Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 25 internal transactions (View All)
Advanced mode:
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
BondFactory
Compiler Version
v0.8.3+commit.8d00100c
Optimization Enabled:
Yes with 999999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
pragma solidity 0.8.3; import "@openzeppelin/contracts/proxy/Clones.sol"; import "@openzeppelin/contracts/utils/Context.sol"; import "./interfaces/IBondFactory.sol"; import "./BondController.sol"; /** * @dev Factory for BondController minimal proxy contracts */ contract BondFactory is IBondFactory, Context { bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; address public immutable target; address public immutable trancheFactory; uint256 public factoryNonce; constructor(address _target, address _trancheFactory) { target = _target; trancheFactory = _trancheFactory; factoryNonce = 0; } /** * @dev Deploys a minimal proxy instance for a new bond with the given parameters. * @param _collateralToken The address of the ERC20 token that the bond will use as collateral * @param trancheRatios the ratios that the bond will use to generate tranche tokens * @param maturityDate The unix timestamp in seconds at which the bond is maturable * @return The address of the newly created bond */ function createBond( address _collateralToken, uint256[] memory trancheRatios, uint256 maturityDate ) external override returns (address) { return _createBond(_collateralToken, trancheRatios, maturityDate, 0); } /** * @dev Deploys a minimal proxy instance for a new bond with the given parameters. * @param _collateralToken The address of the ERC20 token that the bond will use as collateral * @param trancheRatios the ratios that the bond will use to generate tranche tokens * @param maturityDate The unix timestamp in seconds at which the bond is maturable * @param depositLimit The maximum amount of collateral that can be deposited into the bond * @return The address of the newly created bond */ function createBondWithDepositLimit( address _collateralToken, uint256[] memory trancheRatios, uint256 maturityDate, uint256 depositLimit ) external returns (address) { return _createBond(_collateralToken, trancheRatios, maturityDate, depositLimit); } /** * @dev Deploys a minimal proxy instance for a new bond with the given parameters. * @param _collateralToken The address of the ERC20 token that the bond will use as collateral * @param trancheRatios the ratios that the bond will use to generate tranche tokens * @param maturityDate The unix timestamp in seconds at which the bond is maturable * @param depositLimit The maximum amount of collateral that can be deposited into the bond * @return The address of the newly created bond */ function _createBond( address _collateralToken, uint256[] memory trancheRatios, uint256 maturityDate, uint256 depositLimit ) internal returns (address) { bytes32 salt = keccak256(abi.encode(_msgSender(), factoryNonce)); factoryNonce = factoryNonce + 1; address clone = Clones.cloneDeterministic(target, salt); BondController(clone).init( trancheFactory, _collateralToken, _msgSender(), trancheRatios, maturityDate, depositLimit ); emit BondCreated(_msgSender(), clone); return clone; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/Clones.sol) pragma solidity ^0.8.0; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. * * _Available since v3.4._ */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(0, 0x09, 0x37) } require(instance != address(0), "ERC1167: create failed"); } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(0, 0x09, 0x37, salt) } require(instance != address(0), "ERC1167: create2 failed"); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := keccak256(add(ptr, 0x43), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress(address implementation, bytes32 salt) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
pragma solidity ^0.8.3; /** * @dev Factory for BondController minimal proxy contracts */ interface IBondFactory { event BondCreated(address creator, address newBondAddress); /** * @dev Deploys a minimal proxy instance for a new bond with the given parameters. */ function createBond( address _collateralToken, uint256[] memory trancheRatios, uint256 maturityDate ) external returns (address); }
