Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
PartitionedLiquidity
Compiler Version
v0.5.15+commit.6a57276f
Contract Source Code (Solidity)
/** *Submitted for verification at Etherscan.io on 2020-10-22 */ // hevm: flattened sources of src/PartitionedLiquidity.sol pragma solidity >0.4.13 >=0.4.23 >=0.5.0 <0.6.0 >=0.5.7 <0.6.0; ////// lib/abdk-libraries-solidity/src/ABDKMath64x64.sol /* * ABDK Math 64.64 Smart Contract Library. Copyright © 2019 by ABDK Consulting. * Author: Mikhail Vladimirov <[email protected]> */ /* pragma solidity ^0.5.7; */ /** * Smart contract library of mathematical functions operating with signed * 64.64-bit fixed point numbers. Signed 64.64-bit fixed point number is * basically a simple fraction whose numerator is signed 128-bit integer and * denominator is 2^64. As long as denominator is always the same, there is no * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are * represented by int128 type holding only the numerator. */ library ABDKMath64x64 { /** * Minimum value signed 64.64-bit fixed point number may have. */ int128 private constant MIN_64x64 = -0x80000000000000000000000000000000; /** * Maximum value signed 64.64-bit fixed point number may have. */ int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; /** * Convert signed 256-bit integer number into signed 64.64-bit fixed point * number. Revert on overflow. * * @param x signed 256-bit integer number * @return signed 64.64-bit fixed point number */ function fromInt (int256 x) internal pure returns (int128) { require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF); return int128 (x << 64); } /** * Convert signed 64.64 fixed point number into signed 64-bit integer number * rounding down. * * @param x signed 64.64-bit fixed point number * @return signed 64-bit integer number */ function toInt (int128 x) internal pure returns (int64) { return int64 (x >> 64); } /** * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point * number. Revert on overflow. * * @param x unsigned 256-bit integer number * @return signed 64.64-bit fixed point number */ function fromUInt (uint256 x) internal pure returns (int128) { require (x <= 0x7FFFFFFFFFFFFFFF); return int128 (x << 64); } /** * Convert signed 64.64 fixed point number into unsigned 64-bit integer * number rounding down. Revert on underflow. * * @param x signed 64.64-bit fixed point number * @return unsigned 64-bit integer number */ function toUInt (int128 x) internal pure returns (uint64) { require (x >= 0); return uint64 (x >> 64); } /** * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point * number rounding down. Revert on overflow. * * @param x signed 128.128-bin fixed point number * @return signed 64.64-bit fixed point number */ function from128x128 (int256 x) internal pure returns (int128) { int256 result = x >> 64; require (result >= MIN_64x64 && result <= MAX_64x64); return int128 (result); } /** * Convert signed 64.64 fixed point number into signed 128.128 fixed point * number. * * @param x signed 64.64-bit fixed point number * @return signed 128.128 fixed point number */ function to128x128 (int128 x) internal pure returns (int256) { return int256 (x) << 64; } /** * Calculate x + y. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function add (int128 x, int128 y) internal pure returns (int128) { int256 result = int256(x) + y; require (result >= MIN_64x64 && result <= MAX_64x64); return int128 (result); } /** * Calculate x - y. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function sub (int128 x, int128 y) internal pure returns (int128) { int256 result = int256(x) - y; require (result >= MIN_64x64 && result <= MAX_64x64); return int128 (result); } /** * Calculate x * y rounding down. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function mul (int128 x, int128 y) internal pure returns (int128) { int256 result = int256(x) * y >> 64; require (result >= MIN_64x64 && result <= MAX_64x64); return int128 (result); } /** * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point * number and y is signed 256-bit integer number. Revert on overflow. * * @param x signed 64.64 fixed point number * @param y signed 256-bit integer number * @return signed 256-bit integer number */ function muli (int128 x, int256 y) internal pure returns (int256) { if (x == MIN_64x64) { require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF && y <= 0x1000000000000000000000000000000000000000000000000); return -y << 63; } else { bool negativeResult = false; if (x < 0) { x = -x; negativeResult = true; } if (y < 0) { y = -y; // We rely on overflow behavior here negativeResult = !negativeResult; } uint256 absoluteResult = mulu (x, uint256 (y)); if (negativeResult) { require (absoluteResult <= 0x8000000000000000000000000000000000000000000000000000000000000000); return -int256 (absoluteResult); // We rely on overflow behavior here } else { require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int256 (absoluteResult); } } } /** * Calculate x * y rounding down, where x is signed 64.64 fixed point number * and y is unsigned 256-bit integer number. Revert on overflow. * * @param x signed 64.64 fixed point number * @param y unsigned 256-bit integer number * @return unsigned 256-bit integer number */ function mulu (int128 x, uint256 y) internal pure returns (uint256) { if (y == 0) return 0; require (x >= 0); uint256 lo = (uint256 (x) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64; uint256 hi = uint256 (x) * (y >> 128); require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); hi <<= 64; require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo); return hi + lo; } /** * Calculate x / y rounding towards zero. Revert on overflow or when y is * zero. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function div (int128 x, int128 y) internal pure returns (int128) { require (y != 0); int256 result = (int256 (x) << 64) / y; require (result >= MIN_64x64 && result <= MAX_64x64); return int128 (result); } /** * Calculate x / y rounding towards zero, where x and y are signed 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x signed 256-bit integer number * @param y signed 256-bit integer number * @return signed 64.64-bit fixed point number */ function divi (int256 x, int256 y) internal pure returns (int128) { require (y != 0); bool negativeResult = false; if (x < 0) { x = -x; // We rely on overflow behavior here negativeResult = true; } if (y < 0) { y = -y; // We rely on overflow behavior here negativeResult = !negativeResult; } uint128 absoluteResult = divuu (uint256 (x), uint256 (y)); if (negativeResult) { require (absoluteResult <= 0x80000000000000000000000000000000); return -int128 (absoluteResult); // We rely on overflow behavior here } else { require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128 (absoluteResult); // We rely on overflow behavior here } } /** * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x unsigned 256-bit integer number * @param y unsigned 256-bit integer number * @return signed 64.64-bit fixed point number */ function divu (uint256 x, uint256 y) internal pure returns (int128) { require (y != 0); uint128 result = divuu (x, y); require (result <= uint128 (MAX_64x64)); return int128 (result); } /** * Calculate -x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function neg (int128 x) internal pure returns (int128) { require (x != MIN_64x64); return -x; } /** * Calculate |x|. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function abs (int128 x) internal pure returns (int128) { require (x != MIN_64x64); return x < 0 ? -x : x; } /** * Calculate 1 / x rounding towards zero. Revert on overflow or when x is * zero. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function inv (int128 x) internal pure returns (int128) { require (x != 0); int256 result = int256 (0x100000000000000000000000000000000) / x; require (result >= MIN_64x64 && result <= MAX_64x64); return int128 (result); } /** * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function avg (int128 x, int128 y) internal pure returns (int128) { return int128 ((int256 (x) + int256 (y)) >> 1); } /** * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down. * Revert on overflow or in case x * y is negative. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function gavg (int128 x, int128 y) internal pure returns (int128) { int256 m = int256 (x) * int256 (y); require (m >= 0); require (m < 0x4000000000000000000000000000000000000000000000000000000000000000); return int128 (sqrtu (uint256 (m), uint256 (x) + uint256 (y) >> 1)); } /** * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number * and y is unsigned 256-bit integer number. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y uint256 value * @return signed 64.64-bit fixed point number */ function pow (int128 x, uint256 y) internal pure returns (int128) { uint256 absoluteResult; bool negativeResult = false; if (x >= 0) { absoluteResult = powu (uint256 (x) << 63, y); } else { // We rely on overflow behavior here absoluteResult = powu (uint256 (uint128 (-x)) << 63, y); negativeResult = y & 1 > 0; } absoluteResult >>= 63; if (negativeResult) { require (absoluteResult <= 0x80000000000000000000000000000000); return -int128 (absoluteResult); // We rely on overflow behavior here } else { require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128 (absoluteResult); // We rely on overflow behavior here } } /** * Calculate sqrt (x) rounding down. Revert if x < 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function sqrt (int128 x) internal pure returns (int128) { require (x >= 0); return int128 (sqrtu (uint256 (x) << 64, 0x10000000000000000)); } /** * Calculate binary logarithm of x. Revert if x <= 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function log_2 (int128 x) internal pure returns (int128) { require (x > 0); int256 msb = 0; int256 xc = x; if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; } if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore int256 result = msb - 64 << 64; uint256 ux = uint256 (x) << 127 - msb; for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) { ux *= ux; uint256 b = ux >> 255; ux >>= 127 + b; result += bit * int256 (b); } return int128 (result); } /** * Calculate natural logarithm of x. Revert if x <= 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function ln (int128 x) internal pure returns (int128) { require (x > 0); return int128 ( uint256 (log_2 (x)) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128); } /** * Calculate binary exponent of x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function exp_2 (int128 x) internal pure returns (int128) { require (x < 0x400000000000000000); // Overflow if (x < -0x400000000000000000) return 0; // Underflow uint256 result = 0x80000000000000000000000000000000; if (x & 0x8000000000000000 > 0) result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128; if (x & 0x4000000000000000 > 0) result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128; if (x & 0x2000000000000000 > 0) result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128; if (x & 0x1000000000000000 > 0) result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128; if (x & 0x800000000000000 > 0) result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128; if (x & 0x400000000000000 > 0) result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128; if (x & 0x200000000000000 > 0) result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128; if (x & 0x100000000000000 > 0) result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128; if (x & 0x80000000000000 > 0) result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128; if (x & 0x40000000000000 > 0) result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128; if (x & 0x20000000000000 > 0) result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128; if (x & 0x10000000000000 > 0) result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128; if (x & 0x8000000000000 > 0) result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128; if (x & 0x4000000000000 > 0) result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128; if (x & 0x2000000000000 > 0) result = result * 0x1000162E525EE054754457D5995292026 >> 128; if (x & 0x1000000000000 > 0) result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128; if (x & 0x800000000000 > 0) result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128; if (x & 0x400000000000 > 0) result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128; if (x & 0x200000000000 > 0) result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128; if (x & 0x100000000000 > 0) result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128; if (x & 0x80000000000 > 0) result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128; if (x & 0x40000000000 > 0) result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128; if (x & 0x20000000000 > 0) result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128; if (x & 0x10000000000 > 0) result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128; if (x & 0x8000000000 > 0) result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128; if (x & 0x4000000000 > 0) result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128; if (x & 0x2000000000 > 0) result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128; if (x & 0x1000000000 > 0) result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128; if (x & 0x800000000 > 0) result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128; if (x & 0x400000000 > 0) result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128; if (x & 0x200000000 > 0) result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128; if (x & 0x100000000 > 0) result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128; if (x & 0x80000000 > 0) result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128; if (x & 0x40000000 > 0) result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128; if (x & 0x20000000 > 0) result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128; if (x & 0x10000000 > 0) result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128; if (x & 0x8000000 > 0) result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128; if (x & 0x4000000 > 0) result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128; if (x & 0x2000000 > 0) result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128; if (x & 0x1000000 > 0) result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128; if (x & 0x800000 > 0) result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128; if (x & 0x400000 > 0) result = result * 0x100000000002C5C85FDF477B662B26945 >> 128; if (x & 0x200000 > 0) result = result * 0x10000000000162E42FEFA3AE53369388C >> 128; if (x & 0x100000 > 0) result = result * 0x100000000000B17217F7D1D351A389D40 >> 128; if (x & 0x80000 > 0) result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128; if (x & 0x40000 > 0) result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128; if (x & 0x20000 > 0) result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128; if (x & 0x10000 > 0) result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128; if (x & 0x8000 > 0) result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128; if (x & 0x4000 > 0) result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128; if (x & 0x2000 > 0) result = result * 0x1000000000000162E42FEFA39F02B772C >> 128; if (x & 0x1000 > 0) result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128; if (x & 0x800 > 0) result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128; if (x & 0x400 > 0) result = result * 0x100000000000002C5C85FDF473DEA871F >> 128; if (x & 0x200 > 0) result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128; if (x & 0x100 > 0) result = result * 0x100000000000000B17217F7D1CF79E949 >> 128; if (x & 0x80 > 0) result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128; if (x & 0x40 > 0) result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128; if (x & 0x20 > 0) result = result * 0x100000000000000162E42FEFA39EF366F >> 128; if (x & 0x10 > 0) result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128; if (x & 0x8 > 0) result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128; if (x & 0x4 > 0) result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128; if (x & 0x2 > 0) result = result * 0x1000000000000000162E42FEFA39EF358 >> 128; if (x & 0x1 > 0) result = result * 0x10000000000000000B17217F7D1CF79AB >> 128; result >>= 63 - (x >> 64); require (result <= uint256 (MAX_64x64)); return int128 (result); } /** * Calculate natural exponent of x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function exp (int128 x) internal pure returns (int128) { require (x < 0x400000000000000000); // Overflow if (x < -0x400000000000000000) return 0; // Underflow return exp_2 ( int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128)); } /** * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x unsigned 256-bit integer number * @param y unsigned 256-bit integer number * @return unsigned 64.64-bit fixed point number */ function divuu (uint256 x, uint256 y) private pure returns (uint128) { require (y != 0); uint256 result; if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) result = (x << 64) / y; else { uint256 msb = 192; uint256 xc = x >> 192; if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1); require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); uint256 hi = result * (y >> 128); uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); uint256 xh = x >> 192; uint256 xl = x << 64; if (xl < lo) xh -= 1; xl -= lo; // We rely on overflow behavior here lo = hi << 128; if (xl < lo) xh -= 1; xl -= lo; // We rely on overflow behavior here assert (xh == hi >> 128); result += xl / y; } require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return uint128 (result); } /** * Calculate x^y assuming 0^0 is 1, where x is unsigned 129.127 fixed point * number and y is unsigned 256-bit integer number. Revert on overflow. * * @param x unsigned 129.127-bit fixed point number * @param y uint256 value * @return unsigned 129.127-bit fixed point number */ function powu (uint256 x, uint256 y) private pure returns (uint256) { if (y == 0) return 0x80000000000000000000000000000000; else if (x == 0) return 0; else { int256 msb = 0; uint256 xc = x; if (xc >= 0x100000000000000000000000000000000) { xc >>= 128; msb += 128; } if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; } if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore int256 xe = msb - 127; if (xe > 0) x >>= xe; else x <<= -xe; uint256 result = 0x80000000000000000000000000000000; int256 re = 0; while (y > 0) { if (y & 1 > 0) { result = result * x; y -= 1; re += xe; if (result >= 0x8000000000000000000000000000000000000000000000000000000000000000) { result >>= 128; re += 1; } else result >>= 127; if (re < -127) return 0; // Underflow require (re < 128); // Overflow } else { x = x * x; y >>= 1; xe <<= 1; if (x >= 0x8000000000000000000000000000000000000000000000000000000000000000) { x >>= 128; xe += 1; } else x >>= 127; if (xe < -127) return 0; // Underflow require (xe < 128); // Overflow } } if (re > 0) result <<= re; else if (re < 0) result >>= -re; return result; } } /** * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer * number. * * @param x unsigned 256-bit integer number * @return unsigned 128-bit integer number */ function sqrtu (uint256 x, uint256 r) private pure returns (uint128) { if (x == 0) return 0; else { require (r > 0); while (true) { uint256 rr = x / r; if (r == rr || r + 1 == rr) return uint128 (r); else if (r == rr + 1) return uint128 (rr); r = r + rr + 1 >> 1; } } } } ////// src/interfaces/IAssimilator.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity ^0.5.0; */ interface IAssimilator { function intakeRaw (uint256 amount) external returns (int128); function intakeRawAndGetBalance (uint256 amount) external returns (int128, int128); function intakeNumeraire (int128 amount) external returns (uint256); function outputRaw (address dst, uint256 amount) external returns (int128); function outputRawAndGetBalance (address dst, uint256 amount) external returns (int128, int128); function outputNumeraire (address dst, int128 amount) external returns (uint256); function viewRawAmount (int128) external view returns (uint256); function viewNumeraireAmount (uint256) external view returns (int128); function viewNumeraireBalance (address) external view returns (int128); function viewNumeraireAmountAndBalance (address, uint256) external view returns (int128, int128); } ////// src/Assimilators.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity ^0.5.0; */ /* import "./interfaces/IAssimilator.sol"; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ library Assimilators { using ABDKMath64x64 for int128; IAssimilator constant iAsmltr = IAssimilator(address(0)); function delegate(address _callee, bytes memory _data) internal returns (bytes memory) { (bool _success, bytes memory returnData_) = _callee.delegatecall(_data); assembly { if eq(_success, 0) { revert(add(returnData_, 0x20), returndatasize()) } } return returnData_; } function viewRawAmount (address _assim, int128 _amt) internal view returns (uint256 amount_) { amount_ = IAssimilator(_assim).viewRawAmount(_amt); } function viewNumeraireAmount (address _assim, uint256 _amt) internal view returns (int128 amt_) { amt_ = IAssimilator(_assim).viewNumeraireAmount(_amt); } function viewNumeraireAmountAndBalance (address _assim, uint256 _amt) internal view returns (int128 amt_, int128 bal_) { ( amt_, bal_ ) = IAssimilator(_assim).viewNumeraireAmountAndBalance(address(this), _amt); } function viewNumeraireBalance (address _assim) internal view returns (int128 bal_) { bal_ = IAssimilator(_assim).viewNumeraireBalance(address(this)); } function intakeRaw (address _assim, uint256 _amt) internal returns (int128 amt_) { bytes memory data = abi.encodeWithSelector(iAsmltr.intakeRaw.selector, _amt); amt_ = abi.decode(delegate(_assim, data), (int128)); } function intakeRawAndGetBalance (address _assim, uint256 _amt) internal returns (int128 amt_, int128 bal_) { bytes memory data = abi.encodeWithSelector(iAsmltr.intakeRawAndGetBalance.selector, _amt); ( amt_, bal_ ) = abi.decode(delegate(_assim, data), (int128,int128)); } function intakeNumeraire (address _assim, int128 _amt) internal returns (uint256 amt_) { bytes memory data = abi.encodeWithSelector(iAsmltr.intakeNumeraire.selector, _amt); amt_ = abi.decode(delegate(_assim, data), (uint256)); } function outputRaw (address _assim, address _dst, uint256 _amt) internal returns (int128 amt_ ) { bytes memory data = abi.encodeWithSelector(iAsmltr.outputRaw.selector, _dst, _amt); amt_ = abi.decode(delegate(_assim, data), (int128)); amt_ = amt_.neg(); } function outputRawAndGetBalance (address _assim, address _dst, uint256 _amt) internal returns (int128 amt_, int128 bal_) { bytes memory data = abi.encodeWithSelector(iAsmltr.outputRawAndGetBalance.selector, _dst, _amt); ( amt_, bal_ ) = abi.decode(delegate(_assim, data), (int128,int128)); amt_ = amt_.neg(); } function outputNumeraire (address _assim, address _dst, int128 _amt) internal returns (uint256 amt_) { bytes memory data = abi.encodeWithSelector(iAsmltr.outputNumeraire.selector, _dst, _amt.abs()); amt_ = abi.decode(delegate(_assim, data), (uint256)); } } ////// src/UnsafeMath64x64.sol /* pragma solidity ^0.5.0; */ library UnsafeMath64x64 { /** * Calculate x * y rounding down. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function us_mul (int128 x, int128 y) internal pure returns (int128) { int256 result = int256(x) * y >> 64; return int128 (result); } /** * Calculate x / y rounding towards zero. Revert on overflow or when y is * zero. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function us_div (int128 x, int128 y) internal pure returns (int128) { int256 result = (int256 (x) << 64) / y; return int128 (result); } } ////// src/PartitionedLiquidity.sol /* pragma solidity ^0.5.0; */ /* import "./Assimilators.sol"; */ /* import "./ShellStorage.sol"; */ /* import "./UnsafeMath64x64.sol"; */ library PartitionedLiquidity { using ABDKMath64x64 for uint; using ABDKMath64x64 for int128; using UnsafeMath64x64 for int128; event PoolPartitioned(bool); event PartitionRedeemed(address indexed token, address indexed redeemer, uint value); int128 constant ONE = 0x10000000000000000; function partition ( ShellStorage.Shell storage shell, mapping (address => ShellStorage.PartitionTicket) storage partitionTickets ) external { uint _length = shell.assets.length; ShellStorage.PartitionTicket storage totalSupplyTicket = partitionTickets[address(this)]; totalSupplyTicket.initialized = true; for (uint i = 0; i < _length; i++) totalSupplyTicket.claims.push(shell.totalSupply); emit PoolPartitioned(true); } function viewPartitionClaims ( ShellStorage.Shell storage shell, mapping (address => ShellStorage.PartitionTicket) storage partitionTickets, address _addr ) external view returns ( uint[] memory claims_ ) { ShellStorage.PartitionTicket storage ticket = partitionTickets[_addr]; if (ticket.initialized) return ticket.claims; uint _length = shell.assets.length; uint[] memory claims_ = new uint[](_length); uint _balance = shell.balances[msg.sender]; for (uint i = 0; i < _length; i++) claims_[i] = _balance; return claims_; } function partitionedWithdraw ( ShellStorage.Shell storage shell, mapping (address => ShellStorage.PartitionTicket) storage partitionTickets, address[] calldata _derivatives, uint[] calldata _withdrawals ) external returns ( uint[] memory ) { uint _length = shell.assets.length; uint _balance = shell.balances[msg.sender]; ShellStorage.PartitionTicket storage totalSuppliesTicket = partitionTickets[address(this)]; ShellStorage.PartitionTicket storage ticket = partitionTickets[msg.sender]; if (!ticket.initialized) { for (uint i = 0; i < _length; i++) ticket.claims.push(_balance); ticket.initialized = true; } _length = _derivatives.length; uint[] memory withdrawals_ = new uint[](_length); for (uint i = 0; i < _length; i++) { ShellStorage.Assimilator memory _assim = shell.assimilators[_derivatives[i]]; require(totalSuppliesTicket.claims[_assim.ix] >= _withdrawals[i], "Shell/burn-exceeds-total-supply"); require(ticket.claims[_assim.ix] >= _withdrawals[i], "Shell/insufficient-balance"); require(_assim.addr != address(0), "Shell/unsupported-asset"); int128 _reserveBalance = Assimilators.viewNumeraireBalance(_assim.addr); int128 _multiplier = _withdrawals[i].divu(1e18) .div(totalSuppliesTicket.claims[_assim.ix].divu(1e18)); totalSuppliesTicket.claims[_assim.ix] = totalSuppliesTicket.claims[_assim.ix] - _withdrawals[i]; ticket.claims[_assim.ix] = ticket.claims[_assim.ix] - _withdrawals[i]; uint _withdrawal = Assimilators.outputNumeraire( _assim.addr, msg.sender, _reserveBalance.mul(_multiplier) ); withdrawals_[i] = _withdrawal; emit PartitionRedeemed(_derivatives[i], msg.sender, withdrawals_[i]); } return withdrawals_; } } ////// src/ProportionalLiquidity.sol /* pragma solidity ^0.5.0; */ /* import "./Assimilators.sol"; */ /* import "./ShellStorage.sol"; */ /* import "./UnsafeMath64x64.sol"; */ /* import "./ShellMath.sol"; */ library ProportionalLiquidity { using ABDKMath64x64 for uint; using ABDKMath64x64 for int128; using UnsafeMath64x64 for int128; event Transfer(address indexed from, address indexed to, uint256 value); int128 constant ONE = 0x10000000000000000; int128 constant ONE_WEI = 0x12; function proportionalDeposit ( ShellStorage.Shell storage shell, uint256 _deposit ) external returns ( uint256 shells_, uint[] memory ) { int128 __deposit = _deposit.divu(1e18); uint _length = shell.assets.length; uint[] memory deposits_ = new uint[](_length); ( int128 _oGLiq, int128[] memory _oBals ) = getGrossLiquidityAndBalances(shell); if (_oGLiq == 0) { for (uint i = 0; i < _length; i++) { deposits_[i] = Assimilators.intakeNumeraire(shell.assets[i].addr, __deposit.mul(shell.weights[i])); } } else { int128 _multiplier = __deposit.div(_oGLiq); for (uint i = 0; i < _length; i++) { deposits_[i] = Assimilators.intakeNumeraire(shell.assets[i].addr, _oBals[i].mul(_multiplier)); } } int128 _totalShells = shell.totalSupply.divu(1e18); int128 _newShells = _totalShells > 0 ? __deposit.div(_oGLiq).mul(_totalShells) : __deposit; requireLiquidityInvariant( shell, _totalShells, _newShells, _oGLiq, _oBals ); mint(shell, msg.sender, shells_ = _newShells.mulu(1e18)); return (shells_, deposits_); } function viewProportionalDeposit ( ShellStorage.Shell storage shell, uint256 _deposit ) external view returns ( uint shells_, uint[] memory ) { int128 __deposit = _deposit.divu(1e18); uint _length = shell.assets.length; ( int128 _oGLiq, int128[] memory _oBals ) = getGrossLiquidityAndBalances(shell); uint[] memory deposits_ = new uint[](_length); if (_oGLiq == 0) { for (uint i = 0; i < _length; i++) { deposits_[i] = Assimilators.viewRawAmount( shell.assets[i].addr, __deposit.mul(shell.weights[i]) ); } } else { int128 _multiplier = __deposit.div(_oGLiq); for (uint i = 0; i < _length; i++) { deposits_[i] = Assimilators.viewRawAmount( shell.assets[i].addr, _oBals[i].mul(_multiplier) ); } } int128 _totalShells = shell.totalSupply.divu(1e18); int128 _newShells = _totalShells > 0 ? __deposit.div(_oGLiq).mul(_totalShells) : __deposit; shells_ = _newShells.mulu(1e18); return ( shells_, deposits_ ); } function proportionalWithdraw ( ShellStorage.Shell storage shell, uint256 _withdrawal ) external returns ( uint[] memory ) { uint _length = shell.assets.length; ( int128 _oGLiq, int128[] memory _oBals ) = getGrossLiquidityAndBalances(shell); uint[] memory withdrawals_ = new uint[](_length); int128 _totalShells = shell.totalSupply.divu(1e18); int128 __withdrawal = _withdrawal.divu(1e18); int128 _multiplier = __withdrawal .mul(ONE - shell.epsilon) .div(_totalShells); for (uint i = 0; i < _length; i++) { withdrawals_[i] = Assimilators.outputNumeraire( shell.assets[i].addr, msg.sender, _oBals[i].mul(_multiplier) ); } requireLiquidityInvariant( shell, _totalShells, __withdrawal.neg(), _oGLiq, _oBals ); burn(shell, msg.sender, _withdrawal); return withdrawals_; } function viewProportionalWithdraw ( ShellStorage.Shell storage shell, uint256 _withdrawal ) external view returns ( uint[] memory ) { uint _length = shell.assets.length; ( int128 _oGLiq, int128[] memory _oBals ) = getGrossLiquidityAndBalances(shell); uint[] memory withdrawals_ = new uint[](_length); int128 _multiplier = _withdrawal.divu(1e18) .mul(ONE - shell.epsilon) .div(shell.totalSupply.divu(1e18)); for (uint i = 0; i < _length; i++) { withdrawals_[i] = Assimilators.viewRawAmount(shell.assets[i].addr, _oBals[i].mul(_multiplier)); } return withdrawals_; } function getGrossLiquidityAndBalances ( ShellStorage.Shell storage shell ) internal view returns ( int128 grossLiquidity_, int128[] memory ) { uint _length = shell.assets.length; int128[] memory balances_ = new int128[](_length); for (uint i = 0; i < _length; i++) { int128 _bal = Assimilators.viewNumeraireBalance(shell.assets[i].addr); balances_[i] = _bal; grossLiquidity_ += _bal; } return (grossLiquidity_, balances_); } function requireLiquidityInvariant ( ShellStorage.Shell storage shell, int128 _shells, int128 _newShells, int128 _oGLiq, int128[] memory _oBals ) private { ( int128 _nGLiq, int128[] memory _nBals ) = getGrossLiquidityAndBalances(shell); int128 _beta = shell.beta; int128 _delta = shell.delta; int128[] memory _weights = shell.weights; int128 _omega = ShellMath.calculateFee(_oGLiq, _oBals, _beta, _delta, _weights); int128 _psi = ShellMath.calculateFee(_nGLiq, _nBals, _beta, _delta, _weights); ShellMath.enforceLiquidityInvariant(_shells, _newShells, _oGLiq, _nGLiq, _omega, _psi); } function burn (ShellStorage.Shell storage shell, address account, uint256 amount) private { shell.balances[account] = burn_sub(shell.balances[account], amount); shell.totalSupply = burn_sub(shell.totalSupply, amount); emit Transfer(msg.sender, address(0), amount); } function mint (ShellStorage.Shell storage shell, address account, uint256 amount) private { shell.totalSupply = mint_add(shell.totalSupply, amount); shell.balances[account] = mint_add(shell.balances[account], amount); emit Transfer(address(0), msg.sender, amount); } function mint_add(uint x, uint y) private pure returns (uint z) { require((z = x + y) >= x, "Shell/mint-overflow"); } function burn_sub(uint x, uint y) private pure returns (uint z) { require((z = x - y) <= x, "Shell/burn-underflow"); } } ////// src/SelectiveLiquidity.sol /* pragma solidity ^0.5.0; */ /* import "./Assimilators.sol"; */ /* import "./ShellStorage.sol"; */ /* import "./ShellMath.sol"; */ /* import "./UnsafeMath64x64.sol"; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ library SelectiveLiquidity { using ABDKMath64x64 for int128; using UnsafeMath64x64 for int128; event Transfer(address indexed from, address indexed to, uint256 value); int128 constant ONE = 0x10000000000000000; function selectiveDeposit ( ShellStorage.Shell storage shell, address[] calldata _derivatives, uint[] calldata _amounts, uint _minShells ) external returns ( uint shells_ ) { ( int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals ) = getLiquidityDepositData(shell, _derivatives, _amounts); int128 _shells = ShellMath.calculateLiquidityMembrane(shell, _oGLiq, _nGLiq, _oBals, _nBals); shells_ = _shells.mulu(1e18); require(_minShells < shells_, "Shell/under-minimum-shells"); mint(shell, msg.sender, shells_); } function viewSelectiveDeposit ( ShellStorage.Shell storage shell, address[] calldata _derivatives, uint[] calldata _amounts ) external view returns ( uint shells_ ) { ( int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals ) = viewLiquidityDepositData(shell, _derivatives, _amounts); int128 _shells = ShellMath.calculateLiquidityMembrane(shell, _oGLiq, _nGLiq, _oBals, _nBals); shells_ = _shells.mulu(1e18); } function selectiveWithdraw ( ShellStorage.Shell storage shell, address[] calldata _derivatives, uint[] calldata _amounts, uint _maxShells ) external returns ( uint256 shells_ ) { ( int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals ) = getLiquidityWithdrawData(shell, _derivatives, msg.sender, _amounts); int128 _shells = ShellMath.calculateLiquidityMembrane(shell, _oGLiq, _nGLiq, _oBals, _nBals); _shells = _shells.neg().us_mul(ONE + shell.epsilon); shells_ = _shells.mulu(1e18); require(shells_ < _maxShells, "Shell/above-maximum-shells"); burn(shell, msg.sender, shells_); } function viewSelectiveWithdraw ( ShellStorage.Shell storage shell, address[] calldata _derivatives, uint[] calldata _amounts ) external view returns ( uint shells_ ) { ( int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals ) = viewLiquidityWithdrawData(shell, _derivatives, _amounts); int128 _shells = ShellMath.calculateLiquidityMembrane(shell, _oGLiq, _nGLiq, _oBals, _nBals); _shells = _shells.neg().us_mul(ONE + shell.epsilon); shells_ = _shells.mulu(1e18); } function getLiquidityDepositData ( ShellStorage.Shell storage shell, address[] memory _derivatives, uint[] memory _amounts ) private returns ( int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.weights.length; int128[] memory oBals_ = new int128[](_length); int128[] memory nBals_ = new int128[](_length); for (uint i = 0; i < _derivatives.length; i++) { ShellStorage.Assimilator memory _assim = shell.assimilators[_derivatives[i]]; require(_assim.addr != address(0), "Shell/unsupported-derivative"); if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) { ( int128 _amount, int128 _balance ) = Assimilators.intakeRawAndGetBalance(_assim.addr, _amounts[i]); nBals_[_assim.ix] = _balance; oBals_[_assim.ix] = _balance.sub(_amount); } else { int128 _amount = Assimilators.intakeRaw(_assim.addr, _amounts[i]); nBals_[_assim.ix] = nBals_[_assim.ix].add(_amount); } } return completeLiquidityData(shell, oBals_, nBals_); } function getLiquidityWithdrawData ( ShellStorage.Shell storage shell, address[] memory _derivatives, address _rcpnt, uint[] memory _amounts ) private returns ( int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.weights.length; int128[] memory oBals_ = new int128[](_length); int128[] memory nBals_ = new int128[](_length); for (uint i = 0; i < _derivatives.length; i++) { ShellStorage.Assimilator memory _assim = shell.assimilators[_derivatives[i]]; require(_assim.addr != address(0), "Shell/unsupported-derivative"); if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) { ( int128 _amount, int128 _balance ) = Assimilators.outputRawAndGetBalance(_assim.addr, _rcpnt, _amounts[i]); nBals_[_assim.ix] = _balance; oBals_[_assim.ix] = _balance.sub(_amount); } else { int128 _amount = Assimilators.outputRaw(_assim.addr, _rcpnt, _amounts[i]); nBals_[_assim.ix] = nBals_[_assim.ix].add(_amount); } } return completeLiquidityData(shell, oBals_, nBals_); } function viewLiquidityDepositData ( ShellStorage.Shell storage shell, address[] memory _derivatives, uint[] memory _amounts ) private view returns ( int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.assets.length; int128[] memory oBals_ = new int128[](_length); int128[] memory nBals_ = new int128[](_length); for (uint i = 0; i < _derivatives.length; i++) { ShellStorage.Assimilator memory _assim = shell.assimilators[_derivatives[i]]; require(_assim.addr != address(0), "Shell/unsupported-derivative"); if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) { ( int128 _amount, int128 _balance ) = Assimilators.viewNumeraireAmountAndBalance(_assim.addr, _amounts[i]); nBals_[_assim.ix] = _balance.add(_amount); oBals_[_assim.ix] = _balance; } else { int128 _amount = Assimilators.viewNumeraireAmount(_assim.addr, _amounts[i]); nBals_[_assim.ix] = nBals_[_assim.ix].add(_amount); } } return completeLiquidityData(shell, oBals_, nBals_); } function viewLiquidityWithdrawData ( ShellStorage.Shell storage shell, address[] memory _derivatives, uint[] memory _amounts ) private view returns ( int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.assets.length; int128[] memory oBals_ = new int128[](_length); int128[] memory nBals_ = new int128[](_length); for (uint i = 0; i < _derivatives.length; i++) { ShellStorage.Assimilator memory _assim = shell.assimilators[_derivatives[i]]; require(_assim.addr != address(0), "Shell/unsupported-derivative"); if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) { ( int128 _amount, int128 _balance ) = Assimilators.viewNumeraireAmountAndBalance(_assim.addr, _amounts[i]); nBals_[_assim.ix] = _balance.sub(_amount); oBals_[_assim.ix] = _balance; } else { int128 _amount = Assimilators.viewNumeraireAmount(_assim.addr, _amounts[i]); nBals_[_assim.ix] = nBals_[_assim.ix].sub(_amount); } } return completeLiquidityData(shell, oBals_, nBals_); } function completeLiquidityData ( ShellStorage.Shell storage shell, int128[] memory oBals_, int128[] memory nBals_ ) private view returns ( int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = oBals_.length; for (uint i = 0; i < _length; i++) { if (oBals_[i] == 0 && 0 == nBals_[i]) { nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(shell.assets[i].addr); } oGLiq_ += oBals_[i]; nGLiq_ += nBals_[i]; } return ( oGLiq_, nGLiq_, oBals_, nBals_ ); } function burn (ShellStorage.Shell storage shell, address account, uint256 amount) private { shell.balances[account] = burn_sub(shell.balances[account], amount); shell.totalSupply = burn_sub(shell.totalSupply, amount); emit Transfer(msg.sender, address(0), amount); } function mint (ShellStorage.Shell storage shell, address account, uint256 amount) private { shell.totalSupply = mint_add(shell.totalSupply, amount); shell.balances[account] = mint_add(shell.balances[account], amount); emit Transfer(address(0), msg.sender, amount); } function mint_add(uint x, uint y) private pure returns (uint z) { require((z = x + y) >= x, "Shell/mint-overflow"); } function burn_sub(uint x, uint y) private pure returns (uint z) { require((z = x - y) <= x, "Shell/burn-underflow"); } } ////// src/Shells.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity ^0.5.0; */ /* import "./ShellStorage.sol"; */ /* import "./Assimilators.sol"; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ library Shells { using ABDKMath64x64 for int128; event Approval(address indexed _owner, address indexed spender, uint256 value); event Transfer(address indexed from, address indexed to, uint256 value); function add(uint x, uint y, string memory errorMessage) private pure returns (uint z) { require((z = x + y) >= x, errorMessage); } function sub(uint x, uint y, string memory errorMessage) private pure returns (uint z) { require((z = x - y) <= x, errorMessage); } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(ShellStorage.Shell storage shell, address recipient, uint256 amount) external returns (bool) { _transfer(shell, msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(ShellStorage.Shell storage shell, address spender, uint256 amount) external returns (bool) { _approve(shell, msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for `sender`'s tokens of at least * `amount` */ function transferFrom(ShellStorage.Shell storage shell, address sender, address recipient, uint256 amount) external returns (bool) { _transfer(shell, msg.sender, recipient, amount); _approve(shell, sender, msg.sender, sub(shell.allowances[sender][msg.sender], amount, "Shell/insufficient-allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(ShellStorage.Shell storage shell, address spender, uint256 addedValue) external returns (bool) { _approve(shell, msg.sender, spender, add(shell.allowances[msg.sender][spender], addedValue, "Shell/approval-overflow")); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(ShellStorage.Shell storage shell, address spender, uint256 subtractedValue) external returns (bool) { _approve(shell, msg.sender, spender, sub(shell.allowances[msg.sender][spender], subtractedValue, "Shell/allowance-decrease-underflow")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is public function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(ShellStorage.Shell storage shell, address sender, address recipient, uint256 amount) private { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); shell.balances[sender] = sub(shell.balances[sender], amount, "Shell/insufficient-balance"); shell.balances[recipient] = add(shell.balances[recipient], amount, "Shell/transfer-overflow"); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `_owner`s tokens. * * This is public function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `_owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(ShellStorage.Shell storage shell, address _owner, address spender, uint256 amount) private { require(_owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); shell.allowances[_owner][spender] = amount; emit Approval(_owner, spender, amount); } } ////// src/Swaps.sol /* pragma solidity ^0.5.0; */ /* import "./Assimilators.sol"; */ /* import "./ShellStorage.sol"; */ /* import "./ShellMath.sol"; */ /* import "./UnsafeMath64x64.sol"; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ library Swaps { using ABDKMath64x64 for int128; using UnsafeMath64x64 for int128; event Trade(address indexed trader, address indexed origin, address indexed target, uint256 originAmount, uint256 targetAmount); int128 constant ONE = 0x10000000000000000; function getOriginAndTarget ( ShellStorage.Shell storage shell, address _o, address _t ) private view returns ( ShellStorage.Assimilator memory, ShellStorage.Assimilator memory ) { ShellStorage.Assimilator memory o_ = shell.assimilators[_o]; ShellStorage.Assimilator memory t_ = shell.assimilators[_t]; require(o_.addr != address(0), "Shell/origin-not-supported"); require(t_.addr != address(0), "Shell/target-not-supported"); return ( o_, t_ ); } function originSwap ( ShellStorage.Shell storage shell, address _origin, address _target, uint256 _originAmount, address _recipient ) external returns ( uint256 tAmt_ ) { ( ShellStorage.Assimilator memory _o, ShellStorage.Assimilator memory _t ) = getOriginAndTarget(shell, _origin, _target); if (_o.ix == _t.ix) return Assimilators.outputNumeraire(_t.addr, _recipient, Assimilators.intakeRaw(_o.addr, _originAmount)); ( int128 _amt, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals ) = getOriginSwapData(shell, _o.ix, _t.ix, _o.addr, _originAmount); _amt = ShellMath.calculateTrade(shell, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _t.ix); _amt = _amt.us_mul(ONE - shell.epsilon); tAmt_ = Assimilators.outputNumeraire(_t.addr, _recipient, _amt); emit Trade(msg.sender, _origin, _target, _originAmount, tAmt_); } function viewOriginSwap ( ShellStorage.Shell storage shell, address _origin, address _target, uint256 _originAmount ) external