Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
globalIndexLibrary
Compiler Version
v0.8.13+commit.abaa5c0e
Optimization Enabled:
Yes with 2000 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "../MembershipManager.sol"; import "../LiquidityPool.sol"; import "forge-std/console.sol"; library globalIndexLibrary { error IntegerOverflow(); /** * @dev This function calculates the global index and adjusted shares for each tier used for reward distribution. * * The function performs the following steps: * 1. Iterates over each tier, computing rebased amounts, tier rewards, weighted tier rewards. * 2. Sums all the tier rewards and the weighted tier rewards. * 3. If there are any weighted tier rewards, it iterates over each tier to perform the following actions: * a. Computes the amounts eligible for rewards. * b. If there are amounts eligible for rewards, * it calculates rescaled tier rewards and updates the global index and adjusted shares for the tier. * * The rescaling of tier rewards is done based on the weight of each tier. * * @notice This function essentially pools all the staking rewards across tiers and redistributes them proportional to the tier weights * @param _membershipManager the address of the membership manager * @param _liquidityPool the address of the liquidity pool * @return globalIndex A uint96 array containing the updated global index for each tier. */ function calculateGlobalIndex(address _membershipManager, address _liquidityPool, uint256 _ethRewardsPerEEthShareBeforeRebase, uint256 _ethRewardsPerEEthShareAfterRebase) public view returns (uint96[] memory) { MembershipManager membershipManager = MembershipManager(payable(_membershipManager)); LiquidityPool liquidityPool = LiquidityPool(payable(_liquidityPool)); bool isLoss = _ethRewardsPerEEthShareAfterRebase < _ethRewardsPerEEthShareBeforeRebase; uint256 ethRewardsAmountPerEEthShare = isLoss ? (_ethRewardsPerEEthShareBeforeRebase - _ethRewardsPerEEthShareAfterRebase) : (_ethRewardsPerEEthShareAfterRebase - _ethRewardsPerEEthShareBeforeRebase); (uint256[] memory tierRewards, uint24[] memory tierWeights) = calculateRewardsPerTierV0(_membershipManager, _liquidityPool, ethRewardsAmountPerEEthShare); uint256[] memory rescaledTierRewards = calculateRescaledTierRewards(tierRewards, tierWeights); uint96[] memory globalIndex = new uint96[](rescaledTierRewards.length); for (uint256 i = 0; i < rescaledTierRewards.length; i++) { (uint128 amounts, uint128 shares) = membershipManager.tierDeposits(i); (uint96 rewardsGlobalIndex, uint40 requiredTierPoints, uint24 weight,) = membershipManager.tierData(i); globalIndex[i] = rewardsGlobalIndex; if (shares > 0) { uint256 delta = 1 ether * rescaledTierRewards[i] / shares; if (uint256(rewardsGlobalIndex) + uint256(delta) > type(uint96).max) revert IntegerOverflow(); if (isLoss) { globalIndex[i] -= uint96(delta); } else { globalIndex[i] += uint96(delta); } } } return (globalIndex); } function calculateRewardsPerTierV0(address _membershipManager, address _liquidityPool, uint256 _ethRewardsAmountPerEEthShare) public view returns (uint256[] memory, uint24[] memory) { MembershipManager membershipManager = MembershipManager(payable(_membershipManager)); LiquidityPool liquidityPool = LiquidityPool(payable(_liquidityPool)); uint256 numberOfTiers = membershipManager.numberOfTiers(); uint256[] memory tierRewards = new uint256[](numberOfTiers); uint24[] memory tierWeights = new uint24[](numberOfTiers); for (uint256 i = 0; i < numberOfTiers; i++) { (uint128 amounts, uint128 shares) = membershipManager.tierDeposits(i); (uint96 rewardsGlobalIndex, uint40 requiredTierPoints, uint24 weight,) = membershipManager.tierData(i); tierRewards[i] = _ethRewardsAmountPerEEthShare * shares / 1 ether; tierWeights[i] = weight; } return (tierRewards, tierWeights); } // Compute `rescaledTierRewards` for each tier from `tierRewards` and `weight` function calculateRescaledTierRewards(uint256[] memory tierRewards, uint24[] memory tierWeights) public pure returns (uint256[] memory) { uint256[] memory weightedTierRewards = new uint256[](tierRewards.length); uint256[] memory rescaledTierRewards = new uint256[](tierRewards.length); uint256 sumTierRewards = 0; uint256 sumWeightedTierRewards = 0; for (uint256 i = 0; i < tierRewards.length; i++) { weightedTierRewards[i] = tierWeights[i] * tierRewards[i]; sumTierRewards += tierRewards[i]; sumWeightedTierRewards += weightedTierRewards[i]; } if (sumWeightedTierRewards > 0) { for (uint256 i = 0; i < tierRewards.length; i++) { rescaledTierRewards[i] = weightedTierRewards[i] * sumTierRewards / sumWeightedTierRewards; } } return rescaledTierRewards; } function calculateRewardsPerTierV1(address _membershipManager, address _liquidityPool, uint256 _ethRewardsAmountPerEEthShare) public view returns (uint256[] memory, uint24[] memory) { MembershipManager membershipManager = MembershipManager(payable(_membershipManager)); LiquidityPool liquidityPool = LiquidityPool(payable(_liquidityPool)); uint256 numberOfTiers = membershipManager.numberOfTiers(); uint256[] memory tierRewards = new uint256[](numberOfTiers); uint24[] memory tierWeights = new uint24[](numberOfTiers); for (uint256 i = 0; i < numberOfTiers; i++) { (uint128 totalPooledEEthShares, uint128 totalVaultShares) = membershipManager.tierVaults(i); (,, uint24 weight,) = membershipManager.tierData(i); tierRewards[i] = _ethRewardsAmountPerEEthShare * totalPooledEEthShares / 1 ether; tierWeights[i] = weight; } return (tierRewards, tierWeights); } // TODO - rewrite it later more efficiently function calculateVaultEEthShares(address _membershipManager, address _liquidityPool, uint256 _ethRewardsPerEEthShareBeforeRebase, uint256 _ethRewardsPerEEthShareAfterRebase) public view returns (uint128[] memory) { MembershipManager membershipManager = MembershipManager(payable(_membershipManager)); LiquidityPool liquidityPool = LiquidityPool(payable(_liquidityPool)); bool isLoss = _ethRewardsPerEEthShareAfterRebase < _ethRewardsPerEEthShareBeforeRebase; uint256 ethRewardsAmountPerEEthShare = isLoss ? (_ethRewardsPerEEthShareBeforeRebase - _ethRewardsPerEEthShareAfterRebase) : (_ethRewardsPerEEthShareAfterRebase - _ethRewardsPerEEthShareBeforeRebase); (uint256[] memory tierRewards, uint24[] memory tierWeights) = calculateRewardsPerTierV1(_membershipManager, _liquidityPool, ethRewardsAmountPerEEthShare); uint256[] memory rescaledTierRewards = calculateRescaledTierRewards(tierRewards, tierWeights); uint128[] memory vaultTotalPooledEEthShares = new uint128[](membershipManager.numberOfTiers()); for (uint256 i = 0; i < vaultTotalPooledEEthShares.length; i++) { (uint128 totalPooledEEthShares, ) = membershipManager.tierVaults(i); uint256 prevEthAmount = _ethRewardsPerEEthShareBeforeRebase * totalPooledEEthShares / 1 ether; uint256 newEthAmount = prevEthAmount; if (isLoss) { newEthAmount -= rescaledTierRewards[i]; } else { newEthAmount += rescaledTierRewards[i]; } vaultTotalPooledEEthShares[i] = uint128(liquidityPool.sharesForAmount(newEthAmount)); } return vaultTotalPooledEEthShares; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "@openzeppelin-upgradeable/contracts/access/OwnableUpgradeable.sol"; import "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol"; import "@openzeppelin-upgradeable/contracts/security/PausableUpgradeable.sol"; import "./interfaces/IeETH.sol"; import "./interfaces/IMembershipManager.sol"; import "./interfaces/IMembershipNFT.sol"; import "./interfaces/ILiquidityPool.sol"; import "./interfaces/IEtherFiAdmin.sol"; import "./libraries/GlobalIndexLibrary.sol"; import "forge-std/console.sol"; contract MembershipManager is Initializable, OwnableUpgradeable, PausableUpgradeable, UUPSUpgradeable, IMembershipManager { //-------------------------------------------------------------------------------------- //--------------------------------- STATE-VARIABLES ---------------------------------- //-------------------------------------------------------------------------------------- IeETH public eETH; ILiquidityPool public liquidityPool; IMembershipNFT public membershipNFT; address public treasury; address public DEPRECATED_protocolRevenueManager; mapping (uint256 => uint256) public allTimeHighDepositAmount; mapping (uint256 => TokenDeposit) public tokenDeposits; mapping (uint256 => TokenData) public tokenData; TierDeposit[] public tierDeposits; TierData[] public tierData; // [BEGIN] SLOT 261 uint16 public pointsBoostFactor; // + (X / 10000) more points, if staking rewards are sacrificed uint16 public pointsGrowthRate; // + (X / 10000) kwei points are earned per ETH per day uint56 public minDepositGwei; uint8 public maxDepositTopUpPercent; uint16 private mintFee; // fee = 0.001 ETH * 'mintFee' uint16 private burnFee; // fee = 0.001 ETH * 'burnFee' uint16 private upgradeFee; // fee = 0.001 ETH * 'upgradeFee' uint8 public DEPRECATED_treasuryFeeSplitPercent; uint8 public DEPRECATED_protocolRevenueFeeSplitPercent; uint32 public topUpCooltimePeriod; uint32 public withdrawalLockBlocks; uint16 private fanBoostThreshold; // = 0.001 ETH * fanBoostThreshold uint16 private burnFeeWaiverPeriodInDays; // [END] SLOT 261 END uint128 public DEPRECATED_sharesReservedForRewards; address public DEPRECATED_admin; mapping(address => bool) public admins; // Phase 2 TierVault[] public tierVaults; IEtherFiAdmin public etherFiAdmin; //-------------------------------------------------------------------------------------- //------------------------------------- EVENTS --------------------------------------- //-------------------------------------------------------------------------------------- event FundsMigrated(address indexed user, uint256 _tokenId, uint256 _amount, uint256 _eapPoints, uint40 _loyaltyPoints, uint40 _tierPoints); event NftUpdated(uint256 _tokenId, uint128 _amount, uint128 _amountSacrificedForBoostingPoints, uint40 _loyaltyPoints, uint40 _tierPoints, uint8 _tier, uint32 _prevTopUpTimestamp, uint96 _share); event NftUnwrappedForEEth(address indexed _user, uint256 indexed _tokenId, uint256 _amountOfEEth, uint40 _loyaltyPoints, uint256 _feeAmount); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } receive() external payable {} //-------------------------------------------------------------------------------------- //---------------------------- STATE-CHANGING FUNCTIONS ------------------------------ //-------------------------------------------------------------------------------------- error Deprecated(); error DisallowZeroAddress(); error WrongVersion(); // To be called for Phase 2 contract upgrade function initializeOnUpgrade(address _etherFiAdminAddress, uint256 _fanBoostThresholdAmount, uint16 _burnFeeWaiverPeriodInDays) external onlyOwner { etherFiAdmin = IEtherFiAdmin(_etherFiAdminAddress); fanBoostThreshold = uint16(_fanBoostThresholdAmount / 0.001 ether); burnFeeWaiverPeriodInDays = _burnFeeWaiverPeriodInDays; while (tierVaults.length < tierData.length) { tierVaults.push(TierVault(0, 0)); } admins[_etherFiAdminAddress] = true; } error InvalidEAPRollover(); /// @notice EarlyAdopterPool users can re-deposit and mint a membership NFT claiming their points & tiers /// @dev The deposit amount must be greater than or equal to what they deposited into the EAP /// @param _amount amount of ETH to earn staking rewards. /// @param _amountForPoints amount of ETH to boost earnings of {loyalty, tier} points /// @param _eapDepositBlockNumber the block number at which the user deposited into the EAP /// @param _snapshotEthAmount exact balance that the user has in the merkle snapshot /// @param _points EAP points that the user has in the merkle snapshot /// @param _merkleProof array of hashes forming the merkle proof for the user function wrapEthForEap( uint256 _amount, uint256 _amountForPoints, uint32 _eapDepositBlockNumber, uint256 _snapshotEthAmount, uint256 _points, bytes32[] calldata _merkleProof ) external payable whenNotPaused returns (uint256) { if (_points == 0 || msg.value < _snapshotEthAmount || msg.value > _snapshotEthAmount * 2 || msg.value != _amount + _amountForPoints) revert InvalidEAPRollover(); membershipNFT.processDepositFromEapUser(msg.sender, _eapDepositBlockNumber, _snapshotEthAmount, _points, _merkleProof); uint40 loyaltyPoints = uint40(_min(_points, type(uint40).max)); uint40 tierPoints = membershipNFT.computeTierPointsForEap(_eapDepositBlockNumber); liquidityPool.deposit{value: msg.value}(msg.sender, address(0)); uint256 tokenId = _mintMembershipNFT(msg.sender, msg.value - _amountForPoints, _amountForPoints, loyaltyPoints, tierPoints); _emitNftUpdateEvent(tokenId); emit FundsMigrated(msg.sender, tokenId, msg.value, _points, loyaltyPoints, tierPoints); return tokenId; } error InvalidDeposit(); error InvalidAllocation(); error InvalidAmount(); error InsufficientBalance(); /// @notice Wraps ETH into a membership NFT. /// @dev This function allows users to wrap their ETH into membership NFT. /// @param _amount amount of ETH to earn staking rewards. /// @param _amountForPoints amount of ETH to boost earnings of {loyalty, tier} points /// @return tokenId The ID of the minted membership NFT. function wrapEth(uint256 _amount, uint256 _amountForPoints, address _referral) public payable whenNotPaused returns (uint256) { uint256 feeAmount = uint256(mintFee) * 0.001 ether; uint256 depositPerNFT = _amount + _amountForPoints; uint256 ethNeededPerNFT = depositPerNFT + feeAmount; if (depositPerNFT / 1 gwei < minDepositGwei || msg.value != ethNeededPerNFT) revert InvalidDeposit(); return _wrapEth(_amount, _amountForPoints, _referral); } function wrapEth(uint256 _amount, uint256 _amountForPoints) external payable whenNotPaused returns (uint256) { return wrapEth(_amount, _amountForPoints, address(0)); } function unwrapForEEthAndBurn(uint256 _tokenId) external whenNotPaused { _requireTokenOwner(_tokenId); // Claim all staking rewards before burn _claimStakingRewards(_tokenId); _migrateFromV0ToV1(_tokenId); uint40 loyaltyPoints = membershipNFT.loyaltyPointsOf(_tokenId); (uint256 totalBalance, uint256 feeAmount) = _withdrawAndBurn(_tokenId); // transfer 'eEthShares' of eETH to the owner eETH.transfer(msg.sender, totalBalance - feeAmount); if (feeAmount > 0) { liquidityPool.withdraw(address(this), feeAmount); } emit NftUnwrappedForEEth(msg.sender, _tokenId, totalBalance - feeAmount, loyaltyPoints, feeAmount); } /// @notice Increase your deposit tied to this NFT within the configured percentage limit. /// @dev Can only be done once per month /// @param _tokenId ID of NFT token /// @param _amount amount of ETH to earn staking rewards. /// @param _amountForPoints amount of ETH to boost earnings of {loyalty, tier} points function topUpDepositWithEth(uint256 _tokenId, uint128 _amount, uint128 _amountForPoints) public payable whenNotPaused { _requireTokenOwner(_tokenId); claim(_tokenId); uint256 additionalDeposit = _topUpDeposit(_tokenId, _amount, _amountForPoints); liquidityPool.deposit{value: additionalDeposit}(msg.sender, address(0)); _emitNftUpdateEvent(_tokenId); } error ExceededMaxWithdrawal(); error InsufficientLiquidity(); error RequireTokenUnlocked(); /// @notice Requests exchange of membership points tokens for ETH. /// @dev decrements the amount of eETH backing the membership NFT and calls requestWithdraw on the liquidity pool /// @param _tokenId The ID of the membership NFT. /// @param _amount The amount of membership tokens to exchange. /// @return uint256 ID of the withdraw request NFT function requestWithdraw(uint256 _tokenId, uint256 _amount) external whenNotPaused returns (uint256) { _requireTokenOwner(_tokenId); // prevent transfers for several blocks after a withdrawal to prevent frontrunning membershipNFT.incrementLock(_tokenId, withdrawalLockBlocks); claim(_tokenId); if (!membershipNFT.isWithdrawable(_tokenId, _amount)) revert ExceededMaxWithdrawal(); uint256 prevAmount = ethAmountForVaultShare(tokenData[_tokenId].tier, tokenData[_tokenId].vaultShare); _updateAllTimeHighDepositOf(_tokenId); _withdraw(_tokenId, _amount); _applyUnwrapPenalty(_tokenId, prevAmount, _amount); // send EETH to recipient before requesting withdraw? eETH.approve(address(liquidityPool), _amount); uint256 withdrawTokenId = liquidityPool.requestMembershipNFTWithdraw(address(msg.sender), _amount, uint64(0)); _emitNftUpdateEvent(_tokenId); return withdrawTokenId; } /// @notice request to withdraw the entire balance of this NFT and burn it /// @dev burns the NFT and calls requestWithdraw on the liquidity pool /// @param _tokenId ID of the membership NFT to liquidate /// @return uint256 ID of the withdraw request NFT function requestWithdrawAndBurn(uint256 _tokenId) external whenNotPaused returns (uint256) { _requireTokenOwner(_tokenId); // Claim all staking rewards before burn _claimStakingRewards(_tokenId); _migrateFromV0ToV1(_tokenId); (uint256 totalBalance, uint256 feeAmount) = _withdrawAndBurn(_tokenId); eETH.approve(address(liquidityPool), totalBalance); uint256 withdrawTokenId = liquidityPool.requestMembershipNFTWithdraw(msg.sender, totalBalance, feeAmount); return withdrawTokenId; } /// @notice Claims {points, staking rewards} and update the tier, if needed. /// @param _tokenId The ID of the membership NFT. /// @dev This function allows users to claim the rewards + a new tier, if eligible. function claim(uint256 _tokenId) public whenNotPaused { _claimPoints(_tokenId); _claimStakingRewards(_tokenId); _migrateFromV0ToV1(_tokenId); uint8 oldTier = tokenData[_tokenId].tier; uint8 newTier = membershipNFT.claimableTier(_tokenId); if (oldTier != newTier) { _claimTier(_tokenId, oldTier, newTier); } _emitNftUpdateEvent(_tokenId); } error InvalidCaller(); function rebase(int128 _accruedRewards) external { if (msg.sender != address(etherFiAdmin)) revert InvalidCaller(); uint256 ethRewardsPerEEthShareBeforeRebase = liquidityPool.amountForShare(1 ether); liquidityPool.rebase(_accruedRewards); uint256 ethRewardsPerEEthShareAfterRebase = liquidityPool.amountForShare(1 ether); // The balance of MembershipManager contract is used to reward ether.fan stakers (not eETH stakers) // Eth Rewards Amount per NFT = (eETH share amount of the NFT) * (total rewards ETH amount) / (total eETH share amount in ether.fan) uint256 etherFanEEthShares = eETH.shares(address(this)); uint256 thresholdAmount = fanBoostThresholdEthAmount(); if (address(this).balance >= thresholdAmount) { uint256 mintedShare = liquidityPool.deposit{value: thresholdAmount}(address(this), address(0)); ethRewardsPerEEthShareAfterRebase += 1 ether * thresholdAmount / etherFanEEthShares; } _distributeStakingRewardsV0(ethRewardsPerEEthShareBeforeRebase, ethRewardsPerEEthShareAfterRebase); _distributeStakingRewardsV1(ethRewardsPerEEthShareBeforeRebase, ethRewardsPerEEthShareAfterRebase); } function claimBatch(uint256[] calldata _tokenIds) public whenNotPaused { for (uint256 i = 0; i < _tokenIds.length; i++) { claim(_tokenIds[i]); } } /// @notice Distributes staking rewards to eligible stakers. /// @dev This function distributes staking rewards to eligible NFTs based on their staked tokens and membership tiers. function _distributeStakingRewardsV0(uint256 _ethRewardsPerEEthShareBeforeRebase, uint256 _ethRewardsPerEEthShareAfterRebase) internal { uint96[] memory globalIndex = globalIndexLibrary.calculateGlobalIndex(address(this), address(liquidityPool), _ethRewardsPerEEthShareBeforeRebase, _ethRewardsPerEEthShareAfterRebase); for (uint256 i = 0; i < tierDeposits.length; i++) { tierDeposits[i].shares = uint128(liquidityPool.sharesForAmount(tierDeposits[i].amounts)); tierData[i].rewardsGlobalIndex = globalIndex[i]; } } function _distributeStakingRewardsV1(uint256 _ethRewardsPerEEthShareBeforeRebase, uint256 _ethRewardsPerEEthShareAfterRebase) internal { uint128[] memory vaultTotalPooledEEthShares = globalIndexLibrary.calculateVaultEEthShares(address(this), address(liquidityPool), _ethRewardsPerEEthShareBeforeRebase, _ethRewardsPerEEthShareAfterRebase); for (uint256 i = 0; i < tierDeposits.length; i++) { tierVaults[i].totalPooledEEthShares = vaultTotalPooledEEthShares[i]; } } error TierLimitExceeded(); function addNewTier(uint40 _requiredTierPoints, uint24 _weight) external { _requireAdmin(); if (tierData.length >= type(uint8).max) revert TierLimitExceeded(); tierData.push(TierData(0, _requiredTierPoints, _weight, 0)); tierVaults.push(TierVault(0, 0)); } error OutOfBound(); function updateTier(uint8 _tier, uint40 _requiredTierPoints, uint24 _weight) external { _requireAdmin(); if (_tier >= tierData.length) revert OutOfBound(); tierData[_tier].requiredTierPoints = _requiredTierPoints; tierData[_tier].weight = _weight; } /// @notice Sets the points for a given Ethereum address. /// @dev This function allows the contract owner to set the points for a specific Ethereum address. /// @param _tokenId The ID of the membership NFT. /// @param _loyaltyPoints The number of loyalty points to set for the specified NFT. /// @param _tierPoints The number of tier points to set for the specified NFT. function setPoints(uint256 _tokenId, uint40 _loyaltyPoints, uint40 _tierPoints) public { _requireAdmin(); _claimStakingRewards(_tokenId); _setPoints(_tokenId, _loyaltyPoints, _tierPoints); _claimTier(_tokenId); _emitNftUpdateEvent(_tokenId); } function updatePointsParams(uint16 _newPointsBoostFactor, uint16 _newPointsGrowthRate) external { _requireAdmin(); pointsBoostFactor = _newPointsBoostFactor; pointsGrowthRate = _newPointsGrowthRate; } /// @dev set how many blocks a token is locked from trading for after withdrawing function setWithdrawalLockBlocks(uint32 _blocks) external { _requireAdmin(); withdrawalLockBlocks = _blocks; } /// @notice Updates minimum valid deposit /// @param _minDepositGwei minimum deposit in wei /// @param _maxDepositTopUpPercent integer percentage value function setDepositAmountParams(uint56 _minDepositGwei, uint8 _maxDepositTopUpPercent) external { _requireAdmin(); minDepositGwei = _minDepositGwei; maxDepositTopUpPercent = _maxDepositTopUpPercent; } /// @notice Updates the time a user must wait between top ups /// @param _newWaitTime the new time to wait between top ups function setTopUpCooltimePeriod(uint32 _newWaitTime) external { _requireAdmin(); topUpCooltimePeriod = _newWaitTime; } function setFeeAmounts(uint256 _mintFeeAmount, uint256 _burnFeeAmount, uint256 _upgradeFeeAmount, uint16 _burnFeeWaiverPeriodInDays) external { _requireAdmin(); _feeAmountSanityCheck(_mintFeeAmount); _feeAmountSanityCheck(_burnFeeAmount); _feeAmountSanityCheck(_upgradeFeeAmount); mintFee = uint16(_mintFeeAmount / 0.001 ether); burnFee = uint16(_burnFeeAmount / 0.001 ether); upgradeFee = uint16(_upgradeFeeAmount / 0.001 ether); burnFeeWaiverPeriodInDays = _burnFeeWaiverPeriodInDays; } function setFanBoostThresholdEthAmount(uint256 _fanBoostThresholdEthAmount) external { _requireAdmin(); fanBoostThreshold = uint16(_fanBoostThresholdEthAmount / 0.001 ether); } /// @notice Updates the address of the admin /// @param _address the new address to set as admin function updateAdmin(address _address, bool _isAdmin) external onlyOwner { admins[_address] = _isAdmin; } //Pauses the contract function pauseContract() external { _requireAdmin(); _pause(); } //Unpauses the contract function unPauseContract() external { _requireAdmin(); _unpause(); } //-------------------------------------------------------------------------------------- //------------------------------- INTERNAL FUNCTIONS -------------------------------- //-------------------------------------------------------------------------------------- error WrongTokenMinted(); /** * @dev Internal function to mint a new membership NFT. * @param _to The address of the recipient of the NFT. * @param _amount The amount of ETH to earn the staking rewards. * @param _amountForPoints The amount of ETH to boost the points earnings. * @param _loyaltyPoints The initial loyalty points for the NFT. * @param _tierPoints The initial tier points for the NFT. * @return tokenId The unique ID of the newly minted NFT. */ function _mintMembershipNFT(address _to, uint256 _amount, uint256 _amountForPoints, uint40 _loyaltyPoints, uint40 _tierPoints) internal returns (uint256) { uint256 tokenId = membershipNFT.nextMintTokenId(); uint8 tier = tierForPoints(_tierPoints); uint8 version = 1; tokenData[tokenId] = TokenData(0, _loyaltyPoints, _tierPoints, uint32(block.timestamp), 0, tier, version); _deposit(tokenId, _amount, _amountForPoints); // Finally, we mint the token! if (tokenId != membershipNFT.mint(_to, 1)) revert WrongTokenMinted(); return tokenId; } function _deposit(uint256 _tokenId, uint256 _amount, uint256 _amountForPoints) internal { if (_amountForPoints != 0) revert Deprecated(); uint8 tier = tokenData[_tokenId].tier; uint256 eEthShare = liquidityPool.sharesForAmount(_amount + _amountForPoints); uint96 vaultShare = uint96(vaultShareForEEthShare(tier, eEthShare)); _incrementTokenVaultShareV1(_tokenId, vaultShare); _incrementTierVaultV1(tier, eEthShare, vaultShare); } function _topUpDeposit(uint256 _tokenId, uint128 _amount, uint128 _amountForPoints) internal returns (uint256) { if (tokenData[_tokenId].version != 1) revert WrongVersion(); // subtract fee from provided ether. Will revert if not enough eth provided uint256 upgradeFeeAmount = uint256(upgradeFee) * 0.001 ether; uint256 additionalDeposit = msg.value - upgradeFeeAmount; if (!canTopUp(_tokenId, additionalDeposit, _amount, _amountForPoints)) revert InvalidDeposit(); TokenData storage token = tokenData[_tokenId]; uint256 totalDeposit = ethAmountForVaultShare(token.tier, token.vaultShare); uint256 maxDepositWithoutPenalty = (totalDeposit * maxDepositTopUpPercent) / 100; _deposit(_tokenId, _amount, _amountForPoints); token.prevTopUpTimestamp = uint32(block.timestamp); // proportionally dilute tier points if over deposit threshold & update the tier if (additionalDeposit > maxDepositWithoutPenalty) { uint256 dilutedPoints = (totalDeposit * token.baseTierPoints) / (additionalDeposit + totalDeposit); token.baseTierPoints = uint40(dilutedPoints); _claimTier(_tokenId); } return additionalDeposit; } function _wrapEth(uint256 _amount, uint256 _amountForPoints, address _referral) internal returns (uint256) { liquidityPool.deposit{value: _amount + _amountForPoints}(msg.sender, _referral); uint256 tokenId = _mintMembershipNFT(msg.sender, _amount, _amountForPoints, 0, 0); _emitNftUpdateEvent(tokenId); return tokenId; } function _withdrawAndBurn(uint256 _tokenId) internal returns (uint256, uint256) { if (tokenData[_tokenId].version != 1) revert WrongVersion(); uint8 tier = tokenData[_tokenId].tier; uint256 vaultShare = tokenData[_tokenId].vaultShare; uint256 ethAmount = ethAmountForVaultShare(tier, vaultShare); uint256 feeAmount = hasMetBurnFeeWaiverPeriod(_tokenId) ? 