares = totalShares - oldShares + _shares;
        }

        emit UserRegistered(_user);
        return true;
    }

    /**
     * @dev callback function from layer zero
     *
     * @param _id  Chain id of source
     * @param _srcAddress  Address of source
     * param  Null value
     * @param data  Data to be decoded
     */
    function lzReceive(uint16 _id, bytes calldata _srcAddress, uint64, bytes memory data) public override {
        require(
            _id == nativeChainId
                && keccak256(_srcAddress) == keccak256(abi.encodePacked(tierMigratorAddr, address(this))),
            "Invalid source"
        );

        address user;
        uint8 tier;
        uint8 multi;
        uint256 shares;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            // Extract the address from data (first 20 bytes)
            user := mload(add(data, 20))

            // Extract the first uint8 (21st byte)
            tier := byte(0, mload(add(data, 52)))

            // Extract the second uint8 (22nd byte)
            multi := byte(0, mload(add(data, 53)))

            // Extract the third uint256 (last 32 bytes)
            shares := mload(add(data, 54))
        }

        registerForAllocation(user, tier, multi, shares);
    }

    /**
     * @dev function to register users in bulk
     *
     * @param _users Users to register
     * @param _tierOfUser Tier of users
     * @param _multiOfUser  Multiplier of users
     * @param _depositsOfUser  Deposits of users
     */
    function registerByManager(
        address[] calldata _users,
        uint8[] calldata _tierOfUser,
        uint8[] calldata _multiOfUser,
        uint256[] calldata _depositsOfUser
    )
        external
        onlyManager
    {
        require(
            (_users.length == _tierOfUser.length) && (_tierOfUser.length == _multiOfUser.length)
                && (_depositsOfUser.length == _tierOfUser.length),
            "Invalid input"
        );
        uint256 len = _users.length;
        require(uint32(block.timestamp) <= dcbAgreement.startDate, "Registration closed");
        uint256 totalShare;
        uint256 minTier = dcbAgreement.minTier;

        for (uint256 i = 0; i < len; ++i) {
            require(!userAllocation[_users[i]].active, "Already registered");

            InvestorAllocation storage investor = userAllocation[_users[i]];
            investor.active = true;
            investor.tier = _tierOfUser[i];
            investor.multi = _multiOfUser[i];
            investor.deposits = _depositsOfUser[i];

            _registeredUsers.push(_users[i]);
            uint256 share = _tierOfUser[i] < minTier ? 0 : _depositsOfUser[i];

            if (share > 0) {
                totalShare = totalShare + share;
                investor.shares = share;
            }
        }

        totalShares = totalShares + totalShare;
        emit BulkUserRegustered(_users);
    }

    /**
     *
     * @dev function to fund the agreement
     *
     * @param {_investFund} Amount of fund to invest
     *
     * @return {bool} return status of operation
     *
     */
    function fundAgreement(uint256 _investFund) external override nonReentrant returns (bool) {
        /**
         * Check if user have registered
         */
        require(userAllocation[msg.sender].active, "User not registered");

        /**
         * check if project has provided tokens
         */
        require(
            saleToken.balanceOf(address(vesting)) >= dcbAgreement.totalTokenOnSale, "Tokens not received from project"
        );

        /**
         * check if investor is willing to invest any funds
         */
        require(_investFund > 0, "You cannot invest 0");

        /**
         * check if startDate has started
         */
        require(uint32(block.timestamp) >= dcbAgreement.startDate, "Crowdfunding not open");

        /**
         * check if endDate has already passed
         */
        require(uint32(block.timestamp) < dcbAgreement.endDate, "Crowdfunding ended");

        require(dcbAgreement.totalInvestFund + _investFund <= dcbAgreement.hardcap, "Hardcap already met");

        bool isGa;
        uint256 multi = 1;

