Feature Tip: Add private address tag to any address under My Name Tag !
Source Code
Latest 25 from a total of 260 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Remove Liquidity... | 21752194 | 316 days ago | IN | 0 ETH | 0.00200577 | ||||
| Remove Liquidity... | 21752184 | 316 days ago | IN | 0 ETH | 0.00217061 | ||||
| Remove Liquidity... | 21752169 | 316 days ago | IN | 0 ETH | 0.00198966 | ||||
| Remove Liquidity... | 21725065 | 320 days ago | IN | 0 ETH | 0.00322381 | ||||
| Remove Liquidity... | 21604168 | 337 days ago | IN | 0 ETH | 0.00151246 | ||||
| Remove Liquidity... | 21592672 | 339 days ago | IN | 0 ETH | 0.00209713 | ||||
| Remove Liquidity... | 21592558 | 339 days ago | IN | 0 ETH | 0.00178489 | ||||
| Remove Liquidity... | 21583320 | 340 days ago | IN | 0 ETH | 0.00273609 | ||||
| Remove Liquidity... | 21578182 | 341 days ago | IN | 0 ETH | 0.00269431 | ||||
| Remove Liquidity... | 21578165 | 341 days ago | IN | 0 ETH | 0.00258646 | ||||
| Remove Liquidity... | 21578138 | 341 days ago | IN | 0 ETH | 0.0035884 | ||||
| Remove Liquidity... | 21578125 | 341 days ago | IN | 0 ETH | 0.00364285 | ||||
| Remove Liquidity... | 21577934 | 341 days ago | IN | 0 ETH | 0.00191743 | ||||
| Remove Liquidity... | 21577901 | 341 days ago | IN | 0 ETH | 0.00228256 | ||||
| Remove Liquidity... | 21564418 | 343 days ago | IN | 0 ETH | 0.00371579 | ||||
| Remove Liquidity... | 21523026 | 348 days ago | IN | 0 ETH | 0.00629808 | ||||
| Remove Liquidity... | 21523019 | 348 days ago | IN | 0 ETH | 0.0074534 | ||||
| Swap Pt For ETH | 20899253 | 436 days ago | IN | 0 ETH | 0.00123566 | ||||
| Swap Pt For ETH | 20847778 | 443 days ago | IN | 0 ETH | 0.0023534 | ||||
| Swap Pt For ETH | 20838121 | 444 days ago | IN | 0 ETH | 0.00580586 | ||||
| Swap Pt For ETH | 20783697 | 452 days ago | IN | 0 ETH | 0.00320225 | ||||
| Swap Pt For ETH | 20779508 | 452 days ago | IN | 0 ETH | 0.00055497 | ||||
| Swap Pt For ETH | 20770066 | 454 days ago | IN | 0 ETH | 0.00081272 | ||||
| Swap Pt For ETH | 20762235 | 455 days ago | IN | 0 ETH | 0.00285033 | ||||
| Swap ETH For Pt | 20753721 | 456 days ago | IN | 0.29096654 ETH | 0.00063827 |
Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| Transfer | 21752194 | 316 days ago | 0.04547334 ETH | ||||
| Transfer | 21752194 | 316 days ago | 0.04547334 ETH | ||||
| Transfer | 21752184 | 316 days ago | 0.04774473 ETH | ||||
| Transfer | 21752184 | 316 days ago | 0.04774473 ETH | ||||
| Transfer | 21752169 | 316 days ago | 0.05867189 ETH | ||||
| Transfer | 21752169 | 316 days ago | 0.05867189 ETH | ||||
| Transfer | 21725065 | 320 days ago | 0.03831304 ETH | ||||
| Transfer | 21725065 | 320 days ago | 0.03831304 ETH | ||||
| Transfer | 21604168 | 337 days ago | 0.11681797 ETH | ||||
| Transfer | 21604168 | 337 days ago | 0.11681797 ETH | ||||
| Transfer | 21592672 | 339 days ago | 0.01974637 ETH | ||||
| Transfer | 21592672 | 339 days ago | 0.01974637 ETH | ||||
| Transfer | 21592558 | 339 days ago | 0.13364581 ETH | ||||
| Transfer | 21592558 | 339 days ago | 0.13364581 ETH | ||||
| Transfer | 21583320 | 340 days ago | 0.68944028 ETH | ||||
| Transfer | 21583320 | 340 days ago | 0.68944028 ETH | ||||
| Transfer | 21578182 | 341 days ago | 0.03021656 ETH | ||||
| Transfer | 21578182 | 341 days ago | 0.03021656 ETH | ||||
| Transfer | 21578165 | 341 days ago | 0.03525149 ETH | ||||
| Transfer | 21578165 | 341 days ago | 0.03525149 ETH | ||||
| Transfer | 21578138 | 341 days ago | 0.02862447 ETH | ||||
| Transfer | 21578138 | 341 days ago | 0.02862447 ETH | ||||
| Transfer | 21578125 | 341 days ago | 0.03031484 ETH | ||||
| Transfer | 21578125 | 341 days ago | 0.03031484 ETH | ||||
| Transfer | 21577934 | 341 days ago | 0.0299504 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
MetapoolRouter
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 10000000 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.24;
// Interfaces
import {IERC20, SafeERC20} from "@openzeppelin/[email protected]/token/ERC20/utils/SafeERC20.sol";
import {CurveTricryptoOptimizedWETH} from "@napier/v1-pool/src/interfaces/external/CurveTricryptoOptimizedWETH.sol";
import {IWETH9} from "@napier/v1-tranche/src/interfaces/IWETH9.sol";
import {INapierPool} from "@napier/v1-pool/src/interfaces/INapierPool.sol";
import {ITranche} from "@napier/v1-tranche/src/interfaces/ITranche.sol";
import {Twocrypto} from "./interfaces/external/Twocrypto.sol";
import {IVault} from "./interfaces/external/balancer/IVault.sol";
import {IFlashLoanRecipient} from "./interfaces/external/balancer/IFlashLoanRecipient.sol";
import {MetapoolFactory} from "./MetapoolFactory.sol";
import {IMetapoolRouter} from "./interfaces/IMetapoolRouter.sol";
// Libraries
import {TransientStorage} from "./TransientStorage.sol";
import {Math} from "@openzeppelin/[email protected]/utils/math/Math.sol";
import {TrancheMathHelper} from "@napier/v1-pool/src/libs/TrancheMathHelper.sol";
import {ApproxParams} from "@napier/v1-pool/src/interfaces/ApproxParams.sol";
import {Errors} from "./Errors.sol";
// Inherits
import {ReentrancyGuard} from "@openzeppelin/[email protected]/security/ReentrancyGuard.sol";
/// @title MetapoolRouter - A contract for swapping between PT, YT, and ETH on the 3LST NapierPool, 3LST-PT tricrypto, and Twocrypto metapools
contract MetapoolRouter is ReentrancyGuard, IFlashLoanRecipient, IMetapoolRouter {
/// @dev Constants for the Twocrypto metapool indexes
/// coins(0) is the pegged token (PT) and coins(1) is the base pool token (triLST-PT Tricrypto)
uint128 constant PEGGED_PT_INDEX = 0;
uint128 constant BASE_POOL_INDEX = 1;
/// @dev Transient storage slots
uint256 constant TSLOT_0 = 0; // Authorization flag for `receiveFlashLoan`
uint256 constant TSLOT_1 = 1; // Temporary storage for `swapETHForYt` function return value
uint256 constant TSLOT_CB_DATA_METAPOOL = 2; // `FlashLoanData.metapool` slot for `receiveFlashLoan` callback data
uint256 constant TSLOT_CB_DATA_PT = 3; // `FlashLoanData.pt` slot for `receiveFlashLoan` callback data
uint256 constant TSLOT_CB_DATA_SENDER = 4; // `FlashLoanData.sender` slot for `receiveFlashLoan` callback data
uint256 constant TSLOT_CB_DATA_VALUE = 5; // `FlashLoanData.msgValue` slot for `receiveFlashLoan` callback data
uint256 constant TSLOT_CB_DATA_MAX_ETH_SPENT = 6; // `FlashLoanData.maxEthSpent` slot for `receiveFlashLoan` callback data
uint256 constant TSLOT_CB_DATA_RECEIPIENT = 7; // `FlashLoanData.recipient` slot for `receiveFlashLoan` callback data
/// @notice The WETH9 contract
IWETH9 public immutable WETH9;
/// @notice The Factory contract for the Principal Token metapools
MetapoolFactory public immutable metapoolFactory;
/// @notice The rETH-PT<>stETH-PT<>sfrxETH-PT Curve TricryptoNG pool (triLST-PT Tricrypto)
CurveTricryptoOptimizedWETH public immutable tricryptoLST;
/// @notice The triLST-PT<>WETH NapierPool
INapierPool public immutable triLSTPool;
/// @notice The Balancer Vault contract for flash loans
IVault public immutable vault;
/// @dev The approval slot of (`token`, `spender`) is given by:
/// ```
/// mstore(0x20, spender)
/// mstore(0x0c, _IS_APPROVED_SLOT_SEED)
/// mstore(0x00, token)
/// let allowanceSlot := keccak256(0x0c, 0x34)
/// ```
/// @dev Optimized storage slot for approval flags
/// `mapping (address token => mapping (address spender => uint256 approved)) _isApproved;`
uint256 private constant _IS_APPROVED_SLOT_SEED = 0xa8fe4407;
/// @notice If the transaction is too old, revert.
/// @param deadline Transaction deadline in unix timestamp
modifier checkDeadline(uint256 deadline) {
if (block.timestamp > deadline) revert Errors.MetapoolRouterTransactionTooOld();
_;
}
/// @notice If the metapool is not a TwoCrypto with Principal Token, revert.
modifier checkMetapool(address metapool) {
if (!metapoolFactory.isPtMetapool(metapool)) revert Errors.MetapoolRouterInvalidMetapool();
_;
}
receive() external payable {
if (msg.sender != address(WETH9)) revert Errors.NotWETH();
}
constructor(MetapoolFactory _metapoolFactory, INapierPool _triLSTPool, IVault _vault) {
metapoolFactory = _metapoolFactory;
triLSTPool = _triLSTPool;
vault = _vault;
WETH9 = IWETH9(_metapoolFactory.WETH9());
tricryptoLST = _triLSTPool.tricrypto();
(bool s, bytes memory data) = CurveTricryptoOptimizedWETH(tricryptoLST).factory().staticcall(
abi.encodeWithSignature("get_coins(address)", tricryptoLST)
);
require(s);
address[3] memory coins = abi.decode(data, (address[3]));
// Approve rETH-PT<>stETH-PT<>sfrxETH-PT Curve TricryptoNG pool (triLST-PT Tricrypto) to spend meta tokens
IERC20(coins[0]).approve(address(tricryptoLST), type(uint256).max);
IERC20(coins[1]).approve(address(tricryptoLST), type(uint256).max);
IERC20(coins[2]).approve(address(tricryptoLST), type(uint256).max);
// Approve triLST-PT<>WETH NapierPool to spend WETH9
SafeERC20.forceApprove(IWETH9(WETH9), address(triLSTPool), type(uint256).max);
// Approve triLST-PT<>WETH NapierPool to spend tricryptoLST
SafeERC20.forceApprove(tricryptoLST, address(triLSTPool), type(uint256).max);
}
/// @notice Swap ETH for PT
/// @notice A caller must send ETH enough greater than the `maxEthSpent`. Remaining ETH will be sent back to the caller.
/// @dev This function can't swap ETH for the exact amount of PT because of precision loss. So, `minPtOut` must be specified by the caller.
/// @param metapool The address of the Twocrypto metapool
/// @param ptAmount The amount of PT tokens to receive
/// @param maxEthSpent The maximum amount of ETH to spend in the swap
/// @param minPtOut The minimum amount of PT tokens to receive
/// @param recipient The address to receive the swapped PT tokens
/// @param deadline The timestamp after which the transaction will be reverted
/// @return ethSpent The amount of ETH spent in the swap
function swapETHForPt(
address metapool,
uint256 ptAmount,
uint256 maxEthSpent,
uint256 minPtOut, // TODO: really need this?
address recipient,
uint256 deadline
) external payable nonReentrant checkDeadline(deadline) checkMetapool(metapool) returns (uint256 ethSpent) {
// Steps:
// 1. Quote swap PT -> base pool token on triLST-PT Tricrypto (get_dx)
// 2. Swap ETH -> base pool token on triLST-PT<>WETH NapierPool
// 3. Swap base pool token -> PT on twocrypto metapool
// 4. Send remaining ETH to the recipient
// Calculate the amount of base pool token required for the specified PT amount
uint256 basePoolTokenAmount = Twocrypto(metapool).get_dx({i: BASE_POOL_INDEX, j: PEGGED_PT_INDEX, dy: ptAmount});
// Wrap the received ETH into WETH
if (maxEthSpent > msg.value) revert Errors.MetapoolRouterInsufficientETHReceived();
_wrapETH(msg.value);
// Swap the received WETH for the required amount of base pool token on the NapierPool
/// @dev Txn may revert if the triLSTPool tries to swap more than the received ETH.
ethSpent = triLSTPool.swapUnderlyingForExactBaseLpToken({baseLpOut: basePoolTokenAmount, recipient: metapool});
// Swap the received base pool token for PT on the Curve metapool
Twocrypto(metapool).exchange_received({
i: BASE_POOL_INDEX,
j: PEGGED_PT_INDEX,
dx: basePoolTokenAmount,
// `get_dx` has a precision loss, so the actual amount of PT received may be less than `ptAmount`.
min_dy: minPtOut,
receiver: recipient
});
if (ethSpent > maxEthSpent) revert Errors.MetapoolRouterExceededLimitETHIn();
// Send the remaining WETH back to the sender
uint256 remainingWeth = msg.value - ethSpent;
if (remainingWeth > 0) _unwrapWETH(msg.sender, remainingWeth);
return ethSpent;
}
/// @notice Swap PT for ETH on the Curve metapool through the 3LST-PT<>ETH NapierPool
/// @param metapool The address of the Twocrypto metapool
/// @param ptAmount The amount of PT to swap
/// @param minEthOut The minimum amount of ETH to receive
/// @param recipient The address to receive the ETH
/// @param deadline The timestamp after which the transaction will be reverted
function swapPtForETH(address metapool, uint256 ptAmount, uint256 minEthOut, address recipient, uint256 deadline)
external
nonReentrant
checkDeadline(deadline)
checkMetapool(metapool)
returns (uint256 ethOut)
{
// Steps:
// 1. Exchange PT for the base pool token on twoCrypto metapool
// 2. Swap the received base pool token -> ETH on triLST-PT<>WETH NapierPool
// 3. Send remaining ETH to the recipient
// Swap PT for the base pool token on the Curve metapool
SafeERC20.safeTransferFrom(IERC20(Twocrypto(metapool).coins(PEGGED_PT_INDEX)), msg.sender, metapool, ptAmount);
uint256 basePoolTokenAmount =
Twocrypto(metapool).exchange_received(PEGGED_PT_INDEX, BASE_POOL_INDEX, ptAmount, 0, address(this));
// Swap the received base pool token for ETH on the 3LST-PT<>ETH NapierPool
ethOut =
triLSTPool.swapExactBaseLpTokenForUnderlying({baseLptIn: basePoolTokenAmount, recipient: address(this)});
// Check slippage
if (minEthOut > ethOut) revert Errors.MetapoolRouterInsufficientETHOut();
// Send native ETH to the recipient
_unwrapWETH(recipient, ethOut);
return ethOut;
}
/// @notice Swap Ethereum (ETH) for Yield Tokens (YT)
/// @dev This function first issues PT and YT using ETH, then swaps the PT for the base pool token on the Curve metapool,
/// and finally swaps the received base pool token for ETH on the NapierPool.
/// @notice Caller must send enough ETH equal to the `maxEthSpent` and the remaining ETH will be sent back to the caller.
/// @dev `recipient` will receive at least `ytAmount` YTs and at most `ytAmount * (1 + approx.eps / 1e18)` YTs.
/// @param metapool The address of the Curve metapool contract
/// @param ytAmount The amount of YT tokens to receive
/// @param maxEthSpent The maximum amount of ETH to spend in the swap
/// @param recipient The address to receive the swapped YT tokens
/// @param deadline The timestamp after which the transaction will be reverted
/// @return ethSpent The amount of ETH spent in the swap
function swapETHForYt(
address metapool,
uint256 ytAmount,
uint256 maxEthSpent,
address recipient,
uint256 deadline,
ApproxParams calldata approx
) external payable nonReentrant checkDeadline(deadline) checkMetapool(metapool) returns (uint256 ethSpent) {
// Steps:
// 1. Estimate the amount of WETH required to issue the PT and YT
// 2. Issue PT and YT using the WETH
// 3. Swap PT -> Base pool token on the Twocrypto metapool
// 4. Swap Base pool token -> ETH on the NapierPool
// 5. Refund the remaining WETH to the sender
ITranche pt = ITranche(Twocrypto(metapool).coins(PEGGED_PT_INDEX));
if (maxEthSpent > msg.value) revert Errors.MetapoolRouterInsufficientETHReceived();
// Estimate the amount of WETH required to issue the PT and YT
// Bisection method is used to find the approximate amount of WETH needed, which ensures the at least `ytAmount` YT tokens are issued.
uint256 wethDeposit =
TrancheMathHelper.getApproxUnderlyingNeededByYt({pt: pt, ytDesired: ytAmount, approx: approx});
// Authorize access to `receiveFlashLoan` at the last step (flag=address(this))
assembly {
// Note: This slot should be used only for authorization purpose and should be cleared after use
tstore(TSLOT_0, address())
}
IERC20[] memory tokens = new IERC20[](1);
uint256[] memory amounts = new uint256[](1);
tokens[0] = WETH9;
amounts[0] = wethDeposit;
// Record the flash loan data in the transient storage
// Note: Based on try-and-error, passing userData directly is more expensive than using transient storage.
assembly {
tstore(TSLOT_CB_DATA_METAPOOL, metapool)
tstore(TSLOT_CB_DATA_PT, shr(96, shl(96, pt)))
tstore(TSLOT_CB_DATA_SENDER, caller())
tstore(TSLOT_CB_DATA_VALUE, callvalue())
tstore(TSLOT_CB_DATA_MAX_ETH_SPENT, maxEthSpent)
tstore(TSLOT_CB_DATA_RECEIPIENT, recipient)
}
_wrapETH(msg.value);
vault.flashLoan(this, tokens, amounts, ""); // call receiveFlashLoan
assembly {
ethSpent := tload(TSLOT_1)
tstore(TSLOT_1, 0) // clear transitient storage
}
return ethSpent;
}
/// @notice Receive the flash loan and run operations to swap ETH for YT
/// @dev Revert if the call is not initiated by the `swapETHForYt` function.
/// @custom:param userData - Data structure for the flash loan callback data.
/// @dev Those members are stored in the transient storage slots with prefix `TSLOT_CB_DATA_`.
/// ```
/// struct UserData {
/// address _metapool;
/// address _pt;
/// address _sender; // The address of the caller of `swapETHForYt`
/// uint256 _msgValue; // The amount of ETH sent with the call to `swapETHForYt`
/// uint256 _maxEthSpent;
/// address _recipient;
/// }
/// ```
function receiveFlashLoan(
IERC20[] calldata, /* tokens */
uint256[] calldata amounts,
uint256[] calldata feeAmounts,
bytes calldata /* userData */
) external {
// CHECK
// Note: Call only through `swapETHForYt` && from the Vault should be allowed.
// This ensures that the function call is invoked by `swapETHForYt` entry point.
