Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 17 from a total of 17 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Create New Marke... | 19644726 | 296 days ago | IN | 0 ETH | 0.06168703 | ||||
Create New Marke... | 19537434 | 312 days ago | IN | 0 ETH | 0.10924318 | ||||
Create New Marke... | 19537421 | 312 days ago | IN | 0 ETH | 0.1103332 | ||||
Transfer Ownersh... | 19510967 | 315 days ago | IN | 0 ETH | 0.0005531 | ||||
Create New Marke... | 19417137 | 328 days ago | IN | 0 ETH | 0.30926761 | ||||
Create New Marke... | 19410224 | 329 days ago | IN | 0 ETH | 0.24463389 | ||||
Create New Marke... | 19367010 | 335 days ago | IN | 0 ETH | 0.41352586 | ||||
Create New Marke... | 19326685 | 341 days ago | IN | 0 ETH | 0.36260376 | ||||
Create New Marke... | 19317552 | 342 days ago | IN | 0 ETH | 0.20258411 | ||||
Create New Marke... | 19317482 | 342 days ago | IN | 0 ETH | 0.18491345 | ||||
Create New Marke... | 19309659 | 343 days ago | IN | 0 ETH | 0.13839555 | ||||
Create New Marke... | 19289158 | 346 days ago | IN | 0 ETH | 0.24167813 | ||||
Create New Marke... | 19258653 | 351 days ago | IN | 0 ETH | 0.10749424 | ||||
Create New Marke... | 19105386 | 372 days ago | IN | 0 ETH | 0.06950384 | ||||
Create New Marke... | 19059129 | 379 days ago | IN | 0 ETH | 0.05651354 | ||||
Create New Marke... | 18969534 | 391 days ago | IN | 0 ETH | 0.09374957 | ||||
Create New Marke... | 18969420 | 391 days ago | IN | 0 ETH | 0.09628035 |
Latest 25 internal transactions (View All)
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
PendleMarketFactoryV3
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import "../../../interfaces/IPMarketV3.sol"; import "../../../interfaces/IPYieldContractFactory.sol"; import "../../../interfaces/IPMarketFactoryV3.sol"; import "../../libraries/BaseSplitCodeFactory.sol"; import "../../libraries/Errors.sol"; import "../../libraries/BoringOwnableUpgradeable.sol"; contract PendleMarketFactoryV3 is BoringOwnableUpgradeable, IPMarketFactoryV3 { using EnumerableSet for EnumerableSet.AddressSet; address public immutable marketCreationCodeContractA; uint256 public immutable marketCreationCodeSizeA; address public immutable marketCreationCodeContractB; uint256 public immutable marketCreationCodeSizeB; address public immutable yieldContractFactory; address public immutable vePendle; address public immutable gaugeController; uint256 public immutable maxLnFeeRateRoot; uint8 public constant maxReserveFeePercent = 100; int256 public constant minInitialAnchor = PMath.IONE; address public treasury; uint8 public reserveFeePercent; // router -> market -> lnFeeRateRoot. lnFeeRateRoot == 0 means no override mapping(address => mapping(address => uint80)) internal overriddenFee; // PT -> scalarRoot -> initialAnchor mapping(address => mapping(int256 => mapping(int256 => mapping(uint80 => address)))) internal markets; EnumerableSet.AddressSet internal allMarkets; constructor( address _yieldContractFactory, address _marketCreationCodeContractA, uint256 _marketCreationCodeSizeA, address _marketCreationCodeContractB, uint256 _marketCreationCodeSizeB, address _treasury, uint8 _reserveFeePercent, address _vePendle, address _gaugeController ) initializer { yieldContractFactory = _yieldContractFactory; maxLnFeeRateRoot = uint256(LogExpMath.ln(int256((105 * PMath.IONE) / 100))); // ln(1.05) marketCreationCodeContractA = _marketCreationCodeContractA; marketCreationCodeSizeA = _marketCreationCodeSizeA; marketCreationCodeContractB = _marketCreationCodeContractB; marketCreationCodeSizeB = _marketCreationCodeSizeB; __BoringOwnable_init(); setTreasuryAndFeeReserve(_treasury, _reserveFeePercent); vePendle = _vePendle; gaugeController = _gaugeController; } /** * @notice Create a market between PT and its corresponding SY with scalar & anchor config. * Anyone is allowed to create a market on their own. */ function createNewMarket( address PT, int256 scalarRoot, int256 initialAnchor, uint80 lnFeeRateRoot ) external returns (address market) { if (!IPYieldContractFactory(yieldContractFactory).isPT(PT)) revert Errors.MarketFactoryInvalidPt(); if (IPPrincipalToken(PT).isExpired()) revert Errors.MarketFactoryExpiredPt(); if (lnFeeRateRoot > maxLnFeeRateRoot) revert Errors.MarketFactoryLnFeeRateRootTooHigh(lnFeeRateRoot, maxLnFeeRateRoot); if (markets[PT][scalarRoot][initialAnchor][lnFeeRateRoot] != address(0)) revert Errors.MarketFactoryMarketExists(); if (initialAnchor < minInitialAnchor) revert Errors.MarketFactoryInitialAnchorTooLow(initialAnchor, minInitialAnchor); market = BaseSplitCodeFactory._create2( 0, bytes32(block.chainid), abi.encode(PT, scalarRoot, initialAnchor, lnFeeRateRoot, vePendle, gaugeController), marketCreationCodeContractA, marketCreationCodeSizeA, marketCreationCodeContractB, marketCreationCodeSizeB ); markets[PT][scalarRoot][initialAnchor][lnFeeRateRoot] = market; if (!allMarkets.add(market)) assert(false); emit CreateNewMarket(market, PT, scalarRoot, initialAnchor, lnFeeRateRoot); } function getMarketConfig( address market, address router ) external view returns (address _treasury, uint80 _overriddenFee, uint8 _reserveFeePercent) { (_treasury, _reserveFeePercent) = (treasury, reserveFeePercent); _overriddenFee = overriddenFee[router][market]; } /// @dev for gas-efficient verification of market function isValidMarket(address market) external view returns (bool) { return allMarkets.contains(market); } function setTreasuryAndFeeReserve(address newTreasury, uint8 newReserveFeePercent) public onlyOwner { if (newTreasury == address(0)) revert Errors.MarketFactoryZeroTreasury(); if (newReserveFeePercent > maxReserveFeePercent) revert Errors.MarketFactoryReserveFeePercentTooHigh(newReserveFeePercent, maxReserveFeePercent); treasury = newTreasury; reserveFeePercent = newReserveFeePercent; emit NewTreasuryAndFeeReserve(newTreasury, newReserveFeePercent); } function setOverriddenFee(address router, address market, uint80 newFee) public onlyOwner { if (!allMarkets.contains(market)) revert Errors.MFNotPendleMarket(market); uint80 marketFee = IPMarketV3(market).getNonOverrideLnFeeRateRoot(); if (newFee >= marketFee) revert Errors.MarketFactoryOverriddenFeeTooHigh(newFee, marketFee); // NOTE: newFee = 0 allowed !! overriddenFee[router][market] = newFee; emit SetOverriddenFee(router, market, newFee); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Create2.sol) pragma solidity ^0.8.0; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) { require(address(this).balance >= amount, "Create2: insufficient balance"); require(bytecode.length != 0, "Create2: bytecode length is zero"); /// @solidity memory-safe-assembly assembly { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) } require(addr != address(0), "Create2: Failed on deploy"); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := keccak256(start, 85) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.0; import "@openzeppelin/contracts/utils/Create2.sol"; library CodeDeployer { // During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and // `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be // stored as its code. // // We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode // sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the // full code 32 bytes long: // // contract CodeDeployer { // constructor() payable { // uint256 size; // assembly { // size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long // codecopy(0, 32, size) // copy all appended data to memory at position 0 // return(0, size) // return appended data for it to be stored as code // } // } // } // // More specifically, it is composed of the following opcodes (plus padding): // // [1] PUSH1 0x20 // [2] CODESIZE // [3] SUB // [4] DUP1 // [6] PUSH1 0x20 // [8] PUSH1 0x00 // [9] CODECOPY // [11] PUSH1 0x00 // [12] RETURN // // The padding is just the 0xfe sequence (invalid opcode). It is important as it lets us work in-place, avoiding // memory allocation and copying. bytes32 private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe; /** * @dev Deploys a contract with `code` as its code, returning the destination address. * * Reverts if deployment fails. */ function deploy(bytes memory code) internal returns (address destination) { bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE; // We need to concatenate the deployer creation code and `code` in memory, but want to avoid copying all of // `code` (which could be quite long) into a new memory location. Therefore, we operate in-place using // assembly. // solhint-disable-next-line no-inline-assembly assembly { let codeLength := mload(code) // `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply // replace it with the deployer creation code (which is exactly 32 bytes long). mstore(code, deployerCreationCode) // At this point, `code` now points to the deployer creation code immediately followed by `code`'s data // contents. This is exactly what the deployer expects to receive when created. destination := create(0, code, add(codeLength, 32)) // Finally, we restore the original length in order to not mutate `code`. mstore(code, codeLength) } // The create opcode returns the zero address when contract creation fails, so we revert if this happens. require(destination != address(0), "DEPLOYMENT_FAILED_BALANCER"); } } library BaseSplitCodeFactory { function setCreationCode( bytes memory creationCode ) internal returns ( address creationCodeContractA, uint256 creationCodeSizeA, address creationCodeContractB, uint256 creationCodeSizeB ) { unchecked { require(creationCode.length > 0, "zero length"); uint256 creationCodeSize = creationCode.length; // We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents // (A), and another with the remaining half (B). // We store the lengths in both immutable and stack variables, since immutable variables cannot be read during // construction. creationCodeSizeA = creationCodeSize / 2; creationCodeSizeB = creationCodeSize - creationCodeSizeA; // To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with // the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving // `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place. // Memory: [ code length ] [ A.data ] [ B.data ] // Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore // the original length. bytes memory creationCodeA; assembly { creationCodeA := creationCode mstore(creationCodeA, creationCodeSizeA) } // Memory: [ A.length ] [ A.data ] [ B.data ] // ^ creationCodeA creationCodeContractA = CodeDeployer.deploy(creationCodeA); // Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new' // memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last // byte to later restore it. bytes memory creationCodeB; bytes32 lastByteA; assembly { // `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's // last 32 bytes. creationCodeB := add(creationCode, creationCodeSizeA) lastByteA := mload(creationCodeB) mstore(creationCodeB, creationCodeSizeB) } // Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ] // ^ creationCodeA ^ creationCodeB creationCodeContractB = CodeDeployer.deploy(creationCodeB); // We now restore the original contents of `creationCode` by writing back the original length and A's last byte. assembly { mstore(creationCodeA, creationCodeSize) mstore(creationCodeB, lastByteA) } } } /** * @dev Returns the creation code of the contract this factory creates. */ function getCreationCode( address creationCodeContractA, uint256 creationCodeSizeA, address creationCodeContractB, uint256 creationCodeSizeB ) internal view returns (bytes memory) { return _getCreationCodeWithArgs( "", creationCodeContractA, creationCodeSizeA, creationCodeContractB, creationCodeSizeB ); } /** * @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`. */ function _getCreationCodeWithArgs( bytes memory constructorArgs, address creationCodeContractA, uint256 creationCodeSizeA, address creationCodeContractB, uint256 creationCodeSizeB ) private view returns (bytes memory code) { unchecked { // This function exists because `abi.encode()` cannot be instructed to place its result at a specific address. // We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but // cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code, // which would be prohibitively expensive. // Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the // creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be // overly long) right after the end of the creation code. // Immutable variables cannot be used in assembly, so we store them in the stack first. uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB; uint256 constructorArgsSize = constructorArgs.length; uint256 codeSize = creationCodeSize + constructorArgsSize; assembly { // First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of // `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length. code := mload(0x40) mstore(0x40, add(code, add(codeSize, 32))) // We now store the length of the code plus constructor arguments. mstore(code, codeSize) // Next, we concatenate the creation code stored in A and B. let dataStart := add(code, 32) extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA) extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB) } // Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this // copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`. uint256 constructorArgsDataPtr; uint256 constructorArgsCodeDataPtr; assembly { constructorArgsDataPtr := add(constructorArgs, 32) constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize) } _memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize); } } /** * @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the * contract's constructor arguments, in order. */ function _create2( uint256 amount, bytes32 salt, bytes memory constructorArgs, address creationCodeContractA, uint256 creationCodeSizeA, address creationCodeContractB, uint256 creationCodeSizeB ) internal returns (address) { unchecked { bytes memory creationCode = _getCreationCodeWithArgs( constructorArgs, creationCodeContractA, creationCodeSizeA, creationCodeContractB, creationCodeSizeB ); return Create2.deploy(amount, salt, creationCode); } } // From // https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol function _memcpy(uint256 dest, uint256 src, uint256 len) private pure { unchecked { // Copy word-length chunks while possible for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } // Copy remaining bytes uint256 mask = 256 ** (32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; contract BoringOwnableUpgradeableData { address public owner; address public pendingOwner; } abstract contract BoringOwnableUpgradeable is BoringOwnableUpgradeableData, Initializable { event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function __BoringOwnable_init() internal onlyInitializing { owner = msg.sender; } /// @notice Transfers ownership to `newOwner`. Either directly or claimable by the new pending owner. /// Can only be invoked by the current `owner`. /// @param newOwner Address of the new owner. /// @param direct True if `newOwner` should be set immediately. False if `newOwner` needs to use `claimOwnership`. /// @param renounce Allows the `newOwner` to be `address(0)` if `direct` and `renounce` is True. Has no effect otherwise. function transferOwnership(address newOwner, bool direct, bool renounce) public onlyOwner { if (direct) { // Checks require(newOwner != address(0) || renounce, "Ownable: zero address"); // Effects emit OwnershipTransferred(owner, newOwner); owner = newOwner; pendingOwner = address(0); } else { // Effects pendingOwner = newOwner; } } /// @notice Needs to be called by `pendingOwner` to claim ownership. function claimOwnership() public { address _pendingOwner = pendingOwner; // Checks require(msg.sender == _pendingOwner, "Ownable: caller != pending owner"); // Effects emit OwnershipTransferred(owner, _pendingOwner); owner = _pendingOwner; pendingOwner = address(0); } /// @notice Only allows the `owner` to execute the function. modifier onlyOwner() { require(msg.sender == owner, "Ownable: caller is not the owner"); _; } uint256[48] private __gap; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library Errors { // BulkSeller error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error BulkNotMaintainer(); error BulkNotAdmin(); error BulkSellerAlreadyExisted(address token, address SY, address bulk); error BulkSellerInvalidToken(address token, address SY); error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps); error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps); // APPROX error ApproxFail(); error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps); error ApproxBinarySearchInputInvalid( uint256 approxGuessMin, uint256 approxGuessMax, uint256 minGuessMin, uint256 maxGuessMax ); // MARKET + MARKET MATH CORE error MarketExpired(); error MarketZeroAmountsInput(); error MarketZeroAmountsOutput(); error MarketZeroLnImpliedRate(); error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount); error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance); error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset); error MarketExchangeRateBelowOne(int256 exchangeRate); error MarketProportionMustNotEqualOne(); error MarketRateScalarBelowZero(int256 rateScalar); error MarketScalarRootBelowZero(int256 scalarRoot); error MarketProportionTooHigh(int256 proportion, int256 maxProportion); error OracleUninitialized(); error OracleTargetTooOld(uint32 target, uint32 oldest); error OracleZeroCardinality(); error MarketFactoryExpiredPt(); error MarketFactoryInvalidPt(); error MarketFactoryMarketExists(); error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot); error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot); error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent); error MarketFactoryZeroTreasury(); error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor); error MFNotPendleMarket(address addr); // ROUTER error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut); error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut); error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut); error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut); error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error RouterExceededLimitSyIn(uint256 actualSyIn, uint256 limitSyIn); error RouterExceededLimitPtIn(uint256 actualPtIn, uint256 limitPtIn); error RouterExceededLimitYtIn(uint256 actualYtIn, uint256 limitYtIn); error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay); error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay); error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed); error RouterTimeRangeZero(); error RouterCallbackNotPendleMarket(address caller); error RouterInvalidAction(bytes4 selector); error RouterInvalidFacet(address facet); error RouterKyberSwapDataZero(); // YIELD CONTRACT error YCExpired(); error YCNotExpired(); error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy); error YCNothingToRedeem(); error YCPostExpiryDataNotSet(); error YCNoFloatingSy(); // YieldFactory error YCFactoryInvalidExpiry(); error YCFactoryYieldContractExisted(); error YCFactoryZeroExpiryDivisor(); error YCFactoryZeroTreasury(); error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate); error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate); // SY