Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
NFTfiSigningUtils
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 100 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.19; import "../loans/direct/loanTypes/LoanData.sol"; import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; /** * @title NFTfiSigningUtils * @author NFTfi * @notice Helper contract for NFTfi. This contract manages verifying signatures from off-chain NFTfi orders. * Based on the version of this same contract used on NFTfi V1 */ library NFTfiSigningUtils { /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @dev This function gets the current chain ID. */ function getChainID() internal view returns (uint256) { uint256 id; // solhint-disable-next-line no-inline-assembly assembly { id := chainid() } return id; } /** * @notice This function is when the borrower accepts a lender's offer, to validate the lender's signature that the * lender provided off-chain to verify that it did indeed made such offer. * * @param _offer - The offer struct containing: * - loanERC20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - loanPrincipalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in loanERC20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - loanDuration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - loanInterestRateForDurationInBasisPoints: This is the interest rate (measured in basis points, e.g. * hundreths of a percent) for the loan, that must be repaid pro-rata by the borrower at the conclusion of the loan * or risk seizure of their nft collateral. Note if the type of the loan is fixed then this value is not used and * is irrelevant so it should be set to 0. * - loanAdminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain NFTfi orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within NFTfi, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * NFTfi.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.loanERC20Denomination * - offer.loanPrincipalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.referrer * - offer.loanDuration * - offer.loanAdminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - address of this contract * - chainId */ function isValidLenderSignature(LoanData.Offer memory _offer, LoanData.Signature memory _signature) external view returns (bool) { return isValidLenderSignature(_offer, _signature, address(this)); } /** * @dev This function overload the previous function to allow the caller to specify the address of the contract * */ function isValidLenderSignature( LoanData.Offer memory _offer, LoanData.Signature memory _signature, address _loanContract ) public view returns (bool) { require(block.timestamp <= _signature.expiry, "Lender Signature has expired"); require(_loanContract != address(0), "Loan is zero address"); if (_signature.signer == address(0)) { return false; } else { bytes32 message = keccak256( abi.encodePacked(getEncodedOffer(_offer), getEncodedSignature(_signature), _loanContract, getChainID()) ); return SignatureChecker.isValidSignatureNow( _signature.signer, ECDSA.toEthSignedMessageHash(message), _signature.signature ); } } /** * @notice This function is called in renegotiateLoan() to validate the lender's signature that the lender provided * off-chain to verify that they did indeed want to agree to this loan renegotiation according to these terms. * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain NFTfi orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within NFTfi, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling NFTfi.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * - expiry - The date when the renegotiation offer expires * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _lenderNonce * - _expiry * - address of this contract * - chainId */ function isValidLenderRenegotiationSignature( uint256 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.Signature memory _signature ) external view returns (bool) { return isValidLenderRenegotiationSignature( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _signature, address(this) ); } /** * @dev This function overload the previous function to allow the caller to specify the address of the contract * */ function isValidLenderRenegotiationSignature( uint256 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.Signature memory _signature, address _loanContract ) public view returns (bool) { require(block.timestamp <= _signature.expiry, "Renegotiation Signature expired"); require(_loanContract != address(0), "Loan is zero address"); if (_signature.signer == address(0)) { return false; } else { bytes32 message = keccak256( abi.encodePacked( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, getEncodedSignature(_signature), _loanContract, getChainID() ) ); return SignatureChecker.isValidSignatureNow( _signature.signer, ECDSA.toEthSignedMessageHash(message), _signature.signature ); } } /** * @dev We need this to avoid stack too deep errors. */ function getEncodedOffer(LoanData.Offer memory _offer) internal pure returns (bytes memory) { return abi.encodePacked( _offer.loanERC20Denomination, _offer.loanPrincipalAmount, _offer.maximumRepaymentAmount, _offer.nftCollateralContract, _offer.nftCollateralId, _offer.referrer, _offer.loanDuration, _offer.loanAdminFeeInBasisPoints ); } /** * @dev We need this to avoid stack too deep errors. */ function getEncodedSignature(LoanData.Signature memory _signature) internal pure returns (bytes memory) { return abi.encodePacked(_signature.signer, _signature.nonce, _signature.expiry); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.0; import "./ECDSA.sol"; import "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like * Argent and Gnosis Safe. * * _Available since v4.1._ */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature); return (error == ECDSA.RecoverError.NoError && recovered == signer) || isValidERC1271SignatureNow(signer, hash, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.19; /** * @title LoanData * @author NFTfi * @notice An interface containg the main Loan struct shared by Direct Loans types. */ interface LoanData { /* ********** */ /* DATA TYPES */ /* ********** */ /** * @notice The main Loan Terms struct. This data is saved upon loan creation. * * @param loanERC20Denomination - The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * @param loanPrincipalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in loanERC20Denomination's smallest units. * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * @param nftCollateralContract - The address of the the NFT collateral contract. * @param nftCollateralWrapper - The NFTfi wrapper of the NFT collateral contract. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param loanStartTime - The block.timestamp when the loan first began (measured in seconds). * @param loanDuration - The amount of time (measured in seconds) that can elapse before the lender can liquidate * the loan and seize the underlying collateral NFT. * @param loanInterestRateForDurationInBasisPoints - This is the interest rate (measured in basis points, e.g. * hundreths of a percent) for the loan, that must be repaid pro-rata by the borrower at the conclusion of the loan * or risk seizure of their nft collateral. Note if the type of the loan is fixed then this value is not used and * is irrelevant so it should be set to 0. * @param loanAdminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param borrower */ struct LoanTerms { uint256 loanPrincipalAmount; uint256 maximumRepaymentAmount; uint256 nftCollateralId; address loanERC20Denomination; uint32 loanDuration; uint16 loanInterestRateForDurationInBasisPoints; uint16 loanAdminFeeInBasisPoints; address nftCollateralWrapper; uint64 loanStartTime; address nftCollateralContract; address borrower; } /** * @notice Some extra Loan's settings struct. This data is saved upon loan creation. * We need this to avoid stack too deep errors. * * @param revenueSharePartner - The address of the partner that will receive the revenue share. * @param revenueShareInBasisPoints - The percent (measured in basis points) of the admin fee amount that will be * taken as a revenue share for a t * @param referralFeeInBasisPoints - The percent (measured in basis points) of the loan principal amount that will * be taken as a fee to pay to the referrer, 0 if the lender is not paying referral fee.he partner, at the moment * the loan is begun. */ struct LoanExtras { address revenueSharePartner; uint16 revenueShareInBasisPoints; uint16 referralFeeInBasisPoints; } /** * @notice The offer made by the lender. Used as parameter on both acceptOffer (initiated by the borrower) * * @param loanERC20Denomination - The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * @param loanPrincipalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in loanERC20Denomination's smallest units. * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always * have to pay this amount to retrieve their collateral, regardless of whether they repay early. * @param nftCollateralContract - The address of the ERC721 contract of the NFT collateral. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param referrer - The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * @param loanDuration - The amount of time (measured in seconds) that can elapse before the lender can liquidate * the loan and seize the underlying collateral NFT. * @param loanAdminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. */ struct Offer { uint256 loanPrincipalAmount; uint256 maximumRepaymentAmount; uint256 nftCollateralId; address nftCollateralContract; uint32 loanDuration; uint16 loanAdminFeeInBasisPoints; address loanERC20Denomination; address referrer; } /** * @notice Signature related params. Used as parameter on both acceptOffer (containing borrower signature) * * @param signer - The address of the signer. The borrower for `acceptOffer` * @param nonce - The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain NFTfi orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within NFTfi, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling NFTfi.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * @param expiry - Date when the signature expires * @param signature - The ECDSA signature of the borrower or the lender, obtained off-chain ahead of time, signing * the following combination of parameters: * - Lender: * - Offer.loanERC20Denomination * - Offer.loanPrincipalAmount * - Offer.maximumRepaymentAmount * - Offer.nftCollateralContract * - Offer.nftCollateralId * - Offer.referrer * - Offer.loanDuration * - Offer.loanAdminFeeInBasisPoints * - Signature.signer, * - Signature.nonce, * - Signature.expiry, * - address of the loan type contract * - chainId */ struct Signature { uint256 nonce; uint256 expiry; address signer; bytes signature; } /** * inclusive min and max Id ranges for collection offers on collections, * like ArtBlocks, where multiple collections are defined on one contract differentiated by id-ranges */ struct CollectionIdRange { uint256 minId; uint256 maxId; } /** * @notice Some extra parameters that the borrower needs to set when accepting an offer. * * @param revenueSharePartner - The address of the partner that will receive the revenue share. * @param referralFeeInBasisPoints - The percent (measured in basis points) of the loan principal amount that will * be taken as a fee to pay to the referrer, 0 if the lender is not paying referral fee. */ struct BorrowerSettings { address revenueSharePartner; uint16 referralFeeInBasisPoints; } }
{ "metadata": { "bytecodeHash": "none", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 100 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"uint256","name":"_loanId","type":"uint256"},{"internalType":"uint32","name":"_newLoanDuration","type":"uint32"},{"internalType":"uint256","name":"_newMaximumRepaymentAmount","type":"uint256"},{"internalType":"uint256","name":"_renegotiationFee","type":"uint256"},{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"address","name":"signer","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct LoanData.Signature","name":"_signature","type":"tuple"},{"internalType":"address","name":"_loanContract","type":"address"}],"name":"isValidLenderRenegotiationSignature","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_loanId","type":"uint256"},{"internalType":"uint32","name":"_newLoanDuration","type":"uint32"},{"internalType":"uint256","name":"_newMaximumRepaymentAmount","type":"uint256"},{"internalType":"uint256","name":"_renegotiationFee","type":"uint256"},{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"address","name":"signer","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct LoanData.Signature","name":"_signature","type":"tuple"}],"name":"isValidLenderRenegotiationSignature","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"loanPrincipalAmount","type":"uint256"},{"internalType":"uint256","name":"maximumRepaymentAmount","type":"uint256"},{"internalType":"uint256","name":"nftCollateralId","type":"uint256"},{"internalType":"address","name":"nftCollateralContract","type":"address"},{"internalType":"uint32","name":"loanDuration","type":"uint32"},{"internalType":"uint16","name":"loanAdminFeeInBasisPoints","type":"uint16"},{"internalType":"address","name":"loanERC20Denomination","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"internalType":"struct