ETH Price: $3,398.85 (-8.04%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
OrigamiPendlePtToAssetOracle

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion
File 1 of 29 : OrigamiPendlePtToAssetOracle.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/oracle/OrigamiPendlePtToAssetOracle.sol)

import { PendlePYOracleLib } from "@pendle/core-v2/contracts/oracles/PendlePYOracleLib.sol";
import { PendlePYLpOracle } from "@pendle/core-v2/contracts/oracles/PendlePYLpOracle.sol";
import { IPMarket } from "@pendle/core-v2/contracts/interfaces/IPMarket.sol";

import { OrigamiOracleBase } from "contracts/common/oracle/OrigamiOracleBase.sol";
import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";

/**
 * @title OrigamiPendlePtToAssetOracle
 * @notice A Pendle PT to Asset oracle price, for a given market and twap duration
 * @dev Pendle oracle price definition example: 1 <PT sUSDe> is equal to 1 <USDe> deposited on Ethena at maturity.
 */
contract OrigamiPendlePtToAssetOracle is OrigamiOracleBase {
    using PendlePYOracleLib for IPMarket;

    error UninitializedPendleOracle();

    /**
     * @notice The pendle market to observe
     */
    IPMarket public immutable pendleMarket;

    /**
     * @notice The twap duration to observe over.
     * @dev If an update is required here, the oracle can be redeployed.
     */
    uint32 public immutable twapDuration;

    constructor (
        BaseOracleParams memory baseParams,
        address _pendleOracle,
        address _pendleMarket,
        uint32 _twapDuration
    ) 
        OrigamiOracleBase(baseParams)
    {
        pendleMarket = IPMarket(_pendleMarket);
        twapDuration = _twapDuration;

        // Check that the pendle oracle is initialized properly.
        // It's the deployer's responsibility to do so prior.
        (
            bool increaseCardinalityRequired, 
            , 
            bool oldestObservationSatisfied
        ) = PendlePYLpOracle(_pendleOracle).getOracleState(
            _pendleMarket, 
            _twapDuration
        );
        if (increaseCardinalityRequired || !oldestObservationSatisfied) revert UninitializedPendleOracle();
    }

    /**
     * @notice Return the latest oracle price, to `decimals` precision
     */
    function latestPrice(
        PriceType /*priceType*/, 
        OrigamiMath.Rounding /*roundingMode*/
    ) public override view returns (uint256 price) {
        // There isn't a separate historic reference price, so return the same price for both SPOT and HISTORIC
        // There isn't any extra rounding required here either.

        // The pendle returns a rate such that `1 PT * rate / 1e18 = amount of underlying`
        // It is ok to assume that the PT and underlying have the same decimals, and so the rate is 18dp.
        // Since this matches our origami oracle, no scaling is required.
        // If in future for a new oracle the PT does not have the same decimals as the underlying (would be strange),
        // a change can be made here to scale it.
        return pendleMarket.getPtToAssetRate(twapDuration);
    }
}

File 2 of 29 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 3 of 29 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 4 of 29 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 5 of 29 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 6 of 29 : BoringOwnableUpgradeable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

contract BoringOwnableUpgradeableData {
    address public owner;
    address public pendingOwner;
}

abstract contract BoringOwnableUpgradeable is BoringOwnableUpgradeableData, Initializable {
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    function __BoringOwnable_init() internal onlyInitializing {
        owner = msg.sender;
    }

    /// @notice Transfers ownership to `newOwner`. Either directly or claimable by the new pending owner.
    /// Can only be invoked by the current `owner`.
    /// @param newOwner Address of the new owner.
    /// @param direct True if `newOwner` should be set immediately. False if `newOwner` needs to use `claimOwnership`.
    /// @param renounce Allows the `newOwner` to be `address(0)` if `direct` and `renounce` is True. Has no effect otherwise.
    function transferOwnership(address newOwner, bool direct, bool renounce) public onlyOwner {
        if (direct) {
            // Checks
            require(newOwner != address(0) || renounce, "Ownable: zero address");

            // Effects
            emit OwnershipTransferred(owner, newOwner);
            owner = newOwner;
            pendingOwner = address(0);
        } else {
            // Effects
            pendingOwner = newOwner;
        }
    }

    /// @notice Needs to be called by `pendingOwner` to claim ownership.
    function claimOwnership() public {
        address _pendingOwner = pendingOwner;

        // Checks
        require(msg.sender == _pendingOwner, "Ownable: caller != pending owner");

        // Effects
        emit OwnershipTransferred(owner, _pendingOwner);
        owner = _pendingOwner;
        pendingOwner = address(0);
    }

    /// @notice Only allows the `owner` to execute the function.
    modifier onlyOwner() {
        require(msg.sender == owner, "Ownable: caller is not the owner");
        _;
    }

    uint256[48] private __gap;
}

File 7 of 29 : Errors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library Errors {
    // BulkSeller
    error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error BulkNotMaintainer();
    error BulkNotAdmin();
    error BulkSellerAlreadyExisted(address token, address SY, address bulk);
    error BulkSellerInvalidToken(address token, address SY);
    error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps);
    error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps);

    // APPROX
    error ApproxFail();
    error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps);
    error ApproxBinarySearchInputInvalid(
        uint256 approxGuessMin,
        uint256 approxGuessMax,
        uint256 minGuessMin,
        uint256 maxGuessMax
    );

    // MARKET + MARKET MATH CORE
    error MarketExpired();
    error MarketZeroAmountsInput();
    error MarketZeroAmountsOutput();
    error MarketZeroLnImpliedRate();
    error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount);
    error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset);
    error MarketExchangeRateBelowOne(int256 exchangeRate);
    error MarketProportionMustNotEqualOne();
    error MarketRateScalarBelowZero(int256 rateScalar);
    error MarketScalarRootBelowZero(int256 scalarRoot);
    error MarketProportionTooHigh(int256 proportion, int256 maxProportion);

    error OracleUninitialized();
    error OracleTargetTooOld(uint32 target, uint32 oldest);
    error OracleZeroCardinality();

    error MarketFactoryExpiredPt();
    error MarketFactoryInvalidPt();
    error MarketFactoryMarketExists();

    error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot);
    error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot);
    error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent);
    error MarketFactoryZeroTreasury();
    error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor);
    error MFNotPendleMarket(address addr);

    // ROUTER
    error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut);
    error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut);
    error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut);
    error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut);
    error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay);
    error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay);
    error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed);

    error RouterTimeRangeZero();
    error RouterCallbackNotPendleMarket(address caller);
    error RouterInvalidAction(bytes4 selector);
    error RouterInvalidFacet(address facet);

    error RouterKyberSwapDataZero();

    error SimulationResults(bool success, bytes res);

    // YIELD CONTRACT
    error YCExpired();
    error YCNotExpired();
    error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy);
    error YCNothingToRedeem();
    error YCPostExpiryDataNotSet();
    error YCNoFloatingSy();

    // YieldFactory
    error YCFactoryInvalidExpiry();
    error YCFactoryYieldContractExisted();
    error YCFactoryZeroExpiryDivisor();
    error YCFactoryZeroTreasury();
    error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate);
    error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate);

    // SY
    error SYInvalidTokenIn(address token);
    error SYInvalidTokenOut(address token);
    error SYZeroDeposit();
    error SYZeroRedeem();
    error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut);
    error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);

    // SY-specific
    error SYQiTokenMintFailed(uint256 errCode);
    error SYQiTokenRedeemFailed(uint256 errCode);
    error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1);
    error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax);

    error SYCurveInvalidPid();
    error SYCurve3crvPoolNotFound();

    error SYApeDepositAmountTooSmall(uint256 amountDeposited);
    error SYBalancerInvalidPid();
    error SYInvalidRewardToken(address token);

    error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable);

    error SYBalancerReentrancy();

    error NotFromTrustedRemote(uint16 srcChainId, bytes path);

    error ApxETHNotEnoughBuffer();

    // Liquidity Mining
    error VCInactivePool(address pool);
    error VCPoolAlreadyActive(address pool);
    error VCZeroVePendle(address user);
    error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight);
    error VCEpochNotFinalized(uint256 wTime);
    error VCPoolAlreadyAddAndRemoved(address pool);

    error VEInvalidNewExpiry(uint256 newExpiry);
    error VEExceededMaxLockTime();
    error VEInsufficientLockTime();
    error VENotAllowedReduceExpiry();
    error VEZeroAmountLocked();
    error VEPositionNotExpired();
    error VEZeroPosition();
    error VEZeroSlope(uint128 bias, uint128 slope);
    error VEReceiveOldSupply(uint256 msgTime);

    error GCNotPendleMarket(address caller);
    error GCNotVotingController(address caller);

    error InvalidWTime(uint256 wTime);
    error ExpiryInThePast(uint256 expiry);
    error ChainNotSupported(uint256 chainId);

    error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount);
    error FDEpochLengthMismatch();
    error FDInvalidPool(address pool);
    error FDPoolAlreadyExists(address pool);
    error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch);
    error FDInvalidStartEpoch(uint256 startEpoch);
    error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime);
    error FDFutureFunding(uint256 lastFunded, uint256 currentWTime);

    error BDInvalidEpoch(uint256 epoch, uint256 startTime);

    // Cross-Chain
    error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path);
    error MsgNotFromReceiveEndpoint(address sender);
    error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee);
    error ApproxDstExecutionGasNotSet();
    error InvalidRetryData();

    // GENERIC MSG
    error ArrayLengthMismatch();
    error ArrayEmpty();
    error ArrayOutOfBounds();
    error ZeroAddress();
    error FailedToSendEther();
    error InvalidMerkleProof();

    error OnlyLayerZeroEndpoint();
    error OnlyYT();
    error OnlyYCFactory();
    error OnlyWhitelisted();

    // Swap Aggregator
    error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual);
    error UnsupportedSelector(uint256 aggregatorType, bytes4 selector);
}

File 8 of 29 : LogExpMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.8.0;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

File 9 of 29 : PMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.8.0;

/* solhint-disable private-vars-leading-underscore, reason-string */

library PMath {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    int256 internal constant IONE = 1e18; // 18 decimal places

    function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            return (a >= b ? a - b : 0);
        }
    }

    function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
        require(a >= b, "negative");
        return a - b; // no unchecked since if b is very negative, a - b might overflow
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        unchecked {
            return product / ONE;
        }
    }

    function mulDown(int256 a, int256 b) internal pure returns (int256) {
        int256 product = a * b;
        unchecked {
            return product / IONE;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 aInflated = a * ONE;
        unchecked {
            return aInflated / b;
        }
    }

    function divDown(int256 a, int256 b) internal pure returns (int256) {
        int256 aInflated = a * IONE;
        unchecked {
            return aInflated / b;
        }
    }

    function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a + b - 1) / b;
    }

