Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
SwapAction
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 100 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IUniswapV3Router, ExactInputParams, ExactOutputParams, decodeLastToken} from "../vendor/IUniswapV3Router.sol"; import {IVault, SwapKind, BatchSwapStep, FundManagement} from "../vendor/IBalancerVault.sol"; import {TokenInput, LimitOrderData} from "pendle/interfaces/IPAllActionTypeV3.sol"; import {ApproxParams} from "pendle/router/base/MarketApproxLib.sol"; import {IPActionAddRemoveLiqV3} from "pendle/interfaces/IPActionAddRemoveLiqV3.sol"; import {IPPrincipalToken} from "pendle/interfaces/IPPrincipalToken.sol"; import {IStandardizedYield} from "pendle/interfaces/IStandardizedYield.sol"; import {IPYieldToken} from "pendle/interfaces/IPYieldToken.sol"; import {IPMarket} from "pendle/interfaces/IPMarket.sol"; import {toInt256, abs} from "../utils/Math.sol"; import {TransferAction, PermitParams} from "./TransferAction.sol"; import {ISwapRouter} from "src/interfaces/ISwapRouterTranchess.sol"; import {IStableSwap} from "src/interfaces/IStableSwapTranchess.sol"; import {ISpectraRouter} from "src/interfaces/ISpectraRouter.sol"; interface ILiquidityGauge { function stableSwap() external view returns (address); } /// @notice The swap protocol to use enum SwapProtocol { BALANCER, UNIV3, PENDLE_IN, PENDLE_OUT, KYBER, TRANCHESS_IN, TRANCHESS_OUT, SPECTRA } /// @notice The type of swap to perform enum SwapType { EXACT_IN, EXACT_OUT } /// @notice The parameters for a swap struct SwapParams { SwapProtocol swapProtocol; SwapType swapType; address assetIn; uint256 amount; // Exact amount in or exact amount out depending on swapType uint256 limit; // Min amount out or max amount in depending on swapType address recipient; address residualRecipient; // Address to send any residual tokens to uint256 deadline; /// @dev `args` can be used for protocol specific parameters /// For Balancer, it is the `poolIds` and `assetPath` /// For Uniswap v3, it is the `path` for the swap bytes args; } /// @title SwapAction contract SwapAction is TransferAction { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using SafeERC20 for IERC20; /*////////////////////////////////////////////////////////////// STORAGE //////////////////////////////////////////////////////////////*/ /// @notice Balancer v2 Vault IVault public immutable balancerVault; /// @notice Uniswap v3 Router IUniswapV3Router public immutable uniRouter; /// @notice Pendle Router IPActionAddRemoveLiqV3 public immutable pendleRouter; /// @notice Kyber MetaAggregationRouterV2 address public immutable kyberRouter; /// @notice Tranchess Swap Router ISwapRouter public immutable tranchessRouter; /// @notice Spectra Router ISpectraRouter public immutable spectraRouter; /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ error SwapAction__swap_notSupported(); error SwapAction__revertBytes_emptyRevertBytes(); error SwapAction__kyberSwap_slippageFailed(); /*////////////////////////////////////////////////////////////// INITIALIZATION //////////////////////////////////////////////////////////////*/ constructor( IVault balancerVault_, IUniswapV3Router uniRouter_, IPActionAddRemoveLiqV3 pendleRouter_, address kyberRouter_, address tranchessRouter_, address spectraRouter_ ) { balancerVault = balancerVault_; uniRouter = uniRouter_; pendleRouter = pendleRouter_; kyberRouter = kyberRouter_; tranchessRouter = ISwapRouter(tranchessRouter_); spectraRouter = ISpectraRouter(spectraRouter_); } /*////////////////////////////////////////////////////////////// SWAP VARIANTS //////////////////////////////////////////////////////////////*/ /// @notice Execute a transfer from an EOA and then swap via `swapParams` /// @param from The address to transfer from /// @param permitParams The parameters for the permit /// @param swapParams The parameters for the swap /// @return _ Amount of tokens taken or received from the swap function transferAndSwap( address from, PermitParams calldata permitParams, SwapParams calldata swapParams ) external returns (uint256) { if (from != address(this)) { uint256 amount = swapParams.swapType == SwapType.EXACT_IN ? swapParams.amount : swapParams.limit; _transferFrom(swapParams.assetIn, from, address(this), amount, permitParams); } return swap(swapParams); } /// @notice Perform a swap using the protocol and swap-type specified in `swapParams` /// @param swapParams The parameters for the swap /// @return retAmount Amount of tokens taken or received from the swap function swap(SwapParams memory swapParams) public returns (uint256 retAmount) { if (block.timestamp > swapParams.deadline) { _revertBytes("SwapAction: swap deadline passed"); } if (swapParams.swapProtocol == SwapProtocol.BALANCER) { (bytes32[] memory poolIds, address[] memory assetPath) = abi.decode( swapParams.args, (bytes32[], address[]) ); retAmount = balancerSwap( swapParams.swapType, swapParams.assetIn, poolIds, assetPath, swapParams.amount, swapParams.limit, swapParams.recipient, swapParams.deadline ); } else if (swapParams.swapProtocol == SwapProtocol.KYBER && swapParams.swapType == SwapType.EXACT_IN) { retAmount = kyberSwap(swapParams.assetIn, swapParams.amount, swapParams.limit, swapParams.args); } else if (swapParams.swapProtocol == SwapProtocol.UNIV3) { retAmount = uniV3Swap( swapParams.swapType, swapParams.assetIn, swapParams.amount, swapParams.limit, swapParams.recipient, swapParams.deadline, swapParams.args ); } else if (swapParams.swapProtocol == SwapProtocol.PENDLE_IN) { retAmount = pendleJoin(swapParams.recipient, swapParams.limit, swapParams.args); } else if (swapParams.swapProtocol == SwapProtocol.PENDLE_OUT) { retAmount = pendleExit(swapParams.recipient, swapParams.limit, swapParams.args); } else if (swapParams.swapProtocol == SwapProtocol.TRANCHESS_IN) { retAmount = tranchessJoin(swapParams); } else if (swapParams.swapProtocol == SwapProtocol.TRANCHESS_OUT) { retAmount = tranchessExit(swapParams.recipient, swapParams.limit, swapParams.args); } else if (swapParams.swapProtocol == SwapProtocol.SPECTRA) { retAmount = spectra(swapParams); } else revert SwapAction__swap_notSupported(); // Transfer any remaining tokens to the residualRecipient or recipient if (swapParams.swapType == SwapType.EXACT_OUT && swapParams.recipient != address(this)) { if (swapParams.residualRecipient != address(0)) { IERC20(swapParams.assetIn).safeTransfer(swapParams.residualRecipient, swapParams.limit - retAmount); } else { IERC20(swapParams.assetIn).safeTransfer(swapParams.recipient, swapParams.limit - retAmount); } } } /// @notice Perform a batch swap on Balancer /// @dev /// For EXACT_IN, the `poolIds` and `assets` are in sequential order. The `assetIn` must be the first index /// of `assets` and the asset out must be the last index of `assets`. /// /// For EXACT_OUT, the `poolIds` and `assets` are reversed. The asset out must be the first index of `assets` /// and the `assetIn` must be the last index of `assets`. /// ex. /// EXACT_IN: { [Asset In -> Asset X] -> [Asset X -> Asset Out] } /// EXACT_OUT: { [Asset Out -> Asset X] -> [Asset X -> Asset In ] } /// /// @dev `assets.length` should always be `poolIds.length` + 1 /// @param swapType The type of swap to perform /// @param assetIn Asset to send during the swap /// @param poolIds The poolIds to use for the swap: /// For EXACT_IN the poolIds must be in sequential order /// For EXACT_OUT the poolIds must be in reverse sequential order /// @param assets The assets to use for the swap: /// For EXACT_IN the assets must be in sequential order /// For EXACT_OUT the assets must be in reverse sequential order /// @param amount EXACT_IN: `amount` is the amount of `assetIn` to send /// EXACT_OUT: `amount` is the amount of asset out to receive /// @param limit EXACT_IN: `limit` is the minimum acceptable amount to receive from the swap /// EXACT_OUT: `limit` is the maximum acceptable amount to send on the swap /// @param recipient Address to send the swapped tokens to /// @param deadline Timestamp after which the swap will revert /// @return _ Amount of tokens taken or received from the swap function balancerSwap( SwapType swapType, address assetIn, bytes32[] memory poolIds, address[] memory assets, uint256 amount, uint256 limit, address recipient, uint256 deadline ) internal returns (uint256) { uint256 pathLength = poolIds.length; int256[] memory limits = new int256[](pathLength + 1); // limit for each asset, leave as 0 to autocalculate // construct the BatchSwapStep array BatchSwapStep[] memory swaps = new BatchSwapStep[](pathLength); { // In an 'EXACT_IN' swap, 'BatchSwapStep.assetInIndex' must equal the previous swap's `assetOutIndex`. // For an 'EXACT_OUT' swap, `BatchSwapStep.assetOutIndex` must equal the previous swap's `assetInIndex`. // // For `EXACT_IN`, we can accomplish this by incrementing the `assetOutIndex` by 1, // and for `EXACT_OUT` by incrementing the `assetInIndex` by 1. // EX. // 1. Swapping an exact amount in of USDC for BAL // swapType = `EXACT_IN` and `assets` = [USDC, DAI, WETH, BAL] // ╔══════════╦══════════╦═══════════╗ // ║ EXACT_IN ║ Asset In ║ Asset Out ║ // ╠══════════╬══════════╬═══════════╣ // ║ Swap 1 ║ USDC ║ DAI ║ // ╠══════════╬══════════╬═══════════╣ // ║ Swap 2 ║ DAI ║ WETH ║ // ╠══════════╬══════════╬═══════════╣ // ║ Swap 3 ║ WETH ║ BAL ║ // ╚══════════╩══════════╩═══════════╝ // * Swap n "Asset Out" must equal Swap n+1 "Asset In" // // 2. Swapping in USDC for an exact amount out of BAL // swapType = `EXACT_OUT` and `assets` = [BAL, WETH, DAI, USDC]: // ╔═══════════╦══════════╦═══════════╗ // ║ EXACT_OUT ║ Asset In ║ Asset Out ║ // ╠═══════════╬══════════╬═══════════╣ // ║ Swap 1 ║ WETH ║ BAL ║ // ╠═══════════╬══════════╬═══════════╣ // ║ Swap 2 ║ DAI ║ WETH ║ // ╠═══════════╬══════════╬═══════════╣ // ║ Swap 3 ║ USDC ║ DAI ║ // ╚═══════════╩══════════╩═══════════╝ // * Swap n "Asset In" must equal Swap n+1 "Asset Out" // // more info: https://docs.balancer.fi/reference/swaps/batch-swaps.html bytes memory userData; // empty bytes, not used uint256 inIncrement; uint256 outIncrement; if (swapType == SwapType.EXACT_IN) outIncrement = 1; else inIncrement = 1; for (uint256 i; i < pathLength; ) { unchecked { swaps[i] = BatchSwapStep({ poolId: poolIds[i], assetInIndex: i + inIncrement, assetOutIndex: i + outIncrement, amount: 0, // 0 to autocalculate userData: userData }); ++i; } } swaps[0].amount = amount; // amount always pertains to the first swap } // configure swap-type dependent variables SwapKind kind; uint256 amountToApprove; if (swapType == SwapType.EXACT_IN) { kind = SwapKind.GIVEN_IN; amountToApprove = amount; limits[0] = toInt256(amount); // positive signifies tokens going into the vault from the caller limits[pathLength] = -toInt256(limit); // negative signifies tokens going out of the vault to the caller } else { kind = SwapKind.GIVEN_OUT; amountToApprove = limit; limits[0] = -toInt256(amount); limits[pathLength] = toInt256(limit); } IERC20(assetIn).forceApprove(address(balancerVault), amountToApprove); // execute swap and return the value of the last index in the asset delta array to get amountIn/amountOut return abs( balancerVault.batchSwap( kind, swaps, assets, FundManagement({ sender: address(this), fromInternalBalance: false, recipient: payable(recipient), toInternalBalance: false }), limits, deadline )[pathLength] ); } /// @notice Perform an swap using Kyber MetaAggregationRouterV2 /// @param assetIn Token to swap from /// @param amountIn Amount of `assetIn` to swap /// @param minOut Minimum amount of assets to receive /// @param payload tx calldata to use when calling the kyber router, /// this calldata can be generated using the kyber swap api /// @return _ Amount of tokens received from the swap function kyberSwap( address assetIn, uint256 amountIn, uint256 minOut, bytes memory payload ) internal returns (uint256) { IERC20(assetIn).forceApprove(address(kyberRouter), amountIn); (bool success, bytes memory result) = kyberRouter.call(payload); if (!success) _revertBytes(result); (uint256 returnAmount /*uint256 gasUsed*/, ) = abi.decode(result, (uint256, uint256)); if (returnAmount < minOut) revert SwapAction__kyberSwap_slippageFailed(); return returnAmount; } /// @notice Perform a swap using uniswap v3 exactInput or exactOutput function /// @param swapType The type of swap to perform /// @param assetIn Asset to send during the swap: /// @param amount EXACT_IN: `amount` is the amount of `assetIn` to send /// EXACT_OUT: `amount` is the amount of asset out to receive /// @param limit EXACT_IN: `limit` is the minimum acceptable amount to receive from the swap /// EXACT_OUT: `limit` is the maximum acceptable amount to send on the swap /// @param recipient Address to send the swapped tokens to /// @param args Uniswap V3 path parameter, EXACT_OUT must be calculated in reverse order /// EXACT_IN: { [Asset In, Fee, Asset X], [Asset X, Fee, Asset Out] } /// EXACT_OUT: { [Asset Out, Fee, Asset X], [Asset X, Fee, Asset In ] } /// @param deadline Timestamp after which the swap will revert /// @return retAmount Amount of tokens taken or received from the swap function uniV3Swap( SwapType swapType, address assetIn, uint256 amount, uint256 limit, address recipient, uint256 deadline, bytes memory args ) internal returns (uint256) { if (swapType == SwapType.EXACT_IN) { IERC20(assetIn).forceApprove(address(uniRouter), amount); return uniRouter.exactInput( ExactInputParams({ path: args, recipient: recipient, amountIn: amount, amountOutMinimum: limit, deadline: deadline }) ); } else { IERC20(assetIn).forceApprove(address(uniRouter), limit); return uniRouter.exactOutput( ExactOutputParams({ path: args, recipient: recipient, amountOut: amount, amountInMaximum: limit, deadline: deadline }) ); } } /// @notice Perform a join using the Pendle protocol /// @param recipient Address to send the swapped tokens to /// @param minOut Minimum amount of LP tokens to receive /// @param data The parameters for joinng the pool /// @dev For more information regarding the Pendle join function check Pendle /// documentation function pendleJoin(address recipient, uint256 minOut, bytes memory data) internal returns (uint256 netLpOut) { ( address market, ApproxParams memory guessPtReceivedFromSy, TokenInput memory input, LimitOrderData memory limit ) = abi.decode(data, (address, ApproxParams, TokenInput, LimitOrderData)); if (input.tokenIn != address(0)) { input.netTokenIn = IERC20(input.tokenIn).balanceOf(address(this)); IERC20(input.tokenIn).forceApprove(address(pendleRouter), input.netTokenIn); } (netLpOut, , ) = pendleRouter.addLiquiditySingleToken( recipient, market, minOut, guessPtReceivedFromSy, input, limit ); } function pendleExit(address recipient, uint256 minOut, bytes memory data) internal returns (uint256 retAmount) { (address market, uint256 netLpIn, address tokenOut) = abi.decode(data, (address, uint256, address)); (IStandardizedYield SY, IPPrincipalToken PT, IPYieldToken YT) = IPMarket(market).readTokens(); if (recipient != address(this)) { IPMarket(market).transferFrom(recipient, market, netLpIn); } else { IPMarket(market).transfer(market, netLpIn); } uint256 netSyToRedeem; if (PT.isExpired()) { (uint256 netSyRemoved, ) = IPMarket(market).burn(address(SY), address(YT), netLpIn); uint256 netSyFromPt = YT.redeemPY(address(SY)); netSyToRedeem = netSyRemoved + netSyFromPt; } else { (uint256 netSyRemoved, uint256 netPtRemoved) = IPMarket(market).burn(address(SY), market, netLpIn); bytes memory empty; (uint256 netSySwappedOut, ) = IPMarket(market).swapExactPtForSy(address(SY), netPtRemoved, empty); netSyToRedeem = netSyRemoved + netSySwappedOut; } return SY.redeem(recipient, netSyToRedeem, tokenOut, minOut, true); } function tranchessJoin(SwapParams memory swapParams) internal returns (uint256 retAmount) { (address lpToken, uint256 baseDelta, uint256 quoteDelta, uint256 version) = abi.decode( swapParams.args, (address, uint256, uint256, uint256) ); //IStableSwap stableSwap = IStableSwap(ILiquidityGauge(lpToken).stableSwap()); address baseAddress = IStableSwap(ILiquidityGauge(lpToken).stableSwap()).baseAddress(); address quoteAddress = IStableSwap(ILiquidityGauge(lpToken).stableSwap()).quoteAddress(); if (baseDelta != 0) { IERC20(baseAddress).forceApprove(address(tranchessRouter), baseDelta); } if (quoteDelta != 0) { IERC20(quoteAddress).forceApprove(address(tranchessRouter), quoteDelta); } tranchessRouter.addLiquidity( baseAddress, quoteAddress, baseDelta, quoteDelta, swapParams.limit, version, swapParams.deadline ); retAmount = IERC20(lpToken).balanceOf(address(this)); if (swapParams.recipient != address(this)) { IERC20(lpToken).safeTransfer(swapParams.recipient, retAmount); } } function tranchessExit(address recipient, uint256 minOut, bytes memory data) internal returns (uint256 retAmount) { (uint256 version, address lpToken, uint256 lpIn) = abi.decode(data, (uint256, address, uint256)); IStableSwap stableSwap = IStableSwap(ILiquidityGauge(lpToken).stableSwap()); retAmount = stableSwap.removeQuoteLiquidity(version, lpIn, minOut); if (recipient != address(this)) { IERC20(stableSwap.quoteAddress()).safeTransfer(recipient, retAmount); } } function spectra(SwapParams memory swapParams) internal returns (uint256 retAmount) { (bytes memory commands, bytes[] memory inputs, address tokenOut, uint256 deadline) = abi.decode( swapParams.args, (bytes, bytes[], address, uint256) ); uint256 balBefore = IERC20(tokenOut).balanceOf(swapParams.recipient); (address tokenIn, uint256 amountIn) = abi.decode(inputs[0], (address, uint256)); IERC20(tokenIn).forceApprove(address(spectraRouter), amountIn); spectraRouter.execute(commands, inputs, deadline); retAmount = IERC20(tokenOut).balanceOf(swapParams.recipient) - balBefore; } /// @notice Helper function that decodes the swap params and returns the token that will be swapped into /// @param swapParams The parameters for the swap /// @return token The token that will be swapped into function getSwapToken(SwapParams calldata swapParams) public pure returns (address token) { if (swapParams.swapProtocol == SwapProtocol.BALANCER) { (, address[] memory primarySwapPath) = abi.decode(swapParams.args, (bytes32[], address[])); if (swapParams.swapType == SwapType.EXACT_OUT) { // For EXACT_OUT, the token