Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 6 from a total of 6 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw Fund | 19416155 | 247 days ago | IN | 0 ETH | 0.00161534 | ||||
Transfer Ownersh... | 19388298 | 251 days ago | IN | 0 ETH | 0.00274857 | ||||
Transfer | 17726617 | 484 days ago | IN | 0.1 ETH | 0.00035996 | ||||
Transfer | 17726440 | 484 days ago | IN | 0.1 ETH | 0.00039598 | ||||
Set Signer | 17726072 | 484 days ago | IN | 0 ETH | 0.00046894 | ||||
0x60806040 | 17725950 | 484 days ago | IN | 0 ETH | 0.07447518 |
Loading...
Loading
Contract Name:
FeralfileVault
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "./FeralfileSaleData.sol"; import "./ECDSASigner.sol"; contract FeralfileVault is Ownable, FeralfileSaleData, ECDSASigner { mapping(bytes32 => bool) private _paidSale; constructor(address signer_) ECDSASigner(signer_) {} /// @notice pay for buyArtwork to a FFV4 contract destination. /// @param r_ - part of signature for validating parameters integrity /// @param s_ - part of signature for validating parameters integrity /// @param v_ - part of signature for validating parameters integrity /// @param saleData_ - the sale data function payForSale( bytes32 r_, bytes32 s_, uint8 v_, SaleData calldata saleData_ ) external { require( saleData_.payByVaultContract, "FeralfileVault: not pay by vault" ); require( address(this).balance >= saleData_.price, "FeralfileVault: insufficient balance" ); validateSaleData(saleData_); bytes32 message = keccak256( abi.encode(block.chainid, msg.sender, saleData_) ); require(!_paidSale[message], "FeralfileVault: paid sale"); require( isValidSignature(message, r_, s_, v_), "FeralfileVault: invalid signature" ); _paidSale[message] = true; payable(msg.sender).transfer(saleData_.price); } function withdrawFund(uint256 weiAmount) external onlyOwner { require( address(this).balance >= weiAmount, "FeralfileVault: insufficient balance" ); payable(msg.sender).transfer(weiAmount); } receive() external payable {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IFeralfileSaleData { struct RevenueShare { address recipient; uint256 bps; } struct SaleData { uint256 price; // in wei uint256 cost; // in wei uint256 expiryTime; address destination; uint256[] tokenIds; RevenueShare[][] revenueShares; // address and royalty bps (500 means 5%) bool payByVaultContract; // get eth from vault contract, used by credit card pay that proxy by ITX } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import "./IFeralfileSaleData.sol"; contract FeralfileSaleData is IFeralfileSaleData { function validateSaleData(SaleData calldata saleData_) internal view { require( saleData_.tokenIds.length > 0, "FeralfileSaleData: tokenIds is empty" ); require( saleData_.tokenIds.length == saleData_.revenueShares.length, "FeralfileSaleData: tokenIds and revenueShares length mismatch" ); require( saleData_.expiryTime > block.timestamp, "FeralfileSaleData: sale is expired" ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; contract ECDSASigner is Ownable { address private _signer; constructor(address signer_) { require(signer_ != address(0), "ECDSASign: signer_ is zero address"); _signer = signer_; } /// @notice isValidSignature validates a message by ecrecover to ensure // it is signed by signer. /// @param message_ - the raw message for signing /// @param r_ - part of signature for validating parameters integrity /// @param s_ - part of signature for validating parameters integrity /// @param v_ - part of signature for validating parameters integrity function isValidSignature( bytes32 message_, bytes32 r_, bytes32 s_, uint8 v_ ) internal view returns (bool) { address reqSigner = ECDSA.recover( ECDSA.toEthSignedMessageHash(message_), v_, r_, s_ ); return reqSigner == _signer; } /// @notice set the signer /// @param signer_ - the address of signer function setSigner(address signer_) external onlyOwner { require(signer_ != address(0), "ECDSASign: signer_ is zero address"); _signer = signer_; } function signer() external view returns (address) { return _signer; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
