Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
13368000 | 1204 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xb5b6996f086d6a570b1a547d9cb7df93a0c58518
Contract Name:
CreditLine
Compiler Version
v0.6.12+commit.27d51765
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./GoldfinchConfig.sol"; import "./ConfigHelper.sol"; import "./BaseUpgradeablePausable.sol"; import "./Accountant.sol"; import "../../interfaces/IERC20withDec.sol"; import "../../interfaces/ICreditLine.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/Math.sol"; /** * @title CreditLine * @notice A contract that represents the agreement between Backers and * a Borrower. Includes the terms of the loan, as well as the current accounting state, such as interest owed. * A CreditLine belongs to a TranchedPool, and is fully controlled by that TranchedPool. It does not * operate in any standalone capacity. It should generally be considered internal to the TranchedPool. * @author Goldfinch */ // solhint-disable-next-line max-states-count contract CreditLine is BaseUpgradeablePausable, ICreditLine { uint256 public constant SECONDS_PER_DAY = 60 * 60 * 24; // Credit line terms address public override borrower; uint256 public override limit; uint256 public override interestApr; uint256 public override paymentPeriodInDays; uint256 public override termInDays; uint256 public override lateFeeApr; // Accounting variables uint256 public override balance; uint256 public override interestOwed; uint256 public override principalOwed; uint256 public override termEndTime; uint256 public override nextDueTime; uint256 public override interestAccruedAsOf; uint256 public override lastFullPaymentTime; uint256 public totalInterestAccrued; GoldfinchConfig public config; using ConfigHelper for GoldfinchConfig; function initialize( address _config, address owner, address _borrower, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr ) public initializer { require(_config != address(0) && owner != address(0) && _borrower != address(0), "Zero address passed in"); __BaseUpgradeablePausable__init(owner); config = GoldfinchConfig(_config); borrower = _borrower; limit = _limit; interestApr = _interestApr; paymentPeriodInDays = _paymentPeriodInDays; termInDays = _termInDays; lateFeeApr = _lateFeeApr; interestAccruedAsOf = block.timestamp; // Unlock owner, which is a TranchedPool, for infinite amount bool success = config.getUSDC().approve(owner, uint256(-1)); require(success, "Failed to approve USDC"); } /** * @notice Updates the internal accounting to track a drawdown as of current block timestamp. * Does not move any money * @param amount The amount in USDC that has been drawndown */ function drawdown(uint256 amount) external onlyAdmin { require(amount.add(balance) <= limit, "Cannot drawdown more than the limit"); uint256 timestamp = currentTime(); if (balance == 0) { setInterestAccruedAsOf(timestamp); setLastFullPaymentTime(timestamp); setTotalInterestAccrued(0); setTermEndTime(timestamp.add(SECONDS_PER_DAY.mul(termInDays))); } (uint256 _interestOwed, uint256 _principalOwed) = updateAndGetInterestAndPrincipalOwedAsOf(timestamp); balance = balance.add(amount); updateCreditLineAccounting(balance, _interestOwed, _principalOwed); require(!isLate(timestamp), "Cannot drawdown when payments are past due"); } /** * @notice Migrates to a new goldfinch config address */ function updateGoldfinchConfig() external onlyAdmin { config = GoldfinchConfig(config.configAddress()); } function setLateFeeApr(uint256 newLateFeeApr) external onlyAdmin { lateFeeApr = newLateFeeApr; } function setLimit(uint256 newAmount) external onlyAdmin { limit = newAmount; } function termStartTime() external view returns (uint256) { return termEndTime.sub(SECONDS_PER_DAY.mul(termInDays)); } function setTermEndTime(uint256 newTermEndTime) public onlyAdmin { termEndTime = newTermEndTime; } function setNextDueTime(uint256 newNextDueTime) public onlyAdmin { nextDueTime = newNextDueTime; } function setBalance(uint256 newBalance) public onlyAdmin { balance = newBalance; } function setTotalInterestAccrued(uint256 _totalInterestAccrued) public onlyAdmin { totalInterestAccrued = _totalInterestAccrued; } function setInterestOwed(uint256 newInterestOwed) public onlyAdmin { interestOwed = newInterestOwed; } function setPrincipalOwed(uint256 newPrincipalOwed) public onlyAdmin { principalOwed = newPrincipalOwed; } function setInterestAccruedAsOf(uint256 newInterestAccruedAsOf) public onlyAdmin { interestAccruedAsOf = newInterestAccruedAsOf; } function setLastFullPaymentTime(uint256 newLastFullPaymentTime) public onlyAdmin { lastFullPaymentTime = newLastFullPaymentTime; } /** * @notice Triggers an assessment of the creditline. Any USDC balance available in the creditline is applied * towards the interest and principal. * @return Any amount remaining after applying payments towards the interest and principal * @return Amount applied towards interest * @return Amount applied towards principal */ function assess() public onlyAdmin returns ( uint256, uint256, uint256 ) { // Do not assess until a full period has elapsed or past due require(balance > 0, "Must have balance to assess credit line"); // Don't assess credit lines early! if (currentTime() < nextDueTime && !isLate(currentTime())) { return (0, 0, 0); } uint256 timeToAssess = calculateNextDueTime(); setNextDueTime(timeToAssess); // We always want to assess for the most recently *past* nextDueTime. // So if the recalculation above sets the nextDueTime into the future, // then ensure we pass in the one just before this. if (timeToAssess > currentTime()) { uint256 secondsPerPeriod = paymentPeriodInDays.mul(SECONDS_PER_DAY); timeToAssess = timeToAssess.sub(secondsPerPeriod); } return handlePayment(getUSDCBalance(address(this)), timeToAssess); } function calculateNextDueTime() internal view returns (uint256) { uint256 newNextDueTime = nextDueTime; uint256 secondsPerPeriod = paymentPeriodInDays.mul(SECONDS_PER_DAY); uint256 curTimestamp = currentTime(); // You must have just done your first drawdown if (newNextDueTime == 0 && balance > 0) { return curTimestamp.add(secondsPerPeriod); } // Active loan that has entered a new period, so return the *next* newNextDueTime. // But never return something after the termEndTime if (balance > 0 && curTimestamp >= newNextDueTime) { uint256 secondsToAdvance = (curTimestamp.sub(newNextDueTime).div(secondsPerPeriod)).add(1).mul(secondsPerPeriod); newNextDueTime = newNextDueTime.add(secondsToAdvance); return Math.min(newNextDueTime, termEndTime); } // You're paid off, or have not taken out a loan yet, so no next due time. if (balance == 0 && newNextDueTime != 0) { return 0; } // Active loan in current period, where we've already set the newNextDueTime correctly, so should not change. if (balance > 0 && curTimestamp < newNextDueTime) { return newNextDueTime; } revert("Error: could not calculate next due time."); } function currentTime() internal view virtual returns (uint256) { return block.timestamp; } function isLate(uint256 timestamp) internal view returns (bool) { uint256 secondsElapsedSinceFullPayment = timestamp.sub(lastFullPaymentTime); return secondsElapsedSinceFullPayment > paymentPeriodInDays.mul(SECONDS_PER_DAY); } /** * @notice Applies `amount` of payment for a given credit line. This moves already collected money into the Pool. * It also updates all the accounting variables. Note that interest is always paid back first, then principal. * Any extra after paying the minimum will go towards existing principal (reducing the * effective interest rate). Any extra after the full loan has been paid off will remain in the * USDC Balance of the creditLine, where it will be automatically used for the next drawdown. * @param paymentAmount The amount, in USDC atomic units, to be applied * @param timestamp The timestamp on which accrual calculations should be based. This allows us * to be precise when we assess a Credit Line */ function handlePayment(uint256 paymentAmount, uint256 timestamp) internal returns ( uint256, uint256, uint256 ) { (uint256 newInterestOwed, uint256 newPrincipalOwed) = updateAndGetInterestAndPrincipalOwedAsOf(timestamp); Accountant.PaymentAllocation memory pa = Accountant.allocatePayment( paymentAmount, balance, newInterestOwed, newPrincipalOwed ); uint256 newBalance = balance.sub(pa.principalPayment); // Apply any additional payment towards the balance newBalance = newBalance.sub(pa.additionalBalancePayment); uint256 totalPrincipalPayment = balance.sub(newBalance); uint256 paymentRemaining = paymentAmount.sub(pa.interestPayment).sub(totalPrincipalPayment); updateCreditLineAccounting( newBalance, newInterestOwed.sub(pa.interestPayment), newPrincipalOwed.sub(pa.principalPayment) ); assert(paymentRemaining.add(pa.interestPayment).add(totalPrincipalPayment) == paymentAmount); return (paymentRemaining, pa.interestPayment, totalPrincipalPayment); } function updateAndGetInterestAndPrincipalOwedAsOf(uint256 timestamp) internal returns (uint256, uint256) { (uint256 interestAccrued, uint256 principalAccrued) = Accountant.calculateInterestAndPrincipalAccrued( this, timestamp, config.getLatenessGracePeriodInDays() ); if (interestAccrued > 0) { // If we've accrued any interest, update interestAccruedAsOf to the time that we've // calculated interest for. If we've not accrued any interest, then we keep the old value so the next // time the entire period is taken into account. setInterestAccruedAsOf(timestamp); totalInterestAccrued = totalInterestAccrued.add(interestAccrued); } return (interestOwed.add(interestAccrued), principalOwed.add(principalAccrued)); } function updateCreditLineAccounting( uint256 newBalance, uint256 newInterestOwed, uint256 newPrincipalOwed ) internal nonReentrant { setBalance(newBalance); setInterestOwed(newInterestOwed); setPrincipalOwed(newPrincipalOwed); // This resets lastFullPaymentTime. These conditions assure that they have // indeed paid off all their interest and they have a real nextDueTime. (ie. creditline isn't pre-drawdown) uint256 _nextDueTime = nextDueTime; if (newInterestOwed == 0 && _nextDueTime != 0) { // If interest was fully paid off, then set the last full payment as the previous due time uint256 mostRecentLastDueTime; if (currentTime() < _nextDueTime) { uint256 secondsPerPeriod = paymentPeriodInDays.mul(SECONDS_PER_DAY); mostRecentLastDueTime = _nextDueTime.sub(secondsPerPeriod); } else { mostRecentLastDueTime = _nextDueTime; } setLastFullPaymentTime(mostRecentLastDueTime); } setNextDueTime(calculateNextDueTime()); } function getUSDCBalance(address _address) internal view returns (uint256) { return config.getUSDC().balanceOf(_address); } }
pragma solidity ^0.6.0; import "../Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract ContextUpgradeSafe is Initializable { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; }
pragma solidity >=0.4.24 <0.7.0; /** * @title Initializable * * @dev Helper contract to support initializer functions. To use it, replace * the constructor with a function that has the `initializer` modifier. * WARNING: Unlike constructors, initializer functions must be manually * invoked. This applies both to deploying an Initializable contract, as well * as extending an Initializable contract via inheritance. * WARNING: When used with inheritance, manual care must be taken to not invoke * a parent initializer twice, or ensure that all initializers are idempotent, * because this is not dealt with automatically as with constructors. */ contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private initializing; /** * @dev Modifier to use in the initializer function of a contract. */ modifier initializer() { require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized"); bool isTopLevelCall = !initializing; if (isTopLevelCall) { initializing = true; initialized = true; } _; if (isTopLevelCall) { initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function isConstructor() private view returns (bool) { // extcodesize checks the size of the code stored in an address, and // address returns the current address. Since the code is still not // deployed when running a constructor, any checks on its code size will // yield zero, making it an effective way to detect if a contract is // under construction or not. address self = address(this); uint256 cs; assembly { cs := extcodesize(self) } return cs == 0; } // Reserved storage space to allow for layout changes in the future. uint256[50] private ______gap; }
pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, _msgSender())); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. */ abstract contract AccessControlUpgradeSafe is Initializable, ContextUpgradeSafe { function __AccessControl_init() internal initializer { __Context_init_unchained(); __AccessControl_init_unchained(); } function __AccessControl_init_unchained() internal initializer { } using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } uint256[49] private __gap; }
pragma solidity ^0.6.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
pragma solidity ^0.6.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } }
pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
pragma solidity ^0.6.0; /** * @title SignedSafeMath * @dev Signed math operations with safety checks that revert on error. */ library SignedSafeMath { int256 constant private _INT256_MIN = -2**255; /** * @dev Multiplies two signed integers, reverts on overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Integer division of two signed integers truncating the quotient, reverts on division by zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Subtracts two signed integers, reverts on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Adds two signed integers, reverts on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } }
pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
pragma solidity ^0.6.2; import "../../introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of NFTs in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the NFT specified by `tokenId`. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */ function transferFrom(address from, address to, uint256 tokenId) external; function approve(address to, uint256 tokenId) external; function getApproved(uint256 tokenId) external view returns (address operator); function setApprovalForAll(address operator, bool _approved) external; function isApprovedForAll(address owner, address operator) external view returns (bool); function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; }
pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } }
pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } }
pragma solidity ^0.6.0; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ contract PausableUpgradeSafe is Initializable, ContextUpgradeSafe { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!_paused, "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(_paused, "Pausable: not paused"); _; } /** * @dev Triggers stopped state. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; }
pragma solidity ^0.6.0; import "../Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuardUpgradeSafe is Initializable { bool private _notEntered; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { // Storing an initial non-zero value makes deployment a bit more // expensive, but in exchange the refund on every call to nonReentrant // will be lower in amount. Since refunds are capped to a percetange of // the total transaction's gas, it is best to keep them low in cases // like this one, to increase the likelihood of the full refund coming // into effect. _notEntered = true; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_notEntered, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _notEntered = false; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _notEntered = true; } uint256[49] private __gap; }
// SPDX-License-Identifier: AGPL-3.0-only // solhint-disable // Imported from https://github.com/UMAprotocol/protocol/blob/4d1c8cc47a4df5e79f978cb05647a7432e111a3d/packages/core/contracts/common/implementation/FixedPoint.sol pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SignedSafeMath.sol"; /** * @title Library for fixed point arithmetic on uints */ library FixedPoint { using SafeMath for uint256; using SignedSafeMath for int256; // Supports 18 decimals. E.g., 1e18 represents "1", 5e17 represents "0.5". // For unsigned values: // This can represent a value up to (2^256 - 1)/10^18 = ~10^59. 