More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 1,233 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Approve | 20152230 | 176 days ago | IN | 0 ETH | 0.00010993 | ||||
Transfer | 20152221 | 176 days ago | IN | 0 ETH | 0.000164 | ||||
Transfer | 20152209 | 176 days ago | IN | 0 ETH | 0.00017339 | ||||
Transfer | 20152196 | 176 days ago | IN | 0 ETH | 0.00013265 | ||||
Approve | 20152152 | 176 days ago | IN | 0 ETH | 0.00009531 | ||||
Approve | 19993360 | 198 days ago | IN | 0 ETH | 0.00028418 | ||||
Approve | 19947416 | 204 days ago | IN | 0 ETH | 0.00012387 | ||||
Approve | 19462987 | 272 days ago | IN | 0 ETH | 0.00167452 | ||||
Approve | 19445486 | 274 days ago | IN | 0 ETH | 0.00131498 | ||||
Approve | 19440855 | 275 days ago | IN | 0 ETH | 0.00237919 | ||||
Approve | 19434766 | 276 days ago | IN | 0 ETH | 0.00277814 | ||||
Approve | 19373691 | 285 days ago | IN | 0 ETH | 0.00240131 | ||||
Approve | 19372011 | 285 days ago | IN | 0 ETH | 0.00335999 | ||||
Approve | 19370788 | 285 days ago | IN | 0 ETH | 0.00579927 | ||||
Approve | 19361032 | 286 days ago | IN | 0 ETH | 0.00279398 | ||||
Approve | 19352661 | 287 days ago | IN | 0 ETH | 0.00095002 | ||||
Approve | 19352417 | 288 days ago | IN | 0 ETH | 0.00197168 | ||||
Approve | 19343890 | 289 days ago | IN | 0 ETH | 0.00231813 | ||||
Approve | 19327953 | 291 days ago | IN | 0 ETH | 0.00369668 | ||||
Approve | 19321617 | 292 days ago | IN | 0 ETH | 0.00220039 | ||||
Approve | 19320558 | 292 days ago | IN | 0 ETH | 0.00281326 | ||||
Approve | 19260276 | 300 days ago | IN | 0 ETH | 0.0011053 | ||||
Approve | 19238660 | 303 days ago | IN | 0 ETH | 0.00113374 | ||||
Approve | 19173686 | 313 days ago | IN | 0 ETH | 0.00194631 | ||||
Approve | 19137731 | 318 days ago | IN | 0 ETH | 0.00103912 |
Advanced mode: Intended for advanced users or developers and will display all Internal Transactions including zero value transfers. Name tag integration is not available in advanced view.
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
||||
---|---|---|---|---|---|---|---|
20744683 | 93 days ago | 0 ETH | |||||
20744683 | 93 days ago | 0 ETH | |||||
20744683 | 93 days ago | 0 ETH | |||||
20744683 | 93 days ago | 0 ETH | |||||
20744683 | 93 days ago | 0 ETH | |||||
20744683 | 93 days ago | 0 ETH | |||||
20152238 | 176 days ago | 0 ETH | |||||
20152238 | 176 days ago | 0 ETH | |||||
20152238 | 176 days ago | 0 ETH | |||||
20152221 | 176 days ago | 0 ETH | |||||
20152217 | 176 days ago | 0 ETH | |||||
20152217 | 176 days ago | 0 ETH | |||||
20152209 | 176 days ago | 0 ETH | |||||
20152205 | 176 days ago | 0 ETH | |||||
20152205 | 176 days ago | 0 ETH | |||||
20152196 | 176 days ago | 0 ETH | |||||
20152193 | 176 days ago | 0 ETH | |||||
20152193 | 176 days ago | 0 ETH | |||||
20152178 | 176 days ago | 0 ETH | |||||
20152178 | 176 days ago | 0 ETH | |||||
20152155 | 176 days ago | 0 ETH | |||||
20152155 | 176 days ago | 0 ETH | |||||
20152155 | 176 days ago | 0 ETH | |||||
20152144 | 176 days ago | 0 ETH | |||||
20152144 | 176 days ago | 0 ETH |
Loading...
Loading
Contract Name:
BlobToken
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 10 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* ....... .-=+********##*=-. .=**++===----====+**#+- :*#*====-==-::========+*#*= :*#*===--::================+**- +#*+==-::::-==================*#+. :*#*==--:::::-====================**: -*#+==-::::::-======================+*: -##+=-:::::::-========================+#- :##+=-::::::-===========================+#: .*#+=-::::::-=============================+*. +#+=-::::::-===============*=======--*=====+* :#*=-::::::-===============*#*======-*#*=====+= **=-::::::::==-----------=* ##---===* ##======*. :#+=::::::::::------------=*###------*###-======+ +*=-::::::::::-------------"##-------"##------==*. *+--::::::::::---------------------------------=+- .#+--:::::::::----------------------------------=*. :*+=-----------------------------------------=**: :=*++=--------------------------------==+**=: .:=++*+++=====----------=====+++***+=:. ..:--==+++++++++++++==--:.. :BBBBBBBBBBBBBBBB:. :LLLLLL: ..:OOOOOOOO:.. :BBBBBBBBBBBBBBBB:. :BBBBBBBBBBBBBBBBBB:. :LLLLLL: .OOOOOOOOOOOOOOOO. :BBBBBBBBBBBBBBBBBB:. :BBBBBBBBBBBBBBBBBBBB. :LLLLLL: .OOOOOOOOOOOOOOOOOOOO. :BBBBBBBBBBBBBBBBBBBB. :BBBBBB: 'BBBBBBB: :LLLLLL: :OOOOOOOO" "OOOOOOOO: :BBBBBB: 'BBBBBBB: :BBBBBB: .BBBBBBB' :LLLLLL: :OOOOOOO" "OOOOOOO: :BBBBBB: .BBBBBBB' :BBBBBBBBBBBBBBBBBBB' :LLLLLL: OOOOOOO. .OOOOOOO :BBBBBBBBBBBBBBBBBBB' :BBBBBBBBBBBBBBBBBB. :LLLLLL: :OOOOOOO: :OOOOOOO: :BBBBBBBBBBBBBBBBBB. :BBBBBBBBBBBBBBBBBBB. :LLLLLL: 'OOOOOOO. .OOOOOOO' :BBBBBBBBBBBBBBBBBBB. :BBBBBB: 'BBBBBBB. :LLLLLL: OOOOOOOO. .OOOOOOOO :BBBBBB: 'BBBBBBB. :BBBBBB: .BBBBBBB: :LLLLLL: :OOOOOOOO:. .:OOOOOOOO: :BBBBBB: .BBBBBBB: :BBBBBBBBBBBBBBBBBBBB: :LLLLLLLLLLLLLL: 'OOOOOOOOOOOOOOOOOOOOOO' :BBBBBBBBBBBBBBBBBBBB: :BBBBBBBBBBBBBBBBBBBB :LLLLLLLLLLLLLL: "OOOOOOOOOOOOOOOOOO" :BBBBBBBBBBBBBBBBBBBB :BBBBBBBBBBBBBBBBBB" :LLLLLLLLLLLLLL: "":OOOOOOOO:"" :BBBBBBBBBBBBBBBBBB" */ import "./ERC20Mod.sol"; contract BlobToken is ERC20Mod { string private _name = "Blob"; string private constant _symbol = "BLOB"; uint private constant _numTokens = 10_000_000_000; constructor() ERC20Mod(_name, _symbol) { address deployer = 0x6bC42c45aE8108CeE5205E0Ec7757a3e3E88131E; _mint(deployer, _numTokens * 10 ** decimals()); transferOwnership(deployer); } function burn(uint256 amount) public { _burn(msg.sender, amount); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ // /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); }
pragma solidity >=0.6.2; import './IUniswapV2Router01.sol'; interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./Taxable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {intoUint256, ud} from "@prb/math/src/UD60x18.sol"; contract ERC20Mod is IERC20, IERC20Metadata, Taxable { mapping(address => bool) public presale; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; bool public deploymentSet = false; // Events event AddedPresaleAddress(address _user); event RemovedPresaleAddress(address _user); event SetDeployment(bool val); event TaxDistributed(uint256 currentTaxAmount); constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } function name() public view virtual override returns (string memory) { return _name; } function symbol() public view virtual override returns (string memory) { return _symbol; } function decimals() public view virtual override returns (uint8) { return 18; } function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } function balanceOf( address account ) public view virtual override returns (uint256) { return _balances[account]; } function transfer( address to, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } function allowance( address owner, address spender ) public view virtual override returns (uint256) { return _allowances[owner][spender]; } function approve( address spender, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } function increaseAllowance( address spender, uint256 addedValue ) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } function decreaseAllowance( address spender, uint256 subtractedValue ) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require( currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero" ); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } function addPresaleAddress(address _user) external onlyOwner { require(_user != address(0), "Invalid address"); presale[_user] = true; emit AddedPresaleAddress(_user); } function removePresaleAddress(address _user) external onlyOwner { require(_user != address(0), "Invalid address"); presale[_user] = false; emit RemovedPresaleAddress(_user); } function setDeploy(bool val) external onlyOwner { deploymentSet = val; emit SetDeployment(val); } function distributeTax() external onlyOwner { _distributeTax(); emit TaxDistributed(currentTaxAmount); } function _distributeTax() internal { require(_taxEqualsHundred(), "Total tax percentage should be 