        // First round - GA - 1x allocation
        if (uint32(block.timestamp) < dcbAgreement.startDate + durations[0]) {
            isGa = true;
            // Second round - FCFS - 2x allocation
        } else if (uint32(block.timestamp) < dcbAgreement.startDate + durations[0] + durations[1]) {
            multi = 2;
            // Third round - FCFS - 10x allocation
        } else {
            multi = 10;
        }

        // Allocation of user
        uint256 alloc = getUserAllocation(msg.sender, isGa);

        // during FCFS users get multiplied allocation
        require(
            dcbAgreement.investorList[msg.sender].investAmount + _investFund <= alloc * multi,
            "Amount greater than allocation"
        );

        if (dcbAgreement.investorList[msg.sender].active == 0) {
            /**
             * add new investor to investor list for specific agreeement
             */
            dcbAgreement.investorList[msg.sender].wallet = msg.sender;
            dcbAgreement.investorList[msg.sender].investAmount = _investFund;
            dcbAgreement.investorList[msg.sender].joinDate = uint32(block.timestamp);
            dcbAgreement.investorList[msg.sender].active = 1;
            _participants.push(msg.sender);
        }
        // user has already deposited so update the deposit
        else {
            dcbAgreement.investorList[msg.sender].investAmount =
                dcbAgreement.investorList[msg.sender].investAmount + _investFund;
        }

        dcbAgreement.totalInvestFund = dcbAgreement.totalInvestFund + _investFund;

        uint256 value = dcbAgreement.investorList[msg.sender].investAmount;
        uint256 numTokens = (value * dcbAgreement.totalTokenOnSale) / (dcbAgreement.hardcap);

        require(numTokens > 0, "Tokens cannot be 0");

        investment.setUserInvestment(msg.sender, address(this), value);
        vesting.setCrowdfundingWhitelist(msg.sender, numTokens, value);

        emit NewInvestment(msg.sender, _investFund);

        return true;
    }

    /**
     *
     * @dev getter function for list of participants
     *
     * @return {address[]} return total participants of crowdfunding
     *
     */
    function getParticipants() external view returns (address[] memory) {
        return _participants;
    }

    /**
     *
     * @dev getter function for list of registered users
     *
     * @return {address[]} return total participants registered for crowdfunding
     *
     */
    function getRegisteredUsers() external view returns (address[] memory) {
        return _registeredUsers;
    }

    /**
     * @dev getter function for user investment
     *
     * @param _address address of user
     * @return investAmount Investment amount of user
     * @return joinDate Join date of user
     */
    function userInvestment(address _address) external view override returns (uint256 investAmount, uint256 joinDate) {
        investAmount = dcbAgreement.investorList[_address].investAmount;
        joinDate = dcbAgreement.investorList[_address].joinDate;
    }

    /**
     * @dev getter function for ticket value of shares
     *
     * @param _shares shares of user
     *
     * @return return allocation for shares
     */
    function getAllocationForShares(uint256 _shares) public view returns (uint256) {
        if (totalShares == 0) return 0;
        return ((_shares * dcbAgreement.hardcap) / totalShares);
    }

    /**
     *
     * @dev getter function for allocation of a user
     *
     * @param _address Address of the user
     *
     * @return return total participant count of crowdfunding
     *
     */
    function getUserAllocation(address _address, bool _isGa) public view override returns (uint256) {
        if (totalShares == 0) return 0;
        uint256 shares = _isGa ? userAllocation[_address].shares : userAllocation[_address].deposits;
        return (shares * dcbAgreement.hardcap) / totalShares;
    }

    /**
     *
     * @dev getter function for agreement info
     *
     * @return return agreement info
     *
     */
    function getInfo() public view override returns (uint256, uint256, uint256, uint256, uint256, uint256) {
        return (
            dcbAgreement.hardcap,
            dcbAgreement.createDate,
            dcbAgreement.startDate,
            dcbAgreement.endDate,
            dcbAgreement.totalInvestFund,
            _participants.length
        );
    }
}