    // @author Uniswap
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }

    function square(uint256 x) internal pure returns (uint256) {
        return x * x;
    }

    function squareDown(uint256 x) internal pure returns (uint256) {
        return mulDown(x, x);
    }

    function abs(int256 x) internal pure returns (uint256) {
        return uint256(x > 0 ? x : -x);
    }

    function neg(int256 x) internal pure returns (int256) {
        return x * (-1);
    }

    function neg(uint256 x) internal pure returns (int256) {
        return Int(x) * (-1);
    }

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x > y ? x : y);
    }

    function max(int256 x, int256 y) internal pure returns (int256) {
        return (x > y ? x : y);
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x < y ? x : y);
    }

    function min(int256 x, int256 y) internal pure returns (int256) {
        return (x < y ? x : y);
    }

    /*///////////////////////////////////////////////////////////////
                               SIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Int(uint256 x) internal pure returns (int256) {
        require(x <= uint256(type(int256).max));
        return int256(x);
    }

    function Int128(int256 x) internal pure returns (int128) {
        require(type(int128).min <= x && x <= type(int128).max);
        return int128(x);
    }

    function Int128(uint256 x) internal pure returns (int128) {
        return Int128(Int(x));
    }

    /*///////////////////////////////////////////////////////////////
                               UNSIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Uint(int256 x) internal pure returns (uint256) {
        require(x >= 0);
        return uint256(x);
    }

    function Uint32(uint256 x) internal pure returns (uint32) {
        require(x <= type(uint32).max);
        return uint32(x);
    }

    function Uint64(uint256 x) internal pure returns (uint64) {
        require(x <= type(uint64).max);
        return uint64(x);
    }

    function Uint112(uint256 x) internal pure returns (uint112) {
        require(x <= type(uint112).max);
        return uint112(x);
    }

    function Uint96(uint256 x) internal pure returns (uint96) {
        require(x <= type(uint96).max);
        return uint96(x);
    }

    function Uint128(uint256 x) internal pure returns (uint128) {
        require(x <= type(uint128).max);
        return uint128(x);
    }

    function Uint192(uint256 x) internal pure returns (uint192) {
        require(x <= type(uint192).max);
        return uint192(x);
    }

    function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
    }

    function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a >= b && a <= mulDown(b, ONE + eps);
    }

    function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a <= b && a >= mulDown(b, ONE - eps);
    }
}

File 10 of 29 : MiniHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library MiniHelpers {
    function isCurrentlyExpired(uint256 expiry) internal view returns (bool) {
        return (expiry <= block.timestamp);
    }

    function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) {
        return (expiry <= blockTime);
    }

    function isTimeInThePast(uint256 timestamp) internal view returns (bool) {
        return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired
    }
}

File 11 of 29 : MarketMathCore.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../libraries/math/PMath.sol";
import "../libraries/math/LogExpMath.sol";

import "../StandardizedYield/PYIndex.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";

struct MarketState {
    int256 totalPt;
    int256 totalSy;
    int256 totalLp;
    address treasury;
    /// immutable variables ///
    int256 scalarRoot;
    uint256 expiry;
    /// fee data ///
    uint256 lnFeeRateRoot;
    uint256 reserveFeePercent; // base 100
    /// last trade data ///
    uint256 lastLnImpliedRate;
}

// params that are expensive to compute, therefore we pre-compute them
struct MarketPreCompute {
    int256 rateScalar;
    int256 totalAsset;
    int256 rateAnchor;
    int256 feeRate;
}

// solhint-disable ordering
library MarketMathCore {
    using PMath for uint256;
    using PMath for int256;
    using LogExpMath for int256;
    using PYIndexLib for PYIndex;

    int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
    int256 internal constant PERCENTAGE_DECIMALS = 100;
    uint256 internal constant DAY = 86400;
    uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;

    int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100;

    using PMath for uint256;
    using PMath for int256;

    /*///////////////////////////////////////////////////////////////
                UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidity(
        MarketState memory market,
        uint256 syDesired,
        uint256 ptDesired,
        uint256 blockTime
    ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) {
        (int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore(
            market,
            syDesired.Int(),
            ptDesired.Int(),
            blockTime
        );

        lpToReserve = _lpToReserve.Uint();
        lpToAccount = _lpToAccount.Uint();
        syUsed = _syUsed.Uint();
        ptUsed = _ptUsed.Uint();
    }

    function removeLiquidity(
        MarketState memory market,
        uint256 lpToRemove
    ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) {
        (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int());

        netSyToAccount = _syToAccount.Uint();
        netPtToAccount = _ptToAccount.Uint();
    }

    function swapExactPtForSy(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToMarket,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToMarket.neg(),
            blockTime
        );

        netSyToAccount = _netSyToAccount.Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    function swapSyForExactPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToAccount,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToAccount.Int(),
            blockTime
        );

        netSyToMarket = _netSyToAccount.neg().Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    /*///////////////////////////////////////////////////////////////
                    CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidityCore(
        MarketState memory market,
        int256 syDesired,
        int256 ptDesired,
        uint256 blockTime
    ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput();
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        if (market.totalLp == 0) {
            lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY;
            lpToReserve = MINIMUM_LIQUIDITY;
            syUsed = syDesired;
            ptUsed = ptDesired;
        } else {
            int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt;
            int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy;
            if (netLpByPt < netLpBySy) {
                lpToAccount = netLpByPt;
                ptUsed = ptDesired;
                syUsed = (market.totalSy * lpToAccount) / market.totalLp;
            } else {
                lpToAccount = netLpBySy;
                syUsed = syDesired;
                ptUsed = (market.totalPt * lpToAccount) / market.totalLp;
            }
        }

        if (lpToAccount <= 0 || syUsed <= 0 || ptUsed <= 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalSy += syUsed;
        market.totalPt += ptUsed;
        market.totalLp += lpToAccount + lpToReserve;
    }

    function removeLiquidityCore(
        MarketState memory market,
        int256 lpToRemove
    ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp;
        netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp;

        if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalLp = market.totalLp.subNoNeg(lpToRemove);
        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount);
    }

    function executeTradeCore(
        MarketState memory market,
        PYIndex index,
        int256 netPtToAccount,
        uint256 blockTime
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
        if (market.totalPt <= netPtToAccount)
            revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount);

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime);

        (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        _setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime);
    }

    function getMarketPreCompute(
        MarketState memory market,
        PYIndex index,
        uint256 blockTime
    ) internal pure returns (MarketPreCompute memory res) {
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        uint256 timeToExpiry = market.expiry - blockTime;

        res.rateScalar = _getRateScalar(market, timeToExpiry);
        res.totalAsset = index.syToAsset(market.totalSy);

        if (market.totalPt == 0 || res.totalAsset == 0)
            revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset);

        res.rateAnchor = _getRateAnchor(
            market.totalPt,
            market.lastLnImpliedRate,
            res.totalAsset,
            res.rateScalar,
            timeToExpiry
        );
        res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry);
    }

    function calcTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        int256 preFeeExchangeRate = _getExchangeRate(
            market.totalPt,
            comp.totalAsset,
            comp.rateScalar,
            comp.rateAnchor,
            netPtToAccount
        );

        int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg();
        int256 fee = comp.feeRate;

        if (netPtToAccount > 0) {
            int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee);
            if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate);

            fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee);
        } else {
            fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg();
        }

        int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS;
        int256 netAssetToAccount = preFeeAssetToAccount - fee;

        netSyToAccount = netAssetToAccount < 0
            ? index.assetToSyUp(netAssetToAccount)
            : index.assetToSy(netAssetToAccount);
        netSyFee = index.assetToSy(fee);
        netSyToReserve = index.assetToSy(netAssetToReserve);
    }

    function _setNewMarketStateTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount,
        int256 netSyToAccount,
        int256 netSyToReserve,
        uint256 blockTime
    ) internal pure {
        uint256 timeToExpiry = market.expiry - blockTime;

        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve);

        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            index.syToAsset(market.totalSy),
            comp.rateScalar,
            comp.rateAnchor,
            timeToExpiry
        );

        if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate();
    }

    function _getRateAnchor(
        int256 totalPt,
        uint256 lastLnImpliedRate,
        int256 totalAsset,
        int256 rateScalar,
        uint256 timeToExpiry
    ) internal pure returns (int256 rateAnchor) {
        int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);

        if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate);

        {
            int256 proportion = totalPt.divDown(totalPt + totalAsset);

            int256 lnProportion = _logProportion(proportion);

            rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar);
        }
    }

    /// @notice Calculates the current market implied rate.
    /// @return lnImpliedRate the implied rate
    function _getLnImpliedRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        uint256 timeToExpiry
    ) internal pure returns (uint256 lnImpliedRate) {
        // This will check for exchange rates < PMath.IONE
        int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0);

        // exchangeRate >= 1 so its ln >= 0
        uint256 lnRate = exchangeRate.ln().Uint();

        lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry;
    }

    /// @notice Converts an implied rate to an exchange rate given a time to expiry. The
    /// formula is E = e^rt
    function _getExchangeRateFromImpliedRate(
        uint256 lnImpliedRate,
        uint256 timeToExpiry
    ) internal pure returns (int256 exchangeRate) {
        uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;

        exchangeRate = LogExpMath.exp(rt.Int());
    }

    function _getExchangeRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        int256 netPtToAccount
    ) internal pure returns (int256 exchangeRate) {
        int256 numerator = totalPt.subNoNeg(netPtToAccount);

        int256 proportion = (numerator.divDown(totalPt + totalAsset));

        if (proportion > MAX_MARKET_PROPORTION)
            revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION);

        int256 lnProportion = _logProportion(proportion);

        exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor;

        if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate);
    }

    function _logProportion(int256 proportion) internal pure returns (int256 res) {
        if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne();

        int256 logitP = proportion.divDown(PMath.IONE - proportion);

        res = logitP.ln();
    }

    function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) {
        rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int();
        if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar);
    }

    function setInitialLnImpliedRate(
        MarketState memory market,
        PYIndex index,
        int256 initialAnchor,
        uint256 blockTime
    ) internal pure {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        int256 totalAsset = index.syToAsset(market.totalSy);
        uint256 timeToExpiry = market.expiry - blockTime;
        int256 rateScalar = _getRateScalar(market, timeToExpiry);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            totalAsset,
            rateScalar,
            initialAnchor,
            timeToExpiry
        );
    }
}

File 12 of 29 : PYIndex.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";

import "./SYUtils.sol";
import "../libraries/math/PMath.sol";

type PYIndex is uint256;

library PYIndexLib {
    using PMath for uint256;
    using PMath for int256;

    function newIndex(IPYieldToken YT) internal returns (PYIndex) {
        return PYIndex.wrap(YT.pyIndexCurrent());
    }

    function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount);
    }

    function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount);
    }

    function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount);
    }

    function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        uint256 _index = PYIndex.unwrap(index);
        return SYUtils.syToAssetUp(_index, syAmount);
    }

    function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) {
        int256 sign = syAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int();
    }

    function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }

    function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }
}

File 13 of 29 : SYUtils.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library SYUtils {
    uint256 internal constant ONE = 1e18;

    function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate) / ONE;
    }

    function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate + ONE - 1) / ONE;
    }

    function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE) / exchangeRate;
    }

    function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE + exchangeRate - 1) / exchangeRate;
    }
}