100"); _distribute(); } function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require( fromBalance >= amount, "ERC20: transfer amount exceeds balance" ); if ( (dexAddress[from] || dexAddress[to]) && from != owner() && !presale[from] && (!taxExempts[from] && !taxExempts[to]) ) { uint256 taxAmount = calculateTaxAmount(amount); uint256 transferAmount = calculateTransferAmount(amount, taxAmount); currentTaxAmount += taxAmount; _balances[address(this)] += taxAmount; _balances[to] += transferAmount; } else { _balances[to] += amount; // make deploymentSet true once all prerequisites are set if (deploymentSet && currentTaxAmount > 0) { address[] memory path = new address[](2); path[0] = address(this); path[1] = WETH; uint[] memory amounts = IUniswapV2Router02(routerAddress) .getAmountsOut(currentTaxAmount, path); if (amounts[amounts.length - 1] >= threshold) _distributeTax(); } } _balances[from] = fromBalance - amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require( currentAllowance >= amount, "ERC20: insufficient allowance" ); unchecked { _approve(owner, spender, currentAllowance - amount); } } } function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol"; import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol"; import {UD60x18, intoUint256, ud} from "@prb/math/src/UD60x18.sol"; contract Taxable is Ownable { // ==================== STRUCTURE ==================== // uint256 public tax = 5 * 1e18; // 5% uint256 public threshold = 2 * 1e18; // in WETH address public priceFeed; uint256 private HUNDRED = 100 * 1e18; uint256 private swapSlippage = 15e4; uint256 public currentTaxAmount = 0; mapping(address => bool) public taxExempts; mapping(address => uint256) public taxPercentages; address[] taxReceiverList; mapping(address => bool) private taxAddressReciever; address public routerAddress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; address public WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; mapping(address => bool) public dexAddress; address[] dexAddressList; // ==================== EVENTS ==================== // event AddDEXAddress(address dex); event RemoveDEXAddress(address dex); event UpdateTax(uint256 oldPercentage, uint256 newPercentage); event UpdateReceiverTax( address receiver, uint256 oldPercentage, uint256 newPercentage ); event AddTaxReceiver(address receiver, uint256 percentage); event RemoveTaxReceiver(address receiver); event SetSwapSlippage(uint256 _swapSlippage); event UpdateThreshold(uint256 _threshold); event SetPriceFeedAddress(address _priceFeedAddress); event RewardAddress(address _rewardAddress); event SetRouterAddress(address _routerAddress); event AddTaxExemption(address _user); event RemoveTaxExemption(address _user); // ==================== MODIFIERS ==================== // modifier isValidAddress(address account) { require(account != address(0), "Invalid address"); _; } // ==================== FUNCTIONS ==================== // function getAllDexAddresses() external view returns (address[] memory) { return dexAddressList; } function getAllTaxReceivers() external view returns (address[] memory) { return taxReceiverList; } function addDEXAddress(address _dex) external onlyOwner { require(_dex != address(0), "Invalid DEX address"); require(!dexAddress[_dex], "DEX already exists"); dexAddress[_dex] = true; dexAddressList.push(_dex); emit AddDEXAddress(_dex); } function removeDEXAddress(uint _index) external onlyOwner { require(_index < dexAddressList.length, "Dex address not on the list"); emit RemoveDEXAddress(dexAddressList[_index]); dexAddress[dexAddressList[_index]] = false; dexAddressList[_index] = dexAddressList[dexAddressList.length - 1]; dexAddressList.pop(); } function addTaxReceiver( address _receiver, uint256 _percentage ) external onlyOwner { require(taxAddressReciever[_receiver] == false, "Receiver already exists"); taxPercentages[_receiver] = _percentage; taxAddressReciever[_receiver] = true; taxReceiverList.push(_receiver); emit AddTaxReceiver(_receiver, _percentage); } function updateReceiverTax( address _receiver, uint256 _percentage ) external onlyOwner { require(taxAddressReciever[_receiver] == true, "Receiver doesn't exists"); emit UpdateReceiverTax( _receiver, taxPercentages[_receiver], _percentage ); taxPercentages[_receiver] = _percentage; } function removeTaxReceiver(uint256 _index, address _receiver) external onlyOwner { require(_index < taxReceiverList.length, "Incorrect Index"); require(taxAddressReciever[_receiver] == true, "Receiver doesn't exists"); require(taxReceiverList[_index] == _receiver, "Incorrect Receiver"); emit RemoveTaxReceiver(taxReceiverList[_index]); taxPercentages[taxReceiverList[_index]] = 0; taxReceiverList[_index] = taxReceiverList[taxReceiverList.length - 1]; taxAddressReciever[_receiver] = false; taxReceiverList.pop(); } function updateThreshold(uint256 _threshold) external onlyOwner { require(_threshold > 0, "Value must be greater than 0"); threshold = _threshold; emit UpdateThreshold( _threshold); } function updateTax(uint256 _tax) external onlyOwner { require(_tax <= 10 * 1e18, "Tax should not be greater than 10 %"); emit UpdateTax(tax, _tax); tax = _tax; } function getPrice() public view returns (uint256) { (, int price, , , ) = AggregatorV3Interface(priceFeed) .latestRoundData(); require(price > 0, "Invalid price"); return uint256(price); } function calculateFeeAmount( uint256 _amount, uint256 _fee ) public view returns (uint256) { return (_amount * _fee) / HUNDRED; } function calculateTaxAmount(uint256 _amount) public view returns (uint256) { return calculateFeeAmount(_amount, tax); } function calculateTransferAmount( uint256 _amount, uint256 _tax ) public pure returns (uint256) { return _amount - _tax; } function _calculateAmountOutMin( address _tokenIn, uint256 _amountIn, uint256 _slippage ) internal view returns (uint256) { address[] memory path = new address[](2); path[0] = address(this); path[1] = _tokenIn; uint256[] memory amountsOut = IUniswapV2Router02(routerAddress).getAmountsOut(_amountIn, path); uint256 amount = amountsOut[amountsOut.length - 1]; return (amount - intoUint256(ud(amount) * ud((_slippage * 1e14) / 100))); } function setPriceFeed( address _priceFeedAddress ) public onlyOwner isValidAddress(_priceFeedAddress) { priceFeed = _priceFeedAddress; emit SetPriceFeedAddress(_priceFeedAddress); } function setRewardAddress( address _rewardAddress ) external onlyOwner isValidAddress(_rewardAddress) { WETH = _rewardAddress; emit RewardAddress( _rewardAddress); } function setRouter( address _routerAddress ) external onlyOwner isValidAddress(_routerAddress) { routerAddress = _routerAddress; emit SetRouterAddress(_routerAddress); } function addTaxExempts( address _user ) external onlyOwner isValidAddress(_user) { taxExempts[_user] = true; emit AddTaxExemption(_user); } function removeTaxExempts( address _user ) external onlyOwner isValidAddress(_user) { taxExempts[_user] = false; emit RemoveTaxExemption(_user); } function setSwapSlippage(uint256 _swapSlippage) external onlyOwner { require(_swapSlippage >= 1e3 && _swapSlippage <= 100e4, "slippage must be between 0.1 to 100"); swapSlippage = _swapSlippage; emit SetSwapSlippage(_swapSlippage); } function _swap( address _tokenIn, address _tokenOut, uint256 _amountIn, address _to, uint256 _minAmount ) internal { IERC20(_tokenIn).approve(routerAddress, _amountIn); address[] memory path; if (_tokenIn != address(WETH) && _tokenOut != address(WETH)) { path = new address[](3); path[0] = _tokenIn; path[1] = WETH; path[2] = _tokenOut; } else { path = new address[](2); path[0] = _tokenIn; path[1] = _tokenOut; } // Make the swap IUniswapV2Router02(routerAddress) .swapExactTokensForTokensSupportingFeeOnTransferTokens( _amountIn, _minAmount, path, _to, block.timestamp + 10 minutes ); } function _distribute() internal { for (uint256 i = 0; i < taxReceiverList.length; i++) { address account = taxReceiverList[i]; uint256 toSendAmount = calculateFeeAmount( currentTaxAmount, taxPercentages[account] ); uint256 minAmount = _calculateAmountOutMin(WETH, toSendAmount, swapSlippage); _swap(address(this), WETH, toSendAmount, account, minAmount); } currentTaxAmount = 0; } function _taxEqualsHundred() internal view returns (bool) { uint256 sum = 0; for (uint256 i = 0; i < taxReceiverList.length; i++) { address account = taxReceiverList[i]; sum += taxPercentages[account]; } return (sum == HUNDRED); } }
