ETH Price: $2,300.94 (+0.54%)

Contract

0x2DF63AB4f5240823c5112338741BcE71d284109F
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Emergency Withdr...205557942024-08-18 13:24:4720 days ago1723987487IN
0x2DF63AB4...1d284109F
0 ETH0.000124841.48352873
Emergency Withdr...190220752024-01-16 21:15:59234 days ago1705439759IN
0x2DF63AB4...1d284109F
0 ETH0.002949835.05245203
Migrate190154232024-01-15 22:59:47235 days ago1705359587IN
0x2DF63AB4...1d284109F
0 ETH0.0011296523.94148429
Withdraw Staked ...190085092024-01-14 23:48:59236 days ago1705276139IN
0x2DF63AB4...1d284109F
0 ETH0.001412919.05000479
Claim And Stake ...190085062024-01-14 23:48:23236 days ago1705276103IN
0x2DF63AB4...1d284109F
0 ETH0.001552318.32820767
Withdraw Staked ...189094352024-01-01 1:49:59250 days ago1704073799IN
0x2DF63AB4...1d284109F
0 ETH0.0009497112.80902267
Withdraw Staked ...189094322024-01-01 1:49:23250 days ago1704073763IN
0x2DF63AB4...1d284109F
0 ETH0.0009979813.46014851
Claim And Stake ...189094302024-01-01 1:48:59250 days ago1704073739IN
0x2DF63AB4...1d284109F
0 ETH0.0010720412.65978122
Withdraw Staked ...188882512023-12-29 2:25:23253 days ago1703816723IN
0x2DF63AB4...1d284109F
0 ETH0.0018627720.40993934
Claim And Stake ...188882472023-12-29 2:24:35253 days ago1703816675IN
0x2DF63AB4...1d284109F
0 ETH0.0017261420.38743822
Withdraw Staked ...188816852023-12-28 4:18:23254 days ago1703737103IN
0x2DF63AB4...1d284109F
0 ETH0.003902552.61707783
Withdraw Staked ...188816802023-12-28 4:17:23254 days ago1703737043IN
0x2DF63AB4...1d284109F
0 ETH0.0063418754.85383733
Withdraw Staked ...180502642023-09-02 17:17:47370 days ago1693675067IN
0x2DF63AB4...1d284109F
0 ETH0.001311117.68032132
Claim And Stake ...180502612023-09-02 17:17:11370 days ago1693675031IN
0x2DF63AB4...1d284109F
0 ETH0.0014421516.98094484
Withdraw Staked ...178742832023-08-09 2:11:11395 days ago1691547071IN
0x2DF63AB4...1d284109F
0 ETH0.0012772217.22074811
Claim And Stake ...178742792023-08-09 2:10:23395 days ago1691547023IN
0x2DF63AB4...1d284109F
0 ETH0.0014107616.60852948
Withdraw Staked ...176759822023-07-12 7:24:35423 days ago1689146675IN
0x2DF63AB4...1d284109F
0 ETH0.0011896216.03959502
Claim And Stake ...176759802023-07-12 7:24:11423 days ago1689146651IN
0x2DF63AB4...1d284109F
0 ETH0.0012909415.2447617
Withdraw Staked ...176420912023-07-07 13:01:59428 days ago1688734919IN
0x2DF63AB4...1d284109F
0 ETH0.0024969633.67181047
Withdraw Staked ...176420792023-07-07 12:59:35428 days ago1688734775IN
0x2DF63AB4...1d284109F
0 ETH0.0023793624.22015408
Withdraw Staked ...176387942023-07-07 1:54:59428 days ago1688694899IN
0x2DF63AB4...1d284109F
0 ETH0.0017792523.99334511
Claim And Stake ...176387912023-07-07 1:54:23428 days ago1688694863IN
0x2DF63AB4...1d284109F
0 ETH0.0016222924.60080286
Withdraw Staked ...176375942023-07-06 21:52:11428 days ago1688680331IN
0x2DF63AB4...1d284109F
0 ETH0.001895725.56374421
Claim And Stake ...176375622023-07-06 21:45:47428 days ago1688679947IN
0x2DF63AB4...1d284109F
0 ETH0.0018613328.22561436
Withdraw Staked ...176371102023-07-06 20:14:59428 days ago1688674499IN
0x2DF63AB4...1d284109F
0 ETH0.0025928428.41282033
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Stake

Compiler Version
v0.8.11+commit.d7f03943

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 11 : Stake.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;
import "./ABDK.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "prb-math/contracts/PRBMathUD60x18.sol";

contract Stake is Ownable, Pausable, ReentrancyGuard {
  using ABDKMath64x64 for int128;

  uint256 public lastSavedEpoch;
  uint256 public totalStaked;
  uint256 public START_TIME;
  ERC20 public REWARD_TOKEN;
  ERC20 public STAKING_TOKEN;
  bool public STAKING_SAME_AS_REWARD;

  constructor(address rewardToken, address stakingToken) {
    REWARD_TOKEN = ERC20(rewardToken);
    STAKING_TOKEN = ERC20(stakingToken);
    START_TIME = block.timestamp;
    STAKING_SAME_AS_REWARD = rewardToken == stakingToken;
  }

  function pause() public onlyOwner {
    _pause();
  }

  function unpause() public onlyOwner {
    _unpause();
  }

  uint256 public INTERVAL = 24 hours;

  function updateInterval(uint256 interval) public onlyOwner {
    INTERVAL = interval;
  }

  function getCurrentEpoch() public view returns (uint256) {
    return ((block.timestamp - START_TIME) / (INTERVAL));
  }

  int256 public DELTA_CALC_NUMERATOR = 99;
  int256 public DELTA_CALC_DENOMINATOR = 100;
  int128 public DELTA_CALC_DIVIDED =
    int128(DELTA_CALC_NUMERATOR).divi(DELTA_CALC_DENOMINATOR);

  function updateDeltaCalc(int256 num, int256 denom) public onlyOwner {
    DELTA_CALC_NUMERATOR = num;
    DELTA_CALC_DENOMINATOR = denom;
    DELTA_CALC_DIVIDED = int128(DELTA_CALC_NUMERATOR).divi(
      DELTA_CALC_DENOMINATOR
    );
  }

  function getRewardTokenBalance() public view returns (uint256) {
    uint256 totalBalance = REWARD_TOKEN.balanceOf(address(this));
    return (totalBalance - (STAKING_SAME_AS_REWARD ? totalStaked : 0));
  }

  // Returns 0 decimal precision number
  function _getRewardsForDelta(uint256 delta) internal view returns (uint256) {
    uint256 totalBalance = REWARD_TOKEN.balanceOf(address(this));
    if (totalBalance <= totalStaked && STAKING_SAME_AS_REWARD) {
      return 0;
    }

    uint256 balance = (totalBalance -
      totalRewards -
      (STAKING_SAME_AS_REWARD ? totalStaked : 0)) / 10**18;
    int128 intBalance = ABDKMath64x64.fromUInt(balance);
    int128 b = DELTA_CALC_DIVIDED.pow(delta);
    int128 c = int128(1).fromInt().sub(b);
    int128 d = c.mul(intBalance);
    return d.toUInt();
  }

  function getRewardsForDelta(uint256 delta) public view returns (uint256) {
    return _getRewardsForDelta(delta);
  }

  // Total rewards owed, dynamic number updated as epochs close
  // and when rewards are withdrawn
  uint256 public totalRewards;

  // Sum of all rewards per share for all closed epochs
  uint256 public rewardPerShare;

  function _setEpoch() internal returns (uint256) {
    uint256 epoch = getCurrentEpoch();
    if (lastSavedEpoch < epoch) {
      uint256 delta = epoch - lastSavedEpoch;
      uint256 totalRewardsAtEpoch = _getRewardsForDelta(delta) * 10**18;
      rewardPerShare += totalStaked > 0
        ? PRBMathUD60x18.div(totalRewardsAtEpoch, totalStaked)
        : 0;
      totalRewards += (totalRewardsAtEpoch);
      lastSavedEpoch = epoch;
    }
    return epoch;
  }

  struct Stake {
    bool exists;
    uint256 startEpoch;
    uint256 totalStaked;
    uint256 rewardDebt;
  }

  mapping(address => Stake) public stakes;

  function getTotalStakedByAddress(address staker)
    public
    view
    returns (uint256)
  {
    Stake memory stake = stakes[staker];
    return stake.totalStaked;
  }

  function migrate(address to) public onlyOwner {
    uint256 balance = getRewardTokenBalance();
    REWARD_TOKEN.transfer(to, balance);
  }

  function calcRewards(address staker) public view returns (uint256) {
    uint256 currentEpoch = getCurrentEpoch();
    Stake memory stake = stakes[staker];
    require(stake.exists, "Stake does not exist");

    uint256 totalNotedRewards = totalRewards;

    // If the current epoch is greater than the last saved epoch then
    // we will need to calculate rewards up to current epoch
    if (currentEpoch > lastSavedEpoch) {
      // get additional rewards that have yet to be noted.
      uint256 totalRewardsAtEpoch = _getRewardsForDelta(
        currentEpoch - lastSavedEpoch
      ) * 10**18;

      totalNotedRewards += totalRewardsAtEpoch;

      uint256 projectedRewardPerShare = rewardPerShare +
        (
          totalStaked > 0
            ? PRBMathUD60x18.div(totalRewardsAtEpoch, totalStaked)
            : 0
        );
      return
        PRBMathUD60x18.mul(
          projectedRewardPerShare - stake.rewardDebt,
          stake.totalStaked
        );
    } else {
      return
        PRBMathUD60x18.mul(
          rewardPerShare - stake.rewardDebt,
          stake.totalStaked
        );
    }
  }