// Checking `msg.sender == address(vault)` may not be sufficient as the call may be initiated by other contracts and pass arbitrary data.
assembly {
let ctx := tload(TSLOT_0)
tstore(TSLOT_0, 0) // Delete the authorization (flag=address(0))
if iszero(eq(ctx, address())) {
mstore(0x00, 0x5c501941) // `MetapoolRouterUnauthorized()`
revert(0x1c, 0x04)
}
}
address pt = TransientStorage.tloadAddress(TSLOT_CB_DATA_PT);
address metapool = TransientStorage.tloadAddress(TSLOT_CB_DATA_METAPOOL);
// Issue PT tokens using the WETH
if (!_isApproved(address(WETH9), pt)) {
_setApproval(address(WETH9), pt);
WETH9.approve(pt, type(uint256).max);
}
uint256 wethDeposit = amounts[0];
uint256 pyIssued = ITranche(pt).issue(address(this), wethDeposit);
// Swap the PT for the base pool token on the Curve metapool
ITranche(pt).transfer(metapool, pyIssued);
uint256 basePoolTokenOut =
Twocrypto(metapool).exchange_received(PEGGED_PT_INDEX, BASE_POOL_INDEX, pyIssued, 0, address(this));
// Swap the received base pool token for ETH on the NapierPool
uint256 wethReceived = triLSTPool.swapExactBaseLpTokenForUnderlying(basePoolTokenOut, address(this));
// Unreasonable situation: Received more WETH than sold
if (wethReceived > wethDeposit) revert Errors.MetapoolRouterNonSituationSwapETHForYt();
// Calculate the amount of ETH spent in the swap
uint256 repayAmount = wethDeposit + feeAmounts[0];
uint256 spent = repayAmount - wethReceived; // wethDeposit + feeAmounts[0] - wethReceived
// Revert if the ETH spent exceeds the specified maximum
if (spent > TransientStorage.tloadU256(TSLOT_CB_DATA_MAX_ETH_SPENT)) {
revert Errors.MetapoolRouterExceededLimitETHIn();
}
// Temporarily store a return value of `swapETHForYt` function across the call context
assembly {
tstore(TSLOT_1, spent)
}
// Transfer the YT tokens to the recipient
IERC20(ITranche(pt).yieldToken()).transfer(TransientStorage.tloadAddress(TSLOT_CB_DATA_RECEIPIENT), pyIssued);
// Repay the flash loan
WETH9.transfer(msg.sender, repayAmount);
// Unwrap and send the remaining WETH back to the sender
// The next line will not underflow due to the `msg.value >= maxEthSpent` check in `swapETHForYt`
uint256 refundAmount = TransientStorage.tloadU256(TSLOT_CB_DATA_VALUE) - spent;
_unwrapWETH(TransientStorage.tloadAddress(TSLOT_CB_DATA_SENDER), refundAmount);
}
/// @notice Add liquidity to the Curve metapool using native ETH and receive LP tokens and YT
/// @dev Revert if timestamp exceeds the maturity date.
/// @param metapool The address of the Curve metapool contract
/// @param minLiquidity The minimum amount of LP tokens to receive
/// @param minYt The minimum amount of YT to receive
/// @param recipient The address to receive the LP tokens and YT
/// @param deadline The timestamp after which the transaction will be reverted
function addLiquidityOneETHKeepYt(
address metapool,
uint256 minLiquidity,
uint256 minYt,
address recipient,
uint256 deadline
) external payable nonReentrant checkDeadline(deadline) checkMetapool(metapool) returns (uint256 liquidity) {
// Steps:
// 1. Issue PT and YT using the received ETH
// 2. Add liquidity to the Curve metapool
// 3. Send the received LP token and YT to the recipient
// Wrap the received ETH into WETH
_wrapETH(msg.value);
ITranche pt = ITranche(Twocrypto(metapool).coins(PEGGED_PT_INDEX));
// Issue PT and YT using the received ETH
if (!_isApproved(address(WETH9), address(pt))) {
_setApproval(address(WETH9), address(pt));
WETH9.approve(address(pt), type(uint256).max);
}
uint256 pyAmount = pt.issue({to: address(this), underlyingAmount: msg.value});
if (pyAmount < minYt) revert Errors.MetapoolRouterInsufficientYtOut();
// Add liquidity to the Curve metapool
if (!_isApproved(address(pt), metapool)) {
_setApproval(address(pt), metapool);
pt.approve(metapool, type(uint256).max);
}
liquidity = Twocrypto(metapool).add_liquidity({
amounts: [pyAmount, 0],
min_mint_amount: minLiquidity,
receiver: recipient
});
IERC20(pt.yieldToken()).transfer(recipient, pyAmount);
}
/// @notice Remove liquidity from the Curve twocrypto (metapool) and receive native ETH
/// @notice Before the maturity date of PT, the PT is not redeemable, so the PT is swapped for the Base pool Token
/// @param metapool The address of the Curve metapool contract
/// @param liquidity The amount of LP tokens to remove from the Curve twocrypto (metapool)
/// @param minEthOut The minimum amount of ETH to receive
/// @param recipient The address to receive the ETH
/// @param deadline The timestamp after which the transaction will be reverted
function removeLiquidityOneETH(
address metapool,
uint256 liquidity,
uint256 minEthOut,
address recipient,
uint256 deadline
) external nonReentrant checkDeadline(deadline) checkMetapool(metapool) returns (uint256 ethOut) {
// Steps:
// If PT is matured, redemption of PT is allowed:
// 1. Remove liquidity from the Curve metapool and withdraw one PT
// 2. Redeem the PT for ETH
// If PT is not matured: redemption of PT is not allowed yet:
// 1. Remove liquidity from the Curve metapool and withdraw one base pool token
// 2. Swap the received base pool token for ETH on the NapierPool
ITranche pt = ITranche(Twocrypto(metapool).coins(PEGGED_PT_INDEX));
SafeERC20.safeTransferFrom(Twocrypto(metapool), msg.sender, address(this), liquidity);
if (block.timestamp >= pt.maturity()) {
// If PT is matured, we can directly redeem the PT for ETH
uint256 ptAmount = Twocrypto(metapool).remove_liquidity_one_coin(liquidity, PEGGED_PT_INDEX, 0);
ethOut = pt.redeem({principalAmount: ptAmount, to: address(this), from: address(this)});
} else {
// Otherwise, redemption of PT is not allowed, so we need to swap the base pool token for ETH
uint256 basePoolTokenAmount = Twocrypto(metapool).remove_liquidity_one_coin(liquidity, BASE_POOL_INDEX, 0);
ethOut = triLSTPool.swapExactBaseLpTokenForUnderlying(basePoolTokenAmount, address(this));
}
if (minEthOut > ethOut) revert Errors.MetapoolRouterInsufficientETHOut();
_unwrapWETH(recipient, ethOut);
}
//// Helper functions ////
/// @dev Get the approval status of the spender for the token. Return true if approved, 0 otherwise.
function _isApproved(address token, address spender) internal view returns (bool approved) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, spender)
mstore(0x0c, _IS_APPROVED_SLOT_SEED)
mstore(0x00, token)
approved := sload(keccak256(0x0c, 0x34))
}
}
/// @dev Set the approval status to 1 for the spender for the token.
function _setApproval(address token, address spender) internal {
/// @solidity memory-safe-assembly
assembly {
// Compute the approval slot and store the amount.
mstore(0x20, spender)
mstore(0x0c, _IS_APPROVED_SLOT_SEED)
mstore(0x00, token)
sstore(keccak256(0x0c, 0x34), 1)
}
}
function _wrapETH(uint256 value) internal {
WETH9.deposit{value: value}();
}
function _unwrapWETH(address recipient, uint256 value) internal {
WETH9.withdraw(value);
_safeTransferETH(recipient, value);
}
/// @notice transfer ether safely
function _safeTransferETH(address to, uint256 value) internal {
(bool success,) = to.call{value: value}(new bytes(0));
if (!success) revert Errors.FailedToSendEther();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// https://github.com/curvefi/tricrypto-ng/blob/0bc1191b6097c8854e4f09e385f6c2c79a5bb773/contracts/main/CurveTricryptoOptimizedWETH.vy
import {IERC20} from "@openzeppelin/[email protected]/token/ERC20/IERC20.sol";
interface CurveTricryptoOptimizedWETH is IERC20 {
/// @notice Exchange using wrapped native token by default
/// @param i Index value for the input coin
/// @param j Index value for the output coin
/// @param dx Amount of input coin being swapped in
/// @param min_dy Minimum amount of output coin to receive
/// @param use_eth True if the input coin is native token, False otherwise
/// @param receiver Address to send the output coin to. Default is msg.sender
/// @return uint256 Amount of tokens at index j received by the `receiver
function exchange(uint256 i, uint256 j, uint256 dx, uint256 min_dy, bool use_eth, address receiver)
external
payable
returns (uint256);
/// @notice Exchange with callback method.
/// @dev This method does not allow swapping in native token, but does allow
/// swaps that transfer out native token from the pool.
/// @dev Does not allow flashloans
/// @dev One use-case is to reduce the number of redundant ERC20 token
/// transfers in zaps.
/// @param i Index value for the input coin
/// @param j Index value for the output coin
/// @param dx Amount of input coin being swapped in
/// @param min_dy Minimum amount of output coin to receive
/// @param use_eth True if output is native token, False otherwise
/// @param sender Address to transfer input coin from
/// @param receiver Address to send the output coin to
/// @param cb Callback signature
/// @return uint256 Amount of tokens at index j received by the `receiver`
function exchange_extended(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy,
bool use_eth,
address sender,
address receiver,
bytes32 cb
) external returns (uint256);
/// @notice Adds liquidity into the pool.
/// @param amounts Amounts of each coin to add.
/// @param min_mint_amount Minimum amount of LP to mint.
function add_liquidity(uint256[3] calldata amounts, uint256 min_mint_amount) external payable returns (uint256);
/// @notice Adds liquidity into the pool.
/// @param amounts Amounts of each coin to add.
/// @param min_mint_amount Minimum amount of LP to mint.
/// @return uint256 Amount of LP tokens received by the `receiver
/// @param use_eth True if native token is being added to the pool.
/// @param receiver Address to send the LP tokens to. Default is msg.sender
function add_liquidity(uint256[3] calldata amounts, uint256 min_mint_amount, bool use_eth, address receiver)
external
payable
returns (uint256);
/// @notice This withdrawal method is very safe, does no complex math since
/// tokens are withdrawn in balanced proportions. No fees are charged.
/// @param amount Amount of LP tokens to burn
/// @param min_amounts Minimum amounts of tokens to withdraw
/// @param use_eth Whether to withdraw ETH or not
/// @param receiver Address to send the withdrawn tokens to
/// @param claim_admin_fees If True, call self._claim_admin_fees(). Default is True.
/// @return uint256[3] Amount of pool tokens received by the `receiver`
function remove_liquidity(
uint256 amount,
uint256[3] calldata min_amounts,
bool use_eth,
address receiver,
bool claim_admin_fees
) external returns (uint256[3] memory);
/// @notice Withdraw liquidity in a single token.
/// Involves fees (lower than swap fees).
/// @dev This operation also involves an admin fee claim.
/// @param token_amount Amount of LP tokens to burn
/// @param i Index of the token to withdraw
/// @param min_amount Minimum amount of token to withdraw.
/// @param use_eth Whether to withdraw ETH or not
/// @param receiver Address to send the withdrawn tokens to
/// @return Amount of tokens at index i received by the `receiver`
function remove_liquidity_one_coin(
uint256 token_amount,
uint256 i,
uint256 min_amount,
bool use_eth,
address receiver
) external returns (uint256);
///////////////////////////////////////////////////////////
// View methods
///////////////////////////////////////////////////////////
/// @notice Returns the balance of the coin at index `i`
function balances(uint256 i) external view returns (uint256);
/// @notice Calculate LP tokens minted or to be burned for depositing or
/// removing `amounts` of coins
/// @dev Includes fee.
/// @param amounts Amounts of tokens being deposited or withdrawn
/// @param deposit True if it is a deposit action, False if withdrawn.
/// @return uint256 Amount of LP tokens deposited or withdrawn.
function calc_token_amount(uint256[3] calldata amounts, bool deposit) external view returns (uint256);
function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256);
function get_dx(uint256 i, uint256 j, uint256 dy) external view returns (uint256);
/// @notice Calculates the current price of the LP token with respect to the coin at the 0th index
/// @dev This function should be implemented to return the LP price
/// @return The current LP price as a uint256
function lp_price() external view returns (uint256);
/// @notice calculate the current virtual price of the pool's LP token (in 18 decimals)
/// @dev Non read-reenrant.
/// @dev https://docs.curve.fi/cryptoswap-exchange/tricrypto-ng/pools/tricrypto/?h=virtual#get_virtual_price
function get_virtual_price() external view returns (uint256);
/// @notice Returns the oracle price of the coin at index `k` with respect to the coin at index 0
/// @dev The oracle is an exponential moving average, with a periodicity determined internally.
/// The aggregated prices are cached state prices (dy/dx) calculated AFTER the latest trade.
/// @param k The index of the coin for which the oracle price is needed (k = 0 or 1)
/// @return The oracle price of the coin at index `k` as a uint256
function price_oracle(uint256 k) external view returns (uint256);
/// @notice Calculates output tokens with fee
/// @param token_amount LP Token amount to burn
/// @param i token in which liquidity is withdrawn
/// @return uint256 Amount of ith tokens received for burning token_amount LP tokens.
function calc_withdraw_one_coin(uint256 token_amount, uint256 i) external view returns (uint256);
function calc_token_fee(uint256[3] calldata amounts, uint256[3] calldata xp) external view returns (uint256);
function fee_calc(uint256[3] calldata xp) external view returns (uint256);
/// @notice Returns i-th coin address.
/// @param i Index of the coin. i must be 0, 1 or 2.
function coins(uint256 i) external view returns (address);
/// @dev Returns the address of the factory that created the pool.
/// @return address The factory address.
function factory() external view returns (address);
function D() external view returns (uint256);
/// @dev Returns the cached virtual price of the pool.
function virtual_price() external view returns (uint256);
/// @dev Returns the current pool amplification parameter.
/// @return uint256 The A parameter.
function A() external view returns (uint256);
/// @dev Returns the current pool gamma parameter.
/// @return uint256 The gamma parameter.
function gamma() external view returns (uint256);
///////////////////////////////////////////////////////////
// Protected methods
///////////////////////////////////////////////////////////
/// @notice Initialise Ramping A and gamma parameter values linearly.
/// @dev Only accessible by factory admin, and only
/// @param future_A The future A value.
/// @param future_gamma The future gamma value.
/// @param future_time The timestamp at which the ramping will end.
function ramp_A_gamma(uint256 future_A, uint256 future_gamma, uint256 future_time) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/[email protected]/token/ERC20/IERC20.sol";
/// @notice WETH9 interface
interface IWETH9 is IERC20 {
function deposit() external payable;
function withdraw(uint256 wad) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/[email protected]/token/ERC20/IERC20.sol";
import {CurveTricryptoOptimizedWETH} from "./external/CurveTricryptoOptimizedWETH.sol";
import {PoolState} from "../libs/PoolMath.sol";
interface INapierPool {
event Mint(address indexed receiver, uint256 liquidity, uint256 underlyingUsed, uint256 baseLptUsed);
event Burn(address indexed receiver, uint256 liquidity, uint256 underlyingOut, uint256 baseLptOut);
event Swap(
address indexed caller,
address indexed receiver,
int256 netUnderlying,
uint256 index,
int256 netPt,
uint256 swapFee,
uint256 protocolFee
);
event SwapBaseLpt(
address indexed caller,
address indexed receiver,
int256 netUnderlying,
int256 netBaseLpt,
uint256 swapFee,
uint256 protocolFee
);
event UpdateLnImpliedRate(uint256 lnImpliedRate);
/**
* @notice Add liquidity to the pool with Underlying and base lp token.
* Caller have to transfer tokens to this contract before calling this function.
* @param underlyingInDesired The desired amount of underlying asset to add.
* @param baseLptInDesired The desired amount of base lp token to add.
* @param recipient The recipient of the liquidity tokens.
* @param data Additional data for callback.
* @return The amount of liquidity tokens received.
*/
function addLiquidity(uint256 underlyingInDesired, uint256 baseLptInDesired, address recipient, bytes memory data)
external
returns (uint256);
/**
* @notice Remove liquidity from the pool.
* Caller have to transfer Lp token to this contract before calling this function.
* @param recipient The recipient of the assets.
* @return The amounts of base lp token and underlying asset received.
*/
function removeLiquidity(address recipient) external returns (uint256, uint256);
/**
* @notice Swap exact amount of PT for Underlying asset.
* It supports flash swap by specifying the callback data.
* Flash swap enables user to receive Underlying asset before paying PT.
* If the pool contract received enough PT after the callback, the swap is successful. Otherwise, the swap is reverted.
* @param index The index of the PT.
* @param ptIn The amount of PT to swap.
* @param recipient The recipient of the swapped underlying asset.
* @param data Additional data for the flash swap.
* @return The amount of underlying asset received.
*/
function swapPtForUnderlying(uint256 index, uint256 ptIn, address recipient, bytes calldata data)
external
returns (uint256);
/**
* @notice Swap Underlying asset for exact amount of PT.
* It supports flash swap by specifying the callback data.
* It enables user to receive PT before paying Underlying asset.
* if the pool contract received enough Underlying asset after the callback, the swap is successful. Otherwise, the swap is reverted.
* @param index The index of the PT.
* @param ptOut The desired amount of PT to receive.
* @param recipient The recipient of the PT.
* @param data Additional data for the flash swap.
* @return The amount of PT received.
*/
function swapUnderlyingForPt(uint256 index, uint256 ptOut, address recipient, bytes calldata data)
external
returns (uint256);
/**
* @notice Swap Underlying asset for exact amount of Base LP token.
* @param baseLpOut The desired amount of Base LP token to receive.
* @param recipient The recipient of the Base LP token.
*/
function swapUnderlyingForExactBaseLpToken(uint256 baseLpOut, address recipient) external returns (uint256);
/**
* @notice Swap exact amount of Base LP token for Underlying asset.
* @param recipient The recipient of the Underlying asset.
*/
function swapExactBaseLpTokenForUnderlying(uint256 baseLptIn, address recipient) external returns (uint256);
/**
* @notice Maturity of the pool, in unix timestamp.
* @dev Maturity is same as the maturity of Principal Token in the pool.
*/
function maturity() external view returns (uint256);
function totalUnderlying() external view returns (uint128);
function totalBaseLpt() external view returns (uint128);
function getAssets() external view returns (address, address);
/**
* @notice State of the pool.
* @dev This function is not expected to be called on-chain.
*/
function readState() external view returns (PoolState memory);
function tricrypto() external view returns (CurveTricryptoOptimizedWETH);
function principalTokens() external view returns (IERC20[3] memory);
function lastLnImpliedRate() external view returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import {IERC5095} from "./IERC5095.sol";
/// @notice Tranche interface
/// @dev Tranche divides a yield-bearing token into two tokens: Principal and Yield tokens
/// Unspecific types: Simply avoiding dependencies on other interfaces from our interfaces
interface ITranche is IERC5095 {
/* ==================== ERRORS ===================== */
error TimestampBeforeMaturity();
error TimestampAfterMaturity();
error ProtectedToken();
error Unauthorized();
error OnlyYT();
error ReentrancyGuarded();
error ZeroAddress();
error NoAccruedYield();
/* ==================== EVENTS ===================== */
/// @param adapter the address of the adapter
/// @param maturity timestamp of maturity (seconds since Unix epoch)
/// @param issuanceFee fee for issuing PT and YT
event SeriesCreated(address indexed adapter, uint256 indexed maturity, uint256 issuanceFee);
/// @param from the sender of the underlying token
/// @param to the recipient of the PT and YT
/// @param underlyingUsed the amount of underlying token used to issue PT and YT
/// @param sharesUsed the amount of target token used to issue PT and YT (before deducting issuance fee)
event Issue(address indexed from, address indexed to, uint256 underlyingUsed, uint256 sharesUsed);
/// @param owner the address of the owner of the PT and YT (address that called collect())
/// @param shares the amount of Target token collected
event Collect(address indexed owner, uint256 shares);
/// @param owner the address of the owner of the PT and YT
/// @param to the recipient of the underlying token redeemed
/// @param underlyingRedeemed the amount of underlying token redeemed
event RedeemWithYT(address indexed owner, address indexed to, uint256 underlyingRedeemed);
/* ==================== STRUCTS ===================== */
/// @notice Series is a struct that contains all the information about a series.
