ETH Price: $3,252.62 (-2.29%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Transaction Hash
Method
Block
From
To
0x0099d076bc008c393e96c8c7914eb03380215ed7fb692b2a79df4efc3407d2e1 Prove Withdrawal...(pending)2025-01-23 1:07:1824 mins ago1737594438IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0xe4d68faef823503fe7cdb8ac97aac1fd4fc7d2a4415f6bdec10d349a9aff1dd1 Finalize Withdra...(pending)2025-01-23 0:29:291 hr ago1737592169IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0x0c8edec706a324de2a6f16cced061426c984a1e5431d44beafcd57862ccbbe3d Transfer(pending)2025-01-21 1:01:292 days ago1737421289IN
Blast: Optimism Portal Proxy
0.0008 ETH(Pending)(Pending)
0xf3fe0ad3d5e8d51c0d3d96d11abad5065012a4f238b25be48d99a328746e8d55 Transfer(pending)2025-01-20 18:01:512 days ago1737396111IN
Blast: Optimism Portal Proxy
0.000114 ETH(Pending)(Pending)
0x9b4da0a2dc2aa57f261b6dee09e4db9edc4b5295677293e097c1422297f20717 Finalize Withdra...(pending)2025-01-19 16:04:063 days ago1737302646IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0xe13c97744008fac692d1dd5e94da44ea1ea672b9cb2dca26070434819165bc41 Prove Withdrawal...(pending)2025-01-12 1:23:5311 days ago1736645033IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0xbe06fe719ce09a411bc230aefa298a1e0e9c5e4df2f5280d5e4794f479023964 Prove Withdrawal...(pending)2025-01-12 1:23:4911 days ago1736645029IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0x06e413bda5049712f27564203f8261b01bca230e7661811bf9783b676e0a10fd Prove Withdrawal...(pending)2025-01-06 13:01:2816 days ago1736168488IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0xcf16b1b0d18a9e0df290c94ddc43bcfe4cdfdbb4104fc7e0b4ab0f414350175f Prove Withdrawal...(pending)2025-01-05 1:22:4518 days ago1736040165IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0x0849907b6f7f5aee4bad3ce38ce485d00963f37a43804eb14c424b8a366fcc09 Prove Withdrawal...(pending)2024-12-29 1:33:1624 days ago1735435996IN
Blast: Optimism Portal Proxy
0 ETH(Pending)(Pending)
0x1c6ba3070d282fe8e0e95f20742add9c8909c0b633b8ef6c61b70d9fa2d23b19 Transfer(pending)2024-12-29 1:33:1624 days ago1735435996IN
Blast: Optimism Portal Proxy
0.00005 ETH(Pending)(Pending)
Transfer216838622025-01-23 1:18:4713 mins ago1737595127IN
Blast: Optimism Portal Proxy
0.004 ETH0.000535196.64267993
Prove Withdrawal...216838592025-01-23 1:18:1113 mins ago1737595091IN
Blast: Optimism Portal Proxy
0 ETH0.003692287.98401491
Prove Withdrawal...216838062025-01-23 1:07:3524 mins ago1737594455IN
Blast: Optimism Portal Proxy
0 ETH0.002309227.08126446
Transfer216836852025-01-23 0:43:1148 mins ago1737592991IN
Blast: Optimism Portal Proxy
0.105 ETH0.000632997.85650713
Transfer216836752025-01-23 0:41:1150 mins ago1737592871IN
Blast: Optimism Portal Proxy
0.015 ETH0.00073019.06187498
Prove Withdrawal...216835742025-01-23 0:20:351 hr ago1737591635IN
Blast: Optimism Portal Proxy
0 ETH0.003318147.17610173
Prove Withdrawal...216835702025-01-23 0:19:471 hr ago1737591587IN
Blast: Optimism Portal Proxy
