ETH Price: $3,480.39 (+2.59%)

Contract

0x117b36e79aDadD8ea81fbc53Bfc9CD33270d845D
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Invest With Toke...214617432024-12-23 0:54:592 days ago1734915299IN
Origami Finance: lov-wstETH-a Token
0 ETH0.00158154.28358344
Invest With Toke...214251552024-12-17 22:10:597 days ago1734473459IN
Origami Finance: lov-wstETH-a Token
0 ETH0.0058915715.75282394
Invest With Toke...214112132024-12-15 23:31:239 days ago1734305483IN
Origami Finance: lov-wstETH-a Token
0 ETH0.0057447514.68867762
Exit To Token213348862024-12-05 7:45:1119 days ago1733384711IN
Origami Finance: lov-wstETH-a Token
0 ETH0.0081237716.78359084
Exit To Token209027012024-10-05 23:43:2380 days ago1728171803IN
Origami Finance: lov-wstETH-a Token
0 ETH0.001475243.19646269
Exit To Token208328092024-09-26 5:51:1189 days ago1727329871IN
Origami Finance: lov-wstETH-a Token
0 ETH0.0057507712.0132502
Invest With Toke...208327622024-09-26 5:41:4789 days ago1727329307IN
Origami Finance: lov-wstETH-a Token
0 ETH0.0036739710.07582476
Exit To Token208256572024-09-25 5:52:4790 days ago1727243567IN
Origami Finance: lov-wstETH-a Token
0 ETH0.0060721912.55880469
Invest With Toke...206886202024-09-06 2:39:11110 days ago1725590351IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000424651.13551888
Exit To Token206778672024-09-04 14:38:11111 days ago1725460691IN
Origami Finance: lov-wstETH-a Token
0 ETH0.001763584.07219203
Invest With Toke...206114862024-08-26 8:10:47120 days ago1724659847IN
Origami Finance: lov-wstETH-a Token
0 ETH0.002702477.08379843
Exit To Token206059422024-08-25 13:35:47121 days ago1724592947IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000501481.17308907
Exit To Token206055642024-08-25 12:19:59121 days ago1724588399IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000408210.9443091
Exit To Token206055382024-08-25 12:14:47121 days ago1724588087IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000444830.98986194
Exit To Token205915192024-08-23 13:12:35123 days ago1724418755IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000455121.06461819
Exit To Token205913092024-08-23 12:30:35123 days ago1724416235IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000613141.41840211
Exit To Token205907142024-08-23 10:30:23123 days ago1724409023IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000354290.81959125
Exit To Token205907112024-08-23 10:29:47123 days ago1724408987IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000397730.92008384
Exit To Token205886912024-08-23 3:41:47123 days ago1724384507IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000432271
Exit To Token205886882024-08-23 3:41:11123 days ago1724384471IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000422190.9395008
Exit To Token205251552024-08-14 6:43:59132 days ago1723617839IN
Origami Finance: lov-wstETH-a Token
0 ETH0.001147472.68227032
Exit To Token205148142024-08-12 20:06:47134 days ago1723493207IN
Origami Finance: lov-wstETH-a Token
0 ETH0.001432433.22193955
Exit To Token204864122024-08-08 20:58:47138 days ago1723150727IN
Origami Finance: lov-wstETH-a Token
0 ETH0.001268882.96821743
Exit To Token204815142024-08-08 4:35:59138 days ago1723091759IN
Origami Finance: lov-wstETH-a Token
0 ETH0.000469541.08619282
Exit To Token204786152024-08-07 18:53:35139 days ago1723056815IN
Origami Finance: lov-wstETH-a Token
0 ETH0.002647966.12545109
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x9C1F7237...6248A5247
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
OrigamiLovToken

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion
File 1 of 37 : OrigamiLovToken.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (investments/lovToken/OrigamiLovToken.sol)

import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { IOrigamiOTokenManager } from "contracts/interfaces/investments/IOrigamiOTokenManager.sol";
import { IOrigamiLovToken } from "contracts/interfaces/investments/lovToken/IOrigamiLovToken.sol";
import { IOrigamiLovTokenManager } from "contracts/interfaces/investments/lovToken/managers/IOrigamiLovTokenManager.sol";
import { ITokenPrices } from "contracts/interfaces/common/ITokenPrices.sol";
import { IOrigamiOracle } from "contracts/interfaces/common/oracle/IOrigamiOracle.sol";

import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
import { OrigamiInvestment } from "contracts/investments/OrigamiInvestment.sol";
import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";

/**
 * @title Origami lovToken
 * 
 * @notice Users deposit with an accepted token and are minted lovTokens
 * Origami will rebalance to lever up on the underlying reserve token, targetting a
 * specific A/L (assets / liabilities) range
 *
 * @dev The logic on how to handle the specific deposits/exits for each lovToken is delegated
 * to a manager contract
 */
contract OrigamiLovToken is IOrigamiLovToken, OrigamiInvestment {
    using SafeERC20 for IERC20;

    /**
     * @notice The Origami contract managing the deposits/exits and the application of
     * the deposit tokens into the underlying protocol
     */
    IOrigamiLovTokenManager internal lovManager;

    /**
     * @notice The address used to collect the Origami performance fees.
     */
    address public override feeCollector;

    /**
     * @notice The annual performance fee which Origami takes from harvested rewards before compounding into reserves.
     * @dev Represented in basis points
     */
    uint48 public override annualPerformanceFeeBps;

    /**
     * @notice The last time the performance fee was collected
     */
    uint48 public override lastPerformanceFeeTime;

    /**
     * @notice The helper contract to retrieve Origami USD prices
     * @dev Required for off-chain/subgraph integration
     */
    ITokenPrices public tokenPrices;

    /**
     * @notice The maximum allowed supply of this token for user investments
     * @dev The actual totalSupply() may be greater than `maxTotalSupply`
     * in order to start organically shrinking supply or from performance fees
     */
    uint256 public override maxTotalSupply;

    constructor(
        address _initialOwner,
        string memory _name,
        string memory _symbol,
        uint48 _annualPerformanceFeeBps,
        address _feeCollector,
        address _tokenPrices,
        uint256 _maxTotalSupply
    ) OrigamiInvestment(_name, _symbol, _initialOwner) {
        if (_annualPerformanceFeeBps > OrigamiMath.BASIS_POINTS_DIVISOR) revert CommonEventsAndErrors.InvalidParam();
        annualPerformanceFeeBps = _annualPerformanceFeeBps;
        lastPerformanceFeeTime = uint48(block.timestamp);
        feeCollector = _feeCollector;
        tokenPrices = ITokenPrices(_tokenPrices);
        maxTotalSupply = _maxTotalSupply;
    }

    /**
     * @notice Set the Origami lovToken Manager.
     */
    function setManager(address _manager) external override onlyElevatedAccess {
        if (_manager == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
        emit ManagerSet(_manager);
        lovManager = IOrigamiLovTokenManager(_manager);
    }

    /**
     * @notice Set the vault annual performance fee
     * @dev Represented in basis points
     */
    function setAnnualPerformanceFee(uint48 _annualPerformanceFeeBps) external override onlyElevatedAccess {
        if (_annualPerformanceFeeBps > OrigamiMath.BASIS_POINTS_DIVISOR) revert CommonEventsAndErrors.InvalidParam();

        // Harvest on the old rate prior to updating the fee
        _collectPerformanceFees();

        emit PerformanceFeeSet(_annualPerformanceFeeBps);
        annualPerformanceFeeBps = _annualPerformanceFeeBps;
    }

    /**
     * @notice Set the max total supply allowed for investments into this lovToken
     */
    function setMaxTotalSupply(uint256 _maxTotalSupply) external onlyElevatedAccess {
        maxTotalSupply = _maxTotalSupply;
        emit MaxTotalSupplySet(_maxTotalSupply);
    }

    /**
     * @notice Set the Origami performance fee collector address
     */
    function setFeeCollector(address _feeCollector) external override onlyElevatedAccess {
        if (_feeCollector == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
        emit FeeCollectorSet(_feeCollector);
        feeCollector = _feeCollector;
    }

    /**
     * @notice Set the helper to calculate current off-chain/subgraph integration
     */
    function setTokenPrices(address _tokenPrices) external override onlyElevatedAccess {
        if (_tokenPrices == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
        emit TokenPricesSet(_tokenPrices);
        tokenPrices = ITokenPrices(_tokenPrices);
    }
    
    /** 
      * @notice User buys this lovToken with an amount of one of the approved ERC20 tokens
      * @param quoteData The quote data received from investQuote()
      * @return investmentAmount The actual number of receipt tokens received, inclusive of any fees.
      */
    function investWithToken(
        InvestQuoteData calldata quoteData
    ) external virtual override nonReentrant returns (uint256 investmentAmount) {
        if (quoteData.fromTokenAmount == 0) revert CommonEventsAndErrors.ExpectedNonZero();

        // Send the investment token to the manager
        IOrigamiLovTokenManager _manager = lovManager;
        IERC20(quoteData.fromToken).safeTransferFrom(msg.sender, address(_manager), quoteData.fromTokenAmount);
        investmentAmount = _manager.investWithToken(msg.sender, quoteData);

        emit Invested(msg.sender, quoteData.fromTokenAmount, quoteData.fromToken, investmentAmount);

        // Mint the lovToken for the user
        if (investmentAmount != 0) {
            _mint(msg.sender, investmentAmount);
            if (totalSupply() > maxTotalSupply) {
                revert CommonEventsAndErrors.BreachedMaxTotalSupply(totalSupply(), maxTotalSupply);
            }
        }
    }

    /** 
      * @notice Sell this lovToken to receive one of the accepted exit tokens. 
      * @param quoteData The quote data received from exitQuote()
      * @param recipient The receiving address of the `toToken`
      * @return toTokenAmount The number of `toToken` tokens received upon selling the lovToken.
      */
    function exitToToken(
        ExitQuoteData calldata quoteData,
        address recipient
    ) external virtual override nonReentrant returns (
        uint256 toTokenAmount
    ) {
        if (quoteData.investmentTokenAmount == 0) revert CommonEventsAndErrors.ExpectedNonZero();
        if (recipient == address(0)) revert CommonEventsAndErrors.InvalidAddress(recipient);

        uint256 lovTokenToBurn;
        (toTokenAmount, lovTokenToBurn) = lovManager.exitToToken(msg.sender, quoteData, recipient);
        
        emit Exited(msg.sender, quoteData.investmentTokenAmount, quoteData.toToken, toTokenAmount, recipient);
        
        // Burn the lovToken
        if (lovTokenToBurn != 0) {
            _burn(msg.sender, lovTokenToBurn);
        }
    }

    /** 
      * @notice Unsupported - cannot invest in this lovToken to the native chain asset (eg ETH)
      * @dev In future, if required, a separate version which does support this flow will be added
      */
    function investWithNative(
        InvestQuoteData calldata /*quoteData*/
    ) external payable virtual override returns (uint256) {
        revert Unsupported();
    }

    /** 
      * @notice Unsupported - cannot exit this lovToken to the native chain asset (eg ETH)
      * @dev In future, if required, a separate version which does support this flow will be added
      */
    function exitToNative(
        ExitQuoteData calldata /*quoteData*/, address payable /*recipient*/
    ) external virtual override returns (uint256 /*nativeAmount*/) {
        revert Unsupported();
    }

    /** 
     * @notice Collect the performance fees to the Origami Treasury
     */
    function collectPerformanceFees() external override onlyElevatedAccess returns (uint256 amount) {
        return _collectPerformanceFees();
    }

    /**
     * @notice The Origami contract managing the deposits/exits and the application of
     * the deposit tokens into the underlying protocol
     */
    function manager() external view returns (IOrigamiOTokenManager) {
        return IOrigamiOTokenManager(address(lovManager));
    }

    /**
     * @notice The token used to track reserves for this investment
     */
    function reserveToken() external view returns (address) {
        return lovManager.reserveToken();
    }

    /**
     * @notice The underlying reserve token this investment wraps. 
     */
    function baseToken() external virtual override view returns (address) {
        return address(lovManager.baseToken());
    }

    /**
     * @notice The set of accepted tokens which can be used to deposit.
     */
    function acceptedInvestTokens() external virtual override view returns (address[] memory) {
        return lovManager.acceptedInvestTokens();
    }

    /**
     * @notice The set of accepted tokens which can be used to exit into.
     */
    function acceptedExitTokens() external virtual override view returns (address[] memory) {
        return lovManager.acceptedExitTokens();
    }
        
    /**
     * @notice Whether new investments are paused.
     */
    function areInvestmentsPaused() external virtual override view returns (bool) {
        return lovManager.areInvestmentsPaused();
    }

    /**
     * @notice Whether exits are temporarily paused.
     */
    function areExitsPaused() external virtual override view returns (bool) {
        return lovManager.areExitsPaused();
    }