LoanData.Offer","name":"_offer","type":"tuple"},{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"address","name":"signer","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct LoanData.Signature","name":"_signature","type":"tuple"},{"internalType":"address","name":"_loanContract","type":"address"}],"name":"isValidLenderSignature","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"loanPrincipalAmount","type":"uint256"},{"internalType":"uint256","name":"maximumRepaymentAmount","type":"uint256"},{"internalType":"uint256","name":"nftCollateralId","type":"uint256"},{"internalType":"address","name":"nftCollateralContract","type":"address"},{"internalType":"uint32","name":"loanDuration","type":"uint32"},{"internalType":"uint16","name":"loanAdminFeeInBasisPoints","type":"uint16"},{"internalType":"address","name":"loanERC20Denomination","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"internalType":"struct LoanData.Offer","name":"_offer","type":"tuple"},{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"address","name":"signer","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct LoanData.Signature","name":"_signature","type":"tuple"}],"name":"isValidLenderSignature","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
610b9161003a600b82828239805160001a60731461002d57634e487b7160e01b600052600060045260246000fd5b30600052607381538281f3fe73000000000000000000000000000000000000000030146080604052600436106100565760003560e01c80636ab81ec01461005b57806387c0a57314610082578063d06ff74114610095578063eb2ac63f146100a8575b600080fd5b61006e610069366004610862565b6100bb565b604051901515815260200160405180910390f35b61006e6100903660046108c3565b6101bd565b61006e6100a336600461093c565b6102b1565b61006e6100b63660046109a6565b6102c1565b600082602001514211156101165760405162461bcd60e51b815260206004820152601c60248201527f4c656e646572205369676e61747572652068617320657870697265640000000060448201526064015b60405180910390fd5b6001600160a01b03821661013c5760405162461bcd60e51b815260040161010d906109f6565b60408301516001600160a01b0316610156575060006101b6565b6000610161856102ce565b61016a8561038d565b844660405160200161017f9493929190610a48565b6040516020818303038152906040528051906020012090506101b284604001516101a8836103d0565b8660600151610403565b9150505b9392505050565b600082602001514211156102135760405162461bcd60e51b815260206004820152601f60248201527f52656e65676f74696174696f6e205369676e6174757265206578706972656400604482015260640161010d565b6001600160a01b0382166102395760405162461bcd60e51b815260040161010d906109f6565b60408301516001600160a01b0316610253575060006102a7565b6000878787876102628861038d565b874660405160200161027a9796959493929190610a93565b6040516020818303038152906040528051906020012090506102a384604001516101a8836103d0565b9150505b9695505050505050565b60006102a78686868686306101bd565b60006101b68383306100bb565b60608160c0015182600001518360200151846060015185604001518660e0015187608001518860a00151604051602001610377989796959493929190606098891b6001600160601b031990811682526014820198909852603481019690965293871b86166054860152606885019290925290941b909216608882015260e09290921b6001600160e01b031916609c83015260f01b6001600160f01b03191660a082015260a20190565b6040516020818303038152906040529050919050565b60608160400151826000015183602001516040516020016103779392919060609390931b6001600160601b03191683526014830191909152603482015260540190565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b6000806000610412858561045a565b9092509050600081600481111561042b5761042b610aff565b1480156104495750856001600160a01b0316826001600160a01b0316145b806102a757506102a786868661049f565b60008082516041036104905760208301516040840151606085015160001a6104848782858561058b565b94509450505050610498565b506000905060025b9250929050565b6000806000856001600160a01b0316631626ba7e60e01b86866040516024016104c9929190610b15565b60408051601f198184030181529181526020820180516001600160e01b03166001600160e01b03199094169390931790925290516105079190610b4f565b600060405180830381855afa9150503d8060008114610542576040519150601f19603f3d011682016040523d82523d6000602084013e610547565b606091505b509150915081801561055b57506020815110155b80156102a757508051630b135d3f60e11b906105809083016020908101908401610b6b565b149695505050505050565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