ETH Price: $3,469.11 (+1.79%)
Gas: 8 Gwei

Contract

0x0d387002FDa9a0a07DFC35C7326dAC8B379BCfeC
 

Overview

ETH Balance

2.949843367344456369 ETH

Eth Value

$10,233.32 (@ $3,469.11/ETH)
Transaction Hash
Method
Block
From
To
Value
Mint202043732024-06-30 12:02:2329 hrs ago1719748943IN
0x0d387002...B379BCfeC
0.0679067 ETH0.001497753.24864873
Mint201975932024-06-29 13:18:352 days ago1719667115IN
0x0d387002...B379BCfeC
0.01956891 ETH0.000841974.65288145
Mint201697512024-06-25 16:00:116 days ago1719331211IN
0x0d387002...B379BCfeC
0.00672711 ETH0.0009977910.54967762
Mint201697012024-06-25 15:50:116 days ago1719330611IN
0x0d387002...B379BCfeC
0.02021089 ETH0.001805859.9794367
Mint201329842024-06-20 12:37:2311 days ago1718887043IN
0x0d387002...B379BCfeC
0.00640311 ETH0.0019771720.90717743
Mint201143832024-06-17 22:07:3513 days ago1718662055IN
0x0d387002...B379BCfeC
0.00645161 ETH0.000428854.66116418
Mint201103202024-06-17 8:29:3514 days ago1718612975IN
0x0d387002...B379BCfeC
0.01940382 ETH0.001125885.30610437
Mint200994642024-06-15 20:04:4715 days ago1718481887IN
0x0d387002...B379BCfeC
0.06462489 ETH0.002063213.99343011
Mint200885112024-06-14 7:19:4717 days ago1718349587IN
0x0d387002...B379BCfeC
0.00594161 ETH0.000862219.3702082
Mint200841212024-06-13 16:33:5918 days ago1718296439IN
0x0d387002...B379BCfeC
0.01330633 ETH0.0039103225.2843526
Mint200841082024-06-13 16:31:1118 days ago1718296271IN
0x0d387002...B379BCfeC
0.00665509 ETH0.0024140925.52737836
Mint200785962024-06-12 22:01:1118 days ago1718229671IN
0x0d387002...B379BCfeC
0.06447995 ETH0.0058652412.76895778
Mint199819202024-05-30 9:58:3532 days ago1717063115IN
0x0d387002...B379BCfeC
0.01850362 ETH0.0018648610.13040586
Mint199818972024-05-30 9:53:5932 days ago1717062839IN
0x0d387002...B379BCfeC
0.01837549 ETH0.0022040511.80925852
Mint199406882024-05-24 15:39:2338 days ago1716565163IN
0x0d387002...B379BCfeC
0.01856835 ETH0.0037791220.59490176
Mint199315212024-05-23 8:54:2339 days ago1716454463IN
0x0d387002...B379BCfeC
0.00605103 ETH0.000889529.66823954
Mint199282412024-05-22 21:55:3539 days ago1716414935IN
0x0d387002...B379BCfeC
0.00610565 ETH0.001035710.95041599
Mint199282372024-05-22 21:54:4739 days ago1716414887IN
0x0d387002...B379BCfeC
0.00610727 ETH0.0009919110.77967862
Mint199282342024-05-22 21:54:1139 days ago1716414851IN
0x0d387002...B379BCfeC
0.00622944 ETH0.000295559.05156063
Mint199253892024-05-22 12:22:1140 days ago1716380531IN
0x0d387002...B379BCfeC
0.00619445 ETH0.0012418913.13046014
Mint198982552024-05-18 17:15:3544 days ago1716052535IN
0x0d387002...B379BCfeC
0.01476251 ETH0.000978586.43375868
Mint198976712024-05-18 15:17:3544 days ago1716045455IN
0x0d387002...B379BCfeC
0.04437299 ETH0.001742395.67555703
Mint198953442024-05-18 7:28:1144 days ago1716017291IN
0x0d387002...B379BCfeC
0.01481004 ETH0.001096785.88752463
Mint198952582024-05-18 7:10:5944 days ago1716016259IN
0x0d387002...B379BCfeC
0.0148387 ETH0.001013835.44189302
Mint198904432024-05-17 14:59:5945 days ago1715957999IN
0x0d387002...B379BCfeC
0.00745542 ETH0.0012380813.09020061
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
PayableTraitsDrop