0 : uint256(burnFee) * 0.001 ether; if (ethAmount < feeAmount) revert InsufficientBalance(); _withdraw(_tokenId, ethAmount); delete tokenData[_tokenId]; membershipNFT.burn(msg.sender, _tokenId, 1); _emitNftUpdateEvent(_tokenId); return (ethAmount, feeAmount); } function _withdraw(uint256 _tokenId, uint256 _amount) internal { if (membershipNFT.valueOf(_tokenId) < _amount) revert InsufficientBalance(); if (tokenData[_tokenId].version != 1) revert WrongVersion(); uint8 tier = tokenData[_tokenId].tier; uint256 vaultShare = vaultShareForEthAmount(tier, _amount); uint256 eEthShare = liquidityPool.sharesForAmount(_amount); _decrementTierVaultV1(tier, eEthShare, vaultShare); _decrementTokenVaultShareV1(_tokenId, vaultShare); } // V0 function _incrementTokenDeposit(uint256 _tokenId, uint256 _amount) internal { TokenDeposit memory deposit = tokenDeposits[_tokenId]; uint128 newAmount = deposit.amounts + uint128(_amount); uint128 newShare = uint128(liquidityPool.sharesForAmount(newAmount)); tokenDeposits[_tokenId] = TokenDeposit( newAmount, newShare ); } function _decrementTokenDeposit(uint256 _tokenId, uint256 _amount) internal { TokenDeposit memory deposit = tokenDeposits[_tokenId]; uint128 newAmount = deposit.amounts - uint128(_amount); uint128 newShare = uint128(liquidityPool.sharesForAmount(newAmount)); tokenDeposits[_tokenId] = TokenDeposit( newAmount, newShare ); } function _incrementTierDeposit(uint256 _tier, uint256 _amount) internal { TierDeposit memory deposit = tierDeposits[_tier]; uint128 newAmount = deposit.amounts + uint128(_amount); uint128 newShare = uint128(liquidityPool.sharesForAmount(newAmount)); tierDeposits[_tier] = TierDeposit( newAmount, newShare ); } function _decrementTierDeposit(uint256 _tier, uint256 _amount) internal { TierDeposit memory deposit = tierDeposits[_tier]; uint128 newAmount = deposit.amounts - uint128(_amount); uint128 newShare = uint128(liquidityPool.sharesForAmount(newAmount)); tierDeposits[_tier] = TierDeposit( newAmount, newShare ); } // V1 function _incrementTokenVaultShareV1(uint256 _tokenId, uint256 _share) internal { tokenData[_tokenId].vaultShare += uint96(_share); } function _decrementTokenVaultShareV1(uint256 _tokenId, uint256 _share) internal { tokenData[_tokenId].vaultShare -= uint96(_share); } function _incrementTierVaultV1(uint8 _tier, uint256 _eEthShare, uint256 _vaultShare) internal { tierVaults[_tier].totalVaultShares += uint128(_vaultShare); tierVaults[_tier].totalPooledEEthShares += uint128(_eEthShare); } function _decrementTierVaultV1(uint8 _tier, uint256 _eEthShare, uint256 _vaultShare) internal { tierVaults[_tier].totalVaultShares -= uint128(_vaultShare); tierVaults[_tier].totalPooledEEthShares -= uint128(_eEthShare); } function _claimTier(uint256 _tokenId) internal { uint8 oldTier = tokenData[_tokenId].tier; uint8 newTier = membershipNFT.claimableTier(_tokenId); _claimTier(_tokenId, oldTier, newTier); } error UnexpectedTier(); function _claimTier(uint256 _tokenId, uint8 _curTier, uint8 _newTier) internal { if (tokenData[_tokenId].tier != _curTier) revert UnexpectedTier(); if (_curTier == _newTier) { return; } uint256 prevVaultShare = tokenData[_tokenId].vaultShare; uint256 eEthShare = eEthShareForVaultShare(_curTier, prevVaultShare); uint256 newVaultShare = vaultShareForEEthShare(_newTier, eEthShare); _decrementTierVaultV1(_curTier, eEthShare, prevVaultShare); _incrementTierVaultV1(_newTier, eEthShare, newVaultShare); tokenData[_tokenId].vaultShare = uint96(newVaultShare); tokenData[_tokenId].tier = _newTier; } /// @notice Claims the accrued membership {loyalty, tier} points. /// @param _tokenId The ID of the membership NFT. function _claimPoints(uint256 _tokenId) internal { TokenData storage token = tokenData[_tokenId]; token.baseLoyaltyPoints = membershipNFT.loyaltyPointsOf(_tokenId); token.baseTierPoints = membershipNFT.tierPointsOf(_tokenId); token.prevPointsAccrualTimestamp = uint32(block.timestamp); } error NotEnoughReservedRewards(); /// @notice Claims the staking rewards for a specific membership NFT. /// @dev This function allows users to claim the staking rewards earned by a specific membership NFT. /// @param _tokenId The ID of the membership NFT. function _claimStakingRewards(uint256 _tokenId) internal { if (tokenData[_tokenId].version != 0) return; TokenData storage token = tokenData[_tokenId]; uint256 tier = token.tier; uint256 amount = membershipNFT.accruedStakingRewardsOf(_tokenId); _incrementTokenDeposit(_tokenId, amount); _incrementTierDeposit(tier, amount); token.vaultShare = tierData[tier].rewardsGlobalIndex; } error NotInV0(); function migrateFromV0ToV1(uint256 _tokenId) public { claim(_tokenId); _migrateFromV0ToV1(_tokenId); } function _migrateFromV0ToV1(uint256 _tokenId) internal { if (tokenData[_tokenId].version != 0) return; uint8 tier = tokenData[_tokenId].tier; uint128 amount = tokenDeposits[_tokenId].amounts; // Remove from V0 _decrementTokenDeposit(_tokenId, amount); _decrementTierDeposit(tier, amount); // Insert Into the Vault uint256 eEthShare = liquidityPool.sharesForAmount(amount); uint96 vaultShare = uint96(vaultShareForEEthShare(tier, eEthShare)); _incrementTierVaultV1(tier, eEthShare, vaultShare); tokenData[_tokenId].vaultShare = vaultShare; tokenData[_tokenId].version = 1; delete tokenDeposits[_tokenId]; } function eEthShareForVaultShare(uint8 _tier, uint256 _vaultShare) public view returns (uint256) { uint256 amount; if (tierVaults[_tier].totalVaultShares == 0) { amount = 0; } else { amount = (_vaultShare * tierVaults[_tier].totalPooledEEthShares) / tierVaults[_tier].totalVaultShares; } return amount; } function vaultShareForEEthShare(uint8 _tier, uint256 _eEthShare) public view returns (uint256) { uint256 vaultShare; if (tierVaults[_tier].totalPooledEEthShares == 0) { vaultShare = _eEthShare; } else { vaultShare = (_eEthShare * tierVaults[_tier].totalVaultShares) / tierVaults[_tier].totalPooledEEthShares; } return vaultShare; } function ethAmountForVaultShare(uint8 _tier, uint256 _vaultShare) public view returns (uint256) { uint256 eEthShare = eEthShareForVaultShare(_tier, _vaultShare); return liquidityPool.amountForShare(eEthShare); } function vaultShareForEthAmount(uint8 _tier, uint256 _ethAmount) public view returns (uint256) { uint256 eEthshare = liquidityPool.sharesForAmount(_ethAmount); return vaultShareForEEthShare(_tier, eEthshare); } function fanBoostThresholdEthAmount() public view returns (uint256) { return uint256(fanBoostThreshold) * 0.001 ether; } function hasMetBurnFeeWaiverPeriod(uint256 _tokenId) public view returns (bool) { uint256 stakingPeriod = membershipNFT.tierPointsOf(_tokenId) / 24; return stakingPeriod >= burnFeeWaiverPeriodInDays; } function _updateAllTimeHighDepositOf(uint256 _tokenId) internal { allTimeHighDepositAmount[_tokenId] = membershipNFT.allTimeHighDepositOf(_tokenId); } error OnlyTokenOwner(); function _requireTokenOwner(uint256 _tokenId) internal view { if (membershipNFT.balanceOfUser(msg.sender, _tokenId) != 1) revert OnlyTokenOwner(); } error OnlyAdmin(); function _requireAdmin() internal view { if (!admins[msg.sender]) revert OnlyAdmin(); } function _feeAmountSanityCheck(uint256 _feeAmount) internal pure { if (_feeAmount % 0.001 ether != 0 || _feeAmount / 0.001 ether > type(uint16).max) revert InvalidAmount(); } error IntegerOverflow(); function _min(uint256 _a, uint256 _b) internal pure returns (uint256) { return (_a > _b) ? _b : _a; } function _max(uint256 _a, uint256 _b) internal pure returns (uint256) { return (_a > _b) ? _a : _b; } /// @notice Applies the unwrap penalty. /// @dev Always lose at least a tier, possibly more depending on percentage of deposit withdrawn /// @param _tokenId The ID of the membership NFT. /// @param _prevAmount The amount of ETH that the NFT was holding /// @param _withdrawalAmount The amount of ETH that is being withdrawn function _applyUnwrapPenalty(uint256 _tokenId, uint256 _prevAmount, uint256 _withdrawalAmount) internal { TokenData storage token = tokenData[_tokenId]; uint8 prevTier = token.tier > 0 ? token.tier - 1 : 0; uint40 curTierPoints = token.baseTierPoints; // point deduction if we kick back to start of previous tier uint40 degradeTierPenalty = curTierPoints - tierData[prevTier].requiredTierPoints; // point deduction if scaled proportional to withdrawal amount uint256 ratio = (10000 * _withdrawalAmount) / _prevAmount; uint40 scaledTierPointsPenalty = uint40((ratio * curTierPoints) / 10000); uint40 penalty = uint40(_max(degradeTierPenalty, scaledTierPointsPenalty)); token.baseTierPoints -= penalty; _claimTier(_tokenId); } function _setPoints(uint256 _tokenId, uint40 _loyaltyPoints, uint40 _tierPoints) internal { TokenData storage token = tokenData[_tokenId]; token.baseLoyaltyPoints = _loyaltyPoints; token.baseTierPoints = _tierPoints; token.prevPointsAccrualTimestamp = uint32(block.timestamp); } function _emitNftUpdateEvent(uint256 _tokenId) internal { uint128 amount = uint128(membershipNFT.valueOf(_tokenId)); TokenData memory token = tokenData[_tokenId]; emit NftUpdated(_tokenId, amount, 0, token.baseLoyaltyPoints, token.baseTierPoints, token.tier, token.prevTopUpTimestamp, token.vaultShare); } // Finds the corresponding for the tier points function tierForPoints(uint40 _tierPoints) public view returns (uint8) { uint8 tierId = 0; while (tierId < tierData.length && _tierPoints >= tierData[tierId].requiredTierPoints) { tierId++; } return tierId - 1; } function canTopUp(uint256 _tokenId, uint256 _totalAmount, uint128 _amount, uint128 _amountForPoints) public view returns (bool) { uint32 prevTopUpTimestamp = tokenData[_tokenId].prevTopUpTimestamp; if (block.timestamp - uint256(prevTopUpTimestamp) < topUpCooltimePeriod) return false; if (_totalAmount != _amount + _amountForPoints) return false; return true; } function numberOfTiers() external view returns (uint8) { return uint8(tierData.length); } function minimumAmountForMint() external view returns (uint256) { return uint256(1 gwei) * minDepositGwei; } function _authorizeUpgrade(address newImplementation) internal override onlyOwner {} //-------------------------------------------------------------------------------------- //-------------------------------------- GETTER -------------------------------------- //-------------------------------------------------------------------------------------- // returns (mintFeeAmount, burnFeeAmount, upgradeFeeAmount) function getFees() external view returns (uint256 mintFeeAmount, uint256 burnFeeAmount, uint256 upgradeFeeAmount) { return (uint256(mintFee) * 0.001 ether, uint256(burnFee) * 0.001 ether, uint256(upgradeFee) * 0.001 ether); } function rewardsGlobalIndex(uint8 _tier) external view returns (uint256) { return tierData[_tier].rewardsGlobalIndex; } function getImplementation() external view returns (address) { return _getImplementation(); } //-------------------------------------------------------------------------------------- //------------------------------------ MODIFIER -------------------------------------- //-------------------------------------------------------------------------------------- }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "@openzeppelin-upgradeable/contracts/token/ERC20/IERC20Upgradeable.sol"; import "@openzeppelin-upgradeable/contracts/token/ERC721/IERC721ReceiverUpgradeable.sol"; import "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol"; import "@openzeppelin-upgradeable/contracts/access/OwnableUpgradeable.sol"; import "./interfaces/IRegulationsManager.sol"; import "./interfaces/IStakingManager.sol"; import "./interfaces/IEtherFiNodesManager.sol"; import "./interfaces/IeETH.sol"; import "./interfaces/IStakingManager.sol"; import "./interfaces/IMembershipManager.sol"; import "./interfaces/ITNFT.sol"; import "./interfaces/IWithdrawRequestNFT.sol"; import "./interfaces/ILiquidityPool.sol"; import "./interfaces/IEtherFiAdmin.sol"; contract LiquidityPool is Initializable, OwnableUpgradeable, UUPSUpgradeable, ILiquidityPool { //-------------------------------------------------------------------------------------- //--------------------------------- STATE-VARIABLES ---------------------------------- //-------------------------------------------------------------------------------------- IStakingManager public stakingManager; IEtherFiNodesManager public nodesManager; IRegulationsManager public DEPRECATED_regulationsManager; IMembershipManager public membershipManager; ITNFT public tNft; IeETH public eETH; bool public DEPRECATED_eEthliquidStakingOpened; uint128 public totalValueOutOfLp; uint128 public totalValueInLp; address public DEPRECATED_admin; uint32 public numPendingDeposits; // number of deposits to the staking manager, which needs 'registerValidator' address public DEPRECATED_bNftTreasury; IWithdrawRequestNFT public withdrawRequestNFT; BnftHolder[] public bnftHolders; uint128 public maxValidatorsPerOwner; uint128 public schedulingPeriodInSeconds; HoldersUpdate public holdersUpdate; mapping(address => bool) public admins; mapping(SourceOfFunds => FundStatistics) public fundStatistics; mapping(uint256 => bytes32) public depositDataRootForApprovalDeposits; address public etherFiAdminContract; bool public whitelistEnabled; mapping(address => bool) public whitelisted; mapping(address => BnftHoldersIndex) public bnftHoldersIndexes; // TODO(Dave): Before we go to mainnet consider packing this with other variables bool public restakeBnftDeposits; uint128 public ethAmountLockedForWithdrawal; bool public paused; //-------------------------------------------------------------------------------------- //------------------------------------- EVENTS --------------------------------------- //-------------------------------------------------------------------------------------- event Paused(address account); event Unpaused(address account); event Deposit(address indexed sender, uint256 amount, SourceOfFunds source, address referral); event Withdraw(address indexed sender, address recipient, uint256 amount, SourceOfFunds source); event UpdatedWhitelist(address userAddress, bool value); event BnftHolderDeregistered(address user, uint256 index); event BnftHolderRegistered(address user, uint256 index); event UpdatedSchedulingPeriod(uint128 newPeriodInSeconds); event ValidatorRegistered(uint256 indexed validatorId, bytes signature, bytes pubKey, bytes32 depositRoot); event ValidatorApproved(uint256 indexed validatorId); event ValidatorRegistrationCanceled(uint256 indexed validatorId); event Rebase(uint256 totalEthLocked, uint256 totalEEthShares); event WhitelistStatusUpdated(bool value); error IncorrectCaller(); error InvalidAmount(); error InvalidParams(); error DataNotSet(); error InsufficientLiquidity(); error SendFail(); //-------------------------------------------------------------------------------------- //---------------------------- STATE-CHANGING FUNCTIONS ------------------------------ //-------------------------------------------------------------------------------------- /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } receive() external payable { if (msg.value > type(uint128).max) revert InvalidAmount(); totalValueOutOfLp -= uint128(msg.value); totalValueInLp += uint128(msg.value); } function initialize(address _eEthAddress, address _stakingManagerAddress, address _nodesManagerAddress, address _membershipManagerAddress, address _tNftAddress) external initializer { if (_eEthAddress == address(0) || _stakingManagerAddress == address(0) || _nodesManagerAddress == address(0) || _membershipManagerAddress == address(0) || _tNftAddress == address(0)) revert DataNotSet(); __Ownable_init(); __UUPSUpgradeable_init(); eETH = IeETH(_eEthAddress); stakingManager = IStakingManager(_stakingManagerAddress); nodesManager = IEtherFiNodesManager(_nodesManagerAddress); membershipManager = IMembershipManager(_membershipManagerAddress); tNft = ITNFT(_tNftAddress); } /// @notice Allows us to set needed variable state in phase 2 /// @dev This data and functions are used to help with our staking router process. This helps us balance the use of funds /// being allocated to deposits. It also means we are able to give permissions to certain operators to run deposits only /// only from specific deposits /// @param _schedulingPeriod the time we want between scheduling periods /// @param _eEthNumVal the number of validators to set for eEth /// @param _etherFanNumVal the number of validators to set for ether fan function initializeOnUpgrade(uint128 _schedulingPeriod, uint32 _eEthNumVal, uint32 _etherFanNumVal, address _etherFiAdminContract, address _withdrawRequestNFT) external onlyOwner { require(_etherFiAdminContract != address(0) && _withdrawRequestNFT != address(0), "No zero addresses"); paused = true; whitelistEnabled = true; restakeBnftDeposits = false; ethAmountLockedForWithdrawal = 0; maxValidatorsPerOwner = 30; //Sets what scheduling period we will start with schedulingPeriodInSeconds = _schedulingPeriod; //Allows us to begin with a predefined number of validators fundStatistics[SourceOfFunds.EETH].numberOfValidators = _eEthNumVal; fundStatistics[SourceOfFunds.ETHER_FAN].numberOfValidators = _etherFanNumVal; etherFiAdminContract = _etherFiAdminContract; withdrawRequestNFT = IWithdrawRequestNFT(_withdrawRequestNFT); admins[_etherFiAdminContract] = true; } // Used by eETH staking flow function deposit() external payable returns (uint256) { return deposit(address(0)); } function deposit(address _referral) public payable whenNotPaused returns (uint256) { require(_isWhitelisted(msg.sender), "Invalid User"); emit Deposit(msg.sender, msg.value, SourceOfFunds.EETH, _referral); return _deposit(); } // Used by ether.fan staking flow function deposit(address _user, address _referral) external payable whenNotPaused returns (uint256) { if (msg.sender != address(membershipManager)) { revert IncorrectCaller(); } require(_user == address(membershipManager) || _isWhitelisted(_user), "Invalid User"); emit Deposit(msg.sender, msg.value, SourceOfFunds.ETHER_FAN, _referral); return _deposit(); } /// @notice withdraw from pool /// @dev Burns user balance from msg.senders account & Sends equal amount of ETH back to the recipient /// @param _recipient the recipient who will receives the ETH /// @param _amount the amount to withdraw from contract /// it returns the amount of shares burned function withdraw(address _recipient, uint256 _amount) external whenNotPaused returns (uint256) { uint256 share = sharesForWithdrawalAmount(_amount); require(msg.sender == address(withdrawRequestNFT) || msg.sender == address(membershipManager), "Incorrect Caller"); if (totalValueInLp < _amount || (msg.sender == address(withdrawRequestNFT) && ethAmountLockedForWithdrawal < _amount) || eETH.balanceOf(msg.sender) < _amount) revert InsufficientLiquidity(); if (_amount > type(uint128).max || _amount == 0 || share == 0) revert InvalidAmount(); totalValueInLp -= uint128(_amount); if (msg.sender == address(withdrawRequestNFT)) { ethAmountLockedForWithdrawal -= uint128(_amount); } eETH.burnShares(msg.sender, share); (bool sent, ) = _recipient.call{value: _amount}(""); if (!sent) revert SendFail(); return share; } /// @notice request withdraw from pool and receive a WithdrawRequestNFT /// @dev Transfers the amount of eETH from msg.senders account to the WithdrawRequestNFT contract & mints an NFT to the msg.sender /// @param recipient address that will be issued the NFT /// @param amount requested amount to withdraw from contract /// @return uint256 requestId of the WithdrawRequestNFT function requestWithdraw(address recipient, uint256 amount) public whenNotPaused returns (uint256) { uint256 share = sharesForAmount(amount); if (amount > type(uint96).max || amount == 0 || share == 0) revert InvalidAmount(); uint256 requestId = withdrawRequestNFT.requestWithdraw(uint96(amount), uint96(share), recipient, 0); // transfer shares to WithdrawRequestNFT contract from this contract eETH.transferFrom(msg.sender, address(withdrawRequestNFT), amount); emit Withdraw(msg.sender, recipient, amount, SourceOfFunds.EETH); return requestId; } /// @notice request withdraw from pool with signed permit data and receive a WithdrawRequestNFT /// @dev accepts PermitInput signed data to approve transfer of eETH (EIP-2612) so withdraw request can happen in 1 tx /// @param _owner address that will be issued the NFT /// @param _amount requested amount to withdraw from contract /// @param _permit signed permit data to approve transfer of eETH /// @return uint256 requestId of the WithdrawRequestNFT function requestWithdrawWithPermit(address _owner, uint256 _amount, PermitInput calldata _permit) external whenNotPaused returns (uint256) { eETH.permit(msg.sender, address(this), _permit.value, _permit.deadline, _permit.v, _permit.r, _permit.s); return requestWithdraw(_owner, _amount); } /// @notice request withdraw of some or all of the eETH backing a MembershipNFT and receive a WithdrawRequestNFT /// @dev Transfers the amount of eETH from MembershipManager to the WithdrawRequestNFT contract & mints an NFT to the recipient /// @param recipient address that will be issued the NFT /// @param amount requested amount to withdraw from contract /// @param fee the burn fee to be paid by the recipient when the withdrawal is claimed (WithdrawRequestNFT.claimWithdraw) /// @return uint256 requestId of the WithdrawRequestNFT function requestMembershipNFTWithdraw(address recipient, uint256 amount, uint256 fee) public whenNotPaused returns (uint256) { if (msg.sender != address(membershipManager)) revert IncorrectCaller(); uint256 share = sharesForAmount(amount); if (amount > type(uint96).max || amount == 0 || share == 0) revert InvalidAmount(); uint256 requestId = withdrawRequestNFT.requestWithdraw(uint96(amount), uint96(share), recipient, fee); // transfer shares to WithdrawRequestNFT contract eETH.transferFrom(msg.sender, address(withdrawRequestNFT), amount); emit Withdraw(msg.sender, recipient, amount, SourceOfFunds.ETHER_FAN); return requestId; } error AboveMaxAllocation(); /// @notice Allows a BNFT player to deposit their 2 ETH and pair with 30 ETH from the LP /// @dev This function has multiple dependencies that need to be followed before this function will succeed. /// @param _candidateBidIds validator IDs that have been matched with the BNFT holder on the FE /// @param _numberOfValidators how many validators the user wants to spin up. This can be less than the candidateBidIds length. /// we may have more Ids sent in than needed to spin up incase some ids fail. /// @return Array of bids that were successfully processed. function batchDepositAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators) external payable whenNotPaused returns (uint256[] memory){ //Checking which indexes form the schedule for the current scheduling period. (uint256 firstIndex, uint128 lastIndex) = dutyForWeek(); uint32 index = bnftHoldersIndexes[msg.sender].index; //Need to make sure the BNFT player is assigned for the current period //See function for details require(isAssigned(firstIndex, lastIndex, index), "Not assigned"); require(bnftHolders[index].timestamp < uint32(getCurrentSchedulingStartTimestamp()), "Already deposited"); require(msg.value == _numberOfValidators * 2 ether, "Deposit 2 ETH per validator"); require(totalValueInLp + msg.value >= 32 ether * _numberOfValidators, "Not enough balance"); //BNFT players are eligible to spin up anything up to the max amount of validators allowed (maxValidatorsPerOwner), if(_numberOfValidators > maxValidatorsPerOwner) revert AboveMaxAllocation(); //Funds in the LP can come from our membership strategy or the eEth staking strategy. We select which source of funds will //be used for spinning up these deposited ids. See the function for more detail on how we do this. SourceOfFunds _source = allocateSourceOfFunds(); fundStatistics[_source].numberOfValidators += uint32(_numberOfValidators); uint256 amountFromLp = 30 ether * _numberOfValidators; if (amountFromLp > type(uint128).max) revert InvalidAmount(); totalValueOutOfLp += uint128(amountFromLp); totalValueInLp -= uint128(amountFromLp); numPendingDeposits += uint32(_numberOfValidators); bnftHolders[index].timestamp = uint32(block.timestamp); //We then call the Staking Manager contract which handles the rest of the logic uint256[] memory newValidators = stakingManager.batchDepositWithBidIds{value: 32 ether * _numberOfValidators}(_candidateBidIds, msg.sender, _source, restakeBnftDeposits); //Sometimes not all the validators get deposited successfully. We need to check if there were remaining IDs that were not successful //and refund the BNFT player their 2 ETH for each ID if (_numberOfValidators > newValidators.length) { uint256 returnAmount = 2 ether * (_numberOfValidators - newValidators.length); totalValueOutOfLp += uint128(returnAmount); totalValueInLp -= uint128(returnAmount); numPendingDeposits -= uint32(_numberOfValidators - newValidators.length); (bool sent, ) = msg.sender.call{value: returnAmount}(""); if (!sent) revert SendFail(); } return newValidators; } /// @notice BNFT players register validators they have deposited. This triggers a 1 ETH transaction to the beacon chain. /// @dev This function can only be called by a BNFT player on IDs that have been deposited. /// @param _depositRoot This is the deposit root of the beacon chain. Can send in 0x00 to bypass this check in future /// @param _validatorIds The ids of the validators to register /// @param _registerValidatorDepositData As in the solo staking flow, the BNFT player must send in a deposit data object (see ILiquidityPool for struct data) /// to register the validators. However, the signature and deposit data root must be for a 1 ETH deposit /// @param _depositDataRootApproval The deposit data roots for each validator for the 31 ETH transaction which will happen in the approval /// step. See the