that will be swapped into is the first token in the path token = primarySwapPath[0]; } else { // For EXACT_IN, the token that will be swapped into is the last token in the path token = primarySwapPath[primarySwapPath.length - 1]; } } else if (swapParams.swapProtocol == SwapProtocol.UNIV3) { token = decodeLastToken(swapParams.args); } else { revert SwapAction__swap_notSupported(); } } /// @notice Reverts with the provided error message /// @dev if errMsg is empty, reverts with a default error message /// @param errMsg Error message to revert with. function _revertBytes(bytes memory errMsg) internal pure { if (errMsg.length != 0) { assembly { revert(add(32, errMsg), mload(errMsg)) } } revert SwapAction__revertBytes_emptyRevertBytes(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.19; struct ExactInputParams { bytes path; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; } struct ExactOutputParams { bytes path; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; } error UniswapV3Router_toAddress_overflow(); error UniswapV3Router_toAddress_outOfBounds(); error UniswapV3Router_decodeLastToken_invalidPath(); function toAddress(bytes memory _bytes, uint256 _start) pure returns (address) { if (_start + 20 < _start) revert UniswapV3Router_toAddress_overflow(); if (_bytes.length < _start + 20) revert UniswapV3Router_toAddress_outOfBounds(); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } /// @notice Decodes the last token in the path /// @param path The bytes encoded swap path /// @return token The last token of the given path function decodeLastToken(bytes memory path) pure returns (address token) { if (path.length < 20) revert UniswapV3Router_decodeLastToken_invalidPath(); token = toAddress(path, path.length - 20); } /// @title Router token swapping functionality /// @notice Functions for swapping tokens via Uniswap V3 interface IUniswapV3Router { /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata /// @return amountOut The amount of the received token function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut); /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed) /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata /// @return amountIn The amount of the input token function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.19; import {IAsset} from "src/vendor/IAsset.sol"; enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ ///@dev NOTE - we are using address type for all instances of IAsset to simplify struct SingleSwap { bytes32 poolId; SwapKind kind; address assetIn; address assetOut; uint256 amount; bytes userData; } /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev See `joinPool` for more details. */ struct JoinPoolRequest { address[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev All possible `JoinKind`'s. See specific pool implementations for available `JoinKind`'s. */ enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT } /** * @dev WeightedPool ExitKinds */ enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT, MANAGEMENT_FEE_TOKENS_OUT // for InvestmentPool } /** * @dev See `exitPool` for more details. */ struct ExitPoolRequest { address[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } ///@dev Entry point for all Balancer V2 swaps. interface IVault { /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. * * The `limits` array specifies the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, address[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens( bytes32 poolId ) external view returns (address[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock); /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, address[] memory assets, FundManagement memory funds ) external view returns (int256[] memory assetDeltas); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../router/swap-aggregator/IPSwapAggregator.sol"; import "./IPLimitRouter.sol"; struct TokenInput { // Token/Sy data address tokenIn; uint256 netTokenIn; address tokenMintSy; // aggregator data address pendleSwap; SwapData swapData; } struct TokenOutput { // Token/Sy data address tokenOut; uint256 minTokenOut; address tokenRedeemSy; // aggregator data address pendleSwap; SwapData swapData; } struct LimitOrderData { address limitRouter; uint256 epsSkipMarket; // only used for swap operations, will be ignored otherwise FillOrderParams[] normalFills; FillOrderParams[] flashFills; bytes optData; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../../core/libraries/math/PMath.sol"; import "../../core/Market/MarketMathCore.sol"; struct ApproxParams { uint256 guessMin; uint256 guessMax; uint256 guessOffchain; // pass 0 in to skip this variable uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2 uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set // to 1e15 (1e18/1000 = 0.1%) } /// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out, /// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula /// To approx, the 5 values above will have to be provided, and the approx process will run as follows: /// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out /// netSyNeed = calcSwapSyForExactPt(mid) /// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn /// else guessMin = mid (1) /// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of /// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result /// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result /// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the /// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases /// except in cases that there is a trade in the same market right before the tx library MarketApproxPtInLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using PMath for uint256; using PMath for int256; using LogExpMath for int256; /** * @dev algorithm: * - Bin search the amount of PT to swap in * - Try swapping & get netSyOut * - Stop when netSyOut greater & approx minSyOut * - guess & approx is for netPtIn */ function approxSwapPtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); if (netSyOut >= minSyOut) { if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) { return (guess, netSyOut, netSyFee); } approx.guessMax = guess; } else { approx.guessMin = guess; } } revert Errors.ApproxFail(); } /** * @dev algorithm: * - Bin search the amount of PT to swap in * - Flashswap the corresponding amount of SY out * - Pair those amount with exactSyIn SY to tokenize into PT & YT * - PT to repay the flashswap, YT transferred to user * - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn * - guess & approx is for netYtOut (also netPtIn) */ function approxSwapExactSyForYt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, index.syToAsset(exactSyIn)); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netSyToTokenizePt = index.assetToSyUp(guess); // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY uint256 netSyToPull = netSyToTokenizePt - netSyOut; if (netSyToPull <= exactSyIn) { if (PMath.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) { return (guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } struct Args5 { MarketState market; PYIndex index; uint256 totalPtIn; uint256 netSyHolding; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: * - Bin search the amount of PT to swap to SY * - Swap PT to SY * - Pair the remaining PT with the SY to add liquidity * - Stop when the ratio of PT / totalPt & SY / totalSy is approx * - guess & approx is for netPtSwap */ function approxSwapPtToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalPtIn, uint256 _netSyHolding, uint256 _blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtSwap*/ uint256, /*netSyFromSwap*/ uint256 /*netSyFee*/) { Args5 memory a = Args5(_market, _index, _totalPtIn, _netSyHolding, _blockTime, approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(a.market, comp)); approx.guessMax = PMath.min(approx.guessMax, a.totalPtIn); validateApprox(approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, ) = calcNumerators( a.market, a.index, a.totalPtIn, a.netSyHolding, comp, guess ); if (PMath.isAApproxB(syNumerator, ptNumerator, approx.eps)) { return (guess, netSyOut, netSyFee); } if (syNumerator <= ptNumerator) { // needs more SY --> swap more PT approx.guessMin = guess + 1; } else { // needs less SY --> swap less PT approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } function calcNumerators( MarketState memory market, PYIndex index, uint256 totalPtIn, uint256 netSyHolding, MarketPreCompute memory comp, uint256 guess ) internal pure returns (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess); uint256 newTotalPt = uint256(market.totalPt) + guess; uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve); // it is desired that // (netSyOut + netSyHolding) / newTotalSy = netPtRemaining / newTotalPt // which is equivalent to // (netSyOut + netSyHolding) * newTotalPt = netPtRemaining * newTotalSy syNumerator = (netSyOut + netSyHolding) * newTotalPt; ptNumerator = (totalPtIn - guess) * newTotalSy; } /** * @dev algorithm: * - Bin search the amount of PT to swap to SY * - Flashswap the corresponding amount of SY out * - Tokenize all the SY into PT + YT * - PT to repay the flashswap, YT transferred to user * - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn * - guess & approx is for totalPtToSwap */ function approxSwapExactPtForYt( MarketState memory market, PYIndex index, uint256 exactPtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtOut*/ uint256, /*totalPtToSwap*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, exactPtIn); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netAssetOut = index.syToAsset(netSyOut); // guess >= netAssetOut since we are swapping PT to SY uint256 netPtToPull = guess - netAssetOut; if (netPtToPull <= exactPtIn) { if (PMath.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) { return (netAssetOut, guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyOut( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtIn ) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, -int256(netPtIn)); netSyOut = uint256(_netSyOut); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY /// function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) { revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } } function calcMaxPtIn(MarketState memory market, MarketPreCompute memory comp) internal pure returns (uint256) { uint256 low = 0; uint256 hi = uint256(comp.totalAsset) - 1; while (low != hi) { uint256 mid = (low + hi + 1) / 2; if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1; else low = mid; } return low; } function calcSlope(MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket) internal pure returns (int256) { int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket; int256 sumPt = ptToMarket + totalPt; require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket"); int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(sumPt * diffAssetPtToMarket); int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln(); int256 part3 = PMath.IONE.divDown(comp.rateScalar); return comp.rateAnchor - (part1 - part2).mulDown(part3); } } library MarketApproxPtOutLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using PMath for uint256; using PMath for int256; using LogExpMath for int256; /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Calculate the amount of SY needed * - Stop when the netSyIn is smaller approx exactSyIn * - guess & approx is for netSyIn */ function approxSwapExactSyForPt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); if (netSyIn <= exactSyIn) { if (PMath.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) { return (guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Flashswap that amount of PT & pair with YT to redeem SY * - Use the SY to repay the flashswap debt and the remaining is transferred to user * - Stop when the netSyOut is greater approx the minSyOut * - guess & approx is for netSyOut */ function approxSwapYtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netAssetToRepay = index.syToAssetUp(netSyOwed); uint256 netSyOut = index.assetToSy(guess - netAssetToRepay); if (netSyOut >= minSyOut) { if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) { return (guess, netSyOut, netSyFee); } approx.guessMax = guess; } else { approx.guessMin = guess + 1; } } revert Errors.ApproxFail(); } struct Args6 { MarketState market; PYIndex index; uint256 totalSyIn; uint256 netPtHolding; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Swap that amount of PT out * - Pair the remaining PT with the SY to add liquidity * - Stop when the ratio of PT / totalPt & SY / totalSy is approx * - guess & approx is for netPtFromSwap */ function approxSwapSyToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalSyIn, uint256 _netPtHolding, uint256 _blockTime, ApproxParams memory _approx ) internal pure returns (uint256, /*netPtFromSwap*/ uint256, /*netSySwap*/ uint256 /*netSyFee*/) { Args6 memory a = Args6(_market, _index, _totalSyIn, _netPtHolding, _blockTime, _approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (a.approx.guessOffchain == 0) { // no limit on min a.approx.guessMax = PMath.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt)); validateApprox(a.approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) { uint256 guess = nextGuess(a.approx, iter); (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(a.market, comp, a.index, guess); if (netSyIn > a.totalSyIn) { a.approx.guessMax = guess - 1; continue; } uint256 syNumerator; uint256 ptNumerator; { uint256 newTotalPt = uint256(a.market.totalPt) - guess; uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve; // it is desired that // (netPtFromSwap + netPtHolding) / newTotalPt = netSyRemaining / netTotalSy // which is equivalent to // (netPtFromSwap + netPtHolding) * netTotalSy = netSyRemaining * newTotalPt ptNumerator = (guess + a.netPtHolding) * netTotalSy; syNumerator = (a.totalSyIn - netSyIn) * newTotalPt; } if (PMath.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) { return (guess, netSyIn, netSyFee); } if (ptNumerator <= syNumerator) { // needs more PT a.approx.guessMin = guess + 1; } else { // needs less PT a.approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Flashswap that amount of PT out * - Pair all the PT with the YT to redeem SY * - Use the SY to repay the flashswap debt * - Stop when the amount of YT required to pair with PT is approx exactYtIn * - guess & approx is for netPtFromSwap */ function approxSwapExactYtForPt( MarketState memory market, PYIndex index, uint256 exactYtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtOut*/ uint256, /*totalPtSwapped*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, exactYtIn); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netYtToPull = index.syToAssetUp(netSyOwed); if (netYtToPull <= exactYtIn) { if (PMath.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) { return (guess - netYtToPull, guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyIn( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtOut ) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, int256(netPtOut)); // all safe since totalPt and totalSy is int128 netSyIn = uint256(-_netSyIn); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function calcMaxPtOut(MarketPreCompute memory comp, int256 totalPt) internal pure returns (uint256) { int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp(); int256 proportion = logitP.divDown(logitP + PMath.IONE); int256 numerator = proportion.mulDown(totalPt + comp.totalAsset); int256 maxPtOut = totalPt - numerator; // only get 99.9% of the theoretical max to accommodate some precision issues return (uint256(maxPtOut) * 999) / 1000; } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) { revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../router/base/MarketApproxLib.sol"; import "./IPAllActionTypeV3.sol"; interface IPActionAddRemoveLiqV3 { event AddLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyUsed, uint256 netPtUsed, uint256 netLpOut ); event AddLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenIn, address receiver, uint256 netTokenUsed, uint256 netPtUsed, uint256 netLpOut, uint256 netSyInterm ); event AddLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netPtIn, uint256 netLpOut ); event AddLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netLpOut ); event AddLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut, uint256 netSyInterm ); event AddLiquiditySingleSyKeepYt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netSyMintPy, uint256 netLpOut, uint256 netYtOut ); event AddLiquiditySingleTokenKeepYt( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy, uint256 netSyInterm ); event RemoveLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netSyOut ); event RemoveLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenOut, address receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netTokenOut, uint256 netSyInterm ); event RemoveLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut ); event RemoveLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netSyOut ); event RemoveLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netLpToRemove, uint256 netTokenOut, uint256 netSyInterm ); function addLiquidityDualTokenAndPt( address receiver, address market, TokenInput calldata input, uint256 netPtDesired, uint256 minLpOut ) external payable returns (uint256 netLpOut, uint256 netPtUsed, uint256 netSyInterm); function addLiquidityDualSyAndPt( address receiver, address market, uint256 netSyDesired, uint256 netPtDesired, uint256 minLpOut ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function addLiquiditySinglePt( address receiver, address market, uint256 netPtIn, uint256 minLpOut, ApproxParams calldata guessPtSwapToSy, LimitOrderData calldata limit ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleToken( address receiver, address market, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netLpOut, uint256 netSyFee, uint256 netSyInterm); function addLiquiditySingleSy( address receiver, address market, uint256 netSyIn, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, LimitOrderData calldata limit ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleTokenKeepYt( address receiver, address market, uint256 minLpOut, uint256 