  // Function to withdraw all staked, rewards are lost
  function emergencyWithdraw() public nonReentrant {
    _setEpoch();
    require(stakes[msg.sender].exists, "Not staking");
    totalStaked -= stakes[msg.sender].totalStaked;
    STAKING_TOKEN.transfer(msg.sender, stakes[msg.sender].totalStaked);
    delete stakes[msg.sender];
  }

  function withdrawStakedToken(uint256 amount)
    public
    nonReentrant
    whenNotPaused
  {
    uint256 currentEpoch = _setEpoch();

    require(stakes[msg.sender].exists, "Not staking");
    require(
      amount <= stakes[msg.sender].totalStaked,
      "Amount higher than amount staked"
    );
    require(amount > 0, "Amount must be gt 0");
    if (STAKING_SAME_AS_REWARD) {
      _claimAndStakeRewards(currentEpoch);
    } else {
      _claimAndWithdrawRewards(currentEpoch);
    }
    if (amount == stakes[msg.sender].totalStaked) {
      delete stakes[msg.sender];
    } else {
      stakes[msg.sender].startEpoch = currentEpoch + 1;
      stakes[msg.sender].totalStaked -= amount;
      stakes[msg.sender].rewardDebt = rewardPerShare;
    }

    totalStaked -= amount;
    STAKING_TOKEN.transfer(msg.sender, amount);
  }

  function _claimAndWithdrawRewards(uint256 currentEpoch) internal {
    require(stakes[msg.sender].exists, "Not staking");
    uint256 rewards = calcRewards(msg.sender);
    if (rewards > 0) {
      stakes[msg.sender].startEpoch = currentEpoch + 1;
      stakes[msg.sender].rewardDebt = rewardPerShare;
      totalRewards -= rewards;
      REWARD_TOKEN.transfer(msg.sender, rewards);
    }
  }

  function claimAndWithdrawRewards() public nonReentrant whenNotPaused {
    uint256 currentEpoch = _setEpoch();
    _claimAndWithdrawRewards(currentEpoch);
  }

  function _claimAndStakeRewards(uint256 currentEpoch) internal {
    require(
      STAKING_SAME_AS_REWARD,
      "Staking and reward token must be the same to stake rewards"
    );
    require(stakes[msg.sender].exists, "Not staking");
    uint256 rewards = calcRewards(msg.sender);
    if (rewards > 0) {
      stakes[msg.sender].startEpoch = currentEpoch + 1;
      stakes[msg.sender].totalStaked += rewards;
      stakes[msg.sender].rewardDebt = rewardPerShare;
      totalRewards -= rewards;
      totalStaked += rewards;
    }
  }

  function claimAndStakeRewards() public nonReentrant whenNotPaused {
    uint256 currentEpoch = _setEpoch();
    _claimAndStakeRewards(currentEpoch);
  }

  function stake(uint256 amount) public nonReentrant whenNotPaused {
    uint256 currentEpoch = _setEpoch();
    if (stakes[msg.sender].exists == false) {
      stakes[msg.sender] = Stake({
        exists: true,
        startEpoch: currentEpoch + 1,
        totalStaked: amount,
        rewardDebt: rewardPerShare
      });
    } else {
      // If there are rewards to be claimed and the current sender is already staking
      // then we need to determine what to do with the current rewards.

      // If the staking token is same as reward then we can claim and autostake
      if (STAKING_SAME_AS_REWARD) {
        _claimAndStakeRewards(currentEpoch);
      }
      // If the staking token is not the same as the reward token then we can
      // claim and automatically withdraw
      else if (!STAKING_SAME_AS_REWARD) {
        _claimAndWithdrawRewards(currentEpoch);
      }

      stakes[msg.sender].totalStaked += amount;
    }
    totalStaked += amount;
    STAKING_TOKEN.transferFrom(msg.sender, address(this), amount);
  }
}

File 2 of 11 : ABDK.sol
// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.8.0;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library ABDKMath64x64 {
  /*
   * Minimum value signed 64.64-bit fixed point number may have.
   */
  int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

  /*
   * Maximum value signed 64.64-bit fixed point number may have.
   */
  int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

  /**
   * Convert signed 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromInt(int256 x) internal pure returns (int128) {
    unchecked {
      require(x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
      return int128(x << 64);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 64-bit integer number
   * rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64-bit integer number
   */
  function toInt(int128 x) internal pure returns (int64) {
    unchecked {
      return int64(x >> 64);
    }
  }

  /**
   * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromUInt(uint256 x) internal pure returns (int128) {
    unchecked {
      require(x <= 0x7FFFFFFFFFFFFFFF);
      return int128(int256(x << 64));
    }
  }

  /**
   * Convert signed 64.64 fixed point number into unsigned 64-bit integer
   * number rounding down.  Revert on underflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return unsigned 64-bit integer number
   */
  function toUInt(int128 x) internal pure returns (uint64) {
    unchecked {
      require(x >= 0);
      return uint64(uint128(x >> 64));
    }
  }

  /**
   * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
   * number rounding down.  Revert on overflow.
   *
   * @param x signed 128.128-bin fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function from128x128(int256 x) internal pure returns (int128) {
    unchecked {
      int256 result = x >> 64;
      require(result >= MIN_64x64 && result <= MAX_64x64);
      return int128(result);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 128.128 fixed point
   * number.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 128.128 fixed point number
   */
  function to128x128(int128 x) internal pure returns (int256) {
    unchecked {
      return int256(x) << 64;
    }
  }

  /**
   * Calculate x + y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function add(int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) + y;
      require(result >= MIN_64x64 && result <= MAX_64x64);
      return int128(result);
    }
  }

  /**
   * Calculate x - y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sub(int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) - y;
      require(result >= MIN_64x64 && result <= MAX_64x64);
      return int128(result);
    }
  }

  /**
   * Calculate x * y rounding down.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function mul(int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = (int256(x) * y) >> 64;
      require(result >= MIN_64x64 && result <= MAX_64x64);
      return int128(result);
    }
  }

  /**
   * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
   * number and y is signed 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y signed 256-bit integer number
   * @return signed 256-bit integer number
   */
  function muli(int128 x, int256 y) internal pure returns (int256) {
    unchecked {
      if (x == MIN_64x64) {
        require(
          y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
            y <= 0x1000000000000000000000000000000000000000000000000
        );
        return -y << 63;
      } else {
        bool negativeResult = false;
        if (x < 0) {
          x = -x;
          negativeResult = true;
        }
        if (y < 0) {
          y = -y; // We rely on overflow behavior here
          negativeResult = !negativeResult;
        }
        uint256 absoluteResult = mulu(x, uint256(y));
        if (negativeResult) {
          require(
            absoluteResult <=
              0x8000000000000000000000000000000000000000000000000000000000000000
          );
          return -int256(absoluteResult); // We rely on overflow behavior here
        } else {
          require(
            absoluteResult <=
              0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
          );
          return int256(absoluteResult);
        }
      }
    }
  }

  /**
   * Calculate x * y rounding down, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y unsigned 256-bit integer number
   * @return unsigned 256-bit integer number
   */
  function mulu(int128 x, uint256 y) internal pure returns (uint256) {
    unchecked {
      if (y == 0) return 0;

      require(x >= 0);

      uint256 lo = (uint256(int256(x)) *
        (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
      uint256 hi = uint256(int256(x)) * (y >> 128);

      require(hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      hi <<= 64;

      require(
        hi <=
          0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -
            lo
      );
      return hi + lo;
    }
  }

  /**
   * Calculate x / y rounding towards zero.  Revert on overflow or when y is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function div(int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      require(y != 0);
      int256 result = (int256(x) << 64) / y;
      require(result >= MIN_64x64 && result <= MAX_64x64);
      return int128(result);
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are signed 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x signed 256-bit integer number
   * @param y signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divi(int256 x, int256 y) internal pure returns (int128) {
    unchecked {
      require(y != 0);

      bool negativeResult = false;
      if (x < 0) {
        x = -x; // We rely on overflow behavior here
        negativeResult = true;
      }
      if (y < 0) {
        y = -y; // We rely on overflow behavior here
        negativeResult = !negativeResult;
      }
      uint128 absoluteResult = divuu(uint256(x), uint256(y));
      if (negativeResult) {
        require(absoluteResult <= 0x80000000000000000000000000000000);
        return -int128(absoluteResult); // We rely on overflow behavior here
      } else {
        require(absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int128(absoluteResult); // We rely on overflow behavior here
      }
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divu(uint256 x, uint256 y) internal pure returns (int128) {
    unchecked {
      require(y != 0);
      uint128 result = divuu(x, y);
      require(result <= uint128(MAX_64x64));
      return int128(result);
    }
  }

  /**
   * Calculate -x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function neg(int128 x) internal pure returns (int128) {
    unchecked {
      require(x != MIN_64x64);
      return -x;
    }
  }

  /**
   * Calculate |x|.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function abs(int128 x) internal pure returns (int128) {
    unchecked {
      require(x != MIN_64x64);
      return x < 0 ? -x : x;
    }
  }

  /**
   * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function inv(int128 x) internal pure returns (int128) {
    unchecked {
      require(x != 0);
      int256 result = int256(0x100000000000000000000000000000000) / x;
      require(result >= MIN_64x64 && result <= MAX_64x64);
      return int128(result);
    }
  }

  /**
   * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function avg(int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      return int128((int256(x) + int256(y)) >> 1);
    }
  }

  /**
   * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
   * Revert on overflow or in case x * y is negative.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function gavg(int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 m = int256(x) * int256(y);
      require(m >= 0);
      require(
        m < 0x4000000000000000000000000000000000000000000000000000000000000000
      );
      return int128(sqrtu(uint256(m)));
    }
  }