File 2 of 18 : ILayerZeroReceiver.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity >=0.5.0;

interface ILayerZeroReceiver {
    // @notice LayerZero endpoint will invoke this function to deliver the message on the destination
    // @param _srcChainId - the source endpoint identifier
    // @param _srcAddress - the source sending contract address from the source chain
    // @param _nonce - the ordered message nonce
    // @param _payload - the signed payload is the UA bytes has encoded to be sent
    function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) external;
}

File 3 of 18 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 4 of 18 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 5 of 18 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

File 6 of 18 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 7 of 18 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 8 of 18 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 9 of 18 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
     * 0 before setting it to a non-zero value.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 10 of 18 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 11 of 18 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 12 of 18 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 13 of 18 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 14 of 18 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 15 of 18 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 16 of 18 : IDCBCrowdfunding.sol
// SPDX-License-Identifier: MIT

//** DCB Crowdfunding Interface */
//** Author: Aceson & Aaron 2023.3 */

import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";

pragma solidity 0.8.19;

interface IDCBCrowdfunding {
    struct Params {
        uint8 minTier;
        uint16 nativeChainId;
        uint32 startDate;
        address investmentAddr;
        address tierMigratorAddr;
        address vestingAddr;
        address paymentToken;
        address saleTokenAddr;
        address layerZeroAddr;
        uint256 totalTokenOnSale;
        uint256 hardcap;
        uint32[3] durations;
    }

    struct InvestorInfo {
        uint8 active;
        uint32 joinDate;
        address wallet;
        uint256 investAmount;
    }

    struct InvestorAllocation {
        uint8 tier;
        uint8 multi;
        uint256 shares;
        uint256 deposits;
        bool active;
    }

    /**
     *
     * @dev AgreementInfo will have information about agreement.
     * It will contains agreement details between innovator and investor.
     * For now, innovatorWallet will reflect owner of the platform.
     *
     */
    struct AgreementInfo {
        uint8 minTier;
        IERC20 token;
        uint32 createDate;
        uint32 startDate;
        uint32 endDate;
        uint256 totalTokenOnSale;
        uint256 hardcap;
        uint256 totalInvestFund;
        mapping(address => InvestorInfo) investorList;
    }

    /**
     *
     * @dev this event will call when new agreement generated.
     * this is called when innovator create a new agreement but for now,
     * it is calling when owner create new agreement
     *
     */
    event CreateAgreement(Params);

    /**
     *
     * @dev it is calling when new investor joinning to the existing agreement
     *
     */
    event NewInvestment(address wallet, uint256 amount);

    /**
     *
     * inherit functions will be used in contract
     *
     */
    function registerForAllocation(address _user, uint8 _tier, uint8 _multi, uint256 _shares) external returns (bool);

    function registerByManager(
        address[] calldata _users,
        uint8[] calldata _tierOfUser,
        uint8[] calldata _multiOfUser,
        uint256[] calldata _depositsOfUser
    )
        external;

    function initialize(Params memory p) external;

    function setParams(Params calldata p) external;

    function setToken(address _token) external;

    function fundAgreement(uint256 _investFund) external returns (bool);

    function userInvestment(address _address) external view returns (uint256 investAmount, uint256 joinDate);

    function getInfo()
        external
        view
        returns (
            uint256 hardcap,
            uint256 createDate,
            uint256 startDate,
            uint256 endDate,
            uint256 totalInvestFund,
            uint256 totalParticipants
        );

    function getParticipants() external view returns (address[] memory);

    function getUserAllocation(address _address, bool _isGa) external view returns (uint256);
}