Staking Manager for details. /// @param _signaturesForApprovalDeposit Much like the deposit data root. This is the signature for each validator for the 31 ETH /// transaction which will happen in the approval step. function batchRegisterAsBnftHolder( bytes32 _depositRoot, uint256[] calldata _validatorIds, IStakingManager.DepositData[] calldata _registerValidatorDepositData, bytes32[] calldata _depositDataRootApproval, bytes[] calldata _signaturesForApprovalDeposit ) external whenNotPaused { require(_validatorIds.length == _registerValidatorDepositData.length && _validatorIds.length == _depositDataRootApproval.length && _validatorIds.length == _signaturesForApprovalDeposit.length, "lengths differ"); stakingManager.batchRegisterValidators(_depositRoot, _validatorIds, msg.sender, address(this), _registerValidatorDepositData, msg.sender); //For each validator, we need to store the deposit data root of the 31 ETH transaction so it is accessible in the approve function for(uint256 i; i < _validatorIds.length; i++) { depositDataRootForApprovalDeposits[_validatorIds[i]] = _depositDataRootApproval[i]; emit ValidatorRegistered(_validatorIds[i], _signaturesForApprovalDeposit[i], _registerValidatorDepositData[i].publicKey, _depositDataRootApproval[i]); } } /// @notice Approves validators and triggers the 31 ETH transaction to the beacon chain (rest of the stake). /// @dev This gets called by the Oracle and only when it has confirmed the withdraw credentials of the 1 ETH deposit in the registration /// phase match the withdraw credentials stored on the beacon chain. This prevents a front-running attack. /// @param _validatorIds The IDs of the validators to be approved /// @param _pubKey The pubKey for each validator being spun up. /// @param _signature The signatures for each validator for the 31 ETH transaction that were emitted in the register phase function batchApproveRegistration( uint256[] memory _validatorIds, bytes[] calldata _pubKey, bytes[] calldata _signature ) external onlyAdmin whenNotPaused { require(_validatorIds.length == _pubKey.length && _validatorIds.length == _signature.length, "lengths differ"); //Fetches the deposit data root of each validator and uses it in the approval call to the Staking Manager bytes32[] memory depositDataRootApproval = new bytes32[](_validatorIds.length); for(uint256 i; i < _validatorIds.length; i++) { depositDataRootApproval[i] = depositDataRootForApprovalDeposits[_validatorIds[i]]; delete depositDataRootForApprovalDeposits[_validatorIds[i]]; emit ValidatorApproved(_validatorIds[i]); } numPendingDeposits -= uint32(_validatorIds.length); stakingManager.batchApproveRegistration(_validatorIds, _pubKey, _signature, depositDataRootApproval); } /// @notice Cancels a BNFT players deposits (whether validator is registered or deposited. Just not live on beacon chain) /// @dev This is called only in the BNFT player flow /// @param _validatorIds The IDs to be cancelled function batchCancelDeposit(uint256[] calldata _validatorIds) external whenNotPaused { uint256 returnAmount; //Due to the way we handle our totalValueOutOfLP calculations, we need to update the data before we call the Staking Manager //For this reason, we first need to check which phase each validator is in. Because if a bNFT cancels a validator that has //already been registered, they only receive 1 ETH back because the other 1 ETH is in the beacon chain. Those funds will be lost for (uint256 i = 0; i < _validatorIds.length; i++) { if(nodesManager.phase(_validatorIds[i]) == IEtherFiNode.VALIDATOR_PHASE.WAITING_FOR_APPROVAL) { returnAmount += 1 ether; emit ValidatorRegistrationCanceled(_validatorIds[i]); } else { returnAmount += 2 ether; } } totalValueOutOfLp += uint128(returnAmount); numPendingDeposits -= uint32(_validatorIds.length); stakingManager.batchCancelDepositAsBnftHolder(_validatorIds, msg.sender); totalValueInLp -= uint128(returnAmount); (bool sent, ) = address(msg.sender).call{value: returnAmount}(""); if (!sent) revert SendFail(); } /// @notice The admin can register an address to become a BNFT holder. This adds them to the bnftHolders array /// @dev BNFT players reach out to Etherfi externally and then Etherfi will register them /// @param _user The address of the BNFT player to register function registerAsBnftHolder(address _user) public onlyAdmin { require(!bnftHoldersIndexes[_user].registered, "Already registered"); //We update the holdersUpdate data for help in calculation of the duty for the week. _checkHoldersUpdateStatus(); //We hold the users address and latest deposit timestamp in an object to make sure a user doesnt deposit twice in one scheduling period BnftHolder memory bnftHolder = BnftHolder({ holder: _user, timestamp: 0 }); uint256 index = bnftHolders.length; bnftHolders.push(bnftHolder); bnftHoldersIndexes[_user] = BnftHoldersIndex({ registered: true, index: uint32(index) }); emit BnftHolderRegistered(_user, index); } /// @notice Removes a BNFT player from the bnftHolders array and means they are no longer eligible to be selected /// @dev We allow either the user themselves or admins to remove BNFT players /// @param _bNftHolder Address of the BNFT player to remove function deRegisterBnftHolder(address _bNftHolder) external { require(bnftHoldersIndexes[_bNftHolder].registered, "Not registered"); uint256 index = bnftHoldersIndexes[_bNftHolder].index; require(admins[msg.sender] || msg.sender == bnftHolders[index].holder, "Incorrect Caller"); uint256 endIndex = bnftHolders.length - 1; address endUser = bnftHolders[endIndex].holder; //Swap the end BNFT player with the BNFT player being removed bnftHolders[index] = bnftHolders[endIndex]; bnftHoldersIndexes[endUser].index = uint32(index); //Pop the last user as we have swapped them around bnftHolders.pop(); delete bnftHoldersIndexes[_bNftHolder]; emit BnftHolderDeregistered(_bNftHolder, index); } /// @notice Calculate which BNFT players are currently scheduled and assigned to deposit as a BNFT player. /// We don't hold any data, just have the function return a start and finish index of the selected users in the array. /// When a user deposits, it calls this function and checks if the user depositing fits inside the first and last index returnd /// by this function. The indices can wrap around as well. Lets look at an example of a BNFT array with size 10. /// /// Example: /// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] => firstIndex = 7 /// => lastIndex = 2 /// Therefore: the selected range would be users [7, 8, 9, 0, 1, 2]. We use the isAssigned function to check if the user is in the selected indices. /// /// @return The first index that has been chosen in the array of BNFT holders /// @return The last index that has been chosen in the array of BNFT holders function dutyForWeek() public view returns (uint256, uint128) { // Early termindation if there are no validators to spin up uint32 numValidatorsToSpinUp = IEtherFiAdmin(etherFiAdminContract).numValidatorsToSpinUp(); if(maxValidatorsPerOwner == 0 || numValidatorsToSpinUp == 0 || numValidatorsToSpinUp / maxValidatorsPerOwner == 0) { return (0,0); } // Fetches a random index in the array. We will use this as the start index. uint256 index = _getSlotIndex(); // Get the number of BNFT holders we need to spin up the validators uint128 size = numValidatorsToSpinUp / maxValidatorsPerOwner; // We use this function to fetch what the last index in the selection will be. uint128 lastIndex = _fetchLastIndex(size, index); return (index, lastIndex); } /// @notice Send the exit requests as the T-NFT holder function sendExitRequests(uint256[] calldata _validatorIds) external onlyAdmin { for (uint256 i = 0; i < _validatorIds.length; i++) { uint256 validatorId = _validatorIds[i]; nodesManager.sendExitRequest(validatorId); } } /// @notice Rebase by ether.fi function rebase(int128 _accruedRewards) public { if (msg.sender != address(membershipManager)) revert IncorrectCaller(); totalValueOutOfLp = uint128(int128(totalValueOutOfLp) + _accruedRewards); emit Rebase(getTotalPooledEther(), eETH.totalShares()); } /// @notice Whether or not nodes created via bNFT deposits should be restaked function setRestakeBnftDeposits(bool _restake) external onlyAdmin { restakeBnftDeposits = _restake; } /// @notice Updates the address of the admin /// @param _address the new address to set as admin function updateAdmin(address _address, bool _isAdmin) external onlyOwner { admins[_address] = _isAdmin; } function pauseContract() external onlyAdmin { paused = true; emit Paused(_msgSender()); } function unPauseContract() external onlyAdmin { paused = false; emit Unpaused(_msgSender()); } /// @notice Sets the max number of validators a BNFT can spin up in a given scheduling period /// @param _newSize the number to set it to function setNumValidatorsToSpinUpPerSchedulePerBnftHolder(uint128 _newSize) external onlyAdmin { maxValidatorsPerOwner = _newSize; } /// @notice This sets how many seconds will be in a scheduling period for BNFT players /// @dev This time period gets used in the dutyForWeek function. /// @param _schedulingPeriodInSeconds The number of seconds to set as the new time period function setSchedulingPeriodInSeconds(uint128 _schedulingPeriodInSeconds) external onlyAdmin { schedulingPeriodInSeconds = _schedulingPeriodInSeconds; emit UpdatedSchedulingPeriod(_schedulingPeriodInSeconds); } /// @notice View function to tell other functions how many users are currently eligible for selection /// @dev If no-one has registered in the current scheduling period then we return the length of the array otherwise, /// we return the length of the array before the newly registered BNFT players /// @return numberOfActiveSlots The number of BNFT holders eligible for selection function numberOfActiveSlots() public view returns (uint32 numberOfActiveSlots) { numberOfActiveSlots = uint32(bnftHolders.length); if(holdersUpdate.timestamp > uint32(getCurrentSchedulingStartTimestamp())) { numberOfActiveSlots = holdersUpdate.startOfSlotNumOwners; } } /// @notice Sets our targeted ratio of validators for each of the fund sources /// @dev Fund sources are different ways where the LP receives funds. Currently, there is just through EETH staking and ETHER_FAN (membership manager) /// @param _eEthWeight The target weight for eEth /// @param _etherFanWeight The target weight for EtherFan function setStakingTargetWeights(uint32 _eEthWeight, uint32 _etherFanWeight) external onlyAdmin { if (_eEthWeight + _etherFanWeight != 100) revert InvalidParams(); fundStatistics[SourceOfFunds.EETH].targetWeight = _eEthWeight; fundStatistics[SourceOfFunds.ETHER_FAN].targetWeight = _etherFanWeight; } function updateWhitelistedAddresses(address[] calldata _users, bool _value) external onlyAdmin { for (uint256 i = 0; i < _users.length; i++) { whitelisted[_users[i]] = _value; emit UpdatedWhitelist(_users[i], _value); } } function updateWhitelistStatus(bool _value) external onlyAdmin { whitelistEnabled = _value; emit WhitelistStatusUpdated(_value); } /// @notice Decreases the number of validators for a certain source of fund /// @dev When a user deposits, we increment the number of validators in the allocated source object. However, when a BNFT player cancels /// their deposits, we need to decrease this again. /// @param numberOfEethValidators How many eEth validators to decrease /// @param numberOfEtherFanValidators How many etherFan validators to decrease function decreaseSourceOfFundsValidators(uint32 numberOfEethValidators, uint32 numberOfEtherFanValidators) external { if (msg.sender != address(stakingManager)) revert IncorrectCaller(); fundStatistics[SourceOfFunds.EETH].numberOfValidators -= numberOfEethValidators; fundStatistics[SourceOfFunds.ETHER_FAN].numberOfValidators -= numberOfEtherFanValidators; } function addEthAmountLockedForWithdrawal(uint128 _amount) external { if (msg.sender != address(etherFiAdminContract)) revert IncorrectCaller(); ethAmountLockedForWithdrawal += _amount; } //-------------------------------------------------------------------------------------- //------------------------------ INTERNAL FUNCTIONS ---------------------------------- //-------------------------------------------------------------------------------------- function _deposit() internal returns (uint256) { totalValueInLp += uint128(msg.value); uint256 share = _sharesForDepositAmount(msg.value); if (msg.value > type(uint128).max || msg.value == 0 || share == 0) revert InvalidAmount(); eETH.mintShares(msg.sender, share); return share; } /// @notice We use this to update our holders struct. This stores how many BNFT players are currently eligible to be selected. /// For example, if a BNFT holder has just registered, they are not eligible for selection until the next scheduling period starts. /// @dev This struct helps us keep dutyForWeek stateless. It keeps track of the timestamp which is used in numberOfActiveSlots. function _checkHoldersUpdateStatus() internal { if(holdersUpdate.timestamp < uint32(getCurrentSchedulingStartTimestamp())) { holdersUpdate.startOfSlotNumOwners = uint32(bnftHolders.length); } holdersUpdate.timestamp = uint32(block.timestamp); } /// @notice Uses a generic random number generated to calculate a starting index in the bNFT holder array /// @dev We feel that because a user is not eligible to be selected in the period they are registered, we do not need a more secure /// random number generator. Fetching the random number in advance wont help a user manipulate the protocol. /// @return A starting index for dutyForWeek to use. function _getSlotIndex() internal view returns (uint256) { return uint256(keccak256(abi.encodePacked(block.timestamp / schedulingPeriodInSeconds))) % numberOfActiveSlots(); } /// @notice Explain to an end user what this does /// @dev Explain to a developer any extra details /// @param _size how many BNFT players will be needed to fill the allotment /// @param _index The first index that we need to start from /// @return lastIndex the last index to be used in the selection for the current schedule function _fetchLastIndex(uint128 _size, uint256 _index) internal view returns (uint128 lastIndex){ uint32 numSlots = numberOfActiveSlots(); uint128 tempLastIndex = uint128(_index) + _size - 1; lastIndex = (tempLastIndex + uint128(numSlots)) % uint128(numSlots); } function _isWhitelisted(address _user) internal view returns (bool) { return (!whitelistEnabled || whitelisted[_user]); } function _sharesForDepositAmount(uint256 _depositAmount) internal view returns (uint256) { uint256 totalPooledEther = getTotalPooledEther() - _depositAmount; if (totalPooledEther == 0) { return _depositAmount; } return (_depositAmount * eETH.totalShares()) / totalPooledEther; } function _authorizeUpgrade(address newImplementation) internal override onlyOwner {} //-------------------------------------------------------------------------------------- //------------------------------------ GETTERS --------------------------------------- //-------------------------------------------------------------------------------------- /// @notice Selects a source of funds to be used for the deposits /// @dev The LP has two ways of accumulating funds, through eEth staking and through the ether fan page (membership manager). /// We want to manipulate which funds we use per deposit. Example, if someone is making 2 deposits, we want to select where the 60 ETH /// should come from. The funds will all be held in the LP but we are storing how many validators are spun up per source on the contract. /// We simply check which of the sources is below their target allocation and allocate the deposits to it. /// @return The chosen source of funds (EETH or ETHER_FAN) function allocateSourceOfFunds() public view returns (SourceOfFunds) { uint256 validatorRatio = (fundStatistics[SourceOfFunds.EETH].numberOfValidators * 10_000) / fundStatistics[SourceOfFunds.ETHER_FAN].numberOfValidators; uint256 weightRatio = (fundStatistics[SourceOfFunds.EETH].targetWeight * 10_000) / fundStatistics[SourceOfFunds.ETHER_FAN].targetWeight; return validatorRatio > weightRatio ? SourceOfFunds.ETHER_FAN : SourceOfFunds.EETH; } /// @notice Fetching the starting timestamp of the current scheduling period /// @return The timestamp of the begging of the current scheduling period function getCurrentSchedulingStartTimestamp() public view returns (uint256) { return block.timestamp - (block.timestamp % schedulingPeriodInSeconds); } /// @notice Checks whether the BNFT player with _index is assigned /// @dev Because we allow a sliding window type selection, we use strict conditions to check whether the provided index is /// inside the first and last index. /// @param _firstIndex The index of the first selected BNFT holder /// @param _lastIndex The index of the last selected BNFT holder /// @param _index The index of the BNFT we are checking /// @return Bool value if the BNFT player is assigned or not function isAssigned(uint256 _firstIndex, uint128 _lastIndex, uint256 _index) public view returns (bool) { if(_lastIndex < _firstIndex) { return (_index <= _lastIndex) || (_index >= _firstIndex && _index < numberOfActiveSlots()); }else { return _index >= _firstIndex && _index <= _lastIndex; } } function getTotalEtherClaimOf(address _user) external view returns (uint256) { uint256 staked; uint256 totalShares = eETH.totalShares(); if (totalShares > 0) { staked = (getTotalPooledEther() * eETH.shares(_user)) / totalShares; } return staked; } function getTotalPooledEther() public view returns (uint256) { return totalValueOutOfLp + totalValueInLp; } function sharesForAmount(uint256 _amount) public view returns (uint256) { uint256 totalPooledEther = getTotalPooledEther(); if (totalPooledEther == 0) { return 0; } return (_amount * eETH.totalShares()) / totalPooledEther; } /// @dev withdrawal rounding errors favor the protocol by rounding up function sharesForWithdrawalAmount(uint256 _amount) public view returns (uint256) { uint256 totalPooledEther = getTotalPooledEther(); if (totalPooledEther == 0) { return 0; } // ceiling division so rounding errors favor the protocol uint256 numerator = _amount * eETH.totalShares(); return (numerator + totalPooledEther - 1) / totalPooledEther; } function amountForShare(uint256 _share) public view returns (uint256) { uint256 totalShares = eETH.totalShares(); if (totalShares == 0) { return 0; } return (_share * getTotalPooledEther()) / totalShares; } function getImplementation() external view returns (address) {return _getImplementation();} function _requireAdmin() internal view virtual { require(admins[msg.sender], "Not admin"); } function _requireNotPaused() internal view virtual { require(!paused, "Pausable: paused"); } //-------------------------------------------------------------------------------------- //----------------------------------- MODIFIERS -------------------------------------- //-------------------------------------------------------------------------------------- modifier onlyAdmin() { _requireAdmin(); _; } modifier whenNotPaused() { _requireNotPaused(); _; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.4.22 <0.9.0; library console { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _sendLogPayload(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; /// @solidity memory-safe-assembly assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal view { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(int)", p0)); } function logUint(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function logString(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function log(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1)); } function log(uint p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1)); } function log(uint p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1)); } function log(uint p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1)); } function log(string memory p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1)); } function log(string memory p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1)); } function log(bool p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1)); } function log(address p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2)); } function log(uint p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2)); } function log(uint p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2)); } function log(uint p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2)); } function log(uint p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2)); } function log(uint p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2)); } function log(uint p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2)); } function log(uint p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2)); } function log(uint p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2)); } function log(uint p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2)); } function log(uint p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2)); } function log(uint p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2)); } function log(uint p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2)); } function log(uint p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2)); } function log(uint p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2)); } function log(uint p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2)); } function log(string memory p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2)); } function log(string memory p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2)); } function log(string memory p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2)); } function log(string memory p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2)); } function log(bool p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2)); } function log(bool p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2)); } function log(bool p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2)); } function log(address p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2)); } function log(address p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2)); } function log(address p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.0; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../ERC1967/ERC1967UpgradeUpgradeable.sol"; import "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable { function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment address private immutable __self = address(this); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { require(address(this) != __self, "Function must be called through delegatecall"); require(_getImplementation() == __self, "Function must be called through active proxy"); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall"); _; } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual override notDelegated returns (bytes32) { return _IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeTo(address newImplementation) external virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, new bytes(0), false); } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data, true); } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal override onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; interface IeETH { function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalShares() external view returns (uint256); function shares(address _user) external view returns (uint256); function balanceOf(address _user) external view returns (uint256); function initialize(address _liquidityPool) external; function mintShares(address _user, uint256 _share) external; function burnShares(address _user, uint256 _share) external; function transferFrom(address _sender, address _recipient, uint256 _amount) external returns (bool); function transfer(address _recipient, uint256 _amount) external returns (bool); function approve(address _spender, uint256 _amount) external returns (bool); function increaseAllowance(address _spender, uint256 _increaseAmount) external returns (bool); function decreaseAllowance(address _spender, uint256 _decreaseAmount) external returns (bool); function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; interface IMembershipManager { struct TokenDeposit { uint128 amounts; uint128 shares; } struct TokenData { uint96 vaultShare; uint40 baseLoyaltyPoints; uint40 baseTierPoints; uint32 prevPointsAccrualTimestamp; uint32 prevTopUpTimestamp; uint8 tier; uint8 version; } // Used for V1 struct TierVault { uint128 totalPooledEEthShares; // total share of eEth in the tier vault uint128 totalVaultShares; // total share of the tier vault } // Used for V0 struct TierDeposit { uint128 amounts; // total pooled eth amount uint128 shares; // total pooled eEth shares } struct TierData { uint96 rewardsGlobalIndex; uint40 requiredTierPoints; uint24 weight; uint96 __gap; } // State-changing functions function wrapEthForEap(uint256 _amount, uint256 _amountForPoint, uint32 _eapDepositBlockNumber, uint256 _snapshotEthAmount, uint256 _points, bytes32[] calldata _merkleProof) external payable returns (uint256); function wrapEth(uint256 _amount, uint256 _amountForPoint) external payable returns (uint256); function wrapEth(uint256 _amount, uint256 _amountForPoint, address _referral) external payable returns (uint256); function topUpDepositWithEth(uint256 _tokenId, uint128 _amount, uint128 _amountForPoints) external payable; function requestWithdraw(uint256 _tokenId, uint256 _amount) external returns (uint256); function requestWithdrawAndBurn(uint256 _tokenId) external returns (uint256); function claim(uint256 _tokenId) external; function migrateFromV0ToV1(uint256 _tokenId) external; // Getter functions function tokenDeposits(uint256) external view returns (uint128, uint128); function tokenData(uint256) external view returns (uint96, uint40, uint40, uint32, uint32, uint8, uint8); function tierDeposits(uint256) external view returns (uint128, uint128); function tierData(uint256) external view returns (uint96, uint40, uint24, uint96); function rewardsGlobalIndex(uint8 _tier) external view returns (uint256); function allTimeHighDepositAmount(uint256 _tokenId) external view returns (uint256); function tierForPoints(uint40 _tierPoints) external view returns (uint8); function canTopUp(uint256 _tokenId, uint256 _totalAmount, uint128 _amount, uint128 _amountForPoints) external view returns (bool); function pointsBoostFactor() external view returns (uint16); function pointsGrowthRate() external view returns (uint16); function maxDepositTopUpPercent() external view returns (uint8); function numberOfTiers() external view returns (uint8); function getImplementation() external view returns (address); function minimumAmountForMint() external view returns (uint256); function eEthShareForVaultShare(uint8 _tier, uint256 _vaultShare) external view returns (uint256); function vaultShareForEEthShare(uint8 _tier, uint256 _eEthShare) external view returns (uint256); function ethAmountForVaultShare(uint8 _tier, uint256 _vaultShare) external view returns (uint256); function vaultShareForEthAmount(uint8 _tier, uint256 _ethAmount) external view returns (uint256); // only Owner function initializeOnUpgrade(address _etherFiAdminAddress, uint256 _fanBoostThresholdAmount, uint16 _burnFeeWaiverPeriodInDays) external; function setWithdrawalLockBlocks(uint32 _blocks) external; function updatePointsParams(uint16 _newPointsBoostFactor, uint16 _newPointsGrowthRate) external; function rebase(int128 _accruedRewards) external; function addNewTier(uint40 _requiredTierPoints, uint24 _weight) external; function updateTier(uint8 _tier, uint40 _requiredTierPoints, uint24 _weight) external; function setPoints(uint256 _tokenId, uint40 _loyaltyPoints, uint40 _tierPoints) external; function setDepositAmountParams(uint56 _minDepositGwei, uint8 _maxDepositTopUpPercent) external; function setTopUpCooltimePeriod(uint32 _newWaitTime) external; function updateAdmin(address _address, bool _isAdmin) external; function pauseContract() external; function unPauseContract() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "@openzeppelin-upgradeable/contracts/token/ERC1155/IERC1155Upgradeable.sol"; interface IMembershipNFT is IERC1155Upgradeable { struct NftData { uint32 transferLockedUntil; // in terms of blocck number uint8[28] __gap; } function initialize(string calldata _metadataURI, address _membershipManagerAddress) external; function initializeOnUpgrade(address _liquidityPoolAddress) external; function computeTierPointsForEap(uint32 _eapDepositBlockNumber) external view returns (uint40); function setUpForEap(bytes32 _newMerkleRoot, uint64[] calldata _requiredEapPointsPerEapDeposit) external; function processDepositFromEapUser(address _user, uint32 _eapDepositBlockNumber, uint256 _snapshotEthAmount, uint256 _points, bytes32[] calldata _merkleProof) external; function incrementLock(uint256 _tokenId, uint32 _blocks) external; function mint(address _to, uint256 _amount) external returns (uint256); function burn(address _from, uint256 _tokenId, uint256 _amount) external; function nextMintTokenId() external view returns (uint32); function valueOf(uint256 _tokenId) external view returns (uint256); function loyaltyPointsOf(uint256 _tokenId) external view returns (uint40); function tierPointsOf(uint256 _tokenId) external view returns (uint40); function tierOf(uint256 _tokenId) external view returns (uint8); function claimableTier(uint256 _tokenId) external view returns (uint8); function accruedLoyaltyPointsOf(uint256 _tokenId) external view returns (uint40); function accruedTierPointsOf(uint256 _tokenId) external view returns (uint40); function accruedStakingRewardsOf(uint256 _tokenId) external view returns (uint); function canTopUp(uint256 _tokenId, uint256 _totalAmount, uint128 _amount, uint128 _amountForPoints) external view returns (bool); function isWithdrawable(uint256 _tokenId, uint256 _withdrawalAmount) external view returns (bool); function allTimeHighDepositOf(uint256 _tokenId) external view returns (uint256); function transferLockedUntil(uint256 _tokenId) external view returns (uint32); function balanceOfUser(address _user, uint256 _id) external view returns (uint256); function contractURI() external view returns (string memory); function setContractMetadataURI(string calldata _newURI) external; function setMetadataURI(string calldata _newURI) external; function setMaxTokenId(uint32 _maxTokenId) external; function alertMetadataUpdate(uint256 id) external; function alertBatchMetadataUpdate(uint256 startID, uint256 endID) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "./IStakingManager.sol"; interface ILiquidityPool { struct PermitInput { uint256 value; uint256 deadline; uint8 v; bytes32 r; bytes32 s; } enum SourceOfFunds { UNDEFINED, EETH, ETHER_FAN, DELEGATED_STAKING } struct FundStatistics { uint32 numberOfValidators; uint32 targetWeight; } // Necessary to preserve "statelessness" of dutyForWeek(). // Handles case where new users join/leave holder list during an active slot struct HoldersUpdate { uint32 timestamp; uint32 startOfSlotNumOwners; } struct BnftHolder { address holder; uint32 timestamp; } struct BnftHoldersIndex { bool registered; uint32 index; } function initialize(address _eEthAddress, address _stakingManagerAddress, address _nodesManagerAddress, address _membershipManagerAddress, address _tNftAddress) external; function numPendingDeposits() external view returns (uint32); function totalValueOutOfLp() external view returns (uint128); function totalValueInLp() external view returns (uint128); function getTotalEtherClaimOf(address _user) external view returns (uint256); function getTotalPooledEther() external view returns (uint256); function sharesForAmount(uint256 _amount) external view returns (uint256); function sharesForWithdrawalAmount(uint256 _amount) external view returns (uint256); function amountForShare(uint256 _share) external view returns (uint256); function deposit() external payable returns (uint256); function deposit(address _referral) external payable returns (uint256); function deposit(address _user, address _referral) external payable returns (uint256); function withdraw(address _recipient, uint256 _amount) external returns (uint256); function requestWithdraw(address recipient, uint256 amount) external returns (uint256); function requestWithdrawWithPermit(address _owner, uint256 _amount, PermitInput calldata _permit) external returns (uint256); function requestMembershipNFTWithdraw(address recipient, uint256 amount, uint256 fee) external returns (uint256); function batchDepositAsBnftHolder(uint256[] calldata _candidateBidIds, uint256 _numberOfValidators) external payable returns (uint256[] memory); function batchRegisterAsBnftHolder(bytes32 _depositRoot, uint256[] calldata _validatorIds, IStakingManager.DepositData[] calldata _registerValidatorDepositData, bytes32[] calldata _depositDataRootApproval, bytes[] calldata _signaturesForApprovalDeposit) external; function batchApproveRegistration(uint256[] memory _validatorIds, bytes[] calldata _pubKey, bytes[] calldata _signature) external; function batchCancelDeposit(uint256[] calldata _validatorIds) external; function sendExitRequests(uint256[] calldata _validatorIds) external; function rebase(int128 _accruedRewards) external; function addEthAmountLockedForWithdrawal(uint128 _amount) external; function setStakingTargetWeights(uint32 _eEthWeight, uint32 _etherFanWeight) external; function updateAdmin(address _newAdmin, bool _isAdmin) external; function pauseContract() external; function unPauseContract() external; function decreaseSourceOfFundsValidators(uint32 numberOfEethValidators, uint32 numberOfEtherFanValidators) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; interface IEtherFiAdmin { function lastHandledReportRefSlot() external view returns (uint32); function lastHandledReportRefBlock() external view returns (uint32); function numValidatorsToSpinUp() external view returns (uint32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721ReceiverUpgradeable { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; interface IRegulationsManager { function initialize() external; function confirmEligibility(bytes32 hash) external; function removeFromWhitelist(address _user) external; function initializeNewWhitelist(bytes32 _newVersionHash) external; function isEligible(uint32 _whitelistVersion, address _user) external view returns (bool); function whitelistVersion() external view returns (uint32); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "./ILiquidityPool.sol"; interface IStakingManager { struct DepositData { bytes publicKey; bytes signature; bytes32 depositDataRoot; string ipfsHashForEncryptedValidatorKey; } struct StakerInfo { address staker; ILiquidityPool.SourceOfFunds sourceOfFund; } function bidIdToStaker(uint256 id) external view returns (address); function getEtherFiNodeBeacon() external view returns (address); function initialize(address _auctionAddress, address _depositContractAddress) external; function setEtherFiNodesManagerAddress(address _managerAddress) external; function setLiquidityPoolAddress(address _liquidityPoolAddress) external; function batchDepositWithBidIds(uint256[] calldata _candidateBidIds, address _staker, ILiquidityPool.SourceOfFunds source, bool _enableRestaking) external payable returns (uint256[] memory); function batchDepositWithBidIds(uint256[] calldata _candidateBidIds, bool _enableRestaking) external payable returns (uint256[] memory); function batchRegisterValidators(bytes32 _depositRoot, uint256[] calldata _validatorId, DepositData[] calldata _depositData) external; function batchRegisterValidators(bytes32 _depositRoot, uint256[] calldata _validatorId, address _bNftRecipient, address _tNftRecipient, DepositData[] calldata _depositData, address _user) external; function batchApproveRegistration(uint256[] memory _validatorId, bytes[] calldata _pubKey, bytes[] calldata _signature, bytes32[] calldata _depositDataRootApproval) external; function batchCancelDeposit(uint256[] calldata _validatorIds) external; function batchCancelDepositAsBnftHolder(uint256[] calldata _validatorIds, address _caller) external; function updateAdmin(address _address, bool _isAdmin) external; function pauseContract() external; function unPauseContract() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "./IEtherFiNode.sol"; import "@eigenlayer/contracts/interfaces/IEigenPodManager.sol"; import "@eigenlayer/contracts/interfaces/IDelayedWithdrawalRouter.sol"; interface IEtherFiNodesManager { struct RewardsSplit { uint64 treasury; uint64 nodeOperator; uint64 tnft; uint64 bnft; } enum ValidatorRecipientType { TNFTHOLDER, BNFTHOLDER, TREASURY, OPERATOR } // VIEW functions function calculateTVL(uint256 _validatorId, uint256 _beaconBalance) external view returns (uint256, uint256, uint256, uint256); function calculateWithdrawableTVL(uint256 _validatorId, uint256 _beaconBalance) external view returns (uint256, uint256, uint256, uint256); function delayedWithdrawalRouter() external view returns (IDelayedWithdrawalRouter); function eigenPodManager() external view returns (IEigenPodManager); function generateWithdrawalCredentials(address _address) external view returns (bytes memory); function getFullWithdrawalPayouts(uint256 _validatorId) external view returns (uint256, uint256, uint256, uint256); function getNonExitPenalty(uint256 _validatorId) external view returns (uint256); function getRewardsPayouts(uint256 _validatorId, uint256 _beaconBalance) external view returns (uint256, uint256, uint256, uint256); function getWithdrawalCredentials(uint256 _validatorId) external view returns (bytes memory); function ipfsHashForEncryptedValidatorKey(uint256 _validatorId) external view returns (string memory); function isEvicted(uint256 _validatorId) external view returns (bool); function isExited(uint256 _validatorId) external view returns (bool); function isExitRequested(uint256 _validatorId) external view returns (bool); function isFullyWithdrawn(uint256 _validatorId) external view returns (bool); function nonExitPenaltyDailyRate() external view returns (uint64); function nonExitPenaltyPrincipal() external view returns (uint64); function numberOfValidators() external view returns (uint64); function phase(uint256 _validatorId) external view returns (IEtherFiNode.VALIDATOR_PHASE phase); // Non-VIEW functions function initialize( address _treasuryContract, address _auctionContract, address _stakingManagerContract, address _tnftContract, address _bnftContract ) external; function batchQueueRestakedWithdrawal(uint256[] calldata _validatorIds) external; function batchSendExitRequest(uint256[] calldata _validatorIds) external; function fullWithdrawBatch(uint256[] calldata _validatorIds) external; function fullWithdraw(uint256 _validatorId) external; function getUnusedWithdrawalSafesLength() external view returns (uint256); function incrementNumberOfValidators(uint64 _count) external; function markBeingSlashed(uint256[] calldata _validatorIds) external; function partialWithdrawBatch(uint256[] calldata _validatorIds) external; function partialWithdraw(uint256 _validatorId) external; function processNodeExit(uint256[] calldata _validatorIds, uint32[] calldata _exitTimestamp) external; function registerEtherFiNode(uint256 _validatorId, bool _enableRestaking) external returns (address); function sendExitRequest(uint256 _validatorId) external; function setEtherFiNodeIpfsHashForEncryptedValidatorKey(uint256 _validatorId, string calldata _ipfs) external; function setEtherFiNodePhase(uint256 _validatorId, IEtherFiNode.VALIDATOR_PHASE _phase) external; function setNonExitPenaltyDailyRate(uint64 _nonExitPenaltyDailyRate) external; function setNonExitPenaltyPrincipal(uint64 _nonExitPenaltyPrincipal) external; function setStakingRewardsSplit(uint64 _treasury, uint64 _nodeOperator, uint64 _tnft, uint64 _bnf) external; function unregisterEtherFiNode(uint256 _validatorId) external; function updateAdmin(address _address, bool _isAdmin) external; function admins(address _address) external view returns (bool); function pauseContract() external; function unPauseContract() external; function treasuryContract() external view returns (address); function maxEigenlayerWithdrawals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "@openzeppelin-upgradeable/contracts/token/ERC721/IERC721Upgradeable.sol"; interface ITNFT is IERC721Upgradeable { function burnFromWithdrawal(uint256 _validatorId) external; function initialize() external; function initializeOnUpgrade(address _etherFiNodesManagerAddress) external; function mint(address _receiver, uint256 _validatorId) external; function burnFromCancelBNftFlow(uint256 _validatorId) external; function upgradeTo(address _newImplementation) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; interface IWithdrawRequestNFT { struct WithdrawRequest { uint96 amountOfEEth; uint96 shareOfEEth; bool isValid; uint32 feeGwei; } function initialize(address _liquidityPoolAddress, address _eEthAddress, address _membershipManager) external; function requestWithdraw(uint96 amountOfEEth, uint96 shareOfEEth, address requester, uint256 fee) external payable returns (uint256); function claimWithdraw(uint256 requestId) external; function getRequest(uint256 requestId) external view returns (WithdrawRequest memory); function isFinalized(uint256 requestId) external view returns (bool); function invalidateRequest(uint256 requestId) external; function finalizeRequests(uint256 upperBound) external; function updateAdmin(address _address, bool _isAdmin) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822ProxiableUpgradeable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeaconUpgradeable.sol"; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../../utils/AddressUpgradeable.sol"; import "../../utils/StorageSlotUpgradeable.sol"; import "../utils/Initializable.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967UpgradeUpgradeable is Initializable { function __ERC1967Upgrade_init() internal onlyInitializing { } function __ERC1967Upgrade_init_unchained() internal onlyInitializing { } // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { _functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS( address newImplementation, bytes memory data, bool forceCall ) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data); } } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) { require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed"); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165Upgradeable.sol"; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155Upgradeable is IERC165Upgradeable { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "./IEtherFiNodesManager.sol"; interface IEtherFiNode { // State Transition Diagram for StateMachine contract: // // NOT_INITIALIZED // | // READY_FOR_DEPOSIT // ↓ // STAKE_DEPOSITED // / \ // / \ // ↓ ↓ // LIVE CANCELLED // | \ \ // | \ \ // | ↓ --> EVICTED // | BEING_SLASHED // | / // | / // ↓ ↓ // EXITED // | // ↓ // FULLY_WITHDRAWN // Transitions are only allowed as directed above. // For instance, a transition from STAKE_DEPOSITED to either LIVE or CANCELLED is allowed, // but a transition from STAKE_DEPOSITED to NOT_INITIALIZED, BEING_SLASHED, or EXITED is not. // // All phase transitions should be made through the setPhase function, // which validates transitions based on these rules. // // Fully_WITHDRAWN or CANCELLED nodes can be recycled via resetWithdrawalSafe() enum VALIDATOR_PHASE { NOT_INITIALIZED, STAKE_DEPOSITED, LIVE, EXITED, FULLY_WITHDRAWN, CANCELLED, BEING_SLASHED, EVICTED, WAITING_FOR_APPROVAL, READY_FOR_DEPOSIT } // VIEW functions function calculateTVL(uint256 _beaconBalance, uint256 _executionBalance, IEtherFiNodesManager.RewardsSplit memory _SRsplits, uint256 _scale) external view returns (uint256, uint256, uint256, uint256); function eigenPod() external view returns (address); function exitRequestTimestamp() external view returns (uint32); function exitTimestamp() external view returns (uint32); function getNonExitPenalty(uint32 _tNftExitRequestTimestamp, uint32 _bNftExitRequestTimestamp) external view returns (uint256); function getStakingRewardsPayouts(uint256 _beaconBalance, IEtherFiNodesManager.RewardsSplit memory _splits, uint256 _scale) external view returns (uint256, uint256, uint256, uint256); function ipfsHashForEncryptedValidatorKey() external view returns (string memory); function phase() external view returns (VALIDATOR_PHASE); function stakingStartTimestamp() external view returns (uint32); // Non-VIEW functions function claimQueuedWithdrawals(uint256 maxNumWithdrawals) external; function createEigenPod() external; function hasOutstandingEigenLayerWithdrawals() external view returns (bool); function isRestakingEnabled() external view returns (bool); function markExited(uint32 _exitTimestamp) external; function markBeingSlashed() external; function moveRewardsToManager(uint256 _amount) external; function queueRestakedWithdrawal() external; function recordStakingStart(bool _enableRestaking) external; function resetWithdrawalSafe() external; function setExitRequestTimestamp(uint32 _timestamp) external; function setIpfsHashForEncryptedValidatorKey(string calldata _ipfs) external; function setIsRestakingEnabled(bool _enabled) external; function setPhase(VALIDATOR_PHASE _phase) external; function splitBalanceInExecutionLayer() external view returns (uint256 _withdrawalSafe, uint256 _eigenPod, uint256 _delayedWithdrawalRouter); function totalBalanceInExecutionLayer() external view returns (uint256); function withdrawableBalanceInExecutionLayer() external view returns (uint256); function withdrawFunds( address _treasury, uint256 _treasuryAmount, address _operator, uint256 _operatorAmount, address _tnftHolder, uint256 _tnftAmount, address _bnftHolder, uint256 _bnftAmount ) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol"; import "./IETHPOSDeposit.sol"; import "./IStrategyManager.sol"; import "./IEigenPod.sol"; import "./IBeaconChainOracle.sol"; import "./IPausable.sol"; import "./ISlasher.sol"; import "./IStrategy.sol"; /** * @title Interface for factory that creates and manages solo staking pods that have their withdrawal credentials pointed to EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IEigenPodManager is IPausable { /** * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored. * In functions that operate on existing queued withdrawals -- e.g. `startQueuedWithdrawalWaitingPeriod` or `completeQueuedWithdrawal`, * the data is resubmitted and the hash of the submitted data is computed by `calculateWithdrawalRoot` and checked against the * stored hash in order to confirm the integrity of the submitted data. */ struct BeaconChainQueuedWithdrawal { // @notice Number of "beacon chain ETH" virtual shares in the withdrawal. uint256 shares; // @notice Owner of the EigenPod who initiated the withdrawal. address podOwner; // @notice Nonce of the podOwner when the withdrawal was queued. Used to help ensure uniqueness of the hash of the withdrawal. uint96 nonce; // @notice Block number at which the withdrawal was initiated. uint32 withdrawalStartBlock; // @notice The operator to which the podOwner was delegated in EigenLayer when the withdrawal was created. address delegatedAddress; // @notice The address that can complete the withdrawal and receive the withdrawn funds. address withdrawer; } /** * @notice Struct used to track a pod owner's "undelegation limbo" status and associated variables. * @dev Undelegation limbo is a mode which a staker can enter into, in which they remove their virtual "beacon chain ETH shares" from EigenLayer's delegation * system but do not necessarily withdraw the associated ETH from EigenLayer itself. This mode allows users who have restaked native ETH a route via * which they can undelegate from an operator without needing to exit any of their validators from the Consensus Layer. */ struct UndelegationLimboStatus { // @notice Whether or not the pod owner is in the "undelegation limbo" mode. bool active; // @notice The block at which the pod owner entered "undelegation limbo". Should be zero if `podOwnerIsInUndelegationLimbo` is marked as 'false' uint32 startBlock; // @notice The address which the pod owner was delegated to at the time that they entered "undelegation limbo". address delegatedAddress; } /// @notice Emitted to notify the update of the beaconChainOracle address event BeaconOracleUpdated(address indexed newOracleAddress); /// @notice Emitted to notify the deployment of an EigenPod event PodDeployed(address indexed eigenPod, address indexed podOwner); /// @notice Emitted to notify a deposit of beacon chain ETH recorded in the strategy manager event BeaconChainETHDeposited(address indexed podOwner, uint256 amount); /// @notice Emitted when `maxPods` value is updated from `previousValue` to `newValue` event MaxPodsUpdated(uint256 previousValue, uint256 newValue); /// @notice Emitted when a withdrawal of beacon chain ETH is queued event BeaconChainETHWithdrawalQueued( address indexed podOwner, uint256 shares, uint96 nonce, address delegatedAddress, address withdrawer, bytes32 withdrawalRoot ); /// @notice Emitted when a withdrawal of beacon chain ETH is completed event BeaconChainETHWithdrawalCompleted( address indexed podOwner, uint256 shares, uint96 nonce, address delegatedAddress, address withdrawer, bytes32 withdrawalRoot ); // @notice Emitted when `podOwner` enters the "undelegation limbo" mode event UndelegationLimboEntered(address indexed podOwner); // @notice Emitted when `podOwner` exits the "undelegation limbo" mode event UndelegationLimboExited(address indexed podOwner); /** * @notice Creates an EigenPod for the sender. * @dev Function will revert if the `msg.sender` already has an EigenPod. */ function createPod() external; /** * @notice Stakes for a new beacon chain validator on the sender's EigenPod. * Also creates an EigenPod for the sender if they don't have one already. * @param pubkey The 48 bytes public key of the beacon chain validator. * @param signature The validator's signature of the deposit data. * @param depositDataRoot The root/hash of the deposit data for the validator's deposit. */ function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable; /** * @notice Deposits/Restakes beacon chain ETH in EigenLayer on behalf of the owner of an EigenPod. * @param podOwner The owner of the pod whose balance must be deposited. * @param amount The amount of ETH to 'deposit' (i.e. be credited to the podOwner). * @dev Callable only by the podOwner's EigenPod contract. */ function restakeBeaconChainETH(address podOwner, uint256 amount) external; /** * @notice Records an update in beacon chain strategy shares in the strategy manager * @param podOwner is the pod owner whose shares are to be updated, * @param sharesDelta is the change in podOwner's beaconChainETHStrategy shares * @dev Callable only by the podOwner's EigenPod contract. */ function recordBeaconChainETHBalanceUpdate(address podOwner, int256 sharesDelta) external; /** * @notice Called by a podOwner to queue a withdrawal of some (or all) of their virtual beacon chain ETH shares. * @param amountWei The amount of ETH to withdraw. * @param withdrawer The address that can complete the withdrawal and receive the withdrawn funds. */ function queueWithdrawal(uint256 amountWei, address withdrawer) external returns (bytes32); /** * @notice Completes an existing BeaconChainQueuedWithdrawal by sending the ETH to the 'withdrawer' * @param queuedWithdrawal is the queued withdrawal to be completed * @param middlewareTimesIndex is the index in the operator that the staker who triggered the withdrawal was delegated to's middleware times array */ function completeQueuedWithdrawal( BeaconChainQueuedWithdrawal memory queuedWithdrawal, uint256 middlewareTimesIndex ) external; /** * @notice forces the podOwner into the "undelegation limbo" mode, and returns the number of virtual 'beacon chain ETH shares' * that the podOwner has, which were entered into undelegation limbo. * @param podOwner is the staker to be forced into undelegation limbo * @param delegatedTo is the operator the staker is currently delegated to * @dev This function can only be called by the DelegationManager contract */ function forceIntoUndelegationLimbo( address podOwner, address delegatedTo ) external returns (uint256 sharesRemovedFromDelegation); /** * @notice Updates the oracle contract that provides the beacon chain