{ "metadata": { "bytecodeHash": "none" }, "optimizer": { "enabled": true, "runs": 10 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"dex","type":"address"}],"name":"AddDEXAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_user","type":"address"}],"name":"AddTaxExemption","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"percentage","type":"uint256"}],"name":"AddTaxReceiver","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_user","type":"address"}],"name":"AddedPresaleAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"dex","type":"address"}],"name":"RemoveDEXAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_user","type":"address"}],"name":"RemoveTaxExemption","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"}],"name":"RemoveTaxReceiver","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_user","type":"address"}],"name":"RemovedPresaleAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_rewardAddress","type":"address"}],"name":"RewardAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"val","type":"bool"}],"name":"SetDeployment","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_priceFeedAddress","type":"address"}],"name":"SetPriceFeedAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_routerAddress","type":"address"}],"name":"SetRouterAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_swapSlippage","type":"uint256"}],"name":"SetSwapSlippage","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"currentTaxAmount","type":"uint256"}],"name":"TaxDistributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldPercentage","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newPercentage","type":"uint256"}],"name":"UpdateReceiverTax","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldPercentage","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newPercentage","type":"uint256"}],"name":"UpdateTax","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_threshold","type":"uint256"}],"name":"UpdateThreshold","type":"event"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_dex","type":"address"}],"name":"addDEXAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"addPresaleAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"addTaxExempts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_percentage","type":"uint256"}],"name":"addTaxReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"calculateFeeAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"calculateTaxAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_tax","type":"uint256"}],"name":"calculateTransferAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"currentTaxAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deploymentSet","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"dexAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"distributeTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getAllDexAddresses","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllTaxReceivers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"presale","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"priceFeed","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"}],"name":"removeDEXAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"removePresaleAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"removeTaxExempts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"removeTaxReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"routerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"val","type":"bool"}],"name":"setDeploy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_priceFeedAddress","type":"address"}],"name":"setPriceFeed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardAddress","type":"address"}],"name":"setRewardAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_routerAddress","type":"address"}],"name":"setRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_swapSlippage","type":"uint256"}],"name":"setSwapSlippage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tax","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"taxExempts","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"taxPercentages","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"threshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_percentage","type":"uint256"}],"name":"updateReceiverTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tax","type":"uint256"}],"name":"updateTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_threshold","type":"uint256"}],"name":"updateThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
674563918244f40000600155671bc16d674ec8000060025568056bc75e2d631000006004908155620249f06005556000600655600b80546001600160a01b0319908116737a250d5630b4cf539739df2c5dacb4c659f2488d17909155600c805490911673c02aaa39b223fe8d0a0e5c4f27ead9083c756cc21790556015805460ff1916905560c0604052608090815263213637b160e11b60a052601690620000a8908262000497565b50348015620000b657600080fd5b5060168054620000c69062000409565b80601f0160208091040260200160405190810160405280929190818152602001828054620000f49062000409565b8015620001455780601f10620001195761010080835404028352916020019162000145565b820191906000526020600020905b8154815290600101906020018083116200012757829003601f168201915b505050505060405180604001604052806004815260200163212627a160e11b815250620001816200017b620001f460201b60201c565b620001f8565b60136200018f838262000497565b5060146200019e828262000497565b50736bc42c45ae8108cee5205e0ec7757a3e3e88131e9150620001e2905081620001cb6012600a62000678565b620001dc906402540be40062000690565b62000248565b620001ed8162000311565b50620006c0565b3390565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6001600160a01b038216620002a45760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064015b60405180910390fd5b8060126000828254620002b89190620006aa565b90915550506001600160a01b0382166000818152601060209081526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b6200031b62000395565b6001600160a01b038116620003825760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016200029b565b6200038d81620001f8565b50565b505050565b6000546001600160a01b03163314620003f15760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016200029b565b565b634e487b7160e01b600052604160045260246000fd5b600181811c908216806200041e57607f821691505b6020821081036200043f57634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200039057600081815260208120601f850160051c810160208610156200046e5750805b601f850160051c820191505b818110156200048f578281556001016200047a565b505050505050565b81516001600160401b03811115620004b357620004b3620003f3565b620004cb81620004c4845462000409565b8462000445565b602080601f831160018114620005035760008415620004ea5750858301515b600019600386901b1c1916600185901b1785556200048f565b600085815260208120601f198616915b82811015620005345788860151825594840194600190910190840162000513565b5085821015620005535787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b600052601160045260246000fd5b600181815b80851115620005ba5781600019048211156200059e576200059e62000563565b80851615620005ac57918102915b93841c93908002906200057e565b509250929050565b600082620005d35750600162000672565b81620005e25750600062000672565b8160018114620005fb5760028114620006065762000626565b600191505062000672565b60ff8411156200061a576200061a62000563565b50506001821b62000672565b5060208310610133831016604e8410600b84101617156200064b575081810a62000672565b62000657838362000579565b80600019048211156200066e576200066e62000563565b0290505b92915050565b60006200068960ff841683620005c2565b9392505050565b808202811582820484141762000672576200067262000563565b8082018082111562000672576200067262000563565b612a8c80620006d06000396000f3fe608060405234801561001057600080fd5b506004361061023b5760003560e01c806306fdde03146102405780630826c2491461025e578063095ea7b31461