Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
ManualCompound
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 100 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol"; import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "../interfaces/IMasterPenpie.sol"; import "../interfaces/IMasterPenpieMeta.sol"; import "../interfaces/IBaseRewardPool.sol"; import "../interfaces/ILocker.sol"; import { IPendleMarketDepositHelper } from "../interfaces/pendle/IPendleMarketDepositHelper.sol"; import "../interfaces/pendle/IPendleRouterV4.sol"; import "../interfaces/IConvertor.sol"; contract ManualCompound is Initializable, OwnableUpgradeable, ReentrancyGuardUpgradeable, PausableUpgradeable { using SafeERC20 for IERC20; /* ============ State Variables ============ */ address public PENDLE; address public PENPIE; address public pnpLocker; address public pendleSwap; address public marketDepositHelper; address public pendleStaking; address public mPendleConverter; address public kyBerSwapRouter; address private ADDREESS_ZERO = address(0); uint256 public constant LIQUIDATE_TO_PENDLE_FINANCE = 1; uint256 public constant CONVERT_TO_MPENDLE = 2; uint256 public constant MPENDLE_STAKE_MODE = 1; IPendleRouterV4 public pendleRouter; IMasterPenpie public masterPenpie; struct CompoundState { uint256 userTotalPendleRewardToSendBack; uint256 userTotalPendleRewardToConvertMpendle; uint256[] userPendleRewardsForCurrentMarket; } mapping(address => bool) public compoundableRewards; /* ============ Events ============ */ event HelperSet(address helper); event LockerSet(address locker); event RewardTokensAdded(address[] rewardTokens); event RewardTokensRemoved(address[] rewardToken); event Compounded(address indexed user, uint256 marketLength, uint256 rewardLength); event DepositHelperSet(address marketDepositHelper); event pendleRouterSet(address pendleRouter); event mPendleConerterSet(address mPendleConverter); event kyBerSwapRouterSet(address kyBerSwapRouter); event PendleSwapSet(address pendleSwap); event zapInPendleMarket(address user, uint256 totalAmount, address market, uint256 compoundingMode); event convertedToMpendle(address user, address sourceRewardToken, uint256 totalAmount, uint256 compoundingMode, uint256 mPendleConvertMode); event lockedPenpie(address user,address sourceRewardToken, uint256 totalAmount); event pendleDexApproxParamsSet( uint256 guessMin, uint256 guessMax, uint256 guessOffChain, uint256 maxIteration, uint256 eps); /* ============ Custom Errors ============ */ error IsNotSmartContractAddress(); error InputDataLengthMissMatch(); error InputDataIsNotValide(); error PNPTokenNotInRewards(); error InvalidRewardToken(); /* ============ Constructor ============ */ constructor() { _disableInitializers(); } function __manualCompound_init( address _pendle, address _penpie, address _masterPenpie, address _pendleRouter, address _pnplocker, address _DepositHelper, address _PendleStaking, address _mPendleConverter, address _kyberSwapRouter, address _pendleSwap ) public initializer { __Ownable_init(); __ReentrancyGuard_init(); __Pausable_init(); PENDLE = _pendle; PENPIE = _penpie; masterPenpie = IMasterPenpie(_masterPenpie); pendleRouter = IPendleRouterV4(_pendleRouter); pnpLocker = _pnplocker; marketDepositHelper = _DepositHelper; pendleStaking = _PendleStaking; mPendleConverter = _mPendleConverter; kyBerSwapRouter = _kyberSwapRouter; pendleSwap = _pendleSwap; } /* ============ External Functions ============ */ function setPendleRouter( address _pendleRouter ) external onlyOwner { if(!Address.isContract(_pendleRouter)) revert IsNotSmartContractAddress(); pendleRouter = IPendleRouterV4(_pendleRouter); emit pendleRouterSet(_pendleRouter); } function setLocker( address _pnplocker ) external onlyOwner { if(!Address.isContract(_pnplocker)) revert IsNotSmartContractAddress(); pnpLocker = _pnplocker; emit LockerSet(_pnplocker); } function setDepositHelper(address _DepositHelper) external onlyOwner { if(!Address.isContract(_DepositHelper)) revert IsNotSmartContractAddress(); marketDepositHelper = _DepositHelper; emit DepositHelperSet(marketDepositHelper); } function setPendleStaking(address _PendleStaking) external onlyOwner { if(!Address.isContract(_PendleStaking)) revert IsNotSmartContractAddress(); pendleStaking = _PendleStaking; emit DepositHelperSet(pendleStaking); } function setMPendleConverter(address _mPendleConverter) external onlyOwner { if(!Address.isContract(_mPendleConverter)) revert IsNotSmartContractAddress(); mPendleConverter = _mPendleConverter; emit DepositHelperSet(mPendleConverter); } function setKyberSwapRouter(address _kyberSwapRouter) external onlyOwner { if(!Address.isContract(_kyberSwapRouter)) revert IsNotSmartContractAddress(); kyBerSwapRouter = _kyberSwapRouter; emit kyBerSwapRouterSet(kyBerSwapRouter); } function setPendleSwap(address _pendleSwap) external onlyOwner { if(!Address.isContract(_pendleSwap)) revert IsNotSmartContractAddress(); pendleSwap = _pendleSwap; emit PendleSwapSet(pendleSwap); } function setRewardTokensAsCompoundable( address[] calldata _rewardTokenAddress ) external onlyOwner { uint256 tokensLength = _rewardTokenAddress.length; for(uint256 i = 0;i < tokensLength; ) { compoundableRewards[_rewardTokenAddress[i]] = true; unchecked{ i++; } } emit RewardTokensAdded(_rewardTokenAddress); } function removeRewardTokensAsCompoundable( address[] calldata _rewardTokenAddress ) external onlyOwner { uint256 tokensLength = _rewardTokenAddress.length; for(uint256 i = 0;i < tokensLength; ) { compoundableRewards[_rewardTokenAddress[i]] = false; unchecked{ i++; } } emit RewardTokensRemoved( _rewardTokenAddress); } function isRewardCompudable( address _tokenAddress ) external view returns(bool) { return compoundableRewards[_tokenAddress]; } // receive() external payable {} function compound( address[] memory _lps, address[][] memory _rewards, bytes[] memory _kyBarExectCallData, address[] memory baseTokens, uint256[] memory compoundingMode, IPendleRouterV4.ApproxParams memory _pdexparams, uint256 slippageTolarance, bool isClaimPNP ) external whenNotPaused nonReentrant { if (_rewards.length != _lps.length || _kyBarExectCallData.length != _lps.length || baseTokens.length != _lps.length || compoundingMode.length != _lps.length) revert InputDataLengthMissMatch(); CompoundState memory state; state.userPendleRewardsForCurrentMarket = new uint256[](_lps.length); bool pnpFound; for(uint256 k; k < _lps.length;k++) { (,,,state.userPendleRewardsForCurrentMarket[k]) = masterPenpie.pendingTokens(_lps[k], msg.sender, PENDLE); } masterPenpie.multiclaimOnBehalf( _lps, _rewards, msg.sender, isClaimPNP ); for (uint256 i; i < _lps.length;i++) { for (uint j; j < _rewards[i].length;j++) { address _rewardTokenAddress = _rewards[i][j]; uint256 receivedBalance = IERC20(_rewardTokenAddress).balanceOf( address(this) ); if (_rewardTokenAddress == PENPIE) { pnpFound = true; } if(receivedBalance == 0) continue; if (!compoundableRewards[_rewardTokenAddress]) { IERC20(_rewardTokenAddress).safeTransfer( msg.sender, receivedBalance ); continue; } if (_rewardTokenAddress == PENDLE) { if(compoundingMode[i] == LIQUIDATE_TO_PENDLE_FINANCE) { IERC20(PENDLE).safeApprove(address(pendleRouter), state.userPendleRewardsForCurrentMarket[i]); _ZapInToPendleMarket(state.userPendleRewardsForCurrentMarket[i], _lps[i], baseTokens[i], _kyBarExectCallData[i], slippageTolarance, _pdexparams); } else if( compoundingMode[i] == CONVERT_TO_MPENDLE ) { state.userTotalPendleRewardToConvertMpendle += state.userPendleRewardsForCurrentMarket[i]; } else { state.userTotalPendleRewardToSendBack += state.userPendleRewardsForCurrentMarket[i]; } } else if (_rewardTokenAddress == PENPIE) { _lockPenpie(receivedBalance); } else { revert InvalidRewardToken(); } } } if (isClaimPNP && !pnpFound) { revert PNPTokenNotInRewards(); } if(state.userTotalPendleRewardToConvertMpendle != 0) _convertToMPendle(state.userTotalPendleRewardToConvertMpendle); if(state.userTotalPendleRewardToSendBack != 0 ) IERC20(PENDLE).safeTransfer( msg.sender, state.userTotalPendleRewardToSendBack ); emit Compounded(msg.sender, _lps.length, _rewards.length); } /* ============ Internel Functions ============ */ function _lockPenpie( uint256 _receivedRewardBalance) internal { IERC20(PENPIE).safeApprove( pnpLocker, _receivedRewardBalance ); ILocker(pnpLocker).lockFor( _receivedRewardBalance, msg.sender ); emit lockedPenpie(msg.sender, PENPIE, _receivedRewardBalance ); } function _convertToMPendle(uint256 _receivedRewardBalance) internal { IERC20(PENDLE).safeApprove(mPendleConverter, _receivedRewardBalance); IConvertor(mPendleConverter).convert(msg.sender, _receivedRewardBalance, MPENDLE_STAKE_MODE); emit convertedToMpendle(msg.sender, PENDLE, _receivedRewardBalance, CONVERT_TO_MPENDLE, MPENDLE_STAKE_MODE); } function _ZapInToPendleMarket( uint256 pendleRewardAmount, address _market, address _baseToken, bytes memory exectCallData, uint256 slippageTolarance, IPendleRouterV4.ApproxParams memory _pdexparams) internal { IPendleRouterV4.FillOrderParams[] memory fillOrderParams = new IPendleRouterV4.FillOrderParams[](0); (uint256 netLpOut,, ) = pendleRouter.addLiquiditySingleToken( address(this), _market, slippageTolarance, IPendleRouterV4.ApproxParams( _pdexparams.guessMin, _pdexparams.guessMax, _pdexparams.guessOffchain, _pdexparams.maxIteration, _pdexparams.eps ), IPendleRouterV4.TokenInput( PENDLE, pendleRewardAmount, _baseToken, pendleSwap, IPendleRouterV4.SwapData( IPendleRouterV4.SwapType.KYBERSWAP, kyBerSwapRouter, exectCallData, false ) ), IPendleRouterV4.LimitOrderData( ADDREESS_ZERO, 0, fillOrderParams, fillOrderParams, "0x" ) ); IERC20(_market).safeApprove( pendleStaking, netLpOut ); IPendleMarketDepositHelper(marketDepositHelper).depositMarketFor( _market, msg.sender, netLpOut ); emit zapInPendleMarket( msg.sender, pendleRewardAmount, _market, LIQUIDATE_TO_PENDLE_FINANCE); } function pause() external onlyOwner { _pause(); } function unpause() external onlyOwner { _unpause(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; interface IBaseRewardPool { function stakingDecimals() external view returns (uint256); function totalStaked() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function rewardPerToken(address token) external view returns (uint256); function rewardTokenInfos() external view returns ( address[] memory bonusTokenAddresses, string[] memory bonusTokenSymbols ); function earned(address account, address token) external view returns (uint256); function allEarned(address account) external view returns (uint256[] memory pendingBonusRewards); function queueNewRewards(uint256 _rewards, address token) external returns (bool); function getReward(address _account, address _receiver) external returns (bool); function getRewards(address _account, address _receiver, address[] memory _rewardTokens) external; function updateFor(address account) external; function updateRewardQueuer(address _rewardManager, bool _allowed) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IBribeRewardDistributor { struct Claimable { address token; uint256 amount; } struct Claim { address token; address account; uint256 amount; bytes32[] merkleProof; } function getClaimable(Claim[] calldata _claims) external view returns(Claimable[] memory); function claim(Claim[] calldata _claims) external; }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; interface IConvertor { function convert(address _for, uint256 _amount, uint256 _mode) external; function convertFor( uint256 _amountIn, uint256 _convertRatio, uint256 _minRec, address _for, uint256 _mode ) external; function smartConvertFor(uint256 _amountIn, uint256 _mode, address _for) external returns (uint256 obtainedmWomAmount); function mPendleSV() external returns (address); function mPendleConvertor() external returns (address); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; interface ILocker { struct UserUnlocking { uint256 startTime; uint256 endTime; uint256 amountInCoolDown; // total amount comitted to the unlock slot, never changes except when reseting slot } function getUserUnlockingSchedule(address _user) external view returns (UserUnlocking[] memory slots); function getUserAmountInCoolDown(address _user) external view returns (uint256); function totalLocked() external view returns (uint256); function getFullyUnlock(address _user) external view returns(uint256 unlockedAmount); function getRewardablePercentWAD(address _user) external view returns(uint256 percent); function totalAmountInCoolDown() external view returns (uint256); function getUserNthUnlockSlot(address _user, uint256 n) external view returns ( uint256 startTime, uint256 endTime, uint256 amountInCoolDown ); function getUserUnlockSlotLength(address _user) external view returns (uint256); function getNextAvailableUnlockSlot(address _user) external view returns (uint256); function getUserTotalLocked(address _user) external view returns (uint256); function lock(uint256 _amount) external; function lockFor(uint256 _amount, address _for) external; function startUnlock(uint256 _amountToCoolDown) external; function cancelUnlock(uint256 _slotIndex) external; function unlock(uint256 slotIndex) external; }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "./IBribeRewardDistributor.sol"; interface IMasterPenpie { function poolLength() external view returns (uint256); function setPoolManagerStatus(address _address, bool _bool) external; function add(uint256 _allocPoint, address _stakingTokenToken, address _receiptToken, address _rewarder) external; function set(address _stakingToken, uint256 _allocPoint, address _rewarder, bool _isActive) external; function removePool(address _stakingToken) external; function createRewarder(address _stakingTokenToken, address mainRewardToken) external returns (address); // View function to see pending GMPs on frontend. function getPoolInfo(address token) external view returns ( uint256 emission, uint256 allocpoint, uint256 sizeOfPool, uint256 totalPoint ); function pendingTokens(address _stakingToken, address _user, address token) external view returns ( uint256 _pendingGMP, address _bonusTokenAddress, string memory _bonusTokenSymbol, uint256 _pendingBonusToken ); function allPendingTokensWithBribe( address _stakingToken, address _user, IBribeRewardDistributor.Claim[] calldata _proof ) external view returns ( uint256 pendingPenpie, address[] memory bonusTokenAddresses, string[] memory bonusTokenSymbols, uint256[] memory pendingBonusRewards ); function allPendingTokens(address _stakingToken, address _user) external view returns ( uint256 pendingPenpie, address[] memory bonusTokenAddresses, string[] memory bonusTokenSymbols, uint256[] memory pendingBonusRewards ); function