File 14 of 29 : IPGauge.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IPGauge {
    function totalActiveSupply() external view returns (uint256);

    function activeBalance(address user) external view returns (uint256);

    // only available for newer factories. please check the verified contracts
    event RedeemRewards(address indexed user, uint256[] rewardsOut);
}

File 15 of 29 : IPInterestManagerYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IPInterestManagerYT {
    event CollectInterestFee(uint256 amountInterestFee);

    function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest);
}

File 16 of 29 : IPMarket.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IPPrincipalToken.sol";
import "./IPYieldToken.sol";
import "./IStandardizedYield.sol";
import "./IPGauge.sol";
import "../core/Market/MarketMathCore.sol";

interface IPMarket is IERC20Metadata, IPGauge {
    event Mint(address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed);

    event Burn(
        address indexed receiverSy,
        address indexed receiverPt,
        uint256 netLpBurned,
        uint256 netSyOut,
        uint256 netPtOut
    );

    event Swap(
        address indexed caller,
        address indexed receiver,
        int256 netPtOut,
        int256 netSyOut,
        uint256 netSyFee,
        uint256 netSyToReserve
    );

    event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate);

    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    function mint(
        address receiver,
        uint256 netSyDesired,
        uint256 netPtDesired
    ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);

    function burn(
        address receiverSy,
        address receiverPt,
        uint256 netLpToBurn
    ) external returns (uint256 netSyOut, uint256 netPtOut);

    function swapExactPtForSy(
        address receiver,
        uint256 exactPtIn,
        bytes calldata data
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapSyForExactPt(
        address receiver,
        uint256 exactPtOut,
        bytes calldata data
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function redeemRewards(address user) external returns (uint256[] memory);

    function readState(address router) external view returns (MarketState memory market);

    function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative);

    function increaseObservationsCardinalityNext(uint16 cardinalityNext) external;

    function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT);

    function getRewardTokens() external view returns (address[] memory);

    function isExpired() external view returns (bool);

    function expiry() external view returns (uint256);

    function observations(
        uint256 index
    ) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized);

    function _storage()
        external
        view
        returns (
            int128 totalPt,
            int128 totalSy,
            uint96 lastLnImpliedRate,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext
        );
}

File 17 of 29 : IPPrincipalToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IPPrincipalToken is IERC20Metadata {
    function burnByYT(address user, uint256 amount) external;

    function mintByYT(address user, uint256 amount) external;

    function initialize(address _YT) external;

    function SY() external view returns (address);

    function YT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);
}

File 18 of 29 : IPPYLpOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IPPYLpOracle {
    event SetBlockCycleNumerator(uint16 newBlockCycleNumerator);

    function getPtToAssetRate(address market, uint32 duration) external view returns (uint256);

    function getYtToAssetRate(address market, uint32 duration) external view returns (uint256);

    function getLpToAssetRate(address market, uint32 duration) external view returns (uint256);

    function getPtToSyRate(address market, uint32 duration) external view returns (uint256);

    function getYtToSyRate(address market, uint32 duration) external view returns (uint256);

    function getLpToSyRate(address market, uint32 duration) external view returns (uint256);

    function getOracleState(
        address market,
        uint32 duration
    )
        external
        view
        returns (bool increaseCardinalityRequired, uint16 cardinalityRequired, bool oldestObservationSatisfied);
}

File 19 of 29 : IPYieldToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IRewardManager.sol";
import "./IPInterestManagerYT.sol";

interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT {
    event NewInterestIndex(uint256 indexed newIndex);

    event Mint(
        address indexed caller,
        address indexed receiverPT,
        address indexed receiverYT,
        uint256 amountSyToMint,
        uint256 amountPYOut
    );

    event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut);

    event RedeemRewards(address indexed user, uint256[] amountRewardsOut);

    event RedeemInterest(address indexed user, uint256 interestOut);

    event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee);

    function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut);

    function redeemPY(address receiver) external returns (uint256 amountSyOut);

    function redeemPYMulti(
        address[] calldata receivers,
        uint256[] calldata amountPYToRedeems
    ) external returns (uint256[] memory amountSyOuts);

    function redeemDueInterestAndRewards(
        address user,
        bool redeemInterest,
        bool redeemRewards
    ) external returns (uint256 interestOut, uint256[] memory rewardsOut);

    function rewardIndexesCurrent() external returns (uint256[] memory);

    function pyIndexCurrent() external returns (uint256);

    function pyIndexStored() external view returns (uint256);

    function getRewardTokens() external view returns (address[] memory);

    function SY() external view returns (address);

    function PT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);

    function doCacheIndexSameBlock() external view returns (bool);

    function pyIndexLastUpdatedBlock() external view returns (uint128);
}

File 20 of 29 : IRewardManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IRewardManager {
    function userReward(address token, address user) external view returns (uint128 index, uint128 accrued);
}

File 21 of 29 : IStandardizedYield.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */

pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IStandardizedYield is IERC20Metadata {
    /// @dev Emitted when any base tokens is deposited to mint shares
    event Deposit(
        address indexed caller,
        address indexed receiver,
        address indexed tokenIn,
        uint256 amountDeposited,
        uint256 amountSyOut
    );

    /// @dev Emitted when any shares are redeemed for base tokens
    event Redeem(
        address indexed caller,
        address indexed receiver,
        address indexed tokenOut,
        uint256 amountSyToRedeem,
        uint256 amountTokenOut
    );

    /// @dev check `assetInfo()` for more information
    enum AssetType {
        TOKEN,
        LIQUIDITY
    }

    /// @dev Emitted when (`user`) claims their rewards
    event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts);

    /**
     * @notice mints an amount of shares by depositing a base token.
     * @param receiver shares recipient address
     * @param tokenIn address of the base tokens to mint shares
     * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`)
     * @param minSharesOut reverts if amount of shares minted is lower than this
     * @return amountSharesOut amount of shares minted
     * @dev Emits a {Deposit} event
     *
     * Requirements:
     * - (`tokenIn`) must be a valid base token.
     */
    function deposit(
        address receiver,
        address tokenIn,
        uint256 amountTokenToDeposit,
        uint256 minSharesOut
    ) external payable returns (uint256 amountSharesOut);

    /**
     * @notice redeems an amount of base tokens by burning some shares
     * @param receiver recipient address
     * @param amountSharesToRedeem amount of shares to be burned
     * @param tokenOut address of the base token to be redeemed
     * @param minTokenOut reverts if amount of base token redeemed is lower than this
     * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender`
     * @return amountTokenOut amount of base tokens redeemed
     * @dev Emits a {Redeem} event
     *
     * Requirements:
     * - (`tokenOut`) must be a valid base token.
     */
    function redeem(
        address receiver,
        uint256 amountSharesToRedeem,
        address tokenOut,
        uint256 minTokenOut,
        bool burnFromInternalBalance
    ) external returns (uint256 amountTokenOut);

    /**
     * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account
     * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy
     he can mint must be X * exchangeRate / 1e18
     * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication
     & division
     */
    function exchangeRate() external view returns (uint256 res);

    /**
     * @notice claims reward for (`user`)
     * @param user the user receiving their rewards
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     * @dev
     * Emits a `ClaimRewards` event
     * See {getRewardTokens} for list of reward tokens
     */
    function claimRewards(address user) external returns (uint256[] memory rewardAmounts);

    /**
     * @notice get the amount of unclaimed rewards for (`user`)
     * @param user the user to check for
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     */
    function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts);

    function rewardIndexesCurrent() external returns (uint256[] memory indexes);

    function rewardIndexesStored() external view returns (uint256[] memory indexes);

    /**
     * @notice returns the list of reward token addresses
     */
    function getRewardTokens() external view returns (address[] memory);

    /**
     * @notice returns the address of the underlying yield token
     */
    function yieldToken() external view returns (address);

    /**
     * @notice returns all tokens that can mint this SY
     */
    function getTokensIn() external view returns (address[] memory res);

    /**
     * @notice returns all tokens that can be redeemed by this SY
     */
    function getTokensOut() external view returns (address[] memory res);

    function isValidTokenIn(address token) external view returns (bool);

    function isValidTokenOut(address token) external view returns (bool);

    function previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) external view returns (uint256 amountSharesOut);

    function previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) external view returns (uint256 amountTokenOut);

    /**
     * @notice This function contains information to interpret what the asset is
     * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens,
        2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain)
     * @return assetAddress the address of the asset
     * @return assetDecimals the decimals of the asset
     */
    function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals);
}

File 22 of 29 : PendleLpOracleLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "./PendlePYOracleLib.sol";

library PendleLpOracleLib {
    using PendlePYOracleLib for IPMarket;
    using PMath for uint256;
    using PMath for int256;
    using MarketMathCore for MarketState;

    /**
      * This function returns the approximated twap rate LP/asset on market, but take into account the current rate of SY
     This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
     * @param market market to get rate from
     * @param duration twap duration
     */
    function getLpToAssetRate(IPMarket market, uint32 duration) internal view returns (uint256) {
        (uint256 syIndex, uint256 pyIndex) = market.getSYandPYIndexCurrent();
        uint256 lpToAssetRateRaw = _getLpToAssetRateRaw(market, duration, pyIndex);
        if (syIndex >= pyIndex) {
            return lpToAssetRateRaw;
        } else {
            return (lpToAssetRateRaw * syIndex) / pyIndex;
        }
    }

    /**
      * This function returns the approximated twap rate LP/asset on market, but take into account the current rate of SY
     This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
     * @param market market to get rate from
     * @param duration twap duration
     */
    function getLpToSyRate(IPMarket market, uint32 duration) internal view returns (uint256) {
        (uint256 syIndex, uint256 pyIndex) = market.getSYandPYIndexCurrent();
        uint256 lpToAssetRateRaw = _getLpToAssetRateRaw(market, duration, pyIndex);
        if (syIndex >= pyIndex) {
            return lpToAssetRateRaw.divDown(syIndex);
        } else {
            return lpToAssetRateRaw.divDown(pyIndex);
        }
    }

    function _getLpToAssetRateRaw(
        IPMarket market,
        uint32 duration,
        uint256 pyIndex
    ) private view returns (uint256 lpToAssetRateRaw) {
        MarketState memory state = market.readState(address(0));

        int256 totalHypotheticalAsset;
        if (state.expiry <= block.timestamp) {
            // 1 PT = 1 Asset post-expiry
            totalHypotheticalAsset = state.totalPt + PYIndexLib.syToAsset(PYIndex.wrap(pyIndex), state.totalSy);
        } else {
            MarketPreCompute memory comp = state.getMarketPreCompute(PYIndex.wrap(pyIndex), block.timestamp);