view returns ( uint256 tAmt_ ) { ( ShellStorage.Assimilator memory _o, ShellStorage.Assimilator memory _t ) = getOriginAndTarget(shell, _origin, _target); if (_o.ix == _t.ix) return Assimilators.viewRawAmount(_t.addr, Assimilators.viewNumeraireAmount(_o.addr, _originAmount)); ( int128 _amt, int128 _oGLiq, int128 _nGLiq, int128[] memory _nBals, int128[] memory _oBals ) = viewOriginSwapData(shell, _o.ix, _t.ix, _originAmount, _o.addr); _amt = ShellMath.calculateTrade(shell, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _t.ix); _amt = _amt.us_mul(ONE - shell.epsilon); tAmt_ = Assimilators.viewRawAmount(_t.addr, _amt.abs()); } function targetSwap ( ShellStorage.Shell storage shell, address _origin, address _target, uint256 _targetAmount, address _recipient ) external returns ( uint256 oAmt_ ) { ( ShellStorage.Assimilator memory _o, ShellStorage.Assimilator memory _t ) = getOriginAndTarget(shell, _origin, _target); if (_o.ix == _t.ix) return Assimilators.intakeNumeraire(_o.addr, Assimilators.outputRaw(_t.addr, _recipient, _targetAmount)); ( int128 _amt, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals) = getTargetSwapData(shell, _t.ix, _o.ix, _t.addr, _recipient, _targetAmount); _amt = ShellMath.calculateTrade(shell, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _o.ix); _amt = _amt.us_mul(ONE + shell.epsilon); oAmt_ = Assimilators.intakeNumeraire(_o.addr, _amt); emit Trade(msg.sender, _origin, _target, oAmt_, _targetAmount); } function viewTargetSwap ( ShellStorage.Shell storage shell, address _origin, address _target, uint256 _targetAmount ) external view returns ( uint256 oAmt_ ) { ( ShellStorage.Assimilator memory _o, ShellStorage.Assimilator memory _t ) = getOriginAndTarget(shell, _origin, _target); if (_o.ix == _t.ix) return Assimilators.viewRawAmount(_o.addr, Assimilators.viewNumeraireAmount(_t.addr, _targetAmount)); ( int128 _amt, int128 _oGLiq, int128 _nGLiq, int128[] memory _nBals, int128[] memory _oBals ) = viewTargetSwapData(shell, _t.ix, _o.ix, _targetAmount, _t.addr); _amt = ShellMath.calculateTrade(shell, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _o.ix); _amt = _amt.us_mul(ONE + shell.epsilon); oAmt_ = Assimilators.viewRawAmount(_o.addr, _amt); } function getOriginSwapData ( ShellStorage.Shell storage shell, uint _inputIx, uint _outputIx, address _assim, uint _amt ) private returns ( int128 amt_, int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.assets.length; int128[] memory oBals_ = new int128[](_length); int128[] memory nBals_ = new int128[](_length); ShellStorage.Assimilator[] memory _reserves = shell.assets; for (uint i = 0; i < _length; i++) { if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(_reserves[i].addr); else { int128 _bal; ( amt_, _bal ) = Assimilators.intakeRawAndGetBalance(_assim, _amt); oBals_[i] = _bal.sub(amt_); nBals_[i] = _bal; } oGLiq_ += oBals_[i]; nGLiq_ += nBals_[i]; } nGLiq_ = nGLiq_.sub(amt_); nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_); return ( amt_, oGLiq_, nGLiq_, oBals_, nBals_ ); } function getTargetSwapData ( ShellStorage.Shell storage shell, uint _inputIx, uint _outputIx, address _assim, address _recipient, uint _amt ) private returns ( int128 amt_, int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.assets.length; int128[] memory oBals_ = new int128[](_length); int128[] memory nBals_ = new int128[](_length); ShellStorage.Assimilator[] memory _reserves = shell.assets; for (uint i = 0; i < _length; i++) { if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(_reserves[i].addr); else { int128 _bal; ( amt_, _bal ) = Assimilators.outputRawAndGetBalance(_assim, _recipient, _amt); oBals_[i] = _bal.sub(amt_); nBals_[i] = _bal; } oGLiq_ += oBals_[i]; nGLiq_ += nBals_[i]; } nGLiq_ = nGLiq_.sub(amt_); nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_); return ( amt_, oGLiq_, nGLiq_, oBals_, nBals_ ); } function viewOriginSwapData ( ShellStorage.Shell storage shell, uint _inputIx, uint _outputIx, uint _amt, address _assim ) private view returns ( int128 amt_, int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.assets.length; int128[] memory nBals_ = new int128[](_length); int128[] memory oBals_ = new int128[](_length); for (uint i = 0; i < _length; i++) { if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(shell.assets[i].addr); else { int128 _bal; ( amt_, _bal ) = Assimilators.viewNumeraireAmountAndBalance(_assim, _amt); oBals_[i] = _bal; nBals_[i] = _bal.add(amt_); } oGLiq_ += oBals_[i]; nGLiq_ += nBals_[i]; } nGLiq_ = nGLiq_.sub(amt_); nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_); return ( amt_, oGLiq_, nGLiq_, nBals_, oBals_ ); } function viewTargetSwapData ( ShellStorage.Shell storage shell, uint _inputIx, uint _outputIx, uint _amt, address _assim ) private view returns ( int128 amt_, int128 oGLiq_, int128 nGLiq_, int128[] memory, int128[] memory ) { uint _length = shell.assets.length; int128[] memory nBals_ = new int128[](_length); int128[] memory oBals_ = new int128[](_length); for (uint i = 0; i < _length; i++) { if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(shell.assets[i].addr); else { int128 _bal; ( amt_, _bal ) = Assimilators.viewNumeraireAmountAndBalance(_assim, _amt); amt_ = amt_.neg(); oBals_[i] = _bal; nBals_[i] = _bal.add(amt_); } oGLiq_ += oBals_[i]; nGLiq_ += nBals_[i]; } nGLiq_ = nGLiq_.sub(amt_); nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_); return ( amt_, oGLiq_, nGLiq_, nBals_, oBals_ ); } } ////// src/ViewLiquidity.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity ^0.5.0; */ /* import "./ShellStorage.sol"; */ /* import "./Assimilators.sol"; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ library ViewLiquidity { using ABDKMath64x64 for int128; function viewLiquidity ( ShellStorage.Shell storage shell ) external view returns ( uint total_, uint[] memory individual_ ) { uint _length = shell.assets.length; uint[] memory individual_ = new uint[](_length); uint total_; for (uint i = 0; i < _length; i++) { uint _liquidity = Assimilators.viewNumeraireBalance(shell.assets[i].addr).mulu(1e18); total_ += _liquidity; individual_[i] = _liquidity; } return (total_, individual_); } } ////// src/ShellStorage.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity ^0.5.0; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ /* import "./Orchestrator.sol"; */ /* import "./PartitionedLiquidity.sol"; */ /* import "./ProportionalLiquidity.sol"; */ /* import "./SelectiveLiquidity.sol"; */ /* import "./Shells.sol"; */ /* import "./Swaps.sol"; */ /* import "./ViewLiquidity.sol"; */ contract ShellStorage { address public owner; string public constant name = "Shells"; string public constant symbol = "SHL"; uint8 public constant decimals = 18; Shell public shell; struct Shell { int128 alpha; int128 beta; int128 delta; int128 epsilon; int128 lambda; int128[] weights; uint totalSupply; Assimilator[] assets; mapping (address => Assimilator) assimilators; mapping (address => uint) balances; mapping (address => mapping (address => uint)) allowances; } struct Assimilator { address addr; uint8 ix; } mapping (address => PartitionTicket) public partitionTickets; struct PartitionTicket { uint[] claims; bool initialized; } address[] public derivatives; address[] public numeraires; address[] public reserves; bool public partitioned = false; bool public frozen = false; bool internal notEntered = true; } ////// src/ShellMath.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity ^0.5.0; */ /* import "./Assimilators.sol"; */ /* import "./UnsafeMath64x64.sol"; */ /* import "./ShellStorage.sol"; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ library ShellMath { int128 constant ONE = 0x10000000000000000; int128 constant MAX = 0x4000000000000000; // .25 in layman's terms int128 constant MAX_DIFF = -0x10C6F7A0B5EE; int128 constant ONE_WEI = 0x12; using ABDKMath64x64 for int128; using UnsafeMath64x64 for int128; using ABDKMath64x64 for uint256; function calculateFee ( int128 _gLiq, int128[] memory _bals, int128 _beta, int128 _delta, int128[] memory _weights ) internal pure returns (int128 psi_) { uint _length = _bals.length; for (uint i = 0; i < _length; i++) { int128 _ideal = _gLiq.us_mul(_weights[i]); psi_ += calculateMicroFee(_bals[i], _ideal, _beta, _delta); } } function calculateMicroFee ( int128 _bal, int128 _ideal, int128 _beta, int128 _delta ) private pure returns (int128 fee_) { if (_bal < _ideal) { int128 _threshold = _ideal.us_mul(ONE - _beta); if (_bal < _threshold) { int128 _feeMargin = _threshold - _bal; fee_ = _feeMargin.us_div(_ideal); fee_ = fee_.us_mul(_delta); if (fee_ > MAX) fee_ = MAX; fee_ = fee_.us_mul(_feeMargin); } else fee_ = 0; } else { int128 _threshold = _ideal.us_mul(ONE + _beta); if (_bal > _threshold) { int128 _feeMargin = _bal - _threshold; fee_ = _feeMargin.us_div(_ideal); fee_ = fee_.us_mul(_delta); if (fee_ > MAX) fee_ = MAX; fee_ = fee_.us_mul(_feeMargin); } else fee_ = 0; } } function calculateTrade ( ShellStorage.Shell storage shell, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals, int128 _inputAmt, uint _outputIndex ) internal view returns (int128 outputAmt_) { outputAmt_ = - _inputAmt; int128 _lambda = shell.lambda; int128 _beta = shell.beta; int128 _delta = shell.delta; int128[] memory _weights = shell.weights; int128 _omega = calculateFee(_oGLiq, _oBals, _beta, _delta, _weights); int128 _psi; for (uint i = 0; i < 32; i++) { _psi = calculateFee(_nGLiq, _nBals, _beta, _delta, _weights); if (( outputAmt_ = _omega < _psi ? - ( _inputAmt + _omega - _psi ) : - ( _inputAmt + _lambda.us_mul(_omega - _psi) ) ) / 1e13 == outputAmt_ / 1e13 ) { _nGLiq = _oGLiq + _inputAmt + outputAmt_; _nBals[_outputIndex] = _oBals[_outputIndex] + outputAmt_; enforceHalts(shell, _oGLiq, _nGLiq, _oBals, _nBals, _weights); enforceSwapInvariant(_oGLiq, _omega, _nGLiq, _psi); return outputAmt_; } else { _nGLiq = _oGLiq + _inputAmt + outputAmt_; _nBals[_outputIndex] = _oBals[_outputIndex].add(outputAmt_); } } revert("Shell/swap-convergence-failed"); } function enforceSwapInvariant ( int128 _oGLiq, int128 _omega, int128 _nGLiq, int128 _psi ) private pure { int128 _nextUtil = _nGLiq - _psi; int128 _prevUtil = _oGLiq - _omega; int128 _diff = _nextUtil - _prevUtil; require(0 < _diff || _diff >= MAX_DIFF, "Shell/swap-invariant-violation"); } function calculateLiquidityMembrane ( ShellStorage.Shell storage shell, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals ) internal view returns (int128 shells_) { enforceHalts(shell, _oGLiq, _nGLiq, _oBals, _nBals, shell.weights); int128 _omega; int128 _psi; { int128 _beta = shell.beta; int128 _delta = shell.delta; int128[] memory _weights = shell.weights; _omega = calculateFee(_oGLiq, _oBals, _beta, _delta, _weights); _psi = calculateFee(_nGLiq, _nBals, _beta, _delta, _weights); } int128 _feeDiff = _psi.sub(_omega); int128 _liqDiff = _nGLiq.sub(_oGLiq); int128 _oUtil = _oGLiq.sub(_omega); int128 _totalShells = shell.totalSupply.divu(1e18); int128 _shellMultiplier; if (_totalShells == 0) { shells_ = _nGLiq.sub(_psi); } else if (_feeDiff >= 0) { _shellMultiplier = _liqDiff.sub(_feeDiff).div(_oUtil); } else { _shellMultiplier = _liqDiff.sub(shell.lambda.mul(_feeDiff)); _shellMultiplier = _shellMultiplier.div(_oUtil); } if (_totalShells != 0) { shells_ = _totalShells.us_mul(_shellMultiplier); enforceLiquidityInvariant(_totalShells, shells_, _oGLiq, _nGLiq, _omega, _psi); } } function enforceLiquidityInvariant ( int128 _totalShells, int128 _newShells, int128 _oGLiq, int128 _nGLiq, int128 _omega, int128 _psi ) internal view { if (_totalShells == 0 || 0 == _totalShells + _newShells) return; int128 _prevUtilPerShell = _oGLiq .sub(_omega) .div(_totalShells); int128 _nextUtilPerShell = _nGLiq .sub(_psi) .div(_totalShells.add(_newShells)); int128 _diff = _nextUtilPerShell - _prevUtilPerShell; require(0 < _diff || _diff >= MAX_DIFF, "Shell/liquidity-invariant-violation"); } function enforceHalts ( ShellStorage.Shell storage shell, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals, int128[] memory _weights ) private view { uint256 _length = _nBals.length; int128 _alpha = shell.alpha; for (uint i = 0; i < _length; i++) { int128 _nIdeal = _nGLiq.us_mul(_weights[i]); if (_nBals[i] > _nIdeal) { int128 _upperAlpha = ONE + _alpha; int128 _nHalt = _nIdeal.us_mul(_upperAlpha); if (_nBals[i] > _nHalt){ int128 _oHalt = _oGLiq.us_mul(_weights[i]).us_mul(_upperAlpha); if (_oBals[i] < _oHalt) revert("Shell/upper-halt"); if (_nBals[i] - _nHalt > _oBals[i] - _oHalt) revert("Shell/upper-halt"); } } else { int128 _lowerAlpha = ONE - _alpha; int128 _nHalt = _nIdeal.us_mul(_lowerAlpha); if (_nBals[i] < _nHalt){ int128 _oHalt = _oGLiq.us_mul(_weights[i]).us_mul(_lowerAlpha); if (_oBals[i] > _oHalt) revert("Shell/lower-halt"); if (_nHalt - _nBals[i] > _oHalt - _oBals[i]) revert("Shell/lower-halt"); } } } } } ////// src/Orchestrator.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity ^0.5.0; */ /* import "./Assimilators.sol"; */ /* import "./ShellMath.sol"; */ /* import "./ShellStorage.sol"; */ /* import "abdk-libraries-solidity/ABDKMath64x64.sol"; */ library Orchestrator { using ABDKMath64x64 for int128; using ABDKMath64x64 for uint256; int128 constant ONE_WEI = 0x12; event ParametersSet(uint256 alpha, uint256 beta, uint256 delta, uint256 epsilon, uint256 lambda); event AssetIncluded(address indexed numeraire, address indexed reserve, uint weight); event AssimilatorIncluded(address indexed derivative, address indexed numeraire, address indexed reserve, address assimilator); function setParams ( ShellStorage.Shell storage shell, uint256 _alpha, uint256 _beta, uint256 _feeAtHalt, uint256 _epsilon, uint256 _lambda ) external { require(0 < _alpha && _alpha < 1e18, "Shell/parameter-invalid-alpha"); require(0 <= _beta && _beta < _alpha, "Shell/parameter-invalid-beta"); require(_feeAtHalt <= .5e18, "Shell/parameter-invalid-max"); require(0 <= _epsilon && _epsilon <= .01e18, "Shell/parameter-invalid-epsilon"); require(0 <= _lambda && _lambda <= 1e18, "Shell/parameter-invalid-lambda"); int128 _omega = getFee(shell); shell.alpha = (_alpha + 1).divu(1e18); shell.beta = (_beta + 1).divu(1e18); shell.delta = ( _feeAtHalt ).divu(1e18).div(uint(2).fromUInt().mul(shell.alpha.sub(shell.beta))) + ONE_WEI; shell.epsilon = (_epsilon + 1).divu(1e18); shell.lambda = (_lambda + 1).divu(1e18); int128 _psi = getFee(shell); require(_omega >= _psi, "Shell/parameters-increase-fee"); emit ParametersSet(_alpha, _beta, shell.delta.mulu(1e18), _epsilon, _lambda); } function getFee ( ShellStorage.Shell storage shell ) private view returns ( int128 fee_ ) { int128 _gLiq; int128[] memory _bals = new int128[](shell.assets.length); for (uint i = 0; i < _bals.length; i++) { int128 _bal = Assimilators.viewNumeraireBalance(shell.assets[i].addr); _bals[i] = _bal; _gLiq += _bal; } fee_ = ShellMath.calculateFee(_gLiq, _bals, shell.beta, shell.delta, shell.weights); } function initialize ( ShellStorage.Shell storage shell, address[] storage numeraires, address[] storage reserves, address[] storage derivatives, address[] calldata _assets, uint[] calldata _assetWeights, address[] calldata _derivativeAssimilators ) external { for (uint i = 0; i < _assetWeights.length; i++) { uint ix = i*5; numeraires.push(_assets[ix]); derivatives.push(_assets[ix]); reserves.push(_assets[2+ix]); if (_assets[ix] != _assets[2+ix]) derivatives.push(_assets[2+ix]); includeAsset( shell, _assets[ix], // numeraire _assets[1+ix], // numeraire assimilator _assets[2+ix], // reserve _assets[3+ix], // reserve assimilator _assets[4+ix], // reserve approve to _assetWeights[i] ); } for (uint i = 0; i < _derivativeAssimilators.length / 5; i++) { uint ix = i * 5; derivatives.push(_derivativeAssimilators[ix]); includeAssimilator( shell, _derivativeAssimilators[ix], // derivative _derivativeAssimilators[1+ix], // numeraire _derivativeAssimilators[2+ix], // reserve _derivativeAssimilators[3+ix], // assimilator _derivativeAssimilators[4+ix] // derivative approve to ); } } function includeAsset ( ShellStorage.Shell storage shell, address _numeraire, address _numeraireAssim, address _reserve, address _reserveAssim, address _reserveApproveTo, uint256 _weight ) private { require(_numeraire != address(0), "Shell/numeraire-cannot-be-zeroth-adress"); require(_numeraireAssim != address(0), "Shell/numeraire-assimilator-cannot-be-zeroth-adress"); require(_reserve != address(0), "Shell/reserve-cannot-be-zeroth-adress"); require(_reserveAssim != address(0), "Shell/reserve-assimilator-cannot-be-zeroth-adress"); require(_weight < 1e18, "Shell/weight-must-be-less-than-one"); if (_numeraire != _reserve) safeApprove(_numeraire, _reserveApproveTo, uint(-1)); ShellStorage.Assimilator storage _numeraireAssimilator = shell.assimilators[_numeraire]; _numeraireAssimilator.addr = _numeraireAssim; _numeraireAssimilator.ix = uint8(shell.assets.length); ShellStorage.Assimilator storage _reserveAssimilator = shell.assimilators[_reserve]; _reserveAssimilator.addr = _reserveAssim; _reserveAssimilator.ix = uint8(shell.assets.length); int128 __weight = _weight.divu(1e18).add(uint256(1).divu(1e18)); shell.weights.push(__weight); shell.assets.push(_numeraireAssimilator); emit AssetIncluded(_numeraire, _reserve, _weight); emit AssimilatorIncluded(_numeraire, _numeraire, _reserve, _numeraireAssim); if (_numeraireAssim != _reserveAssim) { emit AssimilatorIncluded(_reserve, _numeraire, _reserve, _reserveAssim); } } function includeAssimilator ( ShellStorage.Shell storage shell, address _derivative, address _numeraire, address _reserve, address _assimilator, address _derivativeApproveTo ) private { require(_derivative != address(0), "Shell/derivative-cannot-be-zeroth-address"); require(_numeraire != address(0), "Shell/numeraire-cannot-be-zeroth-address"); require(_reserve != address(0), "Shell/numeraire-cannot-be-zeroth-address"); require(_assimilator != address(0), "Shell/assimilator-cannot-be-zeroth-address"); safeApprove(_numeraire, _derivativeApproveTo, uint(-1)); ShellStorage.Assimilator storage _numeraireAssim = shell.assimilators[_numeraire]; shell.assimilators[_derivative] = ShellStorage.Assimilator(_assimilator, _numeraireAssim.ix); emit AssimilatorIncluded(_derivative, _numeraire, _reserve, _assimilator); } function safeApprove ( address _token, address _spender, uint256 _value ) private { ( bool success, bytes memory returndata ) = _token.call(abi.encodeWithSignature("approve(address,uint256)", _spender, _value)); require(success, "SafeERC20: low-level call failed"); } function viewShell ( ShellStorage.Shell storage shell ) external view returns ( uint alpha_, uint beta_, uint delta_, uint epsilon_, uint lambda_ ) { alpha_ = shell.alpha.mulu(1e18); beta_ = shell.beta.mulu(1e18); delta_ = shell.delta.mulu(1e18); epsilon_ = shell.epsilon.mulu(1e18); lambda_ = shell.lambda.mulu(1e18); } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"redeemer","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"PartitionRedeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"","type":"bool"}],"name":"PoolPartitioned","type":"event"}]
Contract Creation Code
61124b610026600b82828239805160001a60731461001957fe5b30600052607381538281f3fe730000000000000000000000000000000000000000301460806040526004361061004b5760003560e01c80637c6d404b14610050578063845e865214610095578063e407bd1414610142575b600080fd5b81801561005c57600080fd5b506100936004803603604081101561007357600080fd5b810190808035906020019092919080359060200190929190505050610286565b005b6100eb600480360360608110156100ab57600080fd5b810190808035906020019092919080359060200190929190803573ffffffffffffffffffffffffffffffffffffffff169060200190929190505050610381565b6040518080602001828103825283818151815260200191508051906020019060200280838360005b8381101561012e578082015181840152602081019050610113565b505050509050019250505060405180910390f35b81801561014e57600080fd5b5061022f6004803603608081101561016557600080fd5b8101908080359060200190929190803590602001909291908035906020019064010000000081111561019657600080fd5b8201836020820111156101a857600080fd5b803590602001918460208302840111640100000000831117156101ca57600080fd5b9091929391929390803590602001906401000000008111156101eb57600080fd5b8201836020820111156101fd57600080fd5b8035906020019184602083028401116401000000008311171561021f57600080fd5b9091929391929390505050610501565b6040518080602001828103825283818151815260200191508051906020019060200280838360005b83811015610272578082015181840152602081019050610257565b505050509050019250505060405180910390f35b60008260050180549050905060008260003073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020905060018160010160006101000a81548160ff02191690831515021790555060008090505b8281101561033e57816000018560040154908060018154018082558091505090600182039060005260206000200160009091929091909150555080806001019150506102f7565b507f3309f8c9e76bc3d782d9c72ca872f2574a0f993cdb3ffa81fa551847ffedb45a6001604051808215151515815260200191505060405180910390a150505050565b606060008360008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002090508060010160009054906101000a900460ff1615610437578060000180548060200260200160405190810160405280929190818152602001828054801561042a57602002820191906000526020600020905b815481526020019060010190808311610416575b50505050509150506104fa565b6000856005018054905090506060816040519080825280602002602001820160405280156104745781602001602082028038833980820191505090505b50905060008760070160003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002054905060008090505b838110156104f157818382815181106104d857fe5b60200260200101818152505080806001019150506104c3565b50819450505050505b9392505050565b606060008760050180549050905060008860070160003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002054905060008860003073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020905060008960003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002090508060010160009054906101000a900460ff166106575760008090505b84811015610638578160000184908060018154018082558091505090600182039060005260206000200160009091929091909150555080806001019150506105f5565b5060018160010160006101000a81548160ff0219169083151502179055505b88889050935060608460405190808252806020026020018201604052801561068e5781602001602082028038833980820191505090505b50905060008090505b85811015610bbc576106a76111e3565b8d60060160008d8d858181106106b957fe5b9050602002013573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000206040518060400160405290816000820