027f5780630f2af89a146102a25780630f3d9c9f146102ab57806318160ddd146102b55780631bb3de72146102bd57806323b872dd146102d0578063240d9722146102e3578063242ffb60146102f0578063266398ef14610303578063313ce567146103185780633268cc561461032757806332b9b3ec1461034757806339509351146103675780633962acdc1461037a5780633cd221a21461038d57806342966c68146103a057806342cde4e8146103b35780635a0b8eaa146103bc5780635e00e679146103cf5780636196319a146103e2578063627d4a64146103f55780636c9fd1ab1461040857806370a082311461042b578063715018a614610454578063724e78da1461045c578063741bef1a1461046f578063765304881461048257806378a877511461049557806386cb707c146104a85780638da5cb5b146104bb57806395d89b41146104c35780639810ad19146104cb57806398d5fdca146104de57806399c8d556146104e6578063a2964c76146104ef578063a457c2d714610502578063a9059cbb14610515578063ad5c464814610528578063c0d786551461053b578063c9d6d0f11461054e578063cca0feb614610556578063d7d7442f14610569578063db4c15bb1461057c578063dd62ed3e1461059f578063e3bcccb4146105b2578063f2fde38b146105d5578063fa88dd15146105e8575b600080fd5b6102486105fb565b6040516102559190612530565b60405180910390f35b61027161026c36600461257e565b61068d565b604051908152602001610255565b61029261028d3660046125b7565b6106b0565b6040519015158152602001610255565b61027160065481565b6102b36106c8565b005b601254610271565b6102716102cb36600461257e565b610715565b6102926102de3660046125e1565b610721565b6015546102929060ff1681565b6102b36102fe36600461261d565b610745565b61030b6108fc565b604051610255919061267a565b60405160128152602001610255565b600b5461033a906001600160a01b031681565b604051610255919061268d565b6102716103553660046126a1565b60086020526000908152604090205481565b6102926103753660046125b7565b61095d565b61027161038836600461261d565b61097f565b6102b361039b3660046126a1565b61098d565b6102b36103ae36600461261d565b610a19565b61027160025481565b6102b36103ca3660046126a1565b610a26565b6102b36103dd3660046126a1565b610b6f565b6102b36103f03660046126bc565b610bf5565b6102b36104033660046126a1565b610e4e565b6102926104163660046126a1565b60076020526000908152604090205460ff1681565b6102716104393660046126a1565b6001600160a01b031660009081526010602052604090205490565b6102b3610ed0565b6102b361046a3660046126a1565b610ee4565b60035461033a906001600160a01b031681565b6102b36104903660046125b7565b610f5e565b6102b36104a33660046125b7565b611017565b6102b36104b63660046126a1565b611128565b61033a6111a7565b6102486111b6565b6102b36104d93660046126f6565b6111c5565b61027161120e565b61027160015481565b6102b36104fd3660046126a1565b6112d3565b6102926105103660046125b7565b611351565b6102926105233660046125b7565b6113cc565b600c5461033a906001600160a01b031681565b6102b36105493660046126a1565b6113da565b61030b611454565b6102b361056436600461261d565b6114b4565b6102b361057736600461261d565b611561565b61029261058a3660046126a1565b600f6020526000908152604090205460ff1681565b6102716105ad36600461271a565b6115ed565b6102926105c03660046126a1565b600d6020526000908152604090205460ff1681565b6102b36105e33660046126a1565b611618565b6102b36105f636600461261d565b61168e565b60606013805461060a90612744565b80601f016020809104026020016040519081016040528092919081815260200182805461063690612744565b80156106835780601f1061065857610100808354040283529160200191610683565b820191906000526020600020905b81548152906001019060200180831161066657829003601f168201915b5050505050905090565b60045460009061069d8385612794565b6106a791906127ab565b90505b92915050565b6000336106be818585611738565b5060019392505050565b6106d061185d565b6106d86118bc565b7fbb245b3c380b63918dc25ab2cc2e4b6939c4d58ffd95ea052b685a031e1ad29760065460405161070b91815260200190565b60405180910390a1565b60006106a782846127cd565b60003361072f858285611923565b61073a85858561199d565b506001949350505050565b61074d61185d565b600e5481106107a15760405162461bcd60e51b815260206004820152601b60248201527a11195e081859191c995cdcc81b9bdd081bdb881d1a19481b1a5cdd602a1b60448201526064015b60405180910390fd5b7f75266578664bd6a65bef16e754f4cf0afc254421ed1c3a9dc00b1d030a861828600e82815481106107d5576107d56127e0565b6000918252602090912001546040516107f7916001600160a01b03169061268d565b60405180910390a16000600d6000600e8481548110610818576108186127e0565b6000918252602080832091909101546001600160a01b031683528201929092526040019020805460ff1916911515919091179055600e805461085c906001906127cd565b8154811061086c5761086c6127e0565b600091825260209091200154600e80546001600160a01b039092169183908110610898576108986127e0565b9060005260206000200160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550600e8054806108d7576108d76127f6565b600082815260209020810160001990810180546001600160a01b031916905501905550565b6060600e80548060200260200160405190810160405280929190818152602001828054801561068357602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610936575050505050905090565b6000336106be81858561097083836115ed565b61097a919061280c565b611738565b60006106aa8260015461068d565b61099561185d565b6001600160a01b0381166109bb5760405162461bcd60e51b81526004016107989061281f565b6001600160a01b0381166000908152600f602052604090819020805460ff19166001179055517f71021b4e9e7af0a7b3131c64f5276e235fea88c70746ef20e983c90a29a5d5d390610a0e90839061268d565b60405180910390a150565b610a233382611e02565b50565b610a2e61185d565b6001600160a01b038116610a7a5760405162461bcd60e51b8152602060048201526013602482015272496e76616c696420444558206164647265737360681b6044820152606401610798565b6001600160a01b0381166000908152600d602052604090205460ff1615610ad85760405162461bcd60e51b815260206004820152601260248201527144455820616c72656164792065786973747360701b6044820152606401610798565b6001600160a01b0381166000818152600d6020526040808220805460ff19166001908117909155600e805491820181559092527fbb7b4a454dc3493923482f07822329ed19e8244eff582cc204f8554c3620c3fd90910180546001600160a01b031916909217909155517fc2f45456bde29959c861a365c64021f2f972b9921cb9919d471d41f0d623dd1e90610a0e90839061268d565b610b7761185d565b806001600160a01b038116610b9e5760405162461bcd60e51b81526004016107989061281f565b600c80546001600160a01b0319166001600160a01b0384161790556040517fcf7cf220664acebafdaad98812fb317dbc390b84c927be8eeed75c241888f47a90610be990849061268d565b60405180910390a15050565b610bfd61185d565b6009548210610c405760405162461bcd60e51b815260206004820152600f60248201526e092dcc6dee4e4cac6e84092dcc8caf608b1b6044820152606401610798565b6001600160a01b0381166000908152600a602052604090205460ff161515600114610c7d5760405162461bcd60e51b815260040161079890612848565b806001600160a01b031660098381548110610c9a57610c9a6127e0565b6000918252602090912001546001600160a01b031614610cf15760405162461bcd60e51b815260206004820152601260248201527124b731b7b93932b1ba102932b1b2b4bb32b960711b6044820152606401610798565b7f610adac715a89717fe003da3b979cb3f5850ebb2cc4f74690f55312c41ea047860098381548110610d2557610d256127e0565b600091825260209091200154604051610d47916001600160a01b03169061268d565b60405180910390a160006008600060098581548110610d6857610d686127e0565b60009182526020808320909101546001600160a01b0316835282019290925260400190205560098054610d9d906001906127cd565b81548110610dad57610dad6127e0565b600091825260209091200154600980546001600160a01b039092169184908110610dd957610dd96127e0565b600091825260208083209190910180546001600160a01b0319166001600160a01b039485161790559183168152600a90915260409020805460ff191690556009805480610e2857610e286127f6565b600082815260209020810160001990810180546001600160a01b03191690550190555050565b610e5661185d565b806001600160a01b038116610e7d5760405162461bcd60e51b81526004016107989061281f565b6001600160a01b03821660009081526007602052604090819020805460ff19166001179055517f2afc9bf4f852143c7b9ee2b8a6c9bba82a71ff7b636266fcd9f1a445e4d2f1c990610be990849061268d565b610ed861185d565b610ee26000611f1c565b565b610eec61185d565b806001600160a01b038116610f135760405162461bcd60e51b81526004016107989061281f565b600380546001600160a01b0319166001600160a01b0384161790556040517f54eb04c823b25e8eff183b84bd7f846daa4d9f7381fae7bf17d9e291e5ec552890610be990849061268d565b610f6661185d565b6001600160a01b0382166000908152600a602052604090205460ff161515600114610fa35760405162461bcd60e51b815260040161079890612848565b6001600160a01b0382166000818152600860209081526040918290205482519384529083015281018290527f936d185c5ac456512843ccdffabb612cf93b3903b5af2bb756b801e26e1173949060600160405180910390a16001600160a01b