minYtOut, TokenInput calldata input ) external payable returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy, uint256 netSyInterm); function addLiquiditySingleSyKeepYt( address receiver, address market, uint256 netSyIn, uint256 minLpOut, uint256 minYtOut ) external returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy); function removeLiquidityDualTokenAndPt( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, uint256 minPtOut ) external returns (uint256 netTokenOut, uint256 netPtOut, uint256 netSyInterm); function removeLiquidityDualSyAndPt( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut, uint256 minPtOut ) external returns (uint256 netSyOut, uint256 netPtOut); function removeLiquiditySinglePt( address receiver, address market, uint256 netLpToRemove, uint256 minPtOut, ApproxParams calldata guessPtReceivedFromSy, LimitOrderData calldata limit ) external returns (uint256 netPtOut, uint256 netSyFee); function removeLiquiditySingleToken( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); function removeLiquiditySingleSy( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut, LimitOrderData calldata limit ) external returns (uint256 netSyOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IPPrincipalToken is IERC20Metadata { function burnByYT(address user, uint256 amount) external; function mintByYT(address user, uint256 amount) external; function initialize(address _YT) external; function SY() external view returns (address); function YT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later /* * MIT License * =========== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IStandardizedYield is IERC20Metadata { /// @dev Emitted when any base tokens is deposited to mint shares event Deposit( address indexed caller, address indexed receiver, address indexed tokenIn, uint256 amountDeposited, uint256 amountSyOut ); /// @dev Emitted when any shares are redeemed for base tokens event Redeem( address indexed caller, address indexed receiver, address indexed tokenOut, uint256 amountSyToRedeem, uint256 amountTokenOut ); /// @dev check `assetInfo()` for more information enum AssetType { TOKEN, LIQUIDITY } /// @dev Emitted when (`user`) claims their rewards event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts); /** * @notice mints an amount of shares by depositing a base token. * @param receiver shares recipient address * @param tokenIn address of the base tokens to mint shares * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`) * @param minSharesOut reverts if amount of shares minted is lower than this * @return amountSharesOut amount of shares minted * @dev Emits a {Deposit} event * * Requirements: * - (`tokenIn`) must be a valid base token. */ function deposit( address receiver, address tokenIn, uint256 amountTokenToDeposit, uint256 minSharesOut ) external payable returns (uint256 amountSharesOut); /** * @notice redeems an amount of base tokens by burning some shares * @param receiver recipient address * @param amountSharesToRedeem amount of shares to be burned * @param tokenOut address of the base token to be redeemed * @param minTokenOut reverts if amount of base token redeemed is lower than this * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender` * @return amountTokenOut amount of base tokens redeemed * @dev Emits a {Redeem} event * * Requirements: * - (`tokenOut`) must be a valid base token. */ function redeem( address receiver, uint256 amountSharesToRedeem, address tokenOut, uint256 minTokenOut, bool burnFromInternalBalance ) external returns (uint256 amountTokenOut); /** * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy he can mint must be X * exchangeRate / 1e18 * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication & division */ function exchangeRate() external view returns (uint256 res); /** * @notice claims reward for (`user`) * @param user the user receiving their rewards * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` * @dev * Emits a `ClaimRewards` event * See {getRewardTokens} for list of reward tokens */ function claimRewards(address user) external returns (uint256[] memory rewardAmounts); /** * @notice get the amount of unclaimed rewards for (`user`) * @param user the user to check for * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` */ function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts); function rewardIndexesCurrent() external returns (uint256[] memory indexes); function rewardIndexesStored() external view returns (uint256[] memory indexes); /** * @notice returns the list of reward token addresses */ function getRewardTokens() external view returns (address[] memory); /** * @notice returns the address of the underlying yield token */ function yieldToken() external view returns (address); /** * @notice returns all tokens that can mint this SY */ function getTokensIn() external view returns (address[] memory res); /** * @notice returns all tokens that can be redeemed by this SY */ function getTokensOut() external view returns (address[] memory res); function isValidTokenIn(address token) external view returns (bool); function isValidTokenOut(address token) external view returns (bool); function previewDeposit( address tokenIn, uint256 amountTokenToDeposit ) external view returns (uint256 amountSharesOut); function previewRedeem( address tokenOut, uint256 amountSharesToRedeem ) external view returns (uint256 amountTokenOut); /** * @notice This function contains information to interpret what the asset is * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens, 2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain) * @return assetAddress the address of the asset * @return assetDecimals the decimals of the asset */ function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IRewardManager.sol"; import "./IPInterestManagerYT.sol"; interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT { event NewInterestIndex(uint256 indexed newIndex); event Mint( address indexed caller, address indexed receiverPT, address indexed receiverYT, uint256 amountSyToMint, uint256 amountPYOut ); event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut); event RedeemRewards(address indexed user, uint256[] amountRewardsOut); event RedeemInterest(address indexed user, uint256 interestOut); event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee); function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut); function redeemPY(address receiver) external returns (uint256 amountSyOut); function redeemPYMulti( address[] calldata receivers, uint256[] calldata amountPYToRedeems ) external returns (uint256[] memory amountSyOuts); function redeemDueInterestAndRewards( address user, bool redeemInterest, bool redeemRewards ) external returns (uint256 interestOut, uint256[] memory rewardsOut); function rewardIndexesCurrent() external returns (uint256[] memory); function pyIndexCurrent() external returns (uint256); function pyIndexStored() external view returns (uint256); function getRewardTokens() external view returns (address[] memory); function SY() external view returns (address); function PT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); function doCacheIndexSameBlock() external view returns (bool); function pyIndexLastUpdatedBlock() external view returns (uint128); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IPPrincipalToken.sol"; import "./IPYieldToken.sol"; import "./IStandardizedYield.sol"; import "./IPGauge.sol"; import "../core/Market/MarketMathCore.sol"; interface IPMarket is IERC20Metadata, IPGauge { event Mint(address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed); event Burn( address indexed receiverSy, address indexed receiverPt, uint256 netLpBurned, uint256 netSyOut, uint256 netPtOut ); event Swap( address indexed caller, address indexed receiver, int256 netPtOut, int256 netSyOut, uint256 netSyFee, uint256 netSyToReserve ); event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate); event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); function mint( address receiver, uint256 netSyDesired, uint256 netPtDesired ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function burn( address receiverSy, address receiverPt, uint256 netLpToBurn ) external returns (uint256 netSyOut, uint256 netPtOut); function swapExactPtForSy( address receiver, uint256 exactPtIn, bytes calldata data ) external returns (uint256 netSyOut, uint256 netSyFee); function swapSyForExactPt( address receiver, uint256 exactPtOut, bytes calldata data ) external returns (uint256 netSyIn, uint256 netSyFee); function redeemRewards(address user) external returns (uint256[] memory); function readState(address router) external view returns (MarketState memory market); function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative); function increaseObservationsCardinalityNext(uint16 cardinalityNext) external; function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT); function getRewardTokens() external view returns (address[] memory); function isExpired() external view returns (bool); function expiry() external view returns (uint256); function observations( uint256 index ) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized); function _storage() external view returns ( int128 totalPt, int128 totalSy, uint96 lastLnImpliedRate, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext ); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; /* solhint-disable func-visibility, no-inline-assembly */ error Math__toInt256_overflow(); error Math__toUint64_overflow(); error Math__add_overflow_signed(); error Math__sub_overflow_signed(); error Math__mul_overflow_signed(); error Math__mul_overflow(); error Math__div_overflow(); uint256 constant WAD = 1e18; /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L367 function toInt256(uint256 x) pure returns (int256) { if (x >= 1 << 255) revert Math__toInt256_overflow(); return int256(x); } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L53 function toUint64(uint256 x) pure returns (uint64) { if (x >= 1 << 64) revert Math__toUint64_overflow(); return uint64(x); } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L602 function abs(int256 x) pure returns (uint256 z) { assembly ("memory-safe") { let mask := sub(0, shr(255, x)) z := xor(mask, add(mask, x)) } } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L620 function min(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L628 function min(int256 x, int256 y) pure returns (int256 z) { assembly ("memory-safe") { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L636 function max(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L74 function add(uint256 x, int256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := add(x, y) } if ((y > 0 && z < x) || (y < 0 && z > x)) revert Math__add_overflow_signed(); } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L79 function sub(uint256 x, int256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := sub(x, y) } if ((y > 0 && z > x) || (y < 0 && z < x)) revert Math__sub_overflow_signed(); } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L84 function mul(uint256 x, int256 y) pure returns (int256 z) { unchecked { z = int256(x) * y; if (int256(x) < 0 || (y != 0 && z / y != int256(x))) revert Math__mul_overflow_signed(); } } /// @dev Equivalent to `(x * y) / WAD` rounded down. /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L54 function wmul(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { // Store the function selector of `Math__mul_overflow()`. mstore(0x00, 0xc4c5d7f5) // Revert with (offset, size). revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } function wmul(uint256 x, int256 y) pure returns (int256 z) { unchecked { z = mul(x, y) / int256(WAD); } } /// @dev Equivalent to `(x * y) / WAD` rounded up. /// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L69C22-L69C22 function wmulUp(uint256 x, uint256 y) pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { // Store the function selector of `Math__mul_overflow()`. mstore(0x00, 0xc4c5d7f5) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L84 function wdiv(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { // Store the function selector of `Math__div_overflow()`. mstore(0x00, 0xbcbede65) // Revert with (offset, size). revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. /// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L99 function wdivUp(uint256 x, uint256 y) pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { // Store the function selector of `Math__div_overflow()`. mstore(0x00, 0xbcbede65) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/jug.sol#L62 function wpow(uint256 x, uint256 n, uint256 b) pure returns (uint256 z) { unchecked { assembly ("memory-safe") { switch n case 0 { z := b } default { switch x case 0 { z := 0 } default { switch mod(n, 2) case 0 { z := b } default { z := x } let half := div(b, 2) // for rounding. for { n := div(n, 2) } n { n := div(n, 2) } { let xx := mul(x, x) if shr(128, x) { revert(0, 0) } let xxRound := add(xx, half) if lt(xxRound, xx) { revert(0, 0) } x := div(xxRound, b) if mod(n, 2) { let zx := mul(z, x) if and(iszero(iszero(x)), iszero(eq(div(zx, x), z))) { revert(0, 0) } let zxRound := add(zx, half) if lt(zxRound, zx) { revert(0, 0) } z := div(zxRound, b) } } } } } } } /// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L110 /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function wpow(int256 x, int256 y) pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return wexp((wln(x) * y) / int256(WAD)); } /// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L116 /// @dev Returns `exp(x)`, denominated in `WAD`. function wexp(int256 x) pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return r; /// @solidity memory-safe-assembly assembly { // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } /// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L184 /// @dev Returns `ln(x)`, denominated in `WAD`. function wln(int256 x) pure returns (int256 r) { unchecked { /// @solidity memory-safe-assembly assembly { if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } } // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Compute k = log2(x) - 96, t = 159 - k = 255 - log2(x) = 255 ^ log2(x). int256 t; /// @solidity memory-safe-assembly assembly { t := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) t := or(t, shl(6, lt(0xffffffffffffffff, shr(t, x)))) t := or(t, shl(5, lt(0xffffffff, shr(t, x)))) t := or(t, shl(4, lt(0xffff, shr(t, x)))) t := or(t, shl(3, lt(0xff, shr(t, x)))) // forgefmt: disable-next-item t := xor( t, byte( and(0x1f, shr(shr(t, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff ) ) } // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x = int256(uint256(x << uint256(t)) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * (159 - t); // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {ISignatureTransfer} from "permit2/interfaces/ISignatureTransfer.sol"; enum ApprovalType { STANDARD, PERMIT, PERMIT2 } struct PermitParams { ApprovalType approvalType; uint256 approvalAmount; uint256 nonce; uint256 deadline; uint8 v; bytes32 r; bytes32 s; } abstract contract TransferAction { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using SafeERC20 for IERC20; using SafeERC20 for IERC20Permit; /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @notice Permit2 address public constant permit2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3; /*////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////*/ /// @notice Perform a permit2, a ERC20 permit transferFrom, or a standard transferFrom function _transferFrom( address token, address from, address to, uint256 amount, PermitParams memory params ) internal { if (params.approvalType == ApprovalType.PERMIT2) { // Consume a permit2 message and transfer tokens. ISignatureTransfer(permit2).permitTransferFrom( ISignatureTransfer.PermitTransferFrom({ permitted: ISignatureTransfer.TokenPermissions({token: token, amount: params.approvalAmount}), nonce: params.nonce, deadline: params.deadline }), ISignatureTransfer.SignatureTransferDetails({to: to, requestedAmount: amount}), from, bytes.concat(params.r, params.s, bytes1(params.v)) // Construct signature ); } else if (params.approvalType == ApprovalType.PERMIT) { // Consume a standard ERC20 permit message IERC20Permit(token).safePermit( from, to, params.approvalAmount, params.deadline, params.v, params.r, params.s ); IERC20(token).safeTransferFrom(from, to, amount); } else { // No signature provided, just transfer tokens. IERC20(token).safeTransferFrom(from, to, amount); } } }
pragma solidity ^0.8.4; interface ISwapRouter { function addLiquidity( address baseToken, address quoteToken, uint256 baseDelta, uint256 quoteDelta, uint256 minMintAmount, uint256 version, uint256 deadline ) external payable; }
pragma solidity ^0.8.4; interface IStableSwap { function baseTranche() external view returns (uint256); function baseAddress() external view returns (address); function quoteAddress() external view returns (address); function allBalances() external view returns (uint256, uint256); function getOraclePrice() external view returns (uint256); function getCurrentD() external view returns (uint256); function getCurrentPriceOverOracle() external view returns (uint256); function getCurrentPrice() external view returns (uint256); function getPriceOverOracleIntegral() external view returns (uint256); function addLiquidity(uint256 version, address recipient) external returns (uint256); function removeLiquidity( uint256 version, uint256 lpIn, uint256 minBaseOut, uint256 minQuoteOut ) external returns (uint256 baseOut, uint256 quoteOut); function removeLiquidityUnwrap( uint256 version, uint256 lpIn, uint256 minBaseOut, uint256 minQuoteOut ) external returns (uint256 baseOut, uint256 quoteOut); function removeBaseLiquidity(uint256 version, uint256 lpIn, uint256 minBaseOut) external returns (uint256 baseOut); function removeQuoteLiquidity( uint256 version, uint256 lpIn, uint256 minQuoteOut ) external returns (uint256 quoteOut); function removeQuoteLiquidityUnwrap( uint256 version, uint256 lpIn, uint256 minQuoteOut ) external returns (uint256 quoteOut); }