/// @param underlying the address of the underlying token
/// @param target the address of the target token
/// @param yt the address of the Yield Token
/// @param adapter the address of the adapter
/// @param mscale scale value at maturity
/// @param maxscale max scale value from this series' lifetime
/// @param issuanceFee fee for issuing PT and YT
/// @param maturity timestamp of maturity (seconds since Unix epoch)
struct Series {
address underlying;
address target;
address yt;
address adapter;
uint256 mscale;
uint256 maxscale;
uint64 issuanceFee;
uint64 maturity;
}
/// @notice GlobalScales is a struct that contains scale values that are used in multiple functions throughout the Tranche contract.
/// @param mscale scale value at maturity. before maturity and settlement, this value is 0.
/// @param maxscale max scale value from this series' lifetime.
struct GlobalScales {
uint128 mscale;
uint128 maxscale;
}
/* ================== MUTATIVE METHODS =================== */
/// @notice deposit an `underlyingAmount` of underlying token into the yield source, receiving PT and YT.
/// amount of PT and YT issued are the same.
/// @param to the address to receive PT and YT
/// @param underlyingAmount the amount of underlying token to deposit
/// @return principalAmount the amount of PT and YT issued
function issue(address to, uint256 underlyingAmount) external returns (uint256 principalAmount);
/// @notice redeem an `principalAmount` of PT and YT for underlying token.
/// @param from the address to burn PT and YT from
/// @param to the address to receive underlying token
/// @param pyAmount the amount of PT and YT to redeem
/// @return underlyingAmount the amount of underlying token redeemed
function redeemWithYT(address from, address to, uint256 pyAmount) external returns (uint256 underlyingAmount);
/// @notice collect interest for `msg.sender` and transfer accrued interest to `msg.sender`
/// NOTE: if the maturity has passed, all the YT balance of `msg.sender` is burned.
/// @dev anyone can call this function to collect interest for themselves
/// @return collected collected interest in Underlying token
function collect() external returns (uint256 collected);
/* ================== PERMISSIONED METHODS =================== */
/// @notice collect interest from the yield source and distribute it
/// every YT transfer, this function is triggered by the Yield Token contract.
/// only the Yield Token contract can call this function.
/// NOTE: YT is not burned in this function even if the maturity has passed.
/// @param from address to transfer the Yield Token from. i.e. the user who collects the interest.
/// @param to address to transfer the Yield Token to (MUST NOT be zero address, CAN be the same as `from`)
/// @param value amount of Yield Token transferred to `to` (CAN be 0)
function updateUnclaimedYield(address from, address to, uint256 value) external;
/* ================== VIEW METHODS =================== */
/// @notice get the address of Yield Token associated with this Tranche.
function yieldToken() external view returns (address);
/// @notice get Series struct
function getSeries() external view returns (Series memory);
/// @notice get an accrued yield that can be claimed by `account` (in unis of Target token)
/// @dev this is reset to 0 when `account` claims the yield.
/// @param account the address to check
/// @return accruedInTarget
function unclaimedYields(address account) external view returns (uint256 accruedInTarget);
/// @notice get an accrued yield that can be claimed by `account` (in unis of Underlying token)
/// @param account the address to check
/// @return accruedInUnderlying accrued yield in underlying token
function previewCollect(address account) external view returns (uint256 accruedInUnderlying);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/[email protected]/token/ERC20/IERC20.sol";
interface Twocrypto is IERC20 {
function balances(uint256 i) external view returns (uint256);
/// @notice Exchange using wrapped native token by default
/// @param i Index value for the input coin
/// @param j Index value for the output coin
/// @param dx Amount of input coin being swapped in
/// @param min_dy Minimum amount of output coin to receive
/// @param receiver Address to send the output coin to, defaults to msg.sender
/// @return Amount of tokens at index j received by the `receiver`
function exchange(uint256 i, uint256 j, uint256 dx, uint256 min_dy, address receiver) external returns (uint256);
/// @notice Exchange: but user must transfer dx amount of coin[i] tokens to pool first.
/// Pool will not call transferFrom and will only check if a surplus of
/// coins[i] is greater than or equal to `dx`.
/// @dev Use-case is to reduce the number of redundant ERC20 token
/// transfers in zaps. Primarily for dex-aggregators/arbitrageurs/searchers.
/// Note for users: please transfer + exchange_received in 1 tx.
/// @param i Index value for the input coin
/// @param j Index value for the output coin
/// @param dx Amount of input coin being swapped in
/// @param min_dy Minimum amount of output coin to receive
/// @param receiver Address to send the output coin to
/// @return Amount of tokens at index j received by the `receiver`
function exchange_received(uint256 i, uint256 j, uint256 dx, uint256 min_dy, address receiver)
external
returns (uint256);
/// @notice Adds liquidity into the pool.
/// @param amounts Amounts of each coin to add
/// @param min_mint_amount Minimum amount of LP to mint
/// @param receiver Address to send the LP tokens to, defaults to msg.sender
/// @return Amount of LP tokens received by the `receiver`
function add_liquidity(uint256[2] calldata amounts, uint256 min_mint_amount, address receiver)
external
returns (uint256);
/// @notice This withdrawal method is very safe, does no complex math since
/// tokens are withdrawn in balanced proportions. No fees are charged.
/// @param _amount Amount of LP tokens to burn
/// @param min_amounts Minimum amounts of tokens to withdraw
/// @param receiver Address to send the withdrawn tokens to
/// @return Amounts of pool tokens received by the `receiver`
function remove_liquidity(uint256 _amount, uint256[2] calldata min_amounts, address receiver)
external
returns (uint256[2] memory);
/// @notice Withdraw liquidity in a single token.
/// Involves fees (lower than swap fees).
/// @dev This operation also involves an admin fee claim.
/// @param token_amount Amount of LP tokens to burn
/// @param i Index of the token to withdraw
/// @param min_amount Minimum amount of token to withdraw
/// @param receiver Address to send the withdrawn tokens to
/// @return Amount of tokens at index i received by the `receiver`
function remove_liquidity_one_coin(uint256 token_amount, uint256 i, uint256 min_amount, address receiver)
external
returns (uint256);
function remove_liquidity_one_coin(uint256 token_amount, uint256 i, uint256 min_amount)
external
returns (uint256);
/// @notice Calculate LP tokens minted or to be burned for depositing or removing `amounts` of coins
/// @dev Includes fee.
/// @param amounts Amounts of tokens being deposited or withdrawn
/// @param deposit True if it is a deposit action, False if withdrawn.
/// @return Amount of LP tokens deposited or withdrawn.
function calc_token_amount(uint256[2] calldata amounts, bool deposit) external view returns (uint256);
/// @notice Get amount of coin[j] tokens received for swapping in dx amount of coin[i]
/// @dev Includes fee.
/// @param i index of input token. Check pool.coins(i) to get coin address at ith index
/// @param j index of output token
/// @param dx amount of input coin[i] tokens
/// @return Exact amount of output j tokens for dx amount of i input tokens.
function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256);
/// @notice Get amount of coin[i] tokens to input for swapping out dy amount of coin[j]
/// @dev This is an approximate method, and returns estimates close to the input amount. Expensive to call on-chain.
/// @param i index of input token. Check pool.coins(i) to get coin address at ith index
/// @param j index of output token
/// @param dy amount of input coin[j] tokens received
/// @return Approximate amount of input i tokens to get dy amount of j tokens.
function get_dx(uint256 i, uint256 j, uint256 dy) external view returns (uint256);
/// @notice Calculates the current price of the LP token w.r.t coin at the 0th index
/// @return LP price.
function lp_price() external view returns (uint256);
/// @notice Calculates the current virtual price of the pool LP token.
/// @dev Not to be confused with `self.virtual_price` which is a cached virtual price.
/// @return Virtual Price.
function get_virtual_price() external view returns (uint256);
/// @notice Returns the oracle price of the coin at index `k` w.r.t the coin at index 0.
/// @dev The oracle is an exponential moving average, with a periodicity determined by `self.ma_time`.
/// @return Price oracle value of kth coin.
function price_oracle() external view returns (uint256);
/// @notice Returns the oracle value for xcp.
/// @dev The oracle is an exponential moving average, with a periodicity determined by `self.xcp_ma_time`.
/// @return Oracle value of xcp.
function xcp_oracle() external view returns (uint256);
/// @notice Returns the price scale of the coin at index `k` w.r.t the coin at index 0.
/// @dev Price scale determines the price band around which liquidity is concentrated.
/// @return Price scale of coin.
function price_scale() external view returns (uint256);
/// @notice Returns the fee charged by the pool at current state.
/// @dev Not to be confused with the fee charged at liquidity action.
/// @return fee bps.
function fee() external view returns (uint256);
/// @notice Calculates output tokens with fee for withdrawing one coin
/// @param token_amount LP Token amount to burn
/// @param i token in which liquidity is withdrawn
/// @return Amount of ith tokens received for burning token_amount LP tokens.
function calc_withdraw_one_coin(uint256 token_amount, uint256 i) external view returns (uint256);
/// @notice Returns the fee charged on the given amounts for add_liquidity.
/// @param amounts The amounts of coins being added to the pool.
/// @param xp The current balances of the pool multiplied by coin precisions.
/// @return Fee charged.
function calc_token_fee(uint256[] calldata amounts, uint256[] calldata xp) external view returns (uint256);
/// @notice Returns the current pool amplification parameter.
/// @return A param.
function A() external view returns (uint256);
/// @notice Returns the current pool gamma parameter.
/// @return gamma param.
function gamma() external view returns (uint256);
/// @notice Returns the current mid fee
/// @return mid_fee value.
function mid_fee() external view returns (uint256);
/// @notice Returns the current out fee
/// @return out_fee value.
function out_fee() external view returns (uint256);
/// @notice Returns the current fee gamma
/// @return fee_gamma value.
function fee_gamma() external view returns (uint256);
/// @notice Returns the current allowed extra profit
/// @return allowed_extra_profit value.
function allowed_extra_profit() external view returns (uint256);
/// @notice Returns the current adjustment step
/// @return adjustment_step value.
function adjustment_step() external view returns (uint256);
/// @notice Returns the current moving average time in seconds
/// @dev To get time in seconds, the parameter is multiplied by ln(2).
/// @return ma_time value.
function ma_time() external view returns (uint256);
function coins(uint256 i) external view returns (address);
function initial_A_gamma() external view returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/[email protected]/token/ERC20/IERC20.sol";
import {IFlashLoanRecipient} from "./IFlashLoanRecipient.sol";
import {IProtocolFeesCollector} from "./IProtocolFeesCollector.sol";
interface IVault {
/**
* @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
* and then reverting unless the tokens plus a proportional protocol fee have been returned.
*
* The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
* for each token contract. `tokens` must be sorted in ascending order.
*
* The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
* `receiveFlashLoan` call.
*
* Emits `FlashLoan` events.
*/
function flashLoan(
IFlashLoanRecipient recipient,
IERC20[] memory tokens,
uint256[] memory amounts,
bytes memory userData
) external;
/**
* @dev Returns the protocol fees collector contract.
*/
function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/[email protected]/token/ERC20/IERC20.sol";
interface IFlashLoanRecipient {
/**
* @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
*
* At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
* call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
* Vault, or else the entire flash loan will revert.
*
* `userData` is the same value passed in the `IVault.flashLoan` call.
*/
function receiveFlashLoan(
IERC20[] calldata tokens,
uint256[] calldata amounts,
uint256[] calldata feeAmounts,
bytes calldata userData
) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.24;
import {INapierPool} from "@napier/v1-pool/src/interfaces/INapierPool.sol";
import {ITranche} from "@napier/v1-tranche/src/interfaces/ITranche.sol";
import {TwocryptoFactory} from "./interfaces/external/TwocryptoFactory.sol";
import {Errors} from "./Errors.sol";
import {Ownable2Step} from "@openzeppelin/[email protected]/access/Ownable2Step.sol";
/// @notice A factory contract for deploying TwoCrypto metapools (Technically it is just regular twocrypto pool with PT and tricrypto LP token)
/// @dev It's a wrapper around the TwocryptoFactory contract with additional checks
contract MetapoolFactory is Ownable2Step {
/// @notice The TwocryptoFactory contract
TwocryptoFactory public immutable twocryptoFactory;
/// @notice The WETH9 address
address public immutable WETH9;
/// @notice Mapping (metapool -> deployed by this factory). True if the metapool was deployed by this factory
mapping(address metapool => bool) public isPtMetapool;
event MetapoolDeployed(address metapool, address pt, address napierPool);
/// @notice A parameter struct for deploying a metapool
struct TwocryptoParams {
uint256 A;
uint256 gamma;
uint256 mid_fee;
uint256 out_fee;
uint256 fee_gamma;
uint256 allowed_extra_profit;
uint256 adjustment_step;
uint256 ma_time;
uint256 initial_price;
}
constructor(address owner, address _WETH9, TwocryptoFactory _twocryptoFactory) {
WETH9 = _WETH9;
twocryptoFactory = _twocryptoFactory;
_transferOwnership(owner);
}
/// @notice Deploys a TwocryptoNG from Factory contract
/// NOTE: This metapool is not typical metapool, Technically it is just a pool with 2 volatile coins,
/// where one of the coins is PT, and the other is triLST-PT tricrypto LP token (like rETH-PT, sfrxETH-PT, stETH-PT)
/// @dev Reverts if:
/// - The NapierPool's underlying is not WETH
/// - The PT's underlying is not WETH
/// - Maturity of the PT is longer than the maturity of the NapierPool
/// - Name or symbol are too long
/// @param pt The Principal Token address
/// @param pool The NapierPool address for the metapool to use (Underlying token of those PTs must be WETH)
/// @custom:param implementation_idx The index of the implementation to use
/// @param name The name of the metapool
/// @param symbol The symbol of the metapool
/// @param params The metapool parameters
/// @return metapool The address of the deployed metapool (coin0 is PT, coin1 is tricrypto LP token)
function deployMetapool(
address pt,
address pool,
uint256, /* implementation_idx */
string calldata name,
string calldata symbol,
TwocryptoParams calldata params
) external onlyOwner returns (address metapool) {
(address underlying, address tricrypto) = INapierPool(pool).getAssets();
/// CHECK
if (underlying != WETH9) revert Errors.MetapoolFactoryWETHMismatch();
if (ITranche(pt).underlying() != WETH9) revert Errors.MetapoolFactoryWETHMismatch();
if (ITranche(pt).maturity() > INapierPool(pool).maturity()) revert Errors.MetapoolFactoryMaturityTooLong();
// Deploy twocrypto
address[2] memory coins = [pt, tricrypto];
uint256 implementation_idx;
// Workaround for stack too deep error
assembly { implementation_idx := calldataload(0x44) }// forgefmt: disable-line
bytes memory data = abi.encodeWithSelector(
TwocryptoFactory.deploy_pool.selector,
name, // name
symbol, // symbol
coins, // coins
implementation_idx, // implementation_idx
// Avoid stack too deep error by passing params as a struct instead of individual parameters
// Note: the order of members in the struct must match the order of the parameters in the function
params
);
(bool success, bytes memory ret) = address(twocryptoFactory).call(data);
if (!success) revert Errors.MetapoolFactoryFailedToDeployMetapool();
metapool = abi.decode(ret, (address));
isPtMetapool[metapool] = true;
// Workaround for stack too deep error
emit MetapoolDeployed(metapool, calldataLoadAddress(0x04), calldataLoadAddress(0x24));
}
function calldataLoadAddress(uint256 offset) private pure returns (address value) {
assembly {
value := calldataload(offset)
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.10;
import {ApproxParams} from "@napier/v1-pool/src/interfaces/ApproxParams.sol";
interface IMetapoolRouter {
function swapETHForPt(
address metapool,
uint256 ptAmount,
uint256 maxEthSpent,
uint256 minPtOut,
address recipient,
uint256 deadline
) external payable returns (uint256 ethSpent);
function swapPtForETH(address metapool, uint256 ptAmount, uint256 minEthOut, address recipient, uint256 deadline)
external
returns (uint256 ethOut);
function swapETHForYt(
address metapool,
uint256 ytAmount,
uint256 maxEthSpent,
address recipient,
uint256 deadline,
ApproxParams calldata approx
) external payable returns (uint256 ethSpent);
function addLiquidityOneETHKeepYt(
address metapool,
uint256 minLiquidity,
uint256 minYt,
address recipient,
uint256 deadline
) external payable returns (uint256 liquidity);
function removeLiquidityOneETH(
address metapool,
uint256 liquidity,
uint256 minEthOut,
address recipient,
uint256 deadline
) external returns (uint256 ethOut);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.24;
/// @notice Transient storage utility functions
library TransientStorage {
function tloadU256(uint256 slot) internal view returns (uint256 value) {
assembly {
value := tload(slot)
}
}
/// @notice The return value may contain dirty upper bits
function tloadAddress(uint256 slot) internal view returns (address value) {
assembly {
value := tload(slot)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.19;
import {ERC20} from "@openzeppelin/[email protected]/token/ERC20/ERC20.sol";
import {ITranche} from "@napier/v1-tranche/src/interfaces/ITranche.sol";
import {IBaseAdapter} from "@napier/v1-tranche/src/interfaces/IBaseAdapter.sol";
import {ApproxParams} from "..//interfaces/ApproxParams.sol";
import {FixedPointMathLib} from "@napier/v1-tranche/src/utils/FixedPointMathLib.sol";
import {Math} from "@openzeppelin/[email protected]/utils/math/Math.sol";
import {SafeCast} from "@openzeppelin/[email protected]/utils/math/SafeCast.sol";
import {MAX_BPS} from "@napier/v1-tranche/src/Constants.sol";
import {Errors} from "./Errors.sol";
library TrancheMathHelper {
using SafeCast for uint256;
uint256 constant DEFAULT_MAX_ITERATION = 100;
uint256 constant MAX_ISSUANCE_FEE_BPS = 500; // 5%
function getApproxUnderlyingNeededByYt(ITranche pt, uint256 ytDesired) internal view returns (uint256) {
return getApproxUnderlyingNeededByYt(pt, ytDesired, ApproxParams(0, 0, 0, 0));
}
/// @notice This section of code aims to calculate the amount of underlying asset (`uDeposit`) required to issue a specific amount of PT and YT (`ytOutDesired`).
/// The calculations are based on the formula used in the `Tranche.issue` function.
function getApproxUnderlyingNeededByYt(ITranche pt, uint256 ytDesired, ApproxParams memory approx)
internal
view
returns (uint256)
{
// Default approx parameters if not set
if (approx.guessMax < approx.guessMin) revert Errors.ApproxBinarySearchInputInvalid();
if (approx.eps == 0) approx.eps = 0.05 * 1e18; // 5%
if (approx.maxIteration == 0) approx.maxIteration = DEFAULT_MAX_ITERATION;
ITranche.Series memory series = pt.getSeries();
uint256 cscale = IBaseAdapter(series.adapter).scale();
IssueParams memory params = IssueParams({
decimals: ERC20(address(pt)).decimals(),
cscale: cscale,
maxscale: Math.max(series.maxscale, cscale), // Update maxscale if current scale is greater than maxscale
issuanceFeeBps: series.issuanceFee
});
// Variable Definitions:
// - `uDeposit`: The amount of underlying asset that needs to be deposited to issue PT and YT.
// - `ytOutDesired`: The desired amount of PT and YT to be issued.
// - `cscale`: Current scale of the Tranche.
// - `maxscale`: Maximum scale of the Tranche (denoted as 'S' in the formula).
// - `issuanceFee`: Issuance fee in basis points. (10000 =100%).
// `uDeposit` amount of underlying should issue at least `ytOutDesired` amount of PT and YT.