160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016000820160149054906101000a900460ff1660ff1660ff1681525050905089898381811061079c57fe5b9050602002013585600001826020015160ff16815481106107b957fe5b90600052602060002001541015610838576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040180806020018281038252601f8152602001807f5368656c6c2f6275726e2d657863656564732d746f74616c2d737570706c790081525060200191505060405180910390fd5b89898381811061084457fe5b9050602002013584600001826020015160ff168154811061086157fe5b906000526020600020015410156108e0576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040180806020018281038252601a8152602001807f5368656c6c2f696e73756666696369656e742d62616c616e636500000000000081525060200191505060405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff161415610987576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004018080602001828103825260178152602001807f5368656c6c2f756e737570706f727465642d617373657400000000000000000081525060200191505060405180910390fd5b60006109968260000151610bcf565b90506000610a166109d8670de0b6b3a764000089600001866020015160ff16815481106109bf57fe5b9060005260206000200154610c9090919063ffffffff16565b610a05670de0b6b3a76400008f8f898181106109f057fe5b90506020020135610c9090919063ffffffff16565b600f0b610cf890919063ffffffff16565b90508b8b85818110610a2457fe5b9050602002013587600001846020015160ff1681548110610a4157fe5b90600052602060002001540387600001846020015160ff1681548110610a6357fe5b90600052602060002001819055508b8b85818110610a7d57fe5b9050602002013586600001846020015160ff1681548110610a9a57fe5b90600052602060002001540386600001846020015160ff1681548110610abc57fe5b90600052602060002001819055506000610af0846000015133610aeb8587600f0b610d7b90919063ffffffff16565b610de6565b905080868681518110610aff57fe5b6020026020010181815250503373ffffffffffffffffffffffffffffffffffffffff168f8f87818110610b2e57fe5b9050602002013573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f1489f6a87c252c0e2f0a337fa81b4b0cde740ea01af227d64242c606e6066082888881518110610b8e57fe5b60200260200101516040518082815260200191505060405180910390a3505050508080600101915050610697565b5080955050505050509695505050505050565b60008173ffffffffffffffffffffffffffffffffffffffff1663ac969a73306040518263ffffffff1660e01b8152600401808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060206040518083038186803b158015610c4e57600080fd5b505afa158015610c62573d6000803e3d6000fd5b505050506040513d6020811015610c7857600080fd5b81019080805190602001909291905050509050919050565b600080821415610c9f57600080fd5b6000610cab8484610efa565b90506f7fffffffffffffffffffffffffffffff6fffffffffffffffffffffffffffffffff16816fffffffffffffffffffffffffffffffff161115610cee57600080fd5b8091505092915050565b60008082600f0b1415610d0a57600080fd5b600082600f0b604085600f0b901b81610d1f57fe5b0590507fffffffffffffffffffffffffffffffff80000000000000000000000000000000600f0b8112158015610d6857506f7fffffffffffffffffffffffffffffff600f0b8113155b610d7157600080fd5b8091505092915050565b600080604083600f0b85600f0b02901d90507fffffffffffffffffffffffffffffffff80000000000000000000000000000000600f0b8112158015610dd357506f7fffffffffffffffffffffffffffffff600f0b8113155b610ddc57600080fd5b8091505092915050565b60006060600073ffffffffffffffffffffffffffffffffffffffff16636fc39052905060e01b84610e1985600f0b6110bb565b604051602401808373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200182600f0b600f0b815260200192505050604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050509050610ecb858261110d565b8060200190516020811015610edf57600080fd5b81019080805190602001909291905050509150509392505050565b600080821415610f0957600080fd5b600077ffffffffffffffffffffffffffffffffffffffffffffffff8411610f3f5782604085901b81610f3757fe5b049050611094565b600060c09050600060c086901c90506401000000008110610f6857602081901c90506020820191505b620100008110610f8057601081901c90506010820191505b6101008110610f9757600881901c90506008820191505b60108110610fad57600481901c90506004820191505b60048110610fc357600281901c90506002820191505b60028110610fd2576001820191505b600160bf830360018703901c018260ff0387901b81610fed57fe5b0492506fffffffffffffffffffffffffffffffff83111561100d57600080fd5b6000608086901c8402905060006fffffffffffffffffffffffffffffffff871685029050600060c089901c9050600060408a901b905082811015611052576001820391505b8281039050608084901b92508281101561106d576001820391505b8281039050608084901c821461107f57fe5b88818161108857fe5b04870196505050505050505b6fffffffffffffffffffffffffffffffff8111156110b157600080fd5b8091505092915050565b60007fffffffffffffffffffffffffffffffff80000000000000000000000000000000600f0b82600f0b14156110f057600080fd5b600082600f0b126111015781611106565b816000035b9050919050565b6060600060608473ffffffffffffffffffffffffffffffffffffffff16846040518082805190602001908083835b6020831061115e578051825260208201915060208101905060208303925061113b565b6001836020036101000a038019825116818451168082178552505050505050905001915050600060405180830381855af49150503d80600081146111be576040519150601f19603f3d011682016040523d82523d6000602084013e6111c3565b606091505b509150915060008214156111d8573d60208201fd5b809250505092915050565b6040518060400160405280600073ffffffffffffffffffffffffffffffffffffffff168152602001600060ff168152509056fea265627a7a72315820c15bb70f0a90f4dd550f02669596151d9bd2778c9434a3ab792c9bcfe8353b3b64736f6c634300050f0032
Deployed Bytecode
0x732baf1ddd7fdde8ffe15a1911cb032851a8614bf3301460806040526004361061004b5760003560e01c80637c6d404b14610050578063845e865214610095578063e407bd1414610142575b600080fd5b81801561005c57600080fd5b506100936004803603604081101561007357600080fd5b810190808035906020019092919080359060200190929190505050610286565b005b6100eb600480360360608110156100ab57600080fd5b810190808035906020019092919080359060200190929190803573ffffffffffffffffffffffffffffffffffffffff169060200190929190505050610381565b6040518080602001828103825283818151815260200191508051906020019060200280838360005b8381101561012e578082015181840152602081019050610113565b505050509050019250505060405180910390f35b81801561014e57600080fd5b5061022f6004803603608081101561016557600080fd5b8101908080359060200190929190803590602001909291908035906020019064010000000081111561019657600080fd5b8201836020820111156101a857600080fd5b803590602001918460208302840111640100000000831117156101ca57600080fd5b9091929391929390803590602001906401000000008111156101eb57600080fd5b8201836020820111156101fd57600080fd5b8035906020019184602083028401116401000000008311171561021f57600080fd5b9091929391929390505050610501565b6040518080602001828103825283818151815260200191508051906020019060200280838360005b83811015610272578082015181840152602081019050610257565b505050509050019250505060405180910390f35b60008260050180549050905060008260003073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020905060018160010160006101000a81548160ff02191690831515021790555060008090505b8281101561033e57816000018560040154908060018154018082558091505090600182039060005260206000200160009091929091909150555080806001019150506102f7565b507f3309f8c9e76bc3d782d9c72ca872f2574a0f993cdb3ffa81fa551847ffedb45a6001604051808215151515815260200191505060405180910390a150505050565b606060008360008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002090508060010160009054906101000a900460ff1615610437578060000180548060200260200160405190810160405280929190818152602001828054801561042a57602002820191906000526020600020905b815481526020019060010190808311610416575b50505050509150506104fa565b6000856005018054905090506060816040519080825280602002602001820160405280156104745781602001602082028038833980820191505090505b50905060008760070160003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002054905060008090505b838110156104f157818382815181106104d857fe5b60200260200101818152505080806001019150506104c3565b50819450505050505b9392505050565b606060008760050180549050905060008860070160003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002054905060008860003073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020905060008960003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002090508060010160009054906101000a900460ff166106575760008090505b84811015610638578160000184908060018154018082558091505090600182039060005260206000200160009091929091909150555080806001019150506105f5565b5060018160010160006101000a81548160ff0219169083151502179055505b88889050935060608460405190808252806020026020018201604052801561068e5781602001602082028038833980820191505090505b50905060008090505b85811015610bbc576106a76111e3565b8d60060160008d8d858181106106b957fe5b9050602002013573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000206040518060400160405290816000820160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016000820160149054906101000a900460ff1660ff1660ff1681525050905089898381811061079c57fe5b9050602002013585600001826020015160ff16815481106107b957fe5b90600052602060002001541015610838576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040180806020018281038252601f8152602001807f5368656c6c2f6275726e2d657863656564732d746f74616c2d737570706c790081525060200191505060405180910390fd5b89898381811061084457fe5b9050602002013584600001826020015160ff168154811061086157fe5b906000526020600020015410156108e0576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040180806020018281038252601a8152602001807f5368656c6c2f696e73756666696369656e742d62616c616e636500000000000081525060200191505060405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff161415610987576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004018080602001828103825260178152602001807f5368656c6c2f756e737570706f727465642d617373657400000000000000000081525060200191505060405180910390fd5b60006109968260000151610bcf565b90506000610a166109d8670de0b6b3a764000089600001866020015160ff16815481106109bf57fe5b9060005260206000200154610c9090919063ffffffff16565b610a05670de0b6b3a76400008f8f898181106109f057fe5b90506020020135610c9090919063ffffffff16565b600f0b610cf890919063ffffffff16565b90508b8b85818110610a2457fe5b9050602002013587600001846020015160ff1681548110610a4157fe5b90600052602060002001540387600001846020015160ff1681548110610a6357fe5b90600052602060002001819055508b8b85818110610a7d57fe5b9050602002013586600001846020015160ff1681548110610a9a57fe5b90600052602060002001540386600001846020015160ff1681548110610abc57fe5b90600052602060002001819055506000610af0846000015133610aeb8587600f0b610d7b90919063ffffffff16565b610de6565b905080868681518110610aff57fe5b6020026020010181815250503373ffffffffffffffffffffffffffffffffffffffff168f8f87818110610b2e57fe5b9050602002013573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f1489f6a87c252c0e2f0a337fa81b4b0cde740ea01af227d64242c606e6066082888881518110610b8e57fe5b60200260200101516040518082815260200191505060405180910390a3505050508080600101915050610697565b5080955050505050509695505050505050565b60008173ffffffffffffffffffffffffffffffffffffffff1663ac969a73306040518263ffffffff1660e01b8152600401808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060206040518083038186803b158015610c4e57600080fd5b505afa158015610c62573d6000803e3d6000fd5b505050506040513d6020811015610c7857600080fd5b81019080805190602001909291905050509050919050565b600080821415610c9f57600080fd5b6000610cab8484610efa565b90506f7fffffffffffffffffffffffffffffff6fffffffffffffffffffffffffffffffff16816fffffffffffffffffffffffffffffffff161115610cee57600080fd5b8091505092915050565b60008082600f0b1415610d0a57600080fd5b600082600f0b604085600