error SYInvalidTokenIn(address token); error SYInvalidTokenOut(address token); error SYZeroDeposit(); error SYZeroRedeem(); error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut); error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); // SY-specific error SYQiTokenMintFailed(uint256 errCode); error SYQiTokenRedeemFailed(uint256 errCode); error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1); error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax); error SYCurveInvalidPid(); error SYCurve3crvPoolNotFound(); error SYApeDepositAmountTooSmall(uint256 amountDeposited); error SYBalancerInvalidPid(); error SYInvalidRewardToken(address token); error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable); error SYBalancerReentrancy(); error NotFromTrustedRemote(uint16 srcChainId, bytes path); // Liquidity Mining error VCInactivePool(address pool); error VCPoolAlreadyActive(address pool); error VCZeroVePendle(address user); error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight); error VCEpochNotFinalized(uint256 wTime); error VCPoolAlreadyAddAndRemoved(address pool); error VEInvalidNewExpiry(uint256 newExpiry); error VEExceededMaxLockTime(); error VEInsufficientLockTime(); error VENotAllowedReduceExpiry(); error VEZeroAmountLocked(); error VEPositionNotExpired(); error VEZeroPosition(); error VEZeroSlope(uint128 bias, uint128 slope); error VEReceiveOldSupply(uint256 msgTime); error GCNotPendleMarket(address caller); error GCNotVotingController(address caller); error InvalidWTime(uint256 wTime); error ExpiryInThePast(uint256 expiry); error ChainNotSupported(uint256 chainId); error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount); error FDEpochLengthMismatch(); error FDInvalidPool(address pool); error FDPoolAlreadyExists(address pool); error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch); error FDInvalidStartEpoch(uint256 startEpoch); error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime); error FDFutureFunding(uint256 lastFunded, uint256 currentWTime); error BDInvalidEpoch(uint256 epoch, uint256 startTime); // Cross-Chain error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path); error MsgNotFromReceiveEndpoint(address sender); error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee); error ApproxDstExecutionGasNotSet(); error InvalidRetryData(); // GENERIC MSG error ArrayLengthMismatch(); error ArrayEmpty(); error ArrayOutOfBounds(); error ZeroAddress(); error FailedToSendEther(); error InvalidMerkleProof(); error OnlyLayerZeroEndpoint(); error OnlyYT(); error OnlyYCFactory(); error OnlyWhitelisted(); // Swap Aggregator error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual); error UnsupportedSelector(uint256 aggregatorType, bytes4 selector); }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.8.0; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.0; /* solhint-disable private-vars-leading-underscore, reason-string */ library PMath { uint256 internal constant ONE = 1e18; // 18 decimal places int256 internal constant IONE = 1e18; // 18 decimal places function subMax0(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return (a >= b ? a - b : 0); } } function subNoNeg(int256 a, int256 b) internal pure returns (int256) { require(a >= b, "negative"); return a - b; // no unchecked since if b is very negative, a - b might overflow } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; unchecked { return product / ONE; } } function mulDown(int256 a, int256 b) internal pure returns (int256) { int256 product = a * b; unchecked { return product / IONE; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 aInflated = a * ONE; unchecked { return aInflated / b; } } function divDown(int256 a, int256 b) internal pure returns (int256) { int256 aInflated = a * IONE; unchecked { return aInflated / b; } } function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) { return (a + b - 1) / b; } // @author Uniswap function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function square(uint256 x) internal pure returns (uint256) { return x * x; } function squareDown(uint256 x) internal pure returns (uint256) { return mulDown(x, x); } function abs(int256 x) internal pure returns (uint256) { return uint256(x > 0 ? x : -x); } function neg(int256 x) internal pure returns (int256) { return x * (-1); } function neg(uint256 x) internal pure returns (int256) { return Int(x) * (-1); } function max(uint256 x, uint256 y) internal pure returns (uint256) { return (x > y ? x : y); } function max(int256 x, int256 y) internal pure returns (int256) { return (x > y ? x : y); } function min(uint256 x, uint256 y) internal pure returns (uint256) { return (x < y ? x : y); } function min(int256 x, int256 y) internal pure returns (int256) { return (x < y ? x : y); } /*/////////////////////////////////////////////////////////////// SIGNED CASTS //////////////////////////////////////////////////////////////*/ function Int(uint256 x) internal pure returns (int256) { require(x <= uint256(type(int256).max)); return int256(x); } function Int128(int256 x) internal pure returns (int128) { require(type(int128).min <= x && x <= type(int128).max); return int128(x); } function Int128(uint256 x) internal pure returns (int128) { return Int128(Int(x)); } /*/////////////////////////////////////////////////////////////// UNSIGNED CASTS //////////////////////////////////////////////////////////////*/ function Uint(int256 x) internal pure returns (uint256) { require(x >= 0); return uint256(x); } function Uint32(uint256 x) internal pure returns (uint32) { require(x <= type(uint32).max); return uint32(x); } function Uint64(uint256 x) internal pure returns (uint64) { require(x <= type(uint64).max); return uint64(x); } function Uint112(uint256 x) internal pure returns (uint112) { require(x <= type(uint112).max); return uint112(x); } function Uint96(uint256 x) internal pure returns (uint96) { require(x <= type(uint96).max); return uint96(x); } function Uint128(uint256 x) internal pure returns (uint128) { require(x <= type(uint128).max); return uint128(x); } function Uint192(uint256 x) internal pure returns (uint192) { require(x <= type(uint192).max); return uint192(x); } function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps); } function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a >= b && a <= mulDown(b, ONE + eps); } function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a <= b && a >= mulDown(b, ONE - eps); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library MiniHelpers { function isCurrentlyExpired(uint256 expiry) internal view returns (bool) { return (expiry <= block.timestamp); } function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) { return (expiry <= blockTime); } function isTimeInThePast(uint256 timestamp) internal view returns (bool) { return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../libraries/math/PMath.sol"; import "../libraries/math/LogExpMath.sol"; import "../StandardizedYield/PYIndex.sol"; import "../libraries/MiniHelpers.sol"; import "../libraries/Errors.sol"; struct MarketState { int256 totalPt; int256 totalSy; int256 totalLp; address treasury; /// immutable variables /// int256 scalarRoot; uint256 expiry; /// fee data /// uint256 lnFeeRateRoot; uint256 reserveFeePercent; // base 100 /// last trade data /// uint256 lastLnImpliedRate; } // params that are expensive to compute, therefore we pre-compute them struct MarketPreCompute { int256 rateScalar; int256 totalAsset; int256 rateAnchor; int256 feeRate; } // solhint-disable ordering library MarketMathCore { using PMath for uint256; using PMath for int256; using LogExpMath for int256; using PYIndexLib for PYIndex; int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3; int256 internal constant PERCENTAGE_DECIMALS = 100; uint256 internal constant DAY = 86400; uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY; int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100; using PMath for uint256; using PMath for int256; /*/////////////////////////////////////////////////////////////// UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidity( MarketState memory market, uint256 syDesired, uint256 ptDesired, uint256 blockTime ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) { (int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore( market, syDesired.Int(), ptDesired.Int(), blockTime ); lpToReserve = _lpToReserve.Uint(); lpToAccount = _lpToAccount.Uint(); syUsed = _syUsed.Uint(); ptUsed = _ptUsed.Uint(); } function removeLiquidity( MarketState memory market, uint256 lpToRemove ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) { (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int()); netSyToAccount = _syToAccount.Uint(); netPtToAccount = _ptToAccount.Uint(); } function swapExactPtForSy( MarketState memory market, PYIndex index, uint256 exactPtToMarket, uint256 blockTime ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToMarket.neg(), blockTime ); netSyToAccount = _netSyToAccount.Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } function swapSyForExactPt( MarketState memory market, PYIndex index, uint256 exactPtToAccount, uint256 blockTime ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToAccount.Int(), blockTime ); netSyToMarket = _netSyToAccount.neg().Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } /*/////////////////////////////////////////////////////////////// CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidityCore( MarketState memory market, int256 syDesired, int256 ptDesired, uint256 blockTime ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput(); if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ if (market.totalLp == 0) { lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY; lpToReserve = MINIMUM_LIQUIDITY; syUsed = syDesired; ptUsed = ptDesired; } else { int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt; int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy; if (netLpByPt < netLpBySy) { lpToAccount = netLpByPt; ptUsed = ptDesired; syUsed = (market.totalSy * lpToAccount) / market.totalLp; } else { lpToAccount = netLpBySy; syUsed = syDesired; ptUsed = (market.totalPt * lpToAccount) / market.totalLp; } } if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalSy += syUsed; market.totalPt += ptUsed; market.totalLp += lpToAccount + lpToReserve; } function removeLiquidityCore( MarketState memory market, int256 lpToRemove ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp; netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp; if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalLp = market.totalLp.subNoNeg(lpToRemove); market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount); } function executeTradeCore( MarketState memory market, PYIndex index, int256 netPtToAccount, uint256 blockTime ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); if (market.totalPt <= netPtToAccount) revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime); (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ _setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime); } function getMarketPreCompute( MarketState memory market, PYIndex index, uint256 blockTime ) internal pure returns (MarketPreCompute memory res) { if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); uint256 timeToExpiry = market.expiry - blockTime; res.rateScalar = _getRateScalar(market, timeToExpiry); res.totalAsset = index.syToAsset(market.totalSy); if (market.totalPt == 0 || res.totalAsset == 0) revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset); res.rateAnchor = _getRateAnchor( market.totalPt, market.lastLnImpliedRate, res.totalAsset, res.rateScalar, timeToExpiry ); res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry); } function calcTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { int256 preFeeExchangeRate = _getExchangeRate( market.totalPt, comp.totalAsset, comp.rateScalar, comp.rateAnchor, netPtToAccount ); int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg(); int256 fee = comp.feeRate; if (netPtToAccount > 0) { int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee); if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate); fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee); } else { fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg(); } int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS; int256 netAssetToAccount = preFeeAssetToAccount - fee; netSyToAccount = netAssetToAccount < 0 ? index.assetToSyUp(netAssetToAccount) : index.assetToSy(netAssetToAccount); netSyFee = index.assetToSy(fee); netSyToReserve = index.assetToSy(netAssetToReserve); } function _setNewMarketStateTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount, int256 netSyToAccount, int256 netSyToReserve, uint256 blockTime ) internal pure { uint256 timeToExpiry = market.expiry - blockTime; market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve); market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, index.syToAsset(market.totalSy), comp.rateScalar, comp.rateAnchor, timeToExpiry ); if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate(); } function _getRateAnchor( int256 totalPt, uint256 lastLnImpliedRate, int256 totalAsset, int256 rateScalar, uint256 timeToExpiry ) internal pure returns (int256 rateAnchor) { int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry); if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate); { int256 proportion = totalPt.divDown(totalPt + totalAsset); int256 lnProportion = _logProportion(proportion); rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar); } } /// @notice Calculates the current market implied rate. /// @return lnImpliedRate the implied rate function _getLnImpliedRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, uint256 timeToExpiry ) internal pure returns (uint256 lnImpliedRate) { // This will check for exchange rates < PMath.IONE int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0); // exchangeRate >= 1 so its ln >= 0 uint256 lnRate = exchangeRate.ln().Uint(); lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry; } /// @notice Converts an implied rate to an exchange rate given a time to expiry. The /// formula is E = e^rt function _getExchangeRateFromImpliedRate( uint256 lnImpliedRate, uint256 timeToExpiry ) internal pure returns (int256 exchangeRate) { uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME; exchangeRate = LogExpMath.exp(rt.Int()); } function _getExchangeRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, int256 netPtToAccount ) internal pure returns (int256 exchangeRate) { int256 numerator = totalPt.subNoNeg(netPtToAccount); int256 proportion = (numerator.divDown(totalPt + totalAsset)); if (proportion > MAX_MARKET_PROPORTION) revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION); int256 lnProportion = _logProportion(proportion); exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor; if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate); } function _logProportion(int256 proportion) internal pure returns (int256 res) { if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne(); int256 logitP = proportion.divDown(PMath.IONE - proportion); res = logitP.ln(); } function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) { rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int(); if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar); } function setInitialLnImpliedRate( MarketState memory market, PYIndex index, int256 initialAnchor, uint256 blockTime ) internal pure { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ int256 totalAsset = index.syToAsset(market.totalSy); uint256 timeToExpiry = market.expiry - blockTime; int256 rateScalar = _getRateScalar(market, timeToExpiry); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, totalAsset, rateScalar, initialAnchor, timeToExpiry ); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../../interfaces/IPYieldToken.sol"; import "../../interfaces/IPPrincipalToken.sol"; import "./SYUtils.sol"; import "../libraries/math/PMath.sol"; type PYIndex is uint256; library PYIndexLib { using PMath for uint256; using PMath for int256; function newIndex(IPYieldToken YT) internal returns (PYIndex) { return PYIndex.wrap(YT.pyIndexCurrent()); } function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) { return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount); } function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount); } function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount); } function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) { uint256 _index = PYIndex.unwrap(index); return SYUtils.syToAssetUp(_index, syAmount); } function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) { int256 sign = syAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int(); } function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int(); } function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int(); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library SYUtils { uint256 internal constant ONE = 1e18; function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate) / ONE; } function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate + ONE - 1) / ONE; } function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE) / exchangeRate; } function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE + exchangeRate - 1) / exchangeRate; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPGauge { function totalActiveSupply() external view returns (uint256); function activeBalance(address user) external view returns (uint256); // only available for newer factories. please check the verified contracts event RedeemRewards(address indexed user, uint256[] rewardsOut); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPInterestManagerYT { event CollectInterestFee(uint256 amountInterestFee); function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IPPrincipalToken.sol"; import "./IPYieldToken.sol"; import "./IStandardizedYield.sol"; import "./IPGauge.sol"; import "../core/Market/MarketMathCore.sol"; interface IPMarket is IERC20Metadata, IPGauge { event Mint(address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed); event Burn( address indexed receiverSy, address indexed receiverPt, uint256 netLpBurned, uint256 netSyOut, uint256 netPtOut ); event Swap( address indexed caller, address indexed receiver, int256 netPtOut, int256 netSyOut, uint256 netSyFee, uint256 netSyToReserve ); event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate); event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); function mint( address receiver, uint256 netSyDesired, uint256 netPtDesired ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function burn( address receiverSy, address receiverPt, uint256 netLpToBurn ) external returns (uint256 netSyOut, uint256 netPtOut); function swapExactPtForSy( address receiver, uint256 exactPtIn, bytes calldata data ) external returns (uint256 netSyOut, uint256 netSyFee); function swapSyForExactPt( address receiver, uint256 exactPtOut, bytes calldata data ) external returns (uint256 netSyIn, uint256 netSyFee); function redeemRewards(address user) external returns (uint256[] memory); function readState(address router) external view returns (MarketState memory market); function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative); function