10^59 will be stored internally as uint256 10^77. uint256 private constant FP_SCALING_FACTOR = 10**18; // --------------------------------------- UNSIGNED ----------------------------------------------------------------------------- struct Unsigned { uint256 rawValue; } /** * @notice Constructs an `Unsigned` from an unscaled uint, e.g., `b=5` gets stored internally as `5**18`. * @param a uint to convert into a FixedPoint. * @return the converted FixedPoint. */ function fromUnscaledUint(uint256 a) internal pure returns (Unsigned memory) { return Unsigned(a.mul(FP_SCALING_FACTOR)); } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if equal, or False. */ function isEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue == fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if equal, or False. */ function isEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue == b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a > b`, or False. */ function isGreaterThan(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue > b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a > b`, or False. */ function isGreaterThan(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue > fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a > b`, or False. */ function isGreaterThan(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue > b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue >= b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue >= fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue >= b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a < b`, or False. */ function isLessThan(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue < b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a < b`, or False. */ function isLessThan(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue < fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a < b`, or False. */ function isLessThan(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue < b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue <= b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue <= fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue <= b.rawValue; } /** * @notice The minimum of `a` and `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return the minimum of `a` and `b`. */ function min(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return a.rawValue < b.rawValue ? a : b; } /** * @notice The maximum of `a` and `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return the maximum of `a` and `b`. */ function max(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return a.rawValue > b.rawValue ? a : b; } /** * @notice Adds two `Unsigned`s, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the sum of `a` and `b`. */ function add(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.add(b.rawValue)); } /** * @notice Adds an `Unsigned` to an unscaled uint, reverting on overflow. * @param a a FixedPoint. * @param b a uint256. * @return the sum of `a` and `b`. */ function add(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return add(a, fromUnscaledUint(b)); } /** * @notice Subtracts two `Unsigned`s, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the difference of `a` and `b`. */ function sub(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.sub(b.rawValue)); } /** * @notice Subtracts an unscaled uint256 from an `Unsigned`, reverting on overflow. * @param a a FixedPoint. * @param b a uint256. * @return the difference of `a` and `b`. */ function sub(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return sub(a, fromUnscaledUint(b)); } /** * @notice Subtracts an `Unsigned` from an unscaled uint256, reverting on overflow. * @param a a uint256. * @param b a FixedPoint. * @return the difference of `a` and `b`. */ function sub(uint256 a, Unsigned memory b) internal pure returns (Unsigned memory) { return sub(fromUnscaledUint(a), b); } /** * @notice Multiplies two `Unsigned`s, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mul(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { // There are two caveats with this computation: // 1. Max output for the represented number is ~10^41, otherwise an intermediate value overflows. 10^41 is // stored internally as a uint256 ~10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 1.4 * 2e-18 = 2.8e-18, which // would round to 3, but this computation produces the result 2. // No need to use SafeMath because FP_SCALING_FACTOR != 0. return Unsigned(a.rawValue.mul(b.rawValue) / FP_SCALING_FACTOR); } /** * @notice Multiplies an `Unsigned` and an unscaled uint256, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint. * @param b a uint256. * @return the product of `a` and `b`. */ function mul(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.mul(b)); } /** * @notice Multiplies two `Unsigned`s and "ceil's" the product, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mulCeil(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { uint256 mulRaw = a.rawValue.mul(b.rawValue); uint256 mulFloor = mulRaw / FP_SCALING_FACTOR; uint256 mod = mulRaw.mod(FP_SCALING_FACTOR); if (mod != 0) { return Unsigned(mulFloor.add(1)); } else { return Unsigned(mulFloor); } } /** * @notice Multiplies an `Unsigned` and an unscaled uint256 and "ceil's" the product, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mulCeil(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { // Since b is an int, there is no risk of truncation and we can just mul it normally return Unsigned(a.rawValue.mul(b)); } /** * @notice Divides one `Unsigned` by an `Unsigned`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { // There are two caveats with this computation: // 1. Max value for the number dividend `a` represents is ~10^41, otherwise an intermediate value overflows. // 10^41 is stored internally as a uint256 10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 2 / 3 = 0.6 repeating, which // would round to 0.666666666666666667, but this computation produces the result 0.666666666666666666. return Unsigned(a.rawValue.mul(FP_SCALING_FACTOR).div(b.rawValue)); } /** * @notice Divides one `Unsigned` by an unscaled uint256, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return the quotient of `a` divided by `b`. */ function div(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.div(b)); } /** * @notice Divides one unscaled uint256 by an `Unsigned`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a uint256 numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(uint256 a, Unsigned memory b) internal pure returns (Unsigned memory) { return div(fromUnscaledUint(a), b); } /** * @notice Divides one `Unsigned` by an `Unsigned` and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function divCeil(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { uint256 aScaled = a.rawValue.mul(FP_SCALING_FACTOR); uint256 divFloor = aScaled.div(b.rawValue); uint256 mod = aScaled.mod(b.rawValue); if (mod != 0) { return Unsigned(divFloor.add(1)); } else { return Unsigned(divFloor); } } /** * @notice Divides one `Unsigned` by an unscaled uint256 and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return the quotient of `a` divided by `b`. */ function divCeil(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { // Because it is possible that a quotient gets truncated, we can't just call "Unsigned(a.rawValue.div(b))" // similarly to mulCeil with a uint256 as the second parameter. Therefore we need to convert b into an Unsigned. // This creates the possibility of overflow if b is very large. return divCeil(a, fromUnscaledUint(b)); } /** * @notice Raises an `Unsigned` to the power of an unscaled uint256, reverting on overflow. E.g., `b=2` squares `a`. * @dev This will "floor" the result. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return output is `a` to the power of `b`. */ function pow(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory output) { output = fromUnscaledUint(1); for (uint256 i = 0; i < b; i = i.add(1)) { output = mul(output, a); } } // ------------------------------------------------- SIGNED ------------------------------------------------------------- // Supports 18 decimals. E.g., 1e18 represents "1", 5e17 represents "0.5". // For signed values: // This can represent a value up (or down) to +-(2^255 - 1)/10^18 = ~10^58. 10^58 will be stored internally as int256 10^76. int256 private constant SFP_SCALING_FACTOR = 10**18; struct Signed { int256 rawValue; } function fromSigned(Signed memory a) internal pure returns (Unsigned memory) { require(a.rawValue >= 0, "Negative value provided"); return Unsigned(uint256(a.rawValue)); } function fromUnsigned(Unsigned memory a) internal pure returns (Signed memory) { require(a.rawValue <= uint256(type(int256).max), "Unsigned too large"); return Signed(int256(a.rawValue)); } /** * @notice Constructs a `Signed` from an unscaled int, e.g., `b=5` gets stored internally as `5**18`. * @param a int to convert into a FixedPoint.Signed. * @return the converted FixedPoint.Signed. */ function fromUnscaledInt(int256 a) internal pure returns (Signed memory) { return Signed(a.mul(SFP_SCALING_FACTOR)); } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint.Signed. * @param b a int256. * @return True if equal, or False. */ function isEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue == fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if equal, or False. */ function isEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue == b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a > b`, or False. */ function isGreaterThan(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue > b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a > b`, or False. */ function isGreaterThan(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue > fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a > b`, or False. */ function isGreaterThan(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue > b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue >= b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue >= fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue >= b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a < b`, or False. */ function isLessThan(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue < b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a < b`, or False. */ function isLessThan(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue < fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is less than `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a < b`, or False. */ function isLessThan(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue < b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue <= b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue <= fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue <= b.rawValue; } /** * @notice The minimum of `a` and `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the minimum of `a` and `b`. */ function min(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return a.rawValue < b.rawValue ? a : b; } /** * @notice The maximum of `a` and `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the maximum of `a` and `b`. */ function max(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return a.rawValue > b.rawValue ? a : b; } /** * @notice Adds two `Signed`s, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the sum of `a` and `b`. */ function add(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return Signed(a.rawValue.add(b.rawValue)); } /** * @notice Adds an `Signed` to an unscaled int, reverting on overflow. * @param a a FixedPoint.Signed. * @param b an int256. * @return the sum of `a` and `b`. */ function add(Signed memory a, int256 b) internal pure returns (Signed memory) { return add(a, fromUnscaledInt(b)); } /** * @notice Subtracts two `Signed`s, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the difference of `a` and `b`. */ function sub(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return Signed(a.rawValue.sub(b.rawValue)); } /** * @notice Subtracts an unscaled int256 from an `Signed`, reverting on overflow. * @param a a FixedPoint.Signed. * @param b an int256. * @return the difference of `a` and `b`. */ function sub(Signed memory a, int256 b) internal pure returns (Signed memory) { return sub(a, fromUnscaledInt(b)); } /** * @notice Subtracts an `Signed` from an unscaled int256, reverting on overflow. * @param a an int256. * @param b a FixedPoint.Signed. * @return the difference of `a` and `b`. */ function sub(int256 a, Signed memory b) internal pure returns (Signed memory) { return sub(fromUnscaledInt(a), b); } /** * @notice Multiplies two `Signed`s, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mul(Signed memory a, Signed memory b) internal pure returns (Signed memory) { // There are two caveats with this computation: // 1. Max output for the represented number is ~10^41, otherwise an intermediate value overflows. 10^41 is // stored internally as an int256 ~10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 1.4 * 2e-18 = 2.8e-18, which // would round to 3, but this computation produces the result 2. // No need to use SafeMath because SFP_SCALING_FACTOR != 0. return Signed(a.rawValue.mul(b.rawValue) / SFP_SCALING_FACTOR); } /** * @notice Multiplies an `Signed` and an unscaled int256, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint.Signed. * @param b an int256. * @return the product of `a` and `b`. */ function mul(Signed memory a, int256 b) internal pure returns (Signed memory) { return Signed(a.rawValue.mul(b)); } /** * @notice Multiplies two `Signed`s and "ceil's" the product, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mulAwayFromZero(Signed memory a, Signed memory b) internal pure returns (Signed memory) { int256 mulRaw = a.rawValue.mul(b.rawValue); int256 mulTowardsZero = mulRaw / SFP_SCALING_FACTOR; // Manual mod because SignedSafeMath doesn't support it. int256 mod = mulRaw % SFP_SCALING_FACTOR; if (mod != 0) { bool isResultPositive = isLessThan(a, 0) == isLessThan(b, 0); int256 valueToAdd = isResultPositive ? int256(1) : int256(-1); return Signed(mulTowardsZero.add(valueToAdd)); } else { return Signed(mulTowardsZero); } } /** * @notice Multiplies an `Signed` and an unscaled int256 and "ceil's" the product, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mulAwayFromZero(Signed memory a, int256 b) internal pure returns (Signed memory) { // Since b is an int, there is no risk of truncation and we can just mul it normally return Signed(a.rawValue.mul(b)); } /** * @notice Divides one `Signed` by an `Signed`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(Signed memory a, Signed memory b) internal pure returns (Signed memory) { // There are two caveats with this computation: // 1. Max value for the number dividend `a` represents is ~10^41, otherwise an intermediate value overflows. // 10^41 is stored internally as an int256 10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 2 / 3 = 0.6 repeating, which // would round to 0.666666666666666667, but this computation produces the result 0.666666666666666666. return Signed(a.rawValue.mul(SFP_SCALING_FACTOR).div(b.rawValue)); } /** * @notice Divides one `Signed` by an unscaled int256, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b an int256 denominator. * @return the quotient of `a` divided by `b`. */ function div(Signed memory a, int256 b) internal pure returns (Signed memory) { return Signed(a.rawValue.div(b)); } /** * @notice Divides one unscaled int256 by an `Signed`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a an int256 numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(int256 a, Signed memory b) internal pure returns (Signed memory) { return div(fromUnscaledInt(a), b); } /** * @notice Divides one `Signed` by an `Signed` and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function divAwayFromZero(Signed memory a, Signed memory b) internal pure returns (Signed memory) { int256 aScaled = a.rawValue.mul(SFP_SCALING_FACTOR); int256 divTowardsZero = aScaled.div(b.rawValue); // Manual mod because SignedSafeMath doesn't support it. int256 mod = aScaled % b.rawValue; if (mod != 0) { bool isResultPositive = isLessThan(a, 0) == isLessThan(b, 0); int256 valueToAdd = isResultPositive ? int256(1) : int256(-1); return Signed(divTowardsZero.add(valueToAdd)); } else { return Signed(divTowardsZero); } } /** * @notice Divides one `Signed` by an unscaled int256 and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b an int256 denominator. * @return the quotient of `a` divided by `b`. */ function divAwayFromZero(Signed memory a, int256 b) internal pure returns (Signed memory) { // Because it is possible that a quotient gets truncated, we can't just call "Signed(a.rawValue.div(b))" // similarly to mulCeil with an int256 as the second parameter. Therefore we need to convert b into an Signed. // This creates the possibility of overflow if b is very large. return divAwayFromZero(a, fromUnscaledInt(b)); } /** * @notice Raises an `Signed` to the power of an unscaled uint256, reverting on overflow. E.g., `b=2` squares `a`. * @dev This will "floor" the result. * @param a a FixedPoint.Signed. * @param b a uint256 (negative exponents are not allowed). * @return output is `a` to the power of `b`. */ function pow(Signed memory a, uint256 b) internal pure returns (Signed memory output) { output = fromUnscaledInt(1); for (uint256 i = 0; i < b; i = i.add(1)) { output = mul(output, a); } } }
