Overview
ETH Balance
0 ETH
Eth Value
$0.00Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
BytesLib
Compiler Version
v0.5.11+commit.c082d0b4
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity)
/**
*Submitted for verification at Etherscan.io on 2020-05-30
*/
/**
Matic network contracts
*/
pragma solidity ^0.5.2;
/**
* @title SafeMath
* @dev Unsigned math operations with safety checks that revert on error
*/
library SafeMath {
/**
* @dev Multiplies two unsigned integers, reverts on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
/**
* @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
/**
* @dev Adds two unsigned integers, reverts on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
/**
* @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo),
* reverts when dividing by zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
library BytesLib {
function concat(bytes memory _preBytes, bytes memory _postBytes)
internal
pure
returns (bytes memory)
{
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(
0x40,
and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
)
)
}
return tempBytes;
}
function slice(bytes memory _bytes, uint256 _start, uint256 _length)
internal
pure
returns (bytes memory)
{
require(_bytes.length >= (_start + _length));
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(
add(tempBytes, lengthmod),
mul(0x20, iszero(lengthmod))
)
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(
add(
add(_bytes, lengthmod),
mul(0x20, iszero(lengthmod))
),
_start
)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
// Pad a bytes array to 32 bytes
function leftPad(bytes memory _bytes) internal pure returns (bytes memory) {
// may underflow if bytes.length < 32. Hence using SafeMath.sub
bytes memory newBytes = new bytes(SafeMath.sub(32, _bytes.length));
return concat(newBytes, _bytes);
}
function toBytes32(bytes memory b) internal pure returns (bytes32) {
require(b.length >= 32, "Bytes array should atleast be 32 bytes");
bytes32 out;
for (uint256 i = 0; i < 32; i++) {
out |= bytes32(b[i] & 0xFF) >> (i * 8);
}
return out;
}
function toBytes4(bytes memory b) internal pure returns (bytes4 result) {
assembly {
result := mload(add(b, 32))
}
}
function fromBytes32(bytes32 x) internal pure returns (bytes memory) {
bytes memory b = new bytes(32);
for (uint256 i = 0; i < 32; i++) {
b[i] = bytes1(uint8(uint256(x) / (2**(8 * (31 - i)))));
}
return b;
}
function fromUint(uint256 _num) internal pure returns (bytes memory _ret) {
_ret = new bytes(32);
assembly {
mstore(add(_ret, 32), _num)
}
}
function toUint(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint256)
{
require(_bytes.length >= (_start + 32));
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toAddress(bytes memory _bytes, uint256 _start)
internal
pure
returns (address)
{
require(_bytes.length >= (_start + 20));
address tempAddress;
assembly {
tempAddress := div(
mload(add(add(_bytes, 0x20), _start)),
0x1000000000000000000000000
)
}
return tempAddress;
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract Creation Code
60556023600b82828239805160001a607314601657fe5b30600052607381538281f3fe73000000000000000000000000000000000000000030146080604052600080fdfea265627a7a723158200e26bbeb9debf42d7f4925a212392ab0b8a6972aa1f03b9b052c34cd8f0a18aa64736f6c634300050b0032
Deployed Bytecode
0x731d21facfc8cad068ef0cbc87fdacdfb20d7e241730146080604052600080fdfea265627a7a723158200e26bbeb9debf42d7f4925a212392ab0b8a6972aa1f03b9b052c34cd8f0a18aa64736f6c634300050b0032
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.