increaseObservationsCardinalityNext(uint16 cardinalityNext) external; function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT); function getRewardTokens() external view returns (address[] memory); function isExpired() external view returns (bool); function expiry() external view returns (uint256); function observations( uint256 index ) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized); function _storage() external view returns ( int128 totalPt, int128 totalSy, uint96 lastLnImpliedRate, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext ); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPMarketFactoryV3 { event SetOverriddenFee(address indexed router, address indexed market, uint80 lnFeeRateRoot); event CreateNewMarket( address indexed market, address indexed PT, int256 scalarRoot, int256 initialAnchor, uint256 lnFeeRateRoot ); event NewTreasuryAndFeeReserve(address indexed treasury, uint8 reserveFeePercent); function isValidMarket(address market) external view returns (bool); // If this is changed, change the readState function in market as well function getMarketConfig( address market, address router ) external view returns (address treasury, uint80 overriddenFee, uint8 reserveFeePercent); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "./IPMarket.sol"; interface IPMarketV3 is IPMarket { function getNonOverrideLnFeeRateRoot() external view returns (uint80); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IPPrincipalToken is IERC20Metadata { function burnByYT(address user, uint256 amount) external; function mintByYT(address user, uint256 amount) external; function initialize(address _YT) external; function SY() external view returns (address); function YT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later /* * MIT License * =========== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ pragma solidity ^0.8.0; interface IPYieldContractFactory { event CreateYieldContract(address indexed SY, uint256 indexed expiry, address PT, address YT); event SetExpiryDivisor(uint256 newExpiryDivisor); event SetInterestFeeRate(uint256 newInterestFeeRate); event SetRewardFeeRate(uint256 newRewardFeeRate); event SetTreasury(address indexed treasury); function getPT(address SY, uint256 expiry) external view returns (address); function getYT(address SY, uint256 expiry) external view returns (address); function expiryDivisor() external view returns (uint96); function interestFeeRate() external view returns (uint128); function rewardFeeRate() external view returns (uint128); function treasury() external view returns (address); function isPT(address) external view returns (bool); function isYT(address) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IRewardManager.sol"; import "./IPInterestManagerYT.sol"; interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT { event NewInterestIndex(uint256 indexed newIndex); event Mint( address indexed caller, address indexed receiverPT, address indexed receiverYT, uint256 amountSyToMint, uint256 amountPYOut ); event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut); event RedeemRewards(address indexed user, uint256[] amountRewardsOut); event RedeemInterest(address indexed user, uint256 interestOut); event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee); function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut); function redeemPY(address receiver) external returns (uint256 amountSyOut); function redeemPYMulti( address[] calldata receivers, uint256[] calldata amountPYToRedeems ) external returns (uint256[] memory amountSyOuts); function redeemDueInterestAndRewards( address user, bool redeemInterest, bool redeemRewards ) external returns (uint256 interestOut, uint256[] memory rewardsOut); function rewardIndexesCurrent() external returns (uint256[] memory); function pyIndexCurrent() external returns (uint256); function pyIndexStored() external view returns (uint256); function getRewardTokens() external view returns (address[] memory); function SY() external view returns (address); function PT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); function doCacheIndexSameBlock() external view returns (bool); function pyIndexLastUpdatedBlock() external view returns (uint128); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IRewardManager { function userReward(address token, address user) external view returns (uint128 index, uint128 accrued); }
// SPDX-License-Identifier: GPL-3.0-or-later /* * MIT License * =========== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IStandardizedYield is IERC20Metadata { /// @dev Emitted when any base tokens is deposited to mint shares event Deposit( address indexed caller, address indexed receiver, address indexed tokenIn, uint256 amountDeposited, uint256 amountSyOut ); /// @dev Emitted when any shares are redeemed for base tokens event Redeem( address indexed caller, address indexed receiver, address indexed tokenOut, uint256 amountSyToRedeem, uint256 amountTokenOut ); /// @dev check `assetInfo()` for more information enum AssetType { TOKEN, LIQUIDITY } /// @dev Emitted when (`user`) claims their rewards event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts); /** * @notice mints an amount of shares by depositing a base token. * @param receiver shares recipient address * @param tokenIn address of the base tokens to mint shares * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`) * @param minSharesOut reverts if amount of shares minted is lower than this * @return amountSharesOut amount of shares minted * @dev Emits a {Deposit} event * * Requirements: * - (`tokenIn`) must be a valid base token. */ function deposit( address receiver, address tokenIn, uint256 amountTokenToDeposit, uint256 minSharesOut ) external payable returns (uint256 amountSharesOut); /** * @notice redeems an amount of base tokens by burning some shares * @param receiver recipient address * @param amountSharesToRedeem amount of shares to be burned * @param tokenOut address of the base token to be redeemed * @param minTokenOut reverts if amount of base token redeemed is lower than this * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender` * @return amountTokenOut amount of base tokens redeemed * @dev Emits a {Redeem} event * * Requirements: * - (`tokenOut`) must be a valid base token. */ function redeem( address receiver, uint256 amountSharesToRedeem, address tokenOut, uint256 minTokenOut, bool burnFromInternalBalance ) external returns (uint256 amountTokenOut); /** * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy he can mint must be X * exchangeRate / 1e18 * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication & division */ function exchangeRate() external view returns (uint256 res); /** * @notice claims reward for (`user`) * @param user the user receiving their rewards * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` * @dev * Emits a `ClaimRewards` event * See {getRewardTokens} for list of reward tokens */ function claimRewards(address user) external returns (uint256[] memory rewardAmounts); /** * @notice get the amount of unclaimed rewards for (`user`) * @param user the user to check for * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` */ function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts); function rewardIndexesCurrent() external returns (uint256[] memory indexes); function rewardIndexesStored() external view returns (uint256[] memory indexes); /** * @notice returns the list of reward token addresses */ function getRewardTokens() external view returns (address[] memory); /** * @notice returns the address of the underlying yield token */ function yieldToken() external view returns (address); /** * @notice returns all tokens that can mint this SY */ function getTokensIn() external view returns (address[] memory res); /** * @notice returns all tokens that can be redeemed by this SY */ function getTokensOut() external view returns (address[] memory res); function isValidTokenIn(address token) external view returns (bool); function isValidTokenOut(address token) external view returns (bool); function previewDeposit( address tokenIn, uint256 amountTokenToDeposit ) external view returns (uint256 amountSharesOut); function previewRedeem( address tokenOut, uint256 amountSharesToRedeem ) external view returns (uint256 amountTokenOut); /** * @notice This function contains information to interpret what the asset is * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens, 2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain) * @return assetAddress the address of the asset * @return assetDecimals the decimals of the asset */ function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals); }