  /**
   * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y uint256 value
   * @return signed 64.64-bit fixed point number
   */
  function pow(int128 x, uint256 y) internal pure returns (int128) {
    unchecked {
      bool negative = x < 0 && y & 1 == 1;

      uint256 absX = uint128(x < 0 ? -x : x);
      uint256 absResult;
      absResult = 0x100000000000000000000000000000000;

      if (absX <= 0x10000000000000000) {
        absX <<= 63;
        while (y != 0) {
          if (y & 0x1 != 0) {
            absResult = (absResult * absX) >> 127;
          }
          absX = (absX * absX) >> 127;

          if (y & 0x2 != 0) {
            absResult = (absResult * absX) >> 127;
          }
          absX = (absX * absX) >> 127;

          if (y & 0x4 != 0) {
            absResult = (absResult * absX) >> 127;
          }
          absX = (absX * absX) >> 127;

          if (y & 0x8 != 0) {
            absResult = (absResult * absX) >> 127;
          }
          absX = (absX * absX) >> 127;

          y >>= 4;
        }

        absResult >>= 64;
      } else {
        uint256 absXShift = 63;
        if (absX < 0x1000000000000000000000000) {
          absX <<= 32;
          absXShift -= 32;
        }
        if (absX < 0x10000000000000000000000000000) {
          absX <<= 16;
          absXShift -= 16;
        }
        if (absX < 0x1000000000000000000000000000000) {
          absX <<= 8;
          absXShift -= 8;
        }
        if (absX < 0x10000000000000000000000000000000) {
          absX <<= 4;
          absXShift -= 4;
        }
        if (absX < 0x40000000000000000000000000000000) {
          absX <<= 2;
          absXShift -= 2;
        }
        if (absX < 0x80000000000000000000000000000000) {
          absX <<= 1;
          absXShift -= 1;
        }

        uint256 resultShift = 0;
        while (y != 0) {
          require(absXShift < 64);

          if (y & 0x1 != 0) {
            absResult = (absResult * absX) >> 127;
            resultShift += absXShift;
            if (absResult > 0x100000000000000000000000000000000) {
              absResult >>= 1;
              resultShift += 1;
            }
          }
          absX = (absX * absX) >> 127;
          absXShift <<= 1;
          if (absX >= 0x100000000000000000000000000000000) {
            absX >>= 1;
            absXShift += 1;
          }

          y >>= 1;
        }

        require(resultShift < 64);
        absResult >>= 64 - resultShift;
      }
      int256 result = negative ? -int256(absResult) : int256(absResult);
      require(result >= MIN_64x64 && result <= MAX_64x64);
      return int128(result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down.  Revert if x < 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sqrt(int128 x) internal pure returns (int128) {
    unchecked {
      require(x >= 0);
      return int128(sqrtu(uint256(int256(x)) << 64));
    }
  }

  /**
   * Calculate binary logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function log_2(int128 x) internal pure returns (int128) {
    unchecked {
      require(x > 0);

      int256 msb = 0;
      int256 xc = x;
      if (xc >= 0x10000000000000000) {
        xc >>= 64;
        msb += 64;
      }
      if (xc >= 0x100000000) {
        xc >>= 32;
        msb += 32;
      }
      if (xc >= 0x10000) {
        xc >>= 16;
        msb += 16;
      }
      if (xc >= 0x100) {
        xc >>= 8;
        msb += 8;
      }
      if (xc >= 0x10) {
        xc >>= 4;
        msb += 4;
      }
      if (xc >= 0x4) {
        xc >>= 2;
        msb += 2;
      }
      if (xc >= 0x2) msb += 1; // No need to shift xc anymore

      int256 result = (msb - 64) << 64;
      uint256 ux = uint256(int256(x)) << uint256(127 - msb);
      for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
        ux *= ux;
        uint256 b = ux >> 255;
        ux >>= 127 + b;
        result += bit * int256(b);
      }

      return int128(result);
    }
  }

  /**
   * Calculate natural logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function ln(int128 x) internal pure returns (int128) {
    unchecked {
      require(x > 0);

      return
        int128(
          int256(
            (uint256(int256(log_2(x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF) >>
              128
          )
        );
    }
  }

  /**
   * Calculate binary exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp_2(int128 x) internal pure returns (int128) {
    unchecked {
      require(x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      uint256 result = 0x80000000000000000000000000000000;

      if (x & 0x8000000000000000 > 0)
        result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
      if (x & 0x4000000000000000 > 0)
        result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128;
      if (x & 0x2000000000000000 > 0)
        result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128;
      if (x & 0x1000000000000000 > 0)
        result = (result * 0x10B5586CF9890F6298B92B71842A98363) >> 128;
      if (x & 0x800000000000000 > 0)
        result = (result * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128;
      if (x & 0x400000000000000 > 0)
        result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128;
      if (x & 0x200000000000000 > 0)
        result = (result * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128;
      if (x & 0x100000000000000 > 0)
        result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128;
      if (x & 0x80000000000000 > 0)
        result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128;
      if (x & 0x40000000000000 > 0)
        result = (result * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128;
      if (x & 0x20000000000000 > 0)
        result = (result * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128;
      if (x & 0x10000000000000 > 0)
        result = (result * 0x1000B175EFFDC76BA38E31671CA939725) >> 128;
      if (x & 0x8000000000000 > 0)
        result = (result * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128;
      if (x & 0x4000000000000 > 0)
        result = (result * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128;
      if (x & 0x2000000000000 > 0)
        result = (result * 0x1000162E525EE054754457D5995292026) >> 128;
      if (x & 0x1000000000000 > 0)
        result = (result * 0x10000B17255775C040618BF4A4ADE83FC) >> 128;
      if (x & 0x800000000000 > 0)
        result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128;
      if (x & 0x400000000000 > 0)
        result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128;
      if (x & 0x200000000000 > 0)
        result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
      if (x & 0x100000000000 > 0)
        result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
      if (x & 0x80000000000 > 0)
        result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128;
      if (x & 0x40000000000 > 0)
        result = (result * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128;
      if (x & 0x20000000000 > 0)
        result = (result * 0x100000162E430E5A18F6119E3C02282A5) >> 128;
      if (x & 0x10000000000 > 0)
        result = (result * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128;
      if (x & 0x8000000000 > 0)
        result = (result * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128;
      if (x & 0x4000000000 > 0)
        result = (result * 0x10000002C5C8601CC6B9E94213C72737A) >> 128;
      if (x & 0x2000000000 > 0)
        result = (result * 0x1000000162E42FFF037DF38AA2B219F06) >> 128;
      if (x & 0x1000000000 > 0)
        result = (result * 0x10000000B17217FBA9C739AA5819F44F9) >> 128;
      if (x & 0x800000000 > 0)
        result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128;
      if (x & 0x400000000 > 0)
        result = (result * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128;
      if (x & 0x200000000 > 0)
        result = (result * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128;
      if (x & 0x100000000 > 0)
        result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
      if (x & 0x80000000 > 0)
        result = (result * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128;
      if (x & 0x40000000 > 0)
        result = (result * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128;
      if (x & 0x20000000 > 0)
        result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
      if (x & 0x10000000 > 0)
        result = (result * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128;
      if (x & 0x8000000 > 0)
        result = (result * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128;
      if (x & 0x4000000 > 0)
        result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128;
      if (x & 0x2000000 > 0)
        result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
      if (x & 0x1000000 > 0)
        result = (result * 0x10000000000B17217F7D20CF927C8E94C) >> 128;
      if (x & 0x800000 > 0)
        result = (result * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128;
      if (x & 0x400000 > 0)
        result = (result * 0x100000000002C5C85FDF477B662B26945) >> 128;
      if (x & 0x200000 > 0)
        result = (result * 0x10000000000162E42FEFA3AE53369388C) >> 128;
      if (x & 0x100000 > 0)
        result = (result * 0x100000000000B17217F7D1D351A389D40) >> 128;
      if (x & 0x80000 > 0)
        result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128;
      if (x & 0x40000 > 0)
        result = (result * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128;
      if (x & 0x20000 > 0)
        result = (result * 0x100000000000162E42FEFA39FE95583C2) >> 128;
      if (x & 0x10000 > 0)
        result = (result * 0x1000000000000B17217F7D1CFB72B45E1) >> 128;
      if (x & 0x8000 > 0)
        result = (result * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128;
      if (x & 0x4000 > 0)
        result = (result * 0x10000000000002C5C85FDF473E242EA38) >> 128;
      if (x & 0x2000 > 0)
        result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128;
      if (x & 0x1000 > 0)
        result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
      if (x & 0x800 > 0)
        result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
      if (x & 0x400 > 0)
        result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128;
      if (x & 0x200 > 0)
        result = (result * 0x10000000000000162E42FEFA39EF44D91) >> 128;
      if (x & 0x100 > 0)
        result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128;
      if (x & 0x80 > 0)
        result = (result * 0x10000000000000058B90BFBE8E7BCE544) >> 128;
      if (x & 0x40 > 0)
        result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
      if (x & 0x20 > 0)
        result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128;
      if (x & 0x10 > 0)
        result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
      if (x & 0x8 > 0)
        result = (result * 0x100000000000000058B90BFBE8E7BCD6D) >> 128;
      if (x & 0x4 > 0)
        result = (result * 0x10000000000000002C5C85FDF473DE6B2) >> 128;
      if (x & 0x2 > 0)
        result = (result * 0x1000000000000000162E42FEFA39EF358) >> 128;
      if (x & 0x1 > 0)
        result = (result * 0x10000000000000000B17217F7D1CF79AB) >> 128;

      result >>= uint256(int256(63 - (x >> 64)));
      require(result <= uint256(int256(MAX_64x64)));

      return int128(int256(result));
    }
  }

  /**
   * Calculate natural exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp(int128 x) internal pure returns (int128) {
    unchecked {
      require(x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      return
        exp_2(int128((int256(x) * 0x171547652B82FE1777D0FFDA0D23A7D12) >> 128));
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return unsigned 64.64-bit fixed point number
   */
  function divuu(uint256 x, uint256 y) private pure returns (uint128) {
    unchecked {
      require(y != 0);

      uint256 result;

      if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        result = (x << 64) / y;
      else {
        uint256 msb = 192;
        uint256 xc = x >> 192;
        if (xc >= 0x100000000) {
          xc >>= 32;
          msb += 32;
        }
        if (xc >= 0x10000) {
          xc >>= 16;
          msb += 16;
        }
        if (xc >= 0x100) {
          xc >>= 8;
          msb += 8;
        }
        if (xc >= 0x10) {
          xc >>= 4;
          msb += 4;
        }
        if (xc >= 0x4) {
          xc >>= 2;
          msb += 2;
        }
        if (xc >= 0x2) msb += 1; // No need to shift xc anymore

        result = (x << (255 - msb)) / (((y - 1) >> (msb - 191)) + 1);
        require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 hi = result * (y >> 128);
        uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 xh = x >> 192;
        uint256 xl = x << 64;