massUpdatePools() external; function updatePool(address _stakingToken) external; function deposit(address _stakingToken, uint256 _amount) external; function depositFor(address _stakingToken, address _for, uint256 _amount) external; function withdraw(address _stakingToken, uint256 _amount) external; function beforeReceiptTokenTransfer(address _from, address _to, uint256 _amount) external; function afterReceiptTokenTransfer(address _from, address _to, uint256 _amount) external; function depositVlPenpieFor(uint256 _amount, address sender) external; function withdrawVlPenpieFor(uint256 _amount, address sender) external; function depositMPendleSVFor(uint256 _amount, address sender) external; function withdrawMPendleSVFor(uint256 _amount, address sender) external; function multiclaimFor(address[] calldata _stakingTokens, address[][] calldata _rewardTokens, address user_address) external; function multiclaimOnBehalf(address[] memory _stakingTokens, address[][] calldata _rewardTokens, address user_address, bool _isClaimPNP) external; function multiclaim(address[] calldata _stakingTokens) external; function emergencyWithdraw(address _stakingToken, address sender) external; function updateEmissionRate(uint256 _gmpPerSec) external; function stakingInfo(address _stakingToken, address _user) external view returns (uint256 depositAmount, uint256 availableAmount); function totalTokenStaked(address _stakingToken) external view returns (uint256); function getRewarder(address _stakingToken) external view returns (address rewarder); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; interface IMasterPenpieMeta { function poolLength() external view returns (uint256); function penpieOFT() external view returns (address); function vlPenpie() external view returns (address); function registeredToken(uint256) external view returns (address); struct PenpiePoolInfo { address stakingToken; // Address of staking token contract to be staked. address receiptToken; // Address of receipt token contract represent a staking position uint256 allocPoint; // How many allocation points assigned to this pool. Penpies to distribute per second. uint256 lastRewardTimestamp; // Last timestamp that Penpies distribution occurs. uint256 accPenpiePerShare; // Accumulated Penpies per share, times 1e12. See below. uint256 totalStaked; address rewarder; bool isActive; } function tokenToPoolInfo(address) external view returns (PenpiePoolInfo memory); function getPoolInfo(address) external view returns (uint256, uint256, uint256, uint256); function stakingInfo(address _stakingToken, address _user) external view returns (uint256 stakedAmount, uint256 availableAmount); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IWETH is IERC20 { event Deposit(address indexed dst, uint256 wad); event Withdrawal(address indexed src, uint256 wad); function deposit() external payable; function withdraw(uint256 wad) external; }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import "../../libraries/BulkSellerMathCore.sol"; interface IPBulkSeller { event SwapExactTokenForSy(address receiver, uint256 netTokenIn, uint256 netSyOut); event SwapExactSyForToken(address receiver, uint256 netSyIn, uint256 netTokenOut); event RateUpdated( uint256 newRateTokenToSy, uint256 newRateSyToToken, uint256 oldRateTokenToSy, uint256 oldRateSyToToken ); event ReBalanceTokenToSy( uint256 netTokenDeposit, uint256 netSyFromToken, uint256 newTokenProp, uint256 oldTokenProp ); event ReBalanceSyToToken( uint256 netSyRedeem, uint256 netTokenFromSy, uint256 newTokenProp, uint256 oldTokenProp ); event ReserveUpdated(uint256 totalToken, uint256 totalSy); event FeeRateUpdated(uint256 newFeeRate, uint256 oldFeeRate); function swapExactTokenForSy( address receiver, uint256 netTokenIn, uint256 minSyOut ) external payable returns (uint256 netSyOut); function swapExactSyForToken( address receiver, uint256 exactSyIn, uint256 minTokenOut, bool swapFromInternalBalance ) external returns (uint256 netTokenOut); function SY() external view returns (address); function token() external view returns (address); function readState() external view returns (BulkSellerState memory); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import "../../libraries/MarketApproxLib.sol"; import "../../libraries/ActionBaseMintRedeem.sol"; interface IPendleMarketDepositHelper { function totalStaked(address _market) external view returns (uint256); function balance(address _market, address _address) external view returns (uint256); function depositMarket(address _market, uint256 _amount) external; function depositMarketFor(address _market, address _for, uint256 _amount) external; function withdrawMarket(address _market, uint256 _amount) external; function withdrawMarketWithClaim(address _market, uint256 _amount, bool _doClaim) external; function harvest(address _market, uint256 _minEthToRecieve) external; function setPoolInfo(address poolAddress, address rewarder, bool isActive) external; function removePoolInfo(address market) external; function setOperator(address _address, bool _value) external; function setmasterPenpie(address _masterPenpie) external; }
// SPDX-License-Identifier:MIT pragma solidity =0.8.19; interface IPendleRouterV4 { struct SwapData { SwapType swapType; address extRouter; bytes extCalldata; bool needScale; } enum SwapType { NONE, KYBERSWAP, ONE_INCH, // ETH_WETH not used in Aggregator ETH_WETH } struct ApproxParams { uint256 guessMin; uint256 guessMax; uint256 guessOffchain; uint256 maxIteration; uint256 eps; } struct TokenInput { // TOKEN DATA address tokenIn; uint256 netTokenIn; address tokenMintSy; // AGGREGATOR DATA address pendleSwap; SwapData swapData; } struct TokenOutput { // TOKEN DATA address tokenOut; uint256 minTokenOut; address tokenRedeemSy; // AGGREGATOR DATA address pendleSwap; SwapData swapData; } function redeemDueInterestAndRewards( address user, address[] calldata sys, address[] calldata yts, address[] calldata markets ) external; enum OrderType { SY_FOR_PT, PT_FOR_SY, SY_FOR_YT, YT_FOR_SY } struct Order { uint256 salt; uint256 expiry; uint256 nonce; OrderType orderType; address token; address YT; address maker; address receiver; uint256 makingAmount; uint256 lnImpliedRate; uint256 failSafeRate; bytes permit; } struct FillOrderParams { Order order; bytes signature; uint256 makingAmount; } struct LimitOrderData { address limitRouter; uint256 epsSkipMarket; // only used for swap operations, will be ignored otherwise FillOrderParams[] normalFills; FillOrderParams[] flashFills; bytes optData; } function addLiquiditySingleToken( address receiver, address market, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netLpOut, uint256 netSyFee, uint256 netSyInterm); function removeLiquiditySingleToken( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; interface IPInterestManagerYT { function userInterest( address user ) external view returns (uint128 lastPYIndex, uint128 accruedInterest); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IPPrincipalToken is IERC20Metadata { function burnByYT(address user, uint256 amount) external; function mintByYT(address user, uint256 amount) external; function initialize(address _YT) external; function SY() external view returns (address); function YT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); function symbol() external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; struct SwapData { SwapType swapType; address extRouter; bytes extCalldata; bool needScale; } enum SwapType { NONE, KYBERSWAP, ONE_INCH, // ETH_WETH not used in Aggregator ETH_WETH } interface IPSwapAggregator { function swap(address tokenIn, uint256 amountIn, SwapData calldata swapData) external payable; }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IRewardManager.sol"; import "./IPInterestManagerYT.sol"; interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT { event NewInterestIndex(uint256 indexed newIndex); event Mint( address indexed caller, address indexed receiverPT, address indexed receiverYT, uint256 amountSyToMint, uint256 amountPYOut ); event Burn( address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut ); event RedeemRewards(address indexed user, uint256[] amountRewardsOut); event RedeemInterest(address indexed user, uint256 interestOut); event WithdrawFeeToTreasury(uint256[] amountRewardsOut, uint256 syOut); function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut); function redeemPY(address receiver) external returns (uint256 amountSyOut); function redeemPYMulti( address[] calldata receivers, uint256[] calldata amountPYToRedeems ) external returns (uint256[] memory amountSyOuts); function redeemDueInterestAndRewards( address user, bool redeemInterest, bool redeemRewards ) external returns (uint256 interestOut, uint256[] memory rewardsOut); function rewardIndexesCurrent() external returns (uint256[] memory); function pyIndexCurrent() external returns (uint256); function pyIndexStored() external view returns (uint256); function getRewardTokens() external view returns (address[] memory); function SY() external view returns (address); function PT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); function doCacheIndexSameBlock() external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; interface IRewardManager { function userReward( address token, address user ) external view returns (uint128 index, uint128 accrued); }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IStandardizedYield is IERC20Metadata { /// @dev Emitted when any base tokens is deposited to mint shares event Deposit( address indexed caller, address indexed receiver, address indexed tokenIn, uint256 amountDeposited, uint256 amountSyOut ); /// @dev Emitted when any shares are redeemed for base tokens event Redeem( address indexed caller, address indexed receiver, address indexed tokenOut, uint256 amountSyToRedeem, uint256 amountTokenOut ); /// @dev check `assetInfo()` for more information enum AssetType { TOKEN, LIQUIDITY } /// @dev Emitted when (`user`) claims their rewards event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts); /** * @notice mints an amount of shares by depositing a base token. * @param receiver shares recipient address * @param tokenIn address of the base tokens to mint shares * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`) * @param minSharesOut reverts if amount of shares minted is lower than this * @return amountSharesOut amount of shares minted * @dev Emits a {Deposit} event * * Requirements: * - (`tokenIn`) must be a valid base token. */ function deposit( address receiver, address tokenIn, uint256 amountTokenToDeposit, uint256 minSharesOut ) external payable returns (uint256 amountSharesOut); /** * @notice redeems an amount of base tokens by burning some shares * @param receiver recipient address * @param amountSharesToRedeem amount of shares to be burned * @param tokenOut address of the base token to be redeemed * @param minTokenOut reverts if amount of base token redeemed is lower than this * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender` * @return amountTokenOut amount of base tokens redeemed * @dev Emits a {Redeem} event * * Requirements: * - (`tokenOut`) must be a valid base token. */ function redeem( address receiver, uint256 amountSharesToRedeem, address tokenOut, uint256 minTokenOut, bool burnFromInternalBalance ) external returns (uint256 amountTokenOut); /** * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy he can mint must be X * exchangeRate / 1e18 * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication & division */ function exchangeRate() external view returns (uint256 res); /** * @notice claims reward for (`user`) * @param user the user receiving their rewards * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` * @dev * Emits a `ClaimRewards` event * See {getRewardTokens} for list of reward tokens */ function claimRewards(address user) external returns (uint256[] memory rewardAmounts); /** * @notice get the amount of unclaimed rewards for (`user`) * @param user the user to check for * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` */ function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts); function rewardIndexesCurrent() external returns (uint256[] memory indexes); function rewardIndexesStored() external view returns (uint256[] memory indexes); /** * @notice returns the list of reward token addresses */ function getRewardTokens() external view returns (address[] memory); /** * @notice returns the address of the underlying yield token */ function yieldToken() external view returns (address); /** * @notice returns all tokens that can mint this SY */ function getTokensIn() external view returns (address[] memory res); /** * @notice returns all tokens that can be redeemed by this SY */ function getTokensOut() external view returns (address[] memory res); function isValidTokenIn(address token) external view returns (bool); function isValidTokenOut(address token) external view returns (bool); function previewDeposit( address tokenIn, uint256 amountTokenToDeposit ) external view returns (uint256 amountSharesOut); function previewRedeem( address tokenOut, uint256 amountSharesToRedeem ) external view returns (uint256 amountTokenOut); /** * @notice This function contains information to interpret what the asset is * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens) * @return assetAddress the address of the asset * @return assetDecimals the decimals of the asset */ function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; import "./TokenHelper.sol"; import "../interfaces/pendle/IStandardizedYield.sol"; import "../interfaces/pendle/IPYieldToken.sol"; import "../interfaces/pendle/IPBulkSeller.sol"; import "./Errors.sol"; import "../interfaces/pendle/IPSwapAggregator.sol"; struct TokenInput { // Token/Sy data address tokenIn; uint256 netTokenIn; address tokenMintSy; address bulk; // aggregator data address pendleSwap; SwapData swapData; } struct TokenOutput { // Token/Sy data address tokenOut; uint256 minTokenOut; address tokenRedeemSy; address bulk; // aggregator data address pendleSwap; SwapData swapData; } // solhint-disable no-empty-blocks abstract contract ActionBaseMintRedeem is TokenHelper { bytes internal constant EMPTY_BYTES = abi.encode(); function _mintSyFromToken( address receiver, address SY, uint256 minSyOut, TokenInput calldata inp ) internal returns (uint256 netSyOut) { SwapType swapType = inp.swapData.swapType; uint256 netTokenMintSy; if (swapType == SwapType.NONE) { _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn); netTokenMintSy = inp.netTokenIn; } else if (swapType == SwapType.ETH_WETH) { _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn); _wrap_unwrap_ETH(inp.tokenIn, inp.tokenMintSy, inp.netTokenIn); netTokenMintSy = inp.netTokenIn; } else { if (inp.tokenIn == NATIVE) _transferIn(NATIVE, msg.sender, inp.netTokenIn); else _transferFrom(IERC20(inp.tokenIn), msg.sender, inp.pendleSwap, inp.netTokenIn); IPSwapAggregator(inp.pendleSwap).swap{ value: inp.tokenIn == NATIVE ? inp.netTokenIn : 0 }(inp.tokenIn, inp.netTokenIn, inp.swapData); netTokenMintSy = _selfBalance(inp.tokenMintSy); } // outcome of all branches: satisfy pre-condition of __mintSy netSyOut = __mintSy(receiver, SY, netTokenMintSy, minSyOut, inp); } /// @dev pre-condition: having netTokenMintSy of tokens in this contract function __mintSy( address receiver, address SY, uint256 netTokenMintSy, uint256 minSyOut, TokenInput calldata inp ) private returns (uint256 netSyOut) { uint256 netNative = inp.tokenMintSy == NATIVE ? netTokenMintSy : 0; if (inp.bulk != address(0)) { netSyOut = IPBulkSeller(inp.bulk).swapExactTokenForSy{ value: netNative }( receiver, netTokenMintSy, minSyOut ); } else { netSyOut = IStandardizedYield(SY).deposit{ value: netNative }( receiver, inp.tokenMintSy, netTokenMintSy, minSyOut ); } } function _redeemSyToToken( address receiver, address SY, uint256 netSyIn, TokenOutput calldata out, bool doPull ) internal returns (uint256 netTokenOut) { SwapType swapType = out.swapData.swapType; if (swapType == SwapType.NONE) { netTokenOut = __redeemSy(receiver, SY, netSyIn, out, doPull); } else if (swapType == SwapType.ETH_WETH) { netTokenOut = __redeemSy(address(this), SY, netSyIn, out, doPull); // ETH:WETH is 1:1 _wrap_unwrap_ETH(out.tokenRedeemSy, out.tokenOut, netTokenOut); _transferOut(out.tokenOut, receiver, netTokenOut); } else { uint256 netTokenRedeemed = __redeemSy(out.pendleSwap, SY, netSyIn, out, doPull); IPSwapAggregator(out.pendleSwap).swap( out.tokenRedeemSy, netTokenRedeemed, out.swapData ); netTokenOut = _selfBalance(out.tokenOut); _transferOut(out.tokenOut, receiver, netTokenOut); } // outcome of all branches: netTokenOut of tokens goes back to receiver if (netTokenOut < out.minTokenOut) { revert Errors.RouterInsufficientTokenOut(netTokenOut, out.minTokenOut); } } function __redeemSy( address receiver, address SY, uint256 netSyIn, TokenOutput calldata out, bool doPull ) private returns (uint256 netTokenRedeemed) { if (doPull) { _transferFrom(IERC20(SY), msg.sender, _syOrBulk(SY, out), netSyIn); } if (out.bulk != address(0)) { netTokenRedeemed = IPBulkSeller(out.bulk).swapExactSyForToken( receiver, netSyIn, 0, true ); } else { netTokenRedeemed = IStandardizedYield(SY).redeem( receiver, netSyIn, out.tokenRedeemSy, 0, true ); } } function _mintPyFromSy( address receiver, address SY, address YT, uint256 netSyIn, uint256 minPyOut, bool doPull ) internal returns (uint256 netPyOut) { if (doPull) { _transferFrom(IERC20(SY), msg.sender, YT, netSyIn); } netPyOut = IPYieldToken(YT).mintPY(receiver, receiver); if (netPyOut < minPyOut) revert Errors.RouterInsufficientPYOut(netPyOut, minPyOut); } function _redeemPyToSy( address receiver, address YT, uint256 netPyIn, uint256 minSyOut ) internal returns (uint256 netSyOut) { address PT = IPYieldToken(YT).PT(); _transferFrom(IERC20(PT), msg.sender, YT, netPyIn); bool needToBurnYt = (!IPYieldToken(YT).isExpired()); if (needToBurnYt) _transferFrom(IERC20(YT), msg.sender, YT, netPyIn); netSyOut = IPYieldToken(YT).redeemPY(receiver); if (netSyOut < minSyOut) revert Errors.RouterInsufficientSyOut(netSyOut, minSyOut); } function _syOrBulk(address SY, TokenOutput calldata output) internal pure returns (address addr) { return output.bulk != address(0) ? output.bulk : SY; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; import "./TokenHelper.sol"; import "./math/Math.sol"; import "./Errors.sol"; struct BulkSellerState { uint256 rateTokenToSy; uint256 rateSyToToken; uint256 totalToken; uint256 totalSy; uint256 feeRate; } library BulkSellerMathCore { using Math for uint256; function swapExactTokenForSy( BulkSellerState memory state, uint256 netTokenIn ) internal pure returns (uint256 netSyOut) { netSyOut = calcSwapExactTokenForSy(state, netTokenIn); state.totalToken += netTokenIn; state.totalSy -= netSyOut; } function swapExactSyForToken( BulkSellerState memory state, uint256 netSyIn ) internal pure returns (uint256 netTokenOut) { netTokenOut = calcSwapExactSyForToken(state, netSyIn); state.totalSy += netSyIn; state.totalToken -= netTokenOut; } function calcSwapExactTokenForSy( BulkSellerState memory state, uint256 netTokenIn ) internal pure returns (uint256 netSyOut) { uint256 postFeeRate = state.rateTokenToSy.mulDown(Math.ONE - state.feeRate); assert(postFeeRate != 0); netSyOut = netTokenIn.mulDown(postFeeRate); if (netSyOut > state.totalSy) revert Errors.BulkInsufficientSyForTrade(state.totalSy, netSyOut); } function calcSwapExactSyForToken( BulkSellerState memory state, uint256 netSyIn ) internal pure returns (uint256 netTokenOut) { uint256 postFeeRate = state.rateSyToToken.mulDown(Math.ONE - state.feeRate); assert(postFeeRate != 0); netTokenOut = netSyIn.mulDown(postFeeRate); if (netTokenOut > state.totalToken) revert Errors.BulkInsufficientTokenForTrade(state.totalToken, netTokenOut); } function getTokenProp(BulkSellerState memory state) internal pure returns (uint256) { uint256 totalToken = state.totalToken; uint256 totalTokenFromSy = state.totalSy.mulDown(state.rateSyToToken); return totalToken.divDown(totalToken + totalTokenFromSy); } function getReBalanceParams( BulkSellerState memory state, uint256 targetTokenProp ) internal pure returns (uint256 netTokenToDeposit, uint256 netSyToRedeem) { uint256 currentTokenProp = getTokenProp(state); if (currentTokenProp > targetTokenProp) { netTokenToDeposit = state .totalToken .mulDown(currentTokenProp - targetTokenProp) .divDown(currentTokenProp); } else { uint256 currentSyProp = Math.ONE - currentTokenProp; netSyToRedeem = state.totalSy.mulDown(targetTokenProp - currentTokenProp).divDown( currentSyProp ); } } function reBalanceTokenToSy( BulkSellerState memory state, uint256 netTokenToDeposit, uint256 netSyFromToken, uint256 maxDiff ) internal pure { uint256 rate = netSyFromToken.divDown(netTokenToDeposit); if (!Math.isAApproxB(rate, state.rateTokenToSy, maxDiff)) revert Errors.BulkBadRateTokenToSy(rate, state.rateTokenToSy, maxDiff); state.totalToken -= netTokenToDeposit; state.totalSy += netSyFromToken; } function reBalanceSyToToken( BulkSellerState memory state, uint256 netSyToRedeem, uint256 netTokenFromSy, uint256 maxDiff ) internal pure { uint256 rate = netTokenFromSy.divDown(netSyToRedeem); if (!Math.isAApproxB(rate, state.rateSyToToken, maxDiff)) revert Errors.BulkBadRateSyToToken(rate, state.rateSyToToken, maxDiff); state.totalToken += netTokenFromSy; state.totalSy -= netSyToRedeem; } function setRate( BulkSellerState memory state, uint256 rateSyToToken, uint256 rateTokenToSy, uint256 maxDiff ) internal pure { if ( state.rateTokenToSy != 0 && !Math.isAApproxB(rateTokenToSy, state.rateTokenToSy, maxDiff) ) { revert Errors.BulkBadRateTokenToSy(rateTokenToSy, state.rateTokenToSy, maxDiff); } if ( state.rateSyToToken != 0 && !Math.isAApproxB(rateSyToToken, state.rateSyToToken, maxDiff) ) { revert Errors.BulkBadRateSyToToken(rateSyToToken, state.rateSyToToken, maxDiff); } state.rateTokenToSy = rateTokenToSy; state.rateSyToToken = rateSyToToken; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; library Errors { // BulkSeller error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error BulkNotMaintainer(); error BulkNotAdmin(); error BulkSellerAlreadyExisted(address token, address SY, address bulk); error BulkSellerInvalidToken(address token, address SY); error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps); error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps); // APPROX error ApproxFail(); error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps); error ApproxBinarySearchInputInvalid( uint256 approxGuessMin, uint256 approxGuessMax, uint256 minGuessMin, uint256 maxGuessMax ); // MARKET + MARKET MATH CORE error MarketExpired(); error MarketZeroAmountsInput(); error MarketZeroAmountsOutput(); error MarketZeroLnImpliedRate(); error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount); error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance); error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset); error MarketExchangeRateBelowOne(int256 exchangeRate); error MarketProportionMustNotEqualOne(); error MarketRateScalarBelowZero(int256 rateScalar); error MarketScalarRootBelowZero(int256 scalarRoot); error MarketProportionTooHigh(int256 proportion, int256 maxProportion); error OracleUninitialized(); error OracleTargetTooOld(uint32 target, uint32 oldest); error OracleZeroCardinality(); error MarketFactoryExpiredPt(); error MarketFactoryInvalidPt(); error MarketFactoryMarketExists(); error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot); error MarketFactoryReserveFeePercentTooHigh( uint8 reserveFeePercent, uint8 maxReserveFeePercent ); error MarketFactoryZeroTreasury(); error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor); // ROUTER error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut); error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut); error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut); error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut); error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error RouterExceededLimitSyIn(uint256 actualSyIn, uint256 limitSyIn); error RouterExceededLimitPtIn(uint256 actualPtIn, uint256 limitPtIn); error RouterExceededLimitYtIn(uint256 actualYtIn, uint256 limitYtIn); error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay); error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay); error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed); error RouterTimeRangeZero(); error RouterCallbackNotPendleMarket(address caller); error RouterInvalidAction(bytes4 selector); error RouterInvalidFacet(address facet); error RouterKyberSwapDataZero(); // YIELD CONTRACT error YCExpired(); error YCNotExpired(); error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy); error YCNothingToRedeem(); error YCPostExpiryDataNotSet(); error YCNoFloatingSy(); // YieldFactory error YCFactoryInvalidExpiry(); error YCFactoryYieldContractExisted(); error YCFactoryZeroExpiryDivisor(); error YCFactoryZeroTreasury(); error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate); error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate); // SY error SYInvalidTokenIn(address token); error SYInvalidTokenOut(address token); error SYZeroDeposit(); error SYZeroRedeem(); error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut); error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); // SY-specific error SYQiTokenMintFailed(uint256 errCode); error SYQiTokenRedeemFailed(uint256 errCode); error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1); error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax); error SYCurveInvalidPid(); error SYCurve3crvPoolNotFound(); error SYApeDepositAmountTooSmall(uint256 amountDeposited); error SYBalancerInvalidPid(); error SYInvalidRewardToken(address token); error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable); error SYBalancerReentrancy(); // Liquidity Mining error VCInactivePool(address pool); error VCPoolAlreadyActive(address pool); error VCZeroVePendle(address user); error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight); error VCEpochNotFinalized(uint256 wTime); error VCPoolAlreadyAddAndRemoved(address pool); error VEInvalidNewExpiry(uint256 newExpiry); error VEExceededMaxLockTime(); error VEInsufficientLockTime(); error VENotAllowedReduceExpiry(); error VEZeroAmountLocked(); error VEPositionNotExpired(); error VEZeroPosition(); error VEZeroSlope(uint128 bias, uint128 slope); error VEReceiveOldSupply(uint256 msgTime); error GCNotPendleMarket(address caller); error GCNotVotingController(address caller); error InvalidWTime(uint256 wTime); error ExpiryInThePast(uint256 expiry); error ChainNotSupported(uint256 chainId); error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount); error FDEpochLengthMismatch(); error FDInvalidPool(address pool); error FDPoolAlreadyExists(address pool); error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch); error FDInvalidStartEpoch(uint256 startEpoch); error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime); error FDFutureFunding(uint256 lastFunded, uint256 currentWTime); error BDInvalidEpoch(uint256 epoch, uint256 startTime); // Cross-Chain error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path); error MsgNotFromReceiveEndpoint(address sender); error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee); error ApproxDstExecutionGasNotSet(); error InvalidRetryData(); // GENERIC MSG error ArrayLengthMismatch(); error ArrayEmpty(); error ArrayOutOfBounds(); error ZeroAddress(); error FailedToSendEther(); error InvalidMerkleProof(); error OnlyLayerZeroEndpoint(); error OnlyYT(); error OnlyYCFactory(); error OnlyWhitelisted(); // Swap Aggregator error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual); error UnsupportedSelector(uint256 aggregatorType, bytes4 selector); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; import "./math/Math.sol"; import "./math/MarketMathCore.sol"; struct ApproxParams { uint256 guessMin; uint256 guessMax; uint256 guessOffchain; // pass 0 in to skip this variable uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2 uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set // to 1e15 (1e18/1000 = 0.1%) /// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out, /// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula /// To approx, the 5 values above will have to be provided, and the approx process will run as follows: /// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out /// netSyNeed = calcSwapSyForExactPt(mid) /// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn /// else guessMin = mid (1) /// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of /// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result /// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result /// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the /// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases /// except in cases that there is a trade in the same market right before the tx } library MarketApproxPtInLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using Math for uint256; using Math for int256; using LogExpMath for int256; /** * @dev algorithm: - Bin search the amount of PT to swap in - Try swapping & get netSyOut - Stop when netSyOut greater & approx minSyOut - guess & approx is for netPtIn */ function approxSwapPtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtIn*/, uint256 /*netSyOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); if (netSyOut >= minSyOut) { if (Math.