03909116600090815260086020526040902055565b61101f61185d565b6001600160a01b0382166000908152600a602052604090205460ff16156110825760405162461bcd60e51b8152602060048201526017602482015276526563656976657220616c72656164792065786973747360481b6044820152606401610798565b6001600160a01b0382166000818152600860209081526040808320859055600a909152808220805460ff191660019081179091556009805491820181559092527f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af90910180546001600160a01b031916909217909155517faddc9d8968f66f007936ddf6497c514d4e244d74ccdb4504ea358d4e67ae03d390610be99084908490612879565b61113061185d565b806001600160a01b0381166111575760405162461bcd60e51b81526004016107989061281f565b6001600160a01b03821660009081526007602052604090819020805460ff19169055517fcb66457a076516cfc8b33c9d77f2e20c63d041b779efcf27986b8f6f47d5d3b590610be990849061268d565b6000546001600160a01b031690565b60606014805461060a90612744565b6111cd61185d565b6015805460ff19168215159081179091556040519081527f6bef9c6f963c40ab088c9b52e659523ed119a3b46b1ca7a48be471ac103923dc90602001610a0e565b600080600360009054906101000a90046001600160a01b03166001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa158015611264573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061128891906128a9565b505050915050600081136112ce5760405162461bcd60e51b815260206004820152600d60248201526c496e76616c696420707269636560981b6044820152606401610798565b919050565b6112db61185d565b6001600160a01b0381166113015760405162461bcd60e51b81526004016107989061281f565b6001600160a01b0381166000908152600f602052604090819020805460ff19169055517fe897153f65370a351f6b9ea8485960ad92a745a77434bb836242bcc7f4b2ea0690610a0e90839061268d565b6000338161135f82866115ed565b9050838110156113bf5760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152608401610798565b61073a8286868403611738565b6000336106be81858561199d565b6113e261185d565b806001600160a01b0381166114095760405162461bcd60e51b81526004016107989061281f565b600b80546001600160a01b0319166001600160a01b0384161790556040517feb81878967dea025ef4859fd7b8b4555ee3c73cae8a039057296d25a53eaa9b690610be990849061268d565b60606009805480602002602001604051908101604052809291908181526020018280548015610683576020028201919060005260206000209081546001600160a01b03168152600190910190602001808311610936575050505050905090565b6114bc61185d565b678ac7230489e800008111156115205760405162461bcd60e51b815260206004820152602360248201527f5461782073686f756c64206e6f742062652067726561746572207468616e203160448201526230202560e81b6064820152608401610798565b60015460408051918252602082018390527f7240b53819d9ad591da2c6d5cc4317bfb99daeaa5deb5d86e5266b4ddda730f4910160405180910390a1600155565b61156961185d565b600081116115b85760405162461bcd60e51b815260206004820152601c60248201527b056616c7565206d7573742062652067726561746572207468616e20360241b6044820152606401610798565b60028190556040518181527fcfbc3e24bcdbf875f7af2b101605919fdbd3cb0b217ae54c372ae49417c58d0190602001610a0e565b6001600160a01b03918216600090815260116020908152604080832093909416825291909152205490565b61162061185d565b6001600160a01b0381166116855760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610798565b610a2381611f1c565b61169661185d565b6103e881101580156116ab5750620f42408111155b6117035760405162461bcd60e51b815260206004820152602360248201527f736c697070616765206d757374206265206265747765656e20302e3120746f2060448201526203130360ec1b6064820152608401610798565b60058190556040518181527fe06298c255d871383ae325e642520d223d18e37a0d7ef5037ade4b3d7ec6ab8f90602001610a0e565b6001600160a01b03831661179a5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610798565b6001600160a01b0382166117fb5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610798565b6001600160a01b0383811660008181526011602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b336118666111a7565b6001600160a01b031614610ee25760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610798565b6118c4611f6c565b61191b5760405162461bcd60e51b815260206004820152602260248201527f546f74616c207461782070657263656e746167652073686f756c642062652031604482015261030360f41b6064820152608401610798565b610ee2611fe2565b600061192f84846115ed565b90506000198114611997578181101561198a5760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152606401610798565b6119978484848403611738565b50505050565b6001600160a01b038316611a015760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610798565b6001600160a01b038216611a635760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610798565b6001600160a01b03831660009081526010602052604090205481811015611adb5760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608401610798565b6001600160a01b0384166000908152600d602052604090205460ff1680611b1a57506001600160a01b0383166000908152600d602052604090205460ff165b8015611b3f5750611b296111a7565b6001600160a01b0316846001600160a01b031614155b8015611b6457506001600160a01b0384166000908152600f602052604090205460ff16155b8015611bad57506001600160a01b03841660009081526007602052604090205460ff16158015611bad57506001600160a01b03831660009081526007602052604090205460ff16155b15611c3d576000611bbd8361097f565b90506000611bcb8483610715565b90508160066000828254611bdf919061280c565b90915550503060009081526010602052604081208054849290611c0390849061280c565b90915550506001600160a01b03851660009081526010602052604081208054839290611c3090849061280c565b90915550611daf92505050565b6001600160a01b03831660009081526010602052604081208054849290611c6590849061280c565b909155505060155460ff168015611c7e57506000600654115b15611daf576040805160028082526060820183526000926020830190803683370190505090503081600081518110611cb857611cb86127e0565b6001600160a01b039283166020918202929092010152600c54825191169082906001908110611ce957611ce96127e0565b6001600160a01b039283166020918202929092010152600b5460065460405163d06ca61f60e01b8152600093929092169163d06ca61f91611d2e91869060040161290f565b600060405180830381865afa158015611d4b573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d739190810190612930565b90506002548160018351611d8791906127cd565b81518110611d9757611d976127e0565b602002602001015110611dac57611dac6118bc565b50505b611db982826127cd565b6001600160a01b038581166000818152601060209081526040918290209490945551858152918616929091600080516020612a60833981519152910160405180910390a3611997565b6001600160a01b038216611e625760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608401610798565b6001600160a01b03821660009081526010602052604090205481811015611ed65760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608401610798565b6001600160a01b0383166000818152601060209081526040808320868603905560128054879003905551858152919291600080516020612a608339815191529101611850565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080805b600954811015611fd857600060098281548110611f9057611f906127e0565b60009182526020808320909101546001600160a01b03168083526008909152604090912054909150611fc2908461280c565b9250508080611fd0906129ed565b915050611f71565b5060045414919050565b60005b60095481101561208d57600060098281548110612004576120046127e0565b60009182526020808320909101546006546001600160a01b03909116808452600890925260408320549193506120399161068d565b600c5460055491925060009161205a916001600160a01b0316908490612095565b600c549091506120779030906001600160a01b0316848685612201565b5050508080612085906129ed565b915050611fe5565b506000600655565b6040805160028082526060820183526000928392919060208301908036833701905050905030816000815181106120ce576120ce6127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250508481600181518110612102576121026127e0565b6001600160a01b039283166020918202929092010152600b5460405163d06ca61f60e01b8152600092919091169063d06ca61f90612146908890869060040161290f565b600060405180830381865afa158015612163573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261218b9190810190612930565b90506000816001835161219e91906127cd565b815181106121ae576121ae6127e0565b602002602001015190506121ec6121e46121c58390565b6121e760646121da8a655af3107a4000612794565b6121e491906127ab565b90565b612470565b6121f690826127cd565b979650505050505050565b600b5460405163095ea7b360e01b81526001600160a01b038781169263095ea7b39261223592909116908790600401612879565b6020604051808303816000875af1158015612254573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906122789