            (int256 rateOracle, int256 rateHypTrade) = _getPtRatesRaw(market, state, duration);
            int256 cParam = LogExpMath.exp(comp.rateScalar.mulDown((rateOracle - comp.rateAnchor)));

            int256 tradeSize = (cParam.mulDown(comp.totalAsset) - state.totalPt).divDown(
                PMath.IONE + cParam.divDown(rateHypTrade)
            );

            totalHypotheticalAsset =
                comp.totalAsset -
                tradeSize.divDown(rateHypTrade) +
                (state.totalPt + tradeSize).divDown(rateOracle);
        }

        lpToAssetRateRaw = totalHypotheticalAsset.divDown(state.totalLp).Uint();
    }

    function _getPtRatesRaw(
        IPMarket market,
        MarketState memory state,
        uint32 duration
    ) private view returns (int256 rateOracle, int256 rateHypTrade) {
        uint256 lnImpliedRate = market.getMarketLnImpliedRate(duration);
        uint256 timeToExpiry = state.expiry - block.timestamp;
        rateOracle = MarketMathCore._getExchangeRateFromImpliedRate(lnImpliedRate, timeToExpiry);

        int256 rateLastTrade = MarketMathCore._getExchangeRateFromImpliedRate(state.lastLnImpliedRate, timeToExpiry);
        rateHypTrade = (rateLastTrade + rateOracle) / 2;
    }
}

File 23 of 29 : PendlePYLpOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;

import "./PendlePYOracleLib.sol";
import "./PendleLpOracleLib.sol";
import "../interfaces/IPPYLpOracle.sol";
import "../core/libraries/BoringOwnableUpgradeable.sol";

// This is a pre-deployed version of PendlePtOracleLib & PendleLpOracleLib with additional utility functions.
// Use of this contract rather than direct library integration resulting in a smaller bytecode size and simpler structure
// but slightly higher gas usage (~ 4000 gas, 2 external calls & 1 cold code load)
contract PendlePYLpOracle is BoringOwnableUpgradeable, IPPYLpOracle {
    using PendlePYOracleLib for IPMarket;
    using PendleLpOracleLib for IPMarket;

    error InvalidBlockRate(uint256 blockCycleNumerator);
    error TwapDurationTooLarge(uint32 duration, uint32 cardinalityRequired);

    /// @notice Oracles will be created ensuring a lowerbound in PendleMarket oracle's cardinality
    /// @dev Cardinality lowerbound will be calculated as twap_duration * 1000 / blockCycleNumerator
    /// @dev blockCycleNumerator should be configured so that blockCycleNumerator / 1000 < actual block cycle
    /// @dev blockCycleNumerator should be greater or equal to 1000 since the oracle only records one
    /// rate per timestamp
    /// For example, on Ethereum blockCycleNumerator = 11000, where 11000/1000 = 11 < 12
    ///                 Arbitrum blockCycleNumerator = 1000, since we can't do better than this
    uint16 public blockCycleNumerator;
    uint16 public constant BLOCK_CYCLE_DENOMINATOR = 1000;

    constructor() {
        _disableInitializers();
    }

    function initialize(uint16 _blockCycleNumerator) external initializer {
        __BoringOwnable_init();
        _setBlockCycleNumerator(_blockCycleNumerator);
    }

    // Refer to https://docs.pendle.finance/Home on how to use the oracle

    /*///////////////////////////////////////////////////////////////
                    PT, YT, LP to SY
    //////////////////////////////////////////////////////////////*/

    function getPtToSyRate(address market, uint32 duration) external view returns (uint256) {
        return IPMarket(market).getPtToSyRate(duration);
    }

    function getYtToSyRate(address market, uint32 duration) external view returns (uint256) {
        return IPMarket(market).getYtToSyRate(duration);
    }

    function getLpToSyRate(address market, uint32 duration) external view returns (uint256) {
        return IPMarket(market).getLpToSyRate(duration);
    }

    /*///////////////////////////////////////////////////////////////
                    PT, YT, LP to Asset
    //////////////////////////////////////////////////////////////*/

    /// @notice make sure you have taken into account the risk of not being able to withdraw from SY to Asset
    function getPtToAssetRate(address market, uint32 duration) external view returns (uint256) {
        return IPMarket(market).getPtToAssetRate(duration);
    }

    function getYtToAssetRate(address market, uint32 duration) external view returns (uint256) {
        return IPMarket(market).getYtToAssetRate(duration);
    }

    function getLpToAssetRate(address market, uint32 duration) external view returns (uint256) {
        return IPMarket(market).getLpToAssetRate(duration);
    }

    /*///////////////////////////////////////////////////////////////
                        Utility functions
    //////////////////////////////////////////////////////////////*/

    /**
     * A check function for the cardinality status of the market
     * @param market PendleMarket address
     * @param duration twap duration
     * @return increaseCardinalityRequired a boolean indicates whether the cardinality should be increased to serve the duration
     * @return cardinalityRequired the amount of cardinality required for the twap duration
     */
    function getOracleState(
        address market,
        uint32 duration
    )
        external
        view
        returns (bool increaseCardinalityRequired, uint16 cardinalityRequired, bool oldestObservationSatisfied)
    {
        (, , , uint16 observationIndex, uint16 observationCardinality, uint16 cardinalityReserved) = IPMarket(market)
            ._storage();

        // checkIncreaseCardinalityRequired
        cardinalityRequired = _calcCardinalityRequiredRequired(duration);
        increaseCardinalityRequired = cardinalityReserved < cardinalityRequired;

        // check oldestObservationSatisfied
        (uint32 oldestTimestamp, , bool initialized) = IPMarket(market).observations(
            (observationIndex + 1) % observationCardinality
        );
        if (!initialized) {
            (oldestTimestamp, , ) = IPMarket(market).observations(0);
        }
        oldestObservationSatisfied = oldestTimestamp < block.timestamp - duration;
    }

    function _calcCardinalityRequiredRequired(uint32 duration) internal view returns (uint16) {
        uint32 cardinalityRequired = (duration * BLOCK_CYCLE_DENOMINATOR + blockCycleNumerator - 1) /
            blockCycleNumerator +
            1;
        if (cardinalityRequired > type(uint16).max) {
            revert TwapDurationTooLarge(duration, cardinalityRequired);
        }
        return uint16(cardinalityRequired);
    }

    // --- Owner-Only Functions ---
    function setBlockCycleNumerator(uint16 newBlockCycleNumerator) external onlyOwner {
        _setBlockCycleNumerator(newBlockCycleNumerator);
    }

    function _setBlockCycleNumerator(uint16 newBlockCycleNumerator) internal {
        if (newBlockCycleNumerator < BLOCK_CYCLE_DENOMINATOR) {
            revert InvalidBlockRate(newBlockCycleNumerator);
        }

        blockCycleNumerator = newBlockCycleNumerator;
        emit SetBlockCycleNumerator(newBlockCycleNumerator);
    }
}

File 24 of 29 : PendlePYOracleLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../interfaces/IPMarket.sol";
import "../core/libraries/math/PMath.sol";

// This library can & should be integrated directly for optimal gas usage.
// If you prefer not to integrate it directly, the PendlePtOracle contract (a pre-deployed version of this contract) can be used.
library PendlePYOracleLib {
    using PMath for uint256;
    using PMath for int256;

    /**
     * This function returns the twap rate PT/Asset on market, but take into account the current rate of SY
     This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
     * @param market market to get rate from
     * @param duration twap duration
     */
    function getPtToAssetRate(IPMarket market, uint32 duration) internal view returns (uint256) {
        (uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
        if (syIndex >= pyIndex) {
            return getPtToAssetRateRaw(market, duration);
        } else {
            return (getPtToAssetRateRaw(market, duration) * syIndex) / pyIndex;
        }
    }

    /**
     * This function returns the twap rate YT/Asset on market, but take into account the current rate of SY
     This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
     * @param market market to get rate from
     * @param duration twap duration
     */
    function getYtToAssetRate(IPMarket market, uint32 duration) internal view returns (uint256) {
        (uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
        if (syIndex >= pyIndex) {
            return getYtToAssetRateRaw(market, duration);
        } else {
            return (getYtToAssetRateRaw(market, duration) * syIndex) / pyIndex;
        }
    }

    /// @notice Similar to getPtToAsset but returns the rate in SY instead
    function getPtToSyRate(IPMarket market, uint32 duration) internal view returns (uint256) {
        (uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
        if (syIndex >= pyIndex) {
            return getPtToAssetRateRaw(market, duration).divDown(syIndex);
        } else {
            return getPtToAssetRateRaw(market, duration).divDown(pyIndex);
        }
    }

    /// @notice Similar to getPtToAsset but returns the rate in SY instead
    function getYtToSyRate(IPMarket market, uint32 duration) internal view returns (uint256) {
        (uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
        if (syIndex >= pyIndex) {
            return getYtToAssetRateRaw(market, duration).divDown(syIndex);
        } else {
            return getYtToAssetRateRaw(market, duration).divDown(pyIndex);
        }
    }

    /// @notice returns the raw rate without taking into account whether SY is solvent
    function getPtToAssetRateRaw(IPMarket market, uint32 duration) internal view returns (uint256) {
        uint256 expiry = market.expiry();

        if (expiry <= block.timestamp) {
            return PMath.ONE;
        } else {
            uint256 lnImpliedRate = getMarketLnImpliedRate(market, duration);
            uint256 timeToExpiry = expiry - block.timestamp;
            uint256 assetToPtRate = MarketMathCore._getExchangeRateFromImpliedRate(lnImpliedRate, timeToExpiry).Uint();
            return PMath.ONE.divDown(assetToPtRate);
        }
    }

    /// @notice returns the raw rate without taking into account whether SY is solvent
    function getYtToAssetRateRaw(IPMarket market, uint32 duration) internal view returns (uint256) {
        return PMath.ONE - getPtToAssetRateRaw(market, duration);
    }

    function getSYandPYIndexCurrent(IPMarket market) internal view returns (uint256 syIndex, uint256 pyIndex) {
        (IStandardizedYield SY, , IPYieldToken YT) = market.readTokens();

        syIndex = SY.exchangeRate();
        uint256 pyIndexStored = YT.pyIndexStored();

        if (YT.doCacheIndexSameBlock() && YT.pyIndexLastUpdatedBlock() == block.number) {
            pyIndex = pyIndexStored;
        } else {
            pyIndex = PMath.max(syIndex, pyIndexStored);
        }
    }

    function getMarketLnImpliedRate(IPMarket market, uint32 duration) internal view returns (uint256) {
        uint32[] memory durations = new uint32[](2);
        durations[0] = duration;

        uint216[] memory lnImpliedRateCumulative = market.observe(durations);
        return (lnImpliedRateCumulative[1] - lnImpliedRateCumulative[0]) / duration;
    }
}

File 25 of 29 : Common.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

// Common.sol
//
// Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.