pragma solidity 0.8.3; import "@openzeppelin/contracts/utils/math/Math.sol"; import "@openzeppelin/contracts/utils/Context.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@uniswap/lib/contracts/libraries/TransferHelper.sol"; import "./interfaces/IBondController.sol"; import "./interfaces/ITrancheFactory.sol"; import "./interfaces/ITranche.sol"; import "./interfaces/IRebasingERC20.sol"; /** * @dev Controller for a ButtonTranche bond * * Invariants: * - `totalDebt` should always equal the sum of all tranche tokens' `totalSupply()` */ contract BondController is IBondController, OwnableUpgradeable { uint256 private constant TRANCHE_RATIO_GRANULARITY = 1000; // One tranche for A-Z uint256 private constant MAX_TRANCHE_COUNT = 26; // Denominator for basis points. Used to calculate fees uint256 private constant BPS = 10_000; // Maximum fee in terms of basis points uint256 private constant MAX_FEE_BPS = 50; // to avoid precision loss and other weird math from a small total debt // we require the debt to be at least MINIMUM_VALID_DEBT if any uint256 private constant MINIMUM_VALID_DEBT = 10e9; address public override collateralToken; TrancheData[] public override tranches; uint256 public override trancheCount; mapping(address => bool) public trancheTokenAddresses; uint256 public override creationDate; uint256 public override maturityDate; bool public override isMature; uint256 public override totalDebt; uint256 public lastScaledCollateralBalance; // Maximum amount of collateral that can be deposited into this bond // Used as a guardrail for initial launch. // If set to 0, no deposit limit will be enforced uint256 public depositLimit; // Fee taken on deposit in basis points. Can be set by the contract owner uint256 public override feeBps; /** * @dev Constructor for Tranche ERC20 token * @param _trancheFactory The address of the tranche factory * @param _collateralToken The address of the ERC20 collateral token * @param _admin The address of the initial admin for this contract * @param trancheRatios The tranche ratios for this bond * @param _maturityDate The date timestamp in seconds at which this bond matures * @param _depositLimit The maximum amount of collateral that can be deposited. 0 if no limit */ function init( address _trancheFactory, address _collateralToken, address _admin, uint256[] memory trancheRatios, uint256 _maturityDate, uint256 _depositLimit ) external initializer { require(_trancheFactory != address(0), "BondController: invalid trancheFactory address"); require(_collateralToken != address(0), "BondController: invalid collateralToken address"); require(_admin != address(0), "BondController: invalid admin address"); require(trancheRatios.length <= MAX_TRANCHE_COUNT, "BondController: invalid tranche count"); __Ownable_init(); transferOwnership(_admin); trancheCount = trancheRatios.length; collateralToken = _collateralToken; string memory collateralSymbol = IERC20Metadata(collateralToken).symbol(); uint256 totalRatio; for (uint256 i = 0; i < trancheRatios.length; i++) { uint256 ratio = trancheRatios[i]; require(ratio <= TRANCHE_RATIO_GRANULARITY, "BondController: Invalid tranche ratio"); totalRatio += ratio; address trancheTokenAddress = ITrancheFactory(_trancheFactory).createTranche( getTrancheName(collateralSymbol, i, trancheRatios.length), getTrancheSymbol(collateralSymbol, i, trancheRatios.length), _collateralToken ); tranches.push(TrancheData(ITranche(trancheTokenAddress), ratio)); trancheTokenAddresses[trancheTokenAddress] = true; } require(totalRatio == TRANCHE_RATIO_GRANULARITY, "BondController: Invalid tranche ratios"); require(_maturityDate > block.timestamp, "BondController: Invalid maturity date"); creationDate = block.timestamp; maturityDate = _maturityDate; depositLimit = _depositLimit; } /** * @dev Skims extraneous collateral that was incorrectly sent to the contract */ modifier onSkim() { uint256 scaledCollateralBalance = IRebasingERC20(collateralToken).scaledBalanceOf(address(this)); // If there is extraneous collateral, transfer to the owner if (scaledCollateralBalance > lastScaledCollateralBalance) { uint256 _collateralBalance = IERC20(collateralToken).balanceOf(address(this)); uint256 virtualCollateralBalance = Math.mulDiv( lastScaledCollateralBalance, _collateralBalance, scaledCollateralBalance ); TransferHelper.safeTransfer(collateralToken, owner(), _collateralBalance - virtualCollateralBalance); } _; // Update the lastScaledCollateralBalance after the function call lastScaledCollateralBalance = IRebasingERC20(collateralToken).scaledBalanceOf(address(this)); } /** * @inheritdoc IBondController */ function deposit(uint256 amount) external override onSkim { require(amount > 0, "BondController: invalid amount"); require(!isMature, "BondController: Already mature"); uint256 _collateralBalance = IERC20(collateralToken).balanceOf(address(this)); require(depositLimit == 0 || _collateralBalance + amount <= depositLimit, "BondController: Deposit limit"); TrancheData[] memory _tranches = tranches; uint256 newDebt; uint256[] memory trancheValues = new uint256[](trancheCount); for (uint256 i = 0; i < _tranches.length; i++) { // NOTE: solidity 0.8 checks for over/underflow natively so no need for SafeMath uint256 trancheValue = (amount * _tranches[i].ratio) / TRANCHE_RATIO_GRANULARITY; // if there is any collateral, we should scale by the debt:collateral ratio // note: if totalDebt == 0 then we're minting for the first time // so shouldn't scale even if there is some collateral mistakenly sent in if (_collateralBalance > 0 && totalDebt > 0) { trancheValue = Math.mulDiv(trancheValue, totalDebt, _collateralBalance); } newDebt += trancheValue; trancheValues[i] = trancheValue; } totalDebt += newDebt; TransferHelper.safeTransferFrom(collateralToken, _msgSender(), address(this), amount); // saving feeBps in memory to minimize sloads uint256 _feeBps = feeBps; for (uint256 i = 0; i < trancheValues.length; i++) { uint256 trancheValue = trancheValues[i]; // fee tranche tokens are minted and held by the contract // upon maturity, they are redeemed and underlying collateral are sent to the owner uint256 fee = (trancheValue * _feeBps) / BPS; if (fee > 0) { _tranches[i].token.mint(address(this), fee); } _tranches[i].token.mint(_msgSender(), trancheValue - fee); } emit Deposit(_msgSender(), amount, _feeBps); _enforceTotalDebt(); } /** * @inheritdoc IBondController */ function mature() external override onSkim { require(!isMature, "BondController: Already mature"); require(owner() == _msgSender() || maturityDate < block.timestamp, "BondController: Invalid call to mature"); isMature = true; TrancheData[] memory _tranches = tranches; uint256 _collateralBalance = IERC20(collateralToken).balanceOf(address(this)); // Go through all tranches A-Y (not Z) delivering collateral if possible for (uint256 i = 0; i < _tranches.length - 1 && _collateralBalance > 0; i++) { ITranche _tranche = _tranches[i].token; // pay out the entire tranche token's owed collateral (equal to the supply of tranche tokens) // if there is not enough collateral to pay it out, pay as much as we have uint256 amount = Math.min(_tranche.totalSupply(), _collateralBalance); _collateralBalance -= amount; TransferHelper.safeTransfer(collateralToken, address(_tranche), amount); // redeem fees, sending output tokens to owner _tranche.redeem(address(this), owner(), IERC20(_tranche).balanceOf(address(this))); } // Transfer any remaining collaeral to the Z tranche if (_collateralBalance > 0) { ITranche _tranche = _tranches[_tranches.length - 1].token; TransferHelper.safeTransfer(collateralToken, address(_tranche), _collateralBalance); _tranche.redeem(address(this), owner(), IERC20(_tranche).balanceOf(address(this))); } emit Mature(_msgSender()); } /** * @inheritdoc IBondController */ function redeemMature(address tranche, uint256 amount) external override { require(isMature, "BondController: Bond is not mature"); require(trancheTokenAddresses[tranche], "BondController: Invalid tranche address"); ITranche(tranche).redeem(_msgSender(), _msgSender(), amount); totalDebt -= amount; emit RedeemMature(_msgSender(), tranche, amount); } /** * @inheritdoc IBondController */ function redeem(uint256[] memory amounts) external override onSkim { require(!isMature, "BondController: Bond is already mature"); TrancheData[] memory _tranches = tranches; require(amounts.length == _tranches.length, "BondController: Invalid redeem amounts"); uint256 total; for (uint256 i = 0; i < amounts.length; i++) { total += amounts[i]; } for (uint256 i = 0; i < amounts.length; i++) { require( (amounts[i] * TRANCHE_RATIO_GRANULARITY) / total == _tranches[i].ratio, "BondController: Invalid redemption ratio" ); _tranches[i].token.burn(_msgSender(), amounts[i]); } uint256 _collateralBalance = IERC20(collateralToken).balanceOf(address(this)); // return as a proportion of the total debt redeemed uint256 returnAmount = Math.mulDiv(total, _collateralBalance, totalDebt); totalDebt -= total; TransferHelper.safeTransfer(collateralToken, _msgSender(), returnAmount); emit Redeem(_msgSender(), amounts); _enforceTotalDebt(); } /** * @inheritdoc IBondController */ function setFee(uint256 newFeeBps) external override onlyOwner { require(!isMature, "BondController: Invalid call to