        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here
        lo = hi << 128;
        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here

        assert(xh == hi >> 128);

        result += xl / y;
      }

      require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return uint128(result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
   * number.
   *
   * @param x unsigned 256-bit integer number
   * @return unsigned 128-bit integer number
   */
  function sqrtu(uint256 x) private pure returns (uint128) {
    unchecked {
      if (x == 0) return 0;
      else {
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) {
          xx >>= 128;
          r <<= 64;
        }
        if (xx >= 0x10000000000000000) {
          xx >>= 64;
          r <<= 32;
        }
        if (xx >= 0x100000000) {
          xx >>= 32;
          r <<= 16;
        }
        if (xx >= 0x10000) {
          xx >>= 16;
          r <<= 8;
        }
        if (xx >= 0x100) {
          xx >>= 8;
          r <<= 4;
        }
        if (xx >= 0x10) {
          xx >>= 4;
          r <<= 2;
        }
        if (xx >= 0x8) {
          r <<= 1;
        }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return uint128(r < r1 ? r : r1);
      }
    }
  }
}

File 3 of 11 : PRBMathUD60x18.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
    /// @dev Half the SCALE number.
    uint256 internal constant HALF_SCALE = 5e17;

    /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
    uint256 internal constant LOG2_E = 1_442695040888963407;

    /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_584007913129639935;

    /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_WHOLE_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_000000000000000000;

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @notice Calculates the arithmetic average of x and y, rounding down.
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // The operations can never overflow.
        unchecked {
            // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
            // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
            result = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to MAX_WHOLE_UD60x18.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number to ceil.
    /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function ceil(uint256 x) internal pure returns (uint256 result) {
        if (x > MAX_WHOLE_UD60x18) {
            revert PRBMathUD60x18__CeilOverflow(x);
        }
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "SCALE - remainder" but faster.
            let delta := sub(SCALE, remainder)

            // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
            result := add(x, mul(delta, gt(remainder, 0)))
        }
    }

    /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
    ///
    /// @dev Uses mulDiv to enable overflow-safe multiplication and division.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    ///
    /// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
    /// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
    /// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
    function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDiv(x, SCALE, y);
    }

    /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
    /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
    function e() internal pure returns (uint256 result) {
        result = 2_718281828459045235;
    }

    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 133.084258667509499441.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp(uint256 x) internal pure returns (uint256 result) {
        // Without this check, the value passed to "exp2" would be greater than 192.
        if (x >= 133_084258667509499441) {
            revert PRBMathUD60x18__ExpInputTooBig(x);
        }

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            uint256 doubleScaleProduct = x * LOG2_E;
            result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 192 or less.
    /// - The result must fit within MAX_UD60x18.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        // 2^192 doesn't fit within the 192.64-bit format used internally in this function.
        if (x >= 192e18) {
            revert PRBMathUD60x18__Exp2InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x192x64 = (x << 64) / SCALE;

            // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
            result = PRBMath.exp2(x192x64);
        }
    }

    /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    /// @param x The unsigned 60.18-decimal fixed-point number to floor.
    /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function floor(uint256 x) internal pure returns (uint256 result) {
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
            result := sub(x, mul(remainder, gt(remainder, 0)))
        }
    }

    /// @notice Yields the excess beyond the floor of x.
    /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
    /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
    /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
    function frac(uint256 x) internal pure returns (uint256 result) {
        assembly {
            result := mod(x, SCALE)
        }
    }

    /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
    ///
    /// @dev Requirements:
    /// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number in unsigned 60.18-decimal fixed-point representation.
    function fromUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__FromUintOverflow(x);
            }
            result = x * SCALE;
        }
    }

    /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit within MAX_UD60x18, lest it overflows.
    ///
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            uint256 xy = x * y;
            if (xy / x != y) {
                revert PRBMathUD60x18__GmOverflow(x, y);
            }

            // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
            // during multiplication. See the comments within the "sqrt" function.
            result = PRBMath.sqrt(xy);
        }
    }

    /// @notice Calculates 1 / x, rounding toward zero.
    ///
    /// @dev Requirements:
    /// - x cannot be zero.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
    /// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
    function inv(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // 1e36 is SCALE * SCALE.
            result = 1e36 / x;
        }
    }

    /// @notice Calculates the natural logarithm of x.
    ///
    /// @dev Based on the insight that ln(x) = log2(x) / log2(e).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
    function ln(uint256 x) internal pure returns (uint256 result) {
        // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
        // can return is 196205294292027477728.
        unchecked {
            result = (log2(x) * SCALE) / LOG2_E;
        }
    }

    /// @notice Calculates the common logarithm of x.
    ///
    /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
    /// logarithm based on the insight that log10(x) = log2(x) / log2(10).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
    /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
    function log10(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }

        // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
        // in this contract.
        // prettier-ignore
        assembly {
            switch x
            case 1 { result := mul(SCALE, sub(0, 18)) }
            case 10 { result := mul(SCALE, sub(1, 18)) }
            case 100 { result := mul(SCALE, sub(2, 18)) }
            case 1000 { result := mul(SCALE, sub(3, 18)) }
            case 10000 { result := mul(SCALE, sub(4, 18)) }
            case 100000 { result := mul(SCALE, sub(5, 18)) }
            case 1000000 { result := mul(SCALE, sub(6, 18)) }
            case 10000000 { result := mul(SCALE, sub(7, 18)) }
            case 100000000 { result := mul(SCALE, sub(8, 18)) }
            case 1000000000 { result := mul(SCALE, sub(9, 18)) }
            case 10000000000 { result := mul(SCALE, sub(10, 18)) }
            case 100000000000 { result := mul(SCALE, sub(11, 18)) }
            case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
            case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
            case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
            case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
            case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
            case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := SCALE }
            case 100000000000000000000 { result := mul(SCALE, 2) }
            case 1000000000000000000000 { result := mul(SCALE, 3) }
            case 10000000000000000000000 { result := mul(SCALE, 4) }
            case 100000000000000000000000 { result := mul(SCALE, 5) }
            case 1000000000000000000000000 { result := mul(SCALE, 6) }
            case 10000000000000000000000000 { result := mul(SCALE, 7) }
            case 100000000000000000000000000 { result := mul(SCALE, 8) }
            case 1000000000000000000000000000 { result := mul(SCALE, 9) }
            case 10000000000000000000000000000 { result := mul(SCALE, 10) }
            case 100000000000000000000000000000 { result := mul(SCALE, 11) }
            case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
            case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
            case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
            case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
            case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
            case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
            case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
            case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
            case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
            default {
                result := MAX_UD60x18
            }
        }

        if (result == MAX_UD60x18) {
            // Do the fixed-point division inline to save gas. The denominator is log2(10).
            unchecked {
                result = (log2(x) * SCALE) / 3_321928094887362347;
            }
        }
    }

    /// @notice Calculates the binary logarithm of x.
    ///
    /// @dev Based on the iterative approximation algorithm.
    /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Requirements:
    /// - x must be greater than or equal to SCALE, otherwise the result would be negative.
    ///
    /// Caveats:
    /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
    function log2(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }
        unchecked {
            // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
            uint256 n = PRBMath.mostSignificantBit(x / SCALE);

            // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
            // because n is maximum 255 and SCALE is 1e18.
            result = n * SCALE;

            // This is y = x * 2^(-n).
            uint256 y = x >> n;

            // If y = 1, the fractional part is zero.
            if (y == SCALE) {
                return result;
            }

            // Calculate the fractional part via the iterative approximation.
            // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
            for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
                y = (y * y) / SCALE;

                // Is y^2 > 2 and so in the range [2,4)?
                if (y >= 2 * SCALE) {
                    // Add the 2^(-m) factor to the logarithm.
                    result += delta;

                    // Corresponds to z/2 on Wikipedia.
                    y >>= 1;
                }
            }
        }
    }

    /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
    /// fixed-point number.
    /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The product as an unsigned 60.18-decimal fixed-point number.
    function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDivFixedPoint(x, y);
    }

    /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
    function pi() internal pure returns (uint256 result) {
        result = 3_141592653589793238;
    }

    /// @notice Raises x to the power of y.
    ///
    /// @dev Based on the insight that x^y = 2^(log2(x) * y).
    ///
    /// Requirements:
    /// - All from "exp2", "log2" and "mul".
    ///
    /// Caveats:
    /// - All from "exp2", "log2" and "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
    /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
    /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
    function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            result = y == 0 ? SCALE : uint256(0);
        } else {
            result = exp2(mul(log2(x), y));
        }
    }