    /**
     * @notice Get a quote to buy the lovToken using an accepted deposit token.
     * @param fromTokenAmount How much of the deposit token to invest with
     * @param fromToken What ERC20 token to purchase with. This must be one of `acceptedInvestTokens`
     * @param maxSlippageBps The maximum acceptable slippage of the received investment amount
     * @param deadline The maximum deadline to execute the exit.
     * @return quoteData The quote data, including any params required for the underlying investment type.
     * @return investFeeBps Any fees expected when investing with the given token, either from Origami or from the underlying investment.
     */
    function investQuote(
        uint256 fromTokenAmount,
        address fromToken,
        uint256 maxSlippageBps,
        uint256 deadline
    ) external virtual override view returns (
        InvestQuoteData memory quoteData, 
        uint256[] memory investFeeBps
    ) {
        (quoteData, investFeeBps) = lovManager.investQuote(fromTokenAmount, fromToken, maxSlippageBps, deadline);
    }

    /**
     * @notice Get a quote to sell this lovToken to receive one of the accepted exit tokens
     * @param investmentTokenAmount The amount of this lovToken to sell
     * @param toToken The token to receive when selling. This must be one of `acceptedExitTokens`
     * @param maxSlippageBps The maximum acceptable slippage of the received `toToken`
     * @param deadline The maximum deadline to execute the exit.
     * @return quoteData The quote data, including any other quote params required for this investment type.
     * @return exitFeeBps Any fees expected when exiting the investment to the nominated token, either from Origami or from the underlying investment.
     */
    function exitQuote(
        uint256 investmentTokenAmount, 
        address toToken,
        uint256 maxSlippageBps,
        uint256 deadline
    ) external virtual override view returns (
        ExitQuoteData memory quoteData, 
        uint256[] memory exitFeeBps
    ) {
        (quoteData, exitFeeBps) = lovManager.exitQuote(investmentTokenAmount, toToken, maxSlippageBps, deadline);
    }

    /**
     * @notice How many reserve tokens would one get given a number of lovToken shares
     * @dev This will use the `SPOT_PRICE` to value any debt in terms of the reserve token
     */
    function sharesToReserves(uint256 shares) external override view returns (uint256) {
        return lovManager.sharesToReserves(shares, IOrigamiOracle.PriceType.SPOT_PRICE);
    }

    /**
     * @notice How many lovToken shares would one get given a number of reserve tokens
     * @dev This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
     */
    function reservesToShares(uint256 reserves) external override view returns (uint256) {
        return lovManager.reservesToShares(reserves, IOrigamiOracle.PriceType.SPOT_PRICE);
    }

    /**
     * @notice How many reserve tokens would one get given a single share, as of now
     * @dev This will use the Oracle 'HISTORIC_PRICE' to value any debt in terms of the reserve token
     */
    function reservesPerShare() external override view returns (uint256) {
        return lovManager.sharesToReserves(10 ** decimals(), IOrigamiOracle.PriceType.HISTORIC_PRICE);
    }
    
    /**
     * @notice The current amount of available reserves for redemptions
     * @dev This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
     */
    function totalReserves() external override view returns (uint256) {
        return lovManager.userRedeemableReserves(IOrigamiOracle.PriceType.SPOT_PRICE);
    }

    /**
     * @notice Retrieve the current assets, liabilities and calculate the ratio
     * @dev This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
     */
    function assetsAndLiabilities() external override view returns (
        uint256 /*assets*/,
        uint256 /*liabilities*/,
        uint256 /*ratio*/
    ) {
        return lovManager.assetsAndLiabilities(IOrigamiOracle.PriceType.SPOT_PRICE);
    }

    /**
     * @notice The current effective exposure (EE) of this lovToken
     * to `PRECISION` precision
     * @dev = reserves / (reserves - liabilities)
     * This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
     */
    function effectiveExposure() external override view returns (uint128 /*effectiveExposure*/) {
        return lovManager.effectiveExposure(IOrigamiOracle.PriceType.SPOT_PRICE);
    }

    /**
     * @notice The valid lower and upper bounds of A/L allowed when users deposit/exit into lovToken
     * @dev Transactions will revert if the resulting A/L is outside of this range
     */
    function userALRange() external override view returns (uint128 /*floor*/, uint128 /*ceiling*/) {
        return lovManager.userALRange();
    }

    /**
     * @notice The current deposit and exit fee based on market conditions.
     * Fees are the equivalent of burning lovToken shares - benefit remaining vault users
     * @dev represented in basis points
     */
    function getDynamicFeesBps() external override view returns (uint256 depositFeeBps, uint256 exitFeeBps) {
        return lovManager.getDynamicFeesBps();
    }

    /**
     * @notice The maximum amount of fromToken's that can be deposited
     * taking any other underlying protocol constraints into consideration
     */
    function maxInvest(address fromToken) external override view returns (uint256) {
        return lovManager.maxInvest(fromToken);
    }

    /**
     * @notice The maximum amount of tokens that can be exited into the toToken
     * taking any other underlying protocol constraints into consideration
     */
    function maxExit(address toToken) external override view returns (uint256) {
        return lovManager.maxExit(toToken);
    }
    
    /**
     * @notice The accrued performance fee amount which would be minted as of now, 
     * based on the total supply
     */
    function accruedPerformanceFee() public override view returns (uint256) {
        // totalSupply * feeBps * timeDelta / 365 days / 10_000
        // Round down (protocol takes less of a fee)
        uint256 _timeDelta = block.timestamp - lastPerformanceFeeTime;
        return OrigamiMath.mulDiv(
            totalSupply(), 
            annualPerformanceFeeBps * _timeDelta, 
            OrigamiMath.BASIS_POINTS_DIVISOR * 365 days, 
            OrigamiMath.Rounding.ROUND_DOWN
        );
    }

    function _collectPerformanceFees() internal returns (uint256 amount) {
        amount = accruedPerformanceFee();
        if (amount != 0) {
            address _feeCollector = feeCollector;
            emit PerformanceFeesCollected(_feeCollector, amount);

            // Do not need to check vs maxTotalSupply here as it is
            // only for new user investments
            _mint(_feeCollector, amount);
        }

        lastPerformanceFeeTime = uint48(block.timestamp);
    }
}

File 2 of 37 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 3 of 37 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 4 of 37 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

File 5 of 37 : draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

// EIP-2612 is Final as of 2022-11-01. This file is deprecated.

import "./IERC20Permit.sol";

File 6 of 37 : ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
}

File 7 of 37 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 8 of 37 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 9 of 37 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 10 of 37 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 11 of 37 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 12 of 37 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 13 of 37 : Counters.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

File 14 of 37 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 15 of 37 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}

File 16 of 37 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 17 of 37 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 18 of 37 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 19 of 37 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 20 of 37 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 21 of 37 : Common.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

// Common.sol
//
// Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.

/*//////////////////////////////////////////////////////////////////////////
                                CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);

/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);

/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();

/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);

/*//////////////////////////////////////////////////////////////////////////
                                    CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;

/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;

/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;

/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;

/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;

/*//////////////////////////////////////////////////////////////////////////
                                    FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
    unchecked {
        // Start from 0.5 in the 192.64-bit fixed-point format.
        result = 0x800000000000000000000000000000000000000000000000;

        // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
        //
        // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
        // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
        // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
        // we know that `x & 0xFF` is also 1.
        if (x & 0xFF00000000000000 > 0) {
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
        }

        if (x & 0xFF000000000000 > 0) {
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
        }

        if (x & 0xFF0000000000 > 0) {
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
        }

        if (x & 0xFF00000000 > 0) {
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
        }

        if (x & 0xFF000000 > 0) {
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
        }

        if (x & 0xFF0000 > 0) {
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
        }

        if (x & 0xFF00 > 0) {
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
        }

        if (x & 0xFF > 0) {
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
        }

        // In the code snippet below, two operations are executed simultaneously:
        //
        // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
        // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
        // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
        //
        // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
        // integer part, $2^n$.
        result *= UNIT;
        result >>= (191 - (x >> 64));
    }
}

/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
///     x >>= 128;
///     result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
    // 2^128
    assembly ("memory-safe") {
        let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^64
    assembly ("memory-safe") {
        let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^32
    assembly ("memory-safe") {
        let factor := shl(5, gt(x, 0xFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^16
    assembly ("memory-safe") {
        let factor := shl(4, gt(x, 0xFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^8
    assembly ("memory-safe") {
        let factor := shl(3, gt(x, 0xFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^4
    assembly ("memory-safe") {
        let factor := shl(2, gt(x, 0xF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^2
    assembly ("memory-safe") {
        let factor := shl(1, gt(x, 0x3))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^1
    // No need to shift x any more.
    assembly ("memory-safe") {
        let factor := gt(x, 0x1)
        result := or(result, factor)
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
        unchecked {
            return prod0 / denominator;
        }
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    if (prod1 >= denominator) {
        revert PRBMath_MulDiv_Overflow(x, y, denominator);
    }

    ////////////////////////////////////////////////////////////////////////////
    // 512 by 256 division
    ////////////////////////////////////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly ("memory-safe") {
        // Compute remainder using the mulmod Yul instruction.
        remainder := mulmod(x, y, denominator)

        // Subtract 256 bit number from 512-bit number.
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
    }

    unchecked {
        // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
        // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
        // For more detail, see https://cs.stackexchange.com/q/138556/92363.
        uint256 lpotdod = denominator & (~denominator + 1);
        uint256 flippedLpotdod;

        assembly ("memory-safe") {
            // Factor powers of two out of denominator.
            denominator := div(denominator, lpotdod)

            // Divide [prod1 prod0] by lpotdod.
            prod0 := div(prod0, lpotdod)

            // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
            // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
            // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
            flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
        }

        // Shift in bits from prod1 into prod0.
        prod0 |= prod1 * flippedLpotdod;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
        uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
        // in modular arithmetic, doubling the correct bits in each step.
        inverse *= 2 - denominator * inverse; // inverse mod 2^8
        inverse *= 2 - denominator * inverse; // inverse mod 2^16
        inverse *= 2 - denominator * inverse; // inverse mod 2^32
        inverse *= 2 - denominator * inverse; // inverse mod 2^64
        inverse *= 2 - denominator * inverse; // inverse mod 2^128
        inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inverse;
    }
}

/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
///     x * y = MAX\_UINT256 * UNIT \\
///     (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
    uint256 prod0;
    uint256 prod1;
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    if (prod1 == 0) {
        unchecked {
            return prod0 / UNIT;
        }
    }

    if (prod1 >= UNIT) {
        revert PRBMath_MulDiv18_Overflow(x, y);
    }

    uint256 remainder;
    assembly ("memory-safe") {
        remainder := mulmod(x, y, UNIT)
        result :=
            mul(
                or(
                    div(sub(prod0, remainder), UNIT_LPOTD),
                    mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                ),
                UNIT_INVERSE
            )
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
    if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
        revert PRBMath_MulDivSigned_InputTooSmall();
    }

    // Get hold of the absolute values of x, y and the denominator.
    uint256 xAbs;
    uint256 yAbs;
    uint256 dAbs;
    unchecked {
        xAbs = x < 0 ? uint256(-x) : uint256(x);
        yAbs = y < 0 ? uint256(-y) : uint256(y);
        dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
    }

    // Compute the absolute value of x*y÷denominator. The result must fit in int256.
    uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
    if (resultAbs > uint256(type(int256).max)) {
        revert PRBMath_MulDivSigned_Overflow(x, y);
    }

    // Get the signs of x, y and the denominator.
    uint256 sx;
    uint256 sy;
    uint256 sd;
    assembly ("memory-safe") {
        // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
        sx := sgt(x, sub(0, 1))
        sy := sgt(y, sub(0, 1))
        sd := sgt(denominator, sub(0, 1))
    }

    // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
    // If there are, the result should be negative. Otherwise, it should be positive.
    unchecked {
        result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2 ** 128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2 ** 64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2 ** 32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2 ** 16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2 ** 8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2 ** 4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2 ** 2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}

File 22 of 37 : OrigamiElevatedAccess.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/access/OrigamiElevatedAccessBase.sol)

import { OrigamiElevatedAccessBase } from "contracts/common/access/OrigamiElevatedAccessBase.sol";

/**
 * @notice Inherit to add Owner roles for DAO elevated access.
 */ 
abstract contract OrigamiElevatedAccess is OrigamiElevatedAccessBase {
    constructor(address initialOwner) {
        _init(initialOwner);
    }
}

File 23 of 37 : OrigamiElevatedAccessBase.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/access/OrigamiElevatedAccessBase.sol)

import { IOrigamiElevatedAccess } from "contracts/interfaces/common/access/IOrigamiElevatedAccess.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";

/**
 * @notice Inherit to add Owner roles for DAO elevated access.
 */ 
abstract contract OrigamiElevatedAccessBase is IOrigamiElevatedAccess {
    /**
     * @notice The address of the current owner.
     */ 
    address public override owner;

    /**
     * @notice Explicit approval for an address to execute a function.
     * allowedCaller => function selector => true/false
     */
    mapping(address => mapping(bytes4 => bool)) public override explicitFunctionAccess;