setFee"); require(newFeeBps <= MAX_FEE_BPS, "BondController: New fee too high"); feeBps = newFeeBps; emit FeeUpdate(newFeeBps); } /** * @dev Get the string name for a tranche * @param collateralSymbol the symbol of the collateral token * @param index the tranche index * @param _trancheCount the total number of tranches * @return the string name of the tranche */ function getTrancheName( string memory collateralSymbol, uint256 index, uint256 _trancheCount ) internal pure returns (string memory) { return string(abi.encodePacked("ButtonTranche ", collateralSymbol, " ", getTrancheLetter(index, _trancheCount))); } /** * @dev Get the string symbol for a tranche * @param collateralSymbol the symbol of the collateral token * @param index the tranche index * @param _trancheCount the total number of tranches * @return the string symbol of the tranche */ function getTrancheSymbol( string memory collateralSymbol, uint256 index, uint256 _trancheCount ) internal pure returns (string memory) { return string(abi.encodePacked("TRANCHE-", collateralSymbol, "-", getTrancheLetter(index, _trancheCount))); } /** * @dev Get the string letter for a tranche index * @param index the tranche index * @param _trancheCount the total number of tranches * @return the string letter of the tranche index */ function getTrancheLetter(uint256 index, uint256 _trancheCount) internal pure returns (string memory) { bytes memory trancheLetters = bytes("ABCDEFGHIJKLMNOPQRSTUVWXY"); bytes memory target = new bytes(1); if (index == _trancheCount - 1) { target[0] = "Z"; } else { target[0] = trancheLetters[index]; } return string(target); } // @dev Ensuring total debt isn't too small function _enforceTotalDebt() internal { require(totalDebt >= MINIMUM_VALID_DEBT, "BondController: Expected minimum valid debt"); } /** * @dev Get the virtual collateral balance of the bond * @return the virtual collateral balance */ function collateralBalance() external view returns (uint256) { uint256 scaledCollateralBalance = IRebasingERC20(collateralToken).scaledBalanceOf(address(this)); uint256 _collateralBalance = IERC20(collateralToken).balanceOf(address(this)); return (scaledCollateralBalance > lastScaledCollateralBalance) ? Math.mulDiv(lastScaledCollateralBalance, _collateralBalance, scaledCollateralBalance) : _collateralBalance; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } uint256[49] private __gap; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.6.0; // helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false library TransferHelper { function safeApprove( address token, address to, uint256 value ) internal { // bytes4(keccak256(bytes('approve(address,uint256)'))); (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value)); require( success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper::safeApprove: approve failed' ); } function safeTransfer( address token, address to, uint256 value ) internal { // bytes4(keccak256(bytes('transfer(address,uint256)'))); (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value)); require( success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper::safeTransfer: transfer failed' ); } function safeTransferFrom( address token, address from, address to, uint256 value ) internal { // bytes4(keccak256(bytes('transferFrom(address,address,uint256)'))); (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value)); require( success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper::transferFrom: transferFrom failed' ); } function safeTransferETH(address to, uint256 value) internal { (bool success, ) = to.call{value: value}(new bytes(0)); require(success, 'TransferHelper::safeTransferETH: ETH transfer failed'); } }
pragma solidity ^0.8.3; import "@openzeppelin/contracts/utils/Context.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@uniswap/lib/contracts/libraries/TransferHelper.sol"; import "./ITranche.sol"; struct TrancheData { ITranche token; uint256 ratio; } /** * @dev Controller for a ButtonTranche bond system */ interface IBondController { event Deposit(address from, uint256 amount, uint256 feeBps); event Mature(address caller); event RedeemMature(address user, address tranche, uint256 amount); event Redeem(address user, uint256[] amounts); event FeeUpdate(uint256 newFee); function collateralToken() external view returns (address); function tranches(uint256 i) external view returns (ITranche token, uint256 ratio); function trancheCount() external view returns (uint256 count); function feeBps() external view returns (uint256 