{ "remappings": [], "optimizer": { "enabled": true, "runs": 200 }, "evmVersion": "london", "libraries": {}, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"signer_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"r_","type":"bytes32"},{"internalType":"bytes32","name":"s_","type":"bytes32"},{"internalType":"uint8","name":"v_","type":"uint8"},{"components":[{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"cost","type":"uint256"},{"internalType":"uint256","name":"expiryTime","type":"uint256"},{"internalType":"address","name":"destination","type":"address"},{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"bps","type":"uint256"}],"internalType":"struct IFeralfileSaleData.RevenueShare[][]","name":"revenueShares","type":"tuple[][]"},{"internalType":"bool","name":"payByVaultContract","type":"bool"}],"internalType":"struct IFeralfileSaleData.SaleData","name":"saleData_","type":"tuple"}],"name":"payForSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer_","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"weiAmount","type":"uint256"}],"name":"withdrawFund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
608060405234801561001057600080fd5b50604051610e67380380610e6783398101604081905261002f91610114565b80610039336100c4565b6001600160a01b03811661009e5760405162461bcd60e51b815260206004820152602260248201527f45434453415369676e3a207369676e65725f206973207a65726f206164647265604482015261737360f01b606482015260840160405180910390fd5b600180546001600160a01b0319166001600160a01b039290921691909117905550610144565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60006020828403121561012657600080fd5b81516001600160a01b038116811461013d57600080fd5b9392505050565b610d14806101536000396000f3fe6080604052600436106100745760003560e01c80636c19e7831161004e5780636c19e783146100f8578063715018a6146101185780638da5cb5b1461012d578063f2fde38b1461014b57600080fd5b80630cee172514610080578063238ac933146100a25780632eeee163146100d857600080fd5b3661007b57005b600080fd5b34801561008c57600080fd5b506100a061009b36600461093a565b61016b565b005b3480156100ae57600080fd5b506001546001600160a01b03165b6040516001600160a01b03909116815260200160405180910390f35b3480156100e457600080fd5b506100a06100f3366004610953565b6101cd565b34801561010457600080fd5b506100a06101133660046109dd565b610391565b34801561012457600080fd5b506100a061041c565b34801561013957600080fd5b506000546001600160a01b03166100bc565b34801561015757600080fd5b506100a06101663660046109dd565b610430565b6101736104a9565b8047101561019c5760405162461bcd60e51b8152600401610193906109ff565b60405180910390fd5b604051339082156108fc029083906000818181858888f193505050501580156101c9573d6000803e3d6000fd5b5050565b6101dd60e0820160c08301610a53565b6102295760405162461bcd60e51b815260206004820181905260248201527f466572616c66696c655661756c743a206e6f7420706179206279207661756c746044820152606401610193565b803547101561024a5760405162461bcd60e51b8152600401610193906109ff565b61025381610503565b600046338360405160200161026a93929190610ba4565b60408051601f1981840301815291815281516020928301206000818152600290935291205490915060ff16156102e25760405162461bcd60e51b815260206004820152601960248201527f466572616c66696c655661756c743a20706169642073616c65000000000000006044820152606401610193565b6102ee8186868661065c565b6103445760405162461bcd60e51b815260206004820152602160248201527f466572616c66696c655661756c743a20696e76616c6964207369676e617475726044820152606560f81b6064820152608401610193565b600081815260026020526040808220805460ff19166001179055513391843580156108fc02929091818181858888f19350505050158015610389573d6000803e3d6000fd5b505050505050565b6103996104a9565b6001600160a01b0381166103fa5760405162461bcd60e51b815260206004820152602260248201527f45434453415369676e3a207369676e65725f206973207a65726f206164647265604482015261737360f01b6064820152608401610193565b600180546001600160a01b0319166001600160a01b0392909216919091179055565b6104246104a9565b61042e60006106b4565b565b6104386104a9565b6001600160a01b03811661049d5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610193565b6104a6816106b4565b50565b6000546001600160a01b0316331461042e5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610193565b60006105126080830183610c7e565b90501161056d5760405162461bcd60e51b8152602060048201526024808201527f466572616c66696c6553616c65446174613a20746f6b656e49647320697320656044820152636d70747960e01b6064820152608401610193565b61057a60a0820182610c7e565b90506105896080830183610c7e565b9050146105fe5760405162461bcd60e51b815260206004820152603d60248201527f466572616c66696c6553616c65446174613a20746f6b656e49647320616e642060448201527f726576656e7565536861726573206c656e677468206d69736d617463680000006064820152608401610193565b428160400135116104a65760405162461bcd60e51b815260206004820152602260248201527f466572616c66696c6553616c65446174613a2073616c65206973206578706972604482015261195960f21b6064820152608401610193565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c859052603c8120819061069990848787610704565b6001546001600160a01b039081169116149695505050505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008060006107158