/*//////////////////////////////////////////////////////////////////////////
                                CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);

/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);

/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();

/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);

/*//////////////////////////////////////////////////////////////////////////
                                    CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;

/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;

/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;

/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;

/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;

/*//////////////////////////////////////////////////////////////////////////
                                    FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
    unchecked {
        // Start from 0.5 in the 192.64-bit fixed-point format.
        result = 0x800000000000000000000000000000000000000000000000;

        // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
        //
        // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
        // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
        // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
        // we know that `x & 0xFF` is also 1.
        if (x & 0xFF00000000000000 > 0) {
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
        }

        if (x & 0xFF000000000000 > 0) {
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
        }

        if (x & 0xFF0000000000 > 0) {
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
        }

        if (x & 0xFF00000000 > 0) {
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
        }

        if (x & 0xFF000000 > 0) {
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
        }

        if (x & 0xFF0000 > 0) {
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
        }

        if (x & 0xFF00 > 0) {
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
        }

        if (x & 0xFF > 0) {
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
        }

        // In the code snippet below, two operations are executed simultaneously:
        //
        // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
        // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
        // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
        //
        // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
        // integer part, $2^n$.
        result *= UNIT;
        result >>= (191 - (x >> 64));
    }
}

/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
///     x >>= 128;
///     result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
    // 2^128
    assembly ("memory-safe") {
        let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^64
    assembly ("memory-safe") {
        let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^32
    assembly ("memory-safe") {
        let factor := shl(5, gt(x, 0xFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^16
    assembly ("memory-safe") {
        let factor := shl(4, gt(x, 0xFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^8
    assembly ("memory-safe") {
        let factor := shl(3, gt(x, 0xFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^4
    assembly ("memory-safe") {
        let factor := shl(2, gt(x, 0xF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^2
    assembly ("memory-safe") {
        let factor := shl(1, gt(x, 0x3))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^1
    // No need to shift x any more.
    assembly ("memory-safe") {
        let factor := gt(x, 0x1)
        result := or(result, factor)
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
        unchecked {
            return prod0 / denominator;
        }
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    if (prod1 >= denominator) {
        revert PRBMath_MulDiv_Overflow(x, y, denominator);
    }

    ////////////////////////////////////////////////////////////////////////////
    // 512 by 256 division
    ////////////////////////////////////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly ("memory-safe") {
        // Compute remainder using the mulmod Yul instruction.
        remainder := mulmod(x, y, denominator)

        // Subtract 256 bit number from 512-bit number.
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
    }

    unchecked {
        // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
        // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
        // For more detail, see https://cs.stackexchange.com/q/138556/92363.
        uint256 lpotdod = denominator & (~denominator + 1);
        uint256 flippedLpotdod;

        assembly ("memory-safe") {
            // Factor powers of two out of denominator.
            denominator := div(denominator, lpotdod)

            // Divide [prod1 prod0] by lpotdod.
            prod0 := div(prod0, lpotdod)

            // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
            // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
            // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
            flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
        }

        // Shift in bits from prod1 into prod0.
        prod0 |= prod1 * flippedLpotdod;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
        uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
        // in modular arithmetic, doubling the correct bits in each step.
        inverse *= 2 - denominator * inverse; // inverse mod 2^8
        inverse *= 2 - denominator * inverse; // inverse mod 2^16
        inverse *= 2 - denominator * inverse; // inverse mod 2^32
        inverse *= 2 - denominator * inverse; // inverse mod 2^64
        inverse *= 2 - denominator * inverse; // inverse mod 2^128
        inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inverse;
    }
}

/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
///     x * y = MAX\_UINT256 * UNIT \\
///     (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
    uint256 prod0;
    uint256 prod1;
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    if (prod1 == 0) {
        unchecked {
            return prod0 / UNIT;
        }
    }

    if (prod1 >= UNIT) {
        revert PRBMath_MulDiv18_Overflow(x, y);
    }

    uint256 remainder;
    assembly ("memory-safe") {
        remainder := mulmod(x, y, UNIT)
        result :=
            mul(
                or(
                    div(sub(prod0, remainder), UNIT_LPOTD),
                    mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                ),
                UNIT_INVERSE
            )
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
    if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
        revert PRBMath_MulDivSigned_InputTooSmall();
    }

    // Get hold of the absolute values of x, y and the denominator.
    uint256 xAbs;
    uint256 yAbs;
    uint256 dAbs;
    unchecked {
        xAbs = x < 0 ? uint256(-x) : uint256(x);
        yAbs = y < 0 ? uint256(-y) : uint256(y);
        dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
    }

    // Compute the absolute value of x*y÷denominator. The result must fit in int256.
    uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
    if (resultAbs > uint256(type(int256).max)) {
        revert PRBMath_MulDivSigned_Overflow(x, y);
    }

    // Get the signs of x, y and the denominator.
    uint256 sx;
    uint256 sy;
    uint256 sd;
    assembly ("memory-safe") {
        // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
        sx := sgt(x, sub(0, 1))
        sy := sgt(y, sub(0, 1))
        sd := sgt(denominator, sub(0, 1))
    }

    // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
    // If there are, the result should be negative. Otherwise, it should be positive.
    unchecked {
        result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2 ** 128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2 ** 64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2 ** 32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2 ** 16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2 ** 8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2 ** 4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2 ** 2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}

File 26 of 29 : OrigamiOracleBase.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/oracle/OrigamiOracleBase.sol)

import { IOrigamiOracle } from "contracts/interfaces/common/oracle/IOrigamiOracle.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";

/**
 * @title OrigamiOracleBase
 * @notice Common base logic for Origami Oracle's
 */
abstract contract OrigamiOracleBase is IOrigamiOracle {
    using OrigamiMath for uint256;

    /**
     * @notice The address used to reference the baseAsset for amount conversions
     */
    address public immutable override baseAsset;

    /**
     * @notice The address used to reference the quoteAsset for amount conversions
     */
    address public immutable override quoteAsset;

    /**
     * @notice The number of decimals of precision the oracle price is returned as
     */
    uint8 public constant override decimals = 18;

    /**
     * @notice The precision that the cross rate oracle price is returned as: `10^decimals`
     */
    uint256 public constant override precision = 1e18;

    /**
     * @notice When converting from baseAsset<->quoteAsset, the fixed point amounts
     * need to be scaled by this amount.
     */
    uint256 public immutable override assetScalingFactor;

    /**
     * @notice A human readable description for this origami oracle
     */
    string public override description;

    constructor(BaseOracleParams memory params) {
        description = params.description;
        baseAsset = params.baseAssetAddress;
        quoteAsset = params.quoteAssetAddress;
        if (params.quoteAssetDecimals > decimals + params.baseAssetDecimals) revert CommonEventsAndErrors.InvalidParam();
        assetScalingFactor = 10 ** (decimals + params.baseAssetDecimals - params.quoteAssetDecimals);
    }

    /**
     * @notice Return the latest oracle price, to `decimals` precision
     * @dev This may still revert - eg if deemed stale, div by 0, negative price
     * @param priceType What kind of price - Spot or Historic
     * @param roundingMode Round the price at each intermediate step such that the final price rounds in the specified direction.
     */
    function latestPrice(
        PriceType priceType, 
        OrigamiMath.Rounding roundingMode
    ) public virtual override view returns (uint256 price);

    /**
     * @notice Same as `latestPrice()` but for two separate prices from this oracle	
     */
    function latestPrices(
        PriceType priceType1, 
        OrigamiMath.Rounding roundingMode1,
        PriceType priceType2, 
        OrigamiMath.Rounding roundingMode2
    ) external virtual override view returns (
        uint256 /*price1*/, 
        uint256 /*price2*/, 
        address /*oracleBaseAsset*/,
        address /*oracleQuoteAsset*/
    ) {
        return (
            latestPrice(priceType1, roundingMode1),
            latestPrice(priceType2, roundingMode2),
            baseAsset,
            quoteAsset
        );
    }

    /**
     * @notice Convert either the baseAsset->quoteAsset or quoteAsset->baseAsset
     * @dev The `fromAssetAmount` needs to be in it's natural fixed point precision (eg USDC=6dp)
     * The `toAssetAmount` will also be returned in it's natural fixed point precision
     */
    function convertAmount(
        address fromAsset,
        uint256 fromAssetAmount,
        PriceType priceType,
        OrigamiMath.Rounding roundingMode 
    ) external override view returns (uint256 toAssetAmount) {
        if (fromAsset == baseAsset) {
            // The numerator needs to round in the same way to be conservative
            uint256 _price = latestPrice(
                priceType, 
                roundingMode
            );

            return fromAssetAmount.mulDiv(
                _price,
                assetScalingFactor,
                roundingMode
            );
        } else if (fromAsset == quoteAsset) {
            // The denominator needs to round in the opposite way to be conservative
            uint256 _price = latestPrice(
                priceType, 
                roundingMode == OrigamiMath.Rounding.ROUND_UP ? OrigamiMath.Rounding.ROUND_DOWN : OrigamiMath.Rounding.ROUND_UP
            );

            if (_price == 0) revert InvalidPrice(address(this), int256(_price));
            return fromAssetAmount.mulDiv(
                assetScalingFactor,
                _price,
                roundingMode
            );
        }

        revert CommonEventsAndErrors.InvalidToken(fromAsset);
    }

    /**
     * @notice Match whether a pair of assets match the base and quote asset on this oracle, in either order
     */
    function matchAssets(address asset1, address asset2) public view returns (bool) {
        return (
            (asset1 == baseAsset && asset2 == quoteAsset) ||
            (asset2 == baseAsset && asset1 == quoteAsset)
        );
    }
}

File 27 of 29 : IOrigamiOracle.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/oracle/IOrigamiOracle.sol)

import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";

/**
 * @notice An oracle which returns prices for pairs of assets, where an asset
 * could refer to a token (eg DAI) or a currency (eg USD)
 * Convention is the same as the FX market. Given the DAI/USD pair:
 *   - DAI = Base Asset (LHS of pair)
 *   - USD = Quote Asset (RHS of pair)
 * This price defines how many USD you get if selling 1 DAI
 *
 * Further, an oracle can define two PriceType's:
 *   - SPOT_PRICE: The latest spot price, for example from a chainlink oracle
 *   - HISTORIC_PRICE: An expected (eg 1:1 peg) or calculated historic price (eg TWAP)
 *
 * For assets which do are not tokens (eg USD), an internal address reference will be used
 * since this is for internal purposes only
 */
interface IOrigamiOracle {
    error InvalidPrice(address oracle, int256 price);
    error InvalidOracleData(address oracle);
    error StalePrice(address oracle, uint256 lastUpdatedAt, int256 price);
    error UnknownPriceType(uint8 priceType);
    error BelowMinValidRange(address oracle, uint256 price, uint128 floor);
    error AboveMaxValidRange(address oracle, uint256 price, uint128 ceiling);

    event ValidPriceRangeSet(uint128 validFloor, uint128 validCeiling);

    enum PriceType {
        /// @notice The current spot price of this Oracle
        SPOT_PRICE,

        /// @notice The historic price of this Oracle. 
        /// It may be a fixed expectation (eg DAI/USD would be fixed to 1)
        /// or use a TWAP or some other moving average, etc.
        HISTORIC_PRICE
    }

    /**
     * @dev Wrapped in a struct to remove stack-too-deep constraints
     */
    struct BaseOracleParams {
        string description;
        address baseAssetAddress;
        uint8 baseAssetDecimals;
        address quoteAssetAddress;
        uint8 quoteAssetDecimals;
    }