pragma solidity ^0.8.19; interface ISpectraRouter { /** * @dev Executes encoded commands along with provided inputs * Reverts if deadline has expired * @param _commands A set of concatenated commands, each 1 byte in length * @param _inputs An array of byte strings containing ABI-encoded inputs for each command * @param _deadline The deadline by which the transaction must be executed */ function execute(bytes calldata _commands, bytes[] calldata _inputs, uint256 _deadline) external payable; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; struct SwapData { SwapType swapType; address extRouter; bytes extCalldata; bool needScale; } enum SwapType { NONE, KYBERSWAP, ONE_INCH, // ETH_WETH not used in Aggregator ETH_WETH } interface IPSwapAggregator { function swap(address tokenIn, uint256 amountIn, SwapData calldata swapData) external payable; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../core/StandardizedYield/PYIndex.sol"; interface IPLimitOrderType { enum OrderType { SY_FOR_PT, PT_FOR_SY, SY_FOR_YT, YT_FOR_SY } // Fixed-size order part with core information struct StaticOrder { uint256 salt; uint256 expiry; uint256 nonce; OrderType orderType; address token; address YT; address maker; address receiver; uint256 makingAmount; uint256 lnImpliedRate; uint256 failSafeRate; } struct FillResults { uint256 totalMaking; uint256 totalTaking; uint256 totalFee; uint256 totalNotionalVolume; uint256[] netMakings; uint256[] netTakings; uint256[] netFees; uint256[] notionalVolumes; } } struct Order { uint256 salt; uint256 expiry; uint256 nonce; IPLimitOrderType.OrderType orderType; address token; address YT; address maker; address receiver; uint256 makingAmount; uint256 lnImpliedRate; uint256 failSafeRate; bytes permit; } struct FillOrderParams { Order order; bytes signature; uint256 makingAmount; } interface IPLimitRouterCallback is IPLimitOrderType { function limitRouterCallback( uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory data ) external returns (bytes memory); } interface IPLimitRouter is IPLimitOrderType { struct OrderStatus { uint128 filledAmount; uint128 remaining; } event OrderCanceled(address indexed maker, bytes32 indexed orderHash); event OrderFilledV2( bytes32 indexed orderHash, OrderType indexed orderType, address indexed YT, address token, uint256 netInputFromMaker, uint256 netOutputToMaker, uint256 feeAmount, uint256 notionalVolume, address maker, address taker ); // @dev actualMaking, actualTaking are in the SY form function fill( FillOrderParams[] memory params, address receiver, uint256 maxTaking, bytes calldata optData, bytes calldata callback ) external returns (uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory callbackReturn); function feeRecipient() external view returns (address); function hashOrder(Order memory order) external view returns (bytes32); function cancelSingle(Order calldata order) external; function cancelBatch(Order[] calldata orders) external; function orderStatusesRaw( bytes32[] memory orderHashes ) external view returns (uint256[] memory remainingsRaw, uint256[] memory filledAmounts); function orderStatuses( bytes32[] memory orderHashes ) external view returns (uint256[] memory remainings, uint256[] memory filledAmounts); function DOMAIN_SEPARATOR() external view returns (bytes32); function simulate(address target, bytes calldata data) external payable; /* --- Deprecated events --- */ // deprecate on 7/1/2024, prior to official launch event OrderFilled( bytes32 indexed orderHash, OrderType indexed orderType, address indexed YT, address token, uint256 netInputFromMaker, uint256 netOutputToMaker, uint256 feeAmount, uint256 notionalVolume ); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.0; /* solhint-disable private-vars-leading-underscore, reason-string */ library PMath { uint256 internal constant ONE = 1e18; // 18 decimal places int256 internal constant IONE = 1e18; // 18 decimal places function subMax0(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return (a >= b ? a - b : 0); } } function subNoNeg(int256 a, int256 b) internal pure returns (int256) { require(a >= b, "negative"); return a - b; // no unchecked since if b is very negative, a - b might overflow } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; unchecked { return product / ONE; } } function mulDown(int256 a, int256 b) internal pure returns (int256) { int256 product = a * b; unchecked { return product / IONE; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 aInflated = a * ONE; unchecked { return aInflated / b; } } function divDown(int256 a, int256 b) internal pure returns (int256) { int256 aInflated = a * IONE; unchecked { return aInflated / b; } } function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) { return (a + b - 1) / b; } // @author Uniswap function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function square(uint256 x) internal pure returns (uint256) { return x * x; } function squareDown(uint256 x) internal pure returns (uint256) { return mulDown(x, x); } function abs(int256 x) internal pure returns (uint256) { return uint256(x > 0 ? x : -x); } function neg(int256 x) internal pure returns (int256) { return x * (-1); } function neg(uint256 x) internal pure returns (int256) { return Int(x) * (-1); } function max(uint256 x, uint256 y) internal pure returns (uint256) { return (x > y ? x : y); } function max(int256 x, int256 y) internal pure returns (int256) { return (x > y ? x : y); } function min(uint256 x, uint256 y) internal pure returns (uint256) { return (x < y ? x : y); } function min(int256 x, int256 y) internal pure returns (int256) { return (x < y ? x : y); } /*/////////////////////////////////////////////////////////////// SIGNED CASTS //////////////////////////////////////////////////////////////*/ function Int(uint256 x) internal pure returns (int256) { require(x <= uint256(type(int256).max)); return int256(x); } function Int128(int256 x) internal pure returns (int128) { require(type(int128).min <= x && x <= type(int128).max); return int128(x); } function Int128(uint256 x) internal pure returns (int128) { return Int128(Int(x)); } /*/////////////////////////////////////////////////////////////// UNSIGNED CASTS //////////////////////////////////////////////////////////////*/ function Uint(int256 x) internal pure returns (uint256) { require(x >= 0); return uint256(x); } function Uint32(uint256 x) internal pure returns (uint32) { require(x <= type(uint32).max); return uint32(x); } function Uint64(uint256 x) internal pure returns (uint64) { require(x <= type(uint64).max); return uint64(x); } function Uint112(uint256 x) internal pure returns (uint112) { require(x <= type(uint112).max); return uint112(x); } function Uint96(uint256 x) internal pure returns (uint96) { require(x <= type(uint96).max); return uint96(x); } function Uint128(uint256 x) internal pure returns (uint128) { require(x <= type(uint128).max); return uint128(x); } function Uint192(uint256 x) internal pure returns (uint192) { require(x <= type(uint192).max); return uint192(x); } function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps); } function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a >= b && a <= mulDown(b, ONE + eps); } function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a <= b && a >= mulDown(b, ONE - eps); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../libraries/math/PMath.sol"; import "../libraries/math/LogExpMath.sol"; import "../StandardizedYield/PYIndex.sol"; import "../libraries/MiniHelpers.sol"; import "../libraries/Errors.sol"; struct MarketState { int256 totalPt; int256 totalSy; int256 totalLp; address treasury; /// immutable variables /// int256 scalarRoot; uint256 expiry; /// fee data /// uint256 lnFeeRateRoot; uint256 reserveFeePercent; // base 100 /// last trade data /// uint256 lastLnImpliedRate; } // params that are expensive to compute, therefore we pre-compute them struct MarketPreCompute { int256 rateScalar; int256 totalAsset; int256 rateAnchor; int256 feeRate; } // solhint-disable ordering library MarketMathCore { using PMath for uint256; using PMath for int256; using LogExpMath for int256; using PYIndexLib for PYIndex; int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3; int256 internal constant PERCENTAGE_DECIMALS = 100; uint256 internal constant DAY = 86400; uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY; int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100; using PMath for uint256; using PMath for int256; /*/////////////////////////////////////////////////////////////// UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidity( MarketState memory market, uint256 syDesired, uint256 ptDesired, uint256 blockTime ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) { (int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore( market, syDesired.Int(), ptDesired.Int(), blockTime ); lpToReserve = _lpToReserve.Uint(); lpToAccount = _lpToAccount.Uint(); syUsed = _syUsed.Uint(); ptUsed = _ptUsed.Uint(); } function removeLiquidity( MarketState memory market, uint256 lpToRemove ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) { (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int()); netSyToAccount = _syToAccount.Uint(); netPtToAccount = _ptToAccount.Uint(); } function swapExactPtForSy( MarketState memory market, PYIndex index, uint256 exactPtToMarket, uint256 blockTime ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToMarket.neg(), blockTime ); netSyToAccount = _netSyToAccount.Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } function swapSyForExactPt( MarketState memory market, PYIndex index, uint256 exactPtToAccount, uint256 blockTime ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToAccount.Int(), blockTime ); netSyToMarket = _netSyToAccount.neg().Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } /*/////////////////////////////////////////////////////////////// CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidityCore( MarketState memory market, int256 syDesired, int256 ptDesired, uint256 blockTime ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput(); if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ if (market.totalLp == 0) { lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY; lpToReserve = MINIMUM_LIQUIDITY; syUsed = syDesired; ptUsed = ptDesired; } else { int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt; int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy; if (netLpByPt < netLpBySy) { lpToAccount = netLpByPt; ptUsed = ptDesired; syUsed = (market.totalSy * lpToAccount) / market.totalLp; } else { lpToAccount = netLpBySy; syUsed = syDesired; ptUsed = (market.totalPt * lpToAccount) / market.totalLp; } } if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalSy += syUsed; market.totalPt += ptUsed; market.totalLp += lpToAccount + lpToReserve; } function removeLiquidityCore( MarketState memory market, int256 lpToRemove ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp; netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp; if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalLp = market.totalLp.subNoNeg(lpToRemove); market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount); } function executeTradeCore( MarketState memory market, PYIndex index, int256 netPtToAccount, uint256 blockTime ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); if (market.totalPt <= netPtToAccount) revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime); (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ _setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime); } function getMarketPreCompute( MarketState memory market, PYIndex index, uint256 blockTime ) internal pure returns (MarketPreCompute memory res) { if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); uint256 timeToExpiry = market.expiry - blockTime; res.rateScalar = _getRateScalar(market, timeToExpiry); res.totalAsset = index.syToAsset(market.totalSy); if (market.totalPt == 0 || res.totalAsset == 0) revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset); res.rateAnchor = _getRateAnchor( market.totalPt, market.lastLnImpliedRate, res.totalAsset, res.rateScalar, timeToExpiry ); res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry); } function calcTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { int256 preFeeExchangeRate = _getExchangeRate( market.totalPt, comp.totalAsset, comp.rateScalar, comp.rateAnchor, netPtToAccount ); int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg(); int256 fee = comp.feeRate; if (netPtToAccount > 0) { int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee); if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate); fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee); } else { fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg(); } int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS; int256 netAssetToAccount = preFeeAssetToAccount - fee; netSyToAccount = netAssetToAccount < 0 ? index.assetToSyUp(netAssetToAccount) : index.assetToSy(netAssetToAccount); netSyFee = index.assetToSy(fee); netSyToReserve = index.assetToSy(netAssetToReserve); } function _setNewMarketStateTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount, int256 netSyToAccount, int256 netSyToReserve, uint256 blockTime ) internal pure { uint256 timeToExpiry = market.expiry - blockTime; market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve); market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, index.syToAsset(market.totalSy), comp.rateScalar, comp.rateAnchor, timeToExpiry ); if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate(); } function _getRateAnchor( int256 totalPt, uint256 lastLnImpliedRate, int256 totalAsset, int256 rateScalar, uint256 timeToExpiry ) internal pure returns (int256 rateAnchor) { int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry); if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate); { int256 proportion = totalPt.divDown(totalPt + totalAsset); int256 lnProportion = _logProportion(proportion); rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar); } } /// @notice Calculates the current market implied rate. /// @return lnImpliedRate the implied rate function _getLnImpliedRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, uint256 timeToExpiry ) internal pure returns (uint256 lnImpliedRate) { // This will check for exchange rates < PMath.IONE int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0); // exchangeRate >= 1 so its ln >= 0 uint256 lnRate = exchangeRate.ln().Uint(); lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry; } /// @notice Converts an implied rate to an exchange rate given a time to expiry. The /// formula is E = e^rt function _getExchangeRateFromImpliedRate( uint256 lnImpliedRate, uint256 timeToExpiry ) internal pure returns (int256 exchangeRate) { uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME; exchangeRate = LogExpMath.exp(rt.Int()); } function _getExchangeRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, int256 netPtToAccount ) internal pure returns (int256 exchangeRate) { int256 numerator = totalPt.subNoNeg(netPtToAccount); int256 proportion = (numerator.divDown(totalPt + totalAsset)); if (proportion > MAX_MARKET_PROPORTION) revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION); int256 lnProportion = _logProportion(proportion); exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor; if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate); } function _logProportion(int256 proportion) internal pure returns (int256 res) { if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne(); int256 logitP = proportion.divDown(PMath.IONE - proportion); res = logitP.ln(); } function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) { rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int(); if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar); } function setInitialLnImpliedRate( MarketState memory market, PYIndex index, int256 initialAnchor, uint256 blockTime ) internal pure { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ int256 totalAsset = index.syToAsset(market.totalSy); uint256 timeToExpiry = market.expiry - blockTime; int256 rateScalar = _getRateScalar(market, timeToExpiry); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, totalAsset, rateScalar, initialAnchor, timeToExpiry ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IRewardManager { function userReward(address token, address user) external view returns (uint128 index, uint128 accrued); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPInterestManagerYT { event CollectInterestFee(uint256 amountInterestFee); function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPGauge { function totalActiveSupply() external view returns (uint256); function activeBalance(address user) external view returns (uint256); // only available for newer factories. please check the verified contracts event RedeemRewards(address indexed user, uint256[] rewardsOut); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // EIP-2612 is Final as of 2022-11-01. This file is deprecated. import "./IERC20Permit.sol";
// SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IEIP712} from "./IEIP712.sol"; /// @title SignatureTransfer /// @notice Handles ERC20 token transfers through signature based actions /// @dev Requires user's token approval on the Permit2 contract interface ISignatureTransfer is IEIP712 { /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount /// @param maxAmount The maximum amount a spender can request to transfer error InvalidAmount(uint256 maxAmount); /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred error LengthMismatch(); /// @notice Emits an event when the owner successfully invalidates an unordered nonce. event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask); /// @notice The token and amount details for a transfer signed in the permit transfer signature struct TokenPermissions { // ERC20 token address address token; // the maximum amount that can be spent uint256 amount; } /// @notice The signed permit message for a single token transfer struct PermitTransferFrom { TokenPermissions permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice Specifies the recipient address and amount for batched transfers. /// @dev Recipients and amounts correspond to the index of the signed token permissions array. /// @dev Reverts if the requested amount is greater than the permitted signed amount. struct SignatureTransferDetails { // recipient address address to; // spender requested amount uint256 requestedAmount; } /// @notice Used to reconstruct the signed permit message for multiple token transfers /// @dev Do not need to pass in spender address as it is required that it is msg.sender /// @dev Note that a user still signs over a spender address struct PermitBatchTransferFrom { // the tokens and corresponding amounts permitted for a transfer TokenPermissions[] permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce /// @dev It returns a uint256 bitmap /// @dev The index, or wordPosition is capped at type(uint248).max function nonceBitmap(address, uint256) external view returns (uint256); /// @notice Transfers a token using a signed permit message /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers a token using a signed permit message /// @notice Includes extra data provided by the caller to verify signature over /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param signature The signature to verify function permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @notice Includes extra data provided by the caller to verify signature over /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Invalidates the bits specified in mask for the bitmap at the word position /// @dev The wordPos is maxed at type(uint248).max /// @param wordPos A number to index the nonceBitmap at /// @param mask A bitmap masked against msg.sender's current bitmap at the word position function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../../interfaces/IPYieldToken.sol"; import "../../interfaces/IPPrincipalToken.sol"; import "./SYUtils.sol"; import "../libraries/math/PMath.sol"; type PYIndex is uint256; library PYIndexLib { using PMath for uint256; using PMath for int256; function newIndex(IPYieldToken YT) internal returns (PYIndex) { return PYIndex.wrap(YT.pyIndexCurrent()); } function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) { return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount); } function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount); } function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount); } function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) { uint256 _index = PYIndex.unwrap(index); return SYUtils.syToAssetUp(_index, syAmount); } function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) { int256 sign = syAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int(); } function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int(); } function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int(); } }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.8.0; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library MiniHelpers { function isCurrentlyExpired(uint256 expiry) internal view returns (bool) { return (expiry <= block.timestamp); } function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) { return (expiry <= blockTime); } function isTimeInThePast(uint256 timestamp) internal view returns (bool) { return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library Errors { // BulkSeller error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error BulkNotMaintainer(); error BulkNotAdmin(); error BulkSellerAlreadyExisted(address token, address SY, address bulk); error BulkSellerInvalidToken(address token, address SY); error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps); error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps); // APPROX error ApproxFail(); error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps); error ApproxBinarySearchInputInvalid( uint256 approxGuessMin, uint256 approxGuessMax, uint256 minGuessMin, uint256 maxGuessMax ); // MARKET + MARKET MATH CORE error MarketExpired(); error MarketZeroAmountsInput(); error MarketZeroAmountsOutput(); error MarketZeroLnImpliedRate(); error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount); error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance); error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset); error MarketExchangeRateBelowOne(int256 exchangeRate); error MarketProportionMustNotEqualOne(); error MarketRateScalarBelowZero(int256 rateScalar); error MarketScalarRootBelowZero(int256 scalarRoot); error MarketProportionTooHigh(int256 proportion, int256 maxProportion); error OracleUninitialized(); error OracleTargetTooOld(uint32 target, uint32 oldest); error OracleZeroCardinality(); error MarketFactoryExpiredPt(); error MarketFactoryInvalidPt(); error MarketFactoryMarketExists(); error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot); error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot); error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent); error MarketFactoryZeroTreasury(); error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor); error MFNotPendleMarket(address addr); // ROUTER error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut); error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut); error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut); error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut); error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay); error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay); error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed); error RouterTimeRangeZero(); error RouterCallbackNotPendleMarket(address caller); error RouterInvalidAction(bytes4 selector); error RouterInvalidFacet(address facet); error RouterKyberSwapDataZero(); error SimulationResults(bool success, bytes res); // YIELD CONTRACT error YCExpired(); error YCNotExpired(); error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy); error YCNothingToRedeem(); error YCPostExpiryDataNotSet(); error YCNoFloatingSy(); // YieldFactory error YCFactoryInvalidExpiry(); error YCFactoryYieldContractExisted(); error YCFactoryZeroExpiryDivisor(); error YCFactoryZeroTreasury(); error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate); error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate); // SY error SYInvalidTokenIn(address token); error SYInvalidTokenOut(address token); error SYZeroDeposit(); error SYZeroRedeem(); error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut); error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); // SY-specific error SYQiTokenMintFailed(uint256 errCode); error SYQiTokenRedeemFailed(uint256 errCode); error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1); error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax); error SYCurveInvalidPid(); error SYCurve3crvPoolNotFound(); error SYApeDepositAmountTooSmall(uint256 amountDeposited); error SYBalancerInvalidPid(); error SYInvalidRewardToken(address token); error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable); error SYBalancerReentrancy(); error NotFromTrustedRemote(uint16 srcChainId, bytes path); // Liquidity Mining error VCInactivePool(address pool); error VCPoolAlreadyActive(address pool); error VCZeroVePendle(address user); error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight); error VCEpochNotFinalized(uint256 wTime); error VCPoolAlreadyAddAndRemoved(address pool); error VEInvalidNewExpiry(uint256 newExpiry); error VEExceededMaxLockTime(); error VEInsufficientLockTime(); error VENotAllowedReduceExpiry(); error VEZeroAmountLocked(); error VEPositionNotExpired(); error VEZeroPosition(); error VEZeroSlope(uint128 bias, uint128 slope); error VEReceiveOldSupply(uint256 msgTime); error GCNotPendleMarket(address caller); error GCNotVotingController(address caller); error InvalidWTime(uint256 wTime); error ExpiryInThePast(uint256 expiry); error ChainNotSupported(uint256 chainId); error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount); error FDEpochLengthMismatch(); error FDInvalidPool(address pool); error FDPoolAlreadyExists(address pool); error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch); error FDInvalidStartEpoch(uint256 startEpoch); error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime); error FDFutureFunding(uint256 lastFunded, uint256 currentWTime); error BDInvalidEpoch(uint256 epoch, uint256 startTime); // Cross-Chain error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path); error MsgNotFromReceiveEndpoint(address sender); error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee); error ApproxDstExecutionGasNotSet(); error InvalidRetryData(); // GENERIC MSG error ArrayLengthMismatch(); error ArrayEmpty(); error ArrayOutOfBounds(); error ZeroAddress(); error FailedToSendEther(); error InvalidMerkleProof(); error OnlyLayerZeroEndpoint(); error OnlyYT(); error OnlyYCFactory(); error OnlyWhitelisted(); // Swap Aggregator error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual); error UnsupportedSelector(uint256 aggregatorType, bytes4 selector); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.17; interface IEIP712 { function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library SYUtils { uint256 internal constant ONE = 1e18; function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate) / ONE; } function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate + ONE - 1) / ONE; } function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE) / exchangeRate; } function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE + exchangeRate - 1) / exchangeRate; } }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "permit2/=lib/permit2/src/", "forge-std/=lib/forge-std/src/", "prb-proxy/=lib/prb-proxy/src/", "layerzerolabs/=lib/layerzerolabs/contracts/", "aave-address-book/=lib/aave-address-book/src/", "@gearbox-protocol/core-v3/contracts/=lib/core-v3/contracts/", "@gearbox-protocol/core-v2/contracts/=lib/core-v2/contracts/", "pendle/=lib/pendle/contracts/", "tranchess/=lib/contract-core/contracts/", "@1inch/=lib/core-v3/node_modules/@1inch/", "@aave/core-v3/=lib/aave-address-book/lib/aave-v3-core/", "@aave/periphery-v3/=lib/aave-address-book/lib/aave-v3-periphery/", "@chainlink/=lib/core-v3/node_modules/@chainlink/", "@prb/test/=lib/prb-proxy/lib/prb-test/src/", "aave-v3-core/=lib/aave-address-book/lib/aave-v3-core/", "aave-v3-periphery/=lib/aave-address-book/lib/aave-v3-periphery/", "core-v2/=lib/core-v2/contracts/", "core-v3/=lib/core-v3/contracts/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-gas-snapshot/=lib/permit2/lib/forge-gas-snapshot/src/", "hardhat-deploy/=node_modules/hardhat-deploy/", "hardhat/=node_modules/hardhat/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "prb-test/=lib/prb-proxy/lib/prb-test/src/", "solmate/=lib/permit2/lib/solmate/" ], "optimizer": { "enabled": true, "runs": 100 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IVault","name":"balancerVault_","type":"address"},{"internalType":"contract IUniswapV3Router","name":"uniRouter_","type":"address"},{"internalType":"contract IPActionAddRemoveLiqV3","name":"pendleRouter_","type":"address"},{"internalType":"address","name":"kyberRouter_","type":"address"},{"internalType":"address","name":"tranchessRouter_","type":"address"},{"internalType":"address","name":"spectraRouter_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Math__toInt256_overflow","type":"error"},{"inputs":[],"name":"SwapAction__kyberSwap_slippageFailed","type":"error"},{"inputs":[],"name":"SwapAction__revertBytes_emptyRevertBytes","type":"error"},{"inputs":[],"name":"SwapAction__swap_notSupported","type":"error"},{"inputs":[],"name":"UniswapV3Router_decodeLastToken_invalidPath","type":"error"},{"inputs":[],"name":"UniswapV3Router_toAddress_outOfBounds","type":"error"},{"inputs":[],"name":"UniswapV3Router_toAddress_overflow","type":"error"},{"inputs":[],"name":"balancerVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum SwapProtocol","name":"swapProtocol","type":"uint8"},{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"assetIn","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"limit","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"residualRecipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"args","type":"bytes"}],"internalType":"struct SwapParams","name":"swapParams","type":"tuple"}],"name":"getSwapToken","outputs":[{"internalType":"address","name":"token","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"kyberRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendleRouter","outputs":[{"internalType":"contract IPActionAddRemoveLiqV3","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"permit2","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"spectraRouter","outputs":[{"internalType":"contract ISpectraRouter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum SwapProtocol","name":"swapProtocol","type":"uint8"},{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"assetIn","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"limit","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"residualRecipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"args","type":"bytes"}],"internalType":"struct SwapParams","name":"swapParams","type":"tuple"}],"name":"swap","outputs":[{"internalType":"uint256","name":"retAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tranchessRouter","outputs":[{"internalType":"contract ISwapRouter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"components":[{"internalType":"enum ApprovalType","name":"approvalType","type":"uint8"},{"internalType":"uint256","name":"approvalAmount","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct PermitParams","name":"permitParams","type":"tuple"},{"components":[{"internalType":"enum SwapProtocol","name":"swapProtocol","type":"uint8"},{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"assetIn","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"limit","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"residualRecipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"args","type":"bytes"}],"internalType":"struct SwapParams","name":"swapParams","type":"tuple"}],"name":"transferAndSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniRouter","outputs":[{"internalType":"contract IUniswapV3Router","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
6101406040523480156200001257600080fd5b5060405162003af738038062003af783398101604081905262000035916200007e565b6001600160a01b0395861660805293851660a05291841660c052831660e052821661010052166101205262000112565b6001600160a01b03811681146200007b57600080fd5b50565b60008060008060008060c087890312156200009857600080fd5b8651620000a58162000065565b6020880151909650620000b88162000065565b6040880151909550620000cb8162000065565b6060880151909450620000de8162000065565b6080880151909350620000f18162000065565b60a0880151909250620001048162000065565b809150509295509295509295565b60805160a05160c05160e051610100516101205161392e620001c9600039600081816101a401528181611b810152611bbd01526000818160fb0152818161174e0152818161178801526118030152600081816101de01528181610cac0152610cd601526000818161012201528181611029015261106501526000818161016a01528181610dcf01528181610df601528181610ec80152610eef01526000818160d401528181610b640152610b8e015261392e6000f3fe608060405234801561001057600080fd5b506004361061009e5760003560e01c8063a0e47bf611610066578063a0e47bf614610165578063a49cc0cd1461018c578063a639bbfe1461019f578063c0d4a416146101c6578063f63ca6e4146101d957600080fd5b806312261ee7146100a3578063158274a5146100cf5780631fc96635146100f6578063206aeab31461011d578063746f700a14610144575b600080fd5b6100b96e22d473030f116ddee9f6b43ac78ba381565b6040516100c691906122ca565b60405180910390f35b6100b97f000000000000000000000000000000000000000000000000000000000000000081565b6100b97f000000000000000000000000000000000000000000000000000000000000000081565b6100b97f000000000000000000000000000000000000000000000000000000000000000081565b610157610152366004612314565b610200565b6040519081526020016100c6565b6100b97f000000000000000000000000000000000000000000000000000000000000000081565b6100b961019a366004612381565b61028d565b6100b97f000000000000000000000000000000000000000000000000000000000000000081565b6101576101d4366004612605565b6103e2565b6100b97f000000000000000000000000000000000000000000000000000000000000000081565b60006001600160a01b038416301461027957600080610225604085016020860161264f565b600181111561023657610236612639565b1461024557826080013561024b565b82606001355b90506102776102606060850160408601612671565b863084610272368a90038a018a61269f565b6106aa565b505b6102856101d483612736565b949350505050565b60008061029d6020840184612742565b60078111156102ae576102ae612639565b0361034e5760006102c361010084018461275d565b8101906102d0919061283c565b9150600190506102e6604085016020860161264f565b60018111156102f7576102f7612639565b0361031e578060008151811061030f5761030f6128f4565b60200260200101519150610348565b806001825161032d9190612920565b8151811061033d5761033d6128f4565b602002602001015191505b50919050565b600161035d6020840184612742565b600781111561036e5761036e612639565b036103c4576103be61038461010084018461275d565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061087592505050565b92915050565b60405163e11d7ccb60e01b815260040160405180910390fd5b919050565b60008160e0015142111561042e5761042e6040518060400160405280602081526020017f53776170416374696f6e3a207377617020646561646c696e65207061737365648152506108b1565b60008251600781111561044357610443612639565b036104995760008083610100015180602001905181019061046491906129a2565b91509150610490846020015185604001518484886060015189608001518a60a001518b60e001516108d9565b9250505061061b565b6004825160078111156104ae576104ae612639565b1480156104d057506000826020015160018111156104ce576104ce612639565b145b156104f9576104f2826040015183606001518460800151856101000151610c9b565b905061061b565b60018251600781111561050e5761050e612639565b0361053f576104f282602001518360400151846060015185608001518660a001518760e00151886101000151610da6565b60028251600781111561055457610554612639565b03610571576104f28260a001518360800151846101000151610f68565b60038251600781111561058657610586612639565b036105a3576104f28260a0015183608001518461010001516110f6565b6005825160078111156105b8576105b8612639565b036105c6576104f282611582565b6006825160078111156105db576105db612639565b036105f8576104f28260a00151836080015184610100015161190a565b60078251600781111561060d5761060d612639565b036103c4576104f282611a9e565b60018260200151600181111561063357610633612639565b14801561064d575060a08201