More Info
Private Name Tags
ContractCreator
Latest 19 from a total of 19 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw | 18474562 | 391 days ago | IN | 0 ETH | 0.00069685 | ||||
Withdraw | 18257124 | 422 days ago | IN | 0 ETH | 0.00058288 | ||||
Withdraw | 18195894 | 430 days ago | IN | 0 ETH | 0.00082534 | ||||
Withdraw | 18195888 | 430 days ago | IN | 0 ETH | 0.00082735 | ||||
Withdraw | 18155224 | 436 days ago | IN | 0 ETH | 0.0006945 | ||||
Withdraw | 18150101 | 437 days ago | IN | 0 ETH | 0.00075063 | ||||
Withdraw | 18108830 | 443 days ago | IN | 0 ETH | 0.0008798 | ||||
Withdraw | 17490250 | 529 days ago | IN | 0 ETH | 0.00097339 | ||||
Withdraw | 17156288 | 576 days ago | IN | 0 ETH | 0.00229674 | ||||
Withdraw | 16800800 | 626 days ago | IN | 0 ETH | 0.00233922 | ||||
Withdraw | 16757996 | 633 days ago | IN | 0 ETH | 0.00236318 | ||||
Withdraw | 16757948 | 633 days ago | IN | 0 ETH | 0.00231059 | ||||
Transfer | 16757940 | 633 days ago | IN | 2.5 ETH | 0.00064621 | ||||
Withdraw | 16757662 | 633 days ago | IN | 0 ETH | 0.00361934 | ||||
Transfer | 16757404 | 633 days ago | IN | 10 ETH | 0.00083569 | ||||
Transfer | 16757384 | 633 days ago | IN | 5 ETH | 0.00089544 | ||||
Transfer | 16757379 | 633 days ago | IN | 0.05 ETH | 0.00095785 | ||||
Withdraw | 16666053 | 645 days ago | IN | 0 ETH | 0.00120152 | ||||
Transfer | 16666047 | 645 days ago | IN | 0.005 ETH | 0.00095354 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
18474562 | 391 days ago | 0.004641 ETH | ||||
18402270 | 401 days ago | 0.0012 ETH | ||||
18350371 | 409 days ago | 0.00105 ETH | ||||
18330075 | 412 days ago | 0.00105 ETH | ||||
18325016 | 412 days ago | 0.00111 ETH | ||||
18280202 | 419 days ago | 0.00111 ETH | ||||
18272894 | 420 days ago | 0.00111 ETH | ||||
18257124 | 422 days ago | 0.03240098 ETH | ||||
18245087 | 423 days ago | 0.00118492 ETH | ||||
18234758 | 425 days ago | 0.0012 ETH | ||||
18231201 | 425 days ago | 0.00225 ETH | ||||
18223842 | 426 days ago | 0.00375 ETH | ||||
18220515 | 427 days ago | 0.00165 ETH | ||||
18217450 | 427 days ago | 0.00159 ETH | ||||
18213427 | 428 days ago | 0.00159 ETH | ||||
18206850 | 429 days ago | 0.00055 ETH | ||||
18206362 | 429 days ago | 0.003 ETH | ||||
18203970 | 429 days ago | 0.00075 ETH | ||||
18202953 | 429 days ago | 0.00074992 ETH | ||||
18199955 | 430 days ago | 0.0017925 ETH | ||||
18199832 | 430 days ago | 0.0043125 ETH | ||||
18195955 | 430 days ago | 0.00074985 ETH | ||||
18195894 | 430 days ago | 0.00260772 ETH | ||||
18195888 | 430 days ago | 0.00260772 ETH | ||||
18193876 | 431 days ago | 0.001125 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xd912512eca388daaaf14ee9b8cd9471a789ec66e
Contract Name:
Buffer2
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 10000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
///////////////////////////////////////////////////////////////////////////////////// // // SPDX-License-Identifier: MIT // // ███ ███ ██████ ███ ██ ███████ ██ ██ ██████ ██ ██████ ███████ // ████ ████ ██ ██ ████ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ // ██ ████ ██ ██ ██ ██ ██ ██ █████ ████ ██████ ██ ██████ █████ // ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ // ██ ██ ██████ ██ ████ ███████ ██ ██ ██ ██ ███████ // // // ██████ ██ ██ ███████ ███████ ███████ ██████ ██████ // ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ // ██████ ██ ██ █████ █████ █████ ██████ █████ // ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ // ██████ ██████ ██ ██ ███████ ██ ██ ███████ // // https://moneypipe.xyz // ///////////////////////////////////////////////////////////////////////////////////// pragma solidity ^0.8.17; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; contract Buffer2 is Initializable { using SafeERC20 for IERC20; mapping (address => uint) public withdrawn; // total ETH withdrawn mapping (address => mapping (address => uint)) public token_withdrawn; // user ERC20 token withdrawn (for each token addressand user account) mapping (address => uint) public total_token_withdrawn; // total ERC20 token withdrawn (for