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) return (guess, netSyOut, netSyFee); approx.guessMax = guess; } else { approx.guessMin = guess; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swap in - Flashswap the corresponding amount of SY out - Pair those amount with exactSyIn SY to tokenize into PT & YT - PT to repay the flashswap, YT transferred to user - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn - guess & approx is for netYtOut (also netPtIn) */ function approxSwapExactSyForYt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netYtOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = Math.max(approx.guessMin, index.syToAsset(exactSyIn)); approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netSyToTokenizePt = index.assetToSyUp(guess); // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY uint256 netSyToPull = netSyToTokenizePt - netSyOut; if (netSyToPull <= exactSyIn) { if (Math.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) return (guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swap to SY - Swap PT to SY - Pair the remaining PT with the SY to add liquidity - Stop when the ratio of PT / totalPt & SY / totalSy is approx - guess & approx is for netPtSwap */ function approxSwapPtToAddLiquidity( MarketState memory market, PYIndex index, uint256 totalPtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtSwap*/, uint256 /*netSyFromSwap*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); approx.guessMax = Math.min(approx.guessMax, totalPtIn); validateApprox(approx); require(market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); ( uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, ) = calcNumerators(market, index, totalPtIn, comp, guess); if (Math.isAApproxB(syNumerator, ptNumerator, approx.eps)) return (guess, netSyOut, netSyFee); if (syNumerator <= ptNumerator) { // needs more SY --> swap more PT approx.guessMin = guess + 1; } else { // needs less SY --> swap less PT approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } function calcNumerators( MarketState memory market, PYIndex index, uint256 totalPtIn, MarketPreCompute memory comp, uint256 guess ) internal pure returns ( uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve ) { (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess); uint256 newTotalPt = uint256(market.totalPt) + guess; uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve); // it is desired that // netSyOut / newTotalSy = netPtRemaining / newTotalPt // which is equivalent to // netSyOut * newTotalPt = netPtRemaining * newTotalSy syNumerator = netSyOut * newTotalPt; ptNumerator = (totalPtIn - guess) * newTotalSy; } struct Args7 { MarketState market; PYIndex index; uint256 exactPtIn; uint256 blockTime; } /** * @dev algorithm: - Bin search the amount of PT to swap to SY - Flashswap the corresponding amount of SY out - Tokenize all the SY into PT + YT - PT to repay the flashswap, YT transferred to user - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn - guess & approx is for totalPtToSwap */ function approxSwapExactPtForYt( MarketState memory market, PYIndex index, uint256 exactPtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netYtOut*/, uint256 /*totalPtToSwap*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = Math.max(approx.guessMin, exactPtIn); approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netAssetOut = index.syToAsset(netSyOut); // guess >= netAssetOut since we are swapping PT to SY uint256 netPtToPull = guess - netAssetOut; if (netPtToPull <= exactPtIn) { if (Math.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) return (netAssetOut, guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyOut( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtIn ) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade( comp, index, -int256(netPtIn) ); netSyOut = uint256(_netSyOut); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY /// function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > Math.ONE) revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } function calcMaxPtIn( MarketState memory market, MarketPreCompute memory comp ) internal pure returns (uint256) { uint256 low = 0; uint256 hi = uint256(comp.totalAsset) - 1; while (low != hi) { uint256 mid = (low + hi + 1) / 2; if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1; else low = mid; } return low; } function calcSlope( MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket ) internal pure returns (int256) { int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket; int256 sumPt = ptToMarket + totalPt; require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket"); int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown( sumPt * diffAssetPtToMarket ); int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln(); int256 part3 = Math.IONE.divDown(comp.rateScalar); return comp.rateAnchor - (part1 - part2).mulDown(part3); } } library MarketApproxPtOutLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using Math for uint256; using Math for int256; using LogExpMath for int256; /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Calculate the amount of SY needed - Stop when the netSyIn is smaller approx exactSyIn - guess & approx is for netSyIn */ function approxSwapExactSyForPt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); if (netSyIn <= exactSyIn) { if (Math.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) return (guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Flashswap that amount of PT & pair with YT to redeem SY - Use the SY to repay the flashswap debt and the remaining is transferred to user - Stop when the netSyOut is greater approx the minSyOut - guess & approx is for netSyOut */ function approxSwapYtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netYtIn*/, uint256 /*netSyOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netAssetToRepay = index.syToAssetUp(netSyOwed); uint256 netSyOut = index.assetToSy(guess - netAssetToRepay); if (netSyOut >= minSyOut) { if (Math.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) return (guess, netSyOut, netSyFee); approx.guessMax = guess; } else { approx.guessMin = guess + 1; } } revert Errors.ApproxFail(); } struct Args6 { MarketState market; PYIndex index; uint256 totalSyIn; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Swap that amount of PT out - Pair the remaining PT with the SY to add liquidity - Stop when the ratio of PT / totalPt & SY / totalSy is approx - guess & approx is for netPtFromSwap */ function approxSwapSyToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalSyIn, uint256 _blockTime, ApproxParams memory _approx ) internal pure returns (uint256 /*netPtFromSwap*/, uint256 /*netSySwap*/, uint256 /*netSyFee*/) { Args6 memory a = Args6(_market, _index, _totalSyIn, _blockTime, _approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (a.approx.guessOffchain == 0) { // no limit on min a.approx.guessMax = Math.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt)); validateApprox(a.approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) { uint256 guess = nextGuess(a.approx, iter); (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn( a.market, comp, a.index, guess ); if (netSyIn > a.totalSyIn) { a.approx.guessMax = guess - 1; continue; } uint256 syNumerator; uint256 ptNumerator; { uint256 newTotalPt = uint256(a.market.totalPt) - guess; uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve; // it is desired that // netPtFromSwap / newTotalPt = netSyRemaining / netTotalSy // which is equivalent to // netPtFromSwap * netTotalSy = netSyRemaining * newTotalPt ptNumerator = guess * netTotalSy; syNumerator = (a.totalSyIn - netSyIn) * newTotalPt; } if (Math.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) return (guess, netSyIn, netSyFee); if (ptNumerator <= syNumerator) { // needs more PT a.approx.guessMin = guess + 1; } else { // needs less PT a.approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Flashswap that amount of PT out - Pair all the PT with the YT to redeem SY - Use the SY to repay the flashswap debt - Stop when the amount of YT required to pair with PT is approx exactYtIn - guess & approx is for netPtFromSwap */ function approxSwapExactYtForPt( MarketState memory market, PYIndex index, uint256 exactYtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtOut*/, uint256 /*totalPtSwapped*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = Math.max(approx.guessMin, exactYtIn); approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netYtToPull = index.syToAssetUp(netSyOwed); if (netYtToPull <= exactYtIn) { if (Math.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) return (guess - netYtToPull, guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyIn( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtOut ) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade( comp, index, int256(netPtOut) ); // all safe since totalPt and totalSy is int128 netSyIn = uint256(-_netSyIn); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function calcMaxPtOut( MarketPreCompute memory comp, int256 totalPt ) internal pure returns (uint256) { int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp(); int256 proportion = logitP.divDown(logitP + Math.IONE); int256 numerator = proportion.mulDown(totalPt + comp.totalAsset); int256 maxPtOut = totalPt - numerator; // only get 99.9% of the theoretical max to accommodate some precision issues return (uint256(maxPtOut) * 999) / 1000; } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > Math.ONE) revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity 0.8.19; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; import "./Math.sol"; import "./LogExpMath.sol"; import "../PYIndex.sol"; import "../MiniHelpers.sol"; import "../Errors.sol"; struct MarketState { int256 totalPt; int256 totalSy; int256 totalLp; address treasury; /// immutable variables /// int256 scalarRoot; uint256 expiry; /// fee data /// uint256 lnFeeRateRoot; uint256 reserveFeePercent; // base 100 /// last trade data /// uint256 lastLnImpliedRate; } // params that are expensive to compute, therefore we pre-compute them struct MarketPreCompute { int256 rateScalar; int256 totalAsset; int256 rateAnchor; int256 feeRate; } // solhint-disable ordering library MarketMathCore { using Math for uint256; using Math for int256; using LogExpMath for int256; using PYIndexLib for PYIndex; int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3; int256 internal constant PERCENTAGE_DECIMALS = 100; uint256 internal constant DAY = 86400; uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY; int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100; using Math for uint256; using Math for int256; /*/////////////////////////////////////////////////////////////// UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidity( MarketState memory market, uint256 syDesired, uint256 ptDesired, uint256 blockTime ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) { ( int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed ) = addLiquidityCore(market, syDesired.Int(), ptDesired.Int(), blockTime); lpToReserve = _lpToReserve.Uint(); lpToAccount = _lpToAccount.Uint(); syUsed = _syUsed.Uint(); ptUsed = _ptUsed.Uint(); } function removeLiquidity( MarketState memory market, uint256 lpToRemove ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) { (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int()); netSyToAccount = _syToAccount.Uint(); netPtToAccount = _ptToAccount.Uint(); } function swapExactPtForSy( MarketState memory market, PYIndex index, uint256 exactPtToMarket, uint256 blockTime ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToMarket.neg(), blockTime ); netSyToAccount = _netSyToAccount.Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } function swapSyForExactPt( MarketState memory market, PYIndex index, uint256 exactPtToAccount, uint256 blockTime ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToAccount.Int(), blockTime ); netSyToMarket = _netSyToAccount.neg().Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } /*/////////////////////////////////////////////////////////////// CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidityCore( MarketState memory market, int256 syDesired, int256 ptDesired, uint256 blockTime ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput(); if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ if (market.totalLp == 0) { lpToAccount = Math.