    /// @dev Track proposed owner
    address private _proposedNewOwner;

    function _init(address initialOwner) internal {
        if (owner != address(0)) revert CommonEventsAndErrors.InvalidAccess();
        if (initialOwner == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
        owner = initialOwner;
    }

    /**
     * @notice Proposes a new Owner.
     * Can only be called by the current owner
     */
    function proposeNewOwner(address account) external override onlyElevatedAccess {
        if (account == address(0)) revert CommonEventsAndErrors.InvalidAddress(account);
        emit NewOwnerProposed(owner, _proposedNewOwner, account);
        _proposedNewOwner = account;
    }

    /**
     * @notice Caller accepts the role as new Owner.
     * Can only be called by the proposed owner
     */
    function acceptOwner() external override {
        if (msg.sender != _proposedNewOwner) revert CommonEventsAndErrors.InvalidAccess();

        emit NewOwnerAccepted(owner, msg.sender);
        owner = msg.sender;
        delete _proposedNewOwner;
    }

    /**
     * @notice Grant `allowedCaller` the rights to call the function selectors in the access list.
     * @dev fnSelector == bytes4(keccak256("fn(argType1,argType2,...)"))
     */
    function setExplicitAccess(address allowedCaller, ExplicitAccess[] calldata access) external override onlyElevatedAccess {
        if (allowedCaller == address(0)) revert CommonEventsAndErrors.InvalidAddress(allowedCaller);
        ExplicitAccess memory _access;
        for (uint256 i; i < access.length; ++i) {
            _access = access[i];
            emit ExplicitAccessSet(allowedCaller, _access.fnSelector, _access.allowed);
            explicitFunctionAccess[allowedCaller][_access.fnSelector] = _access.allowed;
        }
    }

    function isElevatedAccess(address caller, bytes4 fnSelector) internal view returns (bool) {
        return (
            caller == owner || 
            explicitFunctionAccess[caller][fnSelector]
        );
    }

    /**
     * @notice The owner is allowed to call, or if explicit access has been given to the caller.
     * @dev Important: Only for use when called from an *external* contract. 
     * If a function with this modifier is called internally then the `msg.sig` 
     * will still refer to the top level externally called function.
     */
    modifier onlyElevatedAccess() {
        if (!isElevatedAccess(msg.sender, msg.sig)) revert CommonEventsAndErrors.InvalidAccess();
        _;
    }
}

File 24 of 37 : MintableToken.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/MintableToken.sol)

import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { ERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import { IMintableToken } from "contracts/interfaces/common/IMintableToken.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
import { OrigamiElevatedAccess } from "contracts/common/access/OrigamiElevatedAccess.sol";

/// @notice An ERC20 token which can be minted/burnt by approved accounts
abstract contract MintableToken is IMintableToken, ERC20Permit, OrigamiElevatedAccess {
    using SafeERC20 for IERC20;

    /// @notice A set of addresses which are approved to mint/burn
    mapping(address account => bool canMint) internal _minters;

    event AddedMinter(address indexed account);
    event RemovedMinter(address indexed account);

    function isMinter(address account) external view returns (bool) {
        return _minters[account];
    }

    error CannotMintOrBurn(address caller);

    constructor(string memory _name, string memory _symbol, address _initialOwner)
        ERC20(_name, _symbol) 
        ERC20Permit(_name) 
        OrigamiElevatedAccess(_initialOwner)
    {}

    function mint(address _to, uint256 _amount) external override {
        if (!_minters[msg.sender]) revert CannotMintOrBurn(msg.sender);
        _mint(_to, _amount);
    }

    function burn(address account, uint256 amount) external override {
        if (!_minters[msg.sender]) revert CannotMintOrBurn(msg.sender);
        _burn(account, amount);
    }

    function addMinter(address account) external onlyElevatedAccess {
        _minters[account] = true;
        emit AddedMinter(account);
    }

    function removeMinter(address account) external onlyElevatedAccess {
        _minters[account] = false;
        emit RemovedMinter(account);
    }

    /**
     * @notice Recover any token -- this contract should not ordinarily hold any tokens.
     * @param token Token to recover
     * @param to Recipient address
     * @param amount Amount to recover
     */
    function recoverToken(address token, address to, uint256 amount) external virtual onlyElevatedAccess {
        emit CommonEventsAndErrors.TokenRecovered(to, token, amount);
        IERC20(token).safeTransfer(to, amount);
    }
}

File 25 of 37 : IOrigamiElevatedAccess.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/access/IOrigamiElevatedAccess.sol)

/**
 * @notice Inherit to add Owner roles for DAO elevated access.
 */ 
interface IOrigamiElevatedAccess {
    event ExplicitAccessSet(address indexed account, bytes4 indexed fnSelector, bool indexed value);

    event NewOwnerProposed(address indexed oldOwner, address indexed oldProposedOwner, address indexed newProposedOwner);
    event NewOwnerAccepted(address indexed oldOwner, address indexed newOwner);

    struct ExplicitAccess {
        bytes4 fnSelector;
        bool allowed;
    }

    /**
     * @notice The address of the current owner.
     */ 
    function owner() external returns (address);

    /**
     * @notice Explicit approval for an address to execute a function.
     * allowedCaller => function selector => true/false
     */
    function explicitFunctionAccess(address contractAddr, bytes4 functionSelector) external returns (bool);

    /**
     * @notice Proposes a new Owner.
     * Can only be called by the current owner
     */
    function proposeNewOwner(address account) external;

    /**
     * @notice Caller accepts the role as new Owner.
     * Can only be called by the proposed owner
     */
    function acceptOwner() external;

    /**
     * @notice Grant `allowedCaller` the rights to call the function selectors in the access list.
     * @dev fnSelector == bytes4(keccak256("fn(argType1,argType2,...)"))
     */
    function setExplicitAccess(address allowedCaller, ExplicitAccess[] calldata access) external;
}

File 26 of 37 : IWhitelisted.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/access/Whitelisted.sol)

/**
 * @title Whitelisted abstract contract
 * @notice Functionality to deny non-EOA addresses unless whitelisted
 */
interface IWhitelisted {
    event AllowAllSet(bool value);
    event AllowAccountSet(address indexed account, bool value);

    /**
     * @notice Allow all (both EOAs and contracts) without whitelisting
     */
    function allowAll() external view returns (bool);

    /**
     * @notice A mapping of whitelisted accounts (not required for EOAs)
     */
    function allowedAccounts(address account) external view returns (bool allowed);

    /**
     * @notice Allow all callers without whitelisting
     */
    function setAllowAll(bool value) external;

    /**
     * @notice Set whether a given account is allowed or not
     */
    function setAllowAccount(address account, bool value) external;
}

File 27 of 37 : IMintableToken.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/IMintableToken.sol)

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";

/// @notice An ERC20 token which can be minted/burnt by approved accounts
interface IMintableToken is IERC20, IERC20Permit {
    function mint(address to, uint256 amount) external;
    function burn(address account, uint256 amount) external;
}

File 28 of 37 : ITokenPrices.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/ITokenPrices.sol)

/// @title Token Prices
/// @notice A utility contract to pull token prices from on-chain.
/// @dev composable functions (uisng encoded function calldata) to build up price formulas
interface ITokenPrices {
    /// @notice How many decimals places are the token prices reported in
    function decimals() external view returns (uint8);

    /// @notice Retrieve the price for a given token.
    /// @dev If not mapped, or an underlying error occurs, FailedPriceLookup will be thrown.
    /// @dev 0x000...0 is the native chain token (ETH/AVAX/etc)
    function tokenPrice(address token) external view returns (uint256 price);

    /// @notice Retrieve the price for a list of tokens.
    /// @dev If any aren't mapped, or an underlying error occurs, FailedPriceLookup will be thrown.
    /// @dev Not particularly gas efficient - wouldn't recommend to use on-chain
    function tokenPrices(address[] memory tokens) external view returns (uint256[] memory prices);
}

File 29 of 37 : IOrigamiOracle.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/oracle/IOrigamiOracle.sol)

import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";

/**
 * @notice An oracle which returns prices for pairs of assets, where an asset
 * could refer to a token (eg DAI) or a currency (eg USD)
 * Convention is the same as the FX market. Given the DAI/USD pair:
 *   - DAI = Base Asset (LHS of pair)
 *   - USD = Quote Asset (RHS of pair)
 * This price defines how many USD you get if selling 1 DAI
 *
 * Further, an oracle can define two PriceType's:
 *   - SPOT_PRICE: The latest spot price, for example from a chainlink oracle
 *   - HISTORIC_PRICE: An expected (eg 1:1 peg) or calculated historic price (eg TWAP)
 *
 * For assets which do are not tokens (eg USD), an internal address reference will be used
 * since this is for internal purposes only
 */
interface IOrigamiOracle {
    error InvalidPrice(address oracle, int256 price);
    error InvalidOracleData(address oracle);
    error StalePrice(address oracle, uint256 lastUpdatedAt, int256 price);
    error UnknownPriceType(uint8 priceType);
    error BelowMinValidRange(address oracle, uint256 price, uint128 floor);
    error AboveMaxValidRange(address oracle, uint256 price, uint128 ceiling);

    event ValidPriceRangeSet(uint128 validFloor, uint128 validCeiling);

    enum PriceType {
        /// @notice The current spot price of this Oracle
        SPOT_PRICE,

        /// @notice The historic price of this Oracle. 
        /// It may be a fixed expectation (eg DAI/USD would be fixed to 1)
        /// or use a TWAP or some other moving average, etc.
        HISTORIC_PRICE
    }

    /**
     * @dev Wrapped in a struct to remove stack-too-deep constraints
     */
    struct BaseOracleParams {
        string description;
        address baseAssetAddress;
        uint8 baseAssetDecimals;
        address quoteAssetAddress;
        uint8 quoteAssetDecimals;
    }

    /**
     * @notice The address used to reference the baseAsset for amount conversions
     */
    function baseAsset() external view returns (address);

    /**
     * @notice The address used to reference the quoteAsset for amount conversions
     */
    function quoteAsset() external view returns (address);

    /**
     * @notice The number of decimals of precision the price is returned as
     */
    function decimals() external view returns (uint8);

    /**
     * @notice The precision that the cross rate oracle price is returned as: `10^decimals`
     */
    function precision() external view returns (uint256);

    /**
     * @notice A human readable description for this oracle
     */
    function description() external view returns (string memory);

    /**
     * @notice Return the latest oracle price, to `decimals` precision
     * @dev This may still revert - eg if deemed stale, div by 0, negative price
     * @param priceType What kind of price - Spot or Historic
     * @param roundingMode Round the price at each intermediate step such that the final price rounds in the specified direction.
     */
    function latestPrice(
        PriceType priceType, 
        OrigamiMath.Rounding roundingMode
    ) external view returns (uint256 price);

    /**
     * @notice Same as `latestPrice()` but for two separate prices from this oracle	
     */
    function latestPrices(
        PriceType priceType1, 
        OrigamiMath.Rounding roundingMode1,
        PriceType priceType2, 
        OrigamiMath.Rounding roundingMode2
    ) external view returns (
        uint256 price1, 
        uint256 price2, 
        address oracleBaseAsset,
        address oracleQuoteAsset
    );

    /**
     * @notice Convert either the baseAsset->quoteAsset or quoteAsset->baseAsset
     * @dev The `fromAssetAmount` needs to be in it's natural fixed point precision (eg USDC=6dp)
     * The `toAssetAmount` will also be returned in it's natural fixed point precision
     */
    function convertAmount(
        address fromAsset,
        uint256 fromAssetAmount,
        PriceType priceType,
        OrigamiMath.Rounding roundingMode
    ) external view returns (uint256 toAssetAmount);

    /**
     * @notice Match whether a pair of assets match the base and quote asset on this oracle, in either order
     */
    function matchAssets(address asset1, address asset2) external view returns (bool);
}

File 30 of 37 : IOrigamiInvestment.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/IOrigamiInvestment.sol)

import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";

/**
 * @title Origami Investment
 * @notice Users invest in the underlying protocol and receive a number of this Origami investment in return.
 * Origami will apply the accepted investment token into the underlying protocol in the most optimal way.
 */
interface IOrigamiInvestment is IERC20Metadata, IERC20Permit {
    event TokenPricesSet(address indexed _tokenPrices);
    event ManagerSet(address indexed manager);
    event PerformanceFeeSet(uint256 fee);
    
    /**
     * @notice Track the depoyed version of this contract. 
     */
    function apiVersion() external pure returns (string memory);

    /**
     * @notice The underlying token this investment wraps. 
     * @dev For informational purposes only, eg integrations/FE
     * If the investment wraps a protocol without an ERC20 (eg a non-liquid staked position)
     * then this may be 0x0
     */
    function baseToken() external view returns (address);