    /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
    /// famous algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    ///
    /// Requirements:
    /// - The result must fit within MAX_UD60x18.
    ///
    /// Caveats:
    /// - All from "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x The base as an unsigned 60.18-decimal fixed-point number.
    /// @param y The exponent as an uint256.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // Calculate the first iteration of the loop in advance.
        result = y & 1 > 0 ? x : SCALE;

        // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
        for (y >>= 1; y > 0; y >>= 1) {
            x = PRBMath.mulDivFixedPoint(x, x);

            // Equivalent to "y % 2 == 1" but faster.
            if (y & 1 > 0) {
                result = PRBMath.mulDivFixedPoint(result, x);
            }
        }
    }

    /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
    function scale() internal pure returns (uint256 result) {
        result = SCALE;
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Requirements:
    /// - x must be less than MAX_UD60x18 / SCALE.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
    /// @return result The result as an unsigned 60.18-decimal fixed-point .
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__SqrtOverflow(x);
            }
            // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
            // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
            result = PRBMath.sqrt(x * SCALE);
        }
    }

    /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
    /// @param x The unsigned 60.18-decimal fixed-point number to convert.
    /// @return result The same number in basic integer form.
    function toUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            result = x / SCALE;
        }
    }
}

File 4 of 11 : PRBMath.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
    /// STRUCTS ///

    struct SD59x18 {
        int256 value;
    }

    struct UD60x18 {
        uint256 value;
    }

    /// STORAGE ///

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @dev Largest power of two divisor of SCALE.
    uint256 internal constant SCALE_LPOTD = 262144;

    /// @dev SCALE inverted mod 2^256.
    uint256 internal constant SCALE_INVERSE =
        78156646155174841979727994598816262306175212592076161876661_508869554232690281;

    /// FUNCTIONS ///

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers.
    /// See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
            // because the initial result is 2^191 and all magic factors are less than 2^65.
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }

            // We're doing two things at the same time:
            //
            //   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
            //      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
            //      rather than 192.
            //   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
            //
            // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
            result *= SCALE;
            result >>= (191 - (x >> 64));
        }
    }

    /// @notice Finds the zero-based index of the first one in the binary representation of x.
    /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return msb The index of the most significant bit as an uint256.
    function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
        if (x >= 2**128) {
            x >>= 128;
            msb += 128;
        }
        if (x >= 2**64) {
            x >>= 64;
            msb += 64;
        }
        if (x >= 2**32) {
            x >>= 32;
            msb += 32;
        }
        if (x >= 2**16) {
            x >>= 16;
            msb += 16;
        }
        if (x >= 2**8) {
            x >>= 8;
            msb += 8;
        }
        if (x >= 2**4) {
            x >>= 4;
            msb += 4;
        }
        if (x >= 2**2) {
            x >>= 2;
            msb += 2;
        }
        if (x >= 2**1) {
            // No need to shift x any more.
            msb += 1;
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                result = prod0 / denominator;
            }
            return result;
        }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath__MulDivOverflow(prod1, denominator);
        }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /// @notice Calculates floor(x*y÷1e18) with full precision.
    ///
    /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
    /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
    /// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
    ///
    /// Requirements:
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
    ///     1. x * y = type(uint256).max * SCALE
    ///     2. (x * y) % SCALE >= SCALE / 2
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        if (prod1 >= SCALE) {
            revert PRBMath__MulDivFixedPointOverflow(prod1);
        }

        uint256 remainder;
        uint256 roundUpUnit;
        assembly {
            remainder := mulmod(x, y, SCALE)
            roundUpUnit := gt(remainder, 499999999999999999)
        }

        if (prod1 == 0) {
            unchecked {
                result = (prod0 / SCALE) + roundUpUnit;
                return result;
            }
        }

        assembly {
            result := add(
                mul(
                    or(
                        div(sub(prod0, remainder), SCALE_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
                    ),
                    SCALE_INVERSE
                ),
                roundUpUnit
            )
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - None of the inputs can be type(int256).min.
    /// - The result must fit within int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    function mulDivSigned(
        int256 x,
        int256 y,
        int256 denominator
    ) internal pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath__MulDivSignedInputTooSmall();
        }

        // Get hold of the absolute values of x, y and the denominator.
        uint256 ax;
        uint256 ay;
        uint256 ad;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
            ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }

        // Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
        uint256 rAbs = mulDiv(ax, ay, ad);
        if (rAbs > uint256(type(int256).max)) {
            revert PRBMath__MulDivSignedOverflow(rAbs);
        }

        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }

        // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
        // If yes, the result should be negative.
        result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as an uint256.
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        // Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 0x100000000000000000000000000000000) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 0x10000000000000000) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 0x100000000) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 0x10000) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 0x100) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 0x10) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 0x8) {
            result <<= 1;
        }

        // The operations can never overflow because the result is max 2^127 when it enters this block.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1; // Seven iterations should be enough
            uint256 roundedDownResult = x / result;
            return result >= roundedDownResult ? roundedDownResult : result;
        }
    }
}

File 5 of 11 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 6 of 11 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 7 of 11 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 8 of 11 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);

        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;

        emit Transfer(sender, recipient, amount);

        _afterTokenTransfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 9 of 11 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 10 of 11 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        require(!paused(), "Pausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        require(paused(), "Pausable: not paused");
        _;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 11 of 11 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