0 ETH0.003032427.01586197
Finalize Withdra...216835582025-01-23 0:17:231 hr ago1737591443IN
Blast: Optimism Portal Proxy
0 ETH0.00170446.93752269
Prove Withdrawal...216834242025-01-22 23:50:351 hr ago1737589835IN
Blast: Optimism Portal Proxy
0 ETH0.002775365.99545178
Transfer216834092025-01-22 23:47:351 hr ago1737589655IN
Blast: Optimism Portal Proxy
0.02899 ETH0.000504866.26621021
Transfer216833902025-01-22 23:43:471 hr ago1737589427IN
Blast: Optimism Portal Proxy
0.00085 ETH0.000402845
Transfer216833672025-01-22 23:39:111 hr ago1737589151IN
Blast: Optimism Portal Proxy
0.00083 ETH0.000402845
Prove Withdrawal...216833502025-01-22 23:35:471 hr ago1737588947IN
Blast: Optimism Portal Proxy
0 ETH0.002702125.8982826
Finalize Withdra...216833442025-01-22 23:34:351 hr ago1737588875IN
Blast: Optimism Portal Proxy
0 ETH0.001733335.44882102
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block
From
To
216838622025-01-23 1:18:4713 mins ago1737595127
0x0Ec68c5B...08C0Db6Cb
0 ETH
216838622025-01-23 1:18:4713 mins ago1737595127
0x0Ec68c5B...08C0Db6Cb
0.004 ETH
216838622025-01-23 1:18:4713 mins ago1737595127
0x0Ec68c5B...08C0Db6Cb
0.004 ETH
216838592025-01-23 1:18:1113 mins ago1737595091
0x0Ec68c5B...08C0Db6Cb
0 ETH
216838592025-01-23 1:18:1113 mins ago1737595091
0x0Ec68c5B...08C0Db6Cb
0 ETH
216838592025-01-23 1:18:1113 mins ago1737595091
0x0Ec68c5B...08C0Db6Cb
0 ETH
216838062025-01-23 1:07:3524 mins ago1737594455
0x0Ec68c5B...08C0Db6Cb
0 ETH
216838062025-01-23 1:07:3524 mins ago1737594455
0x0Ec68c5B...08C0Db6Cb
0 ETH
216837252025-01-23 0:51:1140 mins ago1737593471
0x0Ec68c5B...08C0Db6Cb
0 ETH
216837252025-01-23 0:51:1140 mins ago1737593471
0x0Ec68c5B...08C0Db6Cb
0 ETH
216837252025-01-23 0:51:1140 mins ago1737593471
0x0Ec68c5B...08C0Db6Cb
0 ETH
216836852025-01-23 0:43:1148 mins ago1737592991
0x0Ec68c5B...08C0Db6Cb
0 ETH
216836852025-01-23 0:43:1148 mins ago1737592991
0x0Ec68c5B...08C0Db6Cb
0.105 ETH
216836852025-01-23 0:43:1148 mins ago1737592991
0x0Ec68c5B...08C0Db6Cb
0.105 ETH
216836752025-01-23 0:41:1150 mins ago1737592871
0x0Ec68c5B...08C0Db6Cb
0 ETH
216836752025-01-23 0:41:1150 mins ago1737592871
0x0Ec68c5B...08C0Db6Cb
0.015 ETH
216836752025-01-23 0:41:1150 mins ago1737592871
0x0Ec68c5B...08C0Db6Cb
0.015 ETH
216836212025-01-23 0:30:111 hr ago1737592211
0x0Ec68c5B...08C0Db6Cb
0 ETH
216836212025-01-23 0:30:111 hr ago1737592211
0x0Ec68c5B...08C0Db6Cb
0 ETH
216836212025-01-23 0:30:111 hr ago1737592211
0x0Ec68c5B...08C0Db6Cb
0 ETH
216835972025-01-23 0:25:231 hr ago1737591923
0x0Ec68c5B...08C0Db6Cb
0 ETH
216835972025-01-23 0:25:231 hr ago1737591923
0x0Ec68c5B...08C0Db6Cb
0.00494 ETH
216835972025-01-23 0:25:231 hr ago1737591923
0x0Ec68c5B...08C0Db6Cb
0.00494 ETH
216835972025-01-23 0:25:231 hr ago1737591923
0x0Ec68c5B...08C0Db6Cb
0.00494 ETH
216835742025-01-23 0:20:351 hr ago1737591635
0x0Ec68c5B...08C0Db6Cb
0 ETH
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x5531DcfF...368F805a9
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
Proxy