    /** 
     * @notice Emitted when a user makes a new investment
     * @param user The user who made the investment
     * @param fromTokenAmount The number of `fromToken` used to invest
     * @param fromToken The token used to invest, one of `acceptedInvestTokens()`
     * @param investmentAmount The number of investment tokens received, after fees
     **/
    event Invested(address indexed user, uint256 fromTokenAmount, address indexed fromToken, uint256 investmentAmount);

    /**
     * @notice Emitted when a user exists a position in an investment
     * @param user The user who exited the investment
     * @param investmentAmount The number of Origami investment tokens sold
     * @param toToken The token the user exited into
     * @param toTokenAmount The number of `toToken` received, after fees
     * @param recipient The receipient address of the `toToken`s
     **/
    event Exited(address indexed user, uint256 investmentAmount, address indexed toToken, uint256 toTokenAmount, address indexed recipient);

    /// @notice Errors for unsupported functions - for example if native chain ETH/AVAX/etc isn't a vaild investment
    error Unsupported();

    /**
     * @notice The set of accepted tokens which can be used to invest.
     * If the native chain ETH/AVAX is accepted, 0x0 will also be included in this list.
     */
    function acceptedInvestTokens() external view returns (address[] memory);

    /**
     * @notice The set of accepted tokens which can be used to exit into.
     * If the native chain ETH/AVAX is accepted, 0x0 will also be included in this list.
     */
    function acceptedExitTokens() external view returns (address[] memory);

    /**
     * @notice Whether new investments are paused.
     */
    function areInvestmentsPaused() external view returns (bool);

    /**
     * @notice Whether exits are temporarily paused.
     */
    function areExitsPaused() external view returns (bool);

    /**
     * @notice Quote data required when entering into this investment.
     */
    struct InvestQuoteData {
        /// @notice The token used to invest, which must be one of `acceptedInvestTokens()`
        address fromToken;

        /// @notice The quantity of `fromToken` to invest with
        uint256 fromTokenAmount;

        /// @notice The maximum acceptable slippage of the `expectedInvestmentAmount`
        uint256 maxSlippageBps;

        /// @notice The maximum deadline to execute the transaction.
        uint256 deadline;

        /// @notice The expected amount of this Origami Investment token to receive in return
        uint256 expectedInvestmentAmount;

        /// @notice The minimum amount of this Origami Investment Token to receive after
        /// slippage has been applied.
        uint256 minInvestmentAmount;

        /// @notice Any extra quote parameters required by the underlying investment
        bytes underlyingInvestmentQuoteData;
    }

    /**
     * @notice Quote data required when exoomg this investment.
     */
    struct ExitQuoteData {
        /// @notice The amount of this investment to sell
        uint256 investmentTokenAmount;

        /// @notice The token to sell into, which must be one of `acceptedExitTokens()`
        address toToken;

        /// @notice The maximum acceptable slippage of the `expectedToTokenAmount`
        uint256 maxSlippageBps;

        /// @notice The maximum deadline to execute the transaction.
        uint256 deadline;

        /// @notice The expected amount of `toToken` to receive in return
        /// @dev Note slippage is applied to this when calling `invest()`
        uint256 expectedToTokenAmount;

        /// @notice The minimum amount of `toToken` to receive after
        /// slippage has been applied.
        uint256 minToTokenAmount;

        /// @notice Any extra quote parameters required by the underlying investment
        bytes underlyingInvestmentQuoteData;
    }

    /**
     * @notice Get a quote to buy this Origami investment using one of the accepted tokens. 
     * @dev The 0x0 address can be used for native chain ETH/AVAX
     * @param fromTokenAmount How much of `fromToken` to invest with
     * @param fromToken What ERC20 token to purchase with. This must be one of `acceptedInvestTokens`
     * @param maxSlippageBps The maximum acceptable slippage of the received investment amount
     * @param deadline The maximum deadline to execute the exit.
     * @return quoteData The quote data, including any params required for the underlying investment type.
     * @return investFeeBps Any fees expected when investing with the given token, either from Origami or from the underlying investment.
     */
    function investQuote(
        uint256 fromTokenAmount, 
        address fromToken,
        uint256 maxSlippageBps,
        uint256 deadline
    ) external view returns (
        InvestQuoteData memory quoteData, 
        uint256[] memory investFeeBps
    );

    /** 
      * @notice User buys this Origami investment with an amount of one of the approved ERC20 tokens. 
      * @param quoteData The quote data received from investQuote()
      * @return investmentAmount The actual number of this Origami investment tokens received.
      */
    function investWithToken(
        InvestQuoteData calldata quoteData
    ) external returns (
        uint256 investmentAmount
    );

    /** 
      * @notice User buys this Origami investment with an amount of native chain token (ETH/AVAX)
      * @param quoteData The quote data received from investQuote()
      * @return investmentAmount The actual number of this Origami investment tokens received.
      */
    function investWithNative(
        InvestQuoteData calldata quoteData
    ) external payable returns (
        uint256 investmentAmount
    );

    /**
     * @notice Get a quote to sell this Origami investment to receive one of the accepted tokens.
     * @dev The 0x0 address can be used for native chain ETH/AVAX
     * @param investmentAmount The number of Origami investment tokens to sell
     * @param toToken The token to receive when selling. This must be one of `acceptedExitTokens`
     * @param maxSlippageBps The maximum acceptable slippage of the received `toToken`
     * @param deadline The maximum deadline to execute the exit.
     * @return quoteData The quote data, including any params required for the underlying investment type.
     * @return exitFeeBps Any fees expected when exiting the investment to the nominated token, either from Origami or from the underlying investment.
     */
    function exitQuote(
        uint256 investmentAmount,
        address toToken,
        uint256 maxSlippageBps,
        uint256 deadline
    ) external view returns (
        ExitQuoteData memory quoteData, 
        uint256[] memory exitFeeBps
    );

    /** 
      * @notice Sell this Origami investment to receive one of the accepted tokens.
      * @param quoteData The quote data received from exitQuote()
      * @param recipient The receiving address of the `toToken`
      * @return toTokenAmount The number of `toToken` tokens received upon selling the Origami investment tokens.
      */
    function exitToToken(
        ExitQuoteData calldata quoteData,
        address recipient
    ) external returns (
        uint256 toTokenAmount
    );

    /** 
      * @notice Sell this Origami investment to native ETH/AVAX.
      * @param quoteData The quote data received from exitQuote()
      * @param recipient The receiving address of the native chain token.
      * @return nativeAmount The number of native chain ETH/AVAX/etc tokens received upon selling the Origami investment tokens.
      */
    function exitToNative(
        ExitQuoteData calldata quoteData, 
        address payable recipient
    ) external returns (
        uint256 nativeAmount
    );

    /**
     * @notice The maximum amount of fromToken's that can be deposited
     * taking any other underlying protocol constraints into consideration
     */
    function maxInvest(address fromToken) external view returns (uint256 amount);

    /**
     * @notice The maximum amount of tokens that can be exited into the toToken
     * taking any other underlying protocol constraints into consideration
     */
    function maxExit(address toToken) external view returns (uint256 amount);
}

File 31 of 37 : IOrigamiOTokenManager.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/IOrigamiOTokenManager.sol)

import { IOrigamiInvestment } from "contracts/interfaces/investments/IOrigamiInvestment.sol";
import { IOrigamiManagerPausable } from "contracts/interfaces/investments/util/IOrigamiManagerPausable.sol";

/**
 * @title Origami oToken Manager (no native ETH/AVAX/etc)
 * @notice The delegated logic to handle deposits/exits into an oToken, and allocating the deposit tokens
 * into the underlying protocol
 */
interface IOrigamiOTokenManager is IOrigamiManagerPausable {

    /**
     * @notice The underlying token this investment wraps. 
     * @dev For informational purposes only, eg integrations/FE
     */
    function baseToken() external view returns (address);

    /**
     * @notice The set of accepted tokens which can be used to invest.
     */
    function acceptedInvestTokens() external view returns (address[] memory);

    /**
     * @notice The set of accepted tokens which can be used to exit into.
     */
    function acceptedExitTokens() external view returns (address[] memory);

    /**
     * @notice Whether new investments are paused.
     */
    function areInvestmentsPaused() external view returns (bool);

    /**
     * @notice Whether exits are temporarily paused.
     */
    function areExitsPaused() external view returns (bool);

    /**
     * @notice Get a quote to buy this oToken using one of the accepted tokens. 
     * @param fromTokenAmount How much of `fromToken` to invest with
     * @param fromToken What ERC20 token to purchase with. This must be one of `acceptedInvestTokens`
     * @param maxSlippageBps The maximum acceptable slippage of the received investment amount
     * @param deadline The maximum deadline to execute the exit.
     * @return quoteData The quote data, including any params required for the underlying investment type.
     * @return investFeeBps Any fees expected when investing with the given token, either from Origami or from the underlying investment.
     */
    function investQuote(
        uint256 fromTokenAmount, 
        address fromToken,
        uint256 maxSlippageBps,
        uint256 deadline
    ) external view returns (
        IOrigamiInvestment.InvestQuoteData memory quoteData, 
        uint256[] memory investFeeBps
    );

    /** 
      * @notice User buys this Origami investment with an amount of one of the approved ERC20 tokens. 
      * @param account The account to deposit on behalf of
      * @param quoteData The quote data received from investQuote()
      * @return investmentAmount The actual number of this Origami investment tokens received.
      */
    function investWithToken(
        address account,
        IOrigamiInvestment.InvestQuoteData calldata quoteData
    ) external returns (
        uint256 investmentAmount
    );

    /**
     * @notice Get a quote to sell this oToken to receive one of the accepted tokens.
     * @param investmentAmount The number of oTokens to sell
     * @param toToken The token to receive when selling. This must be one of `acceptedExitTokens`
     * @param maxSlippageBps The maximum acceptable slippage of the received `toToken`
     * @param deadline The maximum deadline to execute the exit.
     * @return quoteData The quote data, including any params required for the underlying investment type.
     * @return exitFeeBps Any fees expected when exiting the investment to the nominated token, either from Origami or from the underlying protocol.
     */
    function exitQuote(
        uint256 investmentAmount,
        address toToken,
        uint256 maxSlippageBps,
        uint256 deadline
    ) external view returns (
        IOrigamiInvestment.ExitQuoteData memory quoteData, 
        uint256[] memory exitFeeBps
    );

    /** 
      * @notice Sell this oToken to receive one of the accepted tokens. 
      * @param account The account to exit on behalf of
      * @param quoteData The quote data received from exitQuote()
      * @param recipient The receiving address of the `toToken`
      * @return toTokenAmount The number of `toToken` tokens received upon selling the oToken
      * @return toBurnAmount The number of oToken to be burnt after exiting this position
      */
    function exitToToken(
        address account,
        IOrigamiInvestment.ExitQuoteData calldata quoteData,
        address recipient
    ) external returns (uint256 toTokenAmount, uint256 toBurnAmount);

    /**
     * @notice The maximum amount of fromToken's that can be deposited
     * taking any other underlying protocol constraints into consideration
     */
    function maxInvest(address fromToken) external view returns (uint256 amount);

    /**
     * @notice The maximum amount of tokens that can be exited into the toToken
     * taking any other underlying protocol constraints into consideration
     */
    function maxExit(address toToken) external view returns (uint256 amount);
}

File 32 of 37 : IOrigamiLovToken.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/lovToken/IOrigamiLovToken.sol)

import { IOrigamiOTokenManager } from "contracts/interfaces/investments/IOrigamiOTokenManager.sol";
import { IOrigamiInvestment } from "contracts/interfaces/investments/IOrigamiInvestment.sol";

/**
 * @title Origami lovToken
 * 
 * @notice Users deposit with an accepted token and are minted lovTokens
 * Origami will rebalance to lever up on the underlying reserve token, targetting a
 * specific A/L (assets / liabilities) range
 *
 * @dev The logic on how to handle the specific deposits/exits for each lovToken is delegated
 * to a manager contract
 */
interface IOrigamiLovToken is IOrigamiInvestment {
    event PerformanceFeesCollected(address indexed feeCollector, uint256 mintAmount);
    event FeeCollectorSet(address indexed feeCollector);
    event MaxTotalSupplySet(uint256 maxTotalSupply);

    /**
     * @notice The token used to track reserves for this investment
     */
    function reserveToken() external view returns (address);

    /**
     * @notice The Origami contract managing the deposits/exits and the application of
     * the deposit tokens into the underlying protocol
     */
    function manager() external view returns (IOrigamiOTokenManager);

    /**
     * @notice Set the Origami lovToken Manager.
     */
    function setManager(address _manager) external;

    /**
     * @notice Set the vault performance fee
     * @dev Represented in basis points
     */
    function setAnnualPerformanceFee(uint48 _annualPerformanceFeeBps) external;

    /**
     * @notice Set the max total supply allowed for investments into this lovToken
     */
    function setMaxTotalSupply(uint256 _maxTotalSupply) external;

    /**
     * @notice Set the Origami performance fee collector address
     */
    function setFeeCollector(address _feeCollector) external;
    