Compiler Version
v0.8.10+commit.fc410830

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 7 : PayableTraitsDrop.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

interface ITraitContract {
    function mint(uint256 _tokenId, address _to) external;
}

contract PayableTraitsDrop is Ownable {
    event TraitsClaimed(address _wallet, address[] _traitAddresses, uint256[] _traitIds);

    modifier callerIsUser() {
        require(tx.origin == msg.sender, "The caller is another contract");
        _;
    }

    address public signerAddress;

    // ONLY OWNER

    /**
     * @dev Allows to withdraw the Ether in the contract
     */
    function withdraw() external onlyOwner {
        payable(msg.sender).transfer(address(this).balance);
    }

    /**
     * @dev Sets the address that generates the signatures for whitelisting
     */
    function setSignerAddress(address _signerAddress) external onlyOwner {
        signerAddress = _signerAddress;
    }

    // END ONLY OWNER

    /**
     * @dev Mint function
     */
    function mint(
        address _to,
        uint256 _fromTimestamp,
        uint256 _toTimestamp,
        address[] calldata _traitAddresses,
        uint256[] calldata _traitIds,
        uint256 _price,
        bytes calldata _signature
    ) external payable callerIsUser {
        bytes32 messageHash = generateMessageHash(_to, _fromTimestamp, _toTimestamp, _traitAddresses, _traitIds, _price);
        address recoveredWallet = ECDSA.recover(messageHash, _signature);

        require(recoveredWallet == signerAddress, "Invalid signature for the caller");
        require(block.timestamp >= _fromTimestamp, "Too early to mint");
        require(block.timestamp <= _toTimestamp, "The signature has expired");

        require(_traitAddresses.length > 0, "Trait Addresses is empty");
        require(_traitIds.length > 0, "Trait Ids is empty");
        require(_traitIds.length == _traitAddresses.length, "The number of trait ids and addresses must be the same");
        require(msg.value >= _price, "Insufficient Ether to claim");

        for (uint i = 0; i < _traitAddresses.length; i++) {
            ITraitContract(_traitAddresses[i]).mint(_traitIds[i], _to);
        }

        emit TraitsClaimed(_to, _traitAddresses, _traitIds);
    }

    /**
     * @dev Generates the message hash for the given parameters
     */
    function generateMessageHash(
        address _address,
        uint256 _fromTimestamp,
        uint256 _toTimestamp,
        address[] calldata _traitsAddresses,
        uint256[] calldata _traitsIds,
        uint256 _price
    ) internal view returns (bytes32) {
        bytes32 _hash = keccak256(
            abi.encodePacked(
                _address,
                address(this),
                _fromTimestamp,
                _toTimestamp,
                _traitsAddresses,
                _traitsIds,
                _price
            )
        );

        bytes memory result = abi.encodePacked("\x19Ethereum Signed Message:\n32", _hash);