state root * @param newBeaconChainOracle is the new oracle contract being pointed to * @dev Callable only by the owner of this contract (i.e. governance) */ function updateBeaconChainOracle(IBeaconChainOracle newBeaconChainOracle) external; /// @notice Returns the address of the `podOwner`'s EigenPod if it has been deployed. function ownerToPod(address podOwner) external view returns (IEigenPod); /// @notice Returns the address of the `podOwner`'s EigenPod (whether it is deployed yet or not). function getPod(address podOwner) external view returns (IEigenPod); /// @notice The ETH2 Deposit Contract function ethPOS() external view returns (IETHPOSDeposit); /// @notice Beacon proxy to which the EigenPods point function eigenPodBeacon() external view returns (IBeacon); /// @notice Oracle contract that provides updates to the beacon chain's state function beaconChainOracle() external view returns (IBeaconChainOracle); /// @notice Returns the beacon block root at `timestamp`. Reverts if the Beacon block root at `timestamp` has not yet been finalized. function getBlockRootAtTimestamp(uint64 timestamp) external view returns (bytes32); /// @notice EigenLayer's StrategyManager contract function strategyManager() external view returns (IStrategyManager); /// @notice EigenLayer's Slasher contract function slasher() external view returns (ISlasher); function hasPod(address podOwner) external view returns (bool); /// @notice returns shares of provided podOwner function podOwnerShares(address podOwner) external returns (uint256); /// @notice returns canonical, virtual beaconChainETH strategy function beaconChainETHStrategy() external view returns (IStrategy); /// @notice Returns the keccak256 hash of `queuedWithdrawal`. function calculateWithdrawalRoot( BeaconChainQueuedWithdrawal memory queuedWithdrawal ) external pure returns (bytes32); /** * @notice Returns 'false' if `staker` has removed all of their beacon chain ETH "shares" from delegation, either by queuing a * withdrawal for them OR by going into "undelegation limbo", and 'true' otherwise */ function podOwnerHasActiveShares(address staker) external view returns (bool); // @notice Getter function for the internal `_podOwnerUndelegationLimboStatus` mapping. function podOwnerUndelegationLimboStatus(address podOwner) external view returns (UndelegationLimboStatus memory); // @notice Getter function for `_podOwnerUndelegationLimboStatus.undelegationLimboActive`. function isInUndelegationLimbo(address podOwner) external view returns (bool); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; interface IDelayedWithdrawalRouter { // struct used to pack data into a single storage slot struct DelayedWithdrawal { uint224 amount; uint32 blockCreated; } // struct used to store a single users delayedWithdrawal data struct UserDelayedWithdrawals { uint256 delayedWithdrawalsCompleted; DelayedWithdrawal[] delayedWithdrawals; } /// @notice event for delayedWithdrawal creation event DelayedWithdrawalCreated(address podOwner, address recipient, uint256 amount, uint256 index); /// @notice event for the claiming of delayedWithdrawals event DelayedWithdrawalsClaimed(address recipient, uint256 amountClaimed, uint256 delayedWithdrawalsCompleted); /// @notice Emitted when the `withdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`. event WithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue); /** * @notice Creates an delayed withdrawal for `msg.value` to the `recipient`. * @dev Only callable by the `podOwner`'s EigenPod contract. */ function createDelayedWithdrawal(address podOwner, address recipient) external payable; /** * @notice Called in order to withdraw delayed withdrawals made to the `recipient` that have passed the `withdrawalDelayBlocks` period. * @param recipient The address to claim delayedWithdrawals for. * @param maxNumberOfWithdrawalsToClaim Used to limit the maximum number of withdrawals to loop through claiming. */ function claimDelayedWithdrawals(address recipient, uint256 maxNumberOfWithdrawalsToClaim) external; /** * @notice Called in order to withdraw delayed withdrawals made to the caller that have passed the `withdrawalDelayBlocks` period. * @param maxNumberOfWithdrawalsToClaim Used to limit the maximum number of withdrawals to loop through claiming. */ function claimDelayedWithdrawals(uint256 maxNumberOfWithdrawalsToClaim) external; /// @notice Owner-only function for modifying the value of the `withdrawalDelayBlocks` variable. function setWithdrawalDelayBlocks(uint256 newValue) external; /// @notice Getter function for the mapping `_userWithdrawals` function userWithdrawals(address user) external view returns (UserDelayedWithdrawals memory); /// @notice Getter function to get all delayedWithdrawals of the `user` function getUserDelayedWithdrawals(address user) external view returns (DelayedWithdrawal[] memory); /// @notice Getter function to get all delayedWithdrawals that are currently claimable by the `user` function getClaimableUserDelayedWithdrawals(address user) external view returns (DelayedWithdrawal[] memory); /// @notice Getter function for fetching the delayedWithdrawal at the `index`th entry from the `_userWithdrawals[user].delayedWithdrawals` array function userDelayedWithdrawalByIndex(address user, uint256 index) external view returns (DelayedWithdrawal memory); /// @notice Getter function for fetching the length of the delayedWithdrawals array of a specific user function userWithdrawalsLength(address user) external view returns (uint256); /// @notice Convenience function for checking whether or not the delayedWithdrawal at the `index`th entry from the `_userWithdrawals[user].delayedWithdrawals` array is currently claimable function canClaimDelayedWithdrawal(address user, uint256 index) external view returns (bool); /** * @notice Delay enforced by this contract for completing any delayedWithdrawal. Measured in blocks, and adjustable by this contract's owner, * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced). */ function withdrawalDelayBlocks() external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165Upgradeable.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721Upgradeable is IERC165Upgradeable { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeaconUpgradeable { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlotUpgradeable { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); }
// ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━ // ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓ // ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛ // ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃┃━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━ // ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓ // ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛ // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ // SPDX-License-Identifier: CC0-1.0 pragma solidity >=0.5.0; // This interface is designed to be compatible with the Vyper version. /// @notice This is the Ethereum 2.0 deposit contract interface. /// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs interface IETHPOSDeposit { /// @notice A processed deposit event. event DepositEvent(bytes pubkey, bytes withdrawal_credentials, bytes amount, bytes signature, bytes index); /// @notice Submit a Phase 0 DepositData object. /// @param pubkey A BLS12-381 public key. /// @param withdrawal_credentials Commitment to a public key for withdrawals. /// @param signature A BLS12-381 signature. /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object. /// Used as a protection against malformed input. function deposit( bytes calldata pubkey, bytes calldata withdrawal_credentials, bytes calldata signature, bytes32 deposit_data_root ) external payable; /// @notice Query the current deposit root hash. /// @return The deposit root hash. function get_deposit_root() external view returns (bytes32); /// @notice Query the current deposit count. /// @return The deposit count encoded as a little endian 64-bit number. function get_deposit_count() external view returns (bytes memory); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategy.sol"; import "./ISlasher.sol"; import "./IDelegationManager.sol"; import "./IEigenPodManager.sol"; /** * @title Interface for the primary entrypoint for funds into EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice See the `StrategyManager` contract itself for implementation details. */ interface IStrategyManager { // packed struct for queued withdrawals; helps deal with stack-too-deep errors struct WithdrawerAndNonce { address withdrawer; uint96 nonce; } /** * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored. * In functions that operate on existing queued withdrawals -- e.g. `startQueuedWithdrawalWaitingPeriod` or `completeQueuedWithdrawal`, * the data is resubmitted and the hash of the submitted data is computed by `calculateWithdrawalRoot` and checked against the * stored hash in order to confirm the integrity of the submitted data. */ struct QueuedWithdrawal { IStrategy[] strategies; uint256[] shares; address depositor; WithdrawerAndNonce withdrawerAndNonce; uint32 withdrawalStartBlock; address delegatedAddress; } /** * @notice Emitted when a new deposit occurs on behalf of `depositor`. * @param depositor Is the staker who is depositing funds into EigenLayer. * @param strategy Is the strategy that `depositor` has deposited into. * @param token Is the token that `depositor` deposited. * @param shares Is the number of new shares `depositor` has been granted in `strategy`. */ event Deposit(address depositor, IERC20 token, IStrategy strategy, uint256 shares); /** * @notice Emitted when a new withdrawal occurs on behalf of `depositor`. * @param depositor Is the staker who is queuing a withdrawal from EigenLayer. * @param nonce Is the withdrawal's unique identifier (to the depositor). * @param strategy Is the strategy that `depositor` has queued to withdraw from. * @param shares Is the number of shares `depositor` has queued to withdraw. */ event ShareWithdrawalQueued(address depositor, uint96 nonce, IStrategy strategy, uint256 shares); /** * @notice Emitted when a new withdrawal is queued by `depositor`. * @param depositor Is the staker who is withdrawing funds from EigenLayer. * @param nonce Is the withdrawal's unique identifier (to the depositor). * @param withdrawer Is the party specified by `staker` who will be able to complete the queued withdrawal and receive the withdrawn funds. * @param delegatedAddress Is the party who the `staker` was delegated to at the time of creating the queued withdrawal * @param withdrawalRoot Is a hash of the input data for the withdrawal. */ event WithdrawalQueued( address depositor, uint96 nonce, address withdrawer, address delegatedAddress, bytes32 withdrawalRoot ); /// @notice Emitted when a queued withdrawal is completed event WithdrawalCompleted( address indexed depositor, uint96 nonce, address indexed withdrawer, bytes32 withdrawalRoot ); /// @notice Emitted when the `strategyWhitelister` is changed event StrategyWhitelisterChanged(address previousAddress, address newAddress); /// @notice Emitted when a strategy is added to the approved list of strategies for deposit event StrategyAddedToDepositWhitelist(IStrategy strategy); /// @notice Emitted when a strategy is removed from the approved list of strategies for deposit event StrategyRemovedFromDepositWhitelist(IStrategy strategy); /// @notice Emitted when the `withdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`. event WithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue); /** * @notice Deposits `amount` of `token` into the specified `strategy`, with the resultant shares credited to `msg.sender` * @param strategy is the specified strategy where deposit is to be made, * @param token is the denomination in which the deposit is to be made, * @param amount is the amount of token to be deposited in the strategy by the depositor * @return shares The amount of new shares in the `strategy` created as part of the action. * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf. * @dev Cannot be called by an address that is 'frozen' (this function will revert if the `msg.sender` is frozen). * * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended. This can lead to attack vectors * where the token balance and corresponding strategy shares are not in sync upon reentrancy. */ function depositIntoStrategy(IStrategy strategy, IERC20 token, uint256 amount) external returns (uint256 shares); /** * @notice Used for depositing an asset into the specified strategy with the resultant shares credited to `staker`, * who must sign off on the action. * Note that the assets are transferred out/from the `msg.sender`, not from the `staker`; this function is explicitly designed * purely to help one address deposit 'for' another. * @param strategy is the specified strategy where deposit is to be made, * @param token is the denomination in which the deposit is to be made, * @param amount is the amount of token to be deposited in the strategy by the depositor * @param staker the staker that the deposited assets will be credited to * @param expiry the timestamp at which the signature expires * @param signature is a valid signature from the `staker`. either an ECDSA signature if the `staker` is an EOA, or data to forward * following EIP-1271 if the `staker` is a contract * @return shares The amount of new shares in the `strategy` created as part of the action. * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf. * @dev A signature is required for this function to eliminate the possibility of griefing attacks, specifically those * targeting stakers who may be attempting to undelegate. * @dev Cannot be called on behalf of a staker that is 'frozen' (this function will revert if the `staker` is frozen). * * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended. This can lead to attack vectors * where the token balance and corresponding strategy shares are not in sync upon reentrancy */ function depositIntoStrategyWithSignature( IStrategy strategy, IERC20 token, uint256 amount, address staker, uint256 expiry, bytes memory signature ) external returns (uint256 shares); /// @notice Returns the current shares of `user` in `strategy` function stakerStrategyShares(address user, IStrategy strategy) external view returns (uint256 shares); /** * @notice Get all details on the depositor's deposits and corresponding shares * @return (depositor's strategies, shares in these strategies) */ function getDeposits(address depositor) external view returns (IStrategy[] memory, uint256[] memory); /// @notice Simple getter function that returns `stakerStrategyList[staker].length`. function stakerStrategyListLength(address staker) external view returns (uint256); /** * @notice Called by a staker to queue a withdrawal of the given amount of `shares` from each of the respective given `strategies`. * @dev Stakers will complete their withdrawal by calling the 'completeQueuedWithdrawal' function. * User shares are decreased in this function, but the total number of shares in each strategy remains the same. * The total number of shares is decremented in the 'completeQueuedWithdrawal' function instead, which is where * the funds are actually sent to the user through use of the strategies' 'withdrawal' function. This ensures * that the value per share reported by each strategy will remain consistent, and that the shares will continue * to accrue gains during the enforced withdrawal waiting period. * @param strategyIndexes is a list of the indices in `stakerStrategyList[msg.sender]` that correspond to the strategies * for which `msg.sender` is withdrawing 100% of their shares * @param strategies The Strategies to withdraw from * @param shares The amount of shares to withdraw from each of the respective Strategies in the `strategies` array * @param withdrawer The address that can complete the withdrawal and will receive any withdrawn funds or shares upon completing the withdrawal * @return The 'withdrawalRoot' of the newly created Queued Withdrawal * @dev Strategies are removed from `stakerStrategyList` by swapping the last entry with the entry to be removed, then * popping off the last entry in `stakerStrategyList`. The simplest way to calculate the correct `strategyIndexes` to input * is to order the strategies *for which `msg.sender` is withdrawing 100% of their shares* from highest index in * `stakerStrategyList` to lowest index */ function queueWithdrawal( uint256[] calldata strategyIndexes, IStrategy[] calldata strategies, uint256[] calldata shares, address withdrawer ) external returns (bytes32); /** * @notice Used to complete the specified `queuedWithdrawal`. The function caller must match `queuedWithdrawal.withdrawer` * @param queuedWithdrawal The QueuedWithdrawal to complete. * @param tokens Array in which the i-th entry specifies the `token` input to the 'withdraw' function of the i-th Strategy in the `strategies` array * of the `queuedWithdrawal`. This input can be provided with zero length if `receiveAsTokens` is set to 'false' (since in that case, this input will be unused) * @param middlewareTimesIndex is the index in the operator that the staker who triggered the withdrawal was delegated to's middleware times array * @param receiveAsTokens If true, the shares specified in the queued withdrawal will be withdrawn from the specified strategies themselves * and sent to the caller, through calls to `queuedWithdrawal.strategies[i].withdraw`. If false, then the shares in the specified strategies * will simply be transferred to the caller directly. * @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw` */ function completeQueuedWithdrawal( QueuedWithdrawal calldata queuedWithdrawal, IERC20[] calldata tokens, uint256 middlewareTimesIndex, bool receiveAsTokens ) external; /** * @notice Used to complete the specified `queuedWithdrawals`. The function caller must match `queuedWithdrawals[...].withdrawer` * @param queuedWithdrawals The QueuedWithdrawals to complete. * @param tokens Array of tokens for each QueuedWithdrawal. See `completeQueuedWithdrawal` for the usage of a single array. * @param middlewareTimesIndexes One index to reference per QueuedWithdrawal. See `completeQueuedWithdrawal` for the usage of a single index. * @param receiveAsTokens If true, the shares specified in the queued withdrawal will be withdrawn from the specified strategies themselves * and sent to the caller, through calls to `queuedWithdrawal.strategies[i].withdraw`. If false, then the shares in the specified strategies * will simply be transferred to the caller directly. * @dev Array-ified version of `completeQueuedWithdrawal` * @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw` */ function completeQueuedWithdrawals( QueuedWithdrawal[] calldata queuedWithdrawals, IERC20[][] calldata tokens, uint256[] calldata middlewareTimesIndexes, bool[] calldata receiveAsTokens ) external; /** * @notice Called by the DelegationManager as part of the forced undelegation of the @param staker from their delegated operator. * This function queues a withdrawal of all of the `staker`'s shares in EigenLayer to the staker themself, and then undelegates the staker. * The staker will consequently be able to complete this withdrawal by calling the `completeQueuedWithdrawal` function. * @param staker The staker to force-undelegate. * @dev Returns: an array of strategies withdrawn from, the shares withdrawn from each strategy, and the root of the newly queued withdrawal. */ function forceTotalWithdrawal(address staker) external returns (IStrategy[] memory, uint256[] memory, bytes32); /** * @notice Owner-only function that adds the provided Strategies to the 'whitelist' of strategies that stakers can deposit into * @param strategiesToWhitelist Strategies that will be added to the `strategyIsWhitelistedForDeposit` mapping (if they aren't in it already) */ function addStrategiesToDepositWhitelist(IStrategy[] calldata strategiesToWhitelist) external; /** * @notice Owner-only function that removes the provided Strategies from the 'whitelist' of strategies that stakers can deposit into * @param strategiesToRemoveFromWhitelist Strategies that will be removed to the `strategyIsWhitelistedForDeposit` mapping (if they are in it) */ function removeStrategiesFromDepositWhitelist(IStrategy[] calldata strategiesToRemoveFromWhitelist) external; /// @notice Returns the keccak256 hash of `queuedWithdrawal`. function calculateWithdrawalRoot(QueuedWithdrawal memory queuedWithdrawal) external pure returns (bytes32); /// @notice Returns the single, central Delegation contract of EigenLayer function delegation() external view returns (IDelegationManager); /// @notice Returns the single, central Slasher contract of EigenLayer function slasher() external view returns (ISlasher); /// @notice Returns the EigenPodManager contract of EigenLayer function eigenPodManager() external view returns (IEigenPodManager); /// @notice Returns the number of blocks that must pass between the time a withdrawal is queued and the time it can be completed function withdrawalDelayBlocks() external view returns (uint256); /// @notice Mapping: staker => cumulative number of queued withdrawals they have ever initiated. only increments (doesn't decrement) function numWithdrawalsQueued(address staker) external view returns (uint256); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "../libraries/BeaconChainProofs.sol"; import "./IEigenPodManager.sol"; import "./IBeaconChainOracle.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title The implementation contract used for restaking beacon chain ETH on EigenLayer * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice The main functionalities are: * - creating new ETH validators with their withdrawal credentials pointed to this contract * - proving from beacon chain state roots that withdrawal credentials are pointed to this contract * - proving from beacon chain state roots the balances of ETH validators with their withdrawal credentials * pointed to this contract * - updating aggregate balances in the EigenPodManager * - withdrawing eth when withdrawals are initiated * @dev Note that all beacon chain balances are stored as gwei within the beacon chain datastructures. We choose * to account balances in terms of gwei in the EigenPod contract and convert to wei when making calls to other contracts */ interface IEigenPod { enum VALIDATOR_STATUS { INACTIVE, // doesnt exist ACTIVE, // staked on ethpos and withdrawal credentials are pointed to the EigenPod WITHDRAWN // withdrawn from the Beacon Chain } struct ValidatorInfo { // index of the validator in the beacon chain uint64 validatorIndex; // amount of beacon chain ETH restaked on EigenLayer in gwei uint64 restakedBalanceGwei; //timestamp of the validator's most recent balance update uint64 mostRecentBalanceUpdateTimestamp; // status of the validator VALIDATOR_STATUS status; } /** * @notice struct used to store amounts related to proven withdrawals in memory. Used to help * manage stack depth and optimize the number of external calls, when batching withdrawal operations. */ struct VerifiedWithdrawal { // amount to send to a podOwner from a proven withdrawal uint256 amountToSend; // difference in shares to be recorded in the eigenPodManager, as a result of the withdrawal int256 sharesDelta; } enum PARTIAL_WITHDRAWAL_CLAIM_STATUS { REDEEMED, PENDING, FAILED } /// @notice Emitted when an ETH validator stakes via this eigenPod event EigenPodStaked(bytes pubkey); /// @notice Emitted when an ETH validator's withdrawal credentials are successfully verified to be pointed to this eigenPod event ValidatorRestaked(uint40 validatorIndex); /// @notice Emitted when an ETH validator's balance is proven to be updated. Here newValidatorBalanceGwei // is the validator's balance that is credited on EigenLayer. event ValidatorBalanceUpdated(uint40 validatorIndex, uint64 balanceTimestamp, uint64 newValidatorBalanceGwei); /// @notice Emitted when an ETH validator is prove to have withdrawn from the beacon chain event FullWithdrawalRedeemed( uint40 validatorIndex, uint64 withdrawalTimestamp, address indexed recipient, uint64 withdrawalAmountGwei ); /// @notice Emitted when a partial withdrawal claim is successfully redeemed event PartialWithdrawalRedeemed( uint40 validatorIndex, uint64 withdrawalTimestamp, address indexed recipient, uint64 partialWithdrawalAmountGwei ); /// @notice Emitted when restaked beacon chain ETH is withdrawn from the eigenPod. event RestakedBeaconChainETHWithdrawn(address indexed recipient, uint256 amount); /// @notice Emitted when podOwner enables restaking event RestakingActivated(address indexed podOwner); /// @notice Emitted when ETH is received via the `receive` fallback event NonBeaconChainETHReceived(uint256 amountReceived); /// @notice Emitted when ETH that was previously received via the `receive` fallback is withdrawn event NonBeaconChainETHWithdrawn(address indexed recipient, uint256 amountWithdrawn); /// @notice The max amount of eth, in gwei, that can be restaked per validator function MAX_VALIDATOR_BALANCE_GWEI() external view returns (uint64); /// @notice the amount of execution layer ETH in this contract that is staked in EigenLayer (i.e. withdrawn from beaconchain but not EigenLayer), function withdrawableRestakedExecutionLayerGwei() external view returns (uint64); /// @notice Used to initialize the pointers to contracts crucial to the pod's functionality, in beacon proxy construction from EigenPodManager function initialize(address owner) external; /// @notice Called by EigenPodManager when the owner wants to create another ETH validator. function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable; /** * @notice Transfers `amountWei` in ether from this contract to the specified `recipient` address * @notice Called by EigenPodManager to withdrawBeaconChainETH that has been added to the EigenPod's balance due to a withdrawal from the beacon chain. * @dev Called during withdrawal or slashing. * @dev Note that this function is marked as non-reentrant to prevent the recipient calling back into it */ function withdrawRestakedBeaconChainETH(address recipient, uint256 