    /**
     * @notice Set the helper to calculate current off-chain/subgraph integration
     */
    function setTokenPrices(address _tokenPrices) external;

    /** 
     * @notice Collect the performance fees to the Origami Treasury
     */
    function collectPerformanceFees() external returns (uint256 amount);

    /**
     * @notice How many reserve tokens would one get given a number of lovToken shares
     * @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
     */
    function sharesToReserves(uint256 shares) external view returns (uint256);

    /**
     * @notice How many lovToken shares would one get given a number of reserve tokens
     * @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
     */
    function reservesToShares(uint256 reserves) external view returns (uint256);

    /**
     * @notice How many reserve tokens would one get given a single share, as of now
     * @dev Implementations must use the Oracle 'HISTORIC_PRICE' to value any debt in terms of the reserve token
     */
    function reservesPerShare() external view returns (uint256);
    
    /**
     * @notice The current amount of available reserves for redemptions
     * @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
     */
    function totalReserves() external view returns (uint256);

    /**
     * @notice The maximum allowed supply of this token for user investments
     * @dev The actual totalSupply() may be greater than `maxTotalSupply`
     * in order to start organically shrinking supply or from performance fees
     */
    function maxTotalSupply() external view returns (uint256);

    /**
     * @notice Retrieve the current assets, liabilities and calculate the ratio
     * @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
     */
    function assetsAndLiabilities() external view returns (
        uint256 assets,
        uint256 liabilities,
        uint256 ratio
    );

    /**
     * @notice The current effective exposure (EE) of this lovToken
     * to `PRECISION` precision
     * @dev = reserves / (reserves - liabilities)
     * Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
     */
    function effectiveExposure() external view returns (uint128);

    /**
     * @notice The valid lower and upper bounds of A/L allowed when users deposit/exit into lovToken
     * @dev Transactions will revert if the resulting A/L is outside of this range
     */
    function userALRange() external view returns (uint128 floor, uint128 ceiling);

    /**
     * @notice The current deposit and exit fee based on market conditions.
     * Fees are the equivalent of burning lovToken shares - benefit remaining vault users
     * @dev represented in basis points
     */
    function getDynamicFeesBps() external view returns (uint256 depositFeeBps, uint256 exitFeeBps);

    /**
     * @notice The address used to collect the Origami performance fees.
     */
    function feeCollector() external view returns (address);

    /**
     * @notice The annual performance fee to Origami treasury
     * Represented in basis points
     */
    function annualPerformanceFeeBps() external view returns (uint48);

    /**
     * @notice The last time the performance fee was collected
     */
    function lastPerformanceFeeTime() external view returns (uint48);

    /**
     * @notice The performance fee amount which would be collected as of now, 
     * based on the total supply
     */
    function accruedPerformanceFee() external view returns (uint256);
}

File 33 of 37 : IOrigamiLovTokenManager.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/lovToken/managers/IOrigamiLovTokenManager.sol)

import { IOrigamiOTokenManager } from "contracts/interfaces/investments/IOrigamiOTokenManager.sol";
import { IWhitelisted } from "contracts/interfaces/common/access/IWhitelisted.sol";
import { IOrigamiOracle } from "contracts/interfaces/common/oracle/IOrigamiOracle.sol";
import { IOrigamiLovToken } from "contracts/interfaces/investments/lovToken/IOrigamiLovToken.sol";

/**
 * @title Origami lovToken Manager
 * @notice The delegated logic to handle deposits/exits, and borrow/repay (rebalances) into the underlying reserve token
 */
interface IOrigamiLovTokenManager is IOrigamiOTokenManager, IWhitelisted {
    event FeeConfigSet(uint16 maxExitFeeBps, uint16 minExitFeeBps, uint24 feeLeverageFactor);

    event UserALRangeSet(uint128 floor, uint128 ceiling);
    event RebalanceALRangeSet(uint128 floor, uint128 ceiling);

    event Rebalance(
        /// @dev positive when Origami supplies the `reserveToken` as new collateral, negative when Origami withdraws collateral
        /// Represented in the units of the `reserveToken` of this lovToken
        int256 collateralChange,

        /// @dev positive when Origami borrows new debt, negative when Origami repays debt
        /// Represented in the units of the `debtToken` of this lovToken
        int256 debtChange,

        /// @dev The Assets/Liabilities ratio before the rebalance
        uint256 alRatioBefore,

        /// @dev The Assets/Liabilities ratio after the rebalance
        uint256 alRatioAfter
    );
    
    error ALTooLow(uint128 ratioBefore, uint128 ratioAfter, uint128 minRatio);
    error ALTooHigh(uint128 ratioBefore, uint128 ratioAfter, uint128 maxRatio);
    error NoAvailableReserves();

    /**
     * @notice Set the minimum fee (in basis points) of lovToken's for deposit and exit,
     * and also the nominal leverage factor applied within the fee calculations
     * @dev feeLeverageFactor has 4dp precision
     */
    function setFeeConfig(uint16 _minDepositFeeBps, uint16 _minExitFeeBps, uint24 _feeLeverageFactor) external;

    /**
     * @notice Set the valid lower and upper bounds of A/L when users deposit/exit into lovToken
     */
    function setUserALRange(uint128 floor, uint128 ceiling) external;

    /**
     * @notice Set the valid range for when a rebalance is not required.
     */
    function setRebalanceALRange(uint128 floor, uint128 ceiling) external;

    /**
     * @notice lovToken contract - eg lovDSR
     */
    function lovToken() external view returns (IOrigamiLovToken);

    /**
     * @notice The min deposit/exit fee and feeLeverageFactor configuration
     * @dev feeLeverageFactor has 4dp precision
     */
    function getFeeConfig() external view returns (uint64 minDepositFeeBps, uint64 minExitFeeBps, uint64 feeLeverageFactor);

    /**
     * @notice The current deposit and exit fee based on market conditions.
     * Fees are the equivalent of burning lovToken shares - benefit remaining vault users
     * @dev represented in basis points
     */
    function getDynamicFeesBps() external view returns (uint256 depositFeeBps, uint256 exitFeeBps);

    /**
     * @notice The valid lower and upper bounds of A/L allowed when users deposit/exit into lovToken
     * @dev Transactions will revert if the resulting A/L is outside of this range
     */
    function userALRange() external view returns (uint128 floor, uint128 ceiling);

    /**
     * @notice The valid range for when a rebalance is not required.
     * When a rebalance occurs, the transaction will revert if the resulting A/L is outside of this range.
     */
    function rebalanceALRange() external view returns (uint128 floor, uint128 ceiling);

    /**
     * @notice The common precision used
     */
    function PRECISION() external view returns (uint256);
    
    /**
     * @notice The reserveToken that the lovToken levers up on
     */
    function reserveToken() external view returns (address);

    /**
     * @notice The token which lovToken borrows to increase the A/L ratio
     */
    function debtToken() external view returns (address);
    
    /**
     * @notice The total balance of reserve tokens this lovToken holds, and also if deployed as collateral
     * in other platforms
     */
    function reservesBalance() external view returns (uint256); 

    /**
     * @notice The debt of the lovToken from the borrower, converted into the reserveToken
     * @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
     */
    function liabilities(IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);

    /**
     * @notice The current asset/liability (A/L) of this lovToken
     * to `PRECISION` precision
     * @dev = reserves / liabilities
     */
    function assetToLiabilityRatio() external view returns (uint128);

    /**
     * @notice Retrieve the current assets, liabilities and calculate the ratio
     * @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
     */
    function assetsAndLiabilities(IOrigamiOracle.PriceType debtPriceType) external view returns (
        uint256 assets,
        uint256 liabilities,
        uint256 ratio
    );

    /**
     * @notice The current effective exposure (EE) of this lovToken
     * to `PRECISION` precision
     * @dev = reserves / (reserves - liabilities)
     * Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
     */
    function effectiveExposure(IOrigamiOracle.PriceType debtPriceType) external view returns (uint128);

    /**
     * @notice The amount of reserves that users may redeem their lovTokens as of this block
     * @dev = reserves - liabilities
     * Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
     */
    function userRedeemableReserves(IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);

    /**
     * @notice How many reserve tokens would one get given a number of lovToken shares
     * @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
     */
    function sharesToReserves(uint256 shares, IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);

    /**
     * @notice How many lovToken shares would one get given a number of reserve tokens
     * @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
     */
    function reservesToShares(uint256 reserves, IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);
}

File 34 of 37 : IOrigamiManagerPausable.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/util/IOrigamiManagerPausable.sol)

/**
 * @title A mixin to add pause/unpause for Origami manager contracts
 */
interface IOrigamiManagerPausable {
    struct Paused {
        bool investmentsPaused;
        bool exitsPaused;
    }

    event PauserSet(address indexed account, bool canPause);
    event PausedSet(Paused paused);

    /// @notice A set of accounts which are allowed to pause deposits/withdrawals immediately
    /// under emergency
    function pausers(address) external view returns (bool);

    /// @notice Pause/unpause deposits or withdrawals
    /// @dev Can only be called by allowed pausers or governance.
    function setPaused(Paused memory updatedPaused) external;

    /// @notice Allow/Deny an account to pause/unpause deposits or withdrawals
    function setPauser(address account, bool canPause) external;

    /// @notice Check if given account can pause investments/exits
    function isPauser(address account) external view returns (bool canPause);
}

File 35 of 37 : OrigamiInvestment.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (investments/OrigamiInvestment.sol)

import { IOrigamiInvestment } from "contracts/interfaces/investments/IOrigamiInvestment.sol";
import { MintableToken } from "contracts/common/MintableToken.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";

/**
 * @title Origami Investment
 * @notice Users invest in the underlying protocol and receive a number of this Origami investment in return.
 * Origami will apply the accepted investment token into the underlying protocol in the most optimal way.
 */
abstract contract OrigamiInvestment is IOrigamiInvestment, MintableToken, ReentrancyGuard {
    string public constant API_VERSION = "0.2.0";
    
    /**
     * @notice Track the depoyed version of this contract. 
     */
    function apiVersion() external override pure returns (string memory) {
        return API_VERSION;
    }

    constructor(
        string memory _name,
        string memory _symbol,
        address _initialOwner
    ) MintableToken(_name, _symbol, _initialOwner) {
    }
}

File 36 of 37 : CommonEventsAndErrors.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (libraries/CommonEventsAndErrors.sol)

/// @notice A collection of common events and errors thrown within the Origami contracts
library CommonEventsAndErrors {
    error InsufficientBalance(address token, uint256 required, uint256 balance);
    error InvalidToken(address token);
    error InvalidParam();
    error InvalidAddress(address addr);
    error InvalidAmount(address token, uint256 amount);
    error ExpectedNonZero();
    error Slippage(uint256 minAmountExpected, uint256 actualAmount);
    error IsPaused();
    error UnknownExecuteError(bytes returndata);
    error InvalidAccess();
    error BreachedMaxTotalSupply(uint256 totalSupply, uint256 maxTotalSupply);

    event TokenRecovered(address indexed to, address indexed token, uint256 amount);
}

File 37 of 37 : OrigamiMath.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (libraries/OrigamiMath.sol)

import { mulDiv as prbMulDiv, PRBMath_MulDiv_Overflow } from "@prb/math/src/Common.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";

/**
 * @notice Utilities to operate on fixed point math multipliation and division
 * taking rounding into consideration
 */
library OrigamiMath {
    enum Rounding {
        ROUND_DOWN,
        ROUND_UP
    }

    uint256 public constant BASIS_POINTS_DIVISOR = 10_000;

    function scaleUp(uint256 amount, uint256 scalar) internal pure returns (uint256) {
        // Special case for scalar == 1, as it's common for token amounts to not need
        // scaling if decimal places are the same
        return scalar == 1 ? amount : amount * scalar;
    }

    function scaleDown(
        uint256 amount, 
        uint256 scalar, 
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        // Special case for scalar == 1, as it's common for token amounts to not need
        // scaling if decimal places are the same
        unchecked {
            if (scalar == 1) {
                result = amount;
            } else if (roundingMode == Rounding.ROUND_DOWN) {
                result = amount / scalar;
            } else {
                // ROUND_UP uses the same logic as OZ Math.ceilDiv()
                result = amount == 0 ? 0 : (amount - 1) / scalar + 1;
            }
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision,
     * rounding up
     */
    function mulDiv(
        uint256 x, 
        uint256 y, 
        uint256 denominator,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        result = prbMulDiv(x, y, denominator);
        if (roundingMode == Rounding.ROUND_UP) {
            if (mulmod(x, y, denominator) != 0) {
                if (result < type(uint256).max) {
                    unchecked {
                        result = result + 1;
                    }
                } else {
                    revert PRBMath_MulDiv_Overflow(x, y, denominator);
                }
            }
        }
    }

    function subtractBps(
        uint256 inputAmount, 
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        uint256 numeratorBps;
        unchecked {
            numeratorBps = BASIS_POINTS_DIVISOR - basisPoints;
        }

        result = basisPoints < BASIS_POINTS_DIVISOR
            ? mulDiv(
                inputAmount,
                numeratorBps, 
                BASIS_POINTS_DIVISOR, 
                roundingMode
            ) : 0;
    }

    function addBps(
        uint256 inputAmount,
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        uint256 numeratorBps;
        unchecked {
            numeratorBps = BASIS_POINTS_DIVISOR + basisPoints;
        }