// SPDX-License-Identifier: MIT // Taken from https://github.com/compound-finance/compound-protocol/blob/master/contracts/CTokenInterfaces.sol pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IERC20withDec.sol"; interface ICUSDCContract is IERC20withDec { /*** User Interface ***/ function mint(uint256 mintAmount) external returns (uint256); function redeem(uint256 redeemTokens) external returns (uint256); function redeemUnderlying(uint256 redeemAmount) external returns (uint256); function borrow(uint256 borrowAmount) external returns (uint256); function repayBorrow(uint256 repayAmount) external returns (uint256); function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256); function liquidateBorrow( address borrower, uint256 repayAmount, address cTokenCollateral ) external returns (uint256); function getAccountSnapshot(address account) external view returns ( uint256, uint256, uint256, uint256 ); function balanceOfUnderlying(address owner) external returns (uint256); function exchangeRateCurrent() external returns (uint256); /*** Admin Functions ***/ function _addReserves(uint256 addAmount) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract ICreditDesk { uint256 public totalWritedowns; uint256 public totalLoansOutstanding; function setUnderwriterGovernanceLimit(address underwriterAddress, uint256 limit) external virtual; function drawdown(address creditLineAddress, uint256 amount) external virtual; function pay(address creditLineAddress, uint256 amount) external virtual; function assessCreditLine(address creditLineAddress) external virtual; function applyPayment(address creditLineAddress, uint256 amount) external virtual; function getNextPaymentAmount(address creditLineAddress, uint256 asOfBLock) external view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface ICreditLine { function borrower() external view returns (address); function limit() external view returns (uint256); function interestApr() external view returns (uint256); function paymentPeriodInDays() external view returns (uint256); function termInDays() external view returns (uint256); function lateFeeApr() external view returns (uint256); // Accounting variables function balance() external view returns (uint256); function interestOwed() external view returns (uint256); function principalOwed() external view returns (uint256); function termEndTime() external view returns (uint256); function nextDueTime() external view returns (uint256); function interestAccruedAsOf() external view returns (uint256); function lastFullPaymentTime() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/IERC20.sol"; /* Only addition is the `decimals` function, which we need, and which both our Fidu and USDC use, along with most ERC20's. */ /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20withDec is IERC20 { /** * @dev Returns the number of decimals used for the token */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IERC20withDec.sol"; interface IFidu is IERC20withDec { function mintTo(address to, uint256 amount) external; function burnFrom(address to, uint256 amount) external; function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IGoldfinchConfig { function getNumber(uint256 index) external returns (uint256); function getAddress(uint256 index) external returns (address); function setAddress(uint256 index, address newAddress) external returns (address); function setNumber(uint256 index, uint256 newNumber) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IGoldfinchFactory { function createCreditLine() external returns (address); function createBorrower(address owner) external returns (address); function createPool( address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr ) external returns (address); function createMigratedPool( address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr ) external returns (address); function updateGoldfinchConfig() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract IPool { uint256 public sharePrice; function deposit(uint256 amount) external virtual; function withdraw(uint256 usdcAmount) external virtual; function withdrawInFidu(uint256 fiduAmount) external virtual; function collectInterestAndPrincipal( address from, uint256 interest, uint256 principal ) public virtual; function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool); function drawdown(address to, uint256 amount) public virtual returns (bool); function sweepToCompound() public virtual; function sweepFromCompound() public virtual; function distributeLosses(address creditlineAddress, int256 writedownDelta) external virtual; function assets() public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC721/IERC721.sol"; interface IPoolTokens is IERC721 { event TokenMinted( address indexed owner, address indexed pool, uint256 indexed tokenId, uint256 amount, uint256 tranche ); event TokenRedeemed( address indexed owner, address indexed pool, uint256 indexed tokenId, uint256 principalRedeemed, uint256 interestRedeemed, uint256 tranche ); event TokenBurned(address indexed owner, address indexed pool, uint256 indexed tokenId); struct TokenInfo { address pool; uint256 tranche; uint256 principalAmount; uint256 principalRedeemed; uint256 interestRedeemed; } struct MintParams { uint256 principalAmount; uint256 tranche; } function mint(MintParams calldata params, address to) external returns (uint256); function redeem( uint256 tokenId, uint256 principalRedeemed, uint256 interestRedeemed ) external; function burn(uint256 tokenId) external; function onPoolCreated(address newPool) external; function getTokenInfo(uint256 tokenId) external view returns (TokenInfo memory); function validPool(address sender) external view returns (bool); function isApprovedOrOwner(address spender, uint256 tokenId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ITranchedPool.sol"; abstract contract ISeniorPool { uint256 public sharePrice; uint256 public totalLoansOutstanding; uint256 public totalWritedowns; function deposit(uint256 amount) external virtual returns (uint256 depositShares); function depositWithPermit( uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual returns (uint256 depositShares); function withdraw(uint256 usdcAmount) external virtual returns (uint256 amount); function withdrawInFidu(uint256 fiduAmount) external virtual returns (uint256 amount); function sweepToCompound() public virtual; function sweepFromCompound() public virtual; function invest(ITranchedPool pool) public virtual; function estimateInvestment(ITranchedPool pool) public view virtual returns (uint256); function investJunior(ITranchedPool pool, uint256 amount) public virtual; function redeem(uint256 tokenId) public virtual; function writedown(uint256 tokenId) public virtual; function calculateWritedown(uint256 tokenId) public view virtual returns (uint256 writedownAmount); function assets() public view virtual returns (uint256); function getNumShares(uint256 amount) public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ISeniorPool.sol"; import "./ITranchedPool.sol"; abstract contract ISeniorPoolStrategy { function invest(ISeniorPool seniorPool, ITranchedPool pool) public view virtual returns (uint256 amount); function estimateInvestment(ISeniorPool seniorPool, ITranchedPool pool) public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IV2CreditLine.sol"; abstract contract ITranchedPool { IV2CreditLine public creditLine; uint256 public createdAt; enum Tranches {Reserved, Senior, Junior} struct TrancheInfo { uint256 id; uint256 principalDeposited; uint256 principalSharePrice; uint256 interestSharePrice; uint256 lockedUntil; } function initialize( address _config, address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr ) public virtual; function getTranche(uint256 tranche) external view virtual returns (TrancheInfo memory); function pay(uint256 amount) external virtual; function lockJuniorCapital() external virtual; function lockPool() external virtual; function drawdown(uint256 amount) external virtual; function deposit(uint256 tranche, uint256 amount) external virtual returns (uint256 tokenId); function assess() external virtual; function depositWithPermit( uint256 tranche, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual returns (uint256 tokenId); function availableToWithdraw(uint256 tokenId) external view virtual returns (uint256 interestRedeemable, uint256 principalRedeemable); function withdraw(uint256 tokenId, uint256 amount) external virtual returns (uint256 interestWithdrawn, uint256 principalWithdrawn); function withdrawMax(uint256 tokenId) external virtual returns (uint256 interestWithdrawn, uint256 principalWithdrawn); function withdrawMultiple(uint256[] calldata tokenIds, uint256[] calldata amounts) external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ICreditLine.sol"; abstract contract IV2CreditLine is ICreditLine { function principal() external view virtual returns (uint256); function totalInterestAccrued() external view virtual returns (uint256); function termStartTime() external view virtual returns (uint256); function setLimit(uint256 newAmount) external virtual; function setBalance(uint256 newBalance) external virtual; function setPrincipal(uint256 _principal) external virtual; function setTotalInterestAccrued(uint256 _interestAccrued) external virtual; function drawdown(uint256 amount) external virtual; function assess() external virtual returns ( uint256, uint256, uint256 ); function initialize( address _config, address owner, address _borrower, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr ) public virtual; function setTermEndTime(uint256 newTermEndTime) external virtual; function setNextDueTime(uint256 newNextDueTime) external virtual; function setInterestOwed(uint256 newInterestOwed) external virtual; function setPrincipalOwed(uint256 newPrincipalOwed) external virtual; function setInterestAccruedAsOf(uint256 newInterestAccruedAsOf) external virtual; function setWritedownAmount(uint256 newWritedownAmount) external virtual; function setLastFullPaymentTime(uint256 newLastFullPaymentTime) external virtual; function setLateFeeApr(uint256 newLateFeeApr) external virtual; function updateGoldfinchConfig() external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./CreditLine.sol"; import "../../interfaces/ICreditLine.sol"; import "../../external/FixedPoint.