File 17 of 18 : IDCBInvestments.sol
// SPDX-License-Identifier: UNLICENSED

//** DCB Investments Interface */
//** Author Aaron & Aceson : DCB 2023.2 */

pragma solidity 0.8.19;

interface IDCBInvestments {
    event DistributionClaimed(address _user, address _event);
    event ImplementationsChanged(address _newVesting, address _newTokenClaim, address _newCrowdfunding);
    event Initialized(uint8 version);
    event ManagerRoleSet(address _user, bool _status);
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
    event UserInvestmentSet(address _address, address _event, uint256 _amount);

    function changeImplementations(address _newVesting, address _newTokenClaim, address _newCrowdfunding) external;

    function changeVestingStartTime(address _event, uint256 _newTime) external;

    function claimDistribution(address _event) external returns (bool);

    function crowdfundingImpl() external view returns (address);

    function events(address)
        external
        view
        returns (
            string memory name,
            address paymentToken,
            address tokenAddress,
            address vestingAddress,
            uint8 eventType
        );

    function eventsList(uint256) external view returns (address);

    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    function getUserInvestments(address _address) external view returns (address[] memory);

    function grantRole(bytes32 role, address account) external;

    function hasRole(bytes32 role, address account) external view returns (bool);

    function initialize() external;

    function numUserInvestments(address) external view returns (uint256);

    function renounceRole(bytes32 role, address account) external;

    function revokeRole(bytes32 role, address account) external;

    function setManagerRole(address _user, bool _status) external;

    function setUserInvestment(address _address, address _event, uint256 _amount) external returns (bool);

    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    function tokenClaimImpl() external view returns (address);

    function userAmount(address, address) external view returns (uint256);

    function vestingImpl() external view returns (address);
}

File 18 of 18 : IDCBPlatformVesting.sol
// SPDX-License-Identifier: MIT

//** DCB Vesting Interface */

pragma solidity 0.8.19;

interface IDCBPlatformVesting {
    struct VestingInfo {
        uint256 cliff;
        uint256 start;
        uint256 duration;
        uint256 initialUnlockPercent;
    }

    struct VestingPool {
        uint256 cliff;
        uint256 start;
        uint256 duration;
        uint256 initialUnlockPercent;
        WhitelistInfo[] whitelistPool;
        mapping(address => HasWhitelist) hasWhitelist;
    }

    /**
     *
     * @dev WhiteInfo is the struct type which store whitelist information
     *
     */
    struct WhitelistInfo {
        address wallet;
        uint256 amount;
        uint256 distributedAmount;
        uint256 value; // price * amount in decimals of payment token
        uint256 joinDate;
        uint256 refundDate;
        bool refunded;
    }

    struct HasWhitelist {
        uint256 arrIdx;
        bool active;
    }

    struct ContractSetup {
        address _innovator;
        address _vestedToken;
        address _paymentToken;
        uint32 _nativeChainId;
        uint256 _totalTokenOnSale;
        uint256 _gracePeriod;
        uint256[] _refundFees;
    }

    struct VestingSetup {
        uint256 _startTime;
        uint256 _cliff;
        uint256 _duration;
        uint256 _initialUnlockPercent;
    }

    struct BuybackSetup {
        address router;
        address[] path;
    }

    event Claim(address indexed token, uint256 amount, uint256 time);

    event SetWhitelist(address indexed wallet, uint256 amount, uint256 value);

    event Refund(address indexed wallet, uint256 amount);

    function initializeCrowdfunding(ContractSetup memory c, VestingSetup memory p, BuybackSetup memory b) external;

    function initializeTokenClaim(address _token, VestingSetup memory p, uint32 _nativeChainId) external;

    function setCrowdfundingWhitelist(address _wallet, uint256 _amount, uint256 _value) external;

    function setTokenClaimWhitelist(address _wallet, uint256 _amount) external;

    function claimDistribution(address _wallet) external returns (bool);

    function getWhitelist(address _wallet) external view returns (WhitelistInfo memory);

    function getWhitelistPool() external view returns (WhitelistInfo[] memory);

    function transferOwnership(address _newOwner) external;

    function setVestingParams(
        uint256 _cliff,
        uint256 _start,
        uint256 _duration,
        uint256 _initialUnlockPercent
    )
        external;

    function setCrowdFundingParams(ContractSetup calldata c) external;

    function setToken(address _newToken) external;

    function rescueTokens(address _receiver, uint256 _amount) external;