f0b901b81610d1f57fe5b0590507fffffffffffffffffffffffffffffffff80000000000000000000000000000000600f0b8112158015610d6857506f7fffffffffffffffffffffffffffffff600f0b8113155b610d7157600080fd5b8091505092915050565b600080604083600f0b85600f0b02901d90507fffffffffffffffffffffffffffffffff80000000000000000000000000000000600f0b8112158015610dd357506f7fffffffffffffffffffffffffffffff600f0b8113155b610ddc57600080fd5b8091505092915050565b60006060600073ffffffffffffffffffffffffffffffffffffffff16636fc39052905060e01b84610e1985600f0b6110bb565b604051602401808373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200182600f0b600f0b815260200192505050604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050509050610ecb858261110d565b8060200190516020811015610edf57600080fd5b81019080805190602001909291905050509150509392505050565b600080821415610f0957600080fd5b600077ffffffffffffffffffffffffffffffffffffffffffffffff8411610f3f5782604085901b81610f3757fe5b049050611094565b600060c09050600060c086901c90506401000000008110610f6857602081901c90506020820191505b620100008110610f8057601081901c90506010820191505b6101008110610f9757600881901c90506008820191505b60108110610fad57600481901c90506004820191505b60048110610fc357600281901c90506002820191505b60028110610fd2576001820191505b600160bf830360018703901c018260ff0387901b81610fed57fe5b0492506fffffffffffffffffffffffffffffffff83111561100d57600080fd5b6000608086901c8402905060006fffffffffffffffffffffffffffffffff871685029050600060c089901c9050600060408a901b905082811015611052576001820391505b8281039050608084901b92508281101561106d576001820391505b8281039050608084901c821461107f57fe5b88818161108857fe5b04870196505050505050505b6fffffffffffffffffffffffffffffffff8111156110b157600080fd5b8091505092915050565b60007fffffffffffffffffffffffffffffffff80000000000000000000000000000000600f0b82600f0b14156110f057600080fd5b600082600f0b126111015781611106565b816000035b9050919050565b6060600060608473ffffffffffffffffffffffffffffffffffffffff16846040518082805190602001908083835b6020831061115e578051825260208201915060208101905060208303925061113b565b6001836020036101000a038019825116818451168082178552505050505050905001915050600060405180830381855af49150503d80600081146111be576040519150601f19603f3d011682016040523d82523d6000602084013e6111c3565b606091505b509150915060008214156111d8573d60208201fd5b809250505092915050565b6040518060400160405280600073ffffffffffffffffffffffffffffffffffffffff168152602001600060ff168152509056fea265627a7a72315820c15bb70f0a90f4dd550f02669596151d9bd2778c9434a3ab792c9bcfe8353b3b64736f6c634300050f0032
Deployed Bytecode Sourcemap
31529:3608:0:-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;31859:506;;8:9:-1;5:2;;;30:1;27;20:12;5:2;31859:506:0;;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;31859:506:0;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;32373:650;;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;32373:650:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;23:1:-1;8:100;33:3;30:1;27:10;8:100;;;99:1;94:3;90:11;84:18;80:1;75:3;71:11;64:39;52:2;49:1;45:10;40:15;;8:100;;;12:14;32373:650:0;;;;;;;;;;;;;;;;;33031:2101;;8:9:-1;5:2;;;30:1;27;20:12;5:2;33031:2101:0;;;;;;13:3:-1;8;5:12;2:2;;;30:1;27;20:12;2:2;33031:2101:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;21:11:-1;8;5:28;2:2;;;46:1;43;36:12;2:2;33031:2101:0;;35:9:-1;28:4;12:14;8:25;5:40;2:2;;;58:1;55;48:12;2:2;33031:2101:0;;;;;;101:9:-1;95:2;81:12;77:21;67:8;63:36;60:51;39:11;25:12;22:29;11:108;8:2;;;132:1;129;122:12;8:2;33031:2101:0;;;;;;;;;;;;;;21:11:-1;8;5:28;2:2;;;46:1;43;36:12;2:2;33031:2101:0;;35:9:-1;28:4;12:14;8:25;5:40;2:2;;;58:1;55;48:12;2:2;33031:2101:0;;;;;;101:9:-1;95:2;81:12;77:21;67:8;63:36;60:51;39:11;25:12;22:29;11:108;8:2;;;132:1;129;122:12;8:2;33031:2101:0;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;23:1:-1;8:100;33:3;30:1;27:10;8:100;;;99:1;94:3;90:11;84:18;80:1;75:3;71:11;64:39;52:2;49:1;45:10;40:15;;8:100;;;12:14;33031:2101:0;;;;;;;;;;;;;;;;;31859:506;32036:12;32051:5;:12;;:19;;;;32036:34;;32083:54;32140:16;:31;32165:4;32140:31;;;;;;;;;;;;;;;32083:88;;32216:4;32184:17;:29;;;:36;;;;;;;;;;;;;;;;;;32238:6;32247:1;32238:10;;32233:83;32254:7;32250:1;:11;32233:83;;;32268:17;:24;;32298:5;:17;;;32268:48;;39:1:-1;33:3;27:10;23:18;57:10;52:3;45:23;79:10;72:17;;0:93;32268:48:0;;;;;;;;;;;;;;;;;;;;;;32263:3;;;;;;;32233:83;;;;32334:21;32350:4;32334:21;;;;;;;;;;;;;;;;;;;;;;31859:506;;;;:::o;32373:650::-;32595:21;32637:43;32683:16;:23;32700:5;32683:23;;;;;;;;;;;;;;;32637:69;;32723:6;:18;;;;;;;;;;;;32719:44;;;32750:6;:13;;32743:20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;32719:44;32776:12;32791:5;:12;;:19;;;;32776:34;;32821:21;32856:7;32845:19;;;;;;;;;;;;;;;;;;;;;;29:2:-1;21:6;17:15;117:4;105:10;97:6;88:34;148:4;140:6;136:17;126:27;;0:157;32845:19:0;;;;32821:43;;32875:13;32891:5;:14;;:26;32906:10;32891:26;;;;;;;;;;;;;;;;32875:42;;32935:6;32944:1;32935:10;;32930:56;32951:7;32947:1;:11;32930:56;;;32978:8;32965:7;32973:1;32965:10;;;;;;;;;;;;;:21;;;;;32960:3;;;;;;;32930:56;;;;33006:7;32999:14;;;;;;32373:650;;;;;;:::o;33031:2101::-;33305:13;33339:12;33354:5;:12;;:19;;;;33339:34;;33384:13;33400:5;:14;;:26;33415:10;33400:26;;;;;;;;;;;;;;;;33384:42;;33439:56;33498:16;:31;33523:4;33498:31;;;;;;;;;;;;;;;33439:90;;33540:43;33586:16;:28;33603:10;33586:28;;;;;;;;;;;;;;;33540:74;;33632:6;:18;;;;;;;;;;;;33627:159;;33674:6;33683:1;33674:10;;33669:63;33690:7;33686:1;:11;33669:63;;;33704:6;:13;;33723:8;33704:28;;39:1:-1;33:3;27:10;23:18;57:10;52:3;45:23;79:10;72:17;;0:93;33704:28:0;;;;;;;;;;;;;;;;;;;;;;33699:3;;;;;;;33669:63;;;;33768:4;33747:6;:18;;;:25;;;;;;;;;;;;;;;;;;33627:159;33808:12;;:19;;33798:29;;33840:26;33880:7;33869:19;;;;;;;;;;;;;;;;;;;;;;29:2:-1;21:6;17:15;117:4;105:10;97:6;88:34;148:4;140:6;136:17;126:27;;0:157;33869:19:0;;;;33840:48;;33906:6;33915:1;33906:10;;33901:1190;33922:7;33918:1;:11;33901:1190;;;33953:38;;:::i;:::-;33994:5;:18;;:35;34013:12;;34026:1;34013:15;;;;;;;;;;;;;;;33994:35;;;;;;;;;;;;;;;33953:76;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;34095:12;;34108:1;34095:15;;;;;;;;;;;;;34054:19;:26;;34081:6;:9;;;34054:37;;;;;;;;;;;;;;;;;;:56;;34046:100;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;34211:12;;34224:1;34211:15;;;;;;;;;;;;;34183:6;:13;;34197:6;:9;;;34183:24;;;;;;;;;;;;;;;;;;:43;;34175:82;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;34305:1;34282:25;;:6;:11;;;:25;;;;34274:61;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;34352:22;34377:46;34411:6;:11;;;34377:33;:46::i;:::-;34352:71;;34440:18;34461:98;34510:48;34553:4;34510:19;:26;;34537:6;:9;;;34510:37;;;;;;;;;;;;;;;;;;:42;;:48;;;;:::i;:::-;34461:26;34482:4;34461:12;;34474:1;34461:15;;;;;;;;;;;;;:20;;:26;;;;:::i;:::-;:48;;;;:98;;;;:::i;:::-;34440:119;;34656:12;;34669:1;34656:15;;;;;;;;;;;;;34616:19;:26;;34643:6;:9;;;34616:37;;;;;;;;;;;;;;;;;;:55;34576:19;:26;;34603:6;:9;;;34576:37;;;;;;;;;;;;;;;;;:95;;;;34742:12;;34755:1;34742:15;;;;;;;;;;;;;34715:6;:13;;34729:6;:9;;;34715:24;;;;;;;;;;;;;;;;;;:42;34688:6;:13;;34702:6;:9;;;34688:24;;;;;;;;;;;;;;;;;:69;;;;34774:16;34793:153;34840:6;:11;;;34870:10;34899:32;34919:11;34899:15;:19;;;;:32;;;;:::i;:::-;34793:28;:153::i;:::-;34774:172;;34981:11;34963:12;34976:1;34963:15;;;;;;;;;;;;;:29;;;;;35049:10;35014:63;;35032:12;;35045:1;35032:15;;;;;;;;;;;;;;;35014:63;;;35061:12;35074:1;35061:15;;;;;;;;;;;;;;35014:63;;;;;;;;;;;;;;;;;;33901:1190;;;;33931:3;;;;;;;33901:1190;;;;35110:12;35103:19;;;;;;;33031:2101;;;;;;;;:::o;28510:169::-;28580:11;28626:6;28613:41;;;28663:4;28613:56;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;8:9:-1;5:2;;;30:1;27;20:12;5:2;28613:56:0;;;;8:9:-1;5:2;;;45:16;42:1;39;24:38;77:16;74:1;67:27;5:2;28613:56:0;;;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;28613:56:0;;;;;;;;;;;;;;;;28606:63;;28510:169;;;:::o;8614:208::-;8674:6;8703:1;8698;:6;;8689:16;;;;;;8712:14;8729:12;8736:1;8739;8729:5;:12::i;:::-;8712:29;;1133:34;8757:29;;:6;:29;;;;8748:39;;;;;;8809:6;8794:22;;;8614:208;;;;:::o;7006:227::-;7063:6;7092:1;7087;:6;;;;7078:16;;;;;;7101:13;7138:1;7117:22;;7132:2;7126:1;7118:10;;:16;;7117:22;;;;;;7101:38;;974:35;7155:19;;:6;:19;;:42;;;;;1133:34;7178:19;;:6;:19;;7155:42;7146:52;;;;;;7220:6;7205:22;;;7006:227;;;;:::o;4447:201::-;4504:6;4519:13;4552:2;4547:1;4535:13;;4542:1;4535:9;;:13;:19;;4519:35;;974;4570:19;;:6;:19;;:42;;;;;1133:34;4593:19;;:6;:19;;4570:42;4561:52;;;;;;4635:6;4620:22;;;4447:201;;;;:::o;30173:283::-;30260:12;30287:17;27590:1;30330:23;;;:32;;;;30364:4;30370:10;:4;:8;;;:10::i;:::-;30307:74;;;;;;;;;;;;;;;;;;;;;;;;;;;;;49:4:-1;39:7;30;26:21;22:32;13:7;6:49;30307:74:0;;;;;;;38:4:-1;29:7;25:18;67:10;61:17;96:58;199:8;192:4;186;182:15;179:29;167:10;160:49;0:215;;;30307:74:0;30287:94;;30412:22;30421:6;30429:4;30412:8;:22::i;:::-;30401:45;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;30401:45:0;;;;;;;;;;;;;;;;30394:52;;30173:283;;;;;;:::o;21186:1257::-;21246:7;21276:1;21271;:6;;21262:16;;;;;;21287:14;21319:50;21314:1;:55;21310:1035;;21399:1;21393:2;21388:1;:7;;21387:13;;;;;;21378:22;;21310:1035;;;21421:11;21435:3;21421:17;;21447:10;21465:3;21460:1;:8;;21447:21;;21487:11;21481:2;:17;21477:48;;21509:2;21502:9;;;;;21520:2;21513:9;;;;21477:48;21543:7;21537:2;:13;21533:44;;21561:2;21554:9;;;;;21572:2;21565:9;;;;21533:44;21595:5;21589:2;:11;21585:40;;21611:1;21604:8;;;;;21621:1;21614:8;;;;21585:40;21643:4;21637:2;:10;21633:39;;21658:1;21651:8;;;;;21668:1;21661:8;;;;21633:39;21690:3;21684:2;:9;21680:38;;21704:1;21697:8;;;;;21714:1;21707:8;;;;21680:38;21736:3;21730:2;:9;21726:23;;21748:1;21741:8;;;;21726:23;21844:1;21837:3;21831;:9;21826:1;21822;:5;:18;;21821:24;21813:3;21807;:9;21802:1;:14;;21801:45;;;;;;21792:54;;21874:34;21864:6;:44;;21855:54;;;;;;21920:10;21948:3;21943:1;:8;;21933:6;:19;21920:32;;21961:10;21988:34;21984:1;:38;21974:6;:49;21961:62;;22034:10;22052:3;22047:1;:8;;22034:21;;22064:10;22082:2;22077:1;:7;;22064:20;;22104:2;22099;:7;22095:20;;;22114:1;22108:7;;;;22095:20;22130:2;22124:8;;;;22189:3;22183:2;:9;;22178:14;;22210:2;22205;:7;22201:20;;;22220:1;22214:7;;;;22201:20;22236:2;22230:8;;;;22306:3;22300:2;:9;;22294:2;:15;22286:24;;;;22336:1;22331:2;:6;;;;;;22321:16;;;;21310:1035;;;;;;;22372:34;22362:6;:44;;22353:54;;;;;;22430:6;22414:23;;;21186:1257;;;;:::o;9267:120::-;9314:6;974:35;9338:14;;:1;:14;;;;9329:24;;;;;;9371:1;9367;:5;;;:14;;9380:1;9367:14;;;9376:1;9375:2;;9367:14;9360:21;;9267:120;;;:::o;27602:308::-;27675:12;27703:13;27718:24;27746:7;:20;;27767:5;27746:27;;;;;;;;;;;;;36:153:-1;66:2;61:3;58:11;36:153;;182:3;176:10;171:3;164:23;98:2;93:3;89:12;82:19;;123:2;118:3;114:12;107:19;;148:2;143:3;139:12;132:19;;36:153;;;274:1;267:3;263:2;259:12;254:3;250:22;246:30;315:4;311:9;305:3;299:10;295:26;356:4;350:3;344:10;340:21;389:7;380;377:20;372:3;365:33;3:399;;;27746:27:0;;;;;;;;;;;;;;;;;;;;;;;14:1:-1;21;16:31;;;;75:4;69:11;64:16;;144:4;140:9;133:4;115:16;111:27;107:43;104:1;100:51;94:4;87:65;169:16;166:1;159:27;225:16;222:1;215:4;212:1;208:12;193:49;7:242;;16:31;36:4;31:9;;7:242;;27702:71:0;;;;27813:1;27803:8;27800:15;27797:2;;;27849:16;27842:4;27829:11;27825:22;27818:48;27797:2;27889:11;27882:18;;;;27602:308;;;;:::o;31529:3608::-;;;;;;;;;;;;;;;;;;;;;;;:::o
Swarm Source
bzzr://c15bb70f0a90f4dd550f02669596151d9bd2778c9434a3ab792c9bcfe8353b3b
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.