// Issuance fee is charged in units of underlying token.
// Formula for `Tranche.issue`:
// ```
// fee = uDeposit * issuanceFeeBps
// shares = (uDeposit - fee) / s
// pyIssue = shares * S
// ```
// Solving for `uDeposit`:
// ```
// uDeposit = pyIssue * s / S / (1 - issuanceFeeBps)
// => pyIssue * s * MAX_BPS / (S * (MAX_BPS - issuanceFeeBps))
// ```
// However, we can't get correct `uDeposit` due to the precision loss, probably indirectly caused by the issuance fee mechanism.
// Estimate the maximum amount of underlying token
uint256 uDepositMax = FixedPointMathLib.mulDivUp(
// cscale is basically a share price which is usually rounded down.
// So, we need to add 1 to cscale to round up the share price
ytDesired * (cscale + 1),
MAX_BPS,
params.maxscale * (MAX_BPS - MAX_ISSUANCE_FEE_BPS)
);
// We use bisection as a workaround.
return
_bisectUnderlyingNeeded({params: params, ytDesired: ytDesired, uDepositGuess: uDepositMax, approx: approx});
}
/// @notice Variables to be cached
struct IssueParams {
uint256 decimals;
uint256 cscale;
uint256 maxscale;
uint256 issuanceFeeBps;
}
/// @notice This function uses bisection to find [uDeposit] such that `Tranche::issue` would mint at least `ytDesired` YT.
/// @param params - Variables to be cached for gas saving
/// @param ytDesired - A desired amount of YT to issue
/// @param uDepositGuess - An amount of underlying token that would issue less than `ytDesired` YT.
function _bisectUnderlyingNeeded(
IssueParams memory params,
uint256 ytDesired,
uint256 uDepositGuess,
ApproxParams memory approx
) internal pure returns (uint256) {
uint256 stepSize = 10 ** params.decimals; // 1 Underlying token
uint256 a = FixedPointMathLib.mulDivUp(ytDesired, params.cscale, params.maxscale);
uint256 b = uDepositGuess + stepSize; // upper bound
if (approx.guessMin != 0) a = Math.max(approx.guessMin, a);
if (approx.guessMax != 0) b = Math.min(approx.guessMax, b);
// Try to find an min amount of underlying token such that the issuing at least `ytDesired`.
// Bisect the interval [a, b].
uint256 midpoint;
for (uint256 i = 0; i != approx.maxIteration;) {
midpoint = (a + b) / 2;
uint256 preview = _previewIssue(params, midpoint);
int256 err_mid = 1e18 - (preview * 1e18 / ytDesired).toInt256(); // v_desired - v_approx
// Check if the relative error is less than the tolerance
if (preview >= ytDesired && -(approx.eps).toInt256() < err_mid) {
return midpoint;
}
// a == b ---> midpoint is `b` forever
// a+1 == b ---> midpoint is `b` forever
// Exit the loop if midpoin doesn't change
if (a == b || (a + 1 == b)) break;
if (err_mid > 0) {
// bound interval [midpoint, b]
a = midpoint;
} else {
// bound interval [a, midpoint]
b = midpoint;
}
unchecked {
++i;
}
}
// If the function hasn't returned by now, it means it didn't find a solution within the tolerance.
// Try changing the tolerance.
revert Errors.ApproxFail();
}
/// @notice A copy of `Tranche::issue` math
function _previewIssue(IssueParams memory params, uint256 underlyingAmount) internal pure returns (uint256) {
uint256 fee = FixedPointMathLib.mulDivUp(underlyingAmount, params.issuanceFeeBps, MAX_BPS);
uint256 shares = FixedPointMathLib.divWadDown(underlyingAmount - fee, params.cscale);
return FixedPointMathLib.mulWadDown(shares, params.maxscale);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.19;
// Taken from: Pendle finance v2
/// @notice Parameters for controlling the approximation process
/// @dev The approximation process is a binary search algorithm that finds the value that satisfies the provided function `f`.
/// By default, NapierPool defines swap formula in terms of Principal token (Base Pool LP token). To swap a given amount of Underlying token,
/// it's necessary to run an approximation algorithm to find the corresponding amount of Principal token to swap in/out
/// because computing inverse of the swap function is very hard.
/// The approximation algorithm will run as follows:
/// Let f(x) be the function that calculates difference between the desired value and the computed value for a given x (the amount of Base pool LP token to swap in/out)
/// The algorithm will find the value x that satisfies f(x) ~= ε, where ε is the relative error tolerance.
/// for a given range [a, b],
/// ```
/// mid = (a + b) / 2
/// error_mid = f(mid)
/// if error_mid <= eps
/// return mid
/// if error_mid > 0
/// a = mid
/// else
/// b = mid
/// ```
/// The algorithm will run for `maxIteration` times, or until the relative error tolerance `eps` is satisfied.
/// @param guessMin The lower bound of the guess range
/// @param guessMax The upper bound of the guess range
/// @param maxIteration The maximum number of iterations to run the approximation algorithm
/// @param eps The maximum relative error tolerance (in 18 decimals) between the desired value and the computed value. 0.1% = 1e15 (1e18/1000)
struct ApproxParams {
uint256 guessMin;
uint256 guessMax;
uint256 maxIteration;
uint256 eps;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.19;
library Errors {
// Generic
error FailedToSendEther();
error NotWETH();
// Factory
error MetapoolFactoryFailedToDeployMetapool();
error MetapoolFactoryMaturityTooLong();
error MetapoolFactoryWETHMismatch();
// Router
error MetapoolRouterUnauthorized();
error MetapoolRouterInvalidMetapool();
error MetapoolRouterTransactionTooOld();
error MetapoolRouterInsufficientETHOut();
error MetapoolRouterInsufficientYtOut();
error MetapoolRouterExceededLimitETHIn();
error MetapoolRouterInsufficientETHReceived();
error MetapoolRouterNonSituationSwapETHForYt();
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.19;
/// @notice This library contains the math used in NapierPool.
/// @dev Taken and modified from Pendle V2: https://github.com/pendle-finance/pendle-core-v2-public/blob/163783b09014e515b645b83936fec32c5731d092/contracts/core/Market/MarketMathCore.sol
/// @dev Taken and modified from Notional : https://github.com/notional-finance/contracts-v2/blob/1845605ab0d9eec9b5dd374cf7c246957b534f85/contracts/internal/markets/Market.sol
/// @dev Naming convention:
/// - `pt` => baseLpt: BasePool LP token
/// - `asset` => `underlying`: underlying asset
/// - `totalPt` => `totalBaseLptTimesN`: total BasePool LP token reserve in the pool multiplied by 3 * virtual_price where virtual_price is the share price of the Tricrypto LP token
/// See NapierPool.sol for more details.
/// - `totalAsset` => `totalUnderlying`: total underlying asset reserve in the pool
/// - `executeTradeCore` function => `executeSwap` function
/// - `calculateTrade` function => `calculateSwap` function
/// - `getMarketPreCompute` function => `computeAmmParameters` function
/// - `setNewMarketStateTrade` function => `_setPostPoolState` function
/// @dev All functions in this library are view functions.
/// @dev Changes:
/// 1) Math library dependency from LogExpMath to PRBMath etc.
/// 2) Swap functions multiply the parameter `exactPtToAccount` by N(=3) to make it equivalent to the amount of PT being swapped.
/// 3) Swap functions divide the computed underlying swap result by N.
/// 3) Remove some redundant checks (e.g. check for maturity)
/// 4) Remove some redundant variables (e.g. `totalAsset` in `MarketPreCompute`)
/// 5) Remove some redundant functions (`addLiquidity` and `removeLiquidity`)
// libraries
import {Math} from "@openzeppelin/[email protected]/utils/math/Math.sol";
import {SafeCast} from "@openzeppelin/[email protected]/utils/math/SafeCast.sol";
import {FixedPointMathLib} from "@napier/v1-tranche/src/utils/FixedPointMathLib.sol";
import {SignedMath} from "./SignedMath.sol";
import {sd, ln, intoInt256} from "@prb/math/SD59x18.sol"; // used for logarithm operation
import {ud, exp, intoUint256} from "@prb/math/UD60x18.sol"; // used for exp operation
import {Errors} from "./Errors.sol";
/// @param totalBaseLptTimesN - Reserve Curve v2 Tricrypto 3PrincipalToken Pool LP token x times N(=# of Curve v2 Pool assets) in 18 decimals
/// @param totalUnderlying18 - Reserve underlying asset in 18 decimals
/// @param scalarRoot - Scalar root for NapierPool (See whitepaper)
/// @param maturity - Expiry of NapierPool (Unix timestamp)
/// @param lnFeeRateRoot - Logarithmic fee rate root
/// @param protocolFeePercent - Protocol fee percent (base 100)
/// @param lastLnImpliedRate - Last ln implied rate
struct PoolState {
uint256 totalBaseLptTimesN;
uint256 totalUnderlying18;
// Tricrypto pool LP token virtual price
uint256 virtualPrice;
/// immutable variables ///
uint256 scalarRoot;
uint256 maturity;
/// fee data ///
uint256 lnFeeRateRoot;
uint256 protocolFeePercent; // 100=100%
/// last trade data ///
uint256 lastLnImpliedRate;
}
/// @notice Variables that are used to compute the swap result
/// @dev params that are expensive to compute, therefore we pre-compute them
struct PoolPreCompute {
int256 rateScalar;
int256 rateAnchor;
int256 feeRate;
}
/// @title PoolMath - library for calculating swaps
/// @notice Taken and modified from Pendle V2: https://github.com/pendle-finance/pendle-core-v2-public/blob/163783b09014e515b645b83936fec32c5731d092/contracts/core/Market/MarketMathCore.sol
/// @dev Swaps take place between the BasePool LP token and the underlying asset.
/// The BasePool LP token is basket of 3 principal tokens.
/// @dev The AMM formula is defined in terms of the amount of PT being swapped.
/// @dev The math assumes two tokens (pt and underlying) have same decimals. Need to convert if they have different decimals.
/// @dev All functions in this library are view functions.
library PoolMath {
/// @notice Minimum liquidity in the pool
uint256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
/// @notice Percentage base (100=100%)
int256 internal constant FULL_PERCENTAGE = 100;
/// @notice Day in seconds in Unix timestamp
uint256 internal constant DAY = 86400;
/// @notice Year in seconds in Unix timestamp
uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;
/// @notice Max proportion of BasePool LP token / (BasePool LP token + underlying asset) in the pool
uint256 internal constant MAX_POOL_PROPORTION = 0.96 * 1e18; // 96%
int256 internal constant N_COINS = 3;
using FixedPointMathLib for uint256;
using SignedMath for int256;
using SignedMath for uint256;
using SafeCast for uint256;
using SafeCast for int256;
/// @param pool State - pool state of the pool
/// @param exactBaseLptIn - exact amount of Base Pool LP tokens to be swapped in
/// @return underlyingOut18 - underlying tokens to be swapped out (18 decimals)
/// @return swapFee18 - swap fee in underlying (18 decimals)
/// @return protocolFee18 - protocol fee in underlying (18 decimals)
function swapExactBaseLpTokenForUnderlying(PoolState memory pool, uint256 exactBaseLptIn)
internal
view
returns (uint256 underlyingOut18, uint256 swapFee18, uint256 protocolFee18)
{
(int256 _netUnderlyingToAccount18, int256 _netUnderlyingFee18, int256 _netUnderlyingToProtocol18) = executeSwap(
pool,
// Note: sign is defined from the perspective of the swapper.
// negative because the swapper is selling pt
// Note: Here we are multiplying by virtualPrice * N_COINS because the swap formula is defined in terms of the amount of PT being swapped.
// Basically BaseLpt is equivalent to more than 3 times the amount of PT due to the initial deposit of 1:1:1:1=pt1:pt2:pt3:Lp share in Curve pool.
// The LP token accrues trade fees on the Tricrypto pool and the virtual price’s value would increase over time.
FixedPointMathLib.mulWadDown(exactBaseLptIn, pool.virtualPrice * uint256(N_COINS)).neg() // user would get smaller amount of underlying due to the rounding down
);
underlyingOut18 = _netUnderlyingToAccount18.toUint256();
swapFee18 = _netUnderlyingFee18.toUint256();
protocolFee18 = _netUnderlyingToProtocol18.toUint256();
}
/// @param pool State - pool state of the pool
/// @param exactBaseLptOut exact amount of Base Pool LP tokens to be swapped out
/// @return underlyingIn18 - underlying tokens to be swapped in (18 decimals)
/// @return swapFee18 - swap fee in underlying (18 decimals)
/// @return protocolFee18 - protocol fee in underlying (18 decimals)
function swapUnderlyingForExactBaseLpToken(PoolState memory pool, uint256 exactBaseLptOut)
internal
view
returns (uint256 underlyingIn18, uint256 swapFee18, uint256 protocolFee18)
{
(int256 _netUnderlyingToAccount18, int256 _netUnderlyingFee18, int256 _netUnderlyingToProtocol18) = executeSwap(
pool,
// Note: sign is defined from the perspective of the swapper.
// positive because the swapper is buying pt
FixedPointMathLib.mulWadUp(exactBaseLptOut, pool.virtualPrice * uint256(N_COINS)).toInt256() // user would need to pay more underlying due to the rounding up
);
underlyingIn18 = _netUnderlyingToAccount18.neg().toUint256();
swapFee18 = _netUnderlyingFee18.toUint256();
protocolFee18 = _netUnderlyingToProtocol18.toUint256();
}
/// @notice Compute swap result given the amount of base pool LP tokens to be swapped in.
/// @dev This function is used to compute the swap result before the swap is executed.
/// @param pool State - pool state of the pool
/// @param netBaseLptToAccount (int256) amount of base pool LP tokens to be swapped in (negative if selling pt) multiplied by the number of BasePool assets
/// Note: sign is defined from the perspective of the swapper. positive if the swapper is buying pt.
/// @return netUnderlyingToAccount18 (int256) amount of underlying tokens to be swapped out
/// @return netUnderlyingFee18 (int256) total fee. including protocol fee.
/// `netUnderlyingFee18 - netUnderlyingToProtocol` will be distributed to LP holders.
/// @return netUnderlyingToProtocol18 (int256) Protocol fee
function executeSwap(PoolState memory pool, int256 netBaseLptToAccount)
internal
view
returns (int256 netUnderlyingToAccount18, int256 netUnderlyingFee18, int256 netUnderlyingToProtocol18)
{
if (pool.totalBaseLptTimesN.toInt256() <= netBaseLptToAccount) {
revert Errors.PoolInsufficientBaseLptForTrade();
}
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
PoolPreCompute memory comp = computeAmmParameters(pool);
(netUnderlyingToAccount18, netUnderlyingFee18, netUnderlyingToProtocol18) =
calculateSwap(pool, comp, netBaseLptToAccount);
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
_setPostPoolState(pool, comp, netBaseLptToAccount, netUnderlyingToAccount18, netUnderlyingToProtocol18);
}
/// @notice Compute the pseudo invariant of the pool.
/// @dev The pseudo invariant is computed every swap before the swap is executed.
/// @param pool State - pool state of the pool
function computeAmmParameters(PoolState memory pool) internal view returns (PoolPreCompute memory cache) {
uint256 timeToExpiry = pool.maturity - block.timestamp;
cache.rateScalar = _getRateScalar(pool, timeToExpiry);
cache.rateAnchor = _getRateAnchor(
pool.totalBaseLptTimesN, pool.lastLnImpliedRate, pool.totalUnderlying18, cache.rateScalar, timeToExpiry
);
cache.feeRate = _getExchangeRateFromImpliedRate(pool.lnFeeRateRoot, timeToExpiry);
}
/// @notice Calculate the new `RateAnchor(t)` based on the pre-trade implied rate, `lastImpliedRate`, before the swap.
/// To ensure interest rate continuity, we adjust the `rateAnchor(t)` such that the pre-trade implied rate at t* remains the same as `lastImpliedRate`.
///
/// Formulas for `rateAnchor(t)`:
/// ----------------------------
/// yearsToExpiry(t) = timeToExpiry / 365 days
///
/// portion(t*) = totalBaseLptTimesN / (totalBaseLptTimesN + totalUnderlying18)
///
/// extRate(t*) = lastImpliedRate^(yearsToExpiry(t))
/// = e^(ln(lastImpliedRate) * yearsToExpiry(t))
///
/// rateAnchor(t) = extRate(t*) - ln(portion(t*)) / rateScalar(t)
/// ----------------------------
/// Where `portion(t*)` represents the portion of the pool that is BasePool LP token at t* and `extRate(t*)` is the exchange rate at t*.
///
/// @param totalBaseLptTimesN total Base Lp token in the pool
/// @param lastLnImpliedRate the implied rate for the last trade that occurred at t_last.
/// @param totalUnderlying18 total underlying in the pool
/// @param rateScalar a parameter of swap formula. Calculated as `scalarRoot` divided by `yearsToExpiry`
/// @param timeToExpiry time to maturity in seconds
/// @return rateAnchor the new rate anchor
function _getRateAnchor(
uint256 totalBaseLptTimesN,
uint256 lastLnImpliedRate,
uint256 totalUnderlying18,
int256 rateScalar,
uint256 timeToExpiry
) internal pure returns (int256 rateAnchor) {
// `extRate(t*) = e^(lastLnImpliedRate * yearsToExpiry(t))`
// Get pre-trade exchange rate with zero-fee
int256 preTradeExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);
// exchangeRate should not be below 1.
// But it is mathematically almost impossible to happen because `exp(x) < 1` is satisfied for all `x < 0`.
// Here x = lastLnImpliedRate * yearsToExpiry(t), which is very unlikely to be negative.(or
// more accurately the natural log rounds down to zero). `lastLnImpliedRate` is guaranteed to be positive when it is set
// and `yearsToExpiry(t)` is guaranteed to be positive because swap can only happen before maturity.
// We still check for this case to be safe.
require(preTradeExchangeRate >= SignedMath.WAD);
uint256 proportion = totalBaseLptTimesN.divWadDown(totalBaseLptTimesN + totalUnderlying18);
int256 lnProportion = _logProportion(proportion);
// Compute `rateAnchor(t) = extRate(t*) - ln(portion(t*)) / rateScalar(t)`
rateAnchor = preTradeExchangeRate - lnProportion.divWadDown(rateScalar);
}
/// @notice Converts an implied rate to an exchange rate given a time to maturity. The
/// @dev Formula: `E = e^rt`
/// @return exchangeRate the price of underlying token in Base LP token. Guaranteed to be positive or zero.
function _getExchangeRateFromImpliedRate(uint256 lnImpliedRate, uint256 timeToExpiry)
internal
pure
returns (int256 exchangeRate)
{
uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;
exchangeRate = exp(ud(rt)).intoUint256().toInt256();
}
/// @notice Compute swap result given the delta of baseLpt an swapper wants to swap.
/// @param pool State - pool state of the pool
/// @param comp PreCompute - pre-computed values of the pool
/// @param netBaseLptToAccount the delta of baseLpt the swapper wants to swap.
/// @dev Note: Ensure that abs(`netBaseLptToAccount`) is not greater than `totalBaseLptTimesN`.
/// @return netUnderlyingToAccount18 the amount of underlying the swapper will receive
/// negative if the swapper is selling BaseLpt and positive if the swapper is buying BaseLpt.
/// @return underlyingFee18 the amount of underlying charged as swap fee
/// this includes `underlyingToProtocol18`
/// @return underlyingToProtocol18 the amount of underlying the Pool fee recipient will receive as fee
/// Protocol accrues fee in underlying.
function calculateSwap(
PoolState memory pool,
PoolPreCompute memory comp,
int256 netBaseLptToAccount // d_pt
) internal pure returns (int256, int256, int256) {
// Calculates the exchange rate from underlying to baseLpt before any fees are applied
// Note: The exchange rate is int type but it must be always strictly gt 1.