        // Round up for max amounts out expected
        result = mulDiv(
            inputAmount,
            numeratorBps, 
            BASIS_POINTS_DIVISOR, 
            roundingMode
        );
    }

    /**
     * @notice Split the `inputAmount` into two parts based on the `basisPoints` fraction.
     * eg: 3333 BPS (33.3%) can be used to split an input amount of 600 into: (result=400, removed=200).
     * @dev The rounding mode is applied to the `result`
     */
    function splitSubtractBps(
        uint256 inputAmount, 
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result, uint256 removed) {
        result = subtractBps(inputAmount, basisPoints, roundingMode);
        unchecked {
            removed = inputAmount - result;
        }
    }

    /**
     * @notice Reverse the fractional amount of an input.
     * eg: For 3333 BPS (33.3%) and the remainder=400, the result is 600
     */
    function inverseSubtractBps(
        uint256 remainderAmount, 
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        if (basisPoints == 0) return remainderAmount; // gas shortcut for 0
        if (basisPoints >= BASIS_POINTS_DIVISOR) revert CommonEventsAndErrors.InvalidParam();

        uint256 denominatorBps;
        unchecked {
            denominatorBps = BASIS_POINTS_DIVISOR - basisPoints;
        }
        result = mulDiv(
            remainderAmount,
            BASIS_POINTS_DIVISOR, 
            denominatorBps, 
            roundingMode
        );
    }

    /**
     * @notice Calculate the relative difference of a value to a reference
     * @dev `value` and `referenceValue` must have the same precision
     * The denominator is always the referenceValue
     */
    function relativeDifferenceBps(
        uint256 value,
        uint256 referenceValue,
        Rounding roundingMode
    ) internal pure returns (uint256) {
        if (referenceValue == 0) revert CommonEventsAndErrors.InvalidParam();

        uint256 absDelta;
        unchecked {
            absDelta = value < referenceValue
                ? referenceValue - value
                : value - referenceValue;
        }

        return mulDiv(
            absDelta,
            BASIS_POINTS_DIVISOR,
            referenceValue,
            roundingMode
        );
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_initialOwner","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"uint48","name":"_annualPerformanceFeeBps","type":"uint48"},{"internalType":"address","name":"_feeCollector","type":"address"},{"internalType":"address","name":"_tokenPrices","type":"address"},{"internalType":"uint256","name":"_maxTotalSupply","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"maxTotalSupply","type":"uint256"}],"name":"BreachedMaxTotalSupply","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CannotMintOrBurn","type":"error"},{"inputs":[],"name":"ExpectedNonZero","type":"error"},{"inputs":[],"name":"InvalidAccess","type":"error"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidParam","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"Unsupported","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"AddedMinter","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"indexed":true,"internalType":"address","name":"toToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"toTokenAmount","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"}],"name":"Exited","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"bytes4","name":"fnSelector","type":"bytes4"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"ExplicitAccessSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"feeCollector","type":"address"}],"name":"FeeCollectorSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"indexed":true,"internalType":"address","name":"fromToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"investmentAmount","type":"uint256"}],"name":"Invested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"manager","type":"address"}],"name":"ManagerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxTotalSupply","type":"uint256"}],"name":"MaxTotalSupplySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"NewOwnerAccepted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"oldProposedOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newProposedOwner","type":"address"}],"name":"NewOwnerProposed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"PerformanceFeeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"feeCollector","type":"address"},{"indexed":false,"internalType":"uint256","name":"mintAmount","type":"uint256"}],"name":"PerformanceFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"RemovedMinter","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_tokenPrices","type":"address"}],"name":"TokenPricesSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"API_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptedExitTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptedInvestTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accruedPerformanceFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addMinter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"annualPerformanceFeeBps","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"apiVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"areExitsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"areInvestmentsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"assetsAndLiabilities","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"collectPerformanceFees","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"effectiveExposure","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"exitQuote","outputs":[{"components":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedToTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToTokenAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.ExitQuoteData","name":"quoteData","type":"tuple"},{"internalType":"uint256[]","name":"exitFeeBps","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedToTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToTokenAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.ExitQuoteData","name":"","type":"tuple"},{"internalType":"address payable","name":"","type":"address"}],"name":"exitToNative","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedToTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToTokenAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.ExitQuoteData","name":"quoteData","type":"tuple"},{"internalType":"address","name":"recipient","type":"address"}],"name":"exitToToken","outputs":[{"internalType":"uint256","name":"toTokenAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bytes4","name":"","type":"bytes4"}],"name":"explicitFunctionAccess","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDynamicFeesBps","outputs":[{"internalType":"uint256","name":"depositFeeBps","type":"uint256"},{"internalType":"uint256","name":"exitFeeBps","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"investQuote","outputs":[{"components":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedInvestmentAmount","type":"uint256"},{"internalType":"uint256","name":"minInvestmentAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.InvestQuoteData","name":"quoteData","type":"tuple"},{"internalType":"uint256[]","name":"investFeeBps","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedInvestmentAmount","type":"uint256"},{"internalType":"uint256","name":"minInvestmentAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.InvestQuoteData","name":"","type":"tuple"}],"name":"investWithNative","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedInvestmentAmount","type":"uint256"},{"internalType":"uint256","name":"minInvestmentAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.InvestQuoteData","name":"quoteData","type":"tuple"}],"name":"investWithToken","outputs":[{"internalType":"uint256","name":"investmentAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isMinter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastPerformanceFeeTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"manager","outputs":[{"internalType":"contract IOrigamiOTokenManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"toToken","type":"address"}],"name":"maxExit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"fromToken","type":"address"}],"name":"maxInvest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"proposeNewOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"removeMinter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserveToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reservesPerShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"reserves","type":"uint256"}],"name":"reservesToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"_annualPerformanceFeeBps","type":"uint48"}],"name":"setAnnualPerformanceFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"allowedCaller","type":"address"},{"components":[{"internalType":"bytes4","name":"fnSelector","type":"bytes4"},{"internalType":"bool","name":"allowed","type":"bool"}],"internalType":"struct IOrigamiElevatedAccess.ExplicitAccess[]","name":"access","type":"tuple[]"}],"name":"setExplicitAccess","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeCollector","type":"address"}],"name":"setFeeCollector","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_manager","type":"address"}],"name":"setManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxTotalSupply","type":"uint256"}],"name":"setMaxTotalSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenPrices","type":"address"}],"name":"setTokenPrices","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"sharesToReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenPrices","outputs":[{"internalType":"contract ITokenPrices","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"userALRange","outputs":[{"internalType":"uint128","name":"","type":"uint128"},{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"}]