amount) external; /// @notice The single EigenPodManager for EigenLayer function eigenPodManager() external view returns (IEigenPodManager); /// @notice The owner of this EigenPod function podOwner() external view returns (address); /// @notice an indicator of whether or not the podOwner has ever "fully restaked" by successfully calling `verifyCorrectWithdrawalCredentials`. function hasRestaked() external view returns (bool); /** * @notice The latest timestamp at which the pod owner withdrew the balance of the pod, via calling `withdrawBeforeRestaking`. * @dev This variable is only updated when the `withdrawBeforeRestaking` function is called, which can only occur before `hasRestaked` is set to true for this pod. * Proofs for this pod are only valid against Beacon Chain state roots corresponding to timestamps after the stored `mostRecentWithdrawalTimestamp`. */ function mostRecentWithdrawalTimestamp() external view returns (uint64); /// @notice Returns the validatorInfo struct for the provided pubkeyHash function validatorPubkeyHashToInfo(bytes32 validatorPubkeyHash) external view returns (ValidatorInfo memory); ///@notice mapping that tracks proven withdrawals function provenWithdrawal(bytes32 validatorPubkeyHash, uint64 slot) external view returns (bool); /// @notice This returns the status of a given validator function validatorStatus(bytes32 pubkeyHash) external view returns (VALIDATOR_STATUS); /** * @notice This function verifies that the withdrawal credentials of validator(s) owned by the podOwner are pointed to * this contract. It also verifies the effective balance of the validator. It verifies the provided proof of the ETH validator against the beacon chain state * root, marks the validator as 'active' in EigenLayer, and credits the restaked ETH in Eigenlayer. * @param oracleTimestamp is the Beacon Chain timestamp whose state root the `proof` will be proven against. * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs * @param withdrawalCredentialProofs is an array of proofs, where each proof proves each ETH validator's balance and withdrawal credentials * against a beacon chain state root * @param validatorFields are the fields of the "Validator Container", refer to consensus specs * for details: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator */ function verifyWithdrawalCredentials( uint64 oracleTimestamp, BeaconChainProofs.StateRootProof calldata stateRootProof, uint40[] calldata validatorIndices, bytes[] calldata withdrawalCredentialProofs, bytes32[][] calldata validatorFields ) external; /** * @notice This function records an update (either increase or decrease) in the pod's balance in the StrategyManager. It also verifies a merkle proof of the validator's current beacon chain balance. * @param oracleTimestamp The oracleTimestamp whose state root the `proof` will be proven against. * Must be within `VERIFY_BALANCE_UPDATE_WINDOW_SECONDS` of the current block. * @param validatorIndex is the index of the validator being proven, refer to consensus specs * @param balanceUpdateProof is the proof of the validator's balance and validatorFields in the balance tree and the balanceRoot to prove for * the StrategyManager in case it must be removed from the list of the podOwner's strategies * @param validatorFields are the fields of the "Validator Container", refer to consensus specs * @dev For more details on the Beacon Chain spec, see: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator */ function verifyBalanceUpdate( uint64 oracleTimestamp, uint40 validatorIndex, BeaconChainProofs.StateRootProof calldata stateRootProof, BeaconChainProofs.BalanceUpdateProof calldata balanceUpdateProof, bytes32[] calldata validatorFields ) external; /** * @notice This function records full and partial withdrawals on behalf of one of the Ethereum validators for this EigenPod * @param oracleTimestamp is the timestamp of the oracle slot that the withdrawal is being proven against * @param withdrawalProofs is the information needed to check the veracity of the block numbers and withdrawals being proven * @param validatorFieldsProofs is the proof of the validator's fields' in the validator tree * @param withdrawalFields are the fields of the withdrawals being proven * @param validatorFields are the fields of the validators being proven */ function verifyAndProcessWithdrawals( uint64 oracleTimestamp, BeaconChainProofs.StateRootProof calldata stateRootProof, BeaconChainProofs.WithdrawalProof[] calldata withdrawalProofs, bytes[] calldata validatorFieldsProofs, bytes32[][] calldata validatorFields, bytes32[][] calldata withdrawalFields ) external; /** * @notice Called by the pod owner to activate restaking by withdrawing * all existing ETH from the pod and preventing further withdrawals via * "withdrawBeforeRestaking()" */ function activateRestaking() external; /// @notice Called by the pod owner to withdraw the balance of the pod when `hasRestaked` is set to false function withdrawBeforeRestaking() external; /// @notice called by the eigenPodManager to decrement the withdrawableRestakedExecutionLayerGwei /// in the pod, to reflect a queued withdrawal from the beacon chain strategy function decrementWithdrawableRestakedExecutionLayerGwei(uint256 amountWei) external; /// @notice called by the eigenPodManager to increment the withdrawableRestakedExecutionLayerGwei /// in the pod, to reflect a completion of a queued withdrawal as shares function incrementWithdrawableRestakedExecutionLayerGwei(uint256 amountWei) external; /// @notice Called by the pod owner to withdraw the nonBeaconChainETHBalanceWei function withdrawNonBeaconChainETHBalanceWei(address recipient, uint256 amountToWithdraw) external; /// @notice called by owner of a pod to remove any ERC20s deposited in the pod function recoverTokens(IERC20[] memory tokenList, uint256[] memory amountsToWithdraw, address recipient) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title Interface for the BeaconStateOracle contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IBeaconChainOracle { /// @notice The block number to state root mapping. function timestampToBlockRoot(uint256 timestamp) external view returns (bytes32); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "../interfaces/IPauserRegistry.sol"; /** * @title Adds pausability to a contract, with pausing & unpausing controlled by the `pauser` and `unpauser` of a PauserRegistry contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Contracts that inherit from this contract may define their own `pause` and `unpause` (and/or related) functions. * These functions should be permissioned as "onlyPauser" which defers to a `PauserRegistry` for determining access control. * @dev Pausability is implemented using a uint256, which allows up to 256 different single bit-flags; each bit can potentially pause different functionality. * Inspiration for this was taken from the NearBridge design here https://etherscan.io/address/0x3FEFc5A4B1c02f21cBc8D3613643ba0635b9a873#code. * For the `pause` and `unpause` functions we've implemented, if you pause, you can only flip (any number of) switches to on/1 (aka "paused"), and if you unpause, * you can only flip (any number of) switches to off/0 (aka "paused"). * If you want a pauseXYZ function that just flips a single bit / "pausing flag", it will: * 1) 'bit-wise and' (aka `&`) a flag with the current paused state (as a uint256) * 2) update the paused state to this new value * @dev We note as well that we have chosen to identify flags by their *bit index* as opposed to their numerical value, so, e.g. defining `DEPOSITS_PAUSED = 3` * indicates specifically that if the *third bit* of `_paused` is flipped -- i.e. it is a '1' -- then deposits should be paused */ interface IPausable { /// @notice Emitted when the `pauserRegistry` is set to `newPauserRegistry`. event PauserRegistrySet(IPauserRegistry pauserRegistry, IPauserRegistry newPauserRegistry); /// @notice Emitted when the pause is triggered by `account`, and changed to `newPausedStatus`. event Paused(address indexed account, uint256 newPausedStatus); /// @notice Emitted when the pause is lifted by `account`, and changed to `newPausedStatus`. event Unpaused(address indexed account, uint256 newPausedStatus); /// @notice Address of the `PauserRegistry` contract that this contract defers to for determining access control (for pausing). function pauserRegistry() external view returns (IPauserRegistry); /** * @notice This function is used to pause an EigenLayer contract's functionality. * It is permissioned to the `pauser` address, which is expected to be a low threshold multisig. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only pause functionality, and thus cannot 'unflip' any bit in `_paused` from 1 to 0. */ function pause(uint256 newPausedStatus) external; /** * @notice Alias for `pause(type(uint256).max)`. */ function pauseAll() external; /** * @notice This function is used to unpause an EigenLayer contract's functionality. * It is permissioned to the `unpauser` address, which is expected to be a high threshold multisig or governance contract. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only unpause functionality, and thus cannot 'flip' any bit in `_paused` from 0 to 1. */ function unpause(uint256 newPausedStatus) external; /// @notice Returns the current paused status as a uint256. function paused() external view returns (uint256); /// @notice Returns 'true' if the `indexed`th bit of `_paused` is 1, and 'false' otherwise function paused(uint8 index) external view returns (bool); /// @notice Allows the unpauser to set a new pauser registry function setPauserRegistry(IPauserRegistry newPauserRegistry) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategyManager.sol"; import "./IDelegationManager.sol"; /** * @title Interface for the primary 'slashing' contract for EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice See the `Slasher` contract itself for implementation details. */ interface ISlasher { // struct used to store information about the current state of an operator's obligations to middlewares they are serving struct MiddlewareTimes { // The update block for the middleware whose most recent update was earliest, i.e. the 'stalest' update out of all middlewares the operator is serving uint32 stalestUpdateBlock; // The latest 'serveUntilBlock' from all of the middleware that the operator is serving uint32 latestServeUntilBlock; } // struct used to store details relevant to a single middleware that an operator has opted-in to serving struct MiddlewareDetails { // the block at which the contract begins being able to finalize the operator's registration with the service via calling `recordFirstStakeUpdate` uint32 registrationMayBeginAtBlock; // the block before which the contract is allowed to slash the user uint32 contractCanSlashOperatorUntilBlock; // the block at which the middleware's view of the operator's stake was most recently updated uint32 latestUpdateBlock; } /// @notice Emitted when a middleware times is added to `operator`'s array. event MiddlewareTimesAdded( address operator, uint256 index, uint32 stalestUpdateBlock, uint32 latestServeUntilBlock ); /// @notice Emitted when `operator` begins to allow `contractAddress` to slash them. event OptedIntoSlashing(address indexed operator, address indexed contractAddress); /// @notice Emitted when `contractAddress` signals that it will no longer be able to slash `operator` after the `contractCanSlashOperatorUntilBlock`. event SlashingAbilityRevoked( address indexed operator, address indexed contractAddress, uint32 contractCanSlashOperatorUntilBlock ); /** * @notice Emitted when `slashingContract` 'freezes' the `slashedOperator`. * @dev The `slashingContract` must have permission to slash the `slashedOperator`, i.e. `canSlash(slasherOperator, slashingContract)` must return 'true'. */ event OperatorFrozen(address indexed slashedOperator, address indexed slashingContract); /// @notice Emitted when `previouslySlashedAddress` is 'unfrozen', allowing them to again move deposited funds within EigenLayer. event FrozenStatusReset(address indexed previouslySlashedAddress); /** * @notice Gives the `contractAddress` permission to slash the funds of the caller. * @dev Typically, this function must be called prior to registering for a middleware. */ function optIntoSlashing(address contractAddress) external; /** * @notice Used for 'slashing' a certain operator. * @param toBeFrozen The operator to be frozen. * @dev Technically the operator is 'frozen' (hence the name of this function), and then subject to slashing pending a decision by a human-in-the-loop. * @dev The operator must have previously given the caller (which should be a contract) the ability to slash them, through a call to `optIntoSlashing`. */ function freezeOperator(address toBeFrozen) external; /** * @notice Removes the 'frozen' status from each of the `frozenAddresses` * @dev Callable only by the contract owner (i.e. governance). */ function resetFrozenStatus(address[] calldata frozenAddresses) external; /** * @notice this function is a called by middlewares during an operator's registration to make sure the operator's stake at registration * is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at the current block is slashable * @dev adds the middleware's slashing contract to the operator's linked list */ function recordFirstStakeUpdate(address operator, uint32 serveUntilBlock) external; /** * @notice this function is a called by middlewares during a stake update for an operator (perhaps to free pending withdrawals) * to make sure the operator's stake at updateBlock is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param updateBlock the block for which the stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at updateBlock is slashable * @param insertAfter the element of the operators linked list that the currently updating middleware should be inserted after * @dev insertAfter should be calculated offchain before making the transaction that calls this. this is subject to race conditions, * but it is anticipated to be rare and not detrimental. */ function recordStakeUpdate( address operator, uint32 updateBlock, uint32 serveUntilBlock, uint256 insertAfter ) external; /** * @notice this function is a called by middlewares during an operator's deregistration to make sure the operator's stake at deregistration * is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at the current block is slashable * @dev removes the middleware's slashing contract to the operator's linked list and revokes the middleware's (i.e. caller's) ability to * slash `operator` once `serveUntil` is reached */ function recordLastStakeUpdateAndRevokeSlashingAbility(address operator, uint32 serveUntilBlock) external; /// @notice The StrategyManager contract of EigenLayer function strategyManager() external view returns (IStrategyManager); /// @notice The DelegationManager contract of EigenLayer function delegation() external view returns (IDelegationManager); /** * @notice Used to determine whether `staker` is actively 'frozen'. If a staker is frozen, then they are potentially subject to * slashing of their funds, and cannot cannot deposit or withdraw from the strategyManager until the slashing process is completed * and the staker's status is reset (to 'unfrozen'). * @param staker The staker of interest. * @return Returns 'true' if `staker` themselves has their status set to frozen, OR if the staker is delegated * to an operator who has their status set to frozen. Otherwise returns 'false'. */ function isFrozen(address staker) external view returns (bool); /// @notice Returns true if `slashingContract` is currently allowed to slash `toBeSlashed`. function canSlash(address toBeSlashed, address slashingContract) external view returns (bool); /// @notice Returns the block until which `serviceContract` is allowed to slash the `operator`. function contractCanSlashOperatorUntilBlock( address operator, address serviceContract ) external view returns (uint32); /// @notice Returns the block at which the `serviceContract` last updated its view of the `operator`'s stake function latestUpdateBlock(address operator, address serviceContract) external view returns (uint32); /// @notice A search routine for finding the correct input value of `insertAfter` to `recordStakeUpdate` / `_updateMiddlewareList`. function getCorrectValueForInsertAfter(address operator, uint32 updateBlock) external view returns (uint256); /** * @notice Returns 'true' if `operator` can currently complete a withdrawal started at the `withdrawalStartBlock`, with `middlewareTimesIndex` used * to specify the index of a `MiddlewareTimes` struct in the operator's list (i.e. an index in `operatorToMiddlewareTimes[operator]`). The specified * struct is consulted as proof of the `operator`'s ability (or lack thereof) to complete the withdrawal. * This function will return 'false' if the operator cannot currently complete a withdrawal started at the `withdrawalStartBlock`, *or* in the event * that an incorrect `middlewareTimesIndex` is supplied, even if one or more correct inputs exist. * @param operator Either the operator who queued the withdrawal themselves, or if the withdrawing party is a staker who delegated to an operator, * this address is the operator *who the staker was delegated to* at the time of the `withdrawalStartBlock`. * @param withdrawalStartBlock The block number at which the withdrawal was initiated. * @param middlewareTimesIndex Indicates an index in `operatorToMiddlewareTimes[operator]` to consult as proof of the `operator`'s ability to withdraw * @dev The correct `middlewareTimesIndex` input should be computable off-chain. */ function canWithdraw( address operator, uint32 withdrawalStartBlock, uint256 middlewareTimesIndex ) external returns (bool); /** * operator => * [ * ( * the least recent update block of all of the middlewares it's serving/served, * latest time that the stake bonded at that update needed to serve until * ) * ] */ function operatorToMiddlewareTimes( address operator, uint256 arrayIndex ) external view returns (MiddlewareTimes memory); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator].length` function middlewareTimesLength(address operator) external view returns (uint256); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].stalestUpdateBlock`. function getMiddlewareTimesIndexStalestUpdateBlock(address operator, uint32 index) external view returns (uint32); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].latestServeUntil`. function getMiddlewareTimesIndexServeUntilBlock(address operator, uint32 index) external view returns (uint32); /// @notice Getter function for fetching `_operatorToWhitelistedContractsByUpdate[operator].size`. function operatorWhitelistedContractsLinkedListSize(address operator) external view returns (uint256); /// @notice Getter function for fetching a single node in the operator's linked list (`_operatorToWhitelistedContractsByUpdate[operator]`). function operatorWhitelistedContractsLinkedListEntry( address operator, address node ) external view returns (bool, uint256, uint256); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title Minimal interface for an `Strategy` contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Custom `Strategy` implementations may expand extensively on this interface. */ interface IStrategy { /** * @notice Used to deposit tokens into this Strategy * @param token is the ERC20 token being deposited * @param amount is the amount of token being deposited * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * `depositIntoStrategy` function, and individual share balances are recorded in the strategyManager as well. * @return newShares is the number of new shares issued at the current exchange ratio. */ function deposit(IERC20 token, uint256 amount) external returns (uint256); /** * @notice Used to withdraw tokens from this Strategy, to the `depositor`'s address * @param depositor is the address to receive the withdrawn funds * @param token is the ERC20 token being transferred out * @param amountShares is the amount of shares being withdrawn * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * other functions, and individual share balances are recorded in the strategyManager as well. */ function withdraw(address depositor, IERC20 token, uint256 amountShares) external; /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlyingView`, this function **may** make state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlying(uint256 amountShares) external returns (uint256); /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToSharesView`, this function **may** make state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToShares(uint256 amountUnderlying) external returns (uint256); /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlyingView`, this function **may** make state modifications */ function userUnderlying(address user) external returns (uint256); /** * @notice convenience function for fetching the current total shares of `user` in this strategy, by * querying the `strategyManager` contract */ function shares(address user) external view returns (uint256); /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlying`, this function guarantees no state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlyingView(uint256 amountShares) external view returns (uint256); /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToShares`, this function guarantees no state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToSharesView(uint256 amountUnderlying) external view returns (uint256); /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlying`, this function guarantees no state modifications */ function userUnderlyingView(address user) external view returns (uint256); /// @notice The underlying token for shares in this Strategy function underlyingToken() external view returns (IERC20); /// @notice The total number of extant shares in this Strategy function totalShares() external view returns (uint256); /// @notice Returns either a brief string explaining the strategy's goal & purpose, or a link to metadata that explains in more detail. function explanation() external view returns (string memory); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategy.sol"; /** * @title DelegationManager * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice This is the contract for delegation in EigenLayer. The main functionalities of this contract are * - enabling anyone to register as an operator in EigenLayer * - allowing operators to specify parameters related to stakers who delegate to them * - enabling any staker to delegate its stake to the operator of its choice (a given staker can only delegate to a single operator at a time) * - enabling a staker to undelegate its assets from the operator it is delegated to (performed as part of the withdrawal process, initiated through the StrategyManager) */ interface IDelegationManager { // @notice Struct used for storing information about a single operator who has registered with EigenLayer struct OperatorDetails { // @notice address to receive the rewards that the operator earns via serving applications built on EigenLayer. address earningsReceiver; /** * @notice Address to verify signatures when a staker wishes to delegate to the operator, as well as controlling "forced undelegations". * @dev Signature verification follows these rules: * 1) If this address is left as address(0), then any staker will be free to delegate to the operator, i.e. no signature verification will be performed. * 2) If this address is an EOA (i.e. it has no code), then we follow standard ECDSA signature verification for delegations to the operator. * 3) If this address is a contract (i.e. it has code) then we forward a call to the contract and verify that it returns the correct EIP-1271 "magic value". */ address delegationApprover; /** * @notice A minimum delay -- measured in blocks -- enforced between: * 1) the operator signalling their intent to register for a service, via calling `Slasher.optIntoSlashing` * and * 2) the operator completing registration for the service, via the service ultimately calling `Slasher.recordFirstStakeUpdate` * @dev note that for a specific operator, this value *cannot decrease*, i.e. if the operator wishes to modify their OperatorDetails, * then they are only allowed to either increase this value or keep it the same. */ uint32 stakerOptOutWindowBlocks; } /** * @notice Abstract struct used in calculating an EIP712 signature for a staker to approve that they (the staker themselves) delegate to a specific operator. * @dev Used in computing the `STAKER_DELEGATION_TYPEHASH` and as a reference in the computation of the stakerDigestHash in the `delegateToBySignature` function. */ struct StakerDelegation { // the staker who is delegating address staker; // the operator being delegated to address operator; // the staker's nonce uint256 nonce; // the expiration timestamp (UTC) of the signature uint256 expiry; } /** * @notice Abstract struct used in calculating an EIP712 signature for an operator's delegationApprover to approve that a specific staker delegate to the operator. * @dev Used in computing the `DELEGATION_APPROVAL_TYPEHASH` and as a reference in the computation of the approverDigestHash in the `_delegate` function. */ struct DelegationApproval { // the staker who is delegating address staker; // the operator being delegated to address operator; // the operator's provided salt bytes32 salt; // the expiration timestamp (UTC) of the signature uint256 expiry; } // @notice Struct that bundles together a signature and an expiration time for the signature. Used primarily for stack management. struct SignatureWithExpiry { // the signature itself, formatted as a single bytes object bytes signature; // the expiration timestamp (UTC) of the signature uint256 expiry; } // @notice Emitted when a new operator registers in EigenLayer and provides their OperatorDetails. event OperatorRegistered(address indexed operator, OperatorDetails operatorDetails); // @notice Emitted when an operator updates their OperatorDetails to @param newOperatorDetails event