Compiler Version
v0.8.15+commit.e14f2714

Optimization Enabled:
Yes with 200 runs

Other Settings:
london EvmVersion
File 1 of 10 : Proxy.sol
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Constants } from "src/libraries/Constants.sol";

/// @title Proxy
/// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
///         if the caller is address(0), meaning that the call originated from an off-chain
///         simulation.
contract Proxy {
    /// @notice An event that is emitted each time the implementation is changed. This event is part
    ///         of the EIP-1967 specification.
    /// @param implementation The address of the implementation contract
    event Upgraded(address indexed implementation);

    /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
    ///         EIP-1967 specification.
    /// @param previousAdmin The previous owner of the contract
    /// @param newAdmin      The new owner of the contract
    event AdminChanged(address previousAdmin, address newAdmin);

    /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
    ///         eth_call to interact with this proxy without needing to use low-level storage
    ///         inspection. We assume that nobody is able to trigger calls from address(0) during
    ///         normal EVM execution.
    modifier proxyCallIfNotAdmin() {
        if (msg.sender == _getAdmin() || msg.sender == address(0)) {
            _;
        } else {
            // This WILL halt the call frame on completion.
            _doProxyCall();
        }
    }

    /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
    ///         EIP-1967 admin storage slot so that accidental storage collision with the
    ///         implementation is not possible.
    /// @param _admin Address of the initial contract admin. Admin as the ability to access the
    ///               transparent proxy interface.
    constructor(address _admin) {
        _changeAdmin(_admin);
    }

    // slither-disable-next-line locked-ether
    receive() external payable {
        // Proxy call by default.
        _doProxyCall();
    }

    // slither-disable-next-line locked-ether
    fallback() external payable {
        // Proxy call by default.
        _doProxyCall();
    }

    /// @notice Set the implementation contract address. The code at the given address will execute
    ///         when this contract is called.
    /// @param _implementation Address of the implementation contract.
    function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
        _setImplementation(_implementation);
    }

    /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
    ///         atomic execution of initialization-based upgrades.
    /// @param _implementation Address of the implementation contract.
    /// @param _data           Calldata to delegatecall the new implementation with.
    function upgradeToAndCall(
        address _implementation,
        bytes calldata _data
    )
        public
        payable
        virtual
        proxyCallIfNotAdmin
        returns (bytes memory)
    {
        _setImplementation(_implementation);
        (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
        require(success, "Proxy: delegatecall to new implementation contract failed");
        return returndata;
    }

    /// @notice Changes the owner of the proxy contract. Only callable by the owner.
    /// @param _admin New owner of the proxy contract.
    function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
        _changeAdmin(_admin);
    }

    /// @notice Gets the owner of the proxy contract.
    /// @return Owner address.
    function admin() public virtual proxyCallIfNotAdmin returns (address) {
        return _getAdmin();
    }

    //// @notice Queries the implementation address.
    /// @return Implementation address.
    function implementation() public virtual proxyCallIfNotAdmin returns (address) {
        return _getImplementation();
    }

    /// @notice Sets the implementation address.
    /// @param _implementation New implementation address.
    function _setImplementation(address _implementation) internal {
        bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
        assembly {
            sstore(proxyImplementation, _implementation)
        }
        emit Upgraded(_implementation);
    }

    /// @notice Changes the owner of the proxy contract.
    /// @param _admin New owner of the proxy contract.
    function _changeAdmin(address _admin) internal {
        address previous = _getAdmin();
        bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
        assembly {
            sstore(proxyOwner, _admin)
        }
        emit AdminChanged(previous, _admin);
    }

    /// @notice Performs the proxy call via a delegatecall.
    function _doProxyCall() internal {
        address impl = _getImplementation();
        require(impl != address(0), "Proxy: implementation not initialized");

        assembly {
            // Copy calldata into memory at 0x0....calldatasize.
            calldatacopy(0x0, 0x0, calldatasize())

            // Perform the delegatecall, make sure to pass all available gas.
            let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)

            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
            // overwrite the calldata that we just copied into memory but that doesn't really
            // matter because we'll be returning in a second anyway.
            returndatacopy(0x0, 0x0, returndatasize())

            // Success == 0 means a revert. We'll revert too and pass the data up.
            if iszero(success) { revert(0x0, returndatasize()) }

            // Otherwise we'll just return and pass the data up.
            return(0x0, returndatasize())
        }
    }