Deployed Bytecode

0x6080604052600436106103b85760003560e01c806395d89b41116101f2578063c415b95c1161010d578063dd62ed3e116100a0578063edf90acf1161006f578063edf90acf14610c34578063f4325d6714610c54578063f57092bd14610c69578063ff32b55c14610c8957600080fd5b8063dd62ed3e14610b75578063e664b02014610bbb578063eb6c1f3014610be9578063ebbc496514610c1f57600080fd5b8063d4da79b3116100dc578063d4da79b314610aea578063d505accf14610aff578063d8e5db5214610b1f578063daeccc7914610b3a57600080fd5b8063c415b95c14610a65578063c55dae6314610a85578063c5e6f99414610a9a578063d0ebdbe714610aca57600080fd5b8063a7229fd911610185578063b1f8100d11610154578063b1f8100d146109e5578063b5a2d9a914610a05578063be2f503914610a25578063bfccf0ec14610a4557600080fd5b8063a7229fd91461094c578063a9059cbb1461096c578063aa271e1a1461098c578063b1e1fca4146109c557600080fd5b8063a42dce80116101c1578063a42dce80146108ab578063a457c2d7146108cb578063a515b8ec146108eb578063a5c59ba61461091557600080fd5b806395d89b4114610841578063983b2d56146108565780639a6b27cf146108765780639dc29fac1461088b57600080fd5b80633644e515116102e257806370a08231116102755780638a83c9cd116102445780638a83c9cd146107d75780638c625c15146107ec5780638da5cb5b1461080c5780638f840ddd1461082c57600080fd5b806370a082311461071057806377e3b267146107465780637ecebe001461078f57806384b0196e146107af57600080fd5b8063415a1271116102b1578063415a127114610687578063481c6a75146106a75780634d8fea1f146106d95780636a1eb7b8146106ee57600080fd5b80633644e5151461061257806339509351146106275780633f3e4c111461064757806340c10f191461066757600080fd5b80631a0377d11161035a5780632ab4d052116103295780632ab4d0521461059e5780633092afd5146105b4578063313ce567146105d657806333378e31146105f257600080fd5b80631a0377d1146104f757806323b872dd14610525578063258294101461054557806327e66c621461058b57600080fd5b80630e5f8f96116103965780630e5f8f961461043b57806313da2d4a1461048f57806318160ddd146104cd5780631902848a146104e257600080fd5b806306fdde03146103bd578063095ea7b3146103e85780630c14935e14610418575b600080fd5b3480156103c957600080fd5b506103d2610ca9565b6040516103df9190613be8565b60405180910390f35b3480156103f457600080fd5b50610408610403366004613c10565b610d3b565b60405190151581526020016103df565b34801561042457600080fd5b5061042d610d55565b6040519081526020016103df565b34801561044757600080fd5b50600f54610478907a010000000000000000000000000000000000000000000000000000900465ffffffffffff1681565b60405165ffffffffffff90911681526020016103df565b34801561049b57600080fd5b506104a4610de6565b604080516fffffffffffffffffffffffffffffffff9384168152929091166020830152016103df565b3480156104d957600080fd5b5060025461042d565b3480156104ee57600080fd5b5061042d610e75565b34801561050357600080fd5b50610517610512366004613c3c565b610efa565b6040516103df929190613cb4565b34801561053157600080fd5b50610408610540366004613d34565b610ff1565b34801561055157600080fd5b5060408051808201909152600581527f302e322e3000000000000000000000000000000000000000000000000000000060208201526103d2565b61042d610599366004613d87565b611017565b3480156105aa57600080fd5b5061042d60115481565b3480156105c057600080fd5b506105d46105cf366004613dbc565b61104b565b005b3480156105e257600080fd5b50604051601281526020016103df565b3480156105fe57600080fd5b5061042d61060d366004613dd9565b611116565b34801561061e57600080fd5b5061042d6111a3565b34801561063357600080fd5b50610408610642366004613c10565b6111ad565b34801561065357600080fd5b506105d4610662366004613dd9565b6111ec565b34801561067357600080fd5b506105d4610682366004613c10565b61128b565b34801561069357600080fd5b5061042d6106a2366004613dbc565b6112e9565b3480156106b357600080fd5b50600e546001600160a01b03165b6040516001600160a01b0390911681526020016103df565b3480156106e557600080fd5b5061042d611335565b3480156106fa57600080fd5b506107036113a3565b6040516103df9190613df2565b34801561071c57600080fd5b5061042d61072b366004613dbc565b6001600160a01b031660009081526020819052604090205490565b34801561075257600080fd5b506103d26040518060400160405280600581526020017f302e322e3000000000000000000000000000000000000000000000000000000081525081565b34801561079b57600080fd5b5061042d6107aa366004613dbc565b61142e565b3480156107bb57600080fd5b506107c461144c565b6040516103df9796959493929190613e3f565b3480156107e357600080fd5b506107036114f1565b3480156107f857600080fd5b506105d4610807366004613ec9565b611554565b34801561081857600080fd5b506009546106c1906001600160a01b031681565b34801561083857600080fd5b5061042d611691565b34801561084d57600080fd5b506103d26116db565b34801561086257600080fd5b506105d4610871366004613dbc565b6116ea565b34801561088257600080fd5b506104086117b8565b34801561089757600080fd5b506105d46108a6366004613c10565b61183f565b3480156108b757600080fd5b506105d46108c6366004613dbc565b611894565b3480156108d757600080fd5b506104086108e6366004613c10565b6119a9565b3480156108f757600080fd5b50610900611a5e565b604080519283526020830191909152016103df565b34801561092157600080fd5b50600f546104789074010000000000000000000000000000000000000000900465ffffffffffff1681565b34801561095857600080fd5b506105d4610967366004613d34565b611ae5565b34801561097857600080fd5b50610408610987366004613c10565b611baf565b34801561099857600080fd5b506104086109a7366004613dbc565b6001600160a01b03166000908152600c602052604090205460ff1690565b3480156109d157600080fd5b506010546106c1906001600160a01b031681565b3480156109f157600080fd5b506105d4610a00366004613dbc565b611bbd565b348015610a1157600080fd5b5061042d610a20366004613dbc565b611ce6565b348015610a3157600080fd5b506105d4610a40366004613dbc565b611d32565b348015610a5157600080fd5b506105d4610a60366004613ef1565b611e47565b348015610a7157600080fd5b50600f546106c1906001600160a01b031681565b348015610a9157600080fd5b506106c161202f565b348015610aa657600080fd5b50610aaf6120b6565b604080519384526020840192909252908201526060016103df565b348015610ad657600080fd5b506105d4610ae5366004613dbc565b612150565b348015610af657600080fd5b50610408612265565b348015610b0b57600080fd5b506105d4610b1a366004613f79565b6122c8565b348015610b2b57600080fd5b5061042d610599366004613ff0565b348015610b4657600080fd5b50610408610b55366004614072565b600a60209081526000928352604080842090915290825290205460ff1681565b348015610b8157600080fd5b5061042d610b903660046140a7565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b348015610bc757600080fd5b50610bdb610bd6366004613c3c565b61242c565b6040516103df9291906140d5565b348015610bf557600080fd5b50610bfe612516565b6040516fffffffffffffffffffffffffffffffff90911681526020016103df565b348015610c2b57600080fd5b506105d46125a1565b348015610c4057600080fd5b5061042d610c4f366004613dd9565b612655565b348015610c6057600080fd5b506106c16126a1565b348015610c7557600080fd5b5061042d610c84366004613ff0565b612704565b348015610c9557600080fd5b5061042d610ca4366004613d87565b6128a7565b606060038054610cb890614138565b80601f0160208091040260200160405190810160405280929190818152602001828054610ce490614138565b8015610d315780601f10610d0657610100808354040283529160200191610d31565b820191906000526020600020905b815481529060010190602001808311610d1457829003601f168201915b5050505050905090565b600033610d49818585612a81565b60019150505b92915050565b600f546000908190610d8d907a010000000000000000000000000000000000000000000000000000900465ffffffffffff16426141b4565b9050610de0610d9b60025490565b600f54610dc990849074010000000000000000000000000000000000000000900465ffffffffffff166141c7565b610dd96127106301e133806141c7565b6000612bd9565b91505090565b600e54604080517f13da2d4a000000000000000000000000000000000000000000000000000000008152815160009384936001600160a01b03909116926313da2d4a92600480830193928290030181865afa158015610e49573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e6d91906141fe565b915091509091565b600e546000906001600160a01b031663643b1e50610e956012600a61430c565b60016040518363ffffffff1660e01b8152600401610eb4929190614385565b602060405180830381865afa158015610ed1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ef59190614399565b905090565b610f436040518060e0016040528060006001600160a01b031681526020016000815260200160008152602001600081526020016000815260200160008152602001606081525090565b600e546040517f1a0377d1000000000000000000000000000000000000000000000000000000008152600481018790526001600160a01b03868116602483015260448201869052606482018590526060921690631a0377d190608401600060405180830381865afa158015610fbc573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610fe49190810190614539565b9097909650945050505050565b600033610fff858285612c74565b61100a858585612d06565b60019150505b9392505050565b60006040517f90a2caf200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b611079336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b6110af576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b0381166000818152600c602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169055517fc93cfdd5d8f442c448a02ed11ccff64355643272c9f2be94b723f2181af1a8969190a250565b600e546040517f24b821ab0000000000000000000000000000000000000000000000000000000081526000916001600160a01b0316906324b821ab906111629085908590600401614385565b602060405180830381865afa15801561117f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d4f9190614399565b6000610ef5612f5d565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909190610d4990829086906111e790879061460f565b612a81565b61121a336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b611250576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60118190556040518181527f0120f799fc820eabb910038e9cce6e8024add369b4d780181846e300df2844849060200160405180910390a150565b336000908152600c602052604090205460ff166112db576040517fe5ef2bd00000000000000000000000000000000000000000000000000000000081523360048201526024015b60405180910390fd5b6112e58282613088565b5050565b600e546040517f415a12710000000000000000000000000000000000000000000000000000000081526001600160a01b038381166004830152600092169063415a127190602401611162565b6000611365336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b61139b576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610ef5613147565b600e54604080517f6a1eb7b800000000000000000000000000000000000000000000000000000000815290516060926001600160a01b031691636a1eb7b89160048083019260009291908290030181865afa158015611406573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610ef59190810190614622565b6001600160a01b038116600090815260076020526040812054610d4f565b6000606080828080836114807f4f726967616d69206c6f762d7773744554482d6100000000000000000000001460056131f5565b6114ab7f310000000000000000000000000000000000000000000000000000000000000160066131f5565b604080516000808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b600e54604080517f8a83c9cd00000000000000000000000000000000000000000000000000000000815290516060926001600160a01b031691638a83c9cd9160048083019260009291908290030181865afa158015611406573d6000803e3d6000fd5b611582336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b6115b8576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6127108165ffffffffffff1611156115fc576040517fd252903400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b611604613147565b5060405165ffffffffffff821681527fceb20f7f0b19335681096ee1eaa9bb2a6ef5a9a69ba48b6b488e7b7eff2ef04d9060200160405180910390a1600f805465ffffffffffff90921674010000000000000000000000000000000000000000027fffffffffffff000000000000ffffffffffffffffffffffffffffffffffffffff909216919091179055565b600e546040517f6026220d0000000000000000000000000000000000000000000000000000000081526000916001600160a01b031690636026220d90610eb49084906004016146b1565b606060048054610cb890614138565b611718336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b61174e576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b0381166000818152600c602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055517f887003b0d91467e681b2ba1437748e2d1b6e9b0b1cb8be6541e6cdfc1b50eabc9190a250565b600e54604080517f9a6b27cf00000000000000000000000000000000000000000000000000000000815290516000926001600160a01b031691639a6b27cf9160048083019260209291908290030181865afa15801561181b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ef591906146cd565b336000908152600c602052604090205460ff1661188a576040517fe5ef2bd00000000000000000000000000000000000000000000000000000000081523360048201526024016112d2565b6112e582826132a0565b6118c2336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b6118f8576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b03811661193b576040517f8e4c8aa6000000000000000000000000000000000000000000000000000000008152600060048201526024016112d2565b6040516001600160a01b038216907f12e1d17016b94668449f97876f4a8d5cc2c19f314db337418894734037cc19d490600090a2600f80547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b3360008181526001602090815260408083206001600160a01b038716845290915281205490919083811015611a465760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f7760448201527f207a65726f00000000000000000000000000000000000000000000000000000060648201526084016112d2565b611a538286868403612a81565b506001949350505050565b600e54604080517fa515b8ec000000000000000000000000000000000000000000000000000000008152815160009384936001600160a01b039091169263a515b8ec92600480830193928290030181865afa158015611ac1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e6d91906146ea565b611b13336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b611b49576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b826001600160a01b0316826001600160a01b03167f879f92dded0f26b83c3e00b12e0395dc72cfc3077343d1854ed6988edd1f909683604051611b8e91815260200190565b60405180910390a3611baa6001600160a01b0384168383613409565b505050565b600033610d49818585612d06565b611beb336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b611c21576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b038116611c6c576040517f8e4c8aa60000000000000000000000000000000000000000000000000000000081526001600160a01b03821660048201526024016112d2565b600b546009546040516001600160a01b038085169381169216907f64420d4a41c6ed4de2bccbf33192eea18e576c5b23c79c3a722d4e9534c2e8d890600090a4600b80547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b600e546040517fb5a2d9a90000000000000000000000000000000000000000000000000000000081526001600160a01b038381166004830152600092169063b5a2d9a990602401611162565b611d60336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b611d96576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b038116611dd9576040517f8e4c8aa6000000000000000000000000000000000000000000000000000000008152600060048201526024016112d2565b6040516001600160a01b038216907f2781e03d8cf8be1845f40e150af1187b0cdb48dccd761a708f5e5b612a865d1d90600090a2601080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b611e75336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b611eab576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b038316611ef6576040517f8e4c8aa60000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201526024016112d2565b604080518082019091526000808252602082015260005b8281101561202857838382818110611f2757611f2761470e565b905060400201803603810190611f3d919061473d565b91508160200151151582600001517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916866001600160a01b03167ff5736e75de2c751f775d4c5ed517289f77074f8c337f451ba4c0c3ed1dd7f9ad60405160405180910390a46020828101516001600160a01b0387166000908152600a8352604080822086517fffffffff000000000000000000000000000000000000000000000000000000001683529093529190912080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169115159190911790556120218161479a565b9050611f0d565b5050505050565b600e54604080517fc55dae6300000000000000000000000000000000000000000000000000000000815290516000926001600160a01b03169163c55dae639160048083019260209291908290030181865afa158015612092573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ef591906147b4565b600e546040517fa8e93cdb000000000000000000000000000000000000000000000000000000008152600091829182916001600160a01b03169063a8e93cdb906121049084906004016146b1565b606060405180830381865afa158015612121573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061214591906147d1565b925092509250909192565b61217e336000357fffffffff0000000000000000000000000000000000000000000000000000000016612ef3565b6121b4576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b0381166121f7576040517f8e4c8aa6000000000000000000000000000000000000000000000000000000008152600060048201526024016112d2565b6040516001600160a01b038216907f60a0f5b9f9e81e98216071b85826681c796256fe3d1354ecb675580fba64fa6990600090a2600e80547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b600e54604080517fd4da79b300000000000000000000000000000000000000000000000000000000815290516000926001600160a01b03169163d4da79b39160048083019260209291908290030181865afa15801561181b573d6000803e3d6000fd5b834211156123185760405162461bcd60e51b815260206004820152601d60248201527f45524332305065726d69743a206578706972656420646561646c696e6500000060448201526064016112d2565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886123478c6134b2565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e00160405160208183030381529060405280519060200120905060006123a2826134da565b905060006123b282878787613522565b9050896001600160a01b0316816001600160a01b0316146124155760405162461bcd60e51b815260206004820152601e60248201527f45524332305065726d69743a20696e76616c6964207369676e6174757265000060448201526064016112d2565b6124208a8a8a612a81565b50505050505050505050565b6124756040518060e001604052806000815260200160006001600160a01b0316815260200160008152602001600081526020016000815260200160008152602001606081525090565b600e546040517fe664b020000000000000000000000000000000000000000000000000000000008152600481018790526001600160a01b0386811660248301526044820186905260648201859052606