// Note: `netBaseLptToAccount` should be checked prior to calling this function
int256 preFeeExchangeRate = _getExchangeRate(
pool.totalBaseLptTimesN, pool.totalUnderlying18, comp.rateScalar, comp.rateAnchor, netBaseLptToAccount
).toInt256();
// Basically swap formula is:
// netBaseLptToAccount
// netUnderlyingToAccount18 = -1 * ────────────────────────
// extRate
// where `netBaseLptToAccount` is the delta of baseLpt (`d_pt`) and `netUnderlyingToAccount18` is the delta of underlying (`d_u`).
// because if `d_pt > 0`, then `d_u < 0` and vice versa.
// fees can be applied to the `extRate`.
// `postFeeExchangeRate = preFeeExchangeRate / feeRate` if `netBaseLptToAccount > 0` else `postFeeExchangeRate = preFeeExchangeRate * feeRate`
int256 netUnderlying18 = netBaseLptToAccount.divWadDown(preFeeExchangeRate).neg();
// See whitepaper for the formula:
// fee is calculated as the difference between the underlying amount before and after the fee is applied:
// fee = underlyingNoFee - underlyingWithFee
// where `underlyingNoFee = - (ptToAccount / preFeeExchangeRate)`
// and `underlyingWithFee = - (ptToAccount / postFeeExchangeRate)`
//
// Therefore:
// fee = - (ptToAccount / preFeeExchangeRate) + (ptToAccount / postFeeExchangeRate)
int256 underlyingFee18;
if (netBaseLptToAccount > 0) {
// User swap underlying for baseLpt
// Exchange rate after fee is applied is:
// `postFeeExchangeRate := preFeeExchangeRate / feeRate`
// `postFeeExchangeRate` must be strictly gt 1.
// It's possible that the fee pushes the implied rate into negative territory. This is not allowed.
int256 postFeeExchangeRate = preFeeExchangeRate.divWadDown(comp.feeRate);
if (postFeeExchangeRate < SignedMath.WAD) revert Errors.PoolExchangeRateBelowOne(postFeeExchangeRate);
// fee = - (ptToAccount / preFeeExchangeRate) + (ptToAccount / postFeeExchangeRate)
// = (ptToAccount / preFeeExchangeRate) * (feeRate - 1)
// = netUnderlying18 * (feeRate - 1)
underlyingFee18 = netUnderlying18.mulWadDown(SignedMath.WAD - comp.feeRate);
} else {
// User swap baseLpt for underlying
// Exchange rate after fee is applied is:
// `postFeeExchangeRate := preFeeExchangeRate * feeRate`
// In this case, `postFeeExchangeRate` can't be below 1 unlike the case above.
// fee = - (ptToAccount / preFeeExchangeRate) + (ptToAccount / postFeeExchangeRate)
// = - (ptToAccount / preFeeExchangeRate) + (ptToAccount / (preFeeExchangeRate * feeRate))
// = - (ptToAccount / preFeeExchangeRate) * (1 - 1 / feeRate)
// = - (ptToAccount / preFeeExchangeRate) * (feeRate - 1) / feeRate
// Note: ptToAccount is negative in this branch so we negate it to ensure that fee is a positive number
underlyingFee18 = ((netUnderlying18 * (SignedMath.WAD - comp.feeRate)) / comp.feeRate).neg();
}
// Subtract swap fee
// underlyingWithFee = underlyingNoFee - fee
int256 netUnderlyingToAccount18 = netUnderlying18 - underlyingFee18;
// Charge protocol fee on swap fee
// This underlying will be removed from the pool reserve
int256 underlyingToProtocol18 = (underlyingFee18 * pool.protocolFeePercent.toInt256()) / FULL_PERCENTAGE;
return (netUnderlyingToAccount18, underlyingFee18, underlyingToProtocol18);
}
/// @notice Update pool state cache after swap is executed
/// @param pool pool state of the pool
/// @param comp swap formula pre-computed values
/// @param netBaseLptToAccount net Base Lpt to account. negative if the swapper is selling BaseLpt
/// @param netUnderlyingToAccount18 net underlying to account. positive if the swapper is selling BaseLpt.
/// @param netUnderlyingToProtocol18 should be removed from the pool reserve `totalUnderlying18`. must be positive
function _setPostPoolState(
PoolState memory pool,
PoolPreCompute memory comp,
int256 netBaseLptToAccount,
int256 netUnderlyingToAccount18,
int256 netUnderlyingToProtocol18
) internal view {
// update pool state
// Note safe because pre-trade check ensures totalBaseLptTimesN >= netBaseLptToAccount
pool.totalBaseLptTimesN = (pool.totalBaseLptTimesN.toInt256() - netBaseLptToAccount).toUint256();
pool.totalUnderlying18 = (pool.totalUnderlying18).toInt256().subNoNeg(
netUnderlyingToAccount18 + netUnderlyingToProtocol18
).toUint256();
// compute post-trade implied rate
// this will be used to compute the new rateAnchor for the next trade
uint256 timeToExpiry = pool.maturity - block.timestamp;
pool.lastLnImpliedRate = _getLnImpliedRate(
pool.totalBaseLptTimesN, pool.totalUnderlying18, comp.rateScalar, comp.rateAnchor, timeToExpiry
);
// It's technically unlikely that the implied rate is actually exactly zero but we will still fail
// in this case.
if (pool.lastLnImpliedRate == 0) revert Errors.PoolZeroLnImpliedRate();
}
/// @notice Get rate scalar given the pool state and time to maturity.
/// @dev Formula: `scalarRoot * ONE_YEAR / yearsToExpiry`
function _getRateScalar(PoolState memory pool, uint256 timeToExpiry) internal pure returns (int256) {
uint256 rateScalar = (pool.scalarRoot * IMPLIED_RATE_TIME) / timeToExpiry;
if (rateScalar == 0) revert Errors.PoolRateScalarZero();
return rateScalar.toInt256();
}
/// @notice Calculates the current pool implied rate.
/// ln(extRate) * ONE_YEAR / timeToExpiry
/// @return lnImpliedRate the implied rate
function _getLnImpliedRate(
uint256 totalBaseLptTimesN,
uint256 totalUnderlying18,
int256 rateScalar,
int256 rateAnchor,
uint256 timeToExpiry
) internal pure returns (uint256 lnImpliedRate) {
// This should ensure that exchange rate < FixedPointMathLib.WAD
int256 exchangeRate =
_getExchangeRate(totalBaseLptTimesN, totalUnderlying18, rateScalar, rateAnchor, 0).toInt256();
// exchangeRate >= 1 so its ln(extRate) >= 0
int256 lnRate = ln(sd(exchangeRate)).intoInt256();
lnImpliedRate = (uint256(lnRate) * IMPLIED_RATE_TIME) / timeToExpiry;
}
/// @notice Calculates exchange rate given the total baseLpt and total underlying.
/// (1 / rateScalar) * ln(proportion / (1 - proportion)) + rateAnchor
/// where:
/// proportion = totalPt / (totalPt + totalUnderlying)
///
/// @dev Revert if the exchange rate is below 1. Prevent users from swapping when 1 baseLpt is worth more than 1 underlying.
/// @dev Revert if the proportion of baseLpt to total is greater than MAX_POOL_PROPORTION.
/// @param totalBaseLptTimesN the total baseLpt in the pool
/// @param totalUnderlying18 the total underlying in the pool
/// @param rateScalar the scalar used to compute the exchange rate
/// @param rateAnchor the anchor used to compute the exchange rate
/// @param netBaseLptToAccount the net baseLpt to the account (negative if account is swapping baseLpt for underlying)
/// @return exchangeRate the price of underlying token in terms of Base LP token
function _getExchangeRate(
uint256 totalBaseLptTimesN,
uint256 totalUnderlying18,
int256 rateScalar,
int256 rateAnchor,
int256 netBaseLptToAccount
) internal pure returns (uint256) {
// Revert if there is not enough baseLpt to support this swap.
// Note: Ensure that abs(`netBaseLptToAccount`) is not greater than `totalBaseLptTimesN` before calling this function
uint256 numerator = (totalBaseLptTimesN.toInt256() - netBaseLptToAccount).toUint256();
uint256 proportion = numerator.divWadDown(totalBaseLptTimesN + totalUnderlying18);
if (proportion > MAX_POOL_PROPORTION) {
revert Errors.PoolProportionTooHigh();
}
int256 lnProportion = _logProportion(proportion);
int256 exchangeRate = lnProportion.divWadDown(rateScalar) + rateAnchor;
if (exchangeRate < int256(FixedPointMathLib.WAD)) revert Errors.PoolExchangeRateBelowOne(exchangeRate);
return exchangeRate.toUint256();
}
/// @notice Compute Logit function (log(p/(1-p)) given a proportion `p`.
/// @param proportion the proportion of baseLpt to (baseLpt + underlying) (0 <= proportion <= 1e18)
function _logProportion(uint256 proportion) internal pure returns (int256 logitP) {
if (proportion == FixedPointMathLib.WAD) revert Errors.PoolProportionMustNotEqualOne();
// input = p/(1-p)
int256 input = proportion.divWadDown(FixedPointMathLib.WAD - proportion).toInt256();
// logit(p) = log(input) = ln(p/(1-p))
logitP = ln(sd(input)).intoInt256();
}
/// @notice Compute the initial implied rate of the pool.
/// @dev This function is expected to be called only once when initial liquidity is added.
/// @param pool pool state of the pool
/// @param initialAnchor initial anchor of the pool
/// @return initialLnImpliedRate the initial implied rate
function computeInitialLnImpliedRate(PoolState memory pool, int256 initialAnchor) internal view returns (uint256) {
uint256 timeToExpiry = pool.maturity - block.timestamp;
int256 rateScalar = _getRateScalar(pool, timeToExpiry);
return
_getLnImpliedRate(pool.totalBaseLptTimesN, pool.totalUnderlying18, rateScalar, initialAnchor, timeToExpiry);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/[email protected]/token/ERC20/IERC20.sol";
/// @notice Principal tokens (zero-coupon tokens) are redeemable for a single underlying EIP-20 token at a future timestamp.
/// https://eips.ethereum.org/EIPS/eip-5095
interface IERC5095 is IERC20 {
event Redeem(address indexed from, address indexed to, uint256 underlyingAmount);
/// @dev Asset that is returned on redemption.
function underlying() external view returns (address underlyingAddress);
/// @dev Unix time at which redemption of fyToken for underlying are possible
function maturity() external view returns (uint256 timestamp);
/// @dev Converts a specified amount of principal to underlying
function convertToUnderlying(uint256 principalAmount) external view returns (uint256 underlyingAmount);
/// @dev Converts a specified amount of underlying to principal
function convertToPrincipal(uint256 underlyingAmount) external view returns (uint256 principalAmount);
/// @dev Gives the maximum amount an address holder can redeem in terms of the principal
function maxRedeem(address holder) external view returns (uint256 maxPrincipalAmount);
/// @dev Gives the amount in terms of underlying that the princiapl amount can be redeemed for plus accrual
function previewRedeem(uint256 principalAmount) external view returns (uint256 underlyingAmount);
/// @dev Burn fyToken after maturity for an amount of principal.
function redeem(uint256 principalAmount, address to, address from) external returns (uint256 underlyingAmount);
/// @dev Gives the maximum amount an address holder can withdraw in terms of the underlying
function maxWithdraw(address holder) external view returns (uint256 maxUnderlyingAmount);
/// @dev Gives the amount in terms of principal that the underlying amount can be withdrawn for plus accrual
function previewWithdraw(uint256 underlyingAmount) external view returns (uint256 principalAmount);
/// @dev Burn fyToken after maturity for an amount of underlying.
function withdraw(uint256 underlyingAmount, address to, address from) external returns (uint256 principalAmount);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.10;
/**
* Taken from: https://github.com/balancer/balancer-v2-monorepo/blob/ac63d64018c6331248c7d77b9f317a06cced0243/pkg/vault/contracts/ProtocolFeesCollector.sol
* @dev This an auxiliary contract to the Vault, deployed by it during construction. It offloads some of the tasks the
* Vault performs to reduce its overall bytecode size.
*
* The current values for all protocol fee percentages are stored here, and any tokens charged as protocol fees are
* sent to this contract, where they may be withdrawn by authorized entities. All authorization tasks are delegated
* to the Vault's own authorizer.
*/
interface IProtocolFeesCollector {
function getFlashLoanFeePercentage() external view returns (uint256);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
pragma solidity ^0.8.0;
interface TwocryptoFactory {
/// @notice Deploy a new pool
/// @param _name Name of the new plain pool
/// @param _symbol Symbol for the new plain pool - will be concatenated with factory symbol
/// @param _coins Addresses of the coins in the pool
/// @param implementation_id ID of the pool implementation
/// @param A Amplification coefficient
/// @param gamma Swap fee coefficient
/// @param mid_fee Fee for stable swaps
/// @param out_fee Fee for volatile swaps
/// @param fee_gamma Adjustment coefficient for fees
/// @param allowed_extra_profit Extra profit limit for adjusting swap fees
/// @param adjustment_step Step size for fee adjustment
/// @param ma_exp_time Moving average expiration time
/// @param initial_price Initial price for the pool
/// @return Address of the deployed pool
function deploy_pool(
string calldata _name,
string calldata _symbol,
address[2] calldata _coins,
uint256 implementation_id,
uint256 A,
uint256 gamma,
uint256 mid_fee,
uint256 out_fee,
uint256 fee_gamma,
uint256 allowed_extra_profit,
uint256 adjustment_step,
uint256 ma_exp_time,
uint256 initial_price
) external returns (address);
/// @notice Set pool implementation
/// @dev Set to address(0) to prevent deployment of new pools
/// @param _pool_implementation Address of the new pool implementation
/// @param _implementation_index Index of the pool implementation
function set_pool_implementation(address _pool_implementation, uint256 _implementation_index) external;
/// @notice Set gauge implementation
/// @dev Set to address(0) to prevent deployment of new gauges
/// @param _gauge_implementation Address of the new gauge implementation
function set_gauge_implementation(address _gauge_implementation) external;
/// @notice Set views contract implementation
/// @param _views_implementation Address of the new views contract
function set_views_implementation(address _views_implementation) external;
/// @notice Set math implementation
/// @param _math_implementation Address of the new math contract
function set_math_implementation(address _math_implementation) external;
function initialise_ownership(address fee_receiver, address admin) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IBaseAdapter {
/* ============== MUTATIVE METHODS =============== */
/// @notice update adapter's scale value and return it
/// Underlying decimals: `u`, Target decimals: `t`, Target conversion rate: 10^u / 10^t
/// => Scale = 10^(u-t) * 10^18 = 10^(u-t+18)
/// e.g. WstETH (t=18,u=18) price: 1.2 WETH => scale = 1.2*10^18
/// eUSDC (t=18,u=6) price: 1.01 USDC => scale = 1.01*10^(6-18+18) = 1.01*10^6
/// @dev For interest-bearing token, such as cTokens, this is simply the conversion rate
/// @dev For other Targets, such as AMM LP shares, specialized logic will be required
/// @return scale in units of underlying token
function scale() external view returns (uint256);
/// @notice deposit Underlying in return for Target.
/// @dev no funds should be left in the contract after this call.
/// the caller must transfer Underlying to this contract before calling this function.
/// @return underlyingUsed amount of Underlying used
/// @return sharesMinted amount of Target minted
function prefundedDeposit() external returns (uint256 underlyingUsed, uint256 sharesMinted);
/// @notice redeem Target and receive Underlying in return.
/// @dev no funds should be left in the contract after this call
/// the caller must transfer Target to this contract before calling this function.
/// @param to recipient of Underlying
/// @return underlyingWithdrawn amount of Underlying returned
/// @return sharesRedeemed amount of Target redeemed
function prefundedRedeem(address to) external returns (uint256 underlyingWithdrawn, uint256 sharesRedeemed);
/* =============== VIEW METHODS ================ */
/// @notice return Underlying token address (eg USDC, DAI)
/// @return Underlying address
function underlying() external view returns (address);
/// @notice return yield-bearing token address (eg cUSDC, wstETH, AMM LP shares)
/// @return Target address (yield-bearing token)
function target() external view returns (address);
}// SPDX-License-Identifier: AGPL-3.0-only
/// @notice Taken from: https://github.com/transmissions11/solmate/blob/2001af43aedb46fdc2335d2a7714fb2dae7cfcd1/src/utils/FixedPointMathLib.sol
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_UINT256 = 2 ** 256 - 1;
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// Divide x * y by the denominator.
z := div(mul(x, y), denominator)
}
}
function mulDivUp(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// If x * y modulo the denominator is strictly greater than 0,
// 1 is added to round up the division of x * y by the denominator.
z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
}
}
function rpow(uint256 x, uint256 n, uint256 scalar) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Mod x by y. Note this will return
// 0 instead of reverting if y is zero.
z := mod(x, y)
}
}
function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Divide x by y. Note this will return
// 0 instead of reverting if y is zero.
r := div(x, y)
}
}
function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Add 1 to x * y if x % y > 0. Note this will
// return 0 instead of reverting if y is zero.