Settings
{
  "remappings": [],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "london",
  "libraries": {},
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"rewardToken","type":"address"},{"internalType":"address","name":"stakingToken","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"}],"name":"PRBMath__MulDivFixedPointOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DELTA_CALC_DENOMINATOR","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DELTA_CALC_DIVIDED","outputs":[{"internalType":"int128","name":"","type":"int128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DELTA_CALC_NUMERATOR","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INTERVAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REWARD_TOKEN","outputs":[{"internalType":"contract ERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"STAKING_SAME_AS_REWARD","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"STAKING_TOKEN","outputs":[{"internalType":"contract ERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"START_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"calcRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimAndStakeRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimAndWithdrawRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCurrentEpoch","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRewardTokenBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"delta","type":"uint256"}],"name":"getRewardsForDelta","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"getTotalStakedByAddress","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastSavedEpoch","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardPerShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakes","outputs":[{"internalType":"bool","name":"exists","type":"bool"},{"internalType":"uint256","name":"startEpoch","type":"uint256"},{"internalType":"uint256","name":"totalStaked","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalStaked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int256","name":"num","type":"int256"},{"internalType":"int256","name":"denom","type":"int256"}],"name":"updateDeltaCalc","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"interval","type":"uint256"}],"name":"updateInterval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawStakedToken","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6080604052620151806007556063600855606460095562000036600954600854600f0b620000ed60201b62000f941790919060201c565b600a80546001600160801b0319166001600160801b03929092169190911790553480156200006357600080fd5b50604051620021c6380380620021c683398101604081905262000086916200037f565b620000913362000190565b6000805460ff60a01b1916905560018055600580546001600160a01b039384166001600160a01b03199091168117909155600680544260045592909316908114600160a01b026001600160a81b031990921617179055620003e3565b600081620000fa57600080fd5b6000808412156200011057836000039350600190505b6000831215620001235760009290920391155b6000620001318585620001e0565b9050811562000162576001607f1b816001600160801b031611156200015557600080fd5b60000391506200018a9050565b60016001607f1b03816001600160801b031611156200018057600080fd5b91506200018a9050565b92915050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600081620001ed57600080fd5b60006001600160c01b0384116200021d5782604085901b81620002145762000214620003b7565b04905062000346565b60c084811c640100000000811062000237576020918201911c5b6201000081106200024a576010918201911c5b61010081106200025c576008918201911c5b601081106200026d576004918201911c5b600481106200027e576002918201911c5b600281106200028e576001820191505b60bf820360018603901c6001018260ff0387901b81620002b257620002b2620003b7565b0492506001600160801b03831115620002ca57600080fd5b608085901c83026001600160801b038616840260c088901c604089901b82811015620002f7576001820391505b608084901b929003828110156200030f576001820391505b829003608084901c8214620003285762000328620003cd565b8881816200033a576200033a620003b7565b04870196505050505050505b6001600160801b038111156200035b57600080fd5b9392505050565b80516001600160a01b03811681146200037a57600080fd5b919050565b600080604083850312156200039357600080fd5b6200039e8362000362565b9150620003ae6020840162000362565b90509250929050565b634e487b7160e01b600052601260045260246000fd5b634e487b7160e01b600052600160045260246000fd5b611dd380620003f36000396000f3fe608060405234801561001057600080fd5b50600436106101f05760003560e01c80638c195a381161010f578063b97dd9e2116100a2578063d622888c11610071578063d622888c14610402578063db2e21bc14610460578063ddaa26ad14610468578063f2fde38b1461047157600080fd5b8063b97dd9e2146103c1578063c1dc5ae6146103c9578063ce5494bb146103dc578063d0f07926146103ef57600080fd5b806399248ea7116100de57806399248ea7146103685780639ebaa4661461037b578063a694fc3a1461039b578063ae1c7868146103ae57600080fd5b80638c195a381461033e5780638da5cb5b14610347578063902d96731461035857806393ce53431461036057600080fd5b80635c975abb1161018757806381c9eb051161015657806381c9eb05146103065780638456cb591461031957806389facb20146103215780638a1ede721461032a57600080fd5b80635c975abb146102cf57806368cc6494146102ed578063715018a6146102f5578063817b1cd2146102fd57600080fd5b806316934fc4116101c357806316934fc41461025a5780632b32a535146102b55780633f4ba83a146102be578063446a2ec8146102c657600080fd5b80630479d644146101f55780630e15561a14610225578063113d5f201461023c57806313ca156b14610251575b600080fd5b600654610208906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61022e600b5481565b60405190815260200161021c565b61024f61024a366004611b91565b610484565b005b61022e60085481565b610293610268366004611bb3565b600d60205260009081526040902080546001820154600283015460039093015460ff90921692909184565b604080519415158552602085019390935291830152606082015260800161021c565b61022e60025481565b61024f6104fc565b61022e600c5481565b600054600160a01b900460ff165b604051901515815260200161021c565b61024f610530565b61024f61059e565b61022e60035481565b61022e610314366004611bdc565b6105d2565b61024f6105e3565b61022e60075481565b6006546102dd90600160a01b900460ff1681565b61022e60095481565b6000546001600160a01b0316610208565b61024f610615565b61022e61067c565b600554610208906001600160a01b031681565b600a5461038890600f0b81565b604051600f9190910b815260200161021c565b61024f6103a9366004611bdc565b61071c565b61022e6103bc366004611bb3565b610902565b61022e610a65565b61024f6103d7366004611bdc565b610a87565b61024f6103ea366004611bb3565b610ccf565b61024f6103fd366004611bdc565b610d82565b61022e610410366004611bb3565b6001600160a01b03166000908152600d60209081526040918290208251608081018452815460ff161515815260018201549281019290925260028101549282018390526003015460609091015290565b61024f610db1565b61022e60045481565b61024f61047f366004611bb3565b610ef9565b6000546001600160a01b031633146104b75760405162461bcd60e51b81526004016104ae90611bf5565b60405180910390fd5b600882905560098190556104cf600f83900b82610f94565b600a80546fffffffffffffffffffffffffffffffff19166001600160801b03929092169190911790555050565b6000546001600160a01b031633146105265760405162461bcd60e51b81526004016104ae90611bf5565b61052e611027565b565b600260015414156105535760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff16156105825760405162461bcd60e51b81526004016104ae90611c61565b600061058c6110c4565b905061059781611165565b5060018055565b6000546001600160a01b031633146105c85760405162461bcd60e51b81526004016104ae90611bf5565b61052e6000611227565b60006105dd82611277565b92915050565b6000546001600160a01b0316331461060d5760405162461bcd60e51b81526004016104ae90611bf5565b61052e6113d1565b600260015414156106385760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff16156106675760405162461bcd60e51b81526004016104ae90611c61565b60006106716110c4565b905061059781611436565b6005546040516370a0823160e01b815230600482015260009182916001600160a01b03909116906370a0823190602401602060405180830381865afa1580156106c9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106ed9190611c8b565b600654909150600160a01b900460ff1661070857600061070c565b6003545b6107169082611cba565b91505090565b6002600154141561073f5760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff161561076e5760405162461bcd60e51b81526004016104ae90611c61565b60006107786110c4565b336000908152600d602052604090205490915060ff166108045760405180608001604052806001151581526020018260016107b39190611cd1565b81526020808201859052600c54604092830152336000908152600d82528290208351815460ff1916901515178155908301516001820155908201516002820155606090910151600390910155610866565b600654600160a01b900460ff16156108245761081f81611436565b61083e565b600654600160a01b900460ff1661083e5761083e81611165565b336000908152600d602052604081206002018054849290610860908490611cd1565b90915550505b81600360008282546108789190611cd1565b90915550506006546040516323b872dd60e01b8152336004820152306024820152604481018490526001600160a01b03909116906323b872dd906064015b6020604051808303816000875af11580156108d5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f99190611ce9565b50506001805550565b60008061090d610a65565b6001600160a01b0384166000908152600d60209081526040918290208251608081018452815460ff161515808252600183015493820193909352600282015493810193909352600301546060830152919250906109a35760405162461bcd60e51b815260206004820152601460248201527314dd185ad948191bd95cc81b9bdd08195e1a5cdd60621b60448201526064016104ae565b600b54600254831115610a3d5760006109c8600254856109c39190611cba565b611277565b6109da90670de0b6b3a7640000611d0b565b90506109e68183611cd1565b9150600080600354116109fa576000610a06565b610a0682600354611580565b600c54610a139190611cd1565b9050610a32846060015182610a289190611cba565b856040015161159c565b979650505050505050565b610a5c8260600151600c54610a529190611cba565b836040015161159c565b