092169063e664b02090608401600060405180830381865afa1580156124ee573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610fe491908101906147ff565b600e546040517feea2f45c0000000000000000000000000000000000000000000000000000000081526000916001600160a01b03169063eea2f45c906125609084906004016146b1565b602060405180830381865afa15801561257d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ef59190614895565b600b546001600160a01b031633146125e5576040517fc0185c6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60095460405133916001600160a01b0316907f5cd6b24c0149d980c82592262b3a81294b39f8f6e3c004126aaf0828c787d55490600090a3600980547fffffffffffffffffffffffff00000000000000000000000000000000000000009081163317909155600b80549091169055565b600e546040517f643b1e500000000000000000000000000000000000000000000000000000000081526000916001600160a01b03169063643b1e50906111629085908590600401614385565b600e54604080517ff4325d6700000000000000000000000000000000000000000000000000000000815290516000926001600160a01b03169163f4325d679160048083019260209291908290030181865afa158015612092573d6000803e3d6000fd5b600061270e61354a565b8235600003612749576040517f54db0c8c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b038216612794576040517f8e4c8aa60000000000000000000000000000000000000000000000000000000081526001600160a01b03831660048201526024016112d2565b600e546040517fc677e2750000000000000000000000000000000000000000000000000000000081526000916001600160a01b03169063c677e275906127e290339088908890600401614946565b60408051808303816000875af1158015612800573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061282491906146ea565b90925090506001600160a01b0383166128436040860160208701613dbc565b6040805187358152602081018690526001600160a01b03929092169133917f452a5afbe062050de33ff43d2f66cca3d37117d3c252e5980dbcce5c7931ce25910160405180910390a4801561289c5761289c33826132a0565b50610d4f6001600d55565b60006128b161354a565b81602001356000036128ef576040517f54db0c8c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600e546001600160a01b03166129223382602086018035906129119088613dbc565b6001600160a01b03169291906135a3565b6040517fb07c63c70000000000000000000000000000000000000000000000000000000081526001600160a01b0382169063b07c63c79061296990339087906004016149e1565b6020604051808303816000875af1158015612988573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129ac9190614399565b91506129bb6020840184613dbc565b6001600160a01b0316336001600160a01b03167f27d6b86df7406aa09ba2f9db93e6b49838ee989212e76df0306d234475a5ddaa856020013585604051612a0c929190918252602082015260400190565b60405180910390a38115612a7157612a243383613088565b6011546002541115612a71576002546011546040517ff20d1ed9000000000000000000000000000000000000000000000000000000008152600481019290925260248201526044016112d2565b50612a7c6001600d55565b919050565b6001600160a01b038316612afc5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f2061646460448201527f726573730000000000000000000000000000000000000000000000000000000060648201526084016112d2565b6001600160a01b038216612b785760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f20616464726560448201527f737300000000000000000000000000000000000000000000000000000000000060648201526084016112d2565b6001600160a01b0383811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b6000612be68585856135f4565b90506001826001811115612bfc57612bfc61431b565b03612c6c578280612c0f57612c0f614a6c565b84860915612c6c57600019811015612c2957600101612c6c565b6040517f63a057780000000000000000000000000000000000000000000000000000000081526004810186905260248101859052604481018490526064016112d2565b949350505050565b6001600160a01b038381166000908152600160209081526040808320938616835292905220546000198114612d005781811015612cf35760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016112d2565b612d008484848403612a81565b50505050565b6001600160a01b038316612d825760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f20616460448201527f647265737300000000000000000000000000000000000000000000000000000060648201526084016112d2565b6001600160a01b038216612dfe5760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201527f657373000000000000000000000000000000000000000000000000000000000060648201526084016112d2565b6001600160a01b03831660009081526020819052604090205481811015612e8d5760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e742065786365656473206260448201527f616c616e6365000000000000000000000000000000000000000000000000000060648201526084016112d2565b6001600160a01b03848116600081815260208181526040808320878703905593871680835291849020805487019055925185815290927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a3612d00565b6009546000906001600160a01b038481169116148061101057506001600160a01b0383166000908152600a602090815260408083207fffffffff000000000000000000000000000000000000000000000000000000008616845290915290205460ff169392505050565b6000306001600160a01b037f000000000000000000000000117b36e79adadd8ea81fbc53bfc9cd33270d845d16148015612fb657507f000000000000000000000000000000000000000000000000000000000000000146145b15612fe057507f4df321d0ec480abedf333cfc9b54b1bda4e73ceb19233a58ddf45efa250108d990565b610ef5604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f52a4beb5aa6743d0f9ce5f63c9c99e25d58ed0de75a08cc906e5b948f38b2030918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0382166130de5760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064016112d2565b80600260008282546130f0919061460f565b90915550506001600160a01b038216600081815260208181526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b6000613151610d55565b905080156131a957600f546040518281526001600160a01b039091169081907f8ca882445572a0beb49b440f5a329364aa0678559e2511916cf49b557a43cff99060200160405180910390a26131a78183613088565b505b600f805479ffffffffffffffffffffffffffffffffffffffffffffffffffff167a0100000000000000000000000000000000000000000000000000004265ffffffffffff160217905590565b606060ff831461320f57613208836136e1565b9050610d4f565b81805461321b90614138565b80601f016020809104026020016040519081016040528092919081815260200182805461324790614138565b80156132945780601f1061326957610100808354040283529160200191613294565b820191906000526020600020905b81548152906001019060200180831161327757829003601f168201915b50505050509050610d4f565b6001600160a01b03821661331c5760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f2061646472657360448201527f730000000000000000000000000000000000000000000000000000000000000060648201526084016112d2565b6001600160a01b038216600090815260208190526040902054818110156133ab5760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e60448201527f636500000000000000000000000000000000000000000000000000000000000060648201526084016112d2565b6001600160a01b0383166000818152602081815260408083208686039055600280548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a3505050565b6040516001600160a01b038316602482015260448101829052611baa9084907fa9059cbb00000000000000000000000000000000000000000000000000000000906064015b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152613720565b6001600160a01b03811660009081526007602052604090208054600181018255905b50919050565b6000610d4f6134e7612f5d565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b600080600061353387878787613808565b91509150613540816138cc565b5095945050505050565b6002600d540361359c5760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064016112d2565b6002600d55565b6040516001600160a01b0380851660248301528316604482015260648101829052612d009085907f23b872dd000000000000000000000000000000000000000000000000000000009060840161344e565b600080806000198587098587029250828110838203039150508060000361362e5783828161362457613624614a6c565b0492505050611010565b838110613678576040517f63a057780000000000000000000000000000000000000000000000000000000081526004810187905260248101869052604481018590526064016112d2565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b606060006136ee83613a34565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b6000613775826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316613a759092919063ffffffff16565b905080516000148061379657508080602001905181019061379691906146cd565b611baa5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f7420737563636565640000000000000000000000000000000000000000000060648201526084016112d2565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561383f57506000905060036138c3565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015613893573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166138bc576000600192509250506138c3565b9150600090505b94509492505050565b60008160048111156138e0576138e061431b565b036138e85750565b60018160048111156138fc576138fc61431b565b036139495760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064016112d2565b600281600481111561395d5761395d61431b565b036139aa5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016112d2565b60038160048111156139be576139be61431b565b03613a315760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c60448201527f756500000000000000000000000000000000000000000000000000000000000060648201526084016112d2565b50565b600060ff8216601f811115610d4f576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6060612c6c848460008585600080866001600160a01b03168587604051613a9c9190614a9b565b60006040518083038185875af1925050503d8060008114613ad9576040519150601f19603f3d011682016040523d82523d6000602084013e613ade565b606091505b5091509150613aef87838387613afa565b979650505050505050565b60608315613b69578251600003613b62576001600160a01b0385163b613b625760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016112d2565b5081612c6c565b612c6c8383815115613b7e5781518083602001fd5b8060405162461bcd60e51b81526004016112d29190613be8565b60005b83811015613bb3578181015183820152602001613b9b565b50506000910152565b60008151808452613bd4816020860160208601613b98565b601f01601f19169290920160200192915050565b6020815260006110106020830184613bbc565b6001600160a01b0381168114613a3157600080fd5b60008060408385031215613c2357600080fd5b8235613c2e81613bfb565b946020939093013593505050565b60008060008060808587031215613c5257600080fd5b843593506020850135613c6481613bfb565b93969395505050506040820135916060013590565b600081518084526020808501945080840160005b83811015613ca957815187529582019590820190600101613c8d565b509495945050505050565b604081526001600160a01b0383511660408201526020830151606082015260408301516080820152606083015160a0820152608083015160c082015260a083015160e0820152600060c084015160e0610100840152613d17610120840182613bbc565b90508281036020840152613d2b8185613c79565b95945050505050565b600080600060608486031215613d4957600080fd5b8335613d5481613bfb565b92506020840135613d6481613bfb565b929592945050506040919091013590565b600060e082840312156134d457600080fd5b600060208284031215613d9957600080fd5b813567ffffffffffffffff811115613db057600080fd5b612c6c84828501613d75565b600060208284031215613dce57600080fd5b813561101081613bfb565b600060208284031215613deb57600080fd5b5035919050565b6020808252825182820181905260009190848201906040850190845b81811015613e335783516001600160a01b031683529284019291840191600101613e0e565b50909695505050505050565b7fff000000000000000000000000000000000000000000000000000000000000008816815260e060208201526000613e7a60e0830189613bbc565b8281036040840152613e8c8189613bbc565b90508660608401526001600160a01b03861660808401528460a084015282810360c0840152613ebb8185613c79565b9a9950505050505050505050565b600060208284031215613edb57600080fd5b813565ffffffffffff8116811461101057600080fd5b600080600060408486031215613f0657600080fd5b8335613f1181613bfb565b9250602084013567ffffffffffffffff80821115613f2e57600080fd5b818601915086601f830112613f4257600080fd5b813581811115613f5157600080fd5b8760208260061b8501011115613f6657600080fd5b6020830194508093505050509250925092565b600080600080600080600060e0888a031215613f9457600080fd5b8735613f9f81613bfb565b96506020880135613faf81613bfb565b95506040880135945060608801359350608088013560ff81168114613fd357600080fd5b9699959850939692959460a0840135945060c09093013592915050565b6000806040838503121561400357600080fd5b823567ffffffffffffffff81111561401a57600080fd5b61402685828601613d75565b925050602083013561403781613bfb565b809150509250929050565b80357fffffffff0000000000000000000000000000000000000000000000000000000081168114612a7c57600080fd5b6000806040838503121561408557600080fd5b823561409081613bfb565b915061409e60208401614042565b90509250929050565b600080604083850312156140ba57600080fd5b82356140c581613bfb565b9150602083013561403781613bfb565b60408152825160408201526001600160a01b03602084015116606082015260408301516080820152606083015160a0820152608083015160c082015260a083015160e0820152600060c084015160e0610100840152613d17610120840182613bbc565b600181811c9082168061414c57607f821691505b6020821081036134d4577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b81810381811115610d4f57610d4f614185565b8082028115828204841417610d4f57610d4f614185565b80516fffffffffffffffffffffffffffffffff81168114612a7c57600080fd5b6000806040838503121561421157600080fd5b61421a836141de565b915061409e602084016141de565b600181815b8085111561426357816000190482111561424957614249614185565b8085161561425657918102915b93841c939080029061422d565b509250929050565b60008261427a57506001610d4f565b8161428757506000610d4f565b816001811461429d57600281146142a7576142c3565b6001915050610d4f565b60ff8411156142b8576142b8614185565b50506001821b610d4f565b5060208310610133831016604e8410600b84101617156142e6575081810a610d4f565b6142f08383614228565b806000190482111561430457614304614185565b029392505050565b600061101060ff84168361426b565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b60028110614381577f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9052565b82815260408101611010602083018461434a565b6000602082840312156143ab57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b60405160e0810167ffffffffffffffff81118282101715614404576144046143b2565b60405290565b604051601f8201601f1916810167ffffffffffffffff81118282101715614433576144336143b2565b604052919050565b8051612a7c81613bfb565b600082601f83011261445757600080fd5b815167ffffffffffffffff811115614471576144716143b2565b6144846020601f19601f8401160161440a565b81815284602083860101111561449957600080fd5b612c6c826020830160208701613b98565b600067ffffffffffffffff8211156144c4576144c46143b2565b5060051b60200190565b600082601f8301126144df57600080fd5b815160206144f46144ef836144aa565b61440a565b82815260059290921b8401810191818101908684111561451357600080fd5b8286015b8481101561452e5780518352918301918301614517565b509695505050505050565b6000806040838503121561454c57600080fd5b825167ffffffffffffffff8082111561456457600080fd5b9084019060e0828703121561457857600080fd5b6145806143e1565b6145898361443b565b81526020830151602082015260408301516040820152606083015160608201526080830151608082015260a083015160a082015260c0830151828111156145cf57600080fd5b6145db88828601614446565b60c08301525060208601519094509150808211156145f857600080fd5b50614605858286016144ce565b9150509250929050565b80820180821115610d4f57610d4f614185565b6000602080838503121561463557600080fd5b825167ffffffffffffffff81111561464c57600080fd5b8301601f8101851361465d57600080fd5b805161466b6144ef826144aa565b81815260059190911b8201830190838101908783111561468a57600080fd5b928401925b82841015613aef5783516146a281613bfb565b8252928401929084019061468f565b60208101610d4f828461434a565b8015158114613a3157600080fd5b6000602082840312156146df57600080fd5b8151611010816146bf565b600080604083850312156146fd57600080fd5b505080516020909101519092909150565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60006040828403121561474f57600080fd5b6040516040810181811067ffffffffffffffff82111715614772576147726143b2565b60405261477e83614042565b8152602083013561478e816146bf565b60208201529392505050565b600060001982036147ad576147ad614185565b5060010190565b6000602082840312156147c657600080fd5b815161101081613bfb565b6000806000606084860312156147e657600080fd5b8351925060208401519150604084015190509250925092565b6000806040838503121561481257600080fd5b825167ffffffffffffffff8082111561482a57600080fd5b9084019060e0828703121561483e57600080fd5b6148466143e1565b825181526148566020840161443b565b602082015260408301516040820152606083015160608201526080830151608082015260a083015160a082015260c0830151828111156145cf57600080fd5b6000602082840312156148a757600080fd5b611010826141de565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18436030181126148e557600080fd5b830160208101925035905067ffffffffffffffff81111561490557600080fd5b80360382131561491457600080fd5b9250929050565b818352818160208501375060006020828401015260006020601f19601f840116840101905092915050565b60006001600160a01b0380861683526060602084015284356060840152602085013561497181613bfb565b81811660808501525050604084013560a0830152606084013560c0830152608084013560e083015260a08401356101008301526149b160c08501856148b0565b60e06101208501526149c86101408501828461491b565b92505050612c6c60408301846001600160a01b03169052565b60006001600160a01b038085168352604060208401528335614a0281613bfb565b818116604085015250506020830135606083015260408301356080830152606083013560a0830152608083013560c083015260a083013560e0830152614a4b60c08401846148b0565b60e0610100850152614a626101208501828461491b565b9695505050505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b60008251614aad818460208701613b98565b919091019291505056fea2646970667358221220c27edc15cde71ecb9d5e14fe526b8222ed8846e5a7f97111adbb2d8f6d396c3164736f6c63430008130033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

OVERVIEW

Origami is a non-custodial automated leverage protocol launching on Ethereum and Berachain.

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.