z := add(gt(mod(x, y), 0), div(x, y))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.2._
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v2.5._
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.2._
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toUint72(uint256 value) internal pure returns (uint72) {
require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v2.5._
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toUint40(uint256 value) internal pure returns (uint40) {
require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v2.5._
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toUint24(uint256 value) internal pure returns (uint24) {
require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v2.5._
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v2.5._
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*
* _Available since v3.0._
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.7._
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.7._
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*
* _Available since v3.0._
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.19; uint256 constant WAD = 1e18; // @notice 100% in basis points. 10_000 = 100%s uint256 constant MAX_BPS = 10_000; /* =============== ADDRESSES ================ */ // @notice WETH address on mainnet address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; // @notice stETH address on mainnet address constant STETH = 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84; // @notice wstETH address on mainnet address constant WSTETH = 0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0; // @notice WithdrawalQueueERC721 of LIDO address on mainnet address constant LIDO_WITHDRAWAL_QUEUE = 0x889edC2eDab5f40e902b864aD4d7AdE8E412F9B1; // @notice rETH address on mainnet address constant RETH = 0xae78736Cd615f374D3085123A210448E74Fc6393; // @notice eETH address on mainnet address constant EETH = 0x35fA164735182de50811E8e2E824cFb9B6118ac2; // @notice cETH address on mainnet address constant CETH = 0x4Ddc2D193948926D02f9B1fE9e1daa0718270ED5; // @notice CDAI address on mainnet address constant CDAI = 0x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643; // @notice DAI address on mainnet address constant DAI = 0x6B175474E89094C44Da98b954EedeAC495271d0F; // @notice COMPTROLLER address on mainnet address constant COMPTROLLER = 0x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B; // @notice COMP address on mainnet address constant COMP = 0xc00e94Cb662C3520282E6f5717214004A7f26888; // @notice AWETH address on mainnet address constant AWETH = 0x4d5F47FA6A74757f35C14fD3a6Ef8E3C9BC514E8; // @notice LendingAAVEV3_POOL_ADDRESSES_PROVIDER address on mainnet address constant AAVEV3_POOL_ADDRESSES_PROVIDER = 0x2f39d218133AFaB8F2B819B1066c7E434Ad94E9e; // @notice ma3WETH ERC 4626 Vault address on mainnet address constant MA3WETH = 0x39Dd7790e75C6F663731f7E1FdC0f35007D3879b; // @notice Morpho Aave v3 optimizer contract address on mainnet address constant MORPHO_AAVE_V3 = 0x33333aea097c193e66081E930c33020272b33333; // @notice MORPHO token address on mainnet address constant MORPHO = 0x9994E35Db50125E0DF82e4c2dde62496CE330999; // @notice Frax Ether address on mainnet address constant FRXETH = 0x5E8422345238F34275888049021821E8E08CAa1f; // @notice Staked Frax Ether address on mainnet address constant STAKED_FRXETH = 0xac3E018457B222d93114458476f3E3416Abbe38F; // @notice EtherFi LiquidityPool address constant ETHERFI_LP = 0x308861A430be4cce5502d0A12724771Fc6DaF216; // @notice EtherFi WETH address constant ETHERFI_WEETH = 0xCd5fE23C85820F7B72D0926FC9b05b43E359b7ee; // @notice EtherFi WithdrawRequestNFT address constant ETHERFI_WITHDRAW_REQUEST = 0x7d5706f6ef3F89B3951E23e557CDFBC3239D4E2c;
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.19;
library Errors {
// Approx
error ApproxFail();
error ApproxBinarySearchInputInvalid();
// Quoter
error ApproxFailWithHint(bytes hint);
// Factory
error FactoryPoolAlreadyExists();
error FactoryUnderlyingMismatch();
error FactoryMaturityMismatch();
// Pool
error PoolOnlyOwner();
error PoolInvalidParamName();
error PoolUnauthorizedCallback();
error PoolExpired();
error PoolInvariantViolated();
error PoolZeroAmountsInput();
error PoolZeroAmountsOutput();
error PoolZeroLnImpliedRate();
error PoolInsufficientBaseLptForTrade();
error PoolInsufficientBaseLptReceived();
error PoolInsufficientUnderlyingReceived();
error PoolExchangeRateBelowOne(int256 exchangeRate);
error PoolProportionMustNotEqualOne();
error PoolRateScalarZero();
error PoolProportionTooHigh();
// Router
error RouterInsufficientWETH();
error RouterInconsistentWETHPayment();
error RouterPoolNotFound();
error RouterTransactionTooOld();
error RouterInsufficientLpOut();
error RouterInsufficientTokenBalance();
error RouterInsufficientUnderlyingOut();
error RouterExceededLimitUnderlyingIn();
error RouterInsufficientUnderlyingRepay();
error RouterInsufficientPtRepay();
error RouterCallbackNotNapierPool();
error RouterNonSituationSwapUnderlyingForYt();
error RouterInsufficientPyIssue();
// Generic
error FailedToSendEther();
error NotWETH();
// Config
error LnFeeRateRootTooHigh();
error ProtocolFeePercentTooHigh();
error InitialAnchorTooLow();
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.19;
import {SafeCast} from "@openzeppelin/[email protected]/utils/math/SafeCast.sol";
library SignedMath {
int256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulDivDown(int256 x, int256 y, int256 z) internal pure returns (int256) {
int256 xy = x * y;
unchecked {
return xy / z;
}
}
function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
require(a >= b, "negative");
return a - b; // no unchecked since if b is very negative, a - b might overflow
}
function mulWadDown(int256 a, int256 b) internal pure returns (int256) {
return mulDivDown(a, b, WAD);
}
function divWadDown(int256 a, int256 b) internal pure returns (int256) {
return mulDivDown(a, WAD, b);
}
function neg(int256 x) internal pure returns (int256) {
return x * (-1);
}
function neg(uint256 x) internal pure returns (int256) {
return SafeCast.toInt256(x) * (-1);
}
}// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ███████╗██████╗ ███████╗ █████╗ ██╗ ██╗ ██╗ █████╗ ██╔════╝██╔══██╗██╔════╝██╔══██╗╚██╗██╔╝███║██╔══██╗ ███████╗██║ ██║███████╗╚██████║ ╚███╔╝ ╚██║╚█████╔╝ ╚════██║██║ ██║╚════██║ ╚═══██║ ██╔██╗ ██║██╔══██╗ ███████║██████╔╝███████║ █████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚══════╝╚═════╝ ╚══════╝ ╚════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./sd59x18/Casting.sol"; import "./sd59x18/Constants.sol"; import "./sd59x18/Conversions.sol"; import "./sd59x18/Errors.sol"; import "./sd59x18/Helpers.sol"; import "./sd59x18/Math.sol"; import "./sd59x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x must be greater than or equal to `uMIN_SD1x18`.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < uMIN_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
}
if (xInt > uMAX_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(xInt));
}
/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
}
if (xInt > int256(uint256(uMAX_UD2x18))) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(uint256(xInt)));
}
/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD59x18 x) pure returns (uint256 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
}
result = uint256(xInt);
}
/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UINT128`.
function intoUint128(SD59x18 x) pure returns (uint128 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT128))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
}
result = uint128(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD59x18 x) pure returns (uint40 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT40))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
}
result = uint40(uint256(xInt));
}
/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);
/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);
/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);
/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);
/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);
/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);
/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);
/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);
/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);
/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_SD59x18, uMIN_SD59x18, uUNIT } from "./Constants.sol";
import { PRBMath_SD59x18_Convert_Overflow, PRBMath_SD59x18_Convert_Underflow } from "./Errors.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Converts a simple integer to SD59x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be greater than or equal to `MIN_SD59x18 / UNIT`.
/// - x must be less than or equal to `MAX_SD59x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to SD59x18.
function convert(int256 x) pure returns (SD59x18 result) {
if (x < uMIN_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Underflow(x);
}
if (x > uMAX_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Overflow(x);
}
unchecked {
result = SD59x18.wrap(x * uUNIT);
}
}
/// @notice Converts an SD59x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The SD59x18 number to convert.
/// @return result The same number as a simple integer.
function convert(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x) / uUNIT;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();
/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);
/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);
/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();
/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();
/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
return wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(-x.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
unchecked {
result = wrap(-x.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_SD59x18,
uMAX_WHOLE_SD59x18,
uMIN_SD59x18,
uMIN_WHOLE_SD59x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x must be greater than `MIN_SD59x18`.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @param result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
}
result = xInt < 0 ? wrap(-xInt) : x;
}
/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
unchecked {
// This operation is equivalent to `x / 2 + y / 2`, and it can never overflow.
int256 sum = (xInt >> 1) + (yInt >> 1);
if (sum < 0) {
// If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
// rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
assembly ("memory-safe") {
result := add(sum, and(or(xInt, yInt), 1))
}
} else {
// Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
result = wrap(sum + (xInt & yInt & 1));
}
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt > uMAX_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt > 0) {
resultInt += uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @param result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xInt > uEXP_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
int256 doubleUnitProduct = xInt * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x is less than -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
// The inverse of any number less than this is truncated to zero.
if (xInt < -59_794705707972522261) {
return ZERO;
}
unchecked {
// Inline the fixed-point inversion to save gas.
result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
}
} else {
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xInt > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = uint256((xInt << 64) / uUNIT);
// It is safe to cast the result to int256 due to the checks above.
result = wrap(int256(Common.exp2(x_192x64)));
}
}
}
/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be greater than or equal to `MIN_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < uMIN_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt < 0) {
resultInt -= uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @param result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % uUNIT);
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == 0 || yInt == 0) {
return ZERO;
}
unchecked {
// Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
int256 xyInt = xInt * yInt;
if (xyInt / xInt != yInt) {
revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
}
// The product must not be negative, since complex numbers are not supported.
if (xyInt < 0) {
revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
uint256 resultUint = Common.sqrt(uint256(xyInt));
result = wrap(int256(resultUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~195_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
default { result := uMAX_SD59x18 }
}
if (result.unwrap() == uMAX_SD59x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt <= 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
unchecked {
int256 sign;
if (xInt >= uUNIT) {
sign = 1;
} else {
sign = -1;
// Inline the fixed-point inversion to save gas.
xInt = uUNIT_SQUARED / xInt;
}
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(uint256(xInt / uUNIT));
// This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
// because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
int256 resultInt = int256(n) * uUNIT;
// Calculate $y = x * 2^{-n}$.
int256 y = xInt >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultInt * sign);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
int256 DOUBLE_UNIT = 2e18;
for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultInt = resultInt + delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
resultInt *= sign;
result = wrap(resultInt);
}
}
/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xInt == 0) {
return yInt == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xInt == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yInt == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yInt == uUNIT) {
return x;
}
// Calculate the result using the formula.
result = exp2(mul(log2(x), y));
}
/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
uint256 xAbs = uint256(abs(x).unwrap());
// Calculate the first iteration of the loop in advance.
uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
uint256 yAux = y;
for (yAux >>= 1; yAux > 0; yAux >>= 1) {
xAbs = Common.mulDiv18(xAbs, xAbs);
// Equivalent to `y % 2 == 1`.
if (yAux & 1 > 0) {
resultAbs = Common.mulDiv18(resultAbs, xAbs);
}
}
// The result must fit in SD59x18.
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
}
unchecked {
// Is the base negative and the exponent odd? If yes, the result should be negative.
int256 resultInt = int256(resultAbs);
bool isNegative = x.unwrap() < 0 && y & 1 == 1;
if (isNegative) {
resultInt = -resultInt;
}
result = wrap(resultInt);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x cannot be negative, since complex numbers are not supported.
/// - x must be less than `MAX_SD59x18 / UNIT`.
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
}
if (xInt > uMAX_SD59x18 / uUNIT) {
revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
}
unchecked {
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
// In this case, the two numbers are both the square root.
uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
result = wrap(int256(resultUint));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoInt256,
Casting.intoSD1x18,
Casting.intoUD2x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Math.abs,
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.log10,
Math.log2,
Math.ln,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.uncheckedUnary,
Helpers.xor
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.or as |,
Helpers.sub as -,
Helpers.unary as -,
Helpers.xor as ^
} for SD59x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(int256(uMAX_SD1x18))) {
revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(uint64(xUint)));
}
/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uMAX_UD2x18) {
revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(xUint));
}
/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD59x18`.
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(uMAX_SD59x18)) {
revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
}
result = SD59x18.wrap(int256(xUint));
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT128`.
function intoUint128(UD60x18 x) pure returns (uint128 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT128) {
revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
}
result = uint128(xUint);
}
/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD60x18 x) pure returns (uint40 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT40) {
revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);
/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);
/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);
/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);
/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);
/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);
/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);
/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The UD60x18 number to convert.
/// @return result The same number in basic integer form.
function convert(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x) / uUNIT;
}
/// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UD60x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to UD60x18.
function convert(uint256 x) pure returns (UD60x18 result) {
if (x > uMAX_UD60x18 / uUNIT) {
revert PRBMath_UD60x18_Convert_Overflow(x);
}
unchecked {
result = UD60x18.wrap(x * uUNIT);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);
/// @notice Thrown when taking the logarithm of a number less than 1.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);
/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
// This wouldn't work if x could be negative.
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_UD60x18,
uMAX_WHOLE_UD60x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
//
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
unchecked {
result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
///
/// @param x The UD60x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint > uMAX_WHOLE_UD60x18) {
revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
}
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `UNIT - remainder`.
let delta := sub(uUNIT, remainder)
// Equivalent to `x + remainder > 0 ? delta : 0`.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @param result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xUint > uEXP_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
uint256 doubleUnitProduct = xUint * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xUint > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
}
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = (xUint << 64) / uUNIT;
// Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
result = wrap(Common.exp2(x_192x64));
}
/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `x - remainder > 0 ? remainder : 0)`.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @param result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
result := mod(x, uUNIT)
}
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
if (xUint == 0 || yUint == 0) {
return ZERO;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xyUint = xUint * yUint;
if (xyUint / xUint != yUint) {
revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
result = wrap(Common.sqrt(xyUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~196_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
default { result := uMAX_UD60x18 }
}
if (result.unwrap() == uMAX_UD60x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(xUint / uUNIT);
// This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
// n is at most 255 and UNIT is 1e18.
uint256 resultUint = n * uUNIT;
// Calculate $y = x * 2^{-n}$.
uint256 y = xUint >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultUint);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
uint256 DOUBLE_UNIT = 2e18;
for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultUint += delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
result = wrap(resultUint);
}
}
/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}
/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xUint == 0) {
return yUint == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xUint == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yUint == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yUint == uUNIT) {
return x;
}
// If x is greater than `UNIT`, use the standard formula.
if (xUint > uUNIT) {
result = exp2(mul(log2(x), y));
}
// Conversely, if x is less than `UNIT`, use the equivalent formula.
else {
UD60x18 i = wrap(uUNIT_SQUARED / xUint);
UD60x18 w = exp2(mul(log2(i), y));
result = wrap(uUNIT_SQUARED / w.unwrap());
}
}
/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
// Calculate the first iteration of the loop in advance.
uint256 xUint = x.unwrap();
uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
for (y >>= 1; y > 0; y >>= 1) {
xUint = Common.mulDiv18(xUint, xUint);
// Equivalent to `y % 2 == 1`.
if (y & 1 > 0) {
resultUint = Common.mulDiv18(resultUint, xUint);
}
}
result = wrap(resultUint);
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must be less than `MAX_UD60x18 / UNIT`.
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
unchecked {
if (xUint > uMAX_UD60x18 / uUNIT) {
revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
}
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
// In this case, the two numbers are both the square root.
result = wrap(Common.sqrt(xUint * uUNIT));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoUD2x18,
Casting.intoSD59x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.ln,
Math.log10,
Math.log2,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.xor
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.or as |,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.sub as -,
Helpers.xor as ^
} for UD60x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round the result toward zero.
uint256 roundedResult = x / result;
if (result >= roundedResult) {
result = roundedResult;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);
/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int256 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD2x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for SD1x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);
/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD2x18.
uint256 constant uUNIT = 1e18;
UD2x18 constant UNIT = UD2x18.wrap(1e18);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for UD2x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";
/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}
/// @notice Casts an SD1x18 number into UD2x18.
/// - x must be positive.
function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
}
result = UD2x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD1x18 x) pure returns (uint256 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
}
result = uint256(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
function intoUint128(SD1x18 x) pure returns (uint128 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
}
result = uint128(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD1x18 x) pure returns (uint40 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
}
if (xInt > int64(uint64(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
}
result = uint40(uint64(xInt));
}
/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
result = SD1x18.unwrap(x);
}
/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";
/// @notice Casts a UD2x18 number into SD1x18.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) {
uint64 xUint = UD2x18.unwrap(x);
if (xUint > uint64(uMAX_SD1x18)) {
revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(xUint));
}
/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}
/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
result = uint128(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
result = uint256(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD2x18 x) pure returns (uint40 result) {
uint64 xUint = UD2x18.unwrap(x);
if (xUint > uint64(Common.MAX_UINT40)) {
revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}
/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
result = UD2x18.unwrap(x);
}
/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18.
error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18.