OperatorDetailsModified(address indexed operator, OperatorDetails newOperatorDetails); /** * @notice Emitted when @param operator indicates that they are updating their MetadataURI string * @dev Note that these strings are *never stored in storage* and are instead purely emitted in events for off-chain indexing */ event OperatorMetadataURIUpdated(address indexed operator, string metadataURI); /// @notice Emitted whenever an operator's shares are increased for a given strategy. Note that shares is the delta in the operator's shares. event OperatorSharesIncreased(address indexed operator, address staker, IStrategy strategy, uint256 shares); /// @notice Emitted whenever an operator's shares are decreased for a given strategy. Note that shares is the delta in the operator's shares. event OperatorSharesDecreased(address indexed operator, address staker, IStrategy strategy, uint256 shares); /// @notice Emitted when @param staker delegates to @param operator. event StakerDelegated(address indexed staker, address indexed operator); /// @notice Emitted when @param staker undelegates from @param operator. event StakerUndelegated(address indexed staker, address indexed operator); // @notice Emitted when @param staker is undelegated via a call not originating from the staker themself event StakerForceUndelegated(address indexed staker, address indexed operator); /** * @notice Registers the caller as an operator in EigenLayer. * @param registeringOperatorDetails is the `OperatorDetails` for the operator. * @param metadataURI is a URI for the operator's metadata, i.e. a link providing more details on the operator. * * @dev Once an operator is registered, they cannot 'deregister' as an operator, and they will forever be considered "delegated to themself". * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0). * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event */ function registerAsOperator( OperatorDetails calldata registeringOperatorDetails, string calldata metadataURI ) external; /** * @notice Updates an operator's stored `OperatorDetails`. * @param newOperatorDetails is the updated `OperatorDetails` for the operator, to replace their current OperatorDetails`. * * @dev The caller must have previously registered as an operator in EigenLayer. * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0). */ function modifyOperatorDetails(OperatorDetails calldata newOperatorDetails) external; /** * @notice Called by an operator to emit an `OperatorMetadataURIUpdated` event indicating the information has updated. * @param metadataURI The URI for metadata associated with an operator */ function updateOperatorMetadataURI(string calldata metadataURI) external; /** * @notice Caller delegates their stake to an operator. * @param operator The account (`msg.sender`) is delegating its assets to for use in serving applications built on EigenLayer. * @param approverSignatureAndExpiry Verifies the operator approves of this delegation * @param approverSalt A unique single use value tied to an individual signature. * @dev The approverSignatureAndExpiry is used in the event that: * 1) the operator's `delegationApprover` address is set to a non-zero value. * AND * 2) neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator * or their delegationApprover is the `msg.sender`, then approval is assumed. * @dev In the event that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input * in this case to save on complexity + gas costs */ function delegateTo( address operator, SignatureWithExpiry memory approverSignatureAndExpiry, bytes32 approverSalt ) external; /** * @notice Caller delegates a staker's stake to an operator with valid signatures from both parties. * @param staker The account delegating stake to an `operator` account * @param operator The account (`staker`) is delegating its assets to for use in serving applications built on EigenLayer. * @param stakerSignatureAndExpiry Signed data from the staker authorizing delegating stake to an operator * @param approverSignatureAndExpiry is a parameter that will be used for verifying that the operator approves of this delegation action in the event that: * @param approverSalt Is a salt used to help guarantee signature uniqueness. Each salt can only be used once by a given approver. * * @dev If `staker` is an EOA, then `stakerSignature` is verified to be a valid ECDSA stakerSignature from `staker`, indicating their intention for this action. * @dev If `staker` is a contract, then `stakerSignature` will be checked according to EIP-1271. * @dev the operator's `delegationApprover` address is set to a non-zero value. * @dev neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator or their delegationApprover * is the `msg.sender`, then approval is assumed. * @dev This function will revert if the current `block.timestamp` is equal to or exceeds the expiry * @dev In the case that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input * in this case to save on complexity + gas costs */ function delegateToBySignature( address staker, address operator, SignatureWithExpiry memory stakerSignatureAndExpiry, SignatureWithExpiry memory approverSignatureAndExpiry, bytes32 approverSalt ) external; /** * @notice Undelegates the staker from the operator who they are delegated to. Puts the staker into the "undelegation limbo" mode of the EigenPodManager * and queues a withdrawal of all of the staker's shares in the StrategyManager (to the staker), if necessary. * @param staker The account to be undelegated. * @return withdrawalRoot The root of the newly queued withdrawal, if a withdrawal was queued. Otherwise just bytes32(0). * * @dev Reverts if the `staker` is also an operator, since operators are not allowed to undelegate from themselves. * @dev Reverts if the caller is not the staker, nor the operator who the staker is delegated to, nor the operator's specified "delegationApprover" * @dev Reverts if the `staker` is already undelegated. */ function undelegate(address staker) external returns (bytes32 withdrawalRoot); /** * @notice Increases a staker's delegated share balance in a strategy. * @param staker The address to increase the delegated shares for their operator. * @param strategy The strategy in which to increase the delegated shares. * @param shares The number of shares to increase. * * @dev *If the staker is actively delegated*, then increases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing. * @dev Callable only by the StrategyManager. */ function increaseDelegatedShares(address staker, IStrategy strategy, uint256 shares) external; /** * @notice Decreases a staker's delegated share balance in a strategy. * @param staker The address to decrease the delegated shares for their operator. * @param strategies An array of strategies to crease the delegated shares. * @param shares An array of the number of shares to decrease for a operator and strategy. * * @dev *If the staker is actively delegated*, then decreases the `staker`'s delegated shares in each entry of `strategies` by its respective `shares[i]`. Otherwise does nothing. * @dev Callable only by the StrategyManager or EigenPodManager. */ function decreaseDelegatedShares( address staker, IStrategy[] calldata strategies, uint256[] calldata shares ) external; /** * @notice returns the address of the operator that `staker` is delegated to. * @notice Mapping: staker => operator whom the staker is currently delegated to. * @dev Note that returning address(0) indicates that the staker is not actively delegated to any operator. */ function delegatedTo(address staker) external view returns (address); /** * @notice Returns the OperatorDetails struct associated with an `operator`. */ function operatorDetails(address operator) external view returns (OperatorDetails memory); /* * @notice Returns the earnings receiver address for an operator */ function earningsReceiver(address operator) external view returns (address); /** * @notice Returns the delegationApprover account for an operator */ function delegationApprover(address operator) external view returns (address); /** * @notice Returns the stakerOptOutWindowBlocks for an operator */ function stakerOptOutWindowBlocks(address operator) external view returns (uint256); /** * @notice returns the total number of shares in `strategy` that are delegated to `operator`. * @notice Mapping: operator => strategy => total number of shares in the strategy delegated to the operator. */ function operatorShares(address operator, IStrategy strategy) external view returns (uint256); /** * @notice Returns 'true' if `staker` *is* actively delegated, and 'false' otherwise. */ function isDelegated(address staker) external view returns (bool); /** * @notice Returns true is an operator has previously registered for delegation. */ function isOperator(address operator) external view returns (bool); /// @notice Mapping: staker => number of signed delegation nonces (used in `delegateToBySignature`) from the staker that the contract has already checked function stakerNonce(address staker) external view returns (uint256); /** * @notice Mapping: delegationApprover => 32-byte salt => whether or not the salt has already been used by the delegationApprover. * @dev Salts are used in the `delegateTo` and `delegateToBySignature` functions. Note that these functions only process the delegationApprover's * signature + the provided salt if the operator being delegated to has specified a nonzero address as their `delegationApprover`. */ function delegationApproverSaltIsSpent(address _delegationApprover, bytes32 salt) external view returns (bool); /** * @notice Calculates the digestHash for a `staker` to sign to delegate to an `operator` * @param staker The signing staker * @param operator The operator who is being delegated to * @param expiry The desired expiry time of the staker's signature */ function calculateCurrentStakerDelegationDigestHash( address staker, address operator, uint256 expiry ) external view returns (bytes32); /** * @notice Calculates the digest hash to be signed and used in the `delegateToBySignature` function * @param staker The signing staker * @param _stakerNonce The nonce of the staker. In practice we use the staker's current nonce, stored at `stakerNonce[staker]` * @param operator The operator who is being delegated to * @param expiry The desired expiry time of the staker's signature */ function calculateStakerDelegationDigestHash( address staker, uint256 _stakerNonce, address operator, uint256 expiry ) external view returns (bytes32); /** * @notice Calculates the digest hash to be signed by the operator's delegationApprove and used in the `delegateTo` and `delegateToBySignature` functions. * @param staker The account delegating their stake * @param operator The account receiving delegated stake * @param _delegationApprover the operator's `delegationApprover` who will be signing the delegationHash (in general) * @param approverSalt A unique and single use value associated with the approver signature. * @param expiry Time after which the approver's signature becomes invalid */ function calculateDelegationApprovalDigestHash( address staker, address operator, address _delegationApprover, bytes32 approverSalt, uint256 expiry ) external view returns (bytes32); /// @notice The EIP-712 typehash for the contract's domain function DOMAIN_TYPEHASH() external view returns (bytes32); /// @notice The EIP-712 typehash for the StakerDelegation struct used by the contract function STAKER_DELEGATION_TYPEHASH() external view returns (bytes32); /// @notice The EIP-712 typehash for the DelegationApproval struct used by the contract function DELEGATION_APPROVAL_TYPEHASH() external view returns (bytes32); /** * @notice Getter function for the current EIP-712 domain separator for this contract. * * @dev The domain separator will change in the event of a fork that changes the ChainID. * @dev By introducing a domain separator the DApp developers are guaranteed that there can be no signature collision. * for more detailed information please read EIP-712. */ function domainSeparator() external view returns (bytes32); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; import "./Merkle.sol"; import "../libraries/Endian.sol"; //Utility library for parsing and PHASE0 beacon chain block headers //SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization //BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader //BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate library BeaconChainProofs { // constants are the number of fields and the heights of the different merkle trees used in merkleizing beacon chain containers uint256 internal constant NUM_BEACON_BLOCK_HEADER_FIELDS = 5; uint256 internal constant BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT = 3; uint256 internal constant NUM_BEACON_BLOCK_BODY_FIELDS = 11; uint256 internal constant BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT = 4; uint256 internal constant NUM_BEACON_STATE_FIELDS = 21; uint256 internal constant BEACON_STATE_FIELD_TREE_HEIGHT = 5; uint256 internal constant NUM_ETH1_DATA_FIELDS = 3; uint256 internal constant ETH1_DATA_FIELD_TREE_HEIGHT = 2; uint256 internal constant NUM_VALIDATOR_FIELDS = 8; uint256 internal constant VALIDATOR_FIELD_TREE_HEIGHT = 3; uint256 internal constant NUM_EXECUTION_PAYLOAD_HEADER_FIELDS = 15; uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT = 4; uint256 internal constant NUM_EXECUTION_PAYLOAD_FIELDS = 15; uint256 internal constant EXECUTION_PAYLOAD_FIELD_TREE_HEIGHT = 4; // HISTORICAL_ROOTS_LIMIT = 2**24, so tree height is 24 uint256 internal constant HISTORICAL_ROOTS_TREE_HEIGHT = 24; // HISTORICAL_BATCH is root of state_roots and block_root, so number of leaves = 2^1 uint256 internal constant HISTORICAL_BATCH_TREE_HEIGHT = 1; // SLOTS_PER_HISTORICAL_ROOT = 2**13, so tree height is 13 uint256 internal constant STATE_ROOTS_TREE_HEIGHT = 13; uint256 internal constant BLOCK_ROOTS_TREE_HEIGHT = 13; //HISTORICAL_ROOTS_LIMIT = 2**24, so tree height is 24 uint256 internal constant HISTORICAL_SUMMARIES_TREE_HEIGHT = 24; //Index of block_summary_root in historical_summary container uint256 internal constant BLOCK_SUMMARY_ROOT_INDEX = 0; uint256 internal constant NUM_WITHDRAWAL_FIELDS = 4; // tree height for hash tree of an individual withdrawal container uint256 internal constant WITHDRAWAL_FIELD_TREE_HEIGHT = 2; uint256 internal constant VALIDATOR_TREE_HEIGHT = 40; //refer to the eigenlayer-cli proof library. Despite being the same dimensions as the validator tree, the balance tree is merkleized differently uint256 internal constant BALANCE_TREE_HEIGHT = 38; // MAX_WITHDRAWALS_PER_PAYLOAD = 2**4, making tree height = 4 uint256 internal constant WITHDRAWALS_TREE_HEIGHT = 4; //in beacon block body uint256 internal constant EXECUTION_PAYLOAD_INDEX = 9; // in beacon block header uint256 internal constant STATE_ROOT_INDEX = 3; uint256 internal constant PROPOSER_INDEX_INDEX = 1; uint256 internal constant SLOT_INDEX = 0; uint256 internal constant BODY_ROOT_INDEX = 4; // in beacon state uint256 internal constant STATE_ROOTS_INDEX = 6; uint256 internal constant BLOCK_ROOTS_INDEX = 5; uint256 internal constant HISTORICAL_ROOTS_INDEX = 7; uint256 internal constant ETH_1_ROOT_INDEX = 8; uint256 internal constant VALIDATOR_TREE_ROOT_INDEX = 11; uint256 internal constant BALANCE_INDEX = 12; uint256 internal constant EXECUTION_PAYLOAD_HEADER_INDEX = 24; uint256 internal constant HISTORICAL_SUMMARIES_INDEX = 27; uint256 internal constant HISTORICAL_BATCH_STATE_ROOT_INDEX = 1; uint256 internal constant BEACON_STATE_SLOT_INDEX = 2; uint256 internal constant LATEST_BLOCK_HEADER_ROOT_INDEX = 4; // in validator uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0; uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1; uint256 internal constant VALIDATOR_BALANCE_INDEX = 2; uint256 internal constant VALIDATOR_SLASHED_INDEX = 3; uint256 internal constant VALIDATOR_WITHDRAWABLE_EPOCH_INDEX = 7; // in execution payload header uint256 internal constant TIMESTAMP_INDEX = 9; uint256 internal constant WITHDRAWALS_ROOT_INDEX = 14; //in execution payload uint256 internal constant WITHDRAWALS_INDEX = 14; // in withdrawal uint256 internal constant WITHDRAWAL_VALIDATOR_INDEX_INDEX = 1; uint256 internal constant WITHDRAWAL_VALIDATOR_AMOUNT_INDEX = 3; //In historicalBatch uint256 internal constant HISTORICALBATCH_STATEROOTS_INDEX = 1; //Misc Constants uint256 internal constant SLOTS_PER_EPOCH = 32; bytes8 internal constant UINT64_MASK = 0xffffffffffffffff; /// @notice This struct contains the merkle proofs and leaves needed to verify a partial/full withdrawal struct WithdrawalProof { bytes withdrawalProof; bytes slotProof; bytes executionPayloadProof; bytes timestampProof; bytes historicalSummaryBlockRootProof; uint64 blockRootIndex; uint64 historicalSummaryIndex; uint64 withdrawalIndex; bytes32 blockRoot; bytes32 slotRoot; bytes32 timestampRoot; bytes32 executionPayloadRoot; } /// @notice This struct contains the merkle proofs and leaves needed to verify a balance update struct BalanceUpdateProof { bytes validatorBalanceProof; bytes validatorFieldsProof; bytes32 balanceRoot; } /// @notice This struct contains the root and proof for verifying the state root against the oracle block root struct StateRootProof { bytes32 beaconStateRoot; bytes proof; } /** * * @notice This function is parses the balanceRoot to get the uint64 balance of a validator. During merkleization of the * beacon state balance tree, four uint64 values (making 32 bytes) are grouped together and treated as a single leaf in the merkle tree. Thus the * validatorIndex mod 4 is used to determine which of the four uint64 values to extract from the balanceRoot. * @param validatorIndex is the index of the validator being proven for. * @param balanceRoot is the combination of 4 validator balances being proven for. * @return The validator's balance, in Gwei */ function getBalanceFromBalanceRoot(uint40 validatorIndex, bytes32 balanceRoot) internal pure returns (uint64) { uint256 bitShiftAmount = (validatorIndex % 4) * 64; bytes32 validatorBalanceLittleEndian = bytes32((uint256(balanceRoot) << bitShiftAmount)); uint64 validatorBalance = Endian.fromLittleEndianUint64(validatorBalanceLittleEndian); return validatorBalance; } /** * @notice This function verifies merkle proofs of the fields of a certain validator against a beacon chain state root * @param validatorIndex the index of the proven validator * @param beaconStateRoot is the beacon chain state root to be proven against. * @param validatorFieldsProof is the data used in proving the validator's fields * @param validatorFields the claimed fields of the validator */ function verifyValidatorFields( bytes32 beaconStateRoot, bytes32[] calldata validatorFields, bytes calldata validatorFieldsProof, uint40 validatorIndex ) internal view { require( validatorFields.length == 2 ** VALIDATOR_FIELD_TREE_HEIGHT, "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length" ); /** * Note: the length of the validator merkle proof is BeaconChainProofs.VALIDATOR_TREE_HEIGHT + 1. * There is an additional layer added by hashing the root with the length of the validator list */ require( validatorFieldsProof.length == 32 * ((VALIDATOR_TREE_HEIGHT + 1) + BEACON_STATE_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length" ); uint256 index = (VALIDATOR_TREE_ROOT_INDEX << (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex); // merkleize the validatorFields to get the leaf to prove bytes32 validatorRoot = Merkle.merkleizeSha256(validatorFields); // verify the proof of the validatorRoot against the beaconStateRoot require( Merkle.verifyInclusionSha256({ proof: validatorFieldsProof, root: beaconStateRoot, leaf: validatorRoot, index: index }), "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof" ); } /** * @notice This function verifies merkle proofs of the balance of a certain validator against a beacon chain state root * @param validatorIndex the index of the proven validator * @param beaconStateRoot is the beacon chain state root to be proven against. * @param validatorBalanceProof is the proof of the balance against the beacon chain state root * @param balanceRoot is the serialized balance used to prove the balance of the validator (refer to `getBalanceFromBalanceRoot` above for detailed explanation) */ function verifyValidatorBalance( bytes32 beaconStateRoot, bytes32 balanceRoot, bytes calldata validatorBalanceProof, uint40 validatorIndex ) internal view { require( validatorBalanceProof.length == 32 * ((BALANCE_TREE_HEIGHT + 1) + BEACON_STATE_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyValidatorBalance: Proof has incorrect length" ); /** * the beacon state's balance list is a list of uint64 values, and these are grouped together in 4s when merkleized. * Therefore, the index of the balance of a validator is validatorIndex/4 */ uint256 balanceIndex = uint256(validatorIndex / 4); /** * Note: Merkleization of the balance root tree uses MerkleizeWithMixin, i.e., the length of the array is hashed with the root of * the array. Thus we shift the BALANCE_INDEX over by BALANCE_TREE_HEIGHT + 1 and not just BALANCE_TREE_HEIGHT. */ balanceIndex = (BALANCE_INDEX << (BALANCE_TREE_HEIGHT + 1)) | balanceIndex; require( Merkle.verifyInclusionSha256({ proof: validatorBalanceProof, root: beaconStateRoot, leaf: balanceRoot, index: balanceIndex }), "BeaconChainProofs.verifyValidatorBalance: Invalid merkle proof" ); } /** * @notice This function verifies the latestBlockHeader against the state root. the latestBlockHeader is * a tracked in the beacon state. * @param beaconStateRoot is the beacon chain state root to be proven against. * @param stateRootProof is the provided merkle proof * @param latestBlockRoot is hashtree root of the latest block header in the beacon state */ function verifyStateRootAgainstLatestBlockRoot( bytes32 latestBlockRoot, bytes32 beaconStateRoot, bytes calldata stateRootProof ) internal view { require( stateRootProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Proof has incorrect length" ); //Next we verify the slot against the blockRoot require( Merkle.verifyInclusionSha256({ proof: stateRootProof, root: latestBlockRoot, leaf: beaconStateRoot, index: STATE_ROOT_INDEX }), "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Invalid latest block header root merkle proof" ); } /** * @notice This function verifies the slot and the withdrawal fields for a given withdrawal * @param withdrawalProof is the provided set of merkle proofs * @param withdrawalFields is the serialized withdrawal container to be proven */ function verifyWithdrawal( bytes32 beaconStateRoot, bytes32[] calldata withdrawalFields, WithdrawalProof calldata withdrawalProof ) internal view { require( withdrawalFields.length == 2 ** WITHDRAWAL_FIELD_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: withdrawalFields has incorrect length" ); require( withdrawalProof.blockRootIndex < 2 ** BLOCK_ROOTS_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: blockRootIndex is too large" ); require( withdrawalProof.withdrawalIndex < 2 ** WITHDRAWALS_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: withdrawalIndex is too large" ); require( withdrawalProof.withdrawalProof.length == 32 * (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT + WITHDRAWALS_TREE_HEIGHT + 1), "BeaconChainProofs.verifyWithdrawal: withdrawalProof has incorrect length" ); require( withdrawalProof.executionPayloadProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT + BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyWithdrawal: executionPayloadProof has incorrect length" ); require( withdrawalProof.slotProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyWithdrawal: slotProof has incorrect length" ); require( withdrawalProof.timestampProof.length == 32 * (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyWithdrawal: timestampProof has incorrect length" ); require( withdrawalProof.historicalSummaryBlockRootProof.length == 32 * (BEACON_STATE_FIELD_TREE_HEIGHT + (HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT)), "BeaconChainProofs.verifyWithdrawal: historicalSummaryBlockRootProof has incorrect length" ); /** * Note: Here, the "1" in "1 + (BLOCK_ROOTS_TREE_HEIGHT)" signifies that extra step of choosing the "block_root_summary" within the individual * "historical_summary". Everywhere else it signifies merkelize_with_mixin, where the length of an array is hashed with the root of the array, * but not here. */ uint256 historicalBlockHeaderIndex = (HISTORICAL_SUMMARIES_INDEX << ((HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT))) | (uint256(withdrawalProof.historicalSummaryIndex) << (1 + (BLOCK_ROOTS_TREE_HEIGHT))) | (BLOCK_SUMMARY_ROOT_INDEX << (BLOCK_ROOTS_TREE_HEIGHT)) | uint256(withdrawalProof.blockRootIndex); require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.historicalSummaryBlockRootProof, root: beaconStateRoot, leaf: withdrawalProof.blockRoot, index: historicalBlockHeaderIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid historicalsummary merkle proof" ); //Next we verify the slot against the blockRoot require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.slotProof, root: withdrawalProof.blockRoot, leaf: withdrawalProof.slotRoot, index: SLOT_INDEX }), "BeaconChainProofs.verifyWithdrawal: Invalid slot merkle proof" ); { // Next we verify the executionPayloadRoot against the blockRoot uint256 executionPayloadIndex = (BODY_ROOT_INDEX << (BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT)) | EXECUTION_PAYLOAD_INDEX; require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.executionPayloadProof, root: withdrawalProof.blockRoot, leaf: withdrawalProof.executionPayloadRoot, index: executionPayloadIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid executionPayload merkle proof" ); } // Next we verify the timestampRoot against the executionPayload root require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.timestampProof, root: withdrawalProof.executionPayloadRoot, leaf: withdrawalProof.timestampRoot, index: TIMESTAMP_INDEX }), "BeaconChainProofs.verifyWithdrawal: Invalid blockNumber merkle proof" ); { /** * Next we verify the withdrawal fields against the blockRoot: * First we compute the withdrawal_index relative to the blockRoot by concatenating the indexes of all the * intermediate root indexes from the bottom of the sub trees (the withdrawal container) to the top, the blockRoot. * Then we calculate merkleize the withdrawalFields container to calculate the the withdrawalRoot. * Finally we verify the withdrawalRoot against the executionPayloadRoot. * * * Note: Merkleization of the withdrawals root tree uses MerkleizeWithMixin, i.e., the length of the array is hashed with the root of * the array. Thus we shift the WITHDRAWALS_INDEX over by WITHDRAWALS_TREE_HEIGHT + 1 and not just WITHDRAWALS_TREE_HEIGHT. */ uint256 withdrawalIndex = (WITHDRAWALS_INDEX << (WITHDRAWALS_TREE_HEIGHT + 1)) | uint256(withdrawalProof.withdrawalIndex); bytes32 withdrawalRoot = Merkle.merkleizeSha256(withdrawalFields); require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.withdrawalProof, root: withdrawalProof.executionPayloadRoot, leaf: withdrawalRoot, index: withdrawalIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid withdrawal merkle proof" ); } } /** * @notice This function replicates the ssz hashing of a validator's pubkey, outlined below: * hh := ssz.NewHasher() * hh.PutBytes(validatorPubkey[:]) * validatorPubkeyHash := hh.Hash() * hh.Reset() */ function hashValidatorBLSPubkey(bytes memory validatorPubkey) internal pure returns (bytes32 pubkeyHash) { require(validatorPubkey.length == 48, "Input should be 48 bytes in length"); return sha256(abi.encodePacked(validatorPubkey, bytes16(0))); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title Interface for the `PauserRegistry` contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IPauserRegistry { event PauserStatusChanged(address pauser, bool canPause); event UnpauserChanged(address previousUnpauser, address newUnpauser); /// @notice Mapping of addresses to whether they hold the pauser role. function isPauser(address pauser) external view returns (bool); /// @notice Unique address that holds the unpauser role. Capable of changing *both* the pauser and unpauser addresses. function unpauser() external view returns (address); }