190612a06565b50600c546060906001600160a01b038781169116148015906122a85750600c546001600160a01b03868116911614155b1561236c5760408051600380825260808201909252906020820160608036833701905050905085816000815181106122e2576122e26127e0565b6001600160a01b039283166020918202929092010152600c54825191169082906001908110612313576123136127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250508481600281518110612347576123476127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250506123f5565b604080516002808252606082018352909160208301908036833701905050905085816000815181106123a0576123a06127e0565b60200260200101906001600160a01b031690816001600160a01b03168152505084816001815181106123d4576123d46127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250505b600b546001600160a01b0316635c11d795858484876124164261025861280c565b6040518663ffffffff1660e01b8152600401612436959493929190612a23565b600060405180830381600087803b15801561245057600080fd5b505af1158015612464573d6000803e3d6000fd5b50505050505050505050565b60006106a76121e4848460008080600019848609848602925082811083820303915050806000036124ae5750670de0b6b3a7640000900490506106aa565b670de0b6b3a764000081106124e057604051635173648d60e01b81526004810186905260248101859052604401610798565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600060208083528351808285015260005b8181101561255d57858101830151858201604001528201612541565b506000604082860101526040601f19601f8301168501019250505092915050565b6000806040838503121561259157600080fd5b50508035926020909101359150565b80356001600160a01b03811681146112ce57600080fd5b600080604083850312156125ca57600080fd5b6125d3836125a0565b946020939093013593505050565b6000806000606084860312156125f657600080fd5b6125ff846125a0565b925061260d602085016125a0565b9150604084013590509250925092565b60006020828403121561262f57600080fd5b5035919050565b600081518084526020808501945080840160005b8381101561266f5781516001600160a01b03168752958201959082019060010161264a565b509495945050505050565b6020815260006106a76020830184612636565b6001600160a01b0391909116815260200190565b6000602082840312156126b357600080fd5b6106a7826125a0565b600080604083850312156126cf57600080fd5b823591506126df602084016125a0565b90509250929050565b8015158114610a2357600080fd5b60006020828403121561270857600080fd5b8135612713816126e8565b9392505050565b6000806040838503121561272d57600080fd5b612736836125a0565b91506126df602084016125a0565b600181811c9082168061275857607f821691505b60208210810361277857634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176106aa576106aa61277e565b6000826127c857634e487b7160e01b600052601260045260246000fd5b500490565b818103818111156106aa576106aa61277e565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052603160045260246000fd5b808201808211156106aa576106aa61277e565b6020808252600f908201526e496e76616c6964206164647265737360881b604082015260600190565b602080825260179082015276526563656976657220646f65736e27742065786973747360481b604082015260600190565b6001600160a01b03929092168252602082015260400190565b80516001600160501b03811681146112ce57600080fd5b600080600080600060a086880312156128c157600080fd5b6128ca86612892565b94506020860151935060408601519250606086015191506128ed60808701612892565b90509295509295909350565b634e487b7160e01b600052604160045260246000fd5b8281526040602082015260006129286040830184612636565b949350505050565b6000602080838503121561294357600080fd5b82516001600160401b038082111561295a57600080fd5b818501915085601f83011261296e57600080fd5b815181811115612980576129806128f9565b8060051b604051601f19603f830116810181811085821117156129a5576129a56128f9565b6040529182528482019250838101850191888311156129c357600080fd5b938501935b828510156129e1578451845293850193928501926129c8565b98975050505050505050565b6000600182016129ff576129ff61277e565b5060010190565b600060208284031215612a1857600080fd5b8151612713816126e8565b85815284602082015260a060408201526000612a4260a0830186612636565b6001600160a01b039490941660608301525060800152939250505056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa164736f6c6343000813000a
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061023b5760003560e01c806306fdde03146102405780630826c2491461025e578063095ea7b31461027f5780630f2af89a146102a25780630f3d9c9f146102ab57806318160ddd146102b55780631bb3de72146102bd57806323b872dd146102d0578063240d9722146102e3578063242ffb60146102f0578063266398ef14610303578063313ce567146103185780633268cc561461032757806332b9b3ec1461034757806339509351146103675780633962acdc1461037a5780633cd221a21461038d57806342966c68146103a057806342cde4e8146103b35780635a0b8eaa146103bc5780635e00e679146103cf5780636196319a146103e2578063627d4a64146103f55780636c9fd1ab1461040857806370a082311461042b578063715018a614610454578063724e78da1461045c578063741bef1a1461046f578063765304881461048257806378a877511461049557806386cb707c146104a85780638da5cb5b146104bb57806395d89b41146104c35780639810ad19146104cb57806398d5fdca146104de57806399c8d556146104e6578063a2964c76146104ef578063a457c2d714610502578063a9059cbb14610515578063ad5c464814610528578063c0d786551461053b578063c9d6d0f11461054e578063cca0feb614610556578063d7d7442f14610569578063db4c15bb1461057c578063dd62ed3e1461059f578063e3bcccb4146105b2578063f2fde38b146105d5578063fa88dd15146105e8575b600080fd5b6102486105fb565b6040516102559190612530565b60405180910390f35b61027161026c36600461257e565b61068d565b604051908152602001610255565b61029261028d3660046125b7565b6106b0565b6040519015158152602001610255565b61027160065481565b6102b36106c8565b005b601254610271565b6102716102cb36600461257e565b610715565b6102926102de3660046125e1565b610721565b6015546102929060ff1681565b6102b36102fe36600461261d565b610745565b61030b6108fc565b604051610255919061267a565b60405160128152602001610255565b600b5461033a906001600160a01b031681565b604051610255919061268d565b6102716103553660046126a1565b60086020526000908152604090205481565b6102926103753660046125b7565b61095d565b61027161038836600461261d565b61097f565b6102b361039b3660046126a1565b61098d565b6102b36103ae36600461261d565b610a19565b61027160025481565b6102b36103ca3660046126a1565b610a26565b6102b36103dd3660046126a1565b610b6f565b6102b36103f03660046126bc565b610bf5565b6102b36104033660046126a1565b610e4e565b6102926104163660046126a1565b60076020526000908152604090205460ff1681565b6102716104393660046126a1565b6001600160a01b031660009081526010602052604090205490565b6102b3610ed0565b6102b361046a3660046126a1565b610ee4565b60035461033a906001600160a01b031681565b6102b36104903660046125b7565b610f5e565b6102b36104a33660046125b7565b611017565b6102b36104b63660046126a1565b611128565b61033a6111a7565b6102486111b6565b6102b36104d93660046126f6565b6111c5565b61027161120e565b61027160015481565b6102b36104fd3660046126a1565b6112d3565b6102926105103660046125b7565b611351565b6102926105233660046125b7565b6113cc565b600c5461033a906001600160a01b031681565b6102b36105493660046126a1565b6113da565b61030b611454565b6102b361056436600461261d565b6114b4565b6102b361057736600461261d565b611561565b61029261058a3660046126a1565b600f6020526000908152604090205460ff1681565b6102716105ad36600461271a565b6115ed565b6102926105c03660046126a1565b600d6020526000908152604090205460ff1681565b6102b36105e33660046126a1565b611618565b6102b36105f636600461261d565b61168e565b60606013805461060a90612744565b80601f016020809104026020016040519081016040528092919081815260200182805461063690612744565b80156106835780601f1061065857610100808354040283529160200191610683565b820191906000526020600020905b81548152906001019060200180831161066657829003601f168201915b5050505050905090565b60045460009061069d8385612794565b6106a791906127ab565b90505b92915050565b6000336106be818585611738565b5060019392505050565b6106d061185d565b6106d86118bc565b7fbb245b3c380b63918dc25ab2cc2e4b6939c4d58ffd95ea052b685a031e1ad29760065460405161070b91815260200190565b60405180910390a1565b60006106a782846127cd565b60003361072f858285611923565b61073a85858561199d565b506001949350505050565b61074d61185d565b600e5481106107a15760405162461bcd60e51b815260206004820152601b60248201527a11195e081859191c995cdcc81b9bdd081bdb881d1a19481b1a5cdd602a1b60448201526064015b60405180910390fd5b7f75266578664bd6a65bef16e754f4cf0afc254421ed1c3a9dc00b1d030a861828600e82815481106107d5576107d56127e0565b6000918252602090912001546040516107f7916001600160a01b03169061268d565b60405180910390a16000600d6