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY; lpToReserve = MINIMUM_LIQUIDITY; syUsed = syDesired; ptUsed = ptDesired; } else { int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt; int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy; if (netLpByPt < netLpBySy) { lpToAccount = netLpByPt; ptUsed = ptDesired; syUsed = (market.totalSy * lpToAccount) / market.totalLp; } else { lpToAccount = netLpBySy; syUsed = syDesired; ptUsed = (market.totalPt * lpToAccount) / market.totalLp; } } if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalSy += syUsed; market.totalPt += ptUsed; market.totalLp += lpToAccount + lpToReserve; } function removeLiquidityCore( MarketState memory market, int256 lpToRemove ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp; netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp; if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalLp = market.totalLp.subNoNeg(lpToRemove); market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount); } function executeTradeCore( MarketState memory market, PYIndex index, int256 netPtToAccount, uint256 blockTime ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); if (market.totalPt <= netPtToAccount) revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime); (netSyToAccount, netSyFee, netSyToReserve) = calcTrade( market, comp, index, netPtToAccount ); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ _setNewMarketStateTrade( market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime ); } function getMarketPreCompute( MarketState memory market, PYIndex index, uint256 blockTime ) internal pure returns (MarketPreCompute memory res) { if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); uint256 timeToExpiry = market.expiry - blockTime; res.rateScalar = _getRateScalar(market, timeToExpiry); res.totalAsset = index.syToAsset(market.totalSy); if (market.totalPt == 0 || res.totalAsset == 0) revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset); res.rateAnchor = _getRateAnchor( market.totalPt, market.lastLnImpliedRate, res.totalAsset, res.rateScalar, timeToExpiry ); res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry); } function calcTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { int256 preFeeExchangeRate = _getExchangeRate( market.totalPt, comp.totalAsset, comp.rateScalar, comp.rateAnchor, netPtToAccount ); int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg(); int256 fee = comp.feeRate; if (netPtToAccount > 0) { int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee); if (postFeeExchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate); fee = preFeeAssetToAccount.mulDown(Math.IONE - fee); } else { fee = ((preFeeAssetToAccount * (Math.IONE - fee)) / fee).neg(); } int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS; int256 netAssetToAccount = preFeeAssetToAccount - fee; netSyToAccount = netAssetToAccount < 0 ? index.assetToSyUp(netAssetToAccount) : index.assetToSy(netAssetToAccount); netSyFee = index.assetToSy(fee); netSyToReserve = index.assetToSy(netAssetToReserve); } function _setNewMarketStateTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount, int256 netSyToAccount, int256 netSyToReserve, uint256 blockTime ) internal pure { uint256 timeToExpiry = market.expiry - blockTime; market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve); market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, index.syToAsset(market.totalSy), comp.rateScalar, comp.rateAnchor, timeToExpiry ); if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate(); } function _getRateAnchor( int256 totalPt, uint256 lastLnImpliedRate, int256 totalAsset, int256 rateScalar, uint256 timeToExpiry ) internal pure returns (int256 rateAnchor) { int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry); if (newExchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate); { int256 proportion = totalPt.divDown(totalPt + totalAsset); int256 lnProportion = _logProportion(proportion); rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar); } } /// @notice Calculates the current market implied rate. /// @return lnImpliedRate the implied rate function _getLnImpliedRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, uint256 timeToExpiry ) internal pure returns (uint256 lnImpliedRate) { // This will check for exchange rates < Math.IONE int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0); // exchangeRate >= 1 so its ln >= 0 uint256 lnRate = exchangeRate.ln().Uint(); lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry; } /// @notice Converts an implied rate to an exchange rate given a time to expiry. The /// formula is E = e^rt function _getExchangeRateFromImpliedRate( uint256 lnImpliedRate, uint256 timeToExpiry ) internal pure returns (int256 exchangeRate) { uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME; exchangeRate = LogExpMath.exp(rt.Int()); } function _getExchangeRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, int256 netPtToAccount ) internal pure returns (int256 exchangeRate) { int256 numerator = totalPt.subNoNeg(netPtToAccount); int256 proportion = (numerator.divDown(totalPt + totalAsset)); if (proportion > MAX_MARKET_PROPORTION) revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION); int256 lnProportion = _logProportion(proportion); exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor; if (exchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate); } function _logProportion(int256 proportion) internal pure returns (int256 res) { if (proportion == Math.IONE) revert Errors.MarketProportionMustNotEqualOne(); int256 logitP = proportion.divDown(Math.IONE - proportion); res = logitP.ln(); } function _getRateScalar( MarketState memory market, uint256 timeToExpiry ) internal pure returns (int256 rateScalar) { rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int(); if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar); } function setInitialLnImpliedRate( MarketState memory market, PYIndex index, int256 initialAnchor, uint256 blockTime ) internal pure { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ int256 totalAsset = index.syToAsset(market.totalSy); uint256 timeToExpiry = market.expiry - blockTime; int256 rateScalar = _getRateScalar(market, timeToExpiry); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, totalAsset, rateScalar, initialAnchor, timeToExpiry ); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity 0.8.19; /* solhint-disable private-vars-leading-underscore, reason-string */ library Math { uint256 internal constant ONE = 1e18; // 18 decimal places int256 internal constant IONE = 1e18; // 18 decimal places function subMax0(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return (a >= b ? a - b : 0); } } function subNoNeg(int256 a, int256 b) internal pure returns (int256) { require(a >= b, "negative"); return a - b; // no unchecked since if b is very negative, a - b might overflow } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; unchecked { return product / ONE; } } function mulDown(int256 a, int256 b) internal pure returns (int256) { int256 product = a * b; unchecked { return product / IONE; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 aInflated = a * ONE; unchecked { return aInflated / b; } } function divDown(int256 a, int256 b) internal pure returns (int256) { int256 aInflated = a * IONE; unchecked { return aInflated / b; } } function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) { return (a + b - 1) / b; } // @author Uniswap function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function abs(int256 x) internal pure returns (uint256) { return uint256(x > 0 ? x : -x); } function neg(int256 x) internal pure returns (int256) { return x * (-1); } function neg(uint256 x) internal pure returns (int256) { return Int(x) * (-1); } function max(uint256 x, uint256 y) internal pure returns (uint256) { return (x > y ? x : y); } function max(int256 x, int256 y) internal pure returns (int256) { return (x > y ? x : y); } function min(uint256 x, uint256 y) internal pure returns (uint256) { return (x < y ? x : y); } function min(int256 x, int256 y) internal pure returns (int256) { return (x < y ? x : y); } /*/////////////////////////////////////////////////////////////// SIGNED CASTS //////////////////////////////////////////////////////////////*/ function Int(uint256 x) internal pure returns (int256) { require(x <= uint256(type(int256).max)); return int256(x); } function Int128(int256 x) internal pure returns (int128) { require(type(int128).min <= x && x <= type(int128).max); return int128(x); } function Int128(uint256 x) internal pure returns (int128) { return Int128(Int(x)); } /*/////////////////////////////////////////////////////////////// UNSIGNED CASTS //////////////////////////////////////////////////////////////*/ function Uint(int256 x) internal pure returns (uint256) { require(x >= 0); return uint256(x); } function Uint32(uint256 x) internal pure returns (uint32) { require(x <= type(uint32).max); return uint32(x); } function Uint112(uint256 x) internal pure returns (uint112) { require(x <= type(uint112).max); return uint112(x); } function Uint96(uint256 x) internal pure returns (uint96) { require(x <= type(uint96).max); return uint96(x); } function Uint128(uint256 x) internal pure returns (uint128) { require(x <= type(uint128).max); return uint128(x); } function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps); } function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a >= b && a <= mulDown(b, ONE + eps); } function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a <= b && a >= mulDown(b, ONE - eps); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; library MiniHelpers { function isCurrentlyExpired(uint256 expiry) internal view returns (bool) { return (expiry <= block.timestamp); } function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) { return (expiry <= blockTime); } function isTimeInThePast(uint256 timestamp) internal view returns (bool) { return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; import "../interfaces/pendle/IPYieldToken.sol"; import "../interfaces/pendle/IPPrincipalToken.sol"; import "./SYUtils.sol"; import "./math/Math.sol"; type PYIndex is uint256; library PYIndexLib { using Math for uint256; using Math for int256; function newIndex(IPYieldToken YT) internal returns (PYIndex) { return PYIndex.wrap(YT.pyIndexCurrent()); } function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) { return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount); } function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount); } function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount); } function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) { uint256 _index = PYIndex.unwrap(index); return SYUtils.syToAssetUp(_index, syAmount); } function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) { int256 sign = syAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int(); } function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int(); } function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int(); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; library SYUtils { uint256 internal constant ONE = 1e18; function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate) / ONE; } function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate + ONE - 1) / ONE; } function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE) / exchangeRate; } function assetToSyUp( uint256 exchangeRate, uint256 assetAmount ) internal pure returns (uint256) { return (assetAmount * ONE + exchangeRate - 1) / exchangeRate; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "../interfaces/IWETH.sol"; abstract contract TokenHelper { using SafeERC20 for IERC20; address internal constant NATIVE = address(0); uint256 internal constant LOWER_BOUND_APPROVAL = type(uint96).max / 2; // some tokens use 96 bits for approval function _transferIn(address token, address from, uint256 amount) internal { if (token == NATIVE) require(msg.value == amount, "eth mismatch"); else if (amount != 0) IERC20(token).safeTransferFrom(from, address(this), amount); } function _transferFrom(IERC20 token, address from, address to, uint256 amount) internal { if (amount != 0) token.safeTransferFrom(from, to, amount); } function _transferOut(address token, address to, uint256 amount) internal { if (amount == 0) return; if (token == NATIVE) { (bool success, ) = to.call{ value: amount }(""); require(success, "eth send failed"); } else { IERC20(token).safeTransfer(to, amount); } } function _transferOut(address[] memory tokens, address to, uint256[] memory amounts) internal { uint256 numTokens = tokens.length; require(numTokens == amounts.length, "length mismatch"); for (uint256 i = 0; i < numTokens; ) { _transferOut(tokens[i], to, amounts[i]); unchecked { i++; } } } function _selfBalance(address token) internal view returns (uint256) { return (token == NATIVE) ? address(this).balance : IERC20(token).balanceOf(address(this)); } function _selfBalance(IERC20 token) internal view returns (uint256) { return token.balanceOf(address(this)); } /// @notice Approves the stipulated contract to spend the given allowance in the given token /// @dev PLS PAY ATTENTION to tokens that requires the approval to be set to 0 before changing it function _safeApprove(address token, address to, uint256 value) internal { (bool success, bytes memory data) = token.call( abi.encodeWithSelector(IERC20.approve.selector, to, value) ); require(success && (data.length == 0 || abi.decode(data, (bool))), "Safe Approve"); } function _safeApproveInf(address token, address to) internal { if (token == NATIVE) return; if (IERC20(token).allowance(address(this), to) < LOWER_BOUND_APPROVAL) { _safeApprove(token, to, 0); _safeApprove(token, to, type(uint256).max); } } function _wrap_unwrap_ETH(address tokenIn, address tokenOut, uint256 netTokenIn) internal { if (tokenIn == NATIVE) IWETH(tokenOut).deposit{ value: netTokenIn }(); else IWETH(tokenIn).withdraw(netTokenIn); } }
{ "optimizer": { "enabled": true, "runs": 100 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InputDataIsNotValide","type":"error"},{"inputs":[],"name":"InputDataLengthMissMatch","type":"error"},{"inputs":[],"name":"InvalidRewardToken","type":"error"},{"inputs":[],"name":"IsNotSmartContractAddress","type":"error"},{"inputs":[],"name":"PNPTokenNotInRewards","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"marketLength","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"rewardLength","type":"uint256"}],"name":"Compounded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"marketDepositHelper","type":"address"}],"name":"DepositHelperSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"helper","type":"address"}],"name":"HelperSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"locker","type":"address"}],"name":"LockerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"pendleSwap","type":"address"}],"name":"PendleSwapSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address[]","name":"rewardTokens","type":"address[]"}],"name":"RewardTokensAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address[]","name":"rewardToken","type":"address[]"}],"name":"RewardTokensRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"sourceRewardToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"compoundingMode","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"mPendleConvertMode","type":"uint256"}],"name":"convertedToMpendle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"kyBerSwapRouter","type":"address"}],"name":"kyBerSwapRouterSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"sourceRewardToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalAmount","type":"uint256"}],"name":"lockedPenpie","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"mPendleConverter","type":"address"}],"name":"mPendleConerterSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"guessMin","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"guessMax","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"guessOffChain","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"maxIteration","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"eps","type":"uint256"}],"name":"pendleDexApproxParamsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"pendleRouter","type":"address"}],"name":"pendleRouterSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"market","type":"address"},{"indexed":false,"internalType":"uint256","name":"compoundingMode","type":"uint256"}],"name":"zapInPendleMarket","type":"event"},{"inputs":[],"name":"CONVERT_TO_MPENDLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LIQUIDATE_TO_PENDLE_FINANCE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MPENDLE_STAKE_MODE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PENDLE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PENPIE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_pendle","type":"address"},{"internalType":"address","name":"_penpie","type":"address"},{"internalType":"address","name":"_masterPenpie","type":"address"},{"internalType":"address","name":"_pendleRouter","type":"address"},{"internalType":"address","name":"_pnplocker","type":"address"},{"internalType":"address","name":"_DepositHelper","type":"address"},{"internalType":"address","name":"_PendleStaking","type":"address"},{"internalType":"address","name":"_mPendleConverter","type":"address"},{"internalType":"address","name":"_kyberSwapRouter","type":"address"},{"internalType":"address","name":"_pendleSwap","type":"address"}],"name":"__manualCompound_init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_lps","type":"address[]"},{"internalType":"address[][]","name":"_rewards","type":"address[][]"},{"internalType":"bytes[]","name":"_kyBarExectCallData","type":"bytes[]"},{"internalType":"address[]","name":"baseTokens","type":"address[]"},{"internalType":"uint256[]","name":"compoundingMode","type":"uint256[]"},{"components":[{"internalType":"uint256","name":"guessMin","type":"uint256"},{"internalType":"uint256","name":"guessMax","type":"uint256"},{"internalType":"uint256","name":"guessOffchain","type":"uint256"},{"internalType":"uint256","name":"maxIteration","type":"uint256"},{"internalType":"uint256","name":"eps","type":"uint256"}],"internalType":"struct