516001600160a01b03163014155b156103dd5760c08201516001600160a01b031615610692576103dd8260c0015182846080015161067d9190612920565b60408501516001600160a01b03169190611cb1565b6103dd8260a0015182846080015161067d9190612920565b6002815160028111156106bf576106bf612639565b036107e9576e22d473030f116ddee9f6b43ac78ba36001600160a01b03166330f28b7a604051806060016040528060405180604001604052808a6001600160a01b03168152602001866020015181525081526020018460400151815260200184606001518152506040518060400160405280876001600160a01b0316815260200186815250878560a001518660c00151876080015160f81b6040516020016107849392919092835260208301919091526001600160f81b031916604082015260410190565b6040516020818303038152906040526040518563ffffffff1660e01b81526004016107b29493929190612aa3565b600060405180830381600087803b1580156107cc57600080fd5b505af11580156107e0573d6000803e3d6000fd5b5050505061086e565b6001815160028111156107fe576107fe612639565b036108595761083f84848360200151846060015185608001518660a001518760c001518c6001600160a01b0316611d0c90979695949392919063ffffffff16565b6108546001600160a01b038616858585611eec565b61086e565b61086e6001600160a01b038616858585611eec565b5050505050565b600060148251101561089a5760405163d3d6273f60e01b815260040160405180910390fd5b6103be82601484516108ac9190612920565b611f13565b8051156108c057805181602001fd5b604051634811b8df60e11b815260040160405180910390fd5b8551600090816108ea826001612b1c565b6001600160401b03811115610901576109016123b5565b60405190808252806020026020018201604052801561092a578160200160208202803683370190505b5090506000826001600160401b03811115610947576109476123b5565b6040519080825280602002602001820160405280156109ad57816020015b61099a6040518060a0016040528060008019168152602001600081526020016000815260200160008152602001606081525090565b8152602001906001900390816109655790505b5090506060600080808f60018111156109c8576109c8612639565b036109d5575060016109da565b600191505b60005b86811015610a4f576040518060a001604052808f8381518110610a0257610a026128f4565b60200260200101518152602001848301815260200183830181526020016000815260200185815250858281518110610a3c57610a3c6128f4565b60209081029190910101526001016109dd565b508a84600081518110610a6457610a646128f4565b6020908102919091010151606001525060009150819050808e6001811115610a8e57610a8e612639565b03610af657506000905088610aa281611f7c565b84600081518110610ab557610ab56128f4565b602002602001018181525050610aca89611f7c565b610ad390612b2f565b848681518110610ae557610ae56128f4565b602002602001018181525050610b55565b506001905087610b058a611f7c565b610b0e90612b2f565b84600081518110610b2157610b216128f4565b602002602001018181525050610b3689611f7c565b848681518110610b4857610b486128f4565b6020026020010181815250505b610b896001600160a01b038e167f000000000000000000000000000000000000000000000000000000000000000083611fa6565b610c897f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663945bcec984868f6040518060800160405280306001600160a01b031681526020016000151581526020018f6001600160a01b03168152602001600015158152508a8e6040518763ffffffff1660e01b8152600401610c1a96959493929190612bbf565b6000604051808303816000875af1158015610c39573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610c619190810190612ce1565b8681518110610c7257610c726128f4565b602002602001015160ff81901c6000039081011890565b9e9d5050505050505050505050505050565b6000610cd16001600160a01b0386167f000000000000000000000000000000000000000000000000000000000000000086611fa6565b6000807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031684604051610d0c9190612d66565b6000604051808303816000865af19150503d8060008114610d49576040519150601f19603f3d011682016040523d82523d6000602084013e610d4e565b606091505b509150915081610d6157610d61816108b1565b600081806020019051810190610d779190612d82565b50905085811015610d9b57604051632205896160e01b815260040160405180910390fd5b979650505050505050565b600080886001811115610dbb57610dbb612639565b03610eb957610df46001600160a01b0388167f000000000000000000000000000000000000000000000000000000000000000088611fa6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663c04b8d596040518060a00160405280858152602001876001600160a01b03168152602001868152602001898152602001888152506040518263ffffffff1660e01b8152600401610e6f9190612df7565b6020604051808303816000875af1158015610e8e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610eb29190612e0a565b9050610d9b565b610eed6001600160a01b0388167f000000000000000000000000000000000000000000000000000000000000000087611fa6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663f28c04986040518060a00160405280858152602001876001600160a01b03168152602001868152602001898152602001888152506040518263ffffffff1660e01b8152600401610e6f9190612df7565b600080600080600085806020019051810190610f8491906131e4565b8151939750919550935091506001600160a01b03161561104e5781516040516370a0823160e01b81526001600160a01b03909116906370a0823190610fcd9030906004016122ca565b602060405180830381865afa158015610fea573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061100e9190612e0a565b60208301819052825161104e916001600160a01b03909116907f000000000000000000000000000000000000000000000000000000000000000090611fa6565b60405163092ccd6360e11b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906312599ac6906110a4908b9088908c90899089908990600401613490565b6060604051808303816000875af11580156110c3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110e79190613589565b50909998505050505050505050565b6000806000808480602001905181019061111091906135b7565b9250925092506000806000856001600160a01b0316632c8ce6bc6040518163ffffffff1660e01b8152600401606060405180830381865afa158015611159573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061117d91906135fa565b919450925090506001600160a01b038a16301461120d576040516323b872dd60e01b81526001600160a01b038716906323b872dd906111c4908d908a908a9060040161363c565b6020604051808303816000875af11580156111e3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112079190613660565b50611280565b60405163a9059cbb60e01b81526001600160a01b0387169063a9059cbb9061123b908990899060040161367b565b6020604051808303816000875af115801561125a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061127e9190613660565b505b6000826001600160a01b0316632f13b60c6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156112c0573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112e49190613660565b156113e757604051633dae446f60e21b81526000906001600160a01b0389169063f6b911bc9061131c90889087908c9060040161363c565b60408051808303816000875af115801561133a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061135e9190612d82565b5090506000836001600160a01b031663bcb7ea5d876040518263ffffffff1660e01b815260040161138f91906122ca565b6020604051808303816000875af11580156113ae573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113d29190612e0a565b90506113de8183612b1c565b925050506114ea565b600080886001600160a01b031663f6b911bc878b8b6040518463ffffffff1660e01b815260040161141a9392919061363c565b60408051808303816000875af1158015611438573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061145c9190612d82565b91509150606060008a6001600160a01b03166329910b118985856040518463ffffffff1660e01b815260040161149493929190613694565b60408051808303816000875af11580156114b2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114d69190612d82565b5090506114e38185612b1c565b9450505050505b60405163769f8e5d60e01b81526001600160a01b038c81166004830152602482018390528681166044830152606482018c90526001608483015285169063769f8e5d9060a4016020604051808303816000875af115801561154f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115739190612e0a565b9b9a5050505050505050505050565b60008060008060008561010001518060200190518101906115a391906136bb565b93509350935093506000846001600160a01b0316639e548b7f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156115eb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061160f91906136fa565b6001600160a01b0316630589a4786040518163ffffffff1660e01b8152600401602060405180830381865afa15801561164c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061167091906136fa565b90506000856001600160a01b0316639e548b7f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156116b2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116d691906136fa565b6001600160a01b031663f0a0b44e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611713573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061173791906136fa565b90508415611773576117736001600160a01b0383167f000000000000000000000000000000000000000000000000000000000000000087611fa6565b83156117ad576117ad6001600160a01b0382167f000000000000000000000000000000000000000000000000000000000000000086611fa6565b608088015160e0890151604051630f5c0dcb60e31b81526001600160a01b03858116600483015284811660248301526044820189905260648201889052608482019390935260a4810186905260c48101919091527f000000000000000000000000000000000000000000000000000000000000000090911690637ae06e589060e401600060405180830381600087803b15801561184957600080fd5b505af115801561185d573d6000803e3d6000fd5b50506040516370a0823160e01b81526001600160a01b03891692506370a08231915061188d9030906004016122ca565b602060405180830381865afa1580156118aa573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118ce9190612e0a565b60a08901519097506001600160a01b031630146118ff5760a08801516118ff906001600160a01b0388169089611cb1565b505050505050919050565b600080600080848060200190518101906119249190613717565b9250925092506000826001600160a01b0316639e548b7f6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561196a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061198e91906136fa565b6040516318594a0160e11b81526004810186905260248101849052604481018990529091506001600160a01b038216906330b29402906064016020604051808303816000875af11580156119e6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a0a9190612e0a565b94506001600160a01b0388163014611a9357611a938886836001600160a01b031663f0a0b44e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611a5f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a8391906136fa565b6001600160a01b03169190611cb1565b505050509392505050565b6000806000806000856101000151806020019051810190611abf9190613750565b93509350935093506000826001600160a01b03166370a082318860a001516040518263ffffffff1660e01b8152600401611af991906122ca565b602060405180830381865afa158015611b16573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b3a9190612e0a565b905060008085600081518110611b5257611b526128f4565b6020026020010151806020019051810190611b6d919061383c565b9092509050611ba66001600160a01b0383167f000000000000000000000000000000000000000000000000000000000000000083611fa6565b604051630d64d59360e21b81526001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001690633593564c90611bf6908a908a90899060040161386a565b600060405180830381600087803b158015611c1057600080fd5b505af1158015611c24573d6000803e3d6000fd5b5050505060a08901516040516370a0823160e01b815284916001600160a01b038816916370a0823191611c59916004016122ca565b602060405180830381865afa158015611c76573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c9a9190612e0a565b611ca49190612920565b9998505050505050505050565b611d078363a9059cbb60e01b8484604051602401611cd092919061367b565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261203b565b505050565b604051623f675f60e91b81526000906001600160a01b038a1690637ecebe0090611d3a908b906004016122ca565b602060405180830381865afa158015611d57573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d7b9190612e0a565b60405163d505accf60e01b81526001600160a01b038a811660048301528981166024830152604482018990526064820188905260ff8716608483015260a4820186905260c48201859052919250908a169063d505accf9060e401600060405180830381600087803b158015611def57600080fd5b505af1158015611e03573d6000803e3d6000fd5b5050604051623f675f60e91b8152600092506001600160a01b038c169150637ecebe0090611e35908c906004016122ca565b602060405180830381865afa158015611e52573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611e769190612e0a565b9050611e83826001612b1c565b8114611ee05760405162461bcd60e51b815260206004820152602160248201527f5361666545524332303a207065726d697420646964206e6f74207375636365656044820152601960fa1b60648201526084015b60405180910390fd5b50505050505050505050565b611f0d846323b872dd60e01b858585604051602401611cd09392919061363c565b50505050565b600081611f21816014612b1c565b1015611f4057604051634b5ecc6360e11b815260040160405180910390fd5b611f4b826014612b1c565b83511015611f6c5760405163a261974560e01b815260040160405180910390fd5b500160200151600160601b900490565b6000600160ff1b8210611fa257604051632db27c5360e01b815260040160405180910390fd5b5090565b600063095ea7b360e01b8383604051602401611fc392919061367b565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915290506120018482612110565b611f0d576040516001600160a01b03841660248201526000604482015261203590859063095ea7b360e01b90606401611cd0565b611f0d84825b6000612090826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166121b79092919063ffffffff16565b90508051600014806120b15750808060200190518101906120b19190613660565b611d075760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401611ed7565b6000806000846001600160a01b03168460405161212d9190612d66565b6000604051808303816000865af19150503d806000811461216a576040519150601f19603f3d011682016040523d82523d6000602084013e61216f565b606091505b50915091508180156121995750805115806121995750808060200190518101906121999190613660565b80156121ae57506001600160a01b0385163b15155b95945050505050565b6060610285848460008585600080866001600160a01b031685876040516121de9190612d66565b60006040518083038185875af1925050503d806000811461221b576040519150601f19603f3d011682016040523d82523d6000602084013e612220565b606091505b5091509150610d9b878383876060831561229b578251600003612294576001600160a01b0385163b6122945760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401611ed7565b5081610285565b61028583838151156122b05781518083602001fd5b8060405162461bcd60e51b8152600401611ed791906138e5565b6001600160a01b0391909116815260200190565b6001600160a01b03811681146122f357600080fd5b50565b80356103dd816122de565b6000610120828403121561034857600080fd5b600080600083850361012081121561232b57600080fd5b8435612336816122de565b935060e0601f198201121561234a57600080fd5b506020840191506101008401356001600160401b0381111561236b57600080fd5b61237786828701612301565b9150509250925092565b60006020828403121561239357600080fd5b81356001600160401b038111156123a957600080fd5b61028584828501612301565b634e487b7160e01b600052604160045260246000fd5b60405161012081016001600160401b03811182821017156123ee576123ee6123b5565b60405290565b60405160a081016001600160401b03811182821017156123ee576123ee6123b5565b604051608081016001600160401b03811182821017156123ee576123ee6123b5565b604051606081016001600160401b03811182821017156123ee576123ee6123b5565b60405161018081016001600160401b03811182821017156123ee576123ee6123b5565b604051601f8201601f191681016001600160401b03811182821017156124a5576124a56123b5565b604052919050565b8035600881106103dd57600080fd5b8035600281106103dd57600080fd5b60006001600160401b038211156124e4576124e46123b5565b50601f01601f191660200190565b600082601f83011261250357600080fd5b8135612516612511826124cb565b61247d565b81815284602083860101111561252b57600080fd5b816020850160208301376000918101602001919091529392505050565b6000610120828403121561255b57600080fd5b6125636123cb565b905061256e826124ad565b815261257c602083016124bc565b602082015261258d604083016122f6565b604082015260608201356060820152608082013560808201526125b260a083016122f6565b60a08201526125c360c083016122f6565b60c082015260e082013560e0820152610100808301356001600160401b038111156125ed57600080fd5b6125f9858286016124f2565b82840152505092915050565b60006020828403121561261757600080fd5b81356001600160401b0381111561262d57600080fd5b61028584828501612548565b634e487b7160e01b600052602160045260246000fd5b60006020828403121561266157600080fd5b61266a826124bc565b9392505050565b60006020828403121561268357600080fd5b813561266a816122de565b803560ff811681146103dd57600080fd5b600060e082840312156126b157600080fd5b60405160e081018181106001600160401b03821117156126d3576126d36123b5565b6040528235600381106126e557600080fd5b808252506020830135602082015260408301356040820152606083013560608201526127136080840161268e565b608082015260a083013560a082015260c083013560c08201528091505092915050565b60006103be3683612548565b60006020828403121561275457600080fd5b61266a826124ad565b6000808335601e1984360301811261277457600080fd5b8301803591506001600160401b0382111561278e57600080fd5b6020019150368190038213156127a357600080fd5b9250929050565b60006001600160401b038211156127c3576127c36123b5565b5060051b60200190565b600082601f8301126127de57600080fd5b813560206127ee612511836127aa565b82815260059290921b8401810191818101908684111561280d57600080fd5b8286015b84811015612831578035612824816122de565b8352918301918301612811565b509695505050505050565b6000806040838503121561284f57600080fd5b82356001600160401b038082111561286657600080fd5b818501915085601f83011261287a57600080fd5b8135602061288a612511836127aa565b82815260059290921b840181019181810190898411156128a957600080fd5b948201945b838610156128c7578535825294820194908201906128ae565b965050860135925050808211156128dd57600080fd5b506128ea858286016127cd565b9150509250929050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b818103818111156103be576103be61290a565b80516103dd816122de565b600082601f83011261294f57600080fd5b8151602061295f612511836127aa565b82815260059290921b8401810191818101908684111561297e57600080fd5b8286015b84811015612831578051612995816122de565b8352918301918301612982565b600080604083850312156129b557600080fd5b82516001600160401b03808211156129cc57600080fd5b818501915085601f8301126129e057600080fd5b815160206129f0612511836127aa565b82815260059290921b84018101918181019089841115612a0f57600080fd5b948201945b83861015612a2d57855182529482019490820190612a14565b91880151919650909350505080821115612a4657600080fd5b506128ea8582860161293e565b60005b83811015612a6e578181015183820152602001612a56565b50506000910152565b60008151808452612a8f816020860160208601612a53565b601f01601f19169290920160200192915050565b6000610100612ac683885180516001600160a01b03168252602090810151910152565b6020870151604084015260408701516060840152612afa608084018780516001600160a01b03168252602090810151910152565b6001600160a01b03851660c084015260e08301819052610d9b81840185612a77565b808201808211156103be576103be61290a565b6000600160ff1b8201612b4457612b4461290a565b5060000390565b600081518084526020808501945080840160005b83811015612b845781516001600160a01b031687529582019590820190600101612b5f565b509495945050505050565b600081518084526020808501945080840160005b83811015612b8457815187529582019590820190600101612ba3565b600061012080830160028a10612bd757612bd7612639565b89845260208085019290925288519081905261014080850192600583901b8601909101918a820160005b82811015612c645787850361013f190186528151805186528481015185870152604080820151908701526060808201519087015