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/Math.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; /** * @title The Accountant * @notice Library for handling key financial calculations, such as interest and principal accrual. * @author Goldfinch */ library Accountant { using SafeMath for uint256; using FixedPoint for FixedPoint.Signed; using FixedPoint for FixedPoint.Unsigned; using FixedPoint for int256; using FixedPoint for uint256; // Scaling factor used by FixedPoint.sol. We need this to convert the fixed point raw values back to unscaled uint256 public constant FP_SCALING_FACTOR = 10**18; uint256 public constant INTEREST_DECIMALS = 1e18; uint256 public constant SECONDS_PER_DAY = 60 * 60 * 24; uint256 public constant SECONDS_PER_YEAR = (SECONDS_PER_DAY * 365); struct PaymentAllocation { uint256 interestPayment; uint256 principalPayment; uint256 additionalBalancePayment; } function calculateInterestAndPrincipalAccrued( CreditLine cl, uint256 timestamp, uint256 lateFeeGracePeriod ) public view returns (uint256, uint256) { uint256 balance = cl.balance(); // gas optimization uint256 interestAccrued = calculateInterestAccrued(cl, balance, timestamp, lateFeeGracePeriod); uint256 principalAccrued = calculatePrincipalAccrued(cl, balance, timestamp); return (interestAccrued, principalAccrued); } function calculateInterestAndPrincipalAccruedOverPeriod( CreditLine cl, uint256 balance, uint256 startTime, uint256 endTime, uint256 lateFeeGracePeriod ) public view returns (uint256, uint256) { uint256 interestAccrued = calculateInterestAccruedOverPeriod(cl, balance, startTime, endTime, lateFeeGracePeriod); uint256 principalAccrued = calculatePrincipalAccrued(cl, balance, endTime); return (interestAccrued, principalAccrued); } function calculatePrincipalAccrued( ICreditLine cl, uint256 balance, uint256 timestamp ) public view returns (uint256) { // If we've already accrued principal as of the term end time, then don't accrue more principal uint256 termEndTime = cl.termEndTime(); if (cl.interestAccruedAsOf() >= termEndTime) { return 0; } if (timestamp >= termEndTime) { return balance; } else { return 0; } } function calculateWritedownFor( ICreditLine cl, uint256 timestamp, uint256 gracePeriodInDays, uint256 maxDaysLate ) public view returns (uint256, uint256) { return calculateWritedownForPrincipal(cl, cl.balance(), timestamp, gracePeriodInDays, maxDaysLate); } function calculateWritedownForPrincipal( ICreditLine cl, uint256 principal, uint256 timestamp, uint256 gracePeriodInDays, uint256 maxDaysLate ) public view returns (uint256, uint256) { FixedPoint.Unsigned memory amountOwedPerDay = calculateAmountOwedForOneDay(cl); if (amountOwedPerDay.isEqual(0)) { return (0, 0); } FixedPoint.Unsigned memory fpGracePeriod = FixedPoint.fromUnscaledUint(gracePeriodInDays); FixedPoint.Unsigned memory daysLate; // Excel math: =min(1,max(0,periods_late_in_days-graceperiod_in_days)/MAX_ALLOWED_DAYS_LATE) grace_period = 30, // Before the term end date, we use the interestOwed to calculate the periods late. However, after the loan term // has ended, since the interest is a much smaller fraction of the principal, we cannot reliably use interest to // calculate the periods later. uint256 totalOwed = cl.interestOwed().add(cl.principalOwed()); daysLate = FixedPoint.fromUnscaledUint(totalOwed).div(amountOwedPerDay); if (timestamp > cl.termEndTime()) { uint256 secondsLate = timestamp.sub(cl.termEndTime()); daysLate = daysLate.add(FixedPoint.fromUnscaledUint(secondsLate).div(SECONDS_PER_DAY)); } FixedPoint.Unsigned memory maxLate = FixedPoint.fromUnscaledUint(maxDaysLate); FixedPoint.Unsigned memory writedownPercent; if (daysLate.isLessThanOrEqual(fpGracePeriod)) { // Within the grace period, we don't have to write down, so assume 0% writedownPercent = FixedPoint.fromUnscaledUint(0); } else { writedownPercent = FixedPoint.min(FixedPoint.fromUnscaledUint(1), (daysLate.sub(fpGracePeriod)).div(maxLate)); } FixedPoint.Unsigned memory writedownAmount = writedownPercent.mul(principal).div(FP_SCALING_FACTOR); // This will return a number between 0-100 representing the write down percent with no decimals uint256 unscaledWritedownPercent = writedownPercent.mul(100).div(FP_SCALING_FACTOR).rawValue; return (unscaledWritedownPercent, writedownAmount.rawValue); } function calculateAmountOwedForOneDay(ICreditLine cl) public view returns (FixedPoint.Unsigned memory interestOwed) { // Determine theoretical interestOwed for one full day uint256 totalInterestPerYear = cl.balance().mul(cl.interestApr()).div(INTEREST_DECIMALS); interestOwed = FixedPoint.fromUnscaledUint(totalInterestPerYear).div(365); return interestOwed; } function calculateInterestAccrued( CreditLine cl, uint256 balance, uint256 timestamp, uint256 lateFeeGracePeriodInDays ) public view returns (uint256) { // We use Math.min here to prevent integer overflow (ie. go negative) when calculating // numSecondsElapsed. Typically this shouldn't be possible, because // the interestAccruedAsOf couldn't be *after* the current timestamp. However, when assessing // we allow this function to be called with a past timestamp, which raises the possibility // of overflow. // This use of min should not generate incorrect interest calculations, since // this function's purpose is just to normalize balances, and handing in a past timestamp // will necessarily return zero interest accrued (because zero elapsed time), which is correct. uint256 startTime = Math.min(timestamp, cl.interestAccruedAsOf()); return calculateInterestAccruedOverPeriod(cl, balance, startTime, timestamp, lateFeeGracePeriodInDays); } function calculateInterestAccruedOverPeriod( CreditLine cl, uint256 balance, uint256 startTime, uint256 endTime, uint256 lateFeeGracePeriodInDays ) public view returns (uint256 interestOwed) { uint256 secondsElapsed = endTime.sub(startTime); uint256 totalInterestPerYear = balance.mul(cl.interestApr()).div(INTEREST_DECIMALS); interestOwed = totalInterestPerYear.mul(secondsElapsed).div(SECONDS_PER_YEAR); if (lateFeeApplicable(cl, endTime, lateFeeGracePeriodInDays)) { uint256 lateFeeInterestPerYear = balance.mul(cl.lateFeeApr()).div(INTEREST_DECIMALS); uint256 additionalLateFeeInterest = lateFeeInterestPerYear.mul(secondsElapsed).div(SECONDS_PER_YEAR); interestOwed = interestOwed.add(additionalLateFeeInterest); } return interestOwed; } function lateFeeApplicable( CreditLine cl, uint256 timestamp, uint256 gracePeriodInDays ) public view returns (bool) { uint256 secondsLate = timestamp.sub(cl.lastFullPaymentTime()); return cl.lateFeeApr() > 0 && secondsLate > gracePeriodInDays.mul(SECONDS_PER_DAY); } function allocatePayment( uint256 paymentAmount, uint256 balance, uint256 interestOwed, uint256 principalOwed ) public pure returns (PaymentAllocation memory) { uint256 paymentRemaining = paymentAmount; uint256 interestPayment = Math.min(interestOwed, paymentRemaining); paymentRemaining = paymentRemaining.sub(interestPayment); uint256 principalPayment = Math.min(principalOwed, paymentRemaining); paymentRemaining = paymentRemaining.sub(principalPayment); uint256 balanceRemaining = balance.sub(principalPayment); uint256 additionalBalancePayment = Math.min(paymentRemaining, balanceRemaining); return PaymentAllocation({ interestPayment: interestPayment, principalPayment: principalPayment, additionalBalancePayment: additionalBalancePayment }); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/Initializable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "./PauserPausable.sol"; /** * @title BaseUpgradeablePausable contract * @notice This is our Base contract that most other contracts inherit from. It includes many standard * useful abilities like ugpradeability, pausability, access control, and re-entrancy guards. * @author Goldfinch */ contract BaseUpgradeablePausable is Initializable, AccessControlUpgradeSafe, PauserPausable, ReentrancyGuardUpgradeSafe { bytes32 public constant OWNER_ROLE = keccak256("OWNER_ROLE"); using SafeMath for uint256; // Pre-reserving a few slots in the base contract in case we need to add things in the future. // This does not actually take up gas cost or storage cost, but it does reserve the storage slots. // See OpenZeppelin's use of this pattern here: // https://github.com/OpenZeppelin/openzeppelin-contracts-ethereum-package/blob/master/contracts/GSN/Context.sol#L37 