IPendleRouterV4.ApproxParams","name":"_pdexparams","type":"tuple"},{"internalType":"uint256","name":"slippageTolarance","type":"uint256"},{"internalType":"bool","name":"isClaimPNP","type":"bool"}],"name":"compound","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"compoundableRewards","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenAddress","type":"address"}],"name":"isRewardCompudable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"kyBerSwapRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mPendleConverter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"marketDepositHelper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"masterPenpie","outputs":[{"internalType":"contract IMasterPenpie","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendleRouter","outputs":[{"internalType":"contract IPendleRouterV4","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendleStaking","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendleSwap","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pnpLocker","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_rewardTokenAddress","type":"address[]"}],"name":"removeRewardTokensAsCompoundable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_DepositHelper","type":"address"}],"name":"setDepositHelper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_kyberSwapRouter","type":"address"}],"name":"setKyberSwapRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_pnplocker","type":"address"}],"name":"setLocker","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_mPendleConverter","type":"address"}],"name":"setMPendleConverter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_pendleRouter","type":"address"}],"name":"setPendleRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_PendleStaking","type":"address"}],"name":"setPendleStaking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_pendleSwap","type":"address"}],"name":"setPendleSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_rewardTokenAddress","type":"address[]"}],"name":"setRewardTokensAsCompoundable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405260d180546001600160a01b03191690553480156200002157600080fd5b506200002c62000032565b620000f4565b600054610100900460ff16156200009f5760405162461bcd60e51b815260206004820152602760248201527f496e697469616c697a61626c653a20636f6e747261637420697320696e697469604482015266616c697a696e6760c81b606482015260840160405180910390fd5b60005460ff9081161015620000f2576000805460ff191660ff9081179091556040519081527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b565b61298a80620001046000396000f3fe608060405234801561001057600080fd5b50600436106101b05760003560e01c8063715018a6116100ef57806398024b471161009257806398024b4714610388578063a076a14c1461039b578063b07abf05146103ae578063b78a977d146103c1578063c6fea47c146103d4578063dc797b6a146103e7578063e9fb67c0146103fa578063f2fde38b1461040d57600080fd5b8063715018a6146103265780637a07e1f41461032e5780637cf738d2146103415780638456cb5914610354578063866db49d1461035c578063881b01f81461036f5780638da5cb5b146103775780638e8c4c091461036f57600080fd5b8063336d0d9411610157578063336d0d941461028e5780633c41d5ab146102b15780633f4ba83a146102c45780634534609b146102cc5780634a9d7127146102df5780634d546410146102f25780634e8c47e1146103055780635c975abb1461031b57600080fd5b8063092244cf146101b55780630e73d79f146101ca578063171060ec146101f3578063206aeab31461020657806324e8b0f314610219578063288de5f31461022c5780632b481e391461023f5780632c8cbcf21461027b575b600080fd5b6101c86101c3366004611d31565b610420565b005b60cb546101dd906001600160a01b031681565b6040516101ea9190611d4e565b60405180910390f35b6101c8610201366004611d31565b6104a4565b60d2546101dd906001600160a01b031681565b60cf546101dd906001600160a01b031681565b6101c861023a366004611d31565b61051d565b61026b61024d366004611d31565b6001600160a01b0316600090815260d4602052604090205460ff1690565b60405190151581526020016101ea565b6101c8610289366004611d62565b610585565b61026b61029c366004611d31565b60d46020526000908152604090205460ff1681565b60d3546101dd906001600160a01b031681565b6101c8610635565b6101c86102da3660046120ff565b610647565b60cd546101dd906001600160a01b031681565b6101c8610300366004611d31565b610c9b565b61030d600281565b6040519081526020016101ea565b60975460ff1661026b565b6101c8610d15565b60d0546101dd906001600160a01b031681565b60c9546101dd906001600160a01b031681565b6101c8610d27565b60ca546101dd906001600160a01b031681565b61030d600181565b6033546001600160a01b03166101dd565b6101c86103963660046121fe565b610d37565b6101c86103a9366004611d62565b610efb565b6101c86103bc366004611d31565b610f9e565b60cc546101dd906001600160a01b031681565b60ce546101dd906001600160a01b031681565b6101c86103f5366004611d31565b611006565b6101c8610408366004611d31565b611080565b6101c861041b366004611d31565b6110e8565b610428611161565b610431816111bb565b61044e5760405163486bbb1960e01b815260040160405180910390fd5b60d280546001600160a01b0319166001600160a01b0383161790556040517f2936bb1e8a462507eb027c51585564c22e906dcbcbba6a5a309450e92735bcc690610499908390611d4e565b60405180910390a150565b6104ac611161565b6104b5816111bb565b6104d25760405163486bbb1960e01b815260040160405180910390fd5b60cb80546001600160a01b0319166001600160a01b0383161790556040517fef7ce00901486d0ae4bbe00a818eb6bb2f42bc78fc75571cf294c1c50c61adfd90610499908390611d4e565b610525611161565b61052e816111bb565b61054b5760405163486bbb1960e01b815260040160405180910390fd5b60cf80546001600160a01b0319166001600160a01b0383169081179091556040516000805160206129358339815191529161049991611d4e565b61058d611161565b8060005b818110156105f657600160d460008686858181106105b1576105b16122ce565b90506020020160208101906105c69190611d31565b6001600160a01b031681526020810191909152604001600020805460ff1916911515919091179055600101610591565b507f68ba79316f2f1e5b9cbebbec19a0fbb2c29806dffa531995229a0bac2af9659583836040516106289291906122e4565b60405180910390a1505050565b61063d611161565b6106456111ca565b565b61064f611216565b6002606554036106a65760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b6002606555875187511415806106be57508751865114155b806106cb57508751855114155b806106d857508751845114155b156106f6576040516374fb1cb360e01b815260040160405180910390fd5b61071a60405180606001604052806000815260200160008152602001606081525090565b88516001600160401b0381111561073357610733611dd6565b60405190808252806020026020018201604052801561075c578160200160208202803683370190505b5060408201526000805b8a518110156108595760d3548b516001600160a01b039091169063ad05e627908d9084908110610798576107986122ce565b602090810291909101015160c9546040516001600160e01b031960e085901b1681526001600160a01b03928316600482015233602482015291166044820152606401600060405180830381865afa1580156107f7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261081f919081019061234b565b604087015180519194509250849150811061083c5761083c6122ce565b602090810291909101015280610851816123fc565b915050610766565b5060d354604051631d13a60360e11b81526001600160a01b0390911690633a274c0690610890908d908d9033908990600401612459565b600060405180830381600087803b1580156108aa57600080fd5b505af11580156108be573d6000803e3d6000fd5b5050505060005b8a51811015610be15760005b8a82815181106108e3576108e36122ce565b602002602001015151811015610bce5760008b8381518110610907576109076122ce565b60200260200101518281518110610920576109206122ce565b602002602001015190506000816001600160a01b03166370a08231306040518263ffffffff1660e01b81526004016109589190611d4e565b602060405180830381865afa158015610975573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061099991906124e3565b60ca549091506001600160a01b03908116908316036109b757600194505b806000036109c6575050610bbc565b6001600160a01b038216600090815260d4602052604090205460ff16610a01576109fa6001600160a01b038316338361125c565b5050610bbc565b60c9546001600160a01b0390811690831603610b815760018a8581518110610a2b57610a2b6122ce565b602002602001015103610afa5760d25460408701518051610a7f926001600160a01b0316919087908110610a6157610a616122ce565b602090810291909101015160c9546001600160a01b031691906112c4565b610af586604001518581518110610a9857610a986122ce565b60200260200101518f8681518110610ab257610ab26122ce565b60200260200101518d8781518110610acc57610acc6122ce565b60200260200101518f8881518110610ae657610ae66122ce565b60200260200101518c8e6113d9565b610bb9565b60028a8581518110610b0e57610b0e6122ce565b602002602001015103610b525785604001518481518110610b3157610b316122ce565b602002602001015186602001818151610b4a91906124fc565b905250610bb9565b85604001518481518110610b6857610b686122ce565b602002602001015186600001818151610b4a91906124fc565b60ca546001600160a01b0390811690831603610ba057610af581611676565b60405163dfde867160e01b815260040160405180910390fd5b50505b80610bc6816123fc565b9150506108d1565b5080610bd9816123fc565b9150506108c5565b50828015610bed575080155b15610c0b5760405163acf920db60e01b815260040160405180910390fd5b602082015115610c2257610c228260200151611736565b815115610c4557815160c954610c45916001600160a01b0390911690339061125c565b8951895160405133927f820cea42e8517cf1ec6d4e9db93909255f07c45f7eb0a7c7b5a0f8bdcfc2e5bf92610c8292918252602082015260400190565b60405180910390a2505060016065555050505050505050565b610ca3611161565b610cac816111bb565b610cc95760405163486bbb1960e01b815260040160405180910390fd5b60cc80546001600160a01b0319166001600160a01b0383169081179091556040517fcc5baa6c8e17556e98e39394c8427039e448859d8adaa531fada15018c05f3d29161049991611d4e565b610d1d611161565b6106456000611816565b610d2f611161565b610645611868565b600054610100900460ff1615808015610d575750600054600160ff909116105b80610d785750610d66306111bb565b158015610d78575060005460ff166001145b610ddb5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b606482015260840161069d565b6000805460ff191660011790558015610dfe576000805461ff0019166101001790555b610e066118a5565b610e0e6118d4565b610e16611903565b60c980546001600160a01b03199081166001600160a01b038e81169190911790925560ca805482168d841617905560d3805482168c841617905560d2805482168b841617905560cb805482168a841617905560cd8054821689841617905560ce8054821688841617905560cf8054821687841617905560d08054821686841617905560cc80549091169184169190911790558015610eee576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b5050505050505050505050565b610f03611161565b8060005b81811015610f6c57600060d46000868685818110610f2757610f276122ce565b9050602002016020810190610f3c9190611d31565b6001600160a01b031681526020810191909152604001600020805460ff1916911515919091179055600101610f07565b507fe2b0e0ecba7dc6fb129f35455ff5af160713014ad3cb4a3266fbb9bcb48b0ae783836040516106289291906122e4565b610fa6611161565b610faf816111bb565b610fcc5760405163486bbb1960e01b815260040160405180910390fd5b60ce80546001600160a01b0319166001600160a01b0383169081179091556040516000805160206129358339815191529161049991611d4e565b61100e611161565b611017816111bb565b6110345760405163486bbb1960e01b815260040160405180910390fd5b60d080546001600160a01b0319166001600160a01b0383169081179091556040517f66158d4041148b4e4b19cc5748b5d548026ab0e56eb248744eea90d59c4f95a79161049991611d4e565b611088611161565b611091816111bb565b6110ae5760405163486bbb1960e01b815260040160405180910390fd5b60cd80546001600160a01b0319166001600160a01b0383169081179091556040516000805160206129358339815191529161049991611d4e565b6110f0611161565b6001600160a01b0381166111555760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161069d565b61115e81611816565b50565b6033546001600160a01b031633146106455760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161069d565b6001600160a01b03163b151590565b6111d2611932565b6097805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b60405161120c9190611d4e565b60405180910390a1565b60975460ff16156106455760405162461bcd60e51b815260206004820152601060248201526f14185d5cd8589b194e881c185d5cd95960821b604482015260640161069d565b6040516001600160a01b0383166024820152604481018290526112bf90849063a9059cbb60e01b906064015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261197b565b505050565b80158061133e5750604051636eb1769f60e11b81523060048201526001600160a01b03838116602483015284169063dd62ed3e90604401602060405180830381865afa158015611318573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061133c91906124e3565b155b6113a95760405162461bcd60e51b815260206004820152603660248201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60448201527520746f206e6f6e2d7a65726f20616c6c6f77616e636560501b606482015260840161069d565b6040516001600160a01b0383166024820152604481018290526112bf90849063095ea7b360e01b90606401611288565b604080516000808252602082019092528161140a565b6113f7611c5f565b8152602001906001900390816113ef5790505b5060d2546040805160a0808201835286518252602080880151818401528784015183850152606080890151818501526080808a0151818601528551938401865260c9546001600160a01b0390811685529284018f90528c83168487015260cc5483169184019190915284518082019095529596506000959416936312599ac69330938d938b9391929091820190806001815260200160d060009054906101000a90046001600160a01b03166001600160a01b031681526020018e8152602001600015158152508152506040518060a0016040528060d160009054906101000a90046001600160a01b03166001600160a01b03168152602001600081526020018a81526020018a815260200160405180604001604052806002815260200161060f60f31b8152508152506040518763ffffffff1660e01b815260040161155496959493929190612752565b6060604051808303816000875af1158015611573573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611597919061284b565b505060ce549091506115b6906001600160a01b038981169116836112c4565b60cd54604051636858286160e01b81526001600160a01b03909116906368582861906115ea908a9033908690600401612879565