95945050505050565b600060075460045442610a789190611cba565b610a829190611d40565b905090565b60026001541415610aaa5760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff1615610ad95760405162461bcd60e51b81526004016104ae90611c61565b6000610ae36110c4565b336000908152600d602052604090205490915060ff16610b155760405162461bcd60e51b81526004016104ae90611d62565b336000908152600d6020526040902060020154821115610b775760405162461bcd60e51b815260206004820181905260248201527f416d6f756e7420686967686572207468616e20616d6f756e74207374616b656460448201526064016104ae565b60008211610bbd5760405162461bcd60e51b81526020600482015260136024820152720416d6f756e74206d757374206265206774203606c1b60448201526064016104ae565b600654600160a01b900460ff1615610bdd57610bd881611436565b610be6565b610be681611165565b336000908152600d6020526040902060020154821415610c2e57336000908152600d60205260408120805460ff19168155600181018290556002810182905560030155610c81565b610c39816001611cd1565b336000908152600d60205260408120600181019290925560029091018054849290610c65908490611cba565b9091555050600c54336000908152600d60205260409020600301555b8160036000828254610c939190611cba565b909155505060065460405163a9059cbb60e01b8152336004820152602481018490526001600160a01b039091169063a9059cbb906044016108b6565b6000546001600160a01b03163314610cf95760405162461bcd60e51b81526004016104ae90611bf5565b6000610d0361067c565b60055460405163a9059cbb60e01b81526001600160a01b0385811660048301526024820184905292935091169063a9059cbb906044015b6020604051808303816000875af1158015610d59573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d7d9190611ce9565b505050565b6000546001600160a01b03163314610dac5760405162461bcd60e51b81526004016104ae90611bf5565b600755565b60026001541415610dd45760405162461bcd60e51b81526004016104ae90611c2a565b6002600155610de16110c4565b50336000908152600d602052604090205460ff16610e115760405162461bcd60e51b81526004016104ae90611d62565b336000908152600d60205260408120600201546003805491929091610e37908490611cba565b9091555050600654336000818152600d60205260409081902060020154905163a9059cbb60e01b8152600481019290925260248201526001600160a01b039091169063a9059cbb906044016020604051808303816000875af1158015610ea1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ec59190611ce9565b50336000908152600d60205260408120805460ff191681556001808201839055600282018390556003909101919091558055565b6000546001600160a01b03163314610f235760405162461bcd60e51b81526004016104ae90611bf5565b6001600160a01b038116610f885760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016104ae565b610f9181611227565b50565b600081610fa057600080fd5b600080841215610fb557836000039350600190505b6000831215610fc75760009290920391155b6000610fd385856115a8565b90508115611001576001607f1b816001600160801b03161115610ff557600080fd5b60000391506105dd9050565b60016001607f1b03816001600160801b0316111561101e57600080fd5b91506105dd9050565b600054600160a01b900460ff166110775760405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b60448201526064016104ae565b6000805460ff60a01b191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b6000806110cf610a65565b9050806002541015611160576000600254826110eb9190611cba565b905060006110f882611277565b61110a90670de0b6b3a7640000611d0b565b905060006003541161111d576000611129565b61112981600354611580565b600c600082825461113a9190611cd1565b9250508190555080600b60008282546111539190611cd1565b9091555050506002829055505b919050565b336000908152600d602052604090205460ff166111945760405162461bcd60e51b81526004016104ae90611d62565b600061119f33610902565b90508015611223576111b2826001611cd1565b336000908152600d602052604081206001810192909255600c54600390920191909155600b80548392906111e7908490611cba565b909155505060055460405163a9059cbb60e01b8152336004820152602481018390526001600160a01b039091169063a9059cbb90604401610d3a565b5050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6005546040516370a0823160e01b815230600482015260009182916001600160a01b03909116906370a0823190602401602060405180830381865afa1580156112c4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112e89190611c8b565b905060035481111580156113055750600654600160a01b900460ff165b156113135750600092915050565b600654600090670de0b6b3a764000090600160a01b900460ff1661133857600061133c565b6003545b600b546113499085611cba565b6113539190611cba565b61135d9190611d40565b9050600061136a8261170a565b600a5490915060009061138090600f0b87611728565b9050600061139b826113926001611950565b600f0b9061197c565b905060006113ad600f83900b856119b0565b90506113bb81600f0b6119e6565b67ffffffffffffffff1698975050505050505050565b600054600160a01b900460ff16156113fb5760405162461bcd60e51b81526004016104ae90611c61565b6000805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586110a73390565b600654600160a01b900460ff166114b55760405162461bcd60e51b815260206004820152603a60248201527f5374616b696e6720616e642072657761726420746f6b656e206d75737420626560448201527f207468652073616d6520746f207374616b65207265776172647300000000000060648201526084016104ae565b336000908152600d602052604090205460ff166114e45760405162461bcd60e51b81526004016104ae90611d62565b60006114ef33610902565b9050801561122357611502826001611cd1565b336000908152600d6020526040812060018101929092556002909101805483929061152e908490611cd1565b9091555050600c54336000908152600d6020526040812060030191909155600b805483929061155e908490611cba565b9250508190555080600360008282546115779190611cd1565b90915550505050565b600061159583670de0b6b3a764000084611a02565b9392505050565b60006115958383611acf565b6000816115b457600080fd5b60006001600160c01b0384116115df5782604085901b816115d7576115d7611d2a565b0490506116f6565b60c084811c64010000000081106115f8576020918201911c5b62010000811061160a576010918201911c5b610100811061161b576008918201911c5b6010811061162b576004918201911c5b6004811061163b576002918201911c5b6002811061164a576001820191505b60bf820360018603901c6001018260ff0387901b8161166b5761166b611d2a565b0492506001600160801b0383111561168257600080fd5b608085901c83026001600160801b038616840260c088901c604089901b828110156116ae576001820391505b608084901b929003828110156116c5576001820391505b829003608084901c82146116db576116db611d87565b8881816116ea576116ea611d2a565b04870196505050505050505b6001600160801b0381111561159557600080fd5b6000677fffffffffffffff82111561172157600080fd5b5060401b90565b600080600084600f0b1280156117415750826001166001145b905060008085600f0b12611755578461175a565b846000035b6001600160801b03169050600160801b6801000000000000000082116117f457603f82901b91505b84156117ec576001851615611797578102607f1c5b908002607f1c9060028516156117ad578102607f1c5b908002607f1c9060048516156117c3578102607f1c5b908002607f1c9060088516156117d9578102607f1c5b60049490941c93908002607f1c90611782565b60401c61190a565b603f600160601b83101561180e5760209290921b91601f19015b600160701b8310156118265760109290921b91600f19015b600160781b83101561183e5760089290921b91600719015b6001607c1b8310156118565760049290921b91600319015b6001607e1b83101561186e5760029290921b91600119015b6001607f1b8310156118865760019290921b91600019015b60005b86156118f3576040821061189c57600080fd5b60018716156118c257918302607f1c918101600160801b8311156118c257600192831c92015b928002607f1c9260019190911b90600160801b84106118e757600193841c9391909101905b600187901c9650611889565b6040811061190057600080fd5b6040039190911c90505b600083611917578161191c565b816000035b905060016001607f1b0319811280159061193d575060016001607f1b038113155b61194657600080fd5b9695505050505050565b6000677fffffffffffffff1982121580156119735750677fffffffffffffff8213155b61172157600080fd5b6000600f82810b9084900b0360016001607f1b031981128015906119a7575060016001607f1b038113155b61159557600080fd5b6000600f83810b9083900b0260401d60016001607f1b031981128015906119a7575060016001607f1b0381131561159557600080fd5b60008082600f0b12156119f857600080fd5b50600f0b60401d90565b600080806000198587098587029250828110838203039150508060001415611a3d57838281611a3357611a33611d2a565b0492505050611595565b838110611a6757604051631dcf306360e21b815260048101829052602481018590526044016104ae565b600084868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203026000889003889004909101858311909403939093029303949094049190911702949350505050565b60008080600019848609848602925082811083820303915050670de0b6b3a76400008110611b135760405163698d9a0160e11b8152600481018290526024016104ae565b600080670de0b6b3a76400008688099150506706f05b59d3b1ffff811182611b4d5780670de0b6b3a76400008504019450505050506105dd565b620400008285030493909111909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690201905092915050565b60008060408385031215611ba457600080fd5b50508035926020909101359150565b600060208284031215611bc557600080fd5b81356001600160a01b038116811461159557600080fd5b600060208284031215611bee57600080fd5b5035919050565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b6020808252601f908201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604082015260600190565b60208082526010908201526f14185d5cd8589b194e881c185d5cd95960821b604082015260600190565b600060208284031215611c9d57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b600082821015611ccc57611ccc611ca4565b500390565b60008219821115611ce457611ce4611ca4565b500190565b600060208284031215611cfb57600080fd5b8151801515811461159557600080fd5b6000816000190483118215151615611d2557611d25611ca4565b500290565b634e487b7160e01b600052601260045260246000fd5b600082611d5d57634e487b7160e01b600052601260045260246000fd5b500490565b6020808252600b908201526a4e6f74207374616b696e6760a81b604082015260600190565b634e487b7160e01b600052600160045260246000fdfea2646970667358221220ef324d0aef69653c5bfbcdce555b952e2bc23dedb738fddb567513c6ef25d12164736f6c634300080b0033000000000000000000000000710aa623c2c881b0d7357bcf9aeedf660e606c22000000000000000000000000710aa623c2c881b0d7357bcf9aeedf660e606c22