uint256[50] private __gap1; uint256[50] private __gap2; uint256[50] private __gap3; uint256[50] private __gap4; // solhint-disable-next-line func-name-mixedcase function __BaseUpgradeablePausable__init(address owner) public initializer { require(owner != address(0), "Owner cannot be the zero address"); __AccessControl_init_unchained(); __Pausable_init_unchained(); __ReentrancyGuard_init_unchained(); _setupRole(OWNER_ROLE, owner); _setupRole(PAUSER_ROLE, owner); _setRoleAdmin(PAUSER_ROLE, OWNER_ROLE); _setRoleAdmin(OWNER_ROLE, OWNER_ROLE); } function isAdmin() public view returns (bool) { return hasRole(OWNER_ROLE, _msgSender()); } modifier onlyAdmin() { require(isAdmin(), "Must have admin role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./GoldfinchConfig.sol"; import "../../interfaces/IPool.sol"; import "../../interfaces/IFidu.sol"; import "../../interfaces/ISeniorPool.sol"; import "../../interfaces/ISeniorPoolStrategy.sol"; import "../../interfaces/ICreditDesk.sol"; import "../../interfaces/IERC20withDec.sol"; import "../../interfaces/ICUSDCContract.sol"; import "../../interfaces/IPoolTokens.sol"; import "../../interfaces/IGoldfinchFactory.sol"; /** * @title ConfigHelper * @notice A convenience library for getting easy access to other contracts and constants within the * protocol, through the use of the GoldfinchConfig contract * @author Goldfinch */ library ConfigHelper { function getPool(GoldfinchConfig config) internal view returns (IPool) { return IPool(poolAddress(config)); } function getSeniorPool(GoldfinchConfig config) internal view returns (ISeniorPool) { return ISeniorPool(seniorPoolAddress(config)); } function getSeniorPoolStrategy(GoldfinchConfig config) internal view returns (ISeniorPoolStrategy) { return ISeniorPoolStrategy(seniorPoolStrategyAddress(config)); } function getUSDC(GoldfinchConfig config) internal view returns (IERC20withDec) { return IERC20withDec(usdcAddress(config)); } function getCreditDesk(GoldfinchConfig config) internal view returns (ICreditDesk) { return ICreditDesk(creditDeskAddress(config)); } function getFidu(GoldfinchConfig config) internal view returns (IFidu) { return IFidu(fiduAddress(config)); } function getCUSDCContract(GoldfinchConfig config) internal view returns (ICUSDCContract) { return ICUSDCContract(cusdcContractAddress(config)); } function getPoolTokens(GoldfinchConfig config) internal view returns (IPoolTokens) { return IPoolTokens(poolTokensAddress(config)); } function getGoldfinchFactory(GoldfinchConfig config) internal view returns (IGoldfinchFactory) { return IGoldfinchFactory(goldfinchFactoryAddress(config)); } function oneInchAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.OneInch)); } function creditLineImplementationAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CreditLineImplementation)); } function trustedForwarderAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TrustedForwarder)); } function configAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GoldfinchConfig)); } function poolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Pool)); } function poolTokensAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.PoolTokens)); } function seniorPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.SeniorPool)); } function seniorPoolStrategyAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.SeniorPoolStrategy)); } function creditDeskAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CreditDesk)); } function goldfinchFactoryAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GoldfinchFactory)); } function fiduAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Fidu)); } function cusdcContractAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CUSDCContract)); } function usdcAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.USDC)); } function tranchedPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TranchedPoolImplementation)); } function migratedTranchedPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.MigratedTranchedPoolImplementation)); } function reserveAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TreasuryReserve)); } function protocolAdminAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.ProtocolAdmin)); } function borrowerImplementationAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.BorrowerImplementation)); } function getReserveDenominator(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.ReserveDenominator)); } function getWithdrawFeeDenominator(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.WithdrawFeeDenominator)); } function getLatenessGracePeriodInDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LatenessGracePeriodInDays)); } function getLatenessMaxDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LatenessMaxDays)); } function getDrawdownPeriodInSeconds(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.DrawdownPeriodInSeconds)); } function getTransferRestrictionPeriodInDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.TransferRestrictionPeriodInDays)); } function getLeverageRatio(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LeverageRatio)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; /** * @title ConfigOptions * @notice A central place for enumerating the configurable options of our GoldfinchConfig contract * @author Goldfinch */ library ConfigOptions { // NEVER EVER CHANGE THE ORDER OF THESE! // You can rename or append. But NEVER change the order. enum Numbers { TransactionLimit, TotalFundsLimit, MaxUnderwriterLimit, ReserveDenominator, WithdrawFeeDenominator, LatenessGracePeriodInDays, LatenessMaxDays, DrawdownPeriodInSeconds, TransferRestrictionPeriodInDays, LeverageRatio } enum Addresses { Pool, CreditLineImplementation, GoldfinchFactory, CreditDesk, Fidu, USDC, TreasuryReserve, ProtocolAdmin, OneInch, TrustedForwarder, CUSDCContract, GoldfinchConfig, PoolTokens, TranchedPoolImplementation, SeniorPool, SeniorPoolStrategy, MigratedTranchedPoolImplementation, BorrowerImplementation } function getNumberName(uint256 number) public pure returns (string memory) { Numbers numberName = Numbers(number); if (Numbers.TransactionLimit == numberName) { return "TransactionLimit"; } if (Numbers.TotalFundsLimit == numberName) { return "TotalFundsLimit"; } if (Numbers.MaxUnderwriterLimit == numberName) { return "MaxUnderwriterLimit"; } if (Numbers.ReserveDenominator == numberName) { return "ReserveDenominator"; } if (Numbers.WithdrawFeeDenominator == numberName) { return "WithdrawFeeDenominator"; } if (Numbers.LatenessGracePeriodInDays == numberName) { return "LatenessGracePeriodInDays"; } if (Numbers.LatenessMaxDays == numberName) { return "LatenessMaxDays"; } if (Numbers.DrawdownPeriodInSeconds == numberName) { return "DrawdownPeriodInSeconds"; } if (Numbers.TransferRestrictionPeriodInDays == numberName) { return "TransferRestrictionPeriodInDays"; } if (Numbers.LeverageRatio == numberName) { return "LeverageRatio"; } revert("Unknown value passed to getNumberName"); } function getAddressName(uint256 addressKey) public pure returns (string memory) { Addresses addressName = Addresses(addressKey); if (Addresses.Pool == addressName) { return "Pool"; } if (Addresses.CreditLineImplementation == addressName) { return "CreditLineImplementation"; } if (Addresses.GoldfinchFactory == addressName) { return "GoldfinchFactory"; } if (Addresses.CreditDesk == addressName) { return "CreditDesk"; } if (Addresses.Fidu == addressName) { return "Fidu"; } if (Addresses.USDC == addressName) { return "USDC"; } if (Addresses.TreasuryReserve == addressName) { return "TreasuryReserve"; } if (Addresses.ProtocolAdmin == addressName) { return "ProtocolAdmin"; } if (Addresses.OneInch == addressName) { return "OneInch"; } if (Addresses.TrustedForwarder == addressName) { return "TrustedForwarder"; } if (Addresses.CUSDCContract == addressName) { return "CUSDCContract"; } if (Addresses.PoolTokens == addressName) { return "PoolTokens"; } if (Addresses.TranchedPoolImplementation == addressName) { return "TranchedPoolImplementation"; } if (Addresses.SeniorPool == addressName) { return "SeniorPool"; } if (Addresses.SeniorPoolStrategy == addressName) { return "SeniorPoolStrategy"; } if (Addresses.MigratedTranchedPoolImplementation == addressName) { return "MigratedTranchedPoolImplementation"; } if (Addresses.BorrowerImplementation == addressName) { return "BorrowerImplementation"; } revert("Unknown value passed to getAddressName"); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./BaseUpgradeablePausable.sol"; import "../../interfaces/IGoldfinchConfig.sol"; import "./ConfigOptions.sol"; /** * @title GoldfinchConfig * @notice This contract stores mappings of useful "protocol config state", giving a central place * for all other contracts