000600e8481548110610818576108186127e0565b6000918252602080832091909101546001600160a01b031683528201929092526040019020805460ff1916911515919091179055600e805461085c906001906127cd565b8154811061086c5761086c6127e0565b600091825260209091200154600e80546001600160a01b039092169183908110610898576108986127e0565b9060005260206000200160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550600e8054806108d7576108d76127f6565b600082815260209020810160001990810180546001600160a01b031916905501905550565b6060600e80548060200260200160405190810160405280929190818152602001828054801561068357602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610936575050505050905090565b6000336106be81858561097083836115ed565b61097a919061280c565b611738565b60006106aa8260015461068d565b61099561185d565b6001600160a01b0381166109bb5760405162461bcd60e51b81526004016107989061281f565b6001600160a01b0381166000908152600f602052604090819020805460ff19166001179055517f71021b4e9e7af0a7b3131c64f5276e235fea88c70746ef20e983c90a29a5d5d390610a0e90839061268d565b60405180910390a150565b610a233382611e02565b50565b610a2e61185d565b6001600160a01b038116610a7a5760405162461bcd60e51b8152602060048201526013602482015272496e76616c696420444558206164647265737360681b6044820152606401610798565b6001600160a01b0381166000908152600d602052604090205460ff1615610ad85760405162461bcd60e51b815260206004820152601260248201527144455820616c72656164792065786973747360701b6044820152606401610798565b6001600160a01b0381166000818152600d6020526040808220805460ff19166001908117909155600e805491820181559092527fbb7b4a454dc3493923482f07822329ed19e8244eff582cc204f8554c3620c3fd90910180546001600160a01b031916909217909155517fc2f45456bde29959c861a365c64021f2f972b9921cb9919d471d41f0d623dd1e90610a0e90839061268d565b610b7761185d565b806001600160a01b038116610b9e5760405162461bcd60e51b81526004016107989061281f565b600c80546001600160a01b0319166001600160a01b0384161790556040517fcf7cf220664acebafdaad98812fb317dbc390b84c927be8eeed75c241888f47a90610be990849061268d565b60405180910390a15050565b610bfd61185d565b6009548210610c405760405162461bcd60e51b815260206004820152600f60248201526e092dcc6dee4e4cac6e84092dcc8caf608b1b6044820152606401610798565b6001600160a01b0381166000908152600a602052604090205460ff161515600114610c7d5760405162461bcd60e51b815260040161079890612848565b806001600160a01b031660098381548110610c9a57610c9a6127e0565b6000918252602090912001546001600160a01b031614610cf15760405162461bcd60e51b815260206004820152601260248201527124b731b7b93932b1ba102932b1b2b4bb32b960711b6044820152606401610798565b7f610adac715a89717fe003da3b979cb3f5850ebb2cc4f74690f55312c41ea047860098381548110610d2557610d256127e0565b600091825260209091200154604051610d47916001600160a01b03169061268d565b60405180910390a160006008600060098581548110610d6857610d686127e0565b60009182526020808320909101546001600160a01b0316835282019290925260400190205560098054610d9d906001906127cd565b81548110610dad57610dad6127e0565b600091825260209091200154600980546001600160a01b039092169184908110610dd957610dd96127e0565b600091825260208083209190910180546001600160a01b0319166001600160a01b039485161790559183168152600a90915260409020805460ff191690556009805480610e2857610e286127f6565b600082815260209020810160001990810180546001600160a01b03191690550190555050565b610e5661185d565b806001600160a01b038116610e7d5760405162461bcd60e51b81526004016107989061281f565b6001600160a01b03821660009081526007602052604090819020805460ff19166001179055517f2afc9bf4f852143c7b9ee2b8a6c9bba82a71ff7b636266fcd9f1a445e4d2f1c990610be990849061268d565b610ed861185d565b610ee26000611f1c565b565b610eec61185d565b806001600160a01b038116610f135760405162461bcd60e51b81526004016107989061281f565b600380546001600160a01b0319166001600160a01b0384161790556040517f54eb04c823b25e8eff183b84bd7f846daa4d9f7381fae7bf17d9e291e5ec552890610be990849061268d565b610f6661185d565b6001600160a01b0382166000908152600a602052604090205460ff161515600114610fa35760405162461bcd60e51b815260040161079890612848565b6001600160a01b0382166000818152600860209081526040918290205482519384529083015281018290527f936d185c5ac456512843ccdffabb612cf93b3903b5af2bb756b801e26e1173949060600160405180910390a16001600160a01b03909116600090815260086020526040902055565b61101f61185d565b6001600160a01b0382166000908152600a602052604090205460ff16156110825760405162461bcd60e51b8152602060048201526017602482015276526563656976657220616c72656164792065786973747360481b6044820152606401610798565b6001600160a01b0382166000818152600860209081526040808320859055600a909152808220805460ff191660019081179091556009805491820181559092527f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af90910180546001600160a01b031916909217909155517faddc9d8968f66f007936ddf6497c514d4e244d74ccdb4504ea358d4e67ae03d390610be99084908490612879565b61113061185d565b806001600160a01b0381166111575760405162461bcd60e51b81526004016107989061281f565b6001600160a01b03821660009081526007602052604090819020805460ff19169055517fcb66457a076516cfc8b33c9d77f2e20c63d041b779efcf27986b8f6f47d5d3b590610be990849061268d565b6000546001600160a01b031690565b60606014805461060a90612744565b6111cd61185d565b6015805460ff19168215159081179091556040519081527f6bef9c6f963c40ab088c9b52e659523ed119a3b46b1ca7a48be471ac103923dc90602001610a0e565b600080600360009054906101000a90046001600160a01b03166001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa158015611264573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061128891906128a9565b505050915050600081136112ce5760405162461bcd60e51b815260206004820152600d60248201526c496e76616c696420707269636560981b6044820152606401610798565b919050565b6112db61185d565b6001600160a01b0381166113015760405162461bcd60e51b81526004016107989061281f565b6001600160a01b0381166000908152600f602052604090819020805460ff19169055517fe897153f65370a351f6b9ea8485960ad92a745a77434bb836242bcc7f4b2ea0690610a0e90839061268d565b6000338161135f82866115ed565b9050838110156113bf5760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152608401610798565b61073a8286868403611738565b6000336106be81858561199d565b6113e261185d565b806001600160a01b0381166114095760405162461bcd60e51b81526004016107989061281f565b600b80546001600160a01b0319166001600160a01b0384161790556040517feb81878967dea025ef4859fd7b8b4555ee3c73cae8a039057296d25a53eaa9b690610be990849061268d565b60606009805480602002602001604051908101604052809291908181526020018280548015610683576020028201919060005260206000209081546001600160a01b03168152600190910190602001808311610936575050505050905090565b6114bc61185d565b678ac7230489e800008111156115205760405162461bcd60e51b815260206004820152602360248201527f5461782073686f756c64206e6f742062652067726561746572207468616e203160448201526230202560e81b6064820152608401610798565b60015460408051918252602082018390527f7240b53819d9ad591da2c6d5cc4317bfb99daeaa5deb5d86e5266b4ddda730f4910160405180910390a1600155565b61156961185d565b600081116115b85760405162461bcd60e51b815260206004820152601c60248201527b056616c7565206d7573742062652067726561746572207468616e20360241b6044820152606401610798565b60028190556040518181527fcfbc3e24bcdbf875f7af2b101605919fdbd3cb0b217ae54c372ae49417c58d0190602001610a0e565b6001600160a01b03918216600090815260116020908152604080832093909416825291909152205490565b61162061185d565b6001600160a01b0381166116855760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610798565b610a2381611f1c565b61169661185d565b6103e881101580156116ab5750620f42408111155b6117035760405162461bcd60e51b815260206004820152602360248201527f736c697070616765206d757374206265206265747765656e20302e3120746f2060448201526203130360ec1b6064820152608401610798565b60058190556040518181527fe06298c255d871383ae325e642520d223d18e37a0d7ef5037ade4b3d7ec6ab8f90602001610a0e565b6001600160a01b03831661179a5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610798565b6001600160a01b0382166117fb5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610798565b6001600160a01b0383811660008181526011602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b336118666111a7565b6001600160a01b031614610ee25760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610798565b6118c4611f6c565b61191b5760405162461bcd60e51b815260206004820152602260248201527f546f74616c207461782070657263656e746167652073686f756c642062652031604482015261030360f41b6064