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106101f05760003560e01c80638c195a381161010f578063b97dd9e2116100a2578063d622888c11610071578063d622888c14610402578063db2e21bc14610460578063ddaa26ad14610468578063f2fde38b1461047157600080fd5b8063b97dd9e2146103c1578063c1dc5ae6146103c9578063ce5494bb146103dc578063d0f07926146103ef57600080fd5b806399248ea7116100de57806399248ea7146103685780639ebaa4661461037b578063a694fc3a1461039b578063ae1c7868146103ae57600080fd5b80638c195a381461033e5780638da5cb5b14610347578063902d96731461035857806393ce53431461036057600080fd5b80635c975abb1161018757806381c9eb051161015657806381c9eb05146103065780638456cb591461031957806389facb20146103215780638a1ede721461032a57600080fd5b80635c975abb146102cf57806368cc6494146102ed578063715018a6146102f5578063817b1cd2146102fd57600080fd5b806316934fc4116101c357806316934fc41461025a5780632b32a535146102b55780633f4ba83a146102be578063446a2ec8146102c657600080fd5b80630479d644146101f55780630e15561a14610225578063113d5f201461023c57806313ca156b14610251575b600080fd5b600654610208906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61022e600b5481565b60405190815260200161021c565b61024f61024a366004611b91565b610484565b005b61022e60085481565b610293610268366004611bb3565b600d60205260009081526040902080546001820154600283015460039093015460ff90921692909184565b604080519415158552602085019390935291830152606082015260800161021c565b61022e60025481565b61024f6104fc565b61022e600c5481565b600054600160a01b900460ff165b604051901515815260200161021c565b61024f610530565b61024f61059e565b61022e60035481565b61022e610314366004611bdc565b6105d2565b61024f6105e3565b61022e60075481565b6006546102dd90600160a01b900460ff1681565b61022e60095481565b6000546001600160a01b0316610208565b61024f610615565b61022e61067c565b600554610208906001600160a01b031681565b600a5461038890600f0b81565b604051600f9190910b815260200161021c565b61024f6103a9366004611bdc565b61071c565b61022e6103bc366004611bb3565b610902565b61022e610a65565b61024f6103d7366004611bdc565b610a87565b61024f6103ea366004611bb3565b610ccf565b61024f6103fd366004611bdc565b610d82565b61022e610410366004611bb3565b6001600160a01b03166000908152600d60209081526040918290208251608081018452815460ff161515815260018201549281019290925260028101549282018390526003015460609091015290565b61024f610db1565b61022e60045481565b61024f61047f366004611bb3565b610ef9565b6000546001600160a01b031633146104b75760405162461bcd60e51b81526004016104ae90611bf5565b60405180910390fd5b600882905560098190556104cf600f83900b82610f94565b600a80546fffffffffffffffffffffffffffffffff19166001600160801b03929092169190911790555050565b6000546001600160a01b031633146105265760405162461bcd60e51b81526004016104ae90611bf5565b61052e611027565b565b600260015414156105535760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff16156105825760405162461bcd60e51b81526004016104ae90611c61565b600061058c6110c4565b905061059781611165565b5060018055565b6000546001600160a01b031633146105c85760405162461bcd60e51b81526004016104ae90611bf5565b61052e6000611227565b60006105dd82611277565b92915050565b6000546001600160a01b0316331461060d5760405162461bcd60e51b81526004016104ae90611bf5565b61052e6113d1565b600260015414156106385760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff16156106675760405162461bcd60e51b81526004016104ae90611c61565b60006106716110c4565b905061059781611436565b6005546040516370a0823160e01b815230600482015260009182916001600160a01b03909116906370a0823190602401602060405180830381865afa1580156106c9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106ed9190611c8b565b600654909150600160a01b900460ff1661070857600061070c565b6003545b6107169082611cba565b91505090565b6002600154141561073f5760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff161561076e5760405162461bcd60e51b81526004016104ae90611c61565b60006107786110c4565b336000908152600d602052604090205490915060ff166108045760405180608001604052806001151581526020018260016107b39190611cd1565b81526020808201859052600c54604092830152336000908152600d82528290208351815460ff1916901515178155908301516001820155908201516002820155606090910151600390910155610866565b600654600160a01b900460ff16156108245761081f81611436565b61083e565b600654600160a01b900460ff1661083e5761083e81611165565b336000908152600d602052604081206002018054849290610860908490611cd1565b90915550505b81600360008282546108789190611cd1565b90915550506006546040516323b872dd60e01b8152336004820152306024820152604481018490526001600160a01b03909116906323b872dd906064015b6020604051808303816000875af11580156108d5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f99190611ce9565b50506001805550565b60008061090d610a65565b6001600160a01b0384166000908152600d60209081526040918290208251608081018452815460ff161515808252600183015493820193909352600282015493810193909352600301546060830152919250906109a35760405162461bcd60e51b815260206004820152601460248201527314dd185ad948191bd95cc81b9bdd08195e1a5cdd60621b60448201526064016104ae565b600b54600254831115610a3d5760006109c8600254856109c39190611cba565b611277565b6109da90670de0b6b3a7640000611d0b565b90506109e68183611cd1565b9150600080600354116109fa576000610a06565b610a0682600354611580565b600c54610a139190611cd1565b9050610a32846060015182610a289190611cba565b856040015161159c565b979650505050505050565b610a5c8260600151600c54610a529190611cba565b836040015161159c565b95945050505050565b600060075460045442610a789190611cba565b610a829190611d40565b905090565b60026001541415610aaa5760405162461bcd60e51b81526004016104ae90611c2a565b6002600155600054600160a01b900460ff1615610ad95760405162461bcd60e51b81526004016104ae90611c61565b6000610ae36110c4565b336000908152600d602052604090205490915060ff16610b155760405162461bcd60e51b81526004016104ae90611d62565b336000908152600d6020526040902060020154821115610b775760405162461bcd60e51b815260206004820181905260248201527f416d6f756e7420686967686572207468616e20616d6f756e74207374616b656460448201526064016104ae565b60008211610bbd5760405162461bcd60e51b81526020600482015260136024820152720416d6f756e74206d757374206265206774203606c1b60448201526064016104ae565b600654600160a01b900460ff1615610bdd57610bd881611436565b610be6565b610be681611165565b336000908152600d6020526040902060020154821415610c2e57336000908152600d60205260408120805460ff19168155600181018290556002810182905560030155610c81565b610c39816001611cd1565b336000908152600d60205260408120600181019290925560029091018054849290610c65908490611cba565b9091555050600c54336000908152600d60205260409020600301555b8160036000828254610c939190611cba565b909155505060065460405163a9059cbb60e01b8152336004820152602481018490526001600160a01b039091169063a9059cbb906044016108b6565b6000546001600160a01b03163314610cf95760405162461bcd60e51b81526004016104ae90611bf5565b6000610d0361067c565b60055460405163a9059cbb60e01b81526001600160a01b0385811660048301526024820184905292935091169063a9059cbb906044015b6020604051808303816000875af1158015610d59573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d7d9190611ce9565b505050565b6000546001600160a01b03163314610dac5760405162461bcd60e51b81526004016104ae90611bf5565b600755565b60026001541415610dd45760405162461bcd60e51b81526004016104ae90611c2a565b6002600155610de16110c4565b50336000908152600d602052604090205460ff16610e115760405162461bcd60e51b81526004016104ae90611d62565b336000908152600d60205260408120600201546003805491929091610e37908490611cba565b9091555050600654336000818152600d60205260409081902060020154905163a9059cbb60e01b8152600481019290925260248201526001600160a01b039091169063a9059cbb906044016020604051808303816000875af1158015610ea1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ec59190611ce9565b50336000908152600d60205260408120805460ff191681556001808201839055600282018390556003909101919091558055565b6000546001600160a01b03163314610f235760405162461bcd60e51b81526004016104ae90611bf5565b6001600160a01b038116610f885760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016104ae565b610f9181611227565b50565b600081610fa057600080fd5b600080841215610fb557836000039350600190505b6000831215610fc75760009290920391155b6000610fd385856115a8565b90508115611001576001607f1b816001600160801b03161115610ff557600080fd5b60000391506105dd9050565b60016001607f1b03816001600160801b0316111561101e57600080fd5b91506105dd9050565b600054600160a01b900460ff166110775760405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b60448201526064016104ae565b6000805460ff60a01b191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b6000806110cf610a65565b9050806002541015611160576000600254826110eb9190611cba565b905060006110f882611277565b61110a90670de0b6b3a7640000611d0b565b905060006003541161111d576000611129565b61112981600354611580565b600c600082825461113a9190611cd1565b9250508190555080600b60008282546111539190611cd1565b9091555050506002829055505b919050565b336000908152600d602052604090205460ff166111945760405162461bcd60e51b81526004016104ae90611d62565b600061119f33610902565b90508015611223576111b2826001611cd1565b336000908152600d602052604081206001810192909255600c54600390920191909155600b80548392906111e7908490611cba565b909155505060055460405163a9059cbb60e01b8152336004820152602481018390526001600160a01b039091169063a9059cbb90604401610d3a565b5050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6005546040516370a0823160e01b815230600482015260009182916001600160a01b03909116906370a0823190602401602060405180830381865afa1580156112c4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112e89190611c8b565b905060035481111580156113055750600654600160a01b900460ff165b156113135750600092915050565b600654600090670de0b6b3a764000090600160a01b900460ff1661133857600061133c565b6003545b600b546113499085611cba565b6113539190611cba565b61135d9190611d40565b9050600061136a8261170a565b600a5490915060009061138090600f0b87611728565b9050600061139b826113926001611950565b600f0b9061197c565b905060006113ad600f83900b856119b0565b90506113bb81600f0b6119e6565b67ffffffffffffffff1698975050505050505050565b600054600160a01b900460ff16156113fb5760405162461bcd60e51b81526004016104ae90611c61565b6000805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586110a73390565b600654600160a01b900460ff166114b55760405162461bcd60e51b815260206004820152603a60248201527f5374616b696e6720616e642072657761726420746f6b656e206d75737420626560448201527f207468652073616d6520746f207374616b65207265776172647300000000000060648201526084016104ae565b336000908152600d602052604090205460ff166114e45760405162461bcd60e51b81526004016104ae90611d62565b60006114ef33610902565b9050801561122357611502826001611cd1565b336000908152600d6020526040812060018101929092556002909101805483929061152e908490611cd1565b9091555050600c54336000908152600d6020526040812060030191909155600b805483929061155e908490611cba565b9250508190555080600360008282546115779190611cd1565b90915550505050565b600061159583670de0b6b3a764000084611a02565b9392505050565b60006115958383611acf565b6000816115b457600080fd5b60006001600160c01b0384116115df5782604085901b816115d7576115d7611d2a565b0490506116f6565b60c084811c64010000000081106115f8576020918201911c5b62010000811061160a576010918201911c5b610100811061161b576008918201911c5b6010811061162b576004918201911c5b6004811061163b576002918201911c5b6002811061164a576001820191505b60bf820360018603901c6001018260ff0387901b8161166b5761166b611d2a565b0492506001600160801b0383111561168257600080fd5b608085901c83026001600160801b038616840260c088901c604089901b828110156116ae576001820391505b608084901b929003828110156116c5576001820391505b829003608084901c82146116db576116db611d87565b8881816116ea576116ea611d2a565b04870196505050505050505b6001600160801b0381111561159557600080fd5b6000677fffffffffffffff82111561172157600080fd5b5060401b90565b600080600084600f0b1280156117415750826001166001145b905060008085600f0b12611755578461175a565b846000035b6001600160801b03169050600160801b6801000000000000000082116117f457603f82901b91505b84156117ec576001851615611797578102607f1c5b908002607f1c9060028516156117ad578102607f1c5b908002607f1c9060048516156117c3578102607f1c5b908002607f1c9060088516156117d9578102607f1c5b60049490941c93908002607f1c90611782565b60401c61190a565b603f600160601b83101561180e5760209290921b91601f19015b600160701b8310156118265760109290921b91600f19015b600160781b83101561183e5760089290921b91600719015b6001607c1b8310156118565760049290921b91600319015b6001607e1b83101561186e5760029290921b91600119015b6001607f1b8310156118865760019290921b91600019015b60005b86156118f3576040821061189c57600080fd5b60018716156118c257918302607f1c918101600160801b8311156118c257600192831c92015b928002607f1c9260019190911b90600160801b84106118e757600193841c9391909101905b600187901c9650611889565b6040811061190057600080fd5b6040039190911c90505b600083611917578161191c565b816000035b905060016001607f1b0319811280159061193d575060016001607f1b038113155b61194657600080fd5b9695505050505050565b6000677fffffffffffffff1982121580156119735750677fffffffffffffff8213155b61172157600080fd5b6000600f82810b9084900b0360016001607f1b031981128015906119a7575060016001607f1b038113155b61159557600080fd5b6000600f83810b9083900b0260401d60016001607f1b031981128015906119a7575060016001607f1b0381131561159557600080fd5b60008082600f0b12156119f857600080fd5b50600f0b60401d90565b600080806000198587098587029250828110838203039150508060001415611a3d57838281611a3357611a33611d2a565b0492505050611595565b838110611a6757604051631dcf306360e21b815260048101829052602481018590526044016104ae565b600084868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203026000889003889004909101858311909403939093029303949094049190911702949350505050565b60008080600019848609848602925082811083820303915050670de0b6b3a76400008110611b135760405163698d9a0160e11b8152600481018290526024016104ae565b600080670de0b6b3a76400008688099150506706f05b59d3b1ffff811182611b4d5780670de0b6b3a76400008504019450505050506105dd565b620400008285030493909111909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690201905092915050565b60008060408385031215611ba457600080fd5b50508035926020909101359150565b600060208284031215611bc557600080fd5b81356001600160a01b038116811461159557600080fd5b600060208284031215611bee57600080fd5b5035919050565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b6020808252601f908201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604082015260600190565b60208082526010908201526f14185d5cd8589b194e881c185d5cd95960821b604082015260600190565b600060208284031215611c9d57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b600082821015611ccc57611ccc611ca4565b500390565b60008219821115611ce457611ce4611ca4565b500190565b600060208284031215611cfb57600080fd5b8151801515811461159557600080fd5b6000816000190483118215151615611d2557611d25611ca4565b500290565b634e487b7160e01b600052601260045260246000fd5b600082611d5d57634e487b7160e01b600052601260045260246000fd5b500490565b6020808252600b908201526a4e6f74207374616b696e6760a81b604082015260600190565b634e487b7160e01b600052600160045260246000fdfea2646970667358221220ef324d0aef69653c5bfbcdce555b952e2bc23dedb738fddb567513c6ef25d12164736f6c634300080b0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000710aa623c2c881b0d7357bcf9aeedf660e606c22000000000000000000000000710aa623c2c881b0d7357bcf9aeedf660e606c22

-----Decoded View---------------
Arg [0] : rewardToken (address): 0x710Aa623c2c881b0d7357bCf9aEedf660E606C22
Arg [1] : stakingToken (address): 0x710Aa623c2c881b0d7357bCf9aEedf660E606C22

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000710aa623c2c881b0d7357bcf9aeedf660e606c22
Arg [1] : 000000000000000000000000710aa623c2c881b0d7357bcf9aeedf660e606c22


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.