    /**
     *
     * inherit functions will be used in contract
     *
     */
    function getVestAmount(address _wallet) external view returns (uint256);

    function getReleasableAmount(address _wallet) external view returns (uint256);

    function getVestingInfo() external view returns (VestingInfo memory);
}

Settings
{
  "metadata": {
    "bytecodeHash": "none"
  },
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "@prb/test/=lib/prb-math/lib/prb-test/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "src/=src/",
    "v2-periphery/=lib/v2-periphery/contracts/",
    "layerzero/=lib/LayerZero/contracts/",
    "LayerZero/=lib/LayerZero/contracts/",
    "prb-math/=lib/prb-math/src/",
    "prb-test/=lib/prb-test/src/"
  ],
  "libraries": {}
}

Contract ABI

API
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address[]","name":"users","type":"address[]"}],"name":"BulkUserRegustered","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"indexed":false,"internalType":"struct IDCBCrowdfunding.Params","name":"","type":"tuple"}],"name":"CreateAgreement","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"indexed":false,"internalType":"struct IDCBCrowdfunding.Params","name":"p","type":"tuple"}],"name":"EditAgreement","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"wallet","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"NewInvestment","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"}],"name":"UserRegistered","type":"event"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dcbAgreement","outputs":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint32","name":"createDate","type":"uint32"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"uint32","name":"endDate","type":"uint32"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint256","name":"totalInvestFund","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"durations","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_investFund","type":"uint256"}],"name":"fundAgreement","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"getAllocationForShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInfo","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getParticipants","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRegisteredUsers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"},{"internalType":"bool","name":"_isGa","type":"bool"}],"name":"getUserAllocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"internalType":"struct IDCBCrowdfunding.Params","name":"p","type":"tuple"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"investment","outputs":[{"internalType":"contract IDCBInvestments","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"layerZero","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"_id","type":"uint16"},{"internalType":"bytes","name":"_srcAddress","type":"bytes"},{"internalType":"uint64","name":"","type":"uint64"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"lzReceive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_users","type":"address[]"},{"internalType":"uint8[]","name":"_tierOfUser","type":"uint8[]"},{"internalType":"uint8[]","name":"_multiOfUser","type":"uint8[]"},{"internalType":"uint256[]","name":"_depositsOfUser","type":"uint256[]"}],"name":"registerByManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint8","name":"_tier","type":"uint8"},{"internalType":"uint8","name":"_multi","type":"uint8"},{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"registerForAllocation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"saleToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint8","name":"minTier","type":"uint8"},{"internalType":"uint16","name":"nativeChainId","type":"uint16"},{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"address","name":"investmentAddr","type":"address"},{"internalType":"address","name":"tierMigratorAddr","type":"address"},{"internalType":"address","name":"vestingAddr","type":"address"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleTokenAddr","type":"address"},{"internalType":"address","name":"layerZeroAddr","type":"address"},{"internalType":"uint256","name":"totalTokenOnSale","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"uint32[3]","name":"durations","type":"uint32[3]"}],"internalType":"struct IDCBCrowdfunding.Params","name":"p","type":"tuple"}],"name":"setParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"setToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tierMigratorAddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userAllocation","outputs":[{"internalType":"uint8","name":"tier","type":"uint8"},{"internalType":"uint8","name":"multi","type":"uint8"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"deposits","type":"uint256"},{"internalType":"bool","name":"active","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"userInvestment","outputs":[{"internalType":"uint256","name":"investAmount","type":"uint256"},{"internalType":"uint256","name":"joinDate","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vesting","outputs":[{"internalType":"contract IDCBPlatformVesting","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.