each address) bytes32 private root; // Merkle root bytes32 private id; // IPFS cid hash digest bool public encoding; // IPFS cid encoding uint public totalReceived; // total ETH received // initialize the buffer pipe with merkle root and CID of the JSON that stores the members list (which will be used to construct the merkle tree) function initialize(bytes32 _root, bytes32 _cidDigest, bool _cidEncoding) initializer public { root = _root; id = _cidDigest; encoding = _cidEncoding; } // track totalreceived whenever an ETH payment is made receive () external payable { totalReceived += msg.value; } // account: the account to withdraw to (must be part of the merkle tree // amount: the amount (out of 10^12) of shares in the split owned by the account // proof: merkle proof containing the account and split // tokens: an array of ERC20 addresses // - if empty, only withdraw ETH // - if not empty, withdraw from the ETH balance AND from the balance for the specified ERC20 tokens function withdraw(address account, uint256 amount, bytes32[] calldata proof, address[] calldata tokens) external { // 1. verify merkle proof bytes32 hash = keccak256(abi.encodePacked(account, amount)); for (uint256 i = 0; i < proof.length; i++) { bytes32 proofElement = proof[i]; if (hash <= proofElement) { hash = _hash(hash, proofElement); } else { hash = _hash(proofElement, hash); } } require(hash == root, "1"); // 2. calculate amount to withdraw based on "amount" (out of 1,000,000,000,000) uint payment = totalReceived * amount / 10**12 - withdrawn[account]; withdrawn[account] += payment; // 3. withdraw ETH _transfer(account, payment); // 4. withdraw erc20 tokens for(uint i=0; i<tokens.length; i++) { address token = tokens[i]; uint total_token_received = IERC20(token).balanceOf(address(this)) + total_token_withdrawn[token]; uint token_payment = total_token_received * amount / 10**12 - token_withdrawn[token][account]; token_withdrawn[token][account] += token_payment; total_token_withdrawn[token] += token_payment; IERC20(token).safeTransfer(account, token_payment); } } // Calculate IPFS CID from id and encoding function cid() public view returns (string memory) { bytes32 data = bytes32(id); bytes memory alphabet = bytes("abcdefghijklmnopqrstuvwxyz234567"); bytes memory _cid = bytes(encoding ? "bafybei" : "bafkrei"); uint bits = 2; uint buffer = 24121888; uint bitsPerChar = 5; uint mask = uint((1 << bitsPerChar) - 1); for(uint i=0; i<data.length; ++i) { bytes1 char = bytes1(bytes32(id << (8*i))); buffer = (uint32(buffer) << 8) | uint(uint8(char)); bits += 8; while (bits > bitsPerChar) { bits -= bitsPerChar; _cid = abi.encodePacked(_cid, alphabet[mask & (buffer >> bits)]); } } if (bits > 0) { _cid = abi.encodePacked(_cid, alphabet[mask & (buffer << (bitsPerChar-bits))]); } return string(_cid); } // memory optimization from: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3039 function _hash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } // adopted from https://github.com/lexDAO/Kali/blob/main/contracts/libraries/SafeTransferLib.sol error TransferFailed(); function _transfer(address to, uint256 amount) internal { bool callStatus; assembly { callStatus := call(gas(), to, amount, 0, 0, 0, 0) } if (!callStatus) revert TransferFailed(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
{ "optimizer": { "enabled": true, "runs": 10000 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
[{"inputs":[],"name":"TransferFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"cid","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"encoding","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_root","type":"bytes32"},{"internalType":"bytes32","name":"_cidDigest","type":"bytes32"},{"internalType":"bool","name":"_cidEncoding","type":"bool"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"token_withdrawn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReceived","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"total_token_withdrawn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"withdrawn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.