{ "optimizer": { "enabled": true, "runs": 1000000 }, "viaIR": true, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_yieldContractFactory","type":"address"},{"internalType":"address","name":"_marketCreationCodeContractA","type":"address"},{"internalType":"uint256","name":"_marketCreationCodeSizeA","type":"uint256"},{"internalType":"address","name":"_marketCreationCodeContractB","type":"address"},{"internalType":"uint256","name":"_marketCreationCodeSizeB","type":"uint256"},{"internalType":"address","name":"_treasury","type":"address"},{"internalType":"uint8","name":"_reserveFeePercent","type":"uint8"},{"internalType":"address","name":"_vePendle","type":"address"},{"internalType":"address","name":"_gaugeController","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"MFNotPendleMarket","type":"error"},{"inputs":[],"name":"MarketFactoryExpiredPt","type":"error"},{"inputs":[{"internalType":"int256","name":"initialAnchor","type":"int256"},{"internalType":"int256","name":"minInitialAnchor","type":"int256"}],"name":"MarketFactoryInitialAnchorTooLow","type":"error"},{"inputs":[],"name":"MarketFactoryInvalidPt","type":"error"},{"inputs":[{"internalType":"uint80","name":"lnFeeRateRoot","type":"uint80"},{"internalType":"uint256","name":"maxLnFeeRateRoot","type":"uint256"}],"name":"MarketFactoryLnFeeRateRootTooHigh","type":"error"},{"inputs":[],"name":"MarketFactoryMarketExists","type":"error"},{"inputs":[{"internalType":"uint80","name":"overriddenFee","type":"uint80"},{"internalType":"uint256","name":"marketLnFeeRateRoot","type":"uint256"}],"name":"MarketFactoryOverriddenFeeTooHigh","type":"error"},{"inputs":[{"internalType":"uint8","name":"reserveFeePercent","type":"uint8"},{"internalType":"uint8","name":"maxReserveFeePercent","type":"uint8"}],"name":"MarketFactoryReserveFeePercentTooHigh","type":"error"},{"inputs":[],"name":"MarketFactoryZeroTreasury","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"market","type":"address"},{"indexed":true,"internalType":"address","name":"PT","type":"address"},{"indexed":false,"internalType":"int256","name":"scalarRoot","type":"int256"},{"indexed":false,"internalType":"int256","name":"initialAnchor","type":"int256"},{"indexed":false,"internalType":"uint256","name":"lnFeeRateRoot","type":"uint256"}],"name":"CreateNewMarket","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"treasury","type":"address"},{"indexed":false,"internalType":"uint8","name":"reserveFeePercent","type":"uint8"}],"name":"NewTreasuryAndFeeReserve","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"router","type":"address"},{"indexed":true,"internalType":"address","name":"market","type":"address"},{"indexed":false,"internalType":"uint80","name":"lnFeeRateRoot","type":"uint80"}],"name":"SetOverriddenFee","type":"event"},{"inputs":[],"name":"claimOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"PT","type":"address"},{"internalType":"int256","name":"scalarRoot","type":"int256"},{"internalType":"int256","name":"initialAnchor","type":"int256"},{"internalType":"uint80","name":"lnFeeRateRoot","type":"uint80"}],"name":"createNewMarket","outputs":[{"internalType":"address","name":"market","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"gaugeController","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"market","type":"address"},{"internalType":"address","name":"router","type":"address"}],"name":"getMarketConfig","outputs":[{"internalType":"address","name":"_treasury","type":"address"},{"internalType":"uint80","name":"_overriddenFee","type":"uint80"},{"internalType":"uint8","name":"_reserveFeePercent","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"market","type":"address"}],"name":"isValidMarket","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"marketCreationCodeContractA","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"marketCreationCodeContractB","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"marketCreationCodeSizeA","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"marketCreationCodeSizeB","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxLnFeeRateRoot","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxReserveFeePercent","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minInitialAnchor","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserveFeePercent","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"router","type":"address"},{"internalType":"address","name":"market","type":"address"},{"internalType":"uint80","name":"newFee","type":"uint80"}],"name":"setOverriddenFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTreasury","type":"address"},{"internalType":"uint8","name":"newReserveFeePercent","type":"uint8"}],"name":"setTreasuryAndFeeReserve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"},{"internalType":"bool","name":"direct","type":"bool"},{"internalType":"bool","name":"renounce","type":"bool"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vePendle","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"yieldContractFactory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
61018034620003ad57601f62001cb438819003918201601f19168301916001600160401b03831184841017620003b25780849261012094604052833981010312620003ad576200004f81620003c8565b906200005e60208201620003c8565b906040810151926200007360608301620003c8565b916080810151926200008860a08301620003c8565b9360c08301519160ff83168303620003ad57620000b7610100620000af60e08701620003c8565b9501620003c8565b976001549560ff8760a81c1615968780986200039c575b801562000380575b15620003245760ff60a01b198116600160a01b17600155876200030b575b50610100526101609766ad566553da1bc3895260805260a05260c05260e0526001549360ff8560a81c1615620002b257600080546001600160a01b031916331790556001600160a01b0316908115620002a057606460ff8216116200027d57603280546001600160a81b031916831760a083901b60ff60a01b1617905560405160ff90911681527fc612910a1561af820dd8961721344b949df6bfcb3cd8dda1f87a5f25e80852cb90602090a26101205261014093845262000241575b50604051906118d69283620003de84396080518381816107ee01526112a5015260a0518381816104310152611283015260c051838181610f300152611261015260e051838181610e36015261123f015261010051838181610a4701526110120152610120518381816109d80152611199015251828181610b0801526111c1015251818181610780015261108f0152f35b60ff60a81b19166001557f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb3847402498602060405160018152a138620001b1565b604051635b668c6b60e11b815260ff909116600482015260646024820152604490fd5b604051630af2e4bb60e21b8152600490fd5b60405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608490fd5b61ffff60a01b191661010160a01b1760015538620000f4565b60405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b6064820152608490fd5b50303b158015620000d65750600160ff8260a01c1614620000d6565b50600160ff8260a01c1610620000ce565b600080fd5b634e487b7160e01b600052604160045260246000fd5b51906001600160a01b0382168203620003ad5756fe6080604052600436101561001257600080fd5b60003560e01c8063078dfbe7146101675780631feec24414610162578063349097aa1461015d57806345fccd4f146101585780634e71e0c8146101535780634facfd7a1461014e578063508327971461014957806358e6309f146101445780635c098c111461013f57806361d027b31461013a57806382dabb211461013557806387a409a2146101305780638da5cb5b1461012b57806399eecb3b14610126578063a3a4d69a14610121578063c821db0d1461011c578063cb7111d814610117578063e30c397814610112578063e50bf2dc1461010d578063ec8a68f2146101085763f661cf6b1461010357600080fd5b610f54565b610ee5565b610eab565b610e59565b610e00565b610b81565b610b2c565b610abd565b610a6b565b6109fc565b61098d565b61093b565b610881565b610812565b6107a3565b61074a565b610600565b610454565b6103fb565b6103b9565b6101c1565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361018f57565b600080fd5b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361018f57565b8015150361018f57565b3461018f5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f576101f861016c565b60243590610205826101b7565b60443590610212826101b7565b73ffffffffffffffffffffffffffffffffffffffff60009361023882865416331461150b565b1561038a57811691821590811591610382575b5015610324576102f49161028f610276855473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1690565b7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a373ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff00000000000000000000000000000000000000006000541617600055565b6103217fffffffffffffffffffffffff000000000000000000000000000000000000000060015416600155565b80f35b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f4f776e61626c653a207a65726f206164647265737300000000000000000000006044820152fd5b90503861024b565b9150167fffffffffffffffffffffffff0000000000000000000000000000000000000000600154161760015580f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060ff60325460a01c16604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b3461018f5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5761048b61016c565b60243560ff81169182820361018f5773ffffffffffffffffffffffffffffffffffffffff6104be8160005416331461150b565b81169283156105d6576064811161059e57507fc612910a1561af820dd8961721344b949df6bfcb3cd8dda1f87a5f25e80852cb9161053a6105999273ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff00000000000000000000000000000000000000006032541617603255565b610585817fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff74ff00000000000000000000000000000000000000006032549260a01b16911617603255565b60405160ff90911681529081906020820190565b0390a2005b604490604051907fb6cd18d6000000000000000000000000000000000000000000000000000000008252600482015260646024820152fd5b60046040517f2bcb92ec000000000000000000000000000000000000000000000000000000008152fd5b3461018f576000807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126107475773ffffffffffffffffffffffffffffffffffffffff80600154168033036106e957806106be928454167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a373ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff00000000000000000000000000000000000000006000541617600055565b7fffffffffffffffffffffffff00000000000000000000000000000000000000006001541660015580f35b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f4f776e61626c653a2063616c6c657220213d2070656e64696e67206f776e65726044820152fd5b80fd5b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461018f5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602061087773ffffffffffffffffffffffffffffffffffffffff61086361016c565b166000526036602052604060002054151590565b6040519015158152f35b3461018f5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760606108ba61016c565b60ff6108c4610194565b9169ffffffffffffffffffff6109216032549273ffffffffffffffffffffffffffffffffffffffff809616600052603360205260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b54166040519382168452602084015260a01c166040820152