fee); function maturityDate() external view returns (uint256 maturityDate); function isMature() external view returns (bool isMature); function creationDate() external view returns (uint256 creationDate); function totalDebt() external view returns (uint256 totalDebt); /** * @dev Deposit `amount` tokens from `msg.sender`, get tranche tokens in return * Requirements: * - `msg.sender` must have `approved` `amount` collateral tokens to this contract */ function deposit(uint256 amount) external; /** * @dev Matures the bond. Disables deposits, * fixes the redemption ratio, and distributes collateral to redemption pools * Redeems any fees collected from deposits, sending redeemed funds to the contract owner * Requirements: * - The bond is not already mature * - One of: * - `msg.sender` is owner * - `maturityDate` has passed */ function mature() external; /** * @dev Redeems some tranche tokens * Requirements: * - The bond is mature * - `msg.sender` owns at least `amount` tranche tokens from address `tranche` * - `tranche` must be a valid tranche token on this bond */ function redeemMature(address tranche, uint256 amount) external; /** * @dev Redeems a slice of tranche tokens from all tranches. * Returns collateral to the user proportionally to the amount of debt they are removing * Requirements * - The bond is not mature * - The number of `amounts` is the same as the number of tranches * - The `amounts` are in equivalent ratio to the tranche order */ function redeem(uint256[] memory amounts) external; /** * @dev Updates the fee taken on deposit to the given new fee * * Requirements * - `msg.sender` has admin role * - `newFeeBps` is in range [0, 50] */ function setFee(uint256 newFeeBps) external; }
pragma solidity ^0.8.3; /** * @dev Factory for Tranche minimal proxy contracts */ interface ITrancheFactory { event TrancheCreated(address newTrancheAddress); /** * @dev Deploys a minimal proxy instance for a new tranche ERC20 token with the given parameters. */ function createTranche( string memory name, string memory symbol, address _collateralToken ) external returns (address); }
pragma solidity ^0.8.3; import "@openzeppelin/contracts/utils/Context.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@uniswap/lib/contracts/libraries/TransferHelper.sol"; /** * @dev ERC20 token to represent a single tranche for a ButtonTranche bond * */ interface ITranche is IERC20 { /** * @dev returns the BondController address which owns this Tranche contract * It should have admin permissions to call mint, burn, and redeem functions */ function bond() external view returns (address); /** * @dev Mint `amount` tokens to `to` * Only callable by the owner (bond controller). Used to * manage bonds, specifically creating tokens upon deposit * @param to the address to mint tokens to * @param amount The amount of tokens to mint */ function mint(address to, uint256 amount) external; /** * @dev Burn `amount` tokens from `from`'s balance * Only callable by the owner (bond controller). Used to * manage bonds, specifically burning tokens upon redemption * @param from The address to burn tokens from * @param amount The amount of tokens to burn */ function burn(address from, uint256 amount) external; /** * @dev Burn `amount` tokens from `from` and return the proportional * value of the collateral token to `to` * @param from The address to burn tokens from * @param to The address to send collateral back to * @param amount The amount of tokens to burn */ function redeem( address from, address to, uint256 amount ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; // Interface definition for Rebasing ERC20 tokens which have a "elastic" external // balance and "fixed" internal balance. Each user's external balance is // represented as a product of a "scalar" and the user's internal balance. // // From time to time the "Rebase" event updates scaler, // which increases/decreases all user balances proportionally. // // The standard ERC-20 methods are denominated in the elastic balance // interface IRebasingERC20 is IERC20, IERC20Metadata { /// @notice Returns the fixed balance of the specified address. /// @param who The address to query. function scaledBalanceOf(address who) external view returns (uint256); /// @notice Returns the total fixed supply. function scaledTotalSupply() external view returns (uint256); /// @notice Transfer all of the sender's balance to a specified address. /// @param to The address to transfer to. /// @return True on success, false otherwise. function transferAll(address to) external returns (bool); /// @notice Transfer all balance tokens from one address to another. /// @param from The address to send tokens from. /// @param to The address to transfer to. function transferAllFrom(address from, address to) external returns (bool); /// @notice Triggers the next rebase, if applicable. function rebase() external; /// @notice Event emitted when the balance scalar is updated. /// @param epoch The number of rebases since inception. /// @param newScalar The new scalar. event Rebase(uint256 indexed epoch, uint256 newScalar); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } }
{ "metadata": { "bytecodeHash": "none" }, "optimizer": { "enabled": true, "runs": 999999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"address","name":"_trancheFactory","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"creator","type":"address"},{"indexed":false,"internalType":"address","name":"newBondAddress","type":"address"}],"name":"BondCreated","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_collateralToken","type":"address"},{"internalType":"uint256[]","name":"trancheRatios","type":"uint256[]"},{"internalType":"uint256","name":"maturityDate","type":"uint256"}],"name":"createBond","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_collateralToken","type":"address"},{"internalType":"uint256[]","name":"trancheRatios","type":"uint256[]"},{"internalType":"uint256","name":"maturityDate","type":"uint256"},{"internalType":"uint256","name":"depositLimit","type":"uint256"}],"name":"createBondWithDepositLimit","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factoryNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"target","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"trancheFactory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60c060405234801561001057600080fd5b5060405161071338038061071383398101604081905261002f9161006d565b6001600160601b0319606092831b8116608052911b1660a0526000805561009f565b80516001600160a01b038116811461006857600080fd5b919050565b6000806040838503121561007f578182fd5b61008883610051565b915061009660208401610051565b90509250929050565b60805160601c60a05160601c61063c6100d7600039600081816098015261021801526000818161011201526101a6015261063c6000f3fe608060405234801561001057600080fd5b50600436106100725760003560e01c8063c19312e611610050578063c19312e6146100e7578063c7bfded5146100fa578063d4b839921461010d57610072565b80638c0a14ac146100775780639ee2addd14610093578063a217fddf146100df575b600080fd5b61008060005481565b6040519081526020015b60405180910390f35b6100ba7f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200161008a565b610080600081565b6100ba6100f53660046104e5565b610134565b6100ba610108366004610490565b61014b565b6100ba7f000000000000000000000000000000000000000000000000000000000000000081565b600061014285858585610162565b95945050505050565b600061015a8484846000610162565b949350505050565b600080546040805133602080830191909152818301849052825180830384018152606090920190925280519101209061019c9060016105c3565b60009081556101cb7f0000000000000000000000000000000000000000000000000000000000000000836102dd565b6040517f2a76ef3100000000000000000000000000000000000000000000000000000000815290915073ffffffffffffffffffffffffffffffffffffffff821690632a76ef319061024a907f0000000000000000000000000000000000000000000000000000000000000000908b9033908c908c908c90600401610541565b600060405180830381600087803b15801561026457600080fd5b505af1158015610278573d6000803e3d6000fd5b505050507f535735cdac5d586cb40b3eb153bfced0b96d144cfe9b8947f5f9ed69895ae80b6102a43390565b6040805173ffffffffffffffffffffffffffffffffffffffff928316815291841660208301520160405180910390a19695505050505050565b6000763d602d80600a3d3981f3363d3d373d3d3d363d730000008360601b60e81c176000526e5af43d82803e903d91602b57fd5bf38360781b1760205281603760096000f5905073ffffffffffffffffffffffffffffffffffffffff81166103a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f455243313136373a2063726561746532206661696c6564000000000000000000604482015260640160405180910390fd5b92915050565b803573ffffffffffffffffffffffffffffffffffffffff811681146103cf57600080fd5b919050565b600082601f8301126103e4578081fd5b8135602067ffffffffffffffff8083111561040157610401610600565b8260051b6040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0603f8301168101818110848211171561044457610444610600565b60405284815283810192508684018288018501891015610462578687fd5b8692505b85831015610484578035845292840192600192909201918401610466565b50979650505050505050565b6000806000606084860312156104a4578283fd5b6104ad846103ab565b9250602084013567ffffffffffffffff8111156104c8578283fd5b6104d4868287016103d4565b925050604084013590509250925092565b600080600080608085870312156104fa578081fd5b610503856103ab565b9350602085013567ffffffffffffffff81111561051e578182fd5b61052a878288016103d4565b949794965050505060408301359260600135919050565b600060c0820173ffffffffffffffffffffffffffffffffffffffff808a1684526020818a1681860152818916604086015260c06060860152829150875180845260e0860192508189019350845b818110156105aa5784518452938201939282019260010161058e565b5050506080840195909552505060a00152949350505050565b600082198211156105fb577f4e487b710000000000000000000000000000000000000000000000000000000081526011600452602481fd5b500190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fdfea164736f6c6343000803000a0000000000000000000000008c624d6a336ede5da3bda01574cf091a938ea906000000000000000000000000eca709a67e8e774c827547d900e01b763f77e99f
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100725760003560e01c8063c19312e611610050578063c19312e6146100e7578063c7bfded5146100fa578063d4b839921461010d57610072565b80638c0a14ac146100775780639ee2addd14610093578063a217fddf146100df575b600080fd5b61008060005481565b6040519081526020015b60405180910390f35b6100ba7f000000000000000000000000eca709a67e8e774c827547d900e01b763f77e99f81565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200161008a565b610080600081565b6100ba6100f53660046104e5565b610134565b6100ba610108366004610490565b61014b565b6100ba7f0000000000000000000000008c624d6a336ede5da3bda01574cf091a938ea90681565b600061014285858585610162565b95945050505050565b600061015a8484846000610162565b949350505050565b600080546040805133602080830191909152818301849052825180830384018152606090920190925280519101209061019c9060016105c3565b60009081556101cb7f0000000000000000000000008c624d6a336ede5da3bda01574cf091a938ea906836102dd565b6040517f2a76ef3100000000000000000000000000000000000000000000000000000000815290915073ffffffffffffffffffffffffffffffffffffffff821690632a76ef319061024a907f000000000000000000000000eca709a67e8e774c827547d900e01b763f77e99f908b9033908c908c908c90600401610541565b600060405180830381600087803b15801561026457600080fd5b505af1158015610278573d6000803e3d6000fd5b505050507f535735cdac5d586cb40b3eb153bfced0b96d144cfe9b8947f5f9ed69895ae80b6102a43390565b6040805173ffffffffffffffffffffffffffffffffffffffff928316815291841660208301520160405180910390a19695505050505050565b6000763d602d80600a3d3981f3363d3d373d3d3d363d730000008360601b60e81c176000526e5af43d82803e903d91602b57fd5bf38360781b1760205281603760096000f5905073ffffffffffffffffffffffffffffffffffffffff81166103a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f455243313136373a2063726561746532206661696c6564000000000000000000604482015260640160405180910390fd5b92915050565b803573ffffffffffffffffffffffffffffffffffffffff811681146103cf57600080fd5b919050565b600082601f8301126103e4578081fd5b8135602067ffffffffffffffff8083111561040157610401610600565b8260051b6040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0603f8301168101818110848211171561044457610444610600565b60405284815283810192508684018288018501891015610462578687fd5b8692505b85831015610484578035845292840192600192909201918401610466565b50979650505050505050565b6000806000606084860312156104a4578283fd5b6104ad846103ab565b9250602084013567ffffffffffffffff8111156104c8578283fd5b6104d4868287016103d4565b925050604084013590509250925092565b600080600080608085870312156104fa578081fd5b610503856103ab565b9350602085013567ffffffffffffffff81111561051e578182fd5b61052a878288016103d4565b949794965050505060408301359260600135919050565b600060c0820173ffffffffffffffffffffffffffffffffffffffff808a1684526020818a1681860152818916604086015260c06060860152829150875180845260e0860192508189019350845b818110156105aa5784518452938201939282019260010161058e565b5050506080840195909552505060a00152949350505050565b600082198211156105fb577f4e487b710000000000000000000000000000000000000000000000000000000081526011600452602481fd5b500190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fdfea164736f6c6343000803000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000008c624d6a336ede5da3bda01574cf091a938ea906000000000000000000000000eca709a67e8e774c827547d900e01b763f77e99f
-----Decoded View---------------
Arg [0] : _target (address): 0x8c624D6a336edE5da3bDA01574cF091A938EA906
Arg [1] : _trancheFactory (address): 0xeca709A67E8e774c827547D900e01B763f77E99f
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000008c624d6a336ede5da3bda01574cf091a938ea906
Arg [1] : 000000000000000000000000eca709a67e8e774c827547d900e01b763f77e99f
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.