error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x);
/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);{
"remappings": [
"@napier/v1-pool/=lib/v1-pool/",
"forge-std/=lib/forge-std/src/",
"@napier/v1-tranche/=lib/v1-pool/lib/napier-v1/",
"@openzeppelin/[email protected]/=lib/v1-pool/lib/openzeppelin-contracts/contracts/",
"@prb/math/=lib/v1-pool/lib/prb-math/src/",
"@prb/test/=lib/v1-pool/lib/prb-math/lib/prb-test/src/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/v1-pool/lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"foundry-vyper/=lib/v1-pool/lib/foundry-vyper/src/",
"hardhat-deployer/=lib/v1-pool/lib/hardhat-deployer/src/",
"napier-v1/=lib/v1-pool/lib/napier-v1/",
"openzeppelin-contracts/=lib/v1-pool/lib/openzeppelin-contracts/",
"openzeppelin/=lib/v1-pool/lib/openzeppelin-contracts/contracts/",
"prb-math/=lib/v1-pool/lib/prb-math/src/",
"prb-test/=lib/v1-pool/lib/prb-math/lib/prb-test/src/",
"tricrypto-ng/=lib/v1-pool/lib/tricrypto-ng/contracts/",
"v1-pool/=lib/v1-pool/"
],
"optimizer": {
"enabled": true,
"runs": 10000000
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract MetapoolFactory","name":"_metapoolFactory","type":"address"},{"internalType":"contract INapierPool","name":"_triLSTPool","type":"address"},{"internalType":"contract IVault","name":"_vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApproxBinarySearchInputInvalid","type":"error"},{"inputs":[],"name":"ApproxFail","type":"error"},{"inputs":[],"name":"FailedToSendEther","type":"error"},{"inputs":[],"name":"MetapoolRouterExceededLimitETHIn","type":"error"},{"inputs":[],"name":"MetapoolRouterInsufficientETHOut","type":"error"},{"inputs":[],"name":"MetapoolRouterInsufficientETHReceived","type":"error"},{"inputs":[],"name":"MetapoolRouterInsufficientYtOut","type":"error"},{"inputs":[],"name":"MetapoolRouterInvalidMetapool","type":"error"},{"inputs":[],"name":"MetapoolRouterNonSituationSwapETHForYt","type":"error"},{"inputs":[],"name":"MetapoolRouterTransactionTooOld","type":"error"},{"inputs":[],"name":"NotWETH","type":"error"},{"inputs":[],"name":"WETH9","outputs":[{"internalType":"contract IWETH9","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"metapool","type":"address"},{"internalType":"uint256","name":"minLiquidity","type":"uint256"},{"internalType":"uint256","name":"minYt","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"addLiquidityOneETHKeepYt","outputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"metapoolFactory","outputs":[{"internalType":"contract MetapoolFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"uint256[]","name":"feeAmounts","type":"uint256[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"receiveFlashLoan","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"metapool","type":"address"},{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint256","name":"minEthOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"removeLiquidityOneETH","outputs":[{"internalType":"uint256","name":"ethOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"metapool","type":"address"},{"internalType":"uint256","name":"ptAmount","type":"uint256"},{"internalType":"uint256","name":"maxEthSpent","type":"uint256"},{"internalType":"uint256","name":"minPtOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"swapETHForPt","outputs":[{"internalType":"uint256","name":"ethSpent","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"metapool","type":"address"},{"internalType":"uint256","name":"ytAmount","type":"uint256"},{"internalType":"uint256","name":"maxEthSpent","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"components":[{"internalType":"uint256","name":"guessMin","type":"uint256"},{"internalType":"uint256","name":"guessMax","type":"uint256"},{"internalType":"uint256","name":"maxIteration","type":"uint256"},{"internalType":"uint256","name":"eps","type":"uint256"}],"internalType":"struct ApproxParams","name":"approx","type":"tuple"}],"name":"swapETHForYt","outputs":[{"internalType":"uint256","name":"ethSpent","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"metapool","type":"address"},{"internalType":"uint256","name":"ptAmount","type":"uint256"},{"internalType":"uint256","name":"minEthOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"swapPtForETH","outputs":[{"internalType":"uint256","name":"ethOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"triLSTPool","outputs":[{"internalType":"contract INapierPool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tricryptoLST","outputs":[{"internalType":"contract CurveTricryptoOptimizedWETH","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
61012060405234801562000011575f80fd5b5060405162003f7a38038062003f7a833981016040819052620000349162000828565b60015f556001600160a01b0380841660a081905283821660e05290821661010052604080516312a9293f60e21b81529051634aa4a4fc916004808201926020929091908290030181865afa1580156200008f573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190620000b591906200088b565b6001600160a01b03166080816001600160a01b031681525050816001600160a01b031663a0171ef56040518163ffffffff1660e01b8152600401602060405180830381865afa1580156200010b573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906200013191906200088b565b6001600160a01b031660c0816001600160a01b0316815250505f8060c0516001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa1580156200018b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190620001b191906200088b565b60c0516040516001600160a01b03918216602482015291169060440160408051601f198184030181529181526020820180516001600160e01b0316639ac90d3d60e01b17905251620002049190620008d4565b5f60405180830381855afa9150503d805f81146200023e576040519150601f19603f3d011682016040523d82523d5f602084013e62000243565b606091505b50915091508162000252575f80fd5b5f81806020019051810190620002699190620008f1565b805160c05160405163095ea7b360e01b81526001600160a01b0391821660048201525f196024820152929350169063095ea7b3906044016020604051808303815f875af1158015620002bd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190620002e3919062000985565b50602081015160c05160405163095ea7b360e01b81526001600160a01b0391821660048201525f19602482015291169063095ea7b3906044016020604051808303815f875af115801562000339573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906200035f919062000985565b5060408082015160c051915163095ea7b360e01b81526001600160a01b0392831660048201525f19602482015291169063095ea7b3906044016020604051808303815f875af1158015620003b5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190620003db919062000985565b50620003f460805160e0515f196200041860201b60201c565b6200040c60c05160e0515f196200041860201b60201c565b505050505050620009da565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b0390811663095ea7b360e01b17909152620004729085908390620004ed16565b620004e7576040516001600160a01b03841660248201525f6044820152620004db90859063095ea7b360e01b9060640160408051808303601f190181529190526020810180516001600160e01b0319939093166001600160e01b03938416179052906200059716565b620004e7848262000597565b50505050565b5f805f846001600160a01b0316846040516200050a9190620008d4565b5f604051808303815f865af19150503d805f811462000545576040519150601f19603f3d011682016040523d82523d5f602084013e6200054a565b606091505b5091509150818015620005785750805115806200057857508080602001905181019062000578919062000985565b80156200058e57506001600160a01b0385163b15155b95945050505050565b6040805180820190915260208082527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564908201525f90620005e5906001600160a01b03851690849062000672565b905080515f14806200060857508080602001905181019062000608919062000985565b6200066d5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084015b60405180910390fd5b505050565b60606200068284845f856200068a565b949350505050565b606082471015620006ed5760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b606482015260840162000664565b5f80866001600160a01b031685876040516200070a9190620008d4565b5f6040518083038185875af1925050503d805f811462000746576040519150601f19603f3d011682016040523d82523d5f602084013e6200074b565b606091505b5090925090506200075f878383876200076a565b979650505050505050565b60608315620007dd5782515f03620007d5576001600160a01b0385163b620007d55760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640162000664565b508162000682565b620006828383815115620007f45781518083602001fd5b8060405162461bcd60e51b8152600401620006649190620009a6565b6001600160a01b038116811462000825575f80fd5b50565b5f805f606084860312156200083b575f80fd5b8351620008488162000810565b60208501519093506200085b8162000810565b60408501519092506200086e8162000810565b809150509250925092565b8051620008868162000810565b919050565b5f602082840312156200089c575f80fd5b8151620008a98162000810565b9392505050565b5f5b83811015620008cc578181015183820152602001620008b2565b50505f910152565b5f8251620008e7818460208701620008b0565b9190910192915050565b5f6060828403121562000902575f80fd5b82601f83011262000911575f80fd5b604051606081016001600160401b03811182821017156200094057634e487b7160e01b5f52604160045260245ffd5b60405280606084018581111562000955575f80fd5b845b818110156200097a576200096b8162000879565b83526020928301920162000957565b509195945050505050565b5f6020828403121562000996575f80fd5b81518015158114620008a9575f80fd5b602081525f8251806020840152620009c6816040850160208701620008b0565b601f01601f19169190910160400192915050565b60805160a05160c05160e051610100516134d062000aaa5f395f81816102e00152610b8d01525f81816102160152818161075801528181610ebc015281816118690152611da401525f61026801525f81816101e30152818161038d015281816108bf01528181610ca001528181611002015261169a01525f818160d80152818161018b01528181610a8f0152818161114c0152818161117e0152818161122401528181611a1401528181611a4701528181611aed015281816120120152818161220001526124d301526134d05ff3fe6080604052600436106100bb575f3560e01c806375cf294d11610071578063edde8bdd1161004c578063edde8bdd1461029d578063f04f2707146102b0578063fbfa77cf146102cf575f80fd5b806375cf294d1461023857806378150fb814610257578063b60e66041461028a575f80fd5b80634aa4a4fc116100a15780634aa4a4fc1461017a57806354ea3a86146101d25780636267168314610205575f80fd5b80633b404f561461013557806349318ac314610167575f80fd5b36610131573373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000161461012f576040517f5724f38500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b005b5f80fd5b348015610140575f80fd5b5061015461014f366004612c83565b610302565b6040519081526020015b60405180910390f35b610154610175366004612cd1565b610834565b348015610185575f80fd5b506101ad7f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200161015e565b3480156101dd575f80fd5b506101ad7f000000000000000000000000000000000000000000000000000000000000000081565b348015610210575f80fd5b506101ad7f000000000000000000000000000000000000000000000000000000000000000081565b348015610243575f80fd5b50610154610252366004612c83565b610c15565b348015610262575f80fd5b506101ad7f000000000000000000000000000000000000000000000000000000000000000081565b610154610298366004612c83565b610f77565b6101546102ab366004612d59565b61160f565b3480156102bb575f80fd5b5061012f6102ca366004612dfb565b6119e6565b3480156102da575f80fd5b506101ad7f000000000000000000000000000000000000000000000000000000000000000081565b5f61030b6120c0565b8180421115610346576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808916600483015288917f000000000000000000000000000000000000000000000000000000000000000090911690635128abae90602401602060405180830381865afa1580156103d4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103f89190612ee0565b61042e576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f600482018190529073ffffffffffffffffffffffffffffffffffffffff8a169063c661065790602401602060405180830381865afa158015610499573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104bd9190612f16565b90506104cb8933308b612136565b8073ffffffffffffffffffffffffffffffffffffffff1663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa158015610514573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105389190612f31565b4210610682576040517ff1dc3cc9000000000000000000000000000000000000000000000000000000008152600481018990525f60248201819052604482018190529073ffffffffffffffffffffffffffffffffffffffff8b169063f1dc3cc9906064016020604051808303815f875af11580156105b8573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105dc9190612f31565b6040517fba087652000000000000000000000000000000000000000000000000000000008152600481018290523060248201819052604482015290915073ffffffffffffffffffffffffffffffffffffffff83169063ba087652906064016020604051808303815f875af1158015610656573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061067a9190612f31565b9450506107db565b6040517ff1dc3cc900000000000000000000000000000000000000000000000000000000815260048101899052600160248201525f604482018190529073ffffffffffffffffffffffffffffffffffffffff8b169063f1dc3cc9906064016020604051808303815f875af11580156106fc573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107209190612f31565b6040517f2390154f000000000000000000000000000000000000000000000000000000008152600481018290523060248201529091507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1690632390154f906044016020604051808303815f875af11580156107b3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107d79190612f31565b9450505b83871115610815576040517feca4bc1a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61081f86856121d1565b50505061082b60015f55565b95945050505050565b5f61083d6120c0565b8280421115610878576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808a16600483015289917f000000000000000000000000000000000000000000000000000000000000000090911690635128abae90602401602060405180830381865afa158015610906573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061092a9190612ee0565b610960576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f600482018190529073ffffffffffffffffffffffffffffffffffffffff8b169063c661065790602401602060405180830381865afa1580156109cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109ef9190612f16565b905034881115610a2b576040517fbf35eb4300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f610a45828b610a40368a90038a018a612f48565b61227a565b9050305f5d6040805160018082528183019092525f916020808301908036833750506040805160018082528183019092529293505f929150602080830190803683370190505090507f0000000000000000000000000000000000000000000000000000000000000000825f81518110610ac057610ac0612fd1565b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505082815f81518110610b0d57610b0d612fd1565b6020026020010181815250508c60025d73ffffffffffffffffffffffffffffffffffffffff841660035d3360045d3460055d8a60065d8960075d610b50346124d1565b6040517f5c38449e00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001690635c38449e90610bc690309086908690600401612ffe565b5f604051808303815f87803b158015610bdd575f80fd5b505af1158015610bef573d5f803e3d5ffd5b5050505060015c96505f60015d505050505050610c0b60015f55565b9695505050505050565b5f610c1e6120c0565b8180421115610c59576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808916600483015288917f000000000000000000000000000000000000000000000000000000000000000090911690635128abae90602401602060405180830381865afa158015610ce7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d0b9190612ee0565b610d41576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f6004820152610dd99073ffffffffffffffffffffffffffffffffffffffff8a169063c661065790602401602060405180830381865afa158015610dad573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dd19190612f16565b338a8a612136565b6040517f767691e70000000000000000000000000000000000000000000000000000000081525f600482018190526001602483015260448201899052606482018190523060848301529073ffffffffffffffffffffffffffffffffffffffff8a169063767691e79060a4016020604051808303815f875af1158015610e60573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e849190612f31565b6040517f2390154f000000000000000000000000000000000000000000000000000000008152600481018290523060248201529091507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1690632390154f906044016020604051808303815f875af1158015610f17573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f3b9190612f31565b935083871115610815576040517feca4bc1a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f610f806120c0565b8180421115610fbb576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808916600483015288917f000000000000000000000000000000000000000000000000000000000000000090911690635128abae90602401602060405180830381865afa158015611049573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061106d9190612ee0565b6110a3576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6110ac346124d1565b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f600482018190529073ffffffffffffffffffffffffffffffffffffffff8a169063c661065790602401602060405180830381865afa158015611117573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061113b9190612f16565b602081905263a8fe4407600c9081527f00000000000000000000000000000000000000000000000000000000000000005f526034902054909150611290576111b97f0000000000000000000000000000000000000000000000000000000000000000828060205263a8fe4407600c52815f5260016034600c20555050565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82811660048301527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60248301527f0000000000000000000000000000000000000000000000000000000000000000169063095ea7b3906044016020604051808303815f875af115801561126a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061128e9190612ee0565b505b6040517f867904b40000000000000000000000000000000000000000000000000000000081523060048201523460248201525f9073ffffffffffffffffffffffffffffffffffffffff83169063867904b4906044016020604051808303815f875af1158015611301573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113259190612f31565b905087811015611361576040517f3dbb7e8700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60208a905263a8fe4407600c9081525f83905260349020546114545761139d828b8060205263a8fe4407600c52815f5260016034600c20555050565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8b811660048301527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff602483015283169063095ea7b3906044016020604051808303815f875af115801561142e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114529190612ee0565b505b6040805180820182528281525f602082015290517f0c3e4b5400000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8c1691630c3e4b54916114ba91908d908c906004016130a5565b6020604051808303815f875af11580156114d6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114fa9190612f31565b94508173ffffffffffffffffffffffffffffffffffffffff166376d5de856040518163ffffffff1660e01b8152600401602060405180830381865afa158015611545573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115699190612f16565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff898116600483015260248201849052919091169063a9059cbb906044016020604051808303815f875af11580156115dd573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116019190612ee0565b505050505061082b60015f55565b5f6116186120c0565b8180421115611653576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808a16600483015289917f000000000000000000000000000000000000000000000000000000000000000090911690635128abae90602401602060405180830381865afa1580156116e1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117059190612ee0565b61173b576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f37ed3a7a000000000000000000000000000000000000000000000000000000008152600160048201525f60248201819052604482018a90529073ffffffffffffffffffffffffffffffffffffffff8b16906337ed3a7a90606401602060405180830381865afa1580156117b4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117d89190612f31565b905034881115611814576040517fbf35eb4300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61181d346124d1565b6040517f3a19e2300000000000000000000000000000000000000000000000000000000081526004810182905273ffffffffffffffffffffffffffffffffffffffff8b811660248301527f00000000000000000000000000000000000000000000000000000000000000001690633a19e230906044016020604051808303815f875af11580156118af573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906118d39190612f31565b6040517f767691e7000000000000000000000000000000000000000000000000000000008152600160048201525f6024820152604481018390526064810189905273ffffffffffffffffffffffffffffffffffffffff8881166084830152919550908b169063767691e79060a4016020604051808303815f875af115801561195d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119819190612f31565b50878411156119bc576040517f96e9d4fa00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f6119c78534613126565b905080156119d9576119d933826121d1565b50505050610c0b60015f55565b5f5c5f805d3081146119ff57635c5019415f526004601cfd5b5060035c602081905263a8fe4407600c9081527f00000000000000000000000000000000000000000000000000000000000000005f52603490205460025c90611b5957611a827f0000000000000000000000000000000000000000000000000000000000000000838060205263a8fe4407600c52815f5260016034600c20555050565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff83811660048301527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60248301527f0000000000000000000000000000000000000000000000000000000000000000169063095ea7b3906044016020604051808303815f875af1158015611b33573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b579190612ee0565b505b5f88885f818110611b6c57611b6c612fd1565b6040517f867904b4000000000000000000000000000000000000000000000000000000008152306004820152602090910292909201356024830181905292505f9173ffffffffffffffffffffffffffffffffffffffff8616915063867904b4906044016020604051808303815f875af1158015611beb573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c0f9190612f31565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152602482018390529192509085169063a9059cbb906044016020604051808303815f875af1158015611c85573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ca99190612ee0565b506040517f767691e70000000000000000000000000000000000000000000000000000000081525f600482018190526001602483015260448201839052606482018190523060848301529073ffffffffffffffffffffffffffffffffffffffff85169063767691e79060a4016020604051808303815f875af1158015611d31573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d559190612f31565b6040517f2390154f000000000000000000000000000000000000000000000000000000008152600481018290523060248201529091505f9073ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001690632390154f906044016020604051808303815f875af1158015611dea573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e0e9190612f31565b905083811115611e4a576040517f854911e300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8a8a5f818110611e5d57611e5d612fd1565b9050602002013585611e6f9190613139565b90505f611e7c8383613126565b905060065c811115611eba576040517f96e9d4fa00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8060015d8773ffffffffffffffffffffffffffffffffffffffff166376d5de856040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f07573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f2b9190612f16565b73ffffffffffffffffffffffffffffffffffffffff1663a9059cbb60075c6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff9091166004820152602481018890526044016020604051808303815f875af1158015611fb8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611fdc9190612ee0565b506040517fa9059cbb000000000000000000000000000000000000000000000000000000008152336004820152602481018390527f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff169063a9059cbb906044016020604051808303815f875af115801561206d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120919190612ee0565b505f61209f8260055c613126565b90506120ad60045c826121d1565b5050505050505050505050505050505050565b60025f5403612130576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b60025f55565b6040805173ffffffffffffffffffffffffffffffffffffffff85811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd000000000000000000000000000000000000000000000000000000001790526121cb908590612551565b50505050565b6040517f2e1a7d4d000000000000000000000000000000000000000000000000000000008152600481018290527f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1690632e1a7d4d906024015f604051808303815f87803b158015612256575f80fd5b505af1158015612268573d5f803e3d5ffd5b505050506122768282612663565b5050565b5f815f0151826020015110156122bc576040517f364de99200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b81606001515f036122d55766b1a2bc2ec5000060608301525b81604001515f036122e857606460408301525b5f8473ffffffffffffffffffffffffffffffffffffffff1663e6432a346040518163ffffffff1660e01b815260040161010060405180830381865afa158015612333573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123579190613163565b90505f816060015173ffffffffffffffffffffffffffffffffffffffff1663f51e181a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156123a7573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123cb9190612f31565b90505f60405180608001604052808873ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015612422573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906124469190613242565b60ff1681526020018381526020016124628560a0015185612713565b815260c085015167ffffffffffffffff1660209091015290505f6124b761248a846001613139565b6124949089613262565b6127106124a36101f482613126565b85604001516124b29190613262565b61272c565b90506124c58288838961276e565b98975050505050505050565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663d0e30db0826040518263ffffffff1660e01b81526004015f604051808303818588803b158015612537575f80fd5b505af1158015612549573d5f803e3d5ffd5b505050505050565b5f6125b2826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff166128f79092919063ffffffff16565b905080515f14806125d25750808060200190518101906125d29190612ee0565b61265e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401612127565b505050565b604080515f8082526020820190925273ffffffffffffffffffffffffffffffffffffffff8416908390604051612699919061329b565b5f6040518083038185875af1925050503d805f81146126d3576040519150601f19603f3d011682016040523d82523d5f602084013e6126d8565b606091505b505090508061265e576040517fdcf35db000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8183116127215781612723565b825b90505b92915050565b5f827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048411830215820261275f575f80fd5b50910281810615159190040190565b83515f90819061277f90600a6133d4565b90505f612795868860200151896040015161272c565b90505f6127a28387613139565b8551909150156127bb5784516127b89083612713565b91505b6020850151156127d6576127d3856020015182612905565b90505b5f805b866040015181146128bc5760026127f08486613139565b6127fa91906133df565b91505f6128078b84612913565b90505f61282f8b61282084670de0b6b3a7640000613262565b61282a91906133df565b612950565b61284190670de0b6b3a7640000613417565b90508a821015801561286757508061285c8a60600151612950565b6128659061343d565b125b1561287b57839750505050505050506128ef565b84861480612892575084612890876001613139565b145b1561289e5750506128bc565b5f8113156128ae578395506128b2565b8394505b50506001016127d9565b506040517ffa711db200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b949350505050565b60606128ef84845f85612a05565b5f8183106127215781612723565b5f8061292683856060015161271061272c565b90505f6129406129368386613126565b8660200151612b1a565b905061082b818660400151612b2e565b5f7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821115612a01576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f53616665436173743a2076616c756520646f65736e27742066697420696e206160448201527f6e20696e743235360000000000000000000000000000000000000000000000006064820152608401612127565b5090565b606082471015612a97576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401612127565b5f808673ffffffffffffffffffffffffffffffffffffffff168587604051612abf919061329b565b5f6040518083038185875af1925050503d805f8114612af9576040519150601f19603f3d011682016040523d82523d5f602084013e612afe565b606091505b5091509150612b0f87838387612b42565b979650505050505050565b5f61272383670de0b6b3a764000084612be1565b5f6127238383670de0b6b3a7640000612be1565b60608315612bd75782515f03612bd05773ffffffffffffffffffffffffffffffffffffffff85163b612bd0576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401612127565b50816128ef565b6128ef8383612c1b565b5f827