    /**
     * @notice The address used to reference the baseAsset for amount conversions
     */
    function baseAsset() external view returns (address);

    /**
     * @notice The address used to reference the quoteAsset for amount conversions
     */
    function quoteAsset() external view returns (address);

    /**
     * @notice The number of decimals of precision the price is returned as
     */
    function decimals() external view returns (uint8);

    /**
     * @notice The precision that the cross rate oracle price is returned as: `10^decimals`
     */
    function precision() external view returns (uint256);

    /**
     * @notice When converting from baseAsset<->quoteAsset, the fixed point amounts
     * need to be scaled by this amount.
     */
    function assetScalingFactor() external view returns (uint256);

    /**
     * @notice A human readable description for this oracle
     */
    function description() external view returns (string memory);

    /**
     * @notice Return the latest oracle price, to `decimals` precision
     * @dev This may still revert - eg if deemed stale, div by 0, negative price
     * @param priceType What kind of price - Spot or Historic
     * @param roundingMode Round the price at each intermediate step such that the final price rounds in the specified direction.
     */
    function latestPrice(
        PriceType priceType, 
        OrigamiMath.Rounding roundingMode
    ) external view returns (uint256 price);

    /**
     * @notice Same as `latestPrice()` but for two separate prices from this oracle	
     */
    function latestPrices(
        PriceType priceType1, 
        OrigamiMath.Rounding roundingMode1,
        PriceType priceType2, 
        OrigamiMath.Rounding roundingMode2
    ) external view returns (
        uint256 price1, 
        uint256 price2, 
        address oracleBaseAsset,
        address oracleQuoteAsset
    );

    /**
     * @notice Convert either the baseAsset->quoteAsset or quoteAsset->baseAsset
     * @dev The `fromAssetAmount` needs to be in it's natural fixed point precision (eg USDC=6dp)
     * The `toAssetAmount` will also be returned in it's natural fixed point precision
     */
    function convertAmount(
        address fromAsset,
        uint256 fromAssetAmount,
        PriceType priceType,
        OrigamiMath.Rounding roundingMode
    ) external view returns (uint256 toAssetAmount);

    /**
     * @notice Match whether a pair of assets match the base and quote asset on this oracle, in either order
     */
    function matchAssets(address asset1, address asset2) external view returns (bool);
}

File 28 of 29 : CommonEventsAndErrors.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (libraries/CommonEventsAndErrors.sol)

/// @notice A collection of common events and errors thrown within the Origami contracts
library CommonEventsAndErrors {
    error InsufficientBalance(address token, uint256 required, uint256 balance);
    error InvalidToken(address token);
    error InvalidParam();
    error InvalidAddress(address addr);
    error InvalidAmount(address token, uint256 amount);
    error ExpectedNonZero();
    error Slippage(uint256 minAmountExpected, uint256 actualAmount);
    error IsPaused();
    error UnknownExecuteError(bytes returndata);
    error InvalidAccess();
    error BreachedMaxTotalSupply(uint256 totalSupply, uint256 maxTotalSupply);

    event TokenRecovered(address indexed to, address indexed token, uint256 amount);
}

File 29 of 29 : OrigamiMath.sol
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (libraries/OrigamiMath.sol)

import { mulDiv as prbMulDiv, PRBMath_MulDiv_Overflow } from "@prb/math/src/Common.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";

/**
 * @notice Utilities to operate on fixed point math multipliation and division
 * taking rounding into consideration
 */
library OrigamiMath {
    enum Rounding {
        ROUND_DOWN,
        ROUND_UP
    }

    uint256 public constant BASIS_POINTS_DIVISOR = 10_000;

    function scaleUp(uint256 amount, uint256 scalar) internal pure returns (uint256) {
        // Special case for scalar == 1, as it's common for token amounts to not need
        // scaling if decimal places are the same
        return scalar == 1 ? amount : amount * scalar;
    }

    function scaleDown(
        uint256 amount, 
        uint256 scalar, 
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        // Special case for scalar == 1, as it's common for token amounts to not need
        // scaling if decimal places are the same
        unchecked {
            if (scalar == 1) {
                result = amount;
            } else if (roundingMode == Rounding.ROUND_DOWN) {
                result = amount / scalar;
            } else {
                // ROUND_UP uses the same logic as OZ Math.ceilDiv()
                result = amount == 0 ? 0 : (amount - 1) / scalar + 1;
            }
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision,
     * rounding up
     */
    function mulDiv(
        uint256 x, 
        uint256 y, 
        uint256 denominator,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        result = prbMulDiv(x, y, denominator);
        if (roundingMode == Rounding.ROUND_UP) {
            if (mulmod(x, y, denominator) != 0) {
                if (result < type(uint256).max) {
                    unchecked {
                        result = result + 1;
                    }
                } else {
                    revert PRBMath_MulDiv_Overflow(x, y, denominator);
                }
            }
        }
    }

    function subtractBps(
        uint256 inputAmount, 
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        uint256 numeratorBps;
        unchecked {
            numeratorBps = BASIS_POINTS_DIVISOR - basisPoints;
        }

        result = basisPoints < BASIS_POINTS_DIVISOR
            ? mulDiv(
                inputAmount,
                numeratorBps, 
                BASIS_POINTS_DIVISOR, 
                roundingMode
            ) : 0;
    }

    function addBps(
        uint256 inputAmount,
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        uint256 numeratorBps;
        unchecked {
            numeratorBps = BASIS_POINTS_DIVISOR + basisPoints;
        }

        // Round up for max amounts out expected
        result = mulDiv(
            inputAmount,
            numeratorBps, 
            BASIS_POINTS_DIVISOR, 
            roundingMode
        );
    }

    /**
     * @notice Split the `inputAmount` into two parts based on the `basisPoints` fraction.
     * eg: 3333 BPS (33.3%) can be used to split an input amount of 600 into: (result=400, removed=200).
     * @dev The rounding mode is applied to the `result`
     */
    function splitSubtractBps(
        uint256 inputAmount, 
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result, uint256 removed) {
        result = subtractBps(inputAmount, basisPoints, roundingMode);
        unchecked {
            removed = inputAmount - result;
        }
    }

    /**
     * @notice Reverse the fractional amount of an input.
     * eg: For 3333 BPS (33.3%) and the remainder=400, the result is 600
     */
    function inverseSubtractBps(
        uint256 remainderAmount, 
        uint256 basisPoints,
        Rounding roundingMode
    ) internal pure returns (uint256 result) {
        if (basisPoints == 0) return remainderAmount; // gas shortcut for 0
        if (basisPoints >= BASIS_POINTS_DIVISOR) revert CommonEventsAndErrors.InvalidParam();

        uint256 denominatorBps;
        unchecked {
            denominatorBps = BASIS_POINTS_DIVISOR - basisPoints;
        }
        result = mulDiv(
            remainderAmount,
            BASIS_POINTS_DIVISOR, 
            denominatorBps, 
            roundingMode
        );
    }

    /**
     * @notice Calculate the relative difference of a value to a reference
     * @dev `value` and `referenceValue` must have the same precision
     * The denominator is always the referenceValue
     */
    function relativeDifferenceBps(
        uint256 value,
        uint256 referenceValue,
        Rounding roundingMode
    ) internal pure returns (uint256) {
        if (referenceValue == 0) revert CommonEventsAndErrors.InvalidParam();

        uint256 absDelta;
        unchecked {
            absDelta = value < referenceValue
                ? referenceValue - value
                : value - referenceValue;
        }

        return mulDiv(
            absDelta,
            BASIS_POINTS_DIVISOR,
            referenceValue,
            roundingMode
        );
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"components":[{"internalType":"string","name":"description","type":"string"},{"internalType":"address","name":"baseAssetAddress","type":"address"},{"internalType":"uint8","name":"baseAssetDecimals","type":"uint8"},{"internalType":"address","name":"quoteAssetAddress","type":"address"},{"internalType":"uint8","name":"quoteAssetDecimals","type":"uint8"}],"internalType":"struct IOrigamiOracle.BaseOracleParams","name":"baseParams","type":"tuple"},{"internalType":"address","name":"_pendleOracle","type":"address"},{"internalType":"address","name":"_pendleMarket","type":"address"},{"internalType":"uint32","name":"_twapDuration","type":"uint32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"},{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint128","name":"ceiling","type":"uint128"}],"name":"AboveMaxValidRange","type":"error"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"},{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint128","name":"floor","type":"uint128"}],"name":"BelowMinValidRange","type":"error"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"}],"name":"InvalidOracleData","type":"error"},{"inputs":[],"name":"InvalidParam","type":"error"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"},{"internalType":"int256","name":"price","type":"int256"}],"name":"InvalidPrice","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"InvalidToken","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"},{"internalType":"uint256","name":"lastUpdatedAt","type":"uint256"},{"internalType":"int256","name":"price","type":"int256"}],"name":"StalePrice","type":"error"},{"inputs":[],"name":"UninitializedPendleOracle","type":"error"},{"inputs":[{"internalType":"uint8","name":"priceType","type":"uint8"}],"name":"UnknownPriceType","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint128","name":"validFloor","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"validCeiling","type":"uint128"}],"name":"ValidPriceRangeSet","type":"event"},{"inputs":[],"name":"assetScalingFactor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"fromAsset","type":"address"},{"internalType":"uint256","name":"fromAssetAmount","type":"uint256"},{"internalType":"enum IOrigamiOracle.PriceType","name":"priceType","type":"uint8"},{"internalType":"enum OrigamiMath.Rounding","name":"roundingMode","type":"uint8"}],"name":"convertAmount","outputs":[{"internalType":"uint256","name":"toAssetAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IOrigamiOracle.PriceType","name":"","type":"uint8"},{"internalType":"enum OrigamiMath.Rounding","name":"","type":"uint8"}],"name":"latestPrice","outputs":[{"internalType":"uint256","name":"price","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IOrigamiOracle.PriceType","name":"priceType1","type":"uint8"},{"internalType":"enum OrigamiMath.Rounding","name":"roundingMode1","type":"uint8"},{"internalType":"enum IOrigamiOracle.PriceType","name":"priceType2","type":"uint8"},{"internalType":"enum OrigamiMath.Rounding","name":"roundingMode2","type":"uint8"}],"name":"latestPrices","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"asset1","type":"address"},{"internalType":"address","name":"asset2","type":"address"}],"name":"matchAssets","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendleMarket","outputs":[{"internalType":"contract IPMarket","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"precision","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"quoteAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"twapDuration","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"}]