b038311156105b8575060009050600361063c565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561060c573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166106355760006001925092505061063c565b9150600090505b94509492505050565b634e487b7160e01b600052604160045260246000fd5b60405161010081016001600160401b038111828210171561067e5761067e610645565b60405290565b604051608081016001600160401b038111828210171561067e5761067e610645565b604051601f8201601f191681016001600160401b03811182821017156106ce576106ce610645565b604052919050565b80356001600160a01b03811681146106ed57600080fd5b919050565b803563ffffffff811681146106ed57600080fd5b6000610100828403121561071957600080fd5b61072161065b565b9050813581526020820135602082015260408201356040820152610747606083016106d6565b6060820152610758608083016106f2565b608082015260a082013561ffff8116811461077257600080fd5b60a082015261078360c083016106d6565b60c082015261079460e083016106d6565b60e082015292915050565b6000608082840312156107b157600080fd5b6107b9610684565b905081358152602080830135818301526107d5604084016106d6565b604083015260608301356001600160401b03808211156107f457600080fd5b818501915085601f83011261080857600080fd5b81358181111561081a5761081a610645565b61082c601f8201601f191685016106a6565b9150808252868482850101111561084257600080fd5b808484018584013760008482840101525080606085015250505092915050565b6000806000610140848603121561087857600080fd5b6108828585610706565b92506101008401356001600160401b0381111561089e57600080fd5b6108aa8682870161079f565b9250506108ba61012085016106d6565b90509250925092565b60008060008060008060c087890312156108dc57600080fd5b863595506108ec602088016106f2565b9450604087013593506060870135925060808701356001600160401b0381111561091557600080fd5b61092189828a0161079f565b92505061093060a088016106d6565b90509295509295509295565b600080600080600060a0868803121561095457600080fd5b85359450610964602087016106f2565b9350604086013592506060860135915060808601356001600160401b0381111561098d57600080fd5b6109998882890161079f565b9150509295509295909350565b60008061012083850312156109ba57600080fd5b6109c48484610706565b91506101008301356001600160401b038111156109e057600080fd5b6109ec8582860161079f565b9150509250929050565b6020808252601490820152734c6f616e206973207a65726f206164647265737360601b604082015260600190565b60005b83811015610a3f578181015183820152602001610a27565b50506000910152565b60008551610a5a818460208a01610a24565b855190830190610a6e818360208a01610a24565b60609590951b6001600160601b03191694019384525050601482015260340192915050565b87815263ffffffff60e01b8760e01b16602082015285602482015284604482015260008451610ac9816064850160208901610a24565b80830190506bffffffffffffffffffffffff198560601b1660648201528360788201526098810191505098975050505050505050565b634e487b7160e01b600052602160045260246000fd5b8281526040602082015260008251806040840152610b3a816060850160208701610a24565b601f01601f1916919091016060019392505050565b60008251610b61818460208701610a24565b9190910192915050565b600060208284031215610b7d57600080fd5b505191905056fea164736f6c6343000813000a
Deployed Bytecode
0x73199e38f5ed54bc56c4dc7fdd0c5c64eae923673f30146080604052600436106100565760003560e01c80636ab81ec01461005b57806387c0a57314610082578063d06ff74114610095578063eb2ac63f146100a8575b600080fd5b61006e610069366004610862565b6100bb565b604051901515815260200160405180910390f35b61006e6100903660046108c3565b6101bd565b61006e6100a336600461093c565b6102b1565b61006e6100b63660046109a6565b6102c1565b600082602001514211156101165760405162461bcd60e51b815260206004820152601c60248201527f4c656e646572205369676e61747572652068617320657870697265640000000060448201526064015b60405180910390fd5b6001600160a01b03821661013c5760405162461bcd60e51b815260040161010d906109f6565b60408301516001600160a01b0316610156575060006101b6565b6000610161856102ce565b61016a8561038d565b844660405160200161017f9493929190610a48565b6040516020818303038152906040528051906020012090506101b284604001516101a8836103d0565b8660600151610403565b9150505b9392505050565b600082602001514211156102135760405162461bcd60e51b815260206004820152601f60248201527f52656e65676f74696174696f6e205369676e6174757265206578706972656400604482015260640161010d565b6001600160a01b0382166102395760405162461bcd60e51b815260040161010d906109f6565b60408301516001600160a01b0316610253575060006102a7565b6000878787876102628861038d565b874660405160200161027a9796959493929190610a93565b6040516020818303038152906040528051906020012090506102a384604001516101a8836103d0565b9150505b9695505050505050565b60006102a78686868686306101bd565b60006101b68383306100