    /// @notice Queries the implementation address.
    /// @return Implementation address.
    function _getImplementation() internal view returns (address) {
        address impl;
        bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
        assembly {
            impl := sload(proxyImplementation)
        }
        return impl;
    }

    /// @notice Queries the owner of the proxy contract.
    /// @return Owner address.
    function _getAdmin() internal view returns (address) {
        address owner;
        bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
        assembly {
            owner := sload(proxyOwner)
        }
        return owner;
    }
}

File 2 of 10 : Constants.sol
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity ^0.8.0;

import { ResourceMetering } from "../L1/ResourceMetering.sol";

/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
///         the stuff used in multiple contracts. Constants that only apply to a single contract
///         should be defined in that contract instead.
library Constants {
    /// @notice Special address to be used as the tx origin for gas estimation calls in the
    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
    ///         the minimum gas limit specified by the user is not actually enough to execute the
    ///         given message and you're attempting to estimate the actual necessary gas limit. We
    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
    ///         never have any code on any EVM chain.
    address internal constant ESTIMATION_ADDRESS = address(1);

    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
    ///         non-zero to reduce the gas cost of message passing transactions.
    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;

    /// @notice The storage slot that holds the address of a proxy implementation.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /// @notice The storage slot that holds the address of the owner.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
    ///         for a production network.
    function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
        ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
            maxResourceLimit: 20_000_000,
            elasticityMultiplier: 10,
            baseFeeMaxChangeDenominator: 8,
            minimumBaseFee: 1 gwei,
            systemTxMaxGas: 1_000_000,
            maximumBaseFee: type(uint128).max
        });
        return config;
    }

    /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
    ///         each time that the contracts are deployed.
    uint8 internal constant INITIALIZER = 1;
}

File 3 of 10 : ResourceMetering.sol
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";

/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
///         updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
    /// @notice Represents the various parameters that control the way in which resources are
    ///         metered. Corresponds to the EIP-1559 resource metering system.
    /// @custom:field prevBaseFee   Base fee from the previous block(s).
    /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
    /// @custom:field prevBlockNum  Last block number that the base fee was updated.
    struct ResourceParams {
        uint128 prevBaseFee;
        uint64 prevBoughtGas;
        uint64 prevBlockNum;
    }

    /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
    ///         market. These values should be set with care as it is possible to set them in
    ///         a way that breaks the deposit gas market. The target resource limit is defined as
    ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
    ///         single word. There is additional space for additions in the future.
    /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
    ///                                            can be purchased per block.
    /// @custom:field elasticityMultiplier         Determines the target resource limit along with
    ///                                            the resource limit.
    /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
    /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
    ///                                            value.
    /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
    ///                                            transaction. This should be set to the same
    ///                                            number that the op-node sets as the gas limit
    ///                                            for the system transaction.
    /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
    ///                                            value.
    struct ResourceConfig {
        uint32 maxResourceLimit;
        uint8 elasticityMultiplier;
        uint8 baseFeeMaxChangeDenominator;
        uint32 minimumBaseFee;
        uint32 systemTxMaxGas;
        uint128 maximumBaseFee;
    }

    /// @notice EIP-1559 style gas parameters.
    ResourceParams public params;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    uint256[48] private __gap;

    /// @notice Meters access to a function based an amount of a requested resource.
    /// @param _amount Amount of the resource requested.
    modifier metered(uint64 _amount) {
        // Record initial gas amount so we can refund for it later.
        uint256 initialGas = gasleft();

        // Run the underlying function.
        _;

        // Run the metering function.
        _metered(_amount, initialGas);
    }

    /// @notice An internal function that holds all of the logic for metering a resource.
    /// @param _amount     Amount of the resource requested.
    /// @param _initialGas The amount of gas before any modifier execution.
    function _metered(uint64 _amount, uint256 _initialGas) internal {
        // Update block number and base fee if necessary.
        uint256 blockDiff = block.number - params.prevBlockNum;

        ResourceConfig memory config = _resourceConfig();
        int256 targetResourceLimit =
            int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));

        if (blockDiff > 0) {
            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
            // at which deposits can be created and therefore limit the potential for deposits to
            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));

            // Update base fee by adding the base fee delta and clamp the resulting value between
            // min and max.
            int256 newBaseFee = Arithmetic.clamp({
                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                _min: int256(uint256(config.minimumBaseFee)),
                _max: int256(uint256(config.maximumBaseFee))
            });