6101206040523480156200001257600080fd5b506040516200217d3803806200217d833981016040819052620000359162000255565b835184906000906200004890826200044b565b5060208101516001600160a01b0390811660805260608201511660a0526040810151620000779060126200052d565b60ff16816080015160ff161115620000a257604051633494a40d60e21b815260040160405180910390fd5b60808101516040820151620000b99060126200052d565b620000c591906200054f565b620000d290600a62000668565b60c052506001600160a01b0382811660e081905263ffffffff831661010081905260405162439f4b60e91b81526004810192909252602482015260009182919086169063873e960090604401606060405180830381865afa1580156200013c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000162919062000691565b9250509150818062000172575080155b156200019157604051636efece6560e01b815260040160405180910390fd5b505050505050620006e3565b634e487b7160e01b600052604160045260246000fd5b60405160a081016001600160401b0381118282101715620001d857620001d86200019d565b60405290565b604051601f8201601f191681016001600160401b03811182821017156200020957620002096200019d565b604052919050565b80516001600160a01b03811681146200022957600080fd5b919050565b805160ff811681146200022957600080fd5b805163ffffffff811681146200022957600080fd5b600080600080608085870312156200026c57600080fd5b84516001600160401b03808211156200028457600080fd5b9086019060a082890312156200029957600080fd5b620002a3620001b3565b825182811115620002b357600080fd5b8301601f81018a13620002c557600080fd5b805183811115620002da57620002da6200019d565b60209350620002f2601f8201601f19168501620001de565b8181528b858385010111156200030757600080fd5b60005b82811015620003275783810186015182820187015285016200030a565b5060008583830101528084525050506200034382840162000211565b8282015262000355604084016200022e565b6040820152620003686060840162000211565b60608201526200037b608084016200022e565b608082015295506200038f87820162000211565b94505050620003a16040860162000211565b9150620003b16060860162000240565b905092959194509250565b600181811c90821680620003d157607f821691505b602082108103620003f257634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200044657600081815260208120601f850160051c81016020861015620004215750805b601f850160051c820191505b8181101562000442578281556001016200042d565b5050505b505050565b81516001600160401b038111156200046757620004676200019d565b6200047f81620004788454620003bc565b84620003f8565b602080601f831160018114620004b757600084156200049e5750858301515b600019600386901b1c1916600185901b17855562000442565b600085815260208120601f198616915b82811015620004e857888601518255948401946001909101908401620004c7565b5085821015620005075787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b600052601160045260246000fd5b60ff818116838216019081111562000549576200054962000517565b92915050565b60ff828116828216039081111562000549576200054962000517565b600181815b80851115620005ac57816000190482111562000590576200059062000517565b808516156200059e57918102915b93841c939080029062000570565b509250929050565b600082620005c55750600162000549565b81620005d45750600062000549565b8160018114620005ed5760028114620005f85762000618565b600191505062000549565b60ff8411156200060c576200060c62000517565b50506001821b62000549565b5060208310610133831016604e8410600b84101617156200063d575081810a62000549565b6200064983836200056b565b806000190482111562000660576200066062000517565b029392505050565b60006200067960ff841683620005b4565b9392505050565b805180151581146200022957600080fd5b600080600060608486031215620006a757600080fd5b620006b28462000680565b9250602084015161ffff81168114620006ca57600080fd5b9150620006da6040850162000680565b90509250925092565b60805160a05160c05160e05161010051611a026200077b6000396000818160de015261073401526000818161020801526107120152600081816101be01528181610424015261052101526000818161029d0152818161030301528181610453015281816105f3015261069f015260008181610267015281816102e0015281816103be0152818161059d01526106490152611a026000f3fe608060405234801561001057600080fd5b50600436106100d45760003560e01c80639502128011610081578063cdf456e11161005b578063cdf456e114610262578063d3b5dc3b14610289578063fdf262b71461029857600080fd5b806395021280146101e057806399d9a71f14610203578063c6845a091461024f57600080fd5b80637284e416116100b25780637284e416146101835780637349615f146101985780638fc5e88d146101b957600080fd5b806326d89545146100d9578063313ce5671461011a5780636999451114610134575b600080fd5b6101007f000000000000000000000000000000000000000000000000000000000000000081565b60405163ffffffff90911681526020015b60405180910390f35b610122601281565b60405160ff9091168152602001610111565b610147610142366004611442565b6102bf565b60408051948552602085019390935273ffffffffffffffffffffffffffffffffffffffff91821692840192909252166060820152608001610111565b61018b61032c565b604051610111919061149e565b6101ab6101a636600461152c565b6103ba565b604051908152602001610111565b6101ab7f000000000000000000000000000000000000000000000000000000000000000081565b6101f36101ee366004611564565b610599565b6040519015158152602001610111565b61022a7f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610111565b6101ab61025d36600461159d565b6106f6565b61022a7f000000000000000000000000000000000000000000000000000000000000000081565b6101ab670de0b6b3a764000081565b61022a7f000000000000000000000000000000000000000000000000000000000000000081565b6000806000806102cf88886106f6565b6102d987876106f6565b90999098507f000000000000000000000000000000000000000000000000000000000000000097507f00000000000000000000000000000000000000000000000000000000000000009650945050505050565b60008054610339906115cb565b80601f0160208091040260200160405190810160405280929190818152602001828054610365906115cb565b80156103b25780601f10610387576101008083540402835291602001916103b2565b820191906000526020600020905b81548152906001019060200180831161039557829003601f168201915b505050505081565b60007f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff160361045157600061041b84846106f6565b905061044985827f000000000000000000000000000000000000000000000000000000000000000086610758565b915050610591565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16036105475760006104d18460018560018111156104be576104be61161e565b146104ca5760016106f6565b60006106f6565b90508060000361051b576040517fdcd07d4f000000000000000000000000000000000000000000000000000000008152306004820152602481018290526044015b60405180910390fd5b610449857f00000000000000000000000000000000000000000000000000000000000000008386610758565b6040517f961c9a4f00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff86166004820152602401610512565b949350505050565b60007f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1614801561064157507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16145b806106ed57507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff161480156106ed57507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16145b90505b92915050565b60006106ed73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000167f0000000000000000000000000000000000000000000000000000000000000000610809565b6000610765858585610855565b9050600182600181111561077b5761077b61161e565b0361059157828061078e5761078e61164d565b84860915610591577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8110156107c657600101610591565b6040517f63a05778000000000000000000000000000000000000000000000000000000008152600481018690526024810185905260448101849052606401610512565b600080600061081785610966565b915091508082106108355761082c8585610be0565b925050506106f0565b80826108418787610be0565b61084b91906116ab565b61082c91906116c2565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff858709858702925082811083820303915050806000036108ad578382816108a3576108a361164d565b049250505061095f565b8381106108f7576040517f63a05778000000000000000000000000000000000000000000000000000000008152600481018790526024810186905260448101859052606401610512565b600084868809851960019081018716968790049682860381900495909211909303600082900391909104909201919091029190911760038402600290811880860282030280860282030280860282030280860282030280860282030280860290910302029150505b9392505050565b6000806000808473ffffffffffffffffffffffffffffffffffffffff16632c8ce6bc6040518163ffffffff1660e01b8152600401606060405180830381865afa1580156109b7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109db91906116d6565b92505091508173ffffffffffffffffffffffffffffffffffffffff16633ba0b9a96040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a2b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a4f9190611723565b935060008173ffffffffffffffffffffffffffffffffffffffff1663d2a3584e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a9e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ac29190611723565b90508173ffffffffffffffffffffffffffffffffffffffff1663516399df6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b0f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b33919061173c565b8015610bbe5750438273ffffffffffffffffffffffffffffffffffffffff166360e0a9e16040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610baa919061175e565b6fffffffffffffffffffffffffffffffff16145b15610bcb57809350610bd8565b610bd58582610cc2565b93505b505050915091565b6000808373ffffffffffffffffffffffffffffffffffffffff1663e184c9be6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c2e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c529190611723565b9050428111610c6c57670de0b6b3a76400009150506106f0565b6000610c788585610cd8565b90506000610c864284611790565b90506000610c9c610c978484610e57565b610e90565b9050610cb0670de0b6b3a764000082610ea3565b9450505050506106f0565b5092915050565b6000818311610cd157816106ed565b5090919050565b604080516002808252606082018352600092839291906020830190803683370190505090508281600081518110610d1157610d116117d2565b63ffffffff909216602092830291909101909101526040517f883bdbfd00000000000000000000000000000000000000000000000000000000815260009073ffffffffffffffffffffffffffffffffffffffff86169063883bdbfd90610d7b908590600401611801565b600060405180830381865afa158015610d98573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0168201604052610dde919081019061187b565b90508363ffffffff1681600081518110610dfa57610dfa6117d2565b602002602001015182600181518110610e1557610e156117d2565b6020026020010151610e27919061195e565b610e319190611992565b7affffffffffffffffffffffffffffffffffffffffffffffffffffff1695945050505050565b600080610e696201518061016d6116ab565b610e7384866116ab565b610e7d91906116c2565b9050610591610e8b82610ed2565b610f01565b600080821215610e9f57600080fd5b5090565b600080610eb8670de0b6b3a7640000856116ab565b9050828181610ec957610ec961164d565b04949350505050565b60007f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821115610e9f57600080fd5b60007ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212158015610f3c575068070c1cc73b00c800008213155b610fa2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f496e76616c6964206578706f6e656e74000000000000000000000000000000006044820152606401610512565b6000821215610fdb57610fb782600003610f01565b6ec097ce7bc90715b34b9f100000000081610fd457610fd461164d565b0592915050565b60006806f05b59d3b2000000831261103157507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061107d565b6803782dace9d9000000831261107957507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061107d565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126110e3577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412611135577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b188000008412611185577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126111d5577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412611224577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412611273577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126112c2577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412611311577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6002811061143f57600080fd5b50565b6000806000806080858703121561145857600080fd5b843561146381611432565b9350602085013561147381611432565b9250604085013561148381611432565b9150606085013561149381611432565b939692955090935050565b600060208083528351808285015260005b818110156114cb578581018301518582016040015282016114af565b5060006040828601015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8301168501019250505092915050565b73ffffffffffffffffffffffffffffffffffffffff8116811461143f57600080fd5b6000806000806080858703121561154257600080fd5b843561154d8161150a565b935060208501359250604085013561148381611432565b6000806040838503121561157757600080fd5b82356115828161150a565b915060208301356115928161150a565b809150509250929050565b600080604083850312156115b057600080fd5b82356115bb81611432565b9150602083013561159281611432565b600181811c908216806115df57607f821691505b602082108103611618577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b80820281158282048414176106f0576106f061167c565b6000826116d1576116d161164d565b500490565b6000806000606084860312156116eb57600080fd5b83516116f68161150a565b60208501519093506117078161150a565b60408501519092506117188161150a565b809150509250925092565b60006020828403121561173557600080fd5b5051919050565b60006020828403121561174e57600080fd5b8151801515811461095f57600080fd5b60006020828403121561177057600080fd5b81516fffffffffffffffffffffffffffffffff8116811461095f57600080fd5b818103818111156106f0576106f061167c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b6020808252825182820181905260009190848201906040850190845b8181101561183f57835163ffffffff168352928401929184019160010161181d565b50909695505050505050565b80517affffffffffffffffffffffffffffffffffffffffffffffffffffff8116811461187657600080fd5b919050565b6000602080838503121561188e57600080fd5b825167ffffffffffffffff808211156118a657600080fd5b818501915085601f8301126118ba57600080fd5b8151818111156118cc576118cc6117a3565b8060051b6040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0603f8301168101818110858211171561190f5761190f6117a3565b60405291825284820192508381018501918883111561192d57600080fd5b938501935b82851015611952576119438561184b565b84529385019392850192611932565b98975050505050505050565b7affffffffffffffffffffffffffffffffffffffffffffffffffffff828116828216039080821115610cbb57610cbb61167c565b60007affffffffffffffffffffffffffffffffffffffffffffffffffffff808416806119c0576119c061164d565b9216919091049291505056fea2646970667358221220b41418860cad90e67931260adee5942dc445cd823a0f72e8ba9e820049c09a9d64736f6c6343000813003300000000000000000000000000000000000000000000000000000000000000800000000000000000000000009a9fa8338dd5e5b2188006f1cd2ef26d921650c2000000000000000000000000cdd26eb5eb2ce0f203a84553853667ae69ca29ce0000000000000000000000000000000000000000000000000000000000000e1000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b8100000000000000000000000000000000000000000000000000000000000000120000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b30000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000001550542d73555344652d4d6172323032352f555344650000000000000000000000