to access it. For example, the TransactionLimit, or the PoolAddress. These config vars * are enumerated in the `ConfigOptions` library, and can only be changed by admins of the protocol. * Note: While this inherits from BaseUpgradeablePausable, it is not deployed as an upgradeable contract (this * is mostly to save gas costs of having each call go through a proxy) * @author Goldfinch */ contract GoldfinchConfig is BaseUpgradeablePausable { bytes32 public constant GO_LISTER_ROLE = keccak256("GO_LISTER_ROLE"); mapping(uint256 => address) public addresses; mapping(uint256 => uint256) public numbers; mapping(address => bool) public goList; event AddressUpdated(address owner, uint256 index, address oldValue, address newValue); event NumberUpdated(address owner, uint256 index, uint256 oldValue, uint256 newValue); event GoListed(address indexed member); event NoListed(address indexed member); bool public valuesInitialized; function initialize(address owner) public initializer { require(owner != address(0), "Owner address cannot be empty"); __BaseUpgradeablePausable__init(owner); _setupRole(GO_LISTER_ROLE, owner); _setRoleAdmin(GO_LISTER_ROLE, OWNER_ROLE); } function setAddress(uint256 addressIndex, address newAddress) public onlyAdmin { require(addresses[addressIndex] == address(0), "Address has already been initialized"); emit AddressUpdated(msg.sender, addressIndex, addresses[addressIndex], newAddress); addresses[addressIndex] = newAddress; } function setNumber(uint256 index, uint256 newNumber) public onlyAdmin { emit NumberUpdated(msg.sender, index, numbers[index], newNumber); numbers[index] = newNumber; } function setTreasuryReserve(address newTreasuryReserve) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.TreasuryReserve); emit AddressUpdated(msg.sender, key, addresses[key], newTreasuryReserve); addresses[key] = newTreasuryReserve; } function setSeniorPoolStrategy(address newStrategy) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.SeniorPoolStrategy); emit AddressUpdated(msg.sender, key, addresses[key], newStrategy); addresses[key] = newStrategy; } function setCreditLineImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.CreditLineImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setBorrowerImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.BorrowerImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setGoldfinchConfig(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.GoldfinchConfig); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function initializeFromOtherConfig(address _initialConfig) public onlyAdmin { require(!valuesInitialized, "Already initialized values"); IGoldfinchConfig initialConfig = IGoldfinchConfig(_initialConfig); for (uint256 i = 0; i < 10; i++) { setNumber(i, initialConfig.getNumber(i)); } for (uint256 i = 0; i < 11; i++) { if (getAddress(i) == address(0)) { setAddress(i, initialConfig.getAddress(i)); } } valuesInitialized = true; } /** * @dev Adds a user to go-list * @param _member address to add to go-list */ function addToGoList(address _member) public onlyGoListerRole { goList[_member] = true; emit GoListed(_member); } /** * @dev removes a user from go-list * @param _member address to remove from go-list */ function removeFromGoList(address _member) public onlyGoListerRole { goList[_member] = false; emit NoListed(_member); } /** * @dev adds many users to go-list at once * @param _members addresses to ad to go-list */ function bulkAddToGoList(address[] calldata _members) external onlyGoListerRole { for (uint256 i = 0; i < _members.length; i++) { addToGoList(_members[i]); } } /** * @dev removes many users from go-list at once * @param _members addresses to remove from go-list */ function bulkRemoveFromGoList(address[] calldata _members) external onlyGoListerRole { for (uint256 i = 0; i < _members.length; i++) { removeFromGoList(_members[i]); } } /* Using custom getters in case we want to change underlying implementation later, or add checks or validations later on. */ function getAddress(uint256 index) public view returns (address) { return addresses[index]; } function getNumber(uint256 index) public view returns (uint256) { return numbers[index]; } modifier onlyGoListerRole() { require(hasRole(GO_LISTER_ROLE, _msgSender()), "Must have go-lister role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/utils/Pausable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; /** * @title PauserPausable * @notice Inheriting from OpenZeppelin's Pausable contract, this does small * augmentations to make it work with a PAUSER_ROLE, leveraging the AccessControl contract. * It is meant to be inherited. * @author Goldfinch */ contract PauserPausable is AccessControlUpgradeSafe, PausableUpgradeSafe { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); // solhint-disable-next-line func-name-mixedcase function __PauserPausable__init() public initializer { __Pausable_init_unchained(); } /** * @dev Pauses all functions guarded by Pause * * See {Pausable-_pause}. * * Requirements: * * - the caller must have the PAUSER_ROLE. */ function pause() public onlyPauserRole { _pause(); } /** * @dev Unpauses the contract * * See {Pausable-_unpause}. * * Requirements: * * - the caller must have the Pauser role */ function unpause() public onlyPauserRole { _unpause(); } modifier onlyPauserRole() { require(hasRole(PAUSER_ROLE, _msgSender()), "Must have pauser role to perform this action"); _; } }
{ "evmVersion": "istanbul", "libraries": { "contracts/protocol/core/CreditLine.sol:CreditLine": { "Accountant": "0x3483Db484B213786990185Eb6347eC49904D0Bfa" } }, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } } }
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OWNER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SECONDS_PER_DAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"__BaseUpgradeablePausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"__PauserPausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"assess","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"balance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"borrower","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"contract GoldfinchConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"drawdown","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_config","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_limit","type":"uint256"},{"internalType":"uint256","name":"_interestApr","type":"uint256"},{"internalType":"uint256","name":"_paymentPeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_termInDays","type":"uint256"},{"internalType":"uint256","name":"_lateFeeApr","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"interestAccruedAsOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"interestApr","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"interestOwed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isAdmin","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastFullPaymentTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lateFeeApr","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"limit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextDueTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paymentPeriodInDays","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"principalOwed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newBalance","type":"uint256"}],"name":"setBalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newInterestAccruedAsOf","type":"uint256"}],"name":"setInterestAccruedAsOf","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newInterestOwed","type":"uint256"}],"name":"setInterestOwed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newLastFullPaymentTime","type":"uint256"}],"name":"setLastFullPaymentTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newLateFeeApr","type":"uint256"}],"name":"setLateFeeApr","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"}],"name":"setLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newNextDueTime","type":"uint256"}],"name":"setNextDueTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPrincipalOwed","type":"uint256"}],"name":"setPrincipalOwed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newTermEndTime","type":"uint256"}],"name":"setTermEndTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_totalInterestAccrued","type":"uint256"}],"name":"setTotalInterestAccrued","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"termEndTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"termInDays","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"termStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalInterestAccrued","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updateGoldfinchConfig","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.