            // If we skipped more than one block, we also need to account for every empty block.
            // Empty block means there was no demand for deposits in that block, so we should
            // reflect this lack of demand in the fee.
            if (blockDiff > 1) {
                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                // between min and max.
                newBaseFee = Arithmetic.clamp({
                    _value: Arithmetic.cdexp({
                        _coefficient: newBaseFee,
                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                        _exponent: int256(blockDiff - 1)
                    }),
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
            }

            // Update new base fee, reset bought gas, and update block number.
            params.prevBaseFee = uint128(uint256(newBaseFee));
            params.prevBoughtGas = 0;
            params.prevBlockNum = uint64(block.number);
        }

        // Make sure we can actually buy the resource amount requested by the user.
        params.prevBoughtGas += _amount;
        require(
            int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
            "ResourceMetering: cannot buy more gas than available gas limit"
        );

        // Determine the amount of ETH to be paid.
        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);

        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
        // during any 1 day period in the last 5 years, so should be fine.
        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);

        // Give the user a refund based on the amount of gas they used to do all of the work up to
        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
        // effectively like a dynamic stipend (with a minimum value).
        uint256 usedGas = _initialGas - gasleft();
        if (gasCost > usedGas) {
            Burn.gas(gasCost - usedGas);
        }
    }

    /// @notice Virtual function that returns the resource config.
    ///         Contracts that inherit this contract must implement this function.
    /// @return ResourceConfig
    function _resourceConfig() internal virtual returns (ResourceConfig memory);

    /// @notice Sets initial resource parameter values.
    ///         This function must either be called by the initializer function of an upgradeable
    ///         child contract.
    // solhint-disable-next-line func-name-mixedcase
    function __ResourceMetering_init() internal onlyInitializing {
        if (params.prevBlockNum == 0) {
            params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
        }
    }
}

File 4 of 10 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
     * initialization step. This is essential to configure modules that are added through upgrades and that require
     * initialization.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized < type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }
}

File 5 of 10 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`.
        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1;
        uint256 x = a;
        if (x >> 128 > 0) {
            x >>= 128;
            result <<= 64;
        }
        if (x >> 64 > 0) {
            x >>= 64;
            result <<= 32;
        }
        if (x >> 32 > 0) {
            x >>= 32;
            result <<= 16;
        }
        if (x >> 16 > 0) {
            x >>= 16;
            result <<= 8;
        }
        if (x >> 8 > 0) {
            x >>= 8;
            result <<= 4;
        }
        if (x >> 4 > 0) {
            x >>= 4;
            result <<= 2;
        }
        if (x >> 2 > 0) {
            result <<= 1;
        }

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        uint256 result = sqrt(a);
        if (rounding == Rounding.Up && result * result < a) {
            result += 1;
        }
        return result;
    }
}

File 6 of 10 : Burn.sol
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
    /// @notice Burns a given amount of ETH.
    /// @param _amount Amount of ETH to burn.
    function eth(uint256 _amount) internal {
        new Burner{ value: _amount }();
    }

    /// @notice Burns a given amount of gas.
    /// @param _amount Amount of gas to burn.
    function gas(uint256 _amount) internal view {
        uint256 i = 0;
        uint256 initialGas = gasleft();
        while (initialGas - gasleft() < _amount) {
            ++i;
        }
    }
}

/// @title Burner
/// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
///         from the circulating supply.
contract Burner {
    constructor() payable {
        selfdestruct(payable(address(this)));
    }
}

File 7 of 10 : Arithmetic.sol
// SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
pragma solidity 0.8.15;

import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";

/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
    /// @notice Clamps a value between a minimum and maximum.
    /// @param _value The value to clamp.
    /// @param _min   The minimum value.
    /// @param _max   The maximum value.
    /// @return The clamped value.
    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
        return SignedMath.min(SignedMath.max(_value, _min), _max);
    }

    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
    ///         Returns the result of: c * (1 - 1/d)^exp.
    /// @param _coefficient Coefficient of the function.
    /// @param _denominator Fractional denominator.
    /// @param _exponent    Power function exponent.
    /// @return Result of c * (1 - 1/d)^exp.
    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
    }
}