b600060405180830381600087803b15801561160457600080fd5b505af1158015611618573d6000803e3d6000fd5b505060408051338152602081018c90526001600160a01b038b16818301526001606082015290517f085a04cbdee0cf17cbfd154f7b88e7623401d833a6fba86f86f981e01c30e8b79350908190036080019150a15050505050505050565b60cb5460ca54611693916001600160a01b039182169116836112c4565b60cb5460405163f9fa1b3960e01b8152600481018390523360248201526001600160a01b039091169063f9fa1b3990604401600060405180830381600087803b1580156116df57600080fd5b505af11580156116f3573d6000803e3d6000fd5b505060ca546040517f41a12716d7bb2c142d8838dd55c7c8eaa77bcdf20eb5e5eb59928c5cab0e42259350610499925033916001600160a01b0316908590612879565b60cf5460c954611753916001600160a01b039182169116836112c4565b60cf54604051633188639160e11b815233600482015260248101839052600160448201526001600160a01b0390911690636310c72290606401600060405180830381600087803b1580156117a657600080fd5b505af11580156117ba573d6000803e3d6000fd5b505060c954604080513381526001600160a01b039092166020830152810184905260026060820152600160808201527fe2569f941d0fecbd156681a82e523386b8984b50fabf04b73cfbc61fb690124e925060a0019050610499565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b611870611216565b6097805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586111ff3390565b600054610100900460ff166118cc5760405162461bcd60e51b815260040161069d9061289d565b610645611a4d565b600054610100900460ff166118fb5760405162461bcd60e51b815260040161069d9061289d565b610645611a7d565b600054610100900460ff1661192a5760405162461bcd60e51b815260040161069d9061289d565b610645611aab565b60975460ff166106455760405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b604482015260640161069d565b60006119d0826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316611ade9092919063ffffffff16565b8051909150156112bf57808060200190518101906119ee91906128e8565b6112bf5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b606482015260840161069d565b600054610100900460ff16611a745760405162461bcd60e51b815260040161069d9061289d565b61064533611816565b600054610100900460ff16611aa45760405162461bcd60e51b815260040161069d9061289d565b6001606555565b600054610100900460ff16611ad25760405162461bcd60e51b815260040161069d9061289d565b6097805460ff19169055565b6060611aed8484600085611af7565b90505b9392505050565b606082471015611b585760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b606482015260840161069d565b611b61856111bb565b611bad5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161069d565b600080866001600160a01b03168587604051611bc99190612905565b60006040518083038185875af1925050503d8060008114611c06576040519150601f19603f3d011682016040523d82523d6000602084013e611c0b565b606091505b5091509150611c1b828286611c26565b979650505050505050565b60608315611c35575081611af0565b825115611c455782518084602001fd5b8160405162461bcd60e51b815260040161069d9190612921565b6040518060600160405280611c72611c86565b815260200160608152602001600081525090565b60405180610180016040528060008152602001600081526020016000815260200160006003811115611cba57611cba612515565b815260200160006001600160a01b0316815260200160006001600160a01b0316815260200160006001600160a01b0316815260200160006001600160a01b03168152602001600081526020016000815260200160008152602001606081525090565b6001600160a01b038116811461115e57600080fd5b600060208284031215611d4357600080fd5b8135611af081611d1c565b6001600160a01b0391909116815260200190565b60008060208385031215611d7557600080fd5b82356001600160401b0380821115611d8c57600080fd5b818501915085601f830112611da057600080fd5b813581811115611daf57600080fd5b8660208260051b8501011115611dc457600080fd5b60209290920196919550909350505050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b0381118282101715611e1457611e14611dd6565b604052919050565b60006001600160401b03821115611e3557611e35611dd6565b5060051b60200190565b600082601f830112611e5057600080fd5b81356020611e65611e6083611e1c565b611dec565b82815260059290921b84018101918181019086841115611e8457600080fd5b8286015b84811015611ea8578035611e9b81611d1c565b8352918301918301611e88565b509695505050505050565b600082601f830112611ec457600080fd5b81356020611ed4611e6083611e1c565b82815260059290921b84018101918181019086841115611ef357600080fd5b8286015b84811015611ea85780356001600160401b03811115611f165760008081fd5b611f248986838b0101611e3f565b845250918301918301611ef7565b60006001600160401b03821115611f4b57611f4b611dd6565b50601f01601f191660200190565b600082601f830112611f6a57600080fd5b81356020611f7a611e6083611e1c565b82815260059290921b84018101918181019086841115611f9957600080fd5b8286015b84811015611ea85780356001600160401b03811115611fbc5760008081fd5b8701603f81018913611fce5760008081fd5b848101356040611fe0611e6083611f32565b8281528b82848601011115611ff55760008081fd5b8282850189830137600092810188019290925250845250918301918301611f9d565b600082601f83011261202857600080fd5b81356020612038611e6083611e1c565b82815260059290921b8401810191818101908684111561205757600080fd5b8286015b84811015611ea8578035835291830191830161205b565b600060a0828403121561208457600080fd5b60405160a081018181106001600160401b03821117156120a6576120a6611dd6565b806040525080915082358152602083013560208201526040830135604082015260608301356060820152608083013560808201525092915050565b801515811461115e57600080fd5b80356120fa816120e1565b919050565b600080600080600080600080610180898b03121561211c57600080fd5b88356001600160401b038082111561213357600080fd5b61213f8c838d01611e3f565b995060208b013591508082111561215557600080fd5b6121618c838d01611eb3565b985060408b013591508082111561217757600080fd5b6121838c838d01611f59565b975060608b013591508082111561219957600080fd5b6121a58c838d01611e3f565b965060808b01359150808211156121bb57600080fd5b506121c88b828c01612017565b9450506121d88a60a08b01612072565b925061014089013591506121ef6101608a016120ef565b90509295985092959890939650565b6000806000806000806000806000806101408b8d03121561221e57600080fd5b8a3561222981611d1c565b995060208b013561223981611d1c565b985060408b013561224981611d1c565b975060608b013561225981611d1c565b965060808b013561226981611d1c565b955060a08b013561227981611d1c565b945060c08b013561228981611d1c565b935060e08b013561229981611d1c565b92506101008b01356122aa81611d1c565b91506101208b01356122bb81611d1c565b809150509295989b9194979a5092959850565b634e487b7160e01b600052603260045260246000fd5b60208082528181018390526000908460408401835b86811015611ea857823561230c81611d1c565b6001600160a01b0316825291830191908301906001016122f9565b60005b8381101561234257818101518382015260200161232a565b50506000910152565b6000806000806080858703121561236157600080fd5b84519350602085015161237381611d1c565b60408601519093506001600160401b0381111561238f57600080fd5b8501601f810187136123a057600080fd5b80516123ae611e6082611f32565b8181528860208385010111156123c357600080fd5b6123d4826020830160208601612327565b60609790970151959894975050505050565b634e487b7160e01b600052601160045260246000fd5b60006001820161240e5761240e6123e6565b5060010190565b600081518084526020808501945080840160005b8381101561244e5781516001600160a01b031687529582019590820190600101612429565b509495945050505050565b60808152600061246c6080830187612415565b6020838203818501528187518084528284019150828160051b850101838a0160005b838110156124bc57601f198784030185526124aa838351612415565b9486019492509085019060010161248e565b50506001600160a01b03989098166040870152505050509115156060909101525092915050565b6000602082840312156124f557600080fd5b5051919050565b8082018082111561250f5761250f6123e6565b92915050565b634e487b7160e01b600052602160045260246000fd5b6004811061115e57634e487b7160e01b600052602160045260246000fd5b60008151808452612561816020860160208601612327565b601f01601f19169290920160200192915050565b61257e8161252b565b9052565b600081518084526020808501808196508360051b8101915082860160005b858110156126d857828403895281516060815181875280518288015287810151608081818a0152604091508183015160a081818c015285850151955060c091506125ec828c0187612575565b91840151945060e0916126098b8401876001600160a01b03169052565b84015194506101006126258b8201876001600160a01b03169052565b908401519450610120906126438b8301876001600160a01b03169052565b918401519450610140916126618b8401876001600160a01b03169052565b8401516101608b81019190915290840151610180808c0191909152918401516101a08b01528301516101c08a019190915292506126a26101e0890184612549565b9250888401519150878303898901526126bb8383612549565b9381015197019690965250988501989350908401906001016125a0565b5091979650505050505050565b60018060a01b038151168252602081015160208301526000604082015160a0604085015261271660a0850182612582565b90506060830151848203606086015261272f8282612582565b915050608083015184820360808601526127498282612549565b95945050505050565b600061014060018060a01b03808a16845280891660208501528760408501528651606085015260208701516080850152604087015160a0850152606087015160c0850152608087015160e0850152816101008501528086511682850152602086015161016085015280604087015116610180850152806060870151166101a08501526080860151915060a06101c085015281516127ee8161252b565b6101e08501526020820151166102008401526040810151608061022085015261281b610260850182612549565b90506060820151151561024085015283810361012085015261283d81866126e5565b9a9950505050505050505050565b60008060006060848603121561286057600080fd5b8351925060208401519150604084015190509250925092565b6001600160a01b039384168152919092166020820152604081019190915260600190565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b6000602082840312156128fa57600080fd5b8151611af0816120e1565b60008251612917818460208701612327565b9190910192915050565b602081526000611af0602083018461254956fec7e3a88c0a89b2b9d873f0a60016f50d3fc2b4d7025130293d9e52bbbc7cabe6a2646970667358221220969b99f53c70547ded7617916f52fb459dbfc453abc1e14e1c48025098d1005064736f6c63430008130033
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106101b05760003560e01c8063715018a6116100ef57806398024b471161009257806398024b4714610388578063a076a14c1461039b578063b07abf05146103ae578063b78a977d146103c1578063c6fea47c146103d4578063dc797b6a146103e7578063e9fb67c0146103fa578063f2fde38b1461040d57600080fd5b8063715018a6146103265780637a07e1f41461032e5780637cf738d2146103415780638456cb5914610354578063866db49d1461035c578063881b01f81461036f5780638da5cb5b146103775780638e8c4c091461036f57600080fd5b8063336d0d9411610157578063336d0d941461028e5780633c41d5ab146102b15780633f4ba83a146102c45780634534609b146102cc5780634a9d7127146102df5780634d546410146102f25780634e8c47e1146103055780635c975abb1461031b57600080fd5b8063092244cf146101b55780630e73d79f146101ca578063171060ec146101f3578063206aeab31461020657806324e8b0f314610219578063288de5f31461022c5780632b481e391461023f5780632c8cbcf21461027b575b600080fd5b6101c86101c3366004611d31565b610420565b005b60cb546101dd906001600160a01b031681565b6040516101ea9190611d4e565b60405180910390f35b6101c8610201366004611d31565b6104a4565b60d2546101dd906001600160a01b031681565b60cf546101dd906001600160a01b031681565b6101c861023a366004611d31565b61051d565b61026b61024d366004611d31565b6001600160a01b0316600090815260d4602052604090205460ff1690565b60405190151581526020016101ea565b6101c8610289366004611d62565b610585565b61026b61029c366004611d31565b60d46020526000908152604090205460ff1681565b60d3546101dd906001600160a01b031681565b6101c8610635565b6101c86102da3660046120ff565b610647565b60cd546101dd906001600160a01b031681565b6101c8610300366004611d31565b610c9b565b61030d600281565b6040519081526020016101ea565b60975460ff1661026b565b6101c8610d15565b60d0546101dd906001600160a01b031681565b60c9546101dd906001600160a01b031681565b6101c8610d27565b60ca546101dd906001600160a01b031681565b61030d600181565b6033546001600160a01b03166101dd565b6101c86103963660046121fe565b610d37565b6101c86103a9366004611d62565b610efb565b6101c86103bc366004611d31565b610f9e565b60cc546101dd906001600160a01b031681565b60ce546101dd906001600160a01b031681565b6101c86103f5366004611d31565b611006565b6101c8610408366004611d31565b611080565b6101c861041b366004611d31565b6110e8565b610428611161565b610431816111bb565b61044e5760405163486bbb1960e01b815260040160405180910390fd5b60d280546001600160a01b0319166001600160a01b0383161790556040517f2936bb1e8a462507eb027c51585564c22e906dcbcbba6a5a309450e92735bcc690610499908390611d4e565b60405180910390a150565b6104ac611161565b6104b5816111bb565b6104d25760405163486bbb1960e01b815260040160405180910390fd5b60cb80546001600160a01b0319166001600160a01b0383161790556040517fef7ce00901486d0ae4bbe00a818eb6bb2f42bc78fc75571cf294c1c50c61adfd90610499908390611d4e565b610525611161565b61052e816111bb565b61054b5760405163486bbb1960e01b815260040160405180910390fd5b60cf80546001600160a01b0319166001600160a01b0383169081179091556040516000805160206129358339815191529161049991611d4e565b61058d611161565b8060005b818110156105f657600160d460008686858181106105b1576105b16122ce565b90506020020160208101906105c69190611d31565b6001600160a01b031681526020810191909152604001600020805460ff1916911515919091179055600101610591565b507f68ba79316f2f1e5b9cbebbec19a0fbb2c29806dffa531995229a0bac2af9659583836040516106289291906122e4565b60405180910390a1505050565b61063d611161565b6106456111ca565b565b61064f611216565b6002606554036106a65760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b6002606555875187511415806106be57508751865114155b806106cb57508751855114155b806106d857508751845114155b156106f6576040516374fb1cb360e01b815260040160405180910390fd5b61071a60405180606001604052806000815260200160008152602001606081525090565b88516001600160401b0381111561073357610733611dd6565b60405190808252806020026020018201604052801561075c578160200160208202803683370190505b5060408201526000805b8a518110156108595760d3548b516001600160a01b039091169063ad05e627908d9084908110610798576107986122ce565b602090810291909101015160c9546040516001600160e01b031960e085901b1681526001600160a01b03928316600482015233602482015291166044820152606401600060405180830381865afa1580156107f7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261081f919081019061234b565b604087015180519194509250849150811061083c5761083c6122ce565b602090810291909101015280610851816123fc565b915050610766565b5060d354604051631d13a60360e11b81526001600160a01b0390911690633a274c0690610890908d908d9033908990600401612459565b600060405180830381600087803b1580156108aa57600080fd5b505af11580156108be573d6000803e3d6000fd5b5050505060005b8a51811015610be15760005b8a82815181106108e3576108e36122ce565b602002602001015151811015610bce5760008b8381518110610907576109076122ce565b60200260200101518281518110610920576109206122ce565b602002602001015190506000816001600160a01b03166370a08231306040518263ffffffff1660e01b81526004016109589190611d4e565b602060405180830381865afa158015610975573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061099991906124e3565b60ca549091506001600160a01b03908116908316036109b757600194505b806000036109c6575050610bbc565b6001600160a01b038216600090815260d4602052604090205460ff16610a01576109fa6001600160a01b038316338361125c565b5050610bbc565b60c9546001600160a01b0390811690831603610b815760018a8581518110610a2b57610a2b6122ce565b602002602001015103610afa5760d25460408701518051610a7f926001600160a01b0316919087908110610a6157610a616122ce565b602090810291909101015160c9546001600160a01b031691906112c4565b610af586604001518581518110610a9857610a986122ce565b60200260200101518f8681518110