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0484118302158202612c14575f80fd5b5091020490565b815115612c2b5781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016121279190613473565b73ffffffffffffffffffffffffffffffffffffffff81168114612c80575f80fd5b50565b5f805f805f60a08688031215612c97575f80fd5b8535612ca281612c5f565b945060208601359350604086013592506060860135612cc081612c5f565b949793965091946080013592915050565b5f805f805f80868803610120811215612ce8575f80fd5b8735612cf381612c5f565b965060208801359550604088013594506060880135612d1181612c5f565b935060808881013593507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6082011215612d48575f80fd5b5060a0870190509295509295509295565b5f805f805f8060c08789031215612d6e575f80fd5b8635612d7981612c5f565b95506020870135945060408701359350606087013592506080870135612d9e81612c5f565b8092505060a087013590509295509295509295565b5f8083601f840112612dc3575f80fd5b50813567ffffffffffffffff811115612dda575f80fd5b6020830191508360208260051b8501011115612df4575f80fd5b9250929050565b5f805f805f805f806080898b031215612e12575f80fd5b883567ffffffffffffffff80821115612e29575f80fd5b612e358c838d01612db3565b909a50985060208b0135915080821115612e4d575f80fd5b612e598c838d01612db3565b909850965060408b0135915080821115612e71575f80fd5b612e7d8c838d01612db3565b909650945060608b0135915080821115612e95575f80fd5b818b0191508b601f830112612ea8575f80fd5b813581811115612eb6575f80fd5b8c6020828501011115612ec7575f80fd5b6020830194508093505050509295985092959890939650565b5f60208284031215612ef0575f80fd5b81518015158114612eff575f80fd5b9392505050565b8051612f1181612c5f565b919050565b5f60208284031215612f26575f80fd5b8151612eff81612c5f565b5f60208284031215612f41575f80fd5b5051919050565b5f60808284031215612f58575f80fd5b6040516080810181811067ffffffffffffffff82111715612fa0577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b8060405250823581526020830135602082015260408301356040820152606083013560608201528091505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f6080820173ffffffffffffffffffffffffffffffffffffffff8087168452602060808186015282875180855260a08701915082890194505f5b81811015613056578551851683529483019491830191600101613038565b505085810360408701528651808252908201935091508086015f5b8381101561308d57815185529382019390820190600101613071565b5050505082810360608401525f815260208101610c0b565b6080810181855f5b60028110156130cc5781518352602092830192909101906001016130ad565b50505083604083015273ffffffffffffffffffffffffffffffffffffffff83166060830152949350505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b81810381811115612726576127266130f9565b80820180821115612726576127266130f9565b805167ffffffffffffffff81168114612f11575f80fd5b5f610100808385031215613175575f80fd5b6040519081019067ffffffffffffffff821181831017156131bd577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b81604052835191506131ce82612c5f565b8181526131dd60208501612f06565b60208201526131ee60408501612f06565b60408201526131ff60608501612f06565b60608201526080840151608082015260a084015160a082015261322460c0850161314c565b60c082015261323560e0850161314c565b60e0820152949350505050565b5f60208284031215613252575f80fd5b815160ff81168114612eff575f80fd5b8082028115828204841417612726576127266130f9565b5f5b8381101561329357818101518382015260200161327b565b50505f910152565b5f82516132ac818460208701613279565b9190910192915050565b600181815b8085111561330f57817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048211156132f5576132f56130f9565b8085161561330257918102915b93841c93908002906132bb565b509250929050565b5f8261332557506001612726565b8161333157505f612726565b816001811461334757600281146133515761336d565b6001915050612726565b60ff841115613362576133626130f9565b50506001821b612726565b5060208310610133831016604e8410600b8410161715613390575081810a612726565b61339a83836132b6565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048211156133cc576133cc6130f9565b029392505050565b5f6127238383613317565b5f82613412577f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b500490565b8181035f831280158383131683831282161715613436576134366130f9565b5092915050565b5f7f8000000000000000000000000000000000000000000000000000000000000000820361346d5761346d6130f9565b505f0390565b602081525f8251806020840152613491816040850160208701613279565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016919091016040019291505056fea164736f6c6343000818000a000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e6750000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b821000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Deployed Bytecode
0x6080604052600436106100bb575f3560e01c806375cf294d11610071578063edde8bdd1161004c578063edde8bdd1461029d578063f04f2707146102b0578063fbfa77cf146102cf575f80fd5b806375cf294d1461023857806378150fb814610257578063b60e66041461028a575f80fd5b80634aa4a4fc116100a15780634aa4a4fc1461017a57806354ea3a86146101d25780636267168314610205575f80fd5b80633b404f561461013557806349318ac314610167575f80fd5b36610131573373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2161461012f576040517f5724f38500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b005b5f80fd5b348015610140575f80fd5b5061015461014f366004612c83565b610302565b6040519081526020015b60405180910390f35b610154610175366004612cd1565b610834565b348015610185575f80fd5b506101ad7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc281565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200161015e565b3480156101dd575f80fd5b506101ad7f000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e67581565b348015610210575f80fd5b506101ad7f0000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b82181565b348015610243575f80fd5b50610154610252366004612c83565b610c15565b348015610262575f80fd5b506101ad7f000000000000000000000000f7e009b8111c09a906d1d84938745b9edeedfdde81565b610154610298366004612c83565b610f77565b6101546102ab366004612d59565b61160f565b3480156102bb575f80fd5b5061012f6102ca366004612dfb565b6119e6565b3480156102da575f80fd5b506101ad7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c881565b5f61030b6120c0565b8180421115610346576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808916600483015288917f000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e67590911690635128abae90602401602060405180830381865afa1580156103d4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103f89190612ee0565b61042e576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f600482018190529073ffffffffffffffffffffffffffffffffffffffff8a169063c661065790602401602060405180830381865afa158015610499573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104bd9190612f16565b90506104cb8933308b612136565b8073ffffffffffffffffffffffffffffffffffffffff1663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa158015610514573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105389190612f31565b4210610682576040517ff1dc3cc9000000000000000000000000000000000000000000000000000000008152600481018990525f60248201819052604482018190529073ffffffffffffffffffffffffffffffffffffffff8b169063f1dc3cc9906064016020604051808303815f875af11580156105b8573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105dc9190612f31565b6040517fba087652000000000000000000000000000000000000000000000000000000008152600481018290523060248201819052604482015290915073ffffffffffffffffffffffffffffffffffffffff83169063ba087652906064016020604051808303815f875af1158015610656573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061067a9190612f31565b9450506107db565b6040517ff1dc3cc900000000000000000000000000000000000000000000000000000000815260048101899052600160248201525f604482018190529073ffffffffffffffffffffffffffffffffffffffff8b169063f1dc3cc9906064016020604051808303815f875af11580156106fc573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107209190612f31565b6040517f2390154f000000000000000000000000000000000000000000000000000000008152600481018290523060248201529091507f0000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b82173ffffffffffffffffffffffffffffffffffffffff1690632390154f906044016020604051808303815f875af11580156107b3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107d79190612f31565b9450505b83871115610815576040517feca4bc1a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61081f86856121d1565b50505061082b60015f55565b95945050505050565b5f61083d6120c0565b8280421115610878576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808a16600483015289917f000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e67590911690635128abae90602401602060405180830381865afa158015610906573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061092a9190612ee0565b610960576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f600482018190529073ffffffffffffffffffffffffffffffffffffffff8b169063c661065790602401602060405180830381865afa1580156109cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109ef9190612f16565b905034881115610a2b576040517fbf35eb4300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f610a45828b610a40368a90038a018a612f48565b61227a565b9050305f5d6040805160018082528183019092525f916020808301908036833750506040805160018082528183019092529293505f929150602080830190803683370190505090507f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2825f81518110610ac057610ac0612fd1565b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505082815f81518110610b0d57610b0d612fd1565b6020026020010181815250508c60025d73ffffffffffffffffffffffffffffffffffffffff841660035d3360045d3460055d8a60065d8960075d610b50346124d1565b6040517f5c38449e00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c81690635c38449e90610bc690309086908690600401612ffe565b5f604051808303815f87803b158015610bdd575f80fd5b505af1158015610bef573d5f803e3d5ffd5b5050505060015c96505f60015d505050505050610c0b60015f55565b9695505050505050565b5f610c1e6120c0565b8180421115610c59576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808916600483015288917f000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e67590911690635128abae90602401602060405180830381865afa158015610ce7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d0b9190612ee0565b610d41576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f6004820152610dd99073ffffffffffffffffffffffffffffffffffffffff8a169063c661065790602401602060405180830381865afa158015610dad573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dd19190612f16565b338a8a612136565b6040517f767691e70000000000000000000000000000000000000000000000000000000081525f600482018190526001602483015260448201899052606482018190523060848301529073ffffffffffffffffffffffffffffffffffffffff8a169063767691e79060a4016020604051808303815f875af1158015610e60573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e849190612f31565b6040517f2390154f000000000000000000000000000000000000000000000000000000008152600481018290523060248201529091507f0000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b82173ffffffffffffffffffffffffffffffffffffffff1690632390154f906044016020604051808303815f875af1158015610f17573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f3b9190612f31565b935083871115610815576040517feca4bc1a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f610f806120c0565b8180421115610fbb576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808916600483015288917f000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e67590911690635128abae90602401602060405180830381865afa158015611049573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061106d9190612ee0565b6110a3576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6110ac346124d1565b6040517fc66106570000000000000000000000000000000000000000000000000000000081525f600482018190529073ffffffffffffffffffffffffffffffffffffffff8a169063c661065790602401602060405180830381865afa158015611117573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061113b9190612f16565b602081905263a8fe4407600c9081527f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc25f526034902054909150611290576111b97f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2828060205263a8fe4407600c52815f5260016034600c20555050565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82811660048301527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60248301527f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2169063095ea7b3906044016020604051808303815f875af115801561126a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061128e9190612ee0565b505b6040517f867904b40000000000000000000000000000000000000000000000000000000081523060048201523460248201525f9073ffffffffffffffffffffffffffffffffffffffff83169063867904b4906044016020604051808303815f875af1158015611301573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113259190612f31565b905087811015611361576040517f3dbb7e8700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60208a905263a8fe4407600c9081525f83905260349020546114545761139d828b8060205263a8fe4407600c52815f5260016034600c20555050565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8b811660048301527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff602483015283169063095ea7b3906044016020604051808303815f875af115801561142e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114529190612ee0565b505b6040805180820182528281525f602082015290517f0c3e4b5400000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8c1691630c3e4b54916114ba91908d908c906004016130a5565b6020604051808303815f875af11580156114d6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114fa9190612f31565b94508173ffffffffffffffffffffffffffffffffffffffff166376d5de856040518163ffffffff1660e01b8152600401602060405180830381865afa158015611545573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115699190612f16565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff898116600483015260248201849052919091169063a9059cbb906044016020604051808303815f875af11580156115dd573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116019190612ee0565b505050505061082b60015f55565b5f6116186120c0565b8180421115611653576040517f460229df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5128abae00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff808a16600483015289917f000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e67590911690635128abae90602401602060405180830381865afa1580156116e1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117059190612ee0565b61173b576040517f8ebe7d5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f37ed3a7a000000000000000000000000000000000000000000000000000000008152600160048201525f60248201819052604482018a90529073ffffffffffffffffffffffffffffffffffffffff8b16906337ed3a7a90606401602060405180830381865afa1580156117b4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117d89190612f31565b905034881115611814576040517fbf35eb4300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61181d346124d1565b6040517f3a19e2300000000000000000000000000000000000000000000000000000000081526004810182905273ffffffffffffffffffffffffffffffffffffffff8b811660248301527f0000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b8211690633a19e230906044016020604051808303815f875af11580156118af573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906118d39190612f31565b6040517f767691e7000000000000000000000000000000000000000000000000000000008152600160048201525f6024820152604481018390526064810189905273ffffffffffffffffffffffffffffffffffffffff8881166084830152919550908b169063767691e79060a4016020604051808303815f875af115801561195d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119819190612f31565b50878411156119bc576040517f96e9d4fa00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f6119c78534613126565b905080156119d9576119d933826121d1565b50505050610c0b60015f55565b5f5c5f805d3081146119ff57635c5019415f526004601cfd5b5060035c602081905263a8fe4407600c9081527f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc25f52603490205460025c90611b5957611a827f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2838060205263a8fe4407600c52815f5260016034600c20555050565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff83811660048301527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60248301527f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2169063095ea7b3906044016020604051808303815f875af1158015611b33573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b579190612ee0565b505b5f88885f818110611b6c57611b6c612fd1565b6040517f867904b4000000000000000000000000000000000000000000000000000000008152306004820152602090910292909201356024830181905292505f9173ffffffffffffffffffffffffffffffffffffffff8616915063867904b4906044016020604051808303815f875af1158015611beb573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c0f9190612f31565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152602482018390529192509085169063a9059cbb906044016020604051808303815f875af1158015611c85573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ca99190612ee0565b506040517f767691e70000000000000000000000000000000000000000000000000000000081525f600482018190526001602483015260448201839052606482018190523060848301529073ffffffffffffffffffffffffffffffffffffffff85169063767691e79060a4016020604051808303815f875af1158015611d31573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d559190612f31565b6040517f2390154f000000000000000000000000000000000000000000000000000000008152600481018290523060248201529091505f9073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b8211690632390154f906044016020604051808303815f875af1158015611dea573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e0e9190612f31565b905083811115611e4a576040517f854911e300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8a8a5f818110611e5d57611e5d612fd1565b9050602002013585611e6f9190613139565b90505f611e7c8383613126565b905060065c811115611eba576040517f96e9d4fa00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8060015d8773ffffffffffffffffffffffffffffffffffffffff166376d5de856040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f07573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f2b9190612f16565b73ffffffffffffffffffffffffffffffffffffffff1663a9059cbb60075c6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff9091166004820152602481018890526044016020604051808303815f875af1158015611fb8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611fdc9190612ee0565b506040517fa9059cbb000000000000000000000000000000000000000000000000000000008152336004820152602481018390527f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc273ffffffffffffffffffffffffffffffffffffffff169063a9059cbb906044016020604051808303815f875af115801561206d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120919190612ee0565b505f61209f8260055c613126565b90506120ad60045c826121d1565b5050505050505050505050505050505050565b60025f5403612130576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b60025f55565b6040805173ffffffffffffffffffffffffffffffffffffffff85811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd000000000000000000000000000000000000000000000000000000001790526121cb908590612551565b50505050565b6040517f2e1a7d4d000000000000000000000000000000000000000000000000000000008152600481018290527f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc273ffffffffffffffffffffffffffffffffffffffff1690632e1a7d4d906024015f604051808303815f87803b158015612256575f80fd5b505af1158015612268573d5f803e3d5ffd5b505050506122768282612663565b5050565b5f815f0151826020015110156122bc576040517f364de99200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b81606001515f036122d55766b1a2bc2ec5000060608301525b81604001515f036122e857606460408301525b5f8473ffffffffffffffffffffffffffffffffffffffff1663e6432a346040518163ffffffff1660e01b815260040161010060405180830381865afa158015612333573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123579190613163565b90505f816060015173ffffffffffffffffffffffffffffffffffffffff1663f51e181a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156123a7573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123cb9190612f31565b90505f60405180608001604052808873ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015612422573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906124469190613242565b60ff1681526020018381526020016124628560a0015185612713565b815260c085015167ffffffffffffffff1660209091015290505f6124b761248a846001613139565b6124949089613262565b6127106124a36101f482613126565b85604001516124b29190613262565b61272c565b90506124c58288838961276e565b98975050505050505050565b7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc273ffffffffffffffffffffffffffffffffffffffff1663d0e30db0826040518263ffffffff1660e01b81526004015f604051808303818588803b158015612537575f80fd5b505af1158015612549573d5f803e3d5ffd5b505050505050565b5f6125b2826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff166128f79092919063ffffffff16565b905080515f14806125d25750808060200190518101906125d29190612ee0565b61265e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401612127565b505050565b604080515f8082526020820190925273ffffffffffffffffffffffffffffffffffffffff8416908390604051612699919061329b565b5f6040518083038185875af1925050503d805f81146126d3576040519150601f19603f3d011682016040523d82523d5f602084013e6126d8565b606091505b505090508061265e576040517fdcf35db000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8183116127215781612723565b825b90505b92915050565b5f827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048411830215820261275f575f80fd5b50910281810615159190040190565b83515f90819061277f90600a6133d4565b90505f612795868860200151896040015161272c565b90505f6127a28387613139565b8551909150156127bb5784516127b89083612713565b91505b6020850151156127d6576127d3856020015182612905565b90505b5f805b866040015181146128bc5760026127f08486613139565b6127fa91906133df565b91505f6128078b84612913565b90505f61282f8b61282084670de0b6b3a7640000613262565b61282a91906133df565b612950565b61284190670de0b6b3a7640000613417565b90508a821015801561286757508061285c8a60600151612950565b6128659061343d565b125b1561287b57839750505050505050506128ef565b84861480612892575084612890876001613139565b145b1561289e5750506128bc565b5f8113156128ae578395506128b2565b8394505b50506001016127d9565b506040517ffa711db200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b949350505050565b60606128ef84845f85612a05565b5f8183106127215781612723565b5f8061292683856060015161271061272c565b90505f6129406129368386613126565b8660200151612b1a565b905061082b818660400151612b2e565b5f7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821115612a01576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f53616665436173743a2076616c756520646f65736e27742066697420696e206160448201527f6e20696e743235360000000000000000000000000000000000000000000000006064820152608401612127565b5090565b606082471015612a97576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401612127565b5f808673ffffffffffffffffffffffffffffffffffffffff168587604051612abf919061329b565b5f6040518083038185875af1925050503d805f8114612af9576040519150601f19603f3d011682016040523d82523d5f602084013e612afe565b606091505b5091509150612b0f87838387612b42565b979650505050505050565b5f61272383670de0b6b3a764000084612be1565b5f6127238383670de0b6b3a7640000612be1565b60608315612bd75782515f03612bd05773ffffffffffffffffffffffffffffffffffffffff85163b612bd0576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401612127565b50816128ef565b6128ef8383612c1b565b5f827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0484118302158202612c14575f80fd5b5091020490565b815115612c2b5781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016121279190613473565b73ffffffffffffffffffffffffffffffffffffffff81168114612c80575f80fd5b50565b5f805f805f60a08688031215612c97575f80fd5b8535612ca281612c5f565b945060208601359350604086013592506060860135612cc081612c5f565b949793965091946080013592915050565b5f805f805f80868803610120811215612ce8575f80fd5b8735612cf381612c5f565b965060208801359550604088013594506060880135612d1181612c5f565b935060808881013593507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6082011215612d48575f80fd5b5060a0870190509295509295509295565b5f805f805f8060c08789031215612d6e575f80fd5b8635612d7981612c5f565b95506020870135945060408701359350606087013592506080870135612d9e81612c5f565b8092505060a087013590509295509295509295565b5f8083601f840112612dc3575f80fd5b50813567ffffffffffffffff811115612dda575f80fd5b6020830191508360208260051b8501011115612df4575f80fd5b9250929050565b5f805f805f805f806080898b031215612e12575f80fd5b883567ffffffffffffffff80821115612e29575f80fd5b612e358c838d01612db3565b909a50985060208b0135915080821115612e4d575f80fd5b612e598c838d01612db3565b909850965060408b0135915080821115612e71575f80fd5b612e7d8c838d01612db3565b909650945060608b0135915080821115612e95575f80fd5b818b0191508b601f830112612ea8575f80fd5b813581811115612eb6575f80fd5b8c6020828501011115612ec7575f80fd5b6020830194508093505050509295985092959890939650565b5f60208284031215612ef0575f80fd5b81518015158114612eff575f80fd5b9392505050565b8051612f1181612c5f565b919050565b5f60208284031215612f26575f80fd5b8151612eff81612c5f565b5f60208284031215612f41575f80fd5b5051919050565b5f60808284031215612f58575f80fd5b6040516080810181811067ffffffffffffffff82111715612fa0577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b8060405250823581526020830135602082015260408301356040820152606083013560608201528091505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f6080820173ffffffffffffffffffffffffffffffffffffffff8087168452602060808186015282875180855260a08701915082890194505f5b81811015613056578551851683529483019491830191600101613038565b505085810360408701528651808252908201935091508086015f5b8381101561308d57815185529382019390820190600101613071565b5050505082810360608401525f815260208101610c0b565b6080810181855f5b60028110156130cc5781518352602092830192909101906001016130ad565b50505083604083015273ffffffffffffffffffffffffffffffffffffffff83166060830152949350505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b81810381811115612726576127266130f9565b80820180821115612726576127266130f9565b805167ffffffffffffffff81168114612f11575f80fd5b5f610100808385031215613175575f80fd5b6040519081019067ffffffffffffffff821181831017156131bd577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b81604052835191506131ce82612c5f565b8181526131dd60208501612f06565b60208201526131ee60408501612f06565b60408201526131ff60608501612f06565b60608201526080840151608082015260a084015160a082015261322460c0850161314c565b60c082015261323560e0850161314c565b60e0820152949350505050565b5f60208284031215613252575f80fd5b815160ff81168114612eff575f80fd5b8082028115828204841417612726576127266130f9565b5f5b8381101561329357818101518382015260200161327b565b50505f910152565b5f82516132ac818460208701613279565b9190910192915050565b600181815b8085111561330f57817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048211156132f5576132f56130f9565b8085161561330257918102915b93841c93908002906132bb565b509250929050565b5f8261332557506001612726565b8161333157505f612726565b816001811461334757600281146133515761336d565b6001915050612726565b60ff841115613362576133626130f9565b50506001821b612726565b5060208310610133831016604e8410600b8410161715613390575081810a612726565b61339a83836132b6565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048211156133cc576133cc6130f9565b029392505050565b5f6127238383613317565b5f82613412577f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b500490565b8181035f831280158383131683831282161715613436576134366130f9565b5092915050565b5f7f8000000000000000000000000000000000000000000000000000000000000000820361346d5761346d6130f9565b505f0390565b602081525f8251806020840152613491816040850160208701613279565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016919091016040019291505056fea164736f6c6343000818000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e6750000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b821000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
-----Decoded View---------------
Arg [0] : _metapoolFactory (address): 0xd5a7bF70BC6135D1A9dF914ce364b1765460E675
Arg [1] : _triLSTPool (address): 0x5a2d321eD5C525e52A3b8d295c6D097a3c78B821
Arg [2] : _vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000d5a7bf70bc6135d1a9df914ce364b1765460e675
Arg [1] : 0000000000000000000000005a2d321ed5c525e52a3b8d295c6d097a3c78b821
Arg [2] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.