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602073ffffffffffffffffffffffffffffffffffffffff60325416604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602073ffffffffffffffffffffffffffffffffffffffff60005416604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f576020604051670de0b6b3a76400008152f35b69ffffffffffffffffffff81160361018f57565b3461018f5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57610bb861016c565b610bc0610194565b9060443590610bce82610b6d565b73ffffffffffffffffffffffffffffffffffffffff90610bf38260005416331461150b565b81841693610c15610c11866000526036602052604060002054151590565b1590565b610db7576040517fe4f8b2e9000000000000000000000000000000000000000000000000000000008152602081600481895afa908115610db257600091610d83575b5069ffffffffffffffffffff8082169086161015610d3c575090610d2084610cea7fea7fdf3abb8ced24e7f9c441f3e98071fb5ea1f9278e2b9202c4a6d306cce59f9594610cc58573ffffffffffffffffffffffffffffffffffffffff166000526033602052604060002090565b9073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b9069ffffffffffffffffffff167fffffffffffffffffffffffffffffffffffffffffffff00000000000000000000825416179055565b60405169ffffffffffffffffffff9490941684521691602090a3005b6040517f929bb5c000000000000000000000000000000000000000000000000000000000815269ffffffffffffffffffff8681166004830152919091166024820152604490fd5b610da5915060203d602011610dab575b610d9d818361159f565b8101906115e5565b38610c57565b503d610d93565b6115fd565b6040517f5e904c9b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff919091166004820152602490fd5b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602073ffffffffffffffffffffffffffffffffffffffff60015416604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405160648152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461018f5760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57610f8b61016c565b602435606435604435610f9d82610b6d565b73ffffffffffffffffffffffffffffffffffffffff906040928351927f18b7373d000000000000000000000000000000000000000000000000000000008452602060049481818061100d8c8a830191909173ffffffffffffffffffffffffffffffffffffffff6020820193169052565b0381867f0000000000000000000000000000000000000000000000000000000000000000165afa908115610db2576000916114ee575b50156114c6578188169486517f2f13b60c000000000000000000000000000000000000000000000000000000008152828183818a5afa908115610db257600091611499575b50611472577f00000000000000000000000000000000000000000000000000000000000000008069ffffffffffffffffffff8616116114285750826111426111288661110d896110fe8f8f906110fe9073ffffffffffffffffffffffffffffffffffffffff166000526034602052604060002090565b90600052602052604060002090565b9069ffffffffffffffffffff16600052602052604060002090565b5473ffffffffffffffffffffffffffffffffffffffff1690565b1661140157670de0b6b3a764000085126113bf5750855173ffffffffffffffffffffffffffffffffffffffff808a16928201928352602083018990526040830186905269ffffffffffffffffffff851660608401527f0000000000000000000000000000000000000000000000000000000000000000811660808401527f00000000000000000000000000000000000000000000000000000000000000001660a083015296976110fe97611339926112f991869161110d9189918d918f916112d0916112ca9161123d90829060c001037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810183528261159f565b7f0000000000000000000000000000000000000000000000000000000000000000907f0000000000000000000000000000000000000000000000000000000000000000907f0000000000000000000000000000000000000000000000000000000000000000907f00000000000000000000000000000000000000000000000000000000000000009061164d565b46611702565b9d8e9773ffffffffffffffffffffffffffffffffffffffff166000526034602052604060002090565b9073ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff0000000000000000000000000000000000000000825416179055565b851691611348610c11846117ee565b6113ba578451968752602087015269ffffffffffffffffffff1660408601526113b6947fae811fae25e2770b6bd1dcb1475657e8c3a976f91d1ebf081271db08eef920af90606090a35173ffffffffffffffffffffffffffffffffffffffff90911681529081906020820190565b0390f35b61161e565b86517f7b48ef70000000000000000000000000000000000000000000000000000000008152908101858152670de0b6b3a7640000602082015281906040010390fd5b86517f4a588866000000000000000000000000000000000000000000000000000000008152fd5b87517f163cca2a00000000000000000000000000000000000000000000000000000000815269ffffffffffffffffffff861692810192835260208301919091529081906040010390fd5b86517fe29ecf15000000000000000000000000000000000000000000000000000000008152fd5b6114b99150833d85116114bf575b6114b1818361159f565b810190611609565b38611088565b503d6114a7565b8486517f781eae2d000000000000000000000000000000000000000000000000000000008152fd5b6115059150823d84116114bf576114b1818361159f565b38611043565b1561151257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176115e057604052565b611570565b9081602091031261018f57516115fa81610b6d565b90565b6040513d6000823e3d90fd5b9081602091031261018f57516115fa816101b7565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052600160045260246000fd5b906000939594928381019383519086828701996040519a858c9660209b8c998a8a8682809d9881990101604052815201903c8c0101903c920192860101925b808210156116cc57907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91036101000a0190811990511690825116179052565b90919281807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0928651815201940192019061168c565b90805115611790576020815191016000f59073ffffffffffffffffffffffffffffffffffffffff82161561173257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601960248201527f437265617465323a204661696c6564206f6e206465706c6f79000000000000006044820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f437265617465323a2062797465636f6465206c656e677468206973207a65726f6044820152fd5b90600091808352603660205260408320541560001461189d57603554680100000000000000008110156115e0576001810180603555811015611870576035829394527fcfa4bec1d3298408bb5afcfcd9c430549c5b31f8aa5c5848151c0a55f473c34d015561186a603554916000526036602052604060002090565b55600190565b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526032600452fd5b5056fea2646970667358221220630135829888103eab20a0324903a522e798accefcc33b183fb442d58c76dbbf64736f6c63430008170033000000000000000000000000df3601014686674e53d1fa52f7602525483f91220000000000000000000000006527aed6d1b9a30e7012bbcbd664202ca3b4ee5700000000000000000000000000000000000000000000000000000000000035d8000000000000000000000000ed3b45535d53127aaa781e731cf7cf87f8ca45b900000000000000000000000000000000000000000000000000000000000035d90000000000000000000000008270400d528c34e1596ef367eedec99080a1b59200000000000000000000000000000000000000000000000000000000000000500000000000000000000000004f30a9d41b80ecc5b94306ab4364951ae317021000000000000000000000000047d74516b33ed5d70dde7119a40839f6fcc24e57
Deployed Bytecode
0x6080604052600436101561001257600080fd5b60003560e01c8063078dfbe7146101675780631feec24414610162578063349097aa1461015d57806345fccd4f146101585780634e71e0c8146101535780634facfd7a1461014e578063508327971461014957806358e6309f146101445780635c098c111461013f57806361d027b31461013a57806382dabb211461013557806387a409a2146101305780638da5cb5b1461012b57806399eecb3b14610126578063a3a4d69a14610121578063c821db0d1461011c578063cb7111d814610117578063e30c397814610112578063e50bf2dc1461010d578063ec8a68f2146101085763f661cf6b1461010357600080fd5b610f54565b610ee5565b610eab565b610e59565b610e00565b610b81565b610b2c565b610abd565b610a6b565b6109fc565b61098d565b61093b565b610881565b610812565b6107a3565b61074a565b610600565b610454565b6103fb565b6103b9565b6101c1565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361018f57565b600080fd5b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361018f57565b8015150361018f57565b3461018f5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f576101f861016c565b60243590610205826101b7565b60443590610212826101b7565b73ffffffffffffffffffffffffffffffffffffffff60009361023882865416331461150b565b1561038a57811691821590811591610382575b5015610324576102f49161028f610276855473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1690565b7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a373ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff00000000000000000000000000000000000000006000541617600055565b6103217fffffffffffffffffffffffff000000000000000000000000000000000000000060015416600155565b80f35b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f4f776e61626c653a207a65726f206164647265737300000000000000000000006044820152fd5b90503861024b565b9150167fffffffffffffffffffffffff0000000000000000000000000000000000000000600154161760015580f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060ff60325460a01c16604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760206040517f00000000000000000000000000000000000000000000000000000000000035d88152f35b3461018f5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5761048b61016c565b60243560ff81169182820361018f5773ffffffffffffffffffffffffffffffffffffffff6104be8160005416331461150b565b81169283156105d6576064811161059e57507fc612910a1561af820dd8961721344b949df6bfcb3cd8dda1f87a5f25e80852cb9161053a6105999273ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff00000000000000000000000000000000000000006032541617603255565b610585817fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff74ff00000000000000000000000000000000000000006032549260a01b16911617603255565b60405160ff90911681529081906020820190565b0390a2005b604490604051907fb6cd18d6000000000000000000000000000000000000000000000000000000008252600482015260646024820152fd5b60046040517f2bcb92ec000000000000000000000000000000000000000000000000000000008152fd5b3461018f576000807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126107475773ffffffffffffffffffffffffffffffffffffffff80600154168033036106e957806106be928454167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a373ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff00000000000000000000000000000000000000006000541617600055565b7fffffffffffffffffffffffff00000000000000000000000000000000000000006001541660015580f35b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f4f776e61626c653a2063616c6c657220213d2070656e64696e67206f776e65726044820152fd5b80fd5b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760206040517f00000000000000000000000000000000000000000000000000ad566553da1bc38152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000006527aed6d1b9a30e7012bbcbd664202ca3b4ee57168152f35b3461018f5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602061087773ffffffffffffffffffffffffffffffffffffffff61086361016c565b166000526036602052604060002054151590565b6040519015158152f35b3461018f5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760606108ba61016c565b60ff6108c4610194565b9169ffffffffffffffffffff6109216032549273ffffffffffffffffffffffffffffffffffffffff809616600052603360205260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b54166040519382168452602084015260a01c166040820152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602073ffffffffffffffffffffffffffffffffffffffff60325416604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000004f30a9d41b80ecc5b94306ab4364951ae3170210168152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000df3601014686674e53d1fa52f7602525483f9122168152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602073ffffffffffffffffffffffffffffffffffffffff60005416604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000047d74516b33ed5d70dde7119a40839f6fcc24e57168152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f576020604051670de0b6b3a76400008152f35b69ffffffffffffffffffff81160361018f57565b3461018f5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57610bb861016c565b610bc0610194565b9060443590610bce82610b6d565b73ffffffffffffffffffffffffffffffffffffffff90610bf38260005416331461150b565b81841693610c15610c11866000526036602052604060002054151590565b1590565b610db7576040517fe4f8b2e9000000000000000000000000000000000000000000000000000000008152602081600481895afa908115610db257600091610d83575b5069ffffffffffffffffffff8082169086161015610d3c575090610d2084610cea7fea7fdf3abb8ced24e7f9c441f3e98071fb5ea1f9278e2b9202c4a6d306cce59f9594610cc58573ffffffffffffffffffffffffffffffffffffffff166000526033602052604060002090565b9073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b9069ffffffffffffffffffff167fffffffffffffffffffffffffffffffffffffffffffff00000000000000000000825416179055565b60405169ffffffffffffffffffff9490941684521691602090a3005b6040517f929bb5c000000000000000000000000000000000000000000000000000000000815269ffffffffffffffffffff8681166004830152919091166024820152604490fd5b610da5915060203d602011610dab575b610d9d818361159f565b8101906115e5565b38610c57565b503d610d93565b6115fd565b6040517f5e904c9b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff919091166004820152602490fd5b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f5760206040517f00000000000000000000000000000000000000000000000000000000000035d98152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602073ffffffffffffffffffffffffffffffffffffffff60015416604051908152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405160648152f35b3461018f5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ed3b45535d53127aaa781e731cf7cf87f8ca45b9168152f35b3461018f5760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018f57610f8b61016c565b602435606435604435610f9d82610b6d565b73ffffffffffffffffffffffffffffffffffffffff906040928351927f18b7373d000000000000000000000000000000000000000000000000000000008452602060049481818061100d8c8a830191909173ffffffffffffffffffffffffffffffffffffffff6020820193169052565b0381867f000000000000000000000000df3601014686674e53d1fa52f7602525483f9122165afa908115610db2576000916114ee575b50156114c6578188169486517f2f13b60c000000000000000000000000000000000000000000000000000000008152828183818a5afa908115610db257600091611499575b50611472577f00000000000000000000000000000000000000000000000000ad566553da1bc38069ffffffffffffffffffff8616116114285750826111426111288661110d896110fe8f8f906110fe9073ffffffffffffffffffffffffffffffffffffffff166000526034602052604060002090565b90600052602052604060002090565b9069ffffffffffffffffffff16600052602052604060002090565b5473ffffffffffffffffffffffffffffffffffffffff1690565b1661140157670de0b6b3a764000085126113bf5750855173ffffffffffffffffffffffffffffffffffffffff808a16928201928352602083018990526040830186905269ffffffffffffffffffff851660608401527f0000000000000000000000004f30a9d41b80ecc5b94306ab4364951ae3170210811660808401527f00000000000000000000000047d74516b33ed5d70dde7119a40839f6fcc24e571660a083015296976110fe97611339926112f991869161110d9189918d918f916112d0916112ca9161123d90829060c001037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810183528261159f565b7f00000000000000000000000000000000000000000000000000000000000035d9907f000000000000000000000000ed3b45535d53127aaa781e731cf7cf87f8ca45b9907f00000000000000000000000000000000000000000000000000000000000035d8907f0000000000000000000000006527aed6d1b9a30e7012bbcbd664202ca3b4ee579061164d565b46611702565b9d8e9773ffffffffffffffffffffffffffffffffffffffff166000526034602052604060002090565b9073ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffff0000000000000000000000000000000000000000825416179055565b851691611348610c11846117ee565b6113ba578451968752602087015269ffffffffffffffffffff1660408601526113b6947fae811fae25e2770b6bd1dcb1475657e8c3a976f91d1ebf081271db08eef920af90606090a35173ffffffffffffffffffffffffffffffffffffffff90911681529081906020820190565b0390f35b61161e565b86517f7b48ef70000000000000000000000000000000000000000000000000000000008152908101858152670de0b6b3a7640000602082015281906040010390fd5b86517f4a588866000000000000000000000000000000000000000000000000000000008152fd5b87517f163cca2a00000000000000000000000000000000000000000000000000000000815269ffffffffffffffffffff861692810192835260208301919091529081906040010390fd5b86517fe29ecf15000000000000000000000000000000000000000000000000000000008152fd5b6114b99150833d85116114bf575b6114b1818361159f565b810190611609565b38611088565b503d6114a7565b8486517f781eae2d000000000000000000000000000000000000000000000000000000008152fd5b6115059150823d84116114bf576114b1818361159f565b38611043565b1561151257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176115e057604052565b611570565b9081602091031261018f57516115fa81610b6d565b90565b6040513d6000823e3d90fd5b9081602091031261018f57516115fa816101b7565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052600160045260246000fd5b906000939594928381019383519086828701996040519a858c9660209b8c998a8a8682809d9881990101604052815201903c8c0101903c920192860101925b808210156116cc57907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91036101000a0190811990511690825116179052565b90919281807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0928651815201940192019061168c565b90805115611790576020815191016000f59073ffffffffffffffffffffffffffffffffffffffff82161561173257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601960248201527f437265617465323a204661696c6564206f6e206465706c6f79000000000000006044820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f437265617465323a2062797465636f6465206c656e677468206973207a65726f6044820152fd5b90600091808352603660205260408320541560001461189d57603554680100000000000000008110156115e0576001810180603555811015611870576035829394527fcfa4bec1d3298408bb5afcfcd9c430549c5b31f8aa5c5848151c0a55f473c34d015561186a603554916000526036602052604060002090565b55600190565b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526032600452fd5b5056fea2646970667358221220630135829888103eab20a0324903a522e798accefcc33b183fb442d58c76dbbf64736f6c63430008170033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000df3601014686674e53d1fa52f7602525483f91220000000000000000000000006527aed6d1b9a30e7012bbcbd664202ca3b4ee5700000000000000000000000000000000000000000000000000000000000035d8000000000000000000000000ed3b45535d53127aaa781e731cf7cf87f8ca45b900000000000000000000000000000000000000000000000000000000000035d90000000000000000000000008270400d528c34e1596ef367eedec99080a1b59200000000000000000000000000000000000000000000000000000000000000500000000000000000000000004f30a9d41b80ecc5b94306ab4364951ae317021000000000000000000000000047d74516b33ed5d70dde7119a40839f6fcc24e57
-----Decoded View---------------
Arg [0] : _yieldContractFactory (address): 0xdF3601014686674e53d1Fa52F7602525483F9122
Arg [1] : _marketCreationCodeContractA (address): 0x6527Aed6D1B9A30e7012bBcbd664202CA3B4eE57
Arg [2] : _marketCreationCodeSizeA (uint256): 13784
Arg [3] : _marketCreationCodeContractB (address): 0xED3b45535d53127aaA781E731CF7cF87F8ca45B9
Arg [4] : _marketCreationCodeSizeB (uint256): 13785
Arg [5] : _treasury (address): 0x8270400d528c34e1596EF367eeDEc99080A1b592
Arg [6] : _reserveFeePercent (uint8): 80
Arg [7] : _vePendle (address): 0x4f30A9D41B80ecC5B94306AB4364951AE3170210
Arg [8] : _gaugeController (address): 0x47D74516B33eD5D70ddE7119A40839f6Fcc24e57
-----Encoded View---------------
9 Constructor Arguments found :
Arg [0] : 000000000000000000000000df3601014686674e53d1fa52f7602525483f9122
Arg [1] : 0000000000000000000000006527aed6d1b9a30e7012bbcbd664202ca3b4ee57
Arg [2] : 00000000000000000000000000000000000000000000000000000000000035d8
Arg [3] : 000000000000000000000000ed3b45535d53127aaa781e731cf7cf87f8ca45b9
Arg [4] : 00000000000000000000000000000000000000000000000000000000000035d9
Arg [5] : 0000000000000000000000008270400d528c34e1596ef367eedec99080a1b592
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000050
Arg [7] : 0000000000000000000000004f30a9d41b80ecc5b94306ab4364951ae3170210
Arg [8] : 00000000000000000000000047d74516b33ed5d70dde7119a40839f6fcc24e57
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.