610ab257610ab26122ce565b60200260200101518d8781518110610acc57610acc6122ce565b60200260200101518f8881518110610ae657610ae66122ce565b60200260200101518c8e6113d9565b610bb9565b60028a8581518110610b0e57610b0e6122ce565b602002602001015103610b525785604001518481518110610b3157610b316122ce565b602002602001015186602001818151610b4a91906124fc565b905250610bb9565b85604001518481518110610b6857610b686122ce565b602002602001015186600001818151610b4a91906124fc565b60ca546001600160a01b0390811690831603610ba057610af581611676565b60405163dfde867160e01b815260040160405180910390fd5b50505b80610bc6816123fc565b9150506108d1565b5080610bd9816123fc565b9150506108c5565b50828015610bed575080155b15610c0b5760405163acf920db60e01b815260040160405180910390fd5b602082015115610c2257610c228260200151611736565b815115610c4557815160c954610c45916001600160a01b0390911690339061125c565b8951895160405133927f820cea42e8517cf1ec6d4e9db93909255f07c45f7eb0a7c7b5a0f8bdcfc2e5bf92610c8292918252602082015260400190565b60405180910390a2505060016065555050505050505050565b610ca3611161565b610cac816111bb565b610cc95760405163486bbb1960e01b815260040160405180910390fd5b60cc80546001600160a01b0319166001600160a01b0383169081179091556040517fcc5baa6c8e17556e98e39394c8427039e448859d8adaa531fada15018c05f3d29161049991611d4e565b610d1d611161565b6106456000611816565b610d2f611161565b610645611868565b600054610100900460ff1615808015610d575750600054600160ff909116105b80610d785750610d66306111bb565b158015610d78575060005460ff166001145b610ddb5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b606482015260840161069d565b6000805460ff191660011790558015610dfe576000805461ff0019166101001790555b610e066118a5565b610e0e6118d4565b610e16611903565b60c980546001600160a01b03199081166001600160a01b038e81169190911790925560ca805482168d841617905560d3805482168c841617905560d2805482168b841617905560cb805482168a841617905560cd8054821689841617905560ce8054821688841617905560cf8054821687841617905560d08054821686841617905560cc80549091169184169190911790558015610eee576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b5050505050505050505050565b610f03611161565b8060005b81811015610f6c57600060d46000868685818110610f2757610f276122ce565b9050602002016020810190610f3c9190611d31565b6001600160a01b031681526020810191909152604001600020805460ff1916911515919091179055600101610f07565b507fe2b0e0ecba7dc6fb129f35455ff5af160713014ad3cb4a3266fbb9bcb48b0ae783836040516106289291906122e4565b610fa6611161565b610faf816111bb565b610fcc5760405163486bbb1960e01b815260040160405180910390fd5b60ce80546001600160a01b0319166001600160a01b0383169081179091556040516000805160206129358339815191529161049991611d4e565b61100e611161565b611017816111bb565b6110345760405163486bbb1960e01b815260040160405180910390fd5b60d080546001600160a01b0319166001600160a01b0383169081179091556040517f66158d4041148b4e4b19cc5748b5d548026ab0e56eb248744eea90d59c4f95a79161049991611d4e565b611088611161565b611091816111bb565b6110ae5760405163486bbb1960e01b815260040160405180910390fd5b60cd80546001600160a01b0319166001600160a01b0383169081179091556040516000805160206129358339815191529161049991611d4e565b6110f0611161565b6001600160a01b0381166111555760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161069d565b61115e81611816565b50565b6033546001600160a01b031633146106455760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161069d565b6001600160a01b03163b151590565b6111d2611932565b6097805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b60405161120c9190611d4e565b60405180910390a1565b60975460ff16156106455760405162461bcd60e51b815260206004820152601060248201526f14185d5cd8589b194e881c185d5cd95960821b604482015260640161069d565b6040516001600160a01b0383166024820152604481018290526112bf90849063a9059cbb60e01b906064015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261197b565b505050565b80158061133e5750604051636eb1769f60e11b81523060048201526001600160a01b03838116602483015284169063dd62ed3e90604401602060405180830381865afa158015611318573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061133c91906124e3565b155b6113a95760405162461bcd60e51b815260206004820152603660248201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60448201527520746f206e6f6e2d7a65726f20616c6c6f77616e636560501b606482015260840161069d565b6040516001600160a01b0383166024820152604481018290526112bf90849063095ea7b360e01b90606401611288565b604080516000808252602082019092528161140a565b6113f7611c5f565b8152602001906001900390816113ef5790505b5060d2546040805160a0808201835286518252602080880151818401528784015183850152606080890151818501526080808a0151818601528551938401865260c9546001600160a01b0390811685529284018f90528c83168487015260cc5483169184019190915284518082019095529596506000959416936312599ac69330938d938b9391929091820190806001815260200160d060009054906101000a90046001600160a01b03166001600160a01b031681526020018e8152602001600015158152508152506040518060a0016040528060d160009054906101000a90046001600160a01b03166001600160a01b03168152602001600081526020018a81526020018a815260200160405180604001604052806002815260200161060f60f31b8152508152506040518763ffffffff1660e01b815260040161155496959493929190612752565b6060604051808303816000875af1158015611573573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611597919061284b565b505060ce549091506115b6906001600160a01b038981169116836112c4565b60cd54604051636858286160e01b81526001600160a01b03909116906368582861906115ea908a9033908690600401612879565b600060405180830381600087803b15801561160457600080fd5b505af1158015611618573d6000803e3d6000fd5b505060408051338152602081018c90526001600160a01b038b16818301526001606082015290517f085a04cbdee0cf17cbfd154f7b88e7623401d833a6fba86f86f981e01c30e8b79350908190036080019150a15050505050505050565b60cb5460ca54611693916001600160a01b039182169116836112c4565b60cb5460405163f9fa1b3960e01b8152600481018390523360248201526001600160a01b039091169063f9fa1b3990604401600060405180830381600087803b1580156116df57600080fd5b505af11580156116f3573d6000803e3d6000fd5b505060ca546040517f41a12716d7bb2c142d8838dd55c7c8eaa77bcdf20eb5e5eb59928c5cab0e42259350610499925033916001600160a01b0316908590612879565b60cf5460c954611753916001600160a01b039182169116836112c4565b60cf54604051633188639160e11b815233600482015260248101839052600160448201526001600160a01b0390911690636310c72290606401600060405180830381600087803b1580156117a657600080fd5b505af11580156117ba573d6000803e3d6000fd5b505060c954604080513381526001600160a01b039092166020830152810184905260026060820152600160808201527fe2569f941d0fecbd156681a82e523386b8984b50fabf04b73cfbc61fb690124e925060a0019050610499565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b611870611216565b6097805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586111ff3390565b600054610100900460ff166118cc5760405162461bcd60e51b815260040161069d9061289d565b610645611a4d565b600054610100900460ff166118fb5760405162461bcd60e51b815260040161069d9061289d565b610645611a7d565b600054610100900460ff1661192a5760405162461bcd60e51b815260040161069d9061289d565b610645611aab565b60975460ff166106455760405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b604482015260640161069d565b60006119d0826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316611ade9092919063ffffffff16565b8051909150156112bf57808060200190518101906119ee91906128e8565b6112bf5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b606482015260840161069d565b600054610100900460ff16611a745760405162461bcd60e51b815260040161069d9061289d565b61064533611816565b600054610100900460ff16611aa45760405162461bcd60e51b815260040161069d9061289d565b6001606555565b600054610100900460ff16611ad25760405162461bcd60e51b815260040161069d9061289d565b6097805460ff19169055565b6060611aed8484600085611af7565b90505b9392505050565b606082471015611b585760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b606482015260840161069d565b611b61856111bb565b611bad5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161069d565b600080866001600160a01b03168587604051611bc99190612905565b60006040518083038185875af1925050503d8060008114611c06576040519150601f19603f3d011682016040523d82523d6000602084013e611c0b565b606091505b5091509150611c1b828286611c26565b979650505050505050565b60608315611c35575081611af0565b825115611c455782518084602001fd5b8160405162461bcd60e51b815260040161069d9190612921565b6040518060600160405280611c72611c86565b815260200160608152602001600081525090565b60405180610180016040528060008152602001600081526020016000815260200160006003811115611cba57611cba612515565b815260200160006001600160a01b0316815260200160006001600160a01b0316815260200160006001600160a01b0316815260200160006001600160a01b03168152602001600081526020016000815260200160008152602001606081525090565b6001600160a01b038116811461115e57600080fd5b600060208284031215611d4357600080fd5b8135611af081611d1c565b6001600160a01b0391909116815260200190565b60008060208385031215611d7557600080fd5b82356001600160401b0380821115611d8c57600080fd5b818501915085601f830112611da057600080fd5b813581811115611daf57600080fd5b8660208260051b8501011115611dc457600080fd5b60209290920196919550909350505050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b0381118282101715611e1457611e14611dd6565b604052919050565b60006001600160401b03821115611e3557611e35611dd6565b5060051b60200190565b600082601f830112611e5057600080fd5b81356020611e65611e6083611e1c565b611dec565b82815260059290921b84018101918181019086841115611e8457600080fd5b8286015b84811015611ea8578035611e9b81611d1c565b8352918301918301611e88565b509695505050505050565b600082601f830112611ec457600080fd5b81356020611ed4611e6083611e1c565b82815260059290921b84018101918181019086841115611ef357600080fd5b8286015b84811015611ea85780356001600160401b03811115611f165760008081fd5b611f248986838b0101611e3f565b845250918301918301611ef7565b60006001600160401b03821115611f4b57611f4b611dd6565b50601f01601f191660200190565b600082601f830112611f6a57600080fd5b81356020611f7a611e6083611e1c565b82815260059290921b84018101918181019086841115611f9957600080fd5b8286015b84811015611ea85780356001600160401b03811115611fbc5760008081fd5b8701603f81018913611fce5760008081fd5b848101356040611fe0611e6083611f32565b8281528b82848601011115611ff55760008081fd5b8282850189830137600092810188019290925250845250918301918301611f9d565b600082601f83011261202857600080fd5b81356020612038611e6083611e1c565b82815260059290921b8401810191818101908684111561205757600080fd5b8286015b84811015611ea8578035835291830191830161205b565b600060a0828403121561208457600080fd5b60405160a081018181106001600160401b03821117156120a6576120a6611dd6565b806040525080915082358152602083013560208201526040830135604082015260608301356060820152608083013560808201525092915050565b801515811461115e57600080fd5b80356120fa816120e1565b919050565b600080600080600080600080610180898b03121561211c57600080fd5b88356001600160401b038082111561213357600080fd5b61213f8c838d01611e3f565b995060208b013591508082111561215557600080fd5b6121618c838d01611eb3565b985060408b013591508082111561217757600080fd5b6121838c838d01611f59565b975060608b013591508082111561219957600080fd5b6121a58c838d01611e3f565b965060808b01359150808211156121bb57600080fd5b506121c88b828c01612017565b9450506121d88a60a08b01612072565b925061014089013591506121ef6101608a016120ef565b90509295985092959890939650565b6000806000806000806000806000806101408b8d03121561221e57600080fd5b8a3561222981611d1c565b995060208b013561223981611d1c565b985060408b013561224981611d1c565b975060608b013561225981611d1c565b965060808b013561226981611d1c565b955060a08b013561227981611d1c565b945060c08b013561228981611d1c565b935060e08b013561229981611d1c565b92506101008b01356122aa81611d1c565b91506101208b01356122bb81611d1c565b809150509295989b9194979a5092959850565b634e487b7160e01b600052603260045260246000fd5b60208082528181018390526000908460408401835b86811015611ea857823561230c81611d1c565b6001600160a01b0316825291830191908301906001016122f9565b60005b8381101561234257818101518382015260200161232a565b50506000910152565b6000806000806080858703121561236157600080fd5b84519350602085015161237381611d1c565b60408601519093506001600160401b0381111561238f57600080fd5b8501601f810187136123a057600080fd5b80516123ae611e6082611f32565b8181528860208385010111156123c357600080fd5b6123d4826020830160208601612327565b60609790970151959894975050505050565b634e487b7160e01b600052601160045260246000fd5b60006001820161240e5761240e6123e6565b5060010190565b600081518084526020808501945080840160005b8381101561244e5781516001600160a01b031687529582019590820190600101612429565b509495945050505050565b60808152600061246c6080830187612415565b6020838203818501528187518084528284019150828160051b850101838a0160005b838110156124bc57601f198784030185526124aa838351612415565b9486019492509085019060010161248e565b50506001600160a01b03989098166040870152505050509115156060909101525092915050565b6000602082840312156124f557600080fd5b5051919050565b8082018082111561250f5761250f6123e6565b92915050565b634e487b7160e01b600052602160045260246000fd5b6004811061115e57634e487b7160e01b600052602160045260246000fd5b60008151808452612561816020860160208601612327565b601f01601f19169290920160200192915050565b61257e8161252b565b9052565b600081518084526020808501808196508360051b8101915082860160005b858110156126d857828403895281516060815181875280518288015287810151608081818a0152604091508183015160a081818c015285850151955060c091506125ec828c0187612575565b91840151945060e0916126098b8401876001600160a01b03169052565b84015194506101006126258b8201876001600160a01b03169052565b908401519450610120906126438b8301876001600160a01b03169052565b918401519450610140916126618b8401876001600160a01b03169052565b8401516101608b81019190915290840151610180808c0191909152918401516101a08b01528301516101c08a019190915292506126a26101e0890184612549565b9250888401519150878303898901526126bb8383612549565b9381015197019690965250988501989350908401906001016125a0565b5091979650505050505050565b60018060a01b038151168252602081015160208301526000604082015160a0604085015261271660a0850182612582565b90506060830151848203606086015261272f8282612582565b915050608083015184820360808601526127498282612549565b95945050505050565b600061014060018060a01b03808a16845280891660208501528760408501528651606085015260208701516080850152604087015160a0850152606087015160c0850152608087015160e0850152816101008501528086511682850152602086015161016085015280604087015116610180850152806060870151166101a08501526080860151915060a06101c085015281516127ee8161252b565b6101e08501526020820151166102008401526040810151608061022085015261281b610260850182612549565b90506060820151151561024085015283810361012085015261283d81866126e5565b9a9950505050505050505050565b60008060006060848603121561286057600080fd5b8351925060208401519150604084015190509250925092565b6001600160a01b039384168152919092166020820152604081019190915260600190565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b6000602082840312156128fa57600080fd5b8151611af0816120e1565b60008251612917818460208701612327565b9190910192915050565b602081526000611af0602083018461254956fec7e3a88c0a89b2b9d873f0a60016f50d3fc2b4d7025130293d9e52bbbc7cabe6a2646970667358221220969b99f53c70547ded7617916f52fb459dbfc453abc1e14e1c48025098d1005064736f6c63430008130033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.