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100d45760003560e01c80639502128011610081578063cdf456e11161005b578063cdf456e114610262578063d3b5dc3b14610289578063fdf262b71461029857600080fd5b806395021280146101e057806399d9a71f14610203578063c6845a091461024f57600080fd5b80637284e416116100b25780637284e416146101835780637349615f146101985780638fc5e88d146101b957600080fd5b806326d89545146100d9578063313ce5671461011a5780636999451114610134575b600080fd5b6101007f0000000000000000000000000000000000000000000000000000000000000e1081565b60405163ffffffff90911681526020015b60405180910390f35b610122601281565b60405160ff9091168152602001610111565b610147610142366004611442565b6102bf565b60408051948552602085019390935273ffffffffffffffffffffffffffffffffffffffff91821692840192909252166060820152608001610111565b61018b61032c565b604051610111919061149e565b6101ab6101a636600461152c565b6103ba565b604051908152602001610111565b6101ab7f0000000000000000000000000000000000000000000000000de0b6b3a764000081565b6101f36101ee366004611564565b610599565b6040519015158152602001610111565b61022a7f000000000000000000000000cdd26eb5eb2ce0f203a84553853667ae69ca29ce81565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610111565b6101ab61025d36600461159d565b6106f6565b61022a7f000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b8181565b6101ab670de0b6b3a764000081565b61022a7f0000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b381565b6000806000806102cf88886106f6565b6102d987876106f6565b90999098507f000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b8197507f0000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b39650945050505050565b60008054610339906115cb565b80601f0160208091040260200160405190810160405280929190818152602001828054610365906115cb565b80156103b25780601f10610387576101008083540402835291602001916103b2565b820191906000526020600020905b81548152906001019060200180831161039557829003601f168201915b505050505081565b60007f000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b8173ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff160361045157600061041b84846106f6565b905061044985827f0000000000000000000000000000000000000000000000000de0b6b3a764000086610758565b915050610591565b7f0000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16036105475760006104d18460018560018111156104be576104be61161e565b146104ca5760016106f6565b60006106f6565b90508060000361051b576040517fdcd07d4f000000000000000000000000000000000000000000000000000000008152306004820152602481018290526044015b60405180910390fd5b610449857f0000000000000000000000000000000000000000000000000de0b6b3a76400008386610758565b6040517f961c9a4f00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff86166004820152602401610512565b949350505050565b60007f000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1614801561064157507f0000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b373ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16145b806106ed57507f000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b8173ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff161480156106ed57507f0000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b373ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16145b90505b92915050565b60006106ed73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000cdd26eb5eb2ce0f203a84553853667ae69ca29ce167f0000000000000000000000000000000000000000000000000000000000000e10610809565b6000610765858585610855565b9050600182600181111561077b5761077b61161e565b0361059157828061078e5761078e61164d565b84860915610591577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8110156107c657600101610591565b6040517f63a05778000000000000000000000000000000000000000000000000000000008152600481018690526024810185905260448101849052606401610512565b600080600061081785610966565b915091508082106108355761082c8585610be0565b925050506106f0565b80826108418787610be0565b61084b91906116ab565b61082c91906116c2565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff858709858702925082811083820303915050806000036108ad578382816108a3576108a361164d565b049250505061095f565b8381106108f7576040517f63a05778000000000000000000000000000000000000000000000000000000008152600481018790526024810186905260448101859052606401610512565b600084868809851960019081018716968790049682860381900495909211909303600082900391909104909201919091029190911760038402600290811880860282030280860282030280860282030280860282030280860282030280860290910302029150505b9392505050565b6000806000808473ffffffffffffffffffffffffffffffffffffffff16632c8ce6bc6040518163ffffffff1660e01b8152600401606060405180830381865afa1580156109b7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109db91906116d6565b92505091508173ffffffffffffffffffffffffffffffffffffffff16633ba0b9a96040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a2b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a4f9190611723565b935060008173ffffffffffffffffffffffffffffffffffffffff1663d2a3584e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a9e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ac29190611723565b90508173ffffffffffffffffffffffffffffffffffffffff1663516399df6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b0f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b33919061173c565b8015610bbe5750438273ffffffffffffffffffffffffffffffffffffffff166360e0a9e16040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610baa919061175e565b6fffffffffffffffffffffffffffffffff16145b15610bcb57809350610bd8565b610bd58582610cc2565b93505b505050915091565b6000808373ffffffffffffffffffffffffffffffffffffffff1663e184c9be6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c2e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c529190611723565b9050428111610c6c57670de0b6b3a76400009150506106f0565b6000610c788585610cd8565b90506000610c864284611790565b90506000610c9c610c978484610e57565b610e90565b9050610cb0670de0b6b3a764000082610ea3565b9450505050506106f0565b5092915050565b6000818311610cd157816106ed565b5090919050565b604080516002808252606082018352600092839291906020830190803683370190505090508281600081518110610d1157610d116117d2565b63ffffffff909216602092830291909101909101526040517f883bdbfd00000000000000000000000000000000000000000000000000000000815260009073ffffffffffffffffffffffffffffffffffffffff86169063883bdbfd90610d7b908590600401611801565b600060405180830381865afa158015610d98573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0168201604052610dde919081019061187b565b90508363ffffffff1681600081518110610dfa57610dfa6117d2565b602002602001015182600181518110610e1557610e156117d2565b6020026020010151610e27919061195e565b610e319190611992565b7affffffffffffffffffffffffffffffffffffffffffffffffffffff1695945050505050565b600080610e696201518061016d6116ab565b610e7384866116ab565b610e7d91906116c2565b9050610591610e8b82610ed2565b610f01565b600080821215610e9f57600080fd5b5090565b600080610eb8670de0b6b3a7640000856116ab565b9050828181610ec957610ec961164d565b04949350505050565b60007f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821115610e9f57600080fd5b60007ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212158015610f3c575068070c1cc73b00c800008213155b610fa2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f496e76616c6964206578706f6e656e74000000000000000000000000000000006044820152606401610512565b6000821215610fdb57610fb782600003610f01565b6ec097ce7bc90715b34b9f100000000081610fd457610fd461164d565b0592915050565b60006806f05b59d3b2000000831261103157507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061107d565b6803782dace9d9000000831261107957507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061107d565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126110e3577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412611135577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b188000008412611185577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126111d5577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412611224577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412611273577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126112c2577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412611311577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6002811061143f57600080fd5b50565b6000806000806080858703121561145857600080fd5b843561146381611432565b9350602085013561147381611432565b9250604085013561148381611432565b9150606085013561149381611432565b939692955090935050565b600060208083528351808285015260005b818110156114cb578581018301518582016040015282016114af565b5060006040828601015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8301168501019250505092915050565b73ffffffffffffffffffffffffffffffffffffffff8116811461143f57600080fd5b6000806000806080858703121561154257600080fd5b843561154d8161150a565b935060208501359250604085013561148381611432565b6000806040838503121561157757600080fd5b82356115828161150a565b915060208301356115928161150a565b809150509250929050565b600080604083850312156115b057600080fd5b82356115bb81611432565b9150602083013561159281611432565b600181811c908216806115df57607f821691505b602082108103611618577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b80820281158282048414176106f0576106f061167c565b6000826116d1576116d161164d565b500490565b6000806000606084860312156116eb57600080fd5b83516116f68161150a565b60208501519093506117078161150a565b60408501519092506117188161150a565b809150509250925092565b60006020828403121561173557600080fd5b5051919050565b60006020828403121561174e57600080fd5b8151801515811461095f57600080fd5b60006020828403121561177057600080fd5b81516fffffffffffffffffffffffffffffffff8116811461095f57600080fd5b818103818111156106f0576106f061167c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b6020808252825182820181905260009190848201906040850190845b8181101561183f57835163ffffffff168352928401929184019160010161181d565b50909695505050505050565b80517affffffffffffffffffffffffffffffffffffffffffffffffffffff8116811461187657600080fd5b919050565b6000602080838503121561188e57600080fd5b825167ffffffffffffffff808211156118a657600080fd5b818501915085601f8301126118ba57600080fd5b8151818111156118cc576118cc6117a3565b8060051b6040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0603f8301168101818110858211171561190f5761190f6117a3565b60405291825284820192508381018501918883111561192d57600080fd5b938501935b82851015611952576119438561184b565b84529385019392850192611932565b98975050505050505050565b7affffffffffffffffffffffffffffffffffffffffffffffffffffff828116828216039080821115610cbb57610cbb61167c565b60007affffffffffffffffffffffffffffffffffffffffffffffffffffff808416806119c0576119c061164d565b9216919091049291505056fea2646970667358221220b41418860cad90e67931260adee5942dc445cd823a0f72e8ba9e820049c09a9d64736f6c63430008130033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000800000000000000000000000009a9fa8338dd5e5b2188006f1cd2ef26d921650c2000000000000000000000000cdd26eb5eb2ce0f203a84553853667ae69ca29ce0000000000000000000000000000000000000000000000000000000000000e1000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b8100000000000000000000000000000000000000000000000000000000000000120000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b30000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000001550542d73555344652d4d6172323032352f555344650000000000000000000000

-----Decoded View---------------
Arg [0] : baseParams (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
Arg [1] : _pendleOracle (address): 0x9a9Fa8338dd5E5B2188006f1Cd2Ef26d921650C2
Arg [2] : _pendleMarket (address): 0xcDd26Eb5EB2Ce0f203a84553853667aE69Ca29Ce
Arg [3] : _twapDuration (uint32): 3600

-----Encoded View---------------
11 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [1] : 0000000000000000000000009a9fa8338dd5e5b2188006f1cd2ef26d921650c2
Arg [2] : 000000000000000000000000cdd26eb5eb2ce0f203a84553853667ae69ca29ce
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000e10
Arg [4] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [5] : 000000000000000000000000e00bd3df25fb187d6abbb620b3dfd19839947b81
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [7] : 0000000000000000000000004c9edd5852cd905f086c759e8383e09bff1e68b3
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000015
Arg [10] : 50542d73555344652d4d6172323032352f555344650000000000000000000000


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.