820152608401610798565b610ee2611fe2565b600061192f84846115ed565b90506000198114611997578181101561198a5760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152606401610798565b6119978484848403611738565b50505050565b6001600160a01b038316611a015760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610798565b6001600160a01b038216611a635760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610798565b6001600160a01b03831660009081526010602052604090205481811015611adb5760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608401610798565b6001600160a01b0384166000908152600d602052604090205460ff1680611b1a57506001600160a01b0383166000908152600d602052604090205460ff165b8015611b3f5750611b296111a7565b6001600160a01b0316846001600160a01b031614155b8015611b6457506001600160a01b0384166000908152600f602052604090205460ff16155b8015611bad57506001600160a01b03841660009081526007602052604090205460ff16158015611bad57506001600160a01b03831660009081526007602052604090205460ff16155b15611c3d576000611bbd8361097f565b90506000611bcb8483610715565b90508160066000828254611bdf919061280c565b90915550503060009081526010602052604081208054849290611c0390849061280c565b90915550506001600160a01b03851660009081526010602052604081208054839290611c3090849061280c565b90915550611daf92505050565b6001600160a01b03831660009081526010602052604081208054849290611c6590849061280c565b909155505060155460ff168015611c7e57506000600654115b15611daf576040805160028082526060820183526000926020830190803683370190505090503081600081518110611cb857611cb86127e0565b6001600160a01b039283166020918202929092010152600c54825191169082906001908110611ce957611ce96127e0565b6001600160a01b039283166020918202929092010152600b5460065460405163d06ca61f60e01b8152600093929092169163d06ca61f91611d2e91869060040161290f565b600060405180830381865afa158015611d4b573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d739190810190612930565b90506002548160018351611d8791906127cd565b81518110611d9757611d976127e0565b602002602001015110611dac57611dac6118bc565b50505b611db982826127cd565b6001600160a01b038581166000818152601060209081526040918290209490945551858152918616929091600080516020612a60833981519152910160405180910390a3611997565b6001600160a01b038216611e625760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608401610798565b6001600160a01b03821660009081526010602052604090205481811015611ed65760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608401610798565b6001600160a01b0383166000818152601060209081526040808320868603905560128054879003905551858152919291600080516020612a608339815191529101611850565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080805b600954811015611fd857600060098281548110611f9057611f906127e0565b60009182526020808320909101546001600160a01b03168083526008909152604090912054909150611fc2908461280c565b9250508080611fd0906129ed565b915050611f71565b5060045414919050565b60005b60095481101561208d57600060098281548110612004576120046127e0565b60009182526020808320909101546006546001600160a01b03909116808452600890925260408320549193506120399161068d565b600c5460055491925060009161205a916001600160a01b0316908490612095565b600c549091506120779030906001600160a01b0316848685612201565b5050508080612085906129ed565b915050611fe5565b506000600655565b6040805160028082526060820183526000928392919060208301908036833701905050905030816000815181106120ce576120ce6127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250508481600181518110612102576121026127e0565b6001600160a01b039283166020918202929092010152600b5460405163d06ca61f60e01b8152600092919091169063d06ca61f90612146908890869060040161290f565b600060405180830381865afa158015612163573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261218b9190810190612930565b90506000816001835161219e91906127cd565b815181106121ae576121ae6127e0565b602002602001015190506121ec6121e46121c58390565b6121e760646121da8a655af3107a4000612794565b6121e491906127ab565b90565b612470565b6121f690826127cd565b979650505050505050565b600b5460405163095ea7b360e01b81526001600160a01b038781169263095ea7b39261223592909116908790600401612879565b6020604051808303816000875af1158015612254573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906122789190612a06565b50600c546060906001600160a01b038781169116148015906122a85750600c546001600160a01b03868116911614155b1561236c5760408051600380825260808201909252906020820160608036833701905050905085816000815181106122e2576122e26127e0565b6001600160a01b039283166020918202929092010152600c54825191169082906001908110612313576123136127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250508481600281518110612347576123476127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250506123f5565b604080516002808252606082018352909160208301908036833701905050905085816000815181106123a0576123a06127e0565b60200260200101906001600160a01b031690816001600160a01b03168152505084816001815181106123d4576123d46127e0565b60200260200101906001600160a01b031690816001600160a01b0316815250505b600b546001600160a01b0316635c11d795858484876124164261025861280c565b6040518663ffffffff1660e01b8152600401612436959493929190612a23565b600060405180830381600087803b15801561245057600080fd5b505af1158015612464573d6000803e3d6000fd5b50505050505050505050565b60006106a76121e4848460008080600019848609848602925082811083820303915050806000036124ae5750670de0b6b3a7640000900490506106aa565b670de0b6b3a764000081106124e057604051635173648d60e01b81526004810186905260248101859052604401610798565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600060208083528351808285015260005b8181101561255d57858101830151858201604001528201612541565b506000604082860101526040601f19601f8301168501019250505092915050565b6000806040838503121561259157600080fd5b50508035926020909101359150565b80356001600160a01b03811681146112ce57600080fd5b600080604083850312156125ca57600080fd5b6125d3836125a0565b946020939093013593505050565b6000806000606084860312156125f657600080fd5b6125ff846125a0565b925061260d602085016125a0565b9150604084013590509250925092565b60006020828403121561262f57600080fd5b5035919050565b600081518084526020808501945080840160005b8381101561266f5781516001600160a01b03168752958201959082019060010161264a565b509495945050505050565b6020815260006106a76020830184612636565b6001600160a01b0391909116815260200190565b6000602082840312156126b357600080fd5b6106a7826125a0565b600080604083850312156126cf57600080fd5b823591506126df602084016125a0565b90509250929050565b8015158114610a2357600080fd5b60006020828403121561270857600080fd5b8135612713816126e8565b9392505050565b6000806040838503121561272d57600080fd5b612736836125a0565b91506126df602084016125a0565b600181811c9082168061275857607f821691505b60208210810361277857634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176106aa576106aa61277e565b6000826127c857634e487b7160e01b600052601260045260246000fd5b500490565b818103818111156106aa576106aa61277e565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052603160045260246000fd5b808201808211156106aa576106aa61277e565b6020808252600f908201526e496e76616c6964206164647265737360881b604082015260600190565b602080825260179082015276526563656976657220646f65736e27742065786973747360481b604082015260600190565b6001600160a01b03929092168252602082015260400190565b80516001600160501b03811681146112ce57600080fd5b600080600080600060a086880312156128c157600080fd5b6128ca86612892565b94506020860151935060408601519250606086015191506128ed60808701612892565b90509295509295909350565b634e487b7160e01b600052604160045260246000fd5b8281526040602082015260006129286040830184612636565b949350505050565b6000602080838503121561294357600080fd5b82516001600160401b038082111561295a57600080fd5b818501915085601f83011261296e57600080fd5b815181811115612980576129806128f9565b8060051b604051601f19603f830116810181811085821117156129a5576129a56128f9565b6040529182528482019250838101850191888311156129c357600080fd5b938501935b828510156129e1578451845293850193928501926129c8565b98975050505050505050565b6000600182016129ff576129ff61277e565b5060010190565b600060208284031215612a1857600080fd5b8151612713816126e8565b85815284602082015260a060408201526000612a4260a0830186612636565b6001600160a01b039490941660608301525060800152939250505056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa164736f6c6343000813000a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.