260809081015160a091870182905290612c5081880183612a77565b978601979650505090830190600101612c01565b505050508381036040850152612c7a8189612b4b565b915050612cba606084018780516001600160a01b039081168352602080830151151590840152604080830151909116908301526060908101511515910152565b82810360e0840152612ccc8186612b8f565b91505082610100830152979650505050505050565b60006020808385031215612cf457600080fd5b82516001600160401b03811115612d0a57600080fd5b8301601f81018513612d1b57600080fd5b8051612d29612511826127aa565b81815260059190911b82018301908381019087831115612d4857600080fd5b928401925b82841015610d9b57835182529284019290840190612d4d565b60008251612d78818460208701612a53565b9190910192915050565b60008060408385031215612d9557600080fd5b505080516020909101519092909150565b6000815160a08452612dbb60a0850182612a77565b6020848101516001600160a01b031690860152604080850151908601526060808501519086015260809384015193909401929092525090919050565b60208152600061266a6020830184612da6565b600060208284031215612e1c57600080fd5b5051919050565b600481106122f357600080fd5b80516103dd81612e23565b600082601f830112612e4c57600080fd5b8151612e5a612511826124cb565b818152846020838601011115612e6f57600080fd5b610285826020830160208701612a53565b805180151581146103dd57600080fd5b600060a08284031215612ea257600080fd5b612eaa6123f4565b90508151612eb7816122de565b8152602082810151908201526040820151612ed1816122de565b60408201526060820151612ee4816122de565b606082015260808201516001600160401b0380821115612f0357600080fd5b9083019060808286031215612f1757600080fd5b612f1f612416565b8251612f2a81612e23565b81526020830151612f3a816122de565b6020820152604083015182811115612f5157600080fd5b612f5d87828601612e3b565b604083015250612f6f60608401612e80565b6060820152608084015250909392505050565b600082601f830112612f9357600080fd5b81516020612fa3612511836127aa565b82815260059290921b84018101918181019086841115612fc257600080fd5b8286015b848110156128315780516001600160401b0380821115612fe557600080fd5b90880190601f196060838c0382011215612ffe57600080fd5b613006612438565b878401518381111561301757600080fd5b8401610180818e038401121561302c57600080fd5b61303461245a565b92508881015183526040810151898401526060810151604084015261305b60808201612e30565b606084015261306c60a08201612933565b608084015261307d60c08201612933565b60a084015261308e60e08201612933565b60c08401526101006130a1818301612933565b60e08501526101208083015182860152610140915081830151818601525061016080830151828601526101808301519150858211156130df57600080fd5b6130ed8f8c84860101612e3b565b9085015250509081526040830151908282111561310957600080fd5b6131178c8984870101612e3b565b8189015260609390930151604084015250508352918301918301612fc6565b600060a0828403121561314857600080fd5b6131506123f4565b905061315b82612933565b81526020820151602082015260408201516001600160401b038082111561318157600080fd5b61318d85838601612f82565b604084015260608401519150808211156131a657600080fd5b6131b285838601612f82565b606084015260808401519150808211156131cb57600080fd5b506131d884828501612e3b565b60808301525092915050565b6000806000808486036101008112156131fc57600080fd5b8551613207816122de565b945060a0601f198201121561321b57600080fd5b506132246123f4565b6020860151815260408601516020820152606086015160408201526080860151606082015260a086015160808201528093505060c08501516001600160401b038082111561327157600080fd5b61327d88838901612e90565b935060e087015191508082111561329357600080fd5b506132a087828801613136565b91505092959194509250565b600481106122f3576122f3612639565b6132c5816132ac565b9052565b600081518084526020808501808196508360051b8101915082860160005b8581101561341f57828403895281516060815181875280518288015287810151608081818a0152604091508183015160a081818c015285850151955060c09150613333828c01876132bc565b91840151945060e0916133508b8401876001600160a01b03169052565b840151945061010061336c8b8201876001600160a01b03169052565b9084015194506101209061338a8b8301876001600160a01b03169052565b918401519450610140916133a88b8401876001600160a01b03169052565b8401516101608b81019190915290840151610180808c0191909152918401516101a08b01528301516101c08a019190915292506133e96101e0890184612a77565b9250888401519150878303898901526134028383612a77565b9381015197019690965250988501989350908401906001016132e7565b5091979650505050505050565b60018060a01b038151168252602081015160208301526000604082015160a0604085015261345d60a08501826132c9565b90506060830151848203606086015261347682826132c9565b915050608083015184820360808601526121ae8282612a77565b600061014060018060a01b03808a16845280891660208501528760408501528651606085015260208701516080850152604087015160a0850152606087015160c0850152608087015160e0850152816101008501528086511682850152602086015161016085015280604087015116610180850152806060870151166101a08501526080860151915060a06101c0850152815161352c816132ac565b6101e085015260208201511661020084015260408101516080610220850152613559610260850182612a77565b90506060820151151561024085015283810361012085015261357b818661342c565b9a9950505050505050505050565b60008060006060848603121561359e57600080fd5b8351925060208401519150604084015190509250925092565b6000806000606084860312156135cc57600080fd5b83516135d7816122de565b6020850151604086015191945092506135ef816122de565b809150509250925092565b60008060006060848603121561360f57600080fd5b835161361a816122de565b602085015190935061362b816122de565b60408501519092506135ef816122de565b6001600160a01b039384168152919092166020820152604081019190915260600190565b60006020828403121561367257600080fd5b61266a82612e80565b6001600160a01b03929092168252602082015260400190565b60018060a01b03841681528260208201526060604082015260006121ae6060830184612a77565b600080600080608085870312156136d157600080fd5b84516136dc816122de565b60208601516040870151606090970151919890975090945092505050565b60006020828403121561370c57600080fd5b815161266a816122de565b60008060006060848603121561372c57600080fd5b83519250602084015161373e816122de565b80925050604084015190509250925092565b6000806000806080858703121561376657600080fd5b84516001600160401b038082111561377d57600080fd5b61378988838901612e3b565b95506020915081870151818111156137a057600080fd5b8701601f810189136137b157600080fd5b80516137bf612511826127aa565b81815260059190911b8201840190848101908b8311156137de57600080fd5b8584015b83811015613816578051868111156137fa5760008081fd5b6138088e8983890101612e3b565b8452509186019186016137e2565b5080985050505050505061382c60408601612933565b6060959095015193969295505050565b6000806040838503121561384f57600080fd5b825161385a816122de565b6020939093015192949293505050565b60608152600061387d6060830186612a77565b6020838203818501528186518084528284019150828160051b85010183890160005b838110156138cd57601f198784030185526138bb838351612a77565b9486019492509085019060010161389f565b50508095505050505050826040830152949350505050565b60208152600061266a6020830184612a7756fea26469706673582212207697af2c3ba2006f9a0bcb5eb14caac37419539a71934523e3db0c16251decef64736f6c63430008130033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000e592427a0aece92de3edee1f18e0157c0586156400000000000000000000000000000000005bbb0ef59571e58418f9a4357b68a00000000000000000000000006131b5fae19ea4f9d964eac0408e4408b66337b500000000000000000000000063baee33649e589cc70435f898671461b624cbcc0000000000000000000000003d20601ac0ba9cae4564ddf7870825c505b69f1a
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061009e5760003560e01c8063a0e47bf611610066578063a0e47bf614610165578063a49cc0cd1461018c578063a639bbfe1461019f578063c0d4a416146101c6578063f63ca6e4146101d957600080fd5b806312261ee7146100a3578063158274a5146100cf5780631fc96635146100f6578063206aeab31461011d578063746f700a14610144575b600080fd5b6100b96e22d473030f116ddee9f6b43ac78ba381565b6040516100c691906122ca565b60405180910390f35b6100b97f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c881565b6100b97f00000000000000000000000063baee33649e589cc70435f898671461b624cbcc81565b6100b97f00000000000000000000000000000000005bbb0ef59571e58418f9a4357b68a081565b610157610152366004612314565b610200565b6040519081526020016100c6565b6100b97f000000000000000000000000e592427a0aece92de3edee1f18e0157c0586156481565b6100b961019a366004612381565b61028d565b6100b97f0000000000000000000000003d20601ac0ba9cae4564ddf7870825c505b69f1a81565b6101576101d4366004612605565b6103e2565b6100b97f0000000000000000000000006131b5fae19ea4f9d964eac0408e4408b66337b581565b60006001600160a01b038416301461027957600080610225604085016020860161264f565b600181111561023657610236612639565b1461024557826080013561024b565b82606001355b90506102776102606060850160408601612671565b863084610272368a90038a018a61269f565b6106aa565b505b6102856101d483612736565b949350505050565b60008061029d6020840184612742565b60078111156102ae576102ae612639565b0361034e5760006102c361010084018461275d565b8101906102d0919061283c565b9150600190506102e6604085016020860161264f565b60018111156102f7576102f7612639565b0361031e578060008151811061030f5761030f6128f4565b60200260200101519150610348565b806001825161032d9190612920565b8151811061033d5761033d6128f4565b602002602001015191505b50919050565b600161035d6020840184612742565b600781111561036e5761036e612639565b036103c4576103be61038461010084018461275d565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061087592505050565b92915050565b60405163e11d7ccb60e01b815260040160405180910390fd5b919050565b60008160e0015142111561042e5761042e6040518060400160405280602081526020017f53776170416374696f6e3a207377617020646561646c696e65207061737365648152506108b1565b60008251600781111561044357610443612639565b036104995760008083610100015180602001905181019061046491906129a2565b91509150610490846020015185604001518484886060015189608001518a60a001518b60e001516108d9565b9250505061061b565b6004825160078111156104ae576104ae612639565b1480156104d057506000826020015160018111156104ce576104ce612639565b145b156104f9576104f2826040015183606001518460800151856101000151610c9b565b905061061b565b60018251600781111561050e5761050e612639565b0361053f576104f282602001518360400151846060015185608001518660a001518760e00151886101000151610da6565b60028251600781111561055457610554612639565b03610571576104f28260a001518360800151846101000151610f68565b60038251600781111561058657610586612639565b036105a3576104f28260a0015183608001518461010001516110f6565b6005825160078111156105b8576105b8612639565b036105c6576104f282611582565b6006825160078111156105db576105db612639565b036105f8576104f28260a00151836080015184610100015161190a565b60078251600781111561060d5761060d612639565b036103c4576104f282611a9e565b60018260200151600181111561063357610633612639565b14801561064d575060a08201516001600160a01b03163014155b156103dd5760c08201516001600160a01b031615610692576103dd8260c0015182846080015161067d9190612920565b60408501516001600160a01b03169190611cb1565b6103dd8260a0015182846080015161067d9190612920565b6002815160028111156106bf576106bf612639565b036107e9576e22d473030f116ddee9f6b43ac78ba36001600160a01b03166330f28b7a604051806060016040528060405180604001604052808a6001600160a01b03168152602001866020015181525081526020018460400151815260200184606001518152506040518060400160405280876001600160a01b0316815260200186815250878560a001518660c00151876080015160f81b6040516020016107849392919092835260208301919091526001600160f81b031916604082015260410190565b6040516020818303038152906040526040518563ffffffff1660e01b81526004016107b29493929190612aa3565b600060405180830381600087803b1580156107cc57600080fd5b505af11580156107e0573d6000803e3d6000fd5b5050505061086e565b6001815160028111156107fe576107fe612639565b036108595761083f84848360200151846060015185608001518660a001518760c001518c6001600160a01b0316611d0c90979695949392919063ffffffff16565b6108546001600160a01b038616858585611eec565b61086e565b61086e6001600160a01b038616858585611eec565b5050505050565b600060148251101561089a5760405163d3d6273f60e01b815260040160405180910390fd5b6103be82601484516108ac9190612920565b611f13565b8051156108c057805181602001fd5b604051634811b8df60e11b815260040160405180910390fd5b8551600090816108ea826001612b1c565b6001600160401b03811115610901576109016123b5565b60405190808252806020026020018201604052801561092a578160200160208202803683370190505b5090506000826001600160401b03811115610947576109476123b5565b6040519080825280602002602001820160405280156109ad57816020015b61099a6040518060a0016040528060008019168152602001600081526020016000815260200160008152602001606081525090565b8152602001906001900390816109655790505b5090506060600080808f60018111156109c8576109c8612639565b036109d5575060016109da565b600191505b60005b86811015610a4f576040518060a001604052808f8381518110610a0257610a026128f4565b60200260200101518152602001848301815260200183830181526020016000815260200185815250858281518110610a3c57610a3c6128f4565b60209081029190910101526001016109dd565b508a84600081518110610a6457610a646128f4565b6020908102919091010151606001525060009150819050808e6001811115610a8e57610a8e612639565b03610af657506000905088610aa281611f7c565b84600081518110610ab557610ab56128f4565b602002602001018181525050610aca89611f7c565b610ad390612b2f565b848681518110610ae557610ae56128f4565b602002602001018181525050610b55565b506001905087610b058a611f7c565b610b0e90612b2f565b84600081518110610b2157610b216128f4565b602002602001018181525050610b3689611f7c565b848681518110610b4857610b486128f4565b6020026020010181815250505b610b896001600160a01b038e167f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c883611fa6565b610c897f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c86001600160a01b031663945bcec984868f6040518060800160405280306001600160a01b031681526020016000151581526020018f6001600160a01b03168152602001600015158152508a8e6040518763ffffffff1660e01b8152600401610c1a96959493929190612bbf565b6000604051808303816000875af1158015610c39573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610c619190810190612ce1565b8681518110610c7257610c726128f4565b602002602001015160ff81901c6000039081011890565b9e9d5050505050505050505050505050565b6000610cd16001600160a01b0386167f0000000000000000000000006131b5fae19ea4f9d964eac0408e4408b66337b586611fa6565b6000807f0000000000000000000000006131b5fae19ea4f9d964eac0408e4408b66337b56001600160a01b031684604051610d0c9190612d66565b6000604051808303816000865af19150503d8060008114610d49576040519150601f19603f3d011682016040523d82523d6000602084013e610d4e565b606091505b509150915081610d6157610d61816108b1565b600081806020019051810190610d779190612d82565b50905085811015610d9b57604051632205896160e01b815260040160405180910390fd5b979650505050505050565b600080886001811115610dbb57610dbb612639565b03610eb957610df46001600160a01b0388167f000000000000000000000000e592427a0aece92de3edee1f18e0157c0586156488611fa6565b7f000000000000000000000000e592427a0aece92de3edee1f18e0157c058615646001600160a01b031663c04b8d596040518060a00160405280858152602001876001600160a01b03168152602001868152602001898152602001888152506040518263ffffffff1660e01b8152600401610e6f9190612df7565b6020604051808303816000875af1158015610e8e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610eb29190612e0a565b9050610d9b565b610eed6001600160a01b0388167f000000000000000000000000e592427a0aece92de3edee1f18e0157c0586156487611fa6565b7f000000000000000000000000e592427a0aece92de3edee1f18e0157c058615646001600160a01b031663f28c04986040518060a00160405280858152602001876001600160a01b03168152602001868152602001898152602001888152506040518263ffffffff1660e01b8152600401610e6f9190612df7565b600080600080600085806020019051810190610f8491906131e4565b8151939750919550935091506001600160a01b03161561104e5781516040516370a0823160e01b81526001600160a01b03909116906370a0823190610fcd9030906004016122ca565b602060405180830381865afa158015610fea573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061100e9190612e0a565b60208301819052825161104e916001600160a01b03909116907f00000000000000000000000000000000005bbb0ef59571e58418f9a4357b68a090611fa6565b60405163092ccd6360e11b81526001600160a01b037f00000000000000000000000000000000005bbb0ef59571e58418f9a4357b68a016906312599ac6906110a4908b9088908c90899089908990600401613490565b6060604051808303816000875af11580156110c3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110e79190613589565b50909998505050505050505050565b6000806000808480602001905181019061111091906135b7565b9250925092506000806000856001600160a01b0316632c8ce6bc6040518163ffffffff1660e01b8152600401606060405180830381865afa158015611159573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061117d91906135fa565b919450925090506001600160a01b038a16301461120d576040516323b872dd60e01b81526001600160a01b038716906323b872dd906111c4908d908a908a9060040161363c565b6020604051808303816000875af11580156111e3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112079190613660565b50611280565b60405163a9059cbb60e01b81526001600160a01b0387169063a9059cbb9061123b908990899060040161367b565b6020604051808303816000875af115801561125a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061127e9190613660565b505b6000826001600160a01b0316632f13b60c6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156112c0573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112e49190613660565b156113e757604051633dae446f60e21b81526000906001600160a01b0389169063f6b911bc9061131c90889087908c9060040161363c565b60408051808303816000875af115801561133a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061135e9190612d82565b5090506000836001600160a01b031663bcb7ea5d876040518263ffffffff1660e01b815260040161138f91906122ca565b6020604051808303816000875af11580156113ae573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113d29190612e0a565b90506113de8183612b1c565b925050506114ea565b600080886001600160a01b031663f6b911bc878b8b6040518463ffffffff1660e01b815260040161141a9392919061363c565b60408051808303816000875af1158015611438573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061145c9190612d82565b91509150606060008a6001600160a01b03166329910b118985856040518463ffffffff1660e01b815260040161149493929190613694565b60408051808303816000875af11580156114b2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114d69190612d82565b5090506114e38185612b1c565b9450505050505b60405163769f8e5d60e01b81526001600160a01b038c81166004830152602482018390528681166044830152606482018c90526001608483015285169063769f8e5d9060a4016020604051808303816000875af115801561154f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115739190612e0a565b9b9a5050505050505050505050565b60008060008060008561010001518060200190518101906115a391906136bb565b93509350935093506000846001600160a01b0316639e548b7f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156115eb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061160f91906136fa565b6001600160a01b0316630589a4786040518163ffffffff1660e01b8152600401602060405180830381865afa15801561164c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061167091906136fa565b90506000856001600160a01b0316639e548b7f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156116b2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116d691906136fa565b6001600160a01