787878761072c565b91509150610722816107f0565b5095945050505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561076357506000905060036107e7565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156107b7573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166107e0576000600192509250506107e7565b9150600090505b94509492505050565b600081600481111561080457610804610cc8565b0361080c5750565b600181600481111561082057610820610cc8565b0361086d5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610193565b600281600481111561088157610881610cc8565b036108ce5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610193565b60038160048111156108e2576108e2610cc8565b036104a65760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610193565b60006020828403121561094c57600080fd5b5035919050565b6000806000806080858703121561096957600080fd5b8435935060208501359250604085013560ff8116811461098857600080fd5b9150606085013567ffffffffffffffff8111156109a457600080fd5b850160e081880312156109b657600080fd5b939692955090935050565b80356001600160a01b03811681146109d857600080fd5b919050565b6000602082840312156109ef57600080fd5b6109f8826109c1565b9392505050565b60208082526024908201527f466572616c66696c655661756c743a20696e73756666696369656e742062616c604082015263616e636560e01b606082015260800190565b803580151581146109d857600080fd5b600060208284031215610a6557600080fd5b6109f882610a43565b6000808335601e19843603018112610a8557600080fd5b830160208101925035905067ffffffffffffffff811115610aa557600080fd5b8060051b3603821315610ab757600080fd5b9250929050565b8183526000602080850194508260005b85811015610b04576001600160a01b03610ae7836109c1565b168752818301358388015260409687019690910190600101610ace565b509495945050505050565b81835260006020808501808196508560051b810191508460005b87811015610b975782840389528135601e19883603018112610b4a57600080fd5b8701858101903567ffffffffffffffff811115610b6657600080fd5b8060061b3603821315610b7857600080fd5b610b83868284610abe565b9a87019a9550505090840190600101610b29565b5091979650505050505050565b838152600060018060a01b038085166020840152606060408401528335606084015260208401356080840152604084013560a084015280610be7606086016109c1565b1660c084015250610bfb6080840184610a6e565b60e08481015261014084018190526101606001600160fb1b03821115610c2057600080fd5b8160051b91508183828701378185019250610c3e60a0870187610a6e565b925061010080878603018188015250610c5a8285018483610b0f565b9350505050610c6b60c08501610a43565b8015156101208501525095945050505050565b6000808335601e19843603018112610c9557600080fd5b83018035915067ffffffffffffffff821115610cb057600080fd5b6020019150600581901b3603821315610ab757600080fd5b634e487b7160e01b600052602160045260246000fdfea26469706673582212205fa8d4020f2cae69139df53a8e73495a6b9f7f78361d82c1e92652c21bd0443a64736f6c63430008110033000000000000000000000000beb9f810862c40a144925f568b1853d72acc492f
Deployed Bytecode
0x6080604052600436106100745760003560e01c80636c19e7831161004e5780636c19e783146100f8578063715018a6146101185780638da5cb5b1461012d578063f2fde38b1461014b57600080fd5b80630cee172514610080578063238ac933146100a25780632eeee163146100d857600080fd5b3661007b57005b600080fd5b34801561008c57600080fd5b506100a061009b36600461093a565b61016b565b005b3480156100ae57600080fd5b506001546001600160a01b03165b6040516001600160a01b03909116815260200160405180910390f35b3480156100e457600080fd5b506100a06100f3366004610953565b6101cd565b34801561010457600080fd5b506100a06101133660046109dd565b610391565b34801561012457600080fd5b506100a061041c565b34801561013957600080fd5b506000546001600160a01b03166100bc565b34801561015757600080fd5b506100a06101663660046109dd565b610430565b6101736104a9565b8047101561019c5760405162461bcd60e51b8152600401610193906109ff565b60405180910390fd5b604051339082156108fc029083906000818181858888f193505050501580156101c9573d6000803e3d6000fd5b5050565b6101dd60e0820160c08301610a53565b6102295760405162461bcd60e51b815260206004820181905260248201527f466572616c66696c655661756c743a206e6f7420706179206279207661756c746044820152606401610193565b803547101561024a5760405162461bcd60e51b8152600401610193906109ff565b61025381610503565b600046338360405160200161026a93929190610ba4565b60408051601f1981840301815291815281516020928301206000818152600290935291205490915060ff16156102e25760405162461bcd60e51b815260206004820152601960248201527f466572616c66696c655661756c743a20706169642073616c65000000000000006044820152606401610193565b6102ee8186868661065c565b6103445760405162461bcd60e51b815260206004820152602160248201527f466572616c66696c655661756c743a20696e76616c6964207369676e617475726044820152606560f81b6064820152608401610193565b600081815260026020526040808220805460ff19166001179055513391843580156108fc02929091818181858888f19350