bb565b60608160c0015182600001518360200151846060015185604001518660e0015187608001518860a00151604051602001610377989796959493929190606098891b6001600160601b031990811682526014820198909852603481019690965293871b86166054860152606885019290925290941b909216608882015260e09290921b6001600160e01b031916609c83015260f01b6001600160f01b03191660a082015260a20190565b6040516020818303038152906040529050919050565b60608160400151826000015183602001516040516020016103779392919060609390931b6001600160601b03191683526014830191909152603482015260540190565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b6000806000610412858561045a565b9092509050600081600481111561042b5761042b610aff565b1480156104495750856001600160a01b0316826001600160a01b0316145b806102a757506102a786868661049f565b60008082516041036104905760208301516040840151606085015160001a6104848782858561058b565b94509450505050610498565b506000905060025b9250929050565b6000806000856001600160a01b0316631626ba7e60e01b86866040516024016104c9929190610b15565b60408051601f198184030181529181526020820180516001600160e01b03166001600160e01b03199094169390931790925290516105079190610b4f565b600060405180830381855afa9150503d8060008114610542576040519150601f19603f3d011682016040523d82523d6000602084013e610547565b606091505b509150915081801561055b57506020815110155b80156102a757508051630b135d3f60e11b906105809083016020908101908401610b6b565b149695505050505050565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b038311156105b8575060009050600361063c565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561060c573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166106355760006001925092505061063c565b9150600090505b94509492505050565b634e487b7160e01b600052604160045260246000fd5b60405161010081016001600160401b038111828210171561067e5761067e610645565b60405290565b604051608081016001600160401b038111828210171561067e5761067e610645565b604051601f8201601f191681016001600160401b03811182821017156106ce576106ce610645565b604052919050565b80356001600160a01b03811681146106ed57600080fd5b919050565b803563ffffffff811681146106ed57600080fd5b6000610100828403121561071957600080fd5b61072161065b565b9050813581526020820135602082015260408201356040820152610747606083016106d6565b6060820152610758608083016106f2565b608082015260a082013561ffff8116811461077257600080fd5b60a082015261078360c083016106d6565b60c082015261079460e083016106d6565b60e082015292915050565b6000608082840312156107b157600080fd5b6107b9610684565b905081358152602080830135818301526107d5604084016106d6565b604083015260608301356001600160401b03808211156107f457600080fd5b818501915085601f83011261080857600080fd5b81358181111561081a5761081a610645565b61082c601f8201601f191685016106a6565b9150808252868482850101111561084257600080fd5b808484018584013760008482840101525080606085015250505092915050565b6000806000610140848603121561087857600080fd5b6108828585610706565b92506101008401356001600160401b0381111561089e57600080fd5b6108aa8682870161079f565b9250506108ba61012085016106d6565b90509250925092565b60008060008060008060c087890312156108dc57600080fd5b863595506108ec602088016106f2565b9450604087013593506060870135925060808701356001600160401b0381111561091557600080fd5b61092189828a0161079f565b92505061093060a088016106d6565b90509295509295509295565b600080600080600060a0868803121561095457600080fd5b85359450610964602087016106f2565b9350604086013592506060860135915060808601356001600160401b0381111561098d57600080fd5b6109998882890161079f565b9150509295509295909350565b60008061012083850312156109ba57600080fd5b6109c48484610706565b91506101008301356001600160401b038111156109e057600080fd5b6109ec8582860161079f565b9150509250929050565b6020808252601490820152734c6f616e206973207a65726f206164647265737360601b604082015260600190565b60005b83811015610a3f578181015183820152602001610a27565b50506000910152565b60008551610a5a818460208a01610a24565b855190830190610a6e818360208a01610a24565b60609590951b6001600160601b03191694019384525050601482015260340192915050565b87815263ffffffff60e01b8760e01b16602082015285602482015284604482015260008451610ac9816064850160208901610a24565b80830190506bffffffffffffffffffffffff198560601b1660648201528360788201526098810191505098975050505050505050565b634e487b7160e01b600052602160045260246000fd5b8281526040602082015260008251806040840152610b3a816060850160208701610a24565b601f01601f1916919091016060019392505050565b60008251610b61818460208701610a24565b9190910192915050565b600060208284031215610b7d57600080fd5b505191905056fea164736f6c6343000813000a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.