        return keccak256(result);
    }
}

File 2 of 7 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 7 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 4 of 7 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 5 of 7 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 6 of 7 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 7 of 7 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_wallet","type":"address"},{"indexed":false,"internalType":"address[]","name":"_traitAddresses","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"_traitIds","type":"uint256[]"}],"name":"TraitsClaimed","type":"event"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_fromTimestamp","type":"uint256"},{"internalType":"uint256","name":"_toTimestamp","type":"uint256"},{"internalType":"address[]","name":"_traitAddresses","type":"address[]"},{"internalType":"uint256[]","name":"_traitIds","type":"uint256[]"},{"internalType":"uint256","name":"_price","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signerAddress","type":"address"}],"name":"setSignerAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b5061001a3361001f565b61006f565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b610d318061007e6000396000f3fe6080604052600436106100705760003560e01c8063715018a61161004e578063715018a6146100e85780638b239951146100fd5780638da5cb5b14610110578063f2fde38b1461012e57600080fd5b8063046dc166146100755780633ccfd60b146100975780635b7633d0146100ac575b600080fd5b34801561008157600080fd5b50610095610090366004610a24565b61014e565b005b3480156100a357600080fd5b50610095610178565b3480156100b857600080fd5b506001546100cc906001600160a01b031681565b6040516001600160a01b03909116815260200160405180910390f35b3480156100f457600080fd5b506100956101af565b61009561010b366004610a8b565b6101c3565b34801561011c57600080fd5b506000546001600160a01b03166100cc565b34801561013a57600080fd5b50610095610149366004610a24565b6105ca565b610156610640565b600180546001600160a01b0319166001600160a01b0392909216919091179055565b610180610640565b60405133904780156108fc02916000818181858888f193505050501580156101ac573d6000803e3d6000fd5b50565b6101b7610640565b6101c1600061069a565b565b3233146102175760405162461bcd60e51b815260206004820152601e60248201527f5468652063616c6c657220697320616e6f7468657220636f6e7472616374000060448201526064015b60405180910390fd5b60006102298b8b8b8b8b8b8b8b6106ea565b9050600061026d8285858080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061078c92505050565b6001549091506001600160a01b038083169116146102cd5760405162461bcd60e51b815260206004820181905260248201527f496e76616c6964207369676e617475726520666f72207468652063616c6c6572604482015260640161020e565b8a4210156103115760405162461bcd60e51b8152602060048201526011602482015270151bdbc819585c9b1e481d1bc81b5a5b9d607a1b604482015260640161020e565b894211156103615760405162461bcd60e51b815260206004820152601960248201527f546865207369676e617475726520686173206578706972656400000000000000604482015260640161020e565b876103ae5760405162461bcd60e51b815260206004820152601860248201527f54726169742041646472657373657320697320656d7074790000000000000000604482015260640161020e565b856103f05760405162461bcd60e51b815260206004820152601260248201527154726169742049647320697320656d70747960701b604482015260640161020e565b85881461045e5760405162461bcd60e51b815260206004820152603660248201527f546865206e756d626572206f662074726169742069647320616e6420616464726044820152756573736573206d757374206265207468652073616d6560501b606482015260840161020e565b843410156104ae5760405162461bcd60e51b815260206004820152601b60248201527f496e73756666696369656e7420457468657220746f20636c61696d0000000000604482015260640161020e565b60005b8881101561057c578989828181106104cb576104cb610b7f565b90506020