b031663f0a0b44e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611713573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061173791906136fa565b90508415611773576117736001600160a01b0383167f00000000000000000000000063baee33649e589cc70435f898671461b624cbcc87611fa6565b83156117ad576117ad6001600160a01b0382167f00000000000000000000000063baee33649e589cc70435f898671461b624cbcc86611fa6565b608088015160e0890151604051630f5c0dcb60e31b81526001600160a01b03858116600483015284811660248301526044820189905260648201889052608482019390935260a4810186905260c48101919091527f00000000000000000000000063baee33649e589cc70435f898671461b624cbcc90911690637ae06e589060e401600060405180830381600087803b15801561184957600080fd5b505af115801561185d573d6000803e3d6000fd5b50506040516370a0823160e01b81526001600160a01b03891692506370a08231915061188d9030906004016122ca565b602060405180830381865afa1580156118aa573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118ce9190612e0a565b60a08901519097506001600160a01b031630146118ff5760a08801516118ff906001600160a01b0388169089611cb1565b505050505050919050565b600080600080848060200190518101906119249190613717565b9250925092506000826001600160a01b0316639e548b7f6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561196a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061198e91906136fa565b6040516318594a0160e11b81526004810186905260248101849052604481018990529091506001600160a01b038216906330b29402906064016020604051808303816000875af11580156119e6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a0a9190612e0a565b94506001600160a01b0388163014611a9357611a938886836001600160a01b031663f0a0b44e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611a5f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a8391906136fa565b6001600160a01b03169190611cb1565b505050509392505050565b6000806000806000856101000151806020019051810190611abf9190613750565b93509350935093506000826001600160a01b03166370a082318860a001516040518263ffffffff1660e01b8152600401611af991906122ca565b602060405180830381865afa158015611b16573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b3a9190612e0a565b905060008085600081518110611b5257611b526128f4565b6020026020010151806020019051810190611b6d919061383c565b9092509050611ba66001600160a01b0383167f0000000000000000000000003d20601ac0ba9cae4564ddf7870825c505b69f1a83611fa6565b604051630d64d59360e21b81526001600160a01b037f0000000000000000000000003d20601ac0ba9cae4564ddf7870825c505b69f1a1690633593564c90611bf6908a908a90899060040161386a565b600060405180830381600087803b158015611c1057600080fd5b505af1158015611c24573d6000803e3d6000fd5b5050505060a08901516040516370a0823160e01b815284916001600160a01b038816916370a0823191611c59916004016122ca565b602060405180830381865afa158015611c76573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c9a9190612e0a565b611ca49190612920565b9998505050505050505050565b611d078363a9059cbb60e01b8484604051602401611cd092919061367b565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261203b565b505050565b604051623f675f60e91b81526000906001600160a01b038a1690637ecebe0090611d3a908b906004016122ca565b602060405180830381865afa158015611d57573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d7b9190612e0a565b60405163d505accf60e01b81526001600160a01b038a811660048301528981166024830152604482018990526064820188905260ff8716608483015260a4820186905260c48201859052919250908a169063d505accf9060e401600060405180830381600087803b158015611def57600080fd5b505af1158015611e03573d6000803e3d6000fd5b5050604051623f675f60e91b8152600092506001600160a01b038c169150637ecebe0090611e35908c906004016122ca565b602060405180830381865afa158015611e52573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611e769190612e0a565b9050611e83826001612b1c565b8114611ee05760405162461bcd60e51b815260206004820152602160248201527f5361666545524332303a207065726d697420646964206e6f74207375636365656044820152601960fa1b60648201526084015b60405180910390fd5b50505050505050505050565b611f0d846323b872dd60e01b858585604051602401611cd09392919061363c565b50505050565b600081611f21816014612b1c565b1015611f4057604051634b5ecc6360e11b815260040160405180910390fd5b611f4b826014612b1c565b83511015611f6c5760405163a261974560e01b815260040160405180910390fd5b500160200151600160601b900490565b6000600160ff1b8210611fa257604051632db27c5360e01b815260040160405180910390fd5b5090565b600063095ea7b360e01b8383604051602401611fc392919061367b565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915290506120018482612110565b611f0d576040516001600160a01b03841660248201526000604482015261203590859063095ea7b360e01b90606401611cd0565b611f0d84825b6000612090826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166121b79092919063ffffffff16565b90508051600014806120b15750808060200190518101906120b19190613660565b611d075760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401611ed7565b6000806000846001600160a01b03168460405161212d9190612d66565b6000604051808303816000865af19150503d806000811461216a576040519150601f19603f3d011682016040523d82523d6000602084013e61216f565b606091505b50915091508180156121995750805115806121995750808060200190518101906121999190613660565b80156121ae57506001600160a01b0385163b15155b95945050505050565b6060610285848460008585600080866001600160a01b031685876040516121de9190612d66565b60006040518083038185875af1925050503d806000811461221b576040519150601f19603f3d011682016040523d82523d6000602084013e612220565b606091505b5091509150610d9b878383876060831561229b578251600003612294576001600160a01b0385163b6122945760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401611ed7565b5081610285565b61028583838151156122b05781518083602001fd5b8060405162461bcd60e51b8152600401611ed791906138e5565b6001600160a01b0391909116815260200190565b6001600160a01b03811681146122f357600080fd5b50565b80356103dd816122de565b6000610120828403121561034857600080fd5b600080600083850361012081121561232b57600080fd5b8435612336816122de565b935060e0601f198201121561234a57600080fd5b506020840191506101008401356001600160401b0381111561236b57600080fd5b61237786828701612301565b9150509250925092565b60006020828403121561239357600080fd5b81356001600160401b038111156123a957600080fd5b61028584828501612301565b634e487b7160e01b600052604160045260246000fd5b60405161012081016001600160401b03811182821017156123ee576123ee6123b5565b60405290565b60405160a081016001600160401b03811182821017156123ee576123ee6123b5565b604051608081016001600160401b03811182821017156123ee576123ee6123b5565b604051606081016001600160401b03811182821017156123ee576123ee6123b5565b60405161018081016001600160401b03811182821017156123ee576123ee6123b5565b604051601f8201601f191681016001600160401b03811182821017156124a5576124a56123b5565b604052919050565b8035600881106103dd57600080fd5b8035600281106103dd57600080fd5b60006001600160401b038211156124e4576124e46123b5565b50601f01601f191660200190565b600082601f83011261250357600080fd5b8135612516612511826124cb565b61247d565b81815284602083860101111561252b57600080fd5b816020850160208301376000918101602001919091529392505050565b6000610120828403121561255b57600080fd5b6125636123cb565b905061256e826124ad565b815261257c602083016124bc565b602082015261258d604083016122f6565b604082015260608201356060820152608082013560808201526125b260a083016122f6565b60a08201526125c360c083016122f6565b60c082015260e082013560e0820152610100808301356001600160401b038111156125ed57600080fd5b6125f9858286016124f2565b82840152505092915050565b60006020828403121561261757600080fd5b81356001600160401b0381111561262d57600080fd5b61028584828501612548565b634e487b7160e01b600052602160045260246000fd5b60006020828403121561266157600080fd5b61266a826124bc565b9392505050565b60006020828403121561268357600080fd5b813561266a816122de565b803560ff811681146103dd57600080fd5b600060e082840312156126b157600080fd5b60405160e081018181106001600160401b03821117156126d3576126d36123b5565b6040528235600381106126e557600080fd5b808252506020830135602082015260408301356040820152606083013560608201526127136080840161268e565b608082015260a083013560a082015260c083013560c08201528091505092915050565b60006103be3683612548565b60006020828403121561275457600080fd5b61266a826124ad565b6000808335601e1984360301811261277457600080fd5b8301803591506001600160401b0382111561278e57600080fd5b6020019150368190038213156127a357600080fd5b9250929050565b60006001600160401b038211156127c3576127c36123b5565b5060051b60200190565b600082601f8301126127de57600080fd5b813560206127ee612511836127aa565b82815260059290921b8401810191818101908684111561280d57600080fd5b8286015b84811015612831578035612824816122de565b8352918301918301612811565b509695505050505050565b6000806040838503121561284f57600080fd5b82356001600160401b038082111561286657600080fd5b818501915085601f83011261287a57600080fd5b8135602061288a612511836127aa565b82815260059290921b840181019181810190898411156128a957600080fd5b948201945b838610156128c7578535825294820194908201906128ae565b965050860135925050808211156128dd57600080fd5b506128ea858286016127cd565b9150509250929050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b818103818111156103be576103be61290a565b80516103dd816122de565b600082601f83011261294f57600080fd5b8151602061295f612511836127aa565b82815260059290921b8401810191818101908684111561297e57600080fd5b8286015b84811015612831578051612995816122de565b8352918301918301612982565b600080604083850312156129b557600080fd5b82516001600160401b03808211156129cc57600080fd5b818501915085601f8301126129e057600080fd5b815160206129f0612511836127aa565b82815260059290921b84018101918181019089841115612a0f57600080fd5b948201945b83861015612a2d57855182529482019490820190612a14565b91880151919650909350505080821115612a4657600080fd5b506128ea8582860161293e565b60005b83811015612a6e578181015183820152602001612a56565b50506000910152565b60008151808452612a8f816020860160208601612a53565b601f01601f19169290920160200192915050565b6000610100612ac683885180516001600160a01b03168252602090810151910152565b6020870151604084015260408701516060840152612afa608084018780516001600160a01b03168252602090810151910152565b6001600160a01b03851660c084015260e08301819052610d9b81840185612a77565b808201808211156103be576103be61290a565b6000600160ff1b8201612b4457612b4461290a565b5060000390565b600081518084526020808501945080840160005b83811015612b845781516001600160a01b031687529582019590820190600101612b5f565b509495945050505050565b600081518084526020808501945080840160005b83811015612b8457815187529582019590820190600101612ba3565b600061012080830160028a10612bd757612bd7612639565b89845260208085019290925288519081905261014080850192600583901b8601909101918a820160005b82811015612c645787850361013f190186528151805186528481015185870152604080820151908701526060808201519087015260809081015160a091870182905290612c5081880183612a77565b978601979650505090830190600101612c01565b505050508381036040850152612c7a8189612b4b565b915050612cba606084018780516001600160a01b039081168352602080830151151590840152604080830151909116908301526060908101511515910152565b82810360e0840152612ccc8186612b8f565b91505082610100830152979650505050505050565b60006020808385031215612cf457600080fd5b82516001600160401b03811115612d0a57600080fd5b8301601f81018513612d1b57600080fd5b8051612d29612511826127aa565b81815260059190911b82018301908381019087831115612d4857600080fd5b928401925b82841015610d9b57835182529284019290840190612d4d565b60008251612d78818460208701612a53565b9190910192915050565b60008060408385031215612d9557600080fd5b505080516020909101519092909150565b6000815160a08452612dbb60a0850182612a77565b6020848101516001600160a01b031690860152604080850151908601526060808501519086015260809384015193909401929092525090919050565b60208152600061266a6020830184612da6565b600060208284031215612e1c57600080fd5b5051919050565b600481106122f357600080fd5b80516103dd81612e23565b600082601f830112612e4c57600080fd5b8151612e5a612511826124cb565b818152846020838601011115612e6f57600080fd5b610285826020830160208701612a53565b805180151581146103dd57600080fd5b600060a08284031215612ea257600080fd5b612eaa6123f4565b90508151612eb7816122de565b8152602082810151908201526040820151612ed1816122de565b60408201526060820151612ee4816122de565b606082015260808201516001600160401b0380821115612f0357600080fd5b9083019060808286031215612f1757600080fd5b612f1f612416565b8251612f2a81612e23565b81526020830151612f3a816122de565b6020820152604083015182811115612f5157600080fd5b612f5d87828601612e3b565b604083015250612f6f60608401612e80565b6060820152608084015250909392505050565b600082601f830112612f9357600080fd5b81516020612fa3612511836127aa565b82815260059290921b84018101918181019086841115612fc257600080fd5b8286015b848110156128315780516001600160401b0380821115612fe557600080fd5b90880190601f196060838c0382011215612ffe57600080fd5b613006612438565b878401518381111561301757600080fd5b8401610180818e038401121561302c57600080fd5b61303461245a565b92508881015183526040810151898401526060810151604084015261305b60808201612e30565b606084015261306c60a08201612933565b608084015261307d60c08201612933565b60a084015261308e60e08201612933565b60c08401526101006130a1818301612933565b60e08501526101208083015182860152610140915081830151818601525061016080830151828601526101808301519150858211156130df57600080fd5b6130ed8f8c84860101612e3b565b9085015250509081526040830151908282111561310957600080fd5b6131178c8984870101612e3b565b8189015260609390930151604084015250508352918301918301612fc6565b600060a0828403121561314857600080fd5b6131506123f4565b905061315b82612933565b81526020820151602082015260408201516001600160401b038082111561318157600080fd5b61318d85838601612f82565b604084015260608401519150808211156131a657600080fd5b6131b285838601612f82565b606084015260808401519150808211156131cb57600080fd5b506131d884828501612e3b565b60808301525092915050565b6000806000808486036101008112156131fc57600080fd5b8551613207816122de565b945060a0601f198201121561321b57600080fd5b506132246123f4565b6020860151815260408601516020820152606086015160408201526080860151606082015260a086015160808201528093505060c08501516001600160401b038082111561327157600080fd5b61327d88838901612e90565b935060e087015191508082111561329357600080fd5b506132a087828801613136565b91505092959194509250565b600481106122f3576122f3612639565b6132c5816132ac565b9052565b600081518084526020808501808196508360051b8101915082860160005b8581101561341f57828403895281516060815181875280518288015287810151608081818a0152604091508183015160a081818c015285850151955060c09150613333828c01876132bc565b91840151945060e0916133508b8401876001600160a01b03169052565b840151945061010061336c8b8201876001600160a01b03169052565b9084015194506101209061338a8b8301876001600160a01b03169052565b918401519450610140916133a88b8401876001600160a01b03169052565b8401516101608b81019190915290840151610180808c0191909152918401516101a08b01528301516101c08a019190915292506133e96101e0890184612a77565b9250888401519150878303898901526134028383612a77565b9381015197019690965250988501989350908401906001016132e7565b5091979650505050505050565b60018060a01b038151168252602081015160208301526000604082015160a0604085015261345d60a08501826132c9565b90506060830151848203606086015261347682826132c9565b915050608083015184820360808601526121ae8282612a77565b600061014060018060a01b03808a16845280891660208501528760408501528651606085015260208701516080850152604087015160a0850152606087015160c0850152608087015160e0850152816101008501528086511682850152602086015161016085015280604087015116610180850152806060870151166101a08501526080860151915060a06101c0850152815161352c816132ac565b6101e085015260208201511661020084015260408101516080610220850152613559610260850182612a77565b90506060820151151561024085015283810361012085015261357b818661342c565b9a9950505050505050505050565b60008060006060848603121561359e57600080fd5b8351925060208401519150604084015190509250925092565b6000806000606084860312156135cc57600080fd5b83516135d7816122de565b6020850151604086015191945092506135ef816122de565b809150509250925092565b60008060006060848603121561360f57600080fd5b835161361a816122de565b602085015190935061362b816122de565b60408501519092506135ef816122de565b6001600160a01b039384168152919092166020820152604081019190915260600190565b60006020828403121561367257600080fd5b61266a82612e80565b6001600160a01b03929092168252602082015260400190565b60018060a01b03841681528260208201526060604082015260006121ae6060830184612a77565b600080600080608085870312156136d157600080fd5b84516136dc816122de565b60208601516040870151606090970151919890975090945092505050565b60006020828403121561370c57600080fd5b815161266a816122de565b60008060006060848603121561372c57600080fd5b83519250602084015161373e816122de565b80925050604084015190509250925092565b6000806000806080858703121561376657600080fd5b84516001600160401b038082111561377d57600080fd5b61378988838901612e3b565b95506020915081870151818111156137a057600080fd5b8701601f810189136137b157600080fd5b80516137bf612511826127aa565b81815260059190911b8201840190848101908b8311156137de57600080fd5b8584015b83811015613816578051868111156137fa5760008081fd5b6138088e8983890101612e3b565b8452509186019186016137e2565b5080985050505050505061382c60408601612933565b6060959095015193969295505050565b6000806040838503121561384f57600080fd5b825161385a816122de565b6020939093015192949293505050565b60608152600061387d6060830186612a77565b6020838203818501528186518084528284019150828160051b85010183890160005b838110156138cd57601f198784030185526138bb838351612a77565b9486019492509085019060010161389f565b50508095505050505050826040830152949350505050565b60208152600061266a6020830184612a7756fea26469706673582212207697af2c3ba2006f9a0bcb5eb14caac37419539a71934523e3db0c16251decef64736f6c63430008130033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000e592427a0aece92de3edee1f18e0157c0586156400000000000000000000000000000000005bbb0ef59571e58418f9a4357b68a00000000000000000000000006131b5fae19ea4f9d964eac0408e4408b66337b500000000000000000000000063baee33649e589cc70435f898671461b624cbcc0000000000000000000000003d20601ac0ba9cae4564ddf7870825c505b69f1a
-----Decoded View---------------
Arg [0] : balancerVault_ (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
Arg [1] : uniRouter_ (address): 0xE592427A0AEce92De3Edee1F18E0157C05861564
Arg [2] : pendleRouter_ (address): 0x00000000005BBB0EF59571E58418F9a4357b68A0
Arg [3] : kyberRouter_ (address): 0x6131B5fae19EA4f9D964eAc0408E4408b66337b5
Arg [4] : tranchessRouter_ (address): 0x63BAEe33649E589Cc70435F898671461B624CBCc
Arg [5] : spectraRouter_ (address): 0x3d20601ac0Ba9CAE4564dDf7870825c505B69F1a
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [1] : 000000000000000000000000e592427a0aece92de3edee1f18e0157c05861564
Arg [2] : 00000000000000000000000000000000005bbb0ef59571e58418f9a4357b68a0
Arg [3] : 0000000000000000000000006131b5fae19ea4f9d964eac0408e4408b66337b5
Arg [4] : 00000000000000000000000063baee33649e589cc70435f898671461b624cbcc
Arg [5] : 0000000000000000000000003d20601ac0ba9cae4564ddf7870825c505b69f1a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.