File 8 of 10 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 9 of 10 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 10 of 10 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
    }

    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return 0;

            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5**18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
        }
    }

    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            require(x > 0, "UNDEFINED");

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            int256 k = int256(log2(uint256(x))) - 96;
            x <<= uint256(159 - k);
            x = int256(uint256(x) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function log2(uint256 x) internal pure returns (uint256 r) {
        require(x > 0, "UNDEFINED");

        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            r := or(r, shl(2, lt(0xf, shr(r, x))))
            r := or(r, shl(1, lt(0x3, shr(r, x))))
            r := or(r, lt(0x1, shr(r, x)))
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@rari-capital/solmate/=lib/solmate/",
    "@cwia/=lib/clones-with-immutable-args/src/",
    "forge-std/=lib/forge-std/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "safe-contracts/=lib/safe-contracts/contracts/",
    "clones-with-immutable-args/=lib/clones-with-immutable-args/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_admin","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_admin","type":"address"}],"name":"changeAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_implementation","type":"address"}],"name":"upgradeTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_implementation","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Deployed Bytecode

0x60806040526004361061004e5760003560e01c80633659cfe6146100655780634f1ef286146100855780635c60da1b146100ae5780638f283970146100db578063f851a440146100fb5761005d565b3661005d5761005b610110565b005b61005b610110565b34801561007157600080fd5b5061005b610080366004610521565b6101c8565b61009861009336600461053c565b61020e565b6040516100a591906105bf565b60405180910390f35b3480156100ba57600080fd5b506100c361033e565b6040516001600160a01b0390911681526020016100a5565b3480156100e757600080fd5b5061005b6100f6366004610521565b6103a9565b34801561010757600080fd5b506100c36103e4565b600061013a7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5490565b90506001600160a01b0381166101a55760405162461bcd60e51b815260206004820152602560248201527f50726f78793a20696d706c656d656e746174696f6e206e6f7420696e697469616044820152641b1a5e995960da1b60648201526084015b60405180910390fd5b3660008037600080366000845af43d6000803e806101c2573d6000fd5b503d6000f35b600080516020610625833981519152546001600160a01b0316336001600160a01b031614806101f5575033155b156102065761020381610432565b50565b610203610110565b60606102266000805160206106258339815191525490565b6001600160a01b0316336001600160a01b03161480610243575033155b1561032f5761025184610432565b600080856001600160a01b0316858560405161026e929190610614565b600060405180830381855af49150503d80600081146102a9576040519150601f19603f3d011682016040523d82523d6000602084013e6102ae565b606091505b5091509150816103265760405162461bcd60e51b815260206004820152603960248201527f50726f78793a2064656c656761746563616c6c20746f206e657720696d706c6560448201527f6d656e746174696f6e20636f6e7472616374206661696c656400000000000000606482015260840161019c565b91506103379050565b610337610110565b9392505050565b60006103566000805160206106258339815191525490565b6001600160a01b0316336001600160a01b03161480610373575033155b1561039e57507f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5490565b6103a6610110565b90565b600080516020610625833981519152546001600160a01b0316336001600160a01b031614806103d6575033155b15610206576102038161048e565b60006103fc6000805160206106258339815191525490565b6001600160a01b0316336001600160a01b03161480610419575033155b1561039e57506000805160206106258339815191525490565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8181556040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b90600090a25050565b60006104a66000805160206106258339815191525490565b600080516020610625833981519152838155604080516001600160a01b0380851682528616602082015292935090917f7e644d79422f17c01e4894b5f4f588d331ebfa28653d42ae832dc59e38c9798f910160405180910390a1505050565b80356001600160a01b038116811461051c57600080fd5b919050565b60006020828403121561053357600080fd5b61033782610505565b60008060006040848603121561055157600080fd5b61055a84610505565b9250602084013567ffffffffffffffff8082111561057757600080fd5b818601915086601f83011261058b57600080fd5b81358181111561059a57600080fd5b8760208285010111156105ac57600080fd5b6020830194508093505050509250925092565b600060208083528351808285015260005b818110156105ec578581018301518582016040015282016105d0565b818111156105fe576000604083870101525b50601f01601f1916929092016040019392505050565b818382376000910190815291905056feb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103a164736f6c634300080f000a

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.