020160208101906104e09190610a24565b6001600160a01b03166394bf804d89898481811061050057610500610b7f565b905060200201358f6040518363ffffffff1660e01b81526004016105379291909182526001600160a01b0316602082015260400190565b600060405180830381600087803b15801561055157600080fd5b505af1158015610565573d6000803e3d6000fd5b50505050808061057490610b95565b9150506104b1565b507fb41d623a6ff8ecbb6f4931d56bd9d79dbd871f1a63f91123f04b75cd4afbf19e8c8a8a8a8a6040516105b4959493929190610bbe565b60405180910390a1505050505050505050505050565b6105d2610640565b6001600160a01b0381166106375760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161020e565b6101ac8161069a565b6000546001600160a01b031633146101c15760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161020e565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008089308a8a8a8a8a8a8a60405160200161070e99989796959493929190610c4b565b60405160208183030381529060405280519060200120905060008160405160200161076591907f19457468657265756d205369676e6564204d6573736167653a0a3332000000008152601c810191909152603c0190565b60408051808303601f1901815291905280516020909101209b9a5050505050505050505050565b600080600061079b85856107b0565b915091506107a8816107f6565b509392505050565b6000808251604114156107e75760208301516040840151606085015160001a6107db87828585610944565b945094505050506107ef565b506000905060025b9250929050565b600081600481111561080a5761080a610ce5565b14156108135750565b600181600481111561082757610827610ce5565b14156108755760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e61747572650000000000000000604482015260640161020e565b600281600481111561088957610889610ce5565b14156108d75760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161020e565b60038160048111156108eb576108eb610ce5565b14156101ac5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161020e565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561097b57506000905060036109ff565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156109cf573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166109f8576000600192509250506109ff565b9150600090505b94509492505050565b80356001600160a01b0381168114610a1f57600080fd5b919050565b600060208284031215610a3657600080fd5b610a3f82610a08565b9392505050565b60008083601f840112610a5857600080fd5b50813567ffffffffffffffff811115610a7057600080fd5b6020830191508360208260051b85010111156107ef57600080fd5b60008060008060008060008060008060e08b8d031215610aaa57600080fd5b610ab38b610a08565b995060208b0135985060408b0135975060608b013567ffffffffffffffff80821115610ade57600080fd5b610aea8e838f01610a46565b909950975060808d0135915080821115610b0357600080fd5b610b0f8e838f01610a46565b909750955060a08d0135945060c08d0135915080821115610b2f57600080fd5b818d0191508d601f830112610b4357600080fd5b813581811115610b5257600080fd5b8e6020828501011115610b6457600080fd5b6020830194508093505050509295989b9194979a5092959850565b634e487b7160e01b600052603260045260246000fd5b6000600019821415610bb757634e487b7160e01b600052601160045260246000fd5b5060010190565b6001600160a01b03868116825260606020808401829052908301869052600091879160808501845b89811015610c0b5783610bf886610a08565b1682529382019390820190600101610be6565b5085810360408701528681526001600160fb1b03871115610c2b57600080fd5b8660051b9350838883830137600093010191825250979650505050505050565b60006bffffffffffffffffffffffff19808c60601b168352808b60601b16601484015250886028830152876048830152606882018760005b88811015610cb2576001600160a01b03610c9c83610a08565b1683526020928301929190910190600101610c83565b50506001600160fb1b03851115610cc857600080fd5b8460051b8087833701928352505060200198975050505050505050565b634e487b7160e01b600052602160045260246000fdfea264697066735822122033bb208010f4e3306e0357d9e1e76764d77a6decd60846f958d5eb2ad179623f64736f6c634300080a0033