505050158015610389573d6000803e3d6000fd5b505050505050565b6103996104a9565b6001600160a01b0381166103fa5760405162461bcd60e51b815260206004820152602260248201527f45434453415369676e3a207369676e65725f206973207a65726f206164647265604482015261737360f01b6064820152608401610193565b600180546001600160a01b0319166001600160a01b0392909216919091179055565b6104246104a9565b61042e60006106b4565b565b6104386104a9565b6001600160a01b03811661049d5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610193565b6104a6816106b4565b50565b6000546001600160a01b0316331461042e5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610193565b60006105126080830183610c7e565b90501161056d5760405162461bcd60e51b8152602060048201526024808201527f466572616c66696c6553616c65446174613a20746f6b656e49647320697320656044820152636d70747960e01b6064820152608401610193565b61057a60a0820182610c7e565b90506105896080830183610c7e565b9050146105fe5760405162461bcd60e51b815260206004820152603d60248201527f466572616c66696c6553616c65446174613a20746f6b656e49647320616e642060448201527f726576656e7565536861726573206c656e677468206d69736d617463680000006064820152608401610193565b428160400135116104a65760405162461bcd60e51b815260206004820152602260248201527f466572616c66696c6553616c65446174613a2073616c65206973206578706972604482015261195960f21b6064820152608401610193565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c859052603c8120819061069990848787610704565b6001546001600160a01b039081169116149695505050505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008060006107158787878761072c565b91509150610722816107f0565b5095945050505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561076357506000905060036107e7565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156107b7573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166107e0576000600192509250506107e7565b9150600090505b94509492505050565b600081600481111561080457610804610cc8565b0361080c5750565b600181600481111561082057610820610cc8565b0361086d5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610193565b600281600481111561088157610881610cc8565b036108ce5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610193565b60038160048111156108e2576108e2610cc8565b036104a65760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610193565b60006020828403121561094c57600080fd5b5035919050565b6000806000806080858703121561096957600080fd5b8435935060208501359250604085013560ff8116811461098857600080fd5b9150606085013567ffffffffffffffff8111156109a457600080fd5b850160e081880312156109b657600080fd5b939692955090935050565b80356001600160a01b03811681146109d857600080fd5b919050565b6000602082840312156109ef57600080fd5b6109f8826109c1565b9392505050565b60208082526024908201527f466572616c66696c655661756c743a20696e73756666696369656e742062616c604082015263616e636560e01b606082015260800190565b803580151581146109d857600080fd5b600060208284031215610a6557600080fd5b6109f882610a43565b6000808335601e19843603018112610a8557600080fd5b830160208101925035905067ffffffffffffffff811115610aa557600080fd5b8060051b3603821315610ab757600080fd5b9250929050565b8183526000602080850194508260005b85811015610b04576001600160a01b03610ae7836109c1565b168752818301358388015260409687019690910190600101610ace565b509495945050505050565b81835260006020808501808196508560051b810191508460005b87811015610b975782840389528135601e19883603018112610b4a57600080fd5b8701858101903567ffffffffffffffff811115610b6657600080fd5b8060061b3603821315610b7857600080fd5b610b83868284610abe565b9a87019a9550505090840190600101610b29565b5091979650505050505050565b838152600060018060a01b038085166020840152606060408401528335606084015260208401356080840152604084013560a084015280610be7606086016109c1565b1660c084015250610bfb6080840184610a6e565b60e08481015261014084018190526101606001600160fb1b03821115610c2057600080fd5b8160051b91508183828701378185019250610c3e60a0870187610a6e565b925061010080878603018188015250610c5a8285018483610b0f565b9350505050610c6b60c08501610a43565b8015156101208501525095945050505050565b6000808335601e19843603018112610c9557600080fd5b83018035915067ffffffffffffffff821115610cb057600080fd5b6020019150600581901b3603821315610ab757600080fd5b634e487b7160e01b600052602160045260246000fdfea26469706673582212205fa8d4020f2cae69139df53a8e73495a6b9f7f78361d82c1e92652c21bd0443a64736f6c63430008110033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000beb9f810862c40a144925f568b1853d72acc492f
-----Decoded View---------------
Arg [0] : signer_ (address): 0xBEb9F810862c40A144925f568b1853d72Acc492F
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000beb9f810862c40a144925f568b1853d72acc492f
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.