Deployed Bytecode

0x6080604052600436106100705760003560e01c8063715018a61161004e578063715018a6146100e85780638b239951146100fd5780638da5cb5b14610110578063f2fde38b1461012e57600080fd5b8063046dc166146100755780633ccfd60b146100975780635b7633d0146100ac575b600080fd5b34801561008157600080fd5b50610095610090366004610a24565b61014e565b005b3480156100a357600080fd5b50610095610178565b3480156100b857600080fd5b506001546100cc906001600160a01b031681565b6040516001600160a01b03909116815260200160405180910390f35b3480156100f457600080fd5b506100956101af565b61009561010b366004610a8b565b6101c3565b34801561011c57600080fd5b506000546001600160a01b03166100cc565b34801561013a57600080fd5b50610095610149366004610a24565b6105ca565b610156610640565b600180546001600160a01b0319166001600160a01b0392909216919091179055565b610180610640565b60405133904780156108fc02916000818181858888f193505050501580156101ac573d6000803e3d6000fd5b50565b6101b7610640565b6101c1600061069a565b565b3233146102175760405162461bcd60e51b815260206004820152601e60248201527f5468652063616c6c657220697320616e6f7468657220636f6e7472616374000060448201526064015b60405180910390fd5b60006102298b8b8b8b8b8b8b8b6106ea565b9050600061026d8285858080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061078c92505050565b6001549091506001600160a01b038083169116146102cd5760405162461bcd60e51b815260206004820181905260248201527f496e76616c6964207369676e617475726520666f72207468652063616c6c6572604482015260640161020e565b8a4210156103115760405162461bcd60e51b8152602060048201526011602482015270151bdbc819585c9b1e481d1bc81b5a5b9d607a1b604482015260640161020e565b894211156103615760405162461bcd60e51b815260206004820152601960248201527f546865207369676e617475726520686173206578706972656400000000000000604482015260640161020e565b876103ae5760405162461bcd60e51b815260206004820152601860248201527f54726169742041646472657373657320697320656d7074790000000000000000604482015260640161020e565b856103f05760405162461bcd60e51b815260206004820152601260248201527154726169742049647320697320656d70747960701b604482015260640161020e565b85881461045e5760405162461bcd60e51b815260206004820152603660248201527f546865206e756d626572206f662074726169742069647320616e6420616464726044820152756573736573206d757374206265207468652073616d6560501b606482015260840161020e565b843410156104ae5760405162461bcd60e51b815260206004820152601b60248201527f496e73756666696369656e7420457468657220746f20636c61696d0000000000604482015260640161020e565b60005b8881101561057c578989828181106104cb576104cb610b7f565b90506020020160208101906104e09190610a24565b6001600160a01b03166394bf804d89898481811061050057610500610b7f565b905060200201358f6040518363ffffffff1660e01b81526004016105379291909182526001600160a01b0316602082015260400190565b600060405180830381600087803b15801561055157600080fd5b505af1158015610565573d6000803e3d6000fd5b50505050808061057490610b95565b9150506104b1565b507fb41d623a6ff8ecbb6f4931d56bd9d79dbd871f1a63f91123f04b75cd4afbf19e8c8a8a8a8a6040516105b4959493929190610bbe565b60405180910390a1505050505050505050505050565b6105d2610640565b6001600160a01b0381166106375760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161020e565b6101ac8161069a565b6000546001600160a01b031633146101c15760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161020e565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008089308a8a8a8a8a8a8a60405160200161070e99989796959493929190610c4b565b60405160208183030381529060405280519060200120905060008160405160200161076591907f19457468657265756d205369676e6564204d6573736167653a0a3332000000008152601c810191909152603c0190565b60408051808303601f1901815291905280516020909101209b9a5050505050505050505050565b600080600061079b85856107b0565b915091506107a8816107f6565b509392505050565b6000808251604114156107e75760208301516040840151606085015160001a6107db87828585610944565b945094505050506107ef565b506000905060025b9250929050565b600081600481111561080a5761080a610ce5565b14156108135750565b600181600481111561082757610827610ce5565b14156108755760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e61747572650000000000000000604482015260640161020e565b600281600481111561088957610889610ce5565b14156108d75760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161020e565b60038160048111156108eb576108eb610ce5565b14156101ac5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161020e565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561097b57506000905060036109ff565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156109cf573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166109f8576000600192509250506109ff565b9150600090505b94509492505050565b80356001600160a01b0381168114610a1f57600080fd5b919050565b600060208284031215610a3657600080fd5b610a3f82610a08565b9392505050565b60008083601f840112610a5857600080fd5b50813567ffffffffffffffff811115610a7057600080fd5b6020830191508360208260051b85010111156107ef57600080fd5b60008060008060008060008060008060e08b8d031215610aaa57600080fd5b610ab38b610a08565b995060208b0135985060408b0135975060608b013567ffffffffffffffff80821115610ade57600080fd5b610aea8e838f01610a46565b909950975060808d0135915080821115610b0357600080fd5b610b0f8e838f01610a46565b909750955060a08d0135945060c08d0135915080821115610b2f57600080fd5b818d0191508d601f830112610b4357600080fd5b813581811115610b5257600080fd5b8e6020828501011115610b6457600080fd5b6020830194508093505050509295989b9194979a5092959850565b634e487b7160e01b600052603260045260246000fd5b6000600019821415610bb757634e487b7160e01b600052601160045260246000fd5b5060010190565b6001600160a01b03868116825260606020808401829052908301869052600091879160808501845b89811015610c0b5783610bf886610a08565b1682529382019390820190600101610be6565b5085810360408701528681526001600160fb1b03871115610c2b57600080fd5b8660051b9350838883830137600093010191825250979650505050505050565b60006bffffffffffffffffffffffff19808c60601b168352808b60601b16601484015250886028830152876048830152606882018760005b88811015610cb2576001600160a01b03610c9c83610a08565b1683526020928301929190910190600101610c83565b50506001600160fb1b03851115610cc857600080fd5b8460051b8087833701928352505060200198975050505050505050565b634e487b7160e01b600052602160045260246000fdfea264697066735822122033bb208010f4e3306e0357d9e1e76764d77a6decd60846f958d5eb2ad179623f64736f6c634300080a0033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.