// SPDX-License-Identifier: BUSL-1.1 // Adapted from OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library Merkle { /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * Note this is for a Merkle tree using the keccak/sha3 hash function */ function verifyInclusionKeccak( bytes memory proof, bytes32 root, bytes32 leaf, uint256 index ) internal pure returns (bool) { return processInclusionProofKeccak(proof, leaf, index) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * _Available since v4.4._ * * Note this is for a Merkle tree using the keccak/sha3 hash function */ function processInclusionProofKeccak( bytes memory proof, bytes32 leaf, uint256 index ) internal pure returns (bytes32) { require( proof.length != 0 && proof.length % 32 == 0, "Merkle.processInclusionProofKeccak: proof length should be a non-zero multiple of 32" ); bytes32 computedHash = leaf; for (uint256 i = 32; i <= proof.length; i += 32) { if (index % 2 == 0) { // if ith bit of index is 0, then computedHash is a left sibling assembly { mstore(0x00, computedHash) mstore(0x20, mload(add(proof, i))) computedHash := keccak256(0x00, 0x40) index := div(index, 2) } } else { // if ith bit of index is 1, then computedHash is a right sibling assembly { mstore(0x00, mload(add(proof, i))) mstore(0x20, computedHash) computedHash := keccak256(0x00, 0x40) index := div(index, 2) } } } return computedHash; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * Note this is for a Merkle tree using the sha256 hash function */ function verifyInclusionSha256( bytes memory proof, bytes32 root, bytes32 leaf, uint256 index ) internal view returns (bool) { return processInclusionProofSha256(proof, leaf, index) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * _Available since v4.4._ * * Note this is for a Merkle tree using the sha256 hash function */ function processInclusionProofSha256( bytes memory proof, bytes32 leaf, uint256 index ) internal view returns (bytes32) { require( proof.length != 0 && proof.length % 32 == 0, "Merkle.processInclusionProofSha256: proof length should be a non-zero multiple of 32" ); bytes32[1] memory computedHash = [leaf]; for (uint256 i = 32; i <= proof.length; i += 32) { if (index % 2 == 0) { // if ith bit of index is 0, then computedHash is a left sibling assembly { mstore(0x00, mload(computedHash)) mstore(0x20, mload(add(proof, i))) if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) { revert(0, 0) } index := div(index, 2) } } else { // if ith bit of index is 1, then computedHash is a right sibling assembly { mstore(0x00, mload(add(proof, i))) mstore(0x20, mload(computedHash)) if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) { revert(0, 0) } index := div(index, 2) } } } return computedHash[0]; } /** @notice this function returns the merkle root of a tree created from a set of leaves using sha256 as its hash function @param leaves the leaves of the merkle tree @return The computed Merkle root of the tree. @dev A pre-condition to this function is that leaves.length is a power of two. If not, the function will merkleize the inputs incorrectly. */ function merkleizeSha256(bytes32[] memory leaves) internal pure returns (bytes32) { //there are half as many nodes in the layer above the leaves uint256 numNodesInLayer = leaves.length / 2; //create a layer to store the internal nodes bytes32[] memory layer = new bytes32[](numNodesInLayer); //fill the layer with the pairwise hashes of the leaves for (uint i = 0; i < numNodesInLayer; i++) { layer[i] = sha256(abi.encodePacked(leaves[2 * i], leaves[2 * i + 1])); } //the next layer above has half as many nodes numNodesInLayer /= 2; //while we haven't computed the root while (numNodesInLayer != 0) { //overwrite the first numNodesInLayer nodes in layer with the pairwise hashes of their children for (uint i = 0; i < numNodesInLayer; i++) { layer[i] = sha256(abi.encodePacked(layer[2 * i], layer[2 * i + 1])); } //the next layer above has half as many nodes numNodesInLayer /= 2; } //the first node in the layer is the root return layer[0]; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; library Endian { /** * @notice Converts a little endian-formatted uint64 to a big endian-formatted uint64 * @param lenum little endian-formatted uint64 input, provided as 'bytes32' type * @return n The big endian-formatted uint64 * @dev Note that the input is formatted as a 'bytes32' type (i.e. 256 bits), but it is immediately truncated to a uint64 (i.e. 64 bits) * through a right-shift/shr operation. */ function fromLittleEndianUint64(bytes32 lenum) internal pure returns (uint64 n) { // the number needs to be stored in little-endian encoding (ie in bytes 0-8) n = uint64(uint256(lenum >> 192)); return (n >> 56) | ((0x00FF000000000000 & n) >> 40) | ((0x0000FF0000000000 & n) >> 24) | ((0x000000FF00000000 & n) >> 8) | ((0x00000000FF000000 & n) << 8) | ((0x0000000000FF0000 & n) << 24) | ((0x000000000000FF00 & n) << 40) | ((0x00000000000000FF & n) << 56); } }
{ "remappings": [ "ds-test/=lib/forge-std/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "murky/=lib/murky/src/", "@openzeppelin/=lib/openzeppelin-contracts/", "@openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "@uniswap/=lib/", "@eigenlayer/=lib/eigenlayer-contracts/src/", "@openzeppelin-upgrades/=lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/", "eigenlayer-contracts/=lib/eigenlayer-contracts/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "v3-core/=lib/v3-core/", "v3-periphery/=lib/v3-periphery/contracts/" ], "optimizer": { "enabled": true, "runs": 2000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"name":"IntegerOverflow","type":"error"},{"inputs":[{"internalType":"address","name":"_membershipManager","type":"address"},{"internalType":"address","name":"_liquidityPool","type":"address"},{"internalType":"uint256","name":"_ethRewardsPerEEthShareBeforeRebase","type":"uint256"},{"internalType":"uint256","name":"_ethRewardsPerEEthShareAfterRebase","type":"uint256"}],"name":"calculateGlobalIndex","outputs":[{"internalType":"uint96[]","name":"","type":"uint96[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tierRewards","type":"uint256[]"},{"internalType":"uint24[]","name":"tierWeights","type":"uint24[]"}],"name":"calculateRescaledTierRewards","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_membershipManager","type":"address"},{"internalType":"address","name":"_liquidityPool","type":"address"},{"internalType":"uint256","name":"_ethRewardsAmountPerEEthShare","type":"uint256"}],"name":"calculateRewardsPerTierV0","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint24[]","name":"","type":"uint24[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_membershipManager","type":"address"},{"internalType":"address","name":"_liquidityPool","type":"address"},{"internalType":"uint256","name":"_ethRewardsAmountPerEEthShare","type":"uint256"}],"name":"calculateRewardsPerTierV1","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint24[]","name":"","type":"uint24[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_membershipManager","type":"address"},{"internalType":"address","name":"_liquidityPool","type":"address"},{"internalType":"uint256","name":"_ethRewardsPerEEthShareBeforeRebase","type":"uint256"},{"internalType":"uint256","name":"_ethRewardsPerEEthShareAfterRebase","type":"uint256"}],"name":"calculateVaultEEthShares","outputs":[{"internalType":"uint128[]","name":"","type":"uint128[]"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
61148961003a600b82828239805160001a60731461002d57634e487b7160e01b600052600060045260246000fd5b30600052607381538281f3fe73000000000000000000000000000000000000000030146080604052600436106100715760003560e01c80632cdb89c11161005a5780632cdb89c1146100bf578063843bd23d146100e05780638c3a8aeb146100f357600080fd5b8063155cdcd314610076578063272798631461009f575b600080fd5b610089610084366004610e9d565b610113565b6040516100969190610edf565b60405180910390f35b6100b26100ad366004610e9d565b610443565b6040516100969190610f31565b6100d26100cd366004610f7b565b610736565b604051610096929190610ff2565b6100d26100ee366004610f7b565b6109ec565b61010661010136600461115f565b610ca0565b6040516100969190611218565b606084848484106000816101305761012b8787611248565b61013a565b61013a8688611248565b905060008061014a8b8b85610736565b91509150600061015a8383610ca0565b90506000815167ffffffffffffffff8111156101785761017861104e565b6040519080825280602002602001820160405280156101a1578160200160208202803683370190505b50905060005b8251811015610432576040517fefe141f40000000000000000000000000000000000000000000000000000000081526004810182905260009081906001600160a01b038c169063efe141f4906024016040805180830381865afa158015610212573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610236919061127f565b9150915060008060008d6001600160a01b0316637efab5f3876040518263ffffffff1660e01b815260040161026d91815260200190565b608060405180830381865afa15801561028a573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102ae91906112ce565b50925092509250828787815181106102c8576102c8611331565b6bffffffffffffffffffffffff909216602092830291909101909101526fffffffffffffffffffffffffffffffff84161561041a576000846fffffffffffffffffffffffffffffffff1689888151811061032457610324611331565b6020026020010151670de0b6b3a764000061033f9190611347565b6103499190611366565b90506bffffffffffffffffffffffff61036482868316611388565b111561039c576040517fa5bd5d7f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8c156103df57808888815181106103b5576103b5611331565b602002602001018181516103c991906113a0565b6bffffffffffffffffffffffff16905250610418565b808888815181106103f2576103f2611331565b6020026020010181815161040691906113cd565b6bffffffffffffffffffffffff169052505b505b5050505050808061042a906113fd565b9150506101a7565b509c9b505050505050505050505050565b606084848484106000816104605761045b8787611248565b61046a565b61046a8688611248565b905060008061047a8b8b856109ec565b91509150600061048a8383610ca0565b90506000876001600160a01b0316636e27a2e56040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104cc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f09190611417565b60ff1667ffffffffffffffff81111561050b5761050b61104e565b604051908082528060200260200182016040528015610534578160200160208202803683370190505b50905060005b8151811015610432576040517f0ec5a573000000000000000000000000000000000000000000000000000000008152600481018290526000906001600160a01b038b1690630ec5a573906024016040805180830381865afa1580156105a3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c7919061127f565b5090506000670de0b6b3a7640000826fffffffffffffffffffffffffffffffff168f6105f39190611347565b6105fd9190611366565b90508089156106325785848151811061061857610618611331565b60200260200101518161062b9190611248565b905061065a565b85848151811061064457610644611331565b6020026020010151816106579190611388565b90505b6040517f3a53acb0000000000000000000000000000000000000000000000000000000008152600481018290526001600160a01b038c1690633a53acb090602401602060405180830381865afa1580156106b8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106dc919061143a565b8585815181106106ee576106ee611331565b60200260200101906fffffffffffffffffffffffffffffffff1690816fffffffffffffffffffffffffffffffff1681525050505050808061072e906113fd565b91505061053a565b606080600085905060008590506000826001600160a01b0316636e27a2e56040518163ffffffff1660e01b8152600401602060405180830381865afa158015610783573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107a79190611417565b60ff16905060008167ffffffffffffffff8111156107c7576107c761104e565b6040519080825280602002602001820160405280156107f0578160200160208202803683370190505b50905060008267ffffffffffffffff81111561080e5761080e61104e565b604051908082528060200260200182016040528015610837578160200160208202803683370190505b50905060005b838110156109dc576040517fefe141f40000000000000000000000000000000000000000000000000000000081526004810182905260009081906001600160a01b0389169063efe141f4906024016040805180830381865afa1580156108a7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108cb919061127f565b9150915060008060008a6001600160a01b0316637efab5f3876040518263ffffffff1660e01b815260040161090291815260200190565b608060405180830381865afa15801561091f573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061094391906112ce565b50925092509250670de0b6b3a7640000846fffffffffffffffffffffffffffffffff168f6109719190611347565b61097b9190611366565b88878151811061098d5761098d611331565b602002602001018181525050808787815181106109ac576109ac611331565b602002602001019062ffffff16908162ffffff1681525050505050505080806109d4906113fd565b91505061083d565b5090999098509650505050505050565b606080600085905060008590506000826001600160a01b0316636e27a2e56040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a39573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a5d9190611417565b60ff16905060008167ffffffffffffffff811115610a7d57610a7d61104e565b604051908082528060200260200182016040528015610aa6578160200160208202803683370190505b50905060008267ffffffffffffffff811115610ac457610ac461104e565b604051908082528060200260200182016040528015610aed578160200160208202803683370190505b50905060005b838110156109dc576040517f0ec5a5730000000000000000000000000000000000000000000000000000000081526004810182905260009081906001600160a01b03891690630ec5a573906024016040805180830381865afa158015610b5d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b81919061127f565b6040517f7efab5f30000000000000000000000000000000000000000000000000000000081526004810186905291935091506000906001600160a01b038a1690637efab5f390602401608060405180830381865afa158015610be7573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c0b91906112ce565b5092505050670de0b6b3a7640000836fffffffffffffffffffffffffffffffff168d610c379190611347565b610c419190611366565b868581518110610c5357610c53611331565b60200260200101818152505080858581518110610c7257610c72611331565b602002602001019062ffffff16908162ffffff16815250505050508080610c98906113fd565b915050610af3565b60606000835167ffffffffffffffff811115610cbe57610cbe61104e565b604051908082528060200260200182016040528015610ce7578160200160208202803683370190505b5090506000845167ffffffffffffffff811115610d0657610d0661104e565b604051908082528060200260200182016040528015610d2f578160200160208202803683370190505b50905060008060005b8751811015610e0257878181518110610d5357610d53611331565b6020026020010151878281518110610d6d57610d6d611331565b602002602001015162ffffff16610d849190611347565b858281518110610d9657610d96611331565b602002602001018181525050878181518110610db457610db4611331565b602002602001015183610dc79190611388565b9250848181518110610ddb57610ddb611331565b602002602001015182610dee9190611388565b915080610dfa816113fd565b915050610d38565b508015610e765760005b8751811015610e74578183868381518110610e2957610e29611331565b6020026020010151610e3b9190611347565b610e459190611366565b848281518110610e5757610e57611331565b602090810291909101015280610e6c816113fd565b915050610e0c565b505b509095945050505050565b80356001600160a01b0381168114610e9857600080fd5b919050565b60008060008060808587031215610eb357600080fd5b610ebc85610e81565b9350610eca60208601610e81565b93969395505050506040820135916060013590565b6020808252825182820181905260009190848201906040850190845b81811015610f255783516bffffffffffffffffffffffff1683529284019291840191600101610efb565b50909695505050505050565b6020808252825182820181905260009190848201906040850190845b81811015610f255783516fffffffffffffffffffffffffffffffff1683529284019291840191600101610f4d565b600080600060608486031215610f9057600080fd5b610f9984610e81565b9250610fa760208501610e81565b9150604084013590509250925092565b600081518084526020808501945080840160005b83811015610fe757815187529582019590820190600101610fcb565b509495945050505050565b6040815260006110056040830185610fb7565b82810360208481019190915284518083528582019282019060005b8181101561104157845162ffffff1683529383019391830191600101611020565b5090979650505050505050565b634e487b7160e01b600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff811182821017156110ab576110ab61104e565b604052919050565b600067ffffffffffffffff8211156110cd576110cd61104e565b5060051b60200190565b62ffffff811681146110e857600080fd5b50565b600082601f8301126110fc57600080fd5b8135602061111161110c836110b3565b611064565b82815260059290921b8401810191818101908684111561113057600080fd5b8286015b84811015611154578035611147816110d7565b8352918301918301611134565b509695505050505050565b6000806040838503121561117257600080fd5b823567ffffffffffffffff8082111561118a57600080fd5b818501915085601f83011261119e57600080fd5b813560206111ae61110c836110b3565b82815260059290921b840181019181810190898411156111cd57600080fd5b948201945b838610156111eb578535825294820194908201906111d2565b9650508601359250508082111561120157600080fd5b5061120e858286016110eb565b9150509250929050565b60208152600061122b6020830184610fb7565b9392505050565b634e487b7160e01b600052601160045260246000fd5b60008282101561125a5761125a611232565b500390565b80516fffffffffffffffffffffffffffffffff81168114610e9857600080fd5b6000806040838503121561129257600080fd5b61129b8361125f565b91506112a96020840161125f565b90509250929050565b80516bffffffffffffffffffffffff81168114610e9857600080fd5b600080600080608085870312156112e457600080fd5b6112ed856112b2565b9350602085015164ffffffffff8116811461130757600080fd5b6040860151909350611318816110d7565b9150611326606086016112b2565b905092959194509250565b634e487b7160e01b600052603260045260246000fd5b600081600019048311821515161561136157611361611232565b500290565b60008261138357634e487b7160e01b600052601260045260246000fd5b500490565b6000821982111561139b5761139b611232565b500190565b60006bffffffffffffffffffffffff838116908316818110156113c5576113c5611232565b039392505050565b60006bffffffffffffffffffffffff8083168185168083038211156113f4576113f4611232565b01949350505050565b6000600019820361141057611410611232565b5060010190565b60006020828403121561142957600080fd5b815160ff8116811461122b57600080fd5b60006020828403121561144c57600080fd5b505191905056fea264697066735822122090c60bd8110029c4bf27ec64384571b37180a64405fdf0fe95037961ad1241fa64736f6c634300080d0033
Deployed Bytecode
0x73325ea059f11d6860e50a803ae52d49ef35c85fb930146080604052600436106100715760003560e01c80632cdb89c11161005a5780632cdb89c1146100bf578063843bd23d146100e05780638c3a8aeb146100f357600080fd5b8063155cdcd314610076578063272798631461009f575b600080fd5b610089610084366004610e9d565b610113565b6040516100969190610edf565b60405180910390f35b6100b26100ad366004610e9d565b610443565b6040516100969190610f31565b6100d26100cd366004610f7b565b610736565b604051610096929190610ff2565b6100d26100ee366004610f7b565b6109ec565b61010661010136600461115f565b610ca0565b6040516100969190611218565b606084848484106000816101305761012b8787611248565b61013a565b61013a8688611248565b905060008061014a8b8b85610736565b91509150600061015a8383610ca0565b90506000815167ffffffffffffffff8111156101785761017861104e565b6040519080825280602002602001820160405280156101a1578160200160208202803683370190505b50905060005b8251811015610432576040517fefe141f40000000000000000000000000000000000000000000000000000000081526004810182905260009081906001600160a01b038c169063efe141f4906024016040805180830381865afa158015610212573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610236919061127f565b9150915060008060008d6001600160a01b0316637efab5f3876040518263ffffffff1660e01b815260040161026d91815260200190565b608060405180830381865afa15801561028a573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102ae91906112ce565b50925092509250828787815181106102c8576102c8611331565b6bffffffffffffffffffffffff909216602092830291909101909101526fffffffffffffffffffffffffffffffff84161561041a576000846fffffffffffffffffffffffffffffffff1689888151811061032457610324611331565b6020026020010151670de0b6b3a764000061033f9190611347565b6103499190611366565b90506bffffffffffffffffffffffff61036482868316611388565b111561039c576040517fa5bd5d7f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8c156103df57808888815181106103b5576103b5611331565b602002602001018181516103c991906113a0565b6bffffffffffffffffffffffff16905250610418565b808888815181106103f2576103f2611331565b6020026020010181815161040691906113cd565b6bffffffffffffffffffffffff169052505b505b5050505050808061042a906113fd565b9150506101a7565b509c9b505050505050505050505050565b606084848484106000816104605761045b8787611248565b61046a565b61046a8688611248565b905060008061047a8b8b856109ec565b91509150600061048a8383610ca0565b90506000876001600160a01b0316636e27a2e56040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104cc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f09190611417565b60ff1667ffffffffffffffff81111561050b5761050b61104e565b604051908082528060200260200182016040528015610534578160200160208202803683370190505b50905060005b8151811015610432576040517f0ec5a573000000000000000000000000000000000000000000000000000000008152600481018290526000906001600160a01b038b1690630ec5a573906024016040805180830381865afa1580156105a3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c7919061127f565b5090506000670de0b6b3a7640000826fffffffffffffffffffffffffffffffff168f6105f39190611347565b6105fd9190611366565b90508089156106325785848151811061061857610618611331565b60200260200101518161062b9190611248565b905061065a565b85848151811061064457610644611331565b6020026020010151816106579190611388565b90505b6040517f3a53acb0000000000000000000000000000000000000000000000000000000008152600481018290526001600160a01b038c1690633a53acb090602401602060405180830381865afa1580156106b8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106dc919061143a565b8585815181106106ee576106ee611331565b60200260200101906fffffffffffffffffffffffffffffffff1690816fffffffffffffffffffffffffffffffff1681525050505050808061072e906113fd565b91505061053a565b606080600085905060008590506000826001600160a01b0316636e27a2e56040518163ffffffff1660e01b8152600401602060405180830381865afa158015610783573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107a79190611417565b60ff16905060008167ffffffffffffffff8111156107c7576107c761104e565b6040519080825280602002602001820160405280156107f0578160200160208202803683370190505b50905060008267ffffffffffffffff81111561080e5761080e61104e565b604051908082528060200260200182016040528015610837578160200160208202803683370190505b50905060005b838110156109dc576040517fefe141f40000000000000000000000000000000000000000000000000000000081526004810182905260009081906001600160a01b0389169063efe141f4906024016040805180830381865afa1580156108a7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108cb919061127f565b9150915060008060008a6001600160a01b0316637efab5f3876040518263ffffffff1660e01b815260040161090291815260200190565b608060405180830381865afa15801561091f573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061094391906112ce565b50925092509250670de0b6b3a7640000846fffffffffffffffffffffffffffffffff168f6109719190611347565b61097b9190611366565b88878151811061098d5761098d611331565b602002602001018181525050808787815181106109ac576109ac611331565b602002602001019062ffffff16908162ffffff1681525050505050505080806109d4906113fd565b91505061083d565b5090999098509650505050505050565b606080600085905060008590506000826001600160a01b0316636e27a2e56040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a39573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a5d9190611417565b60ff16905060008167ffffffffffffffff811115610a7d57610a7d61104e565b604051908082528060200260200182016040528015610aa6578160200160208202803683370190505b50905060008267ffffffffffffffff811115610ac457610ac461104e565b604051908082528060200260200182016040528015610aed578160200160208202803683370190505b50905060005b838110156109dc576040517f0ec5a5730000000000000000000000000000000000000000000000000000000081526004810182905260009081906001600160a01b03891690630ec5a573906024016040805180830381865afa158015610b5d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b81919061127f565b6040517f7efab5f30000000000000000000000000000000000000000000000000000000081526004810186905291935091506000906001600160a01b038a1690637efab5f390602401608060405180830381865afa158015610be7573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c0b91906112ce565b5092505050670de0b6b3a7640000836fffffffffffffffffffffffffffffffff168d610c379190611347565b610c419190611366565b868581518110610c5357610c53611331565b60200260200101818152505080858581518110610c7257610c72611331565b602002602001019062ffffff16908162ffffff16815250505050508080610c98906113fd565b915050610af3565b60606000835167ffffffffffffffff811115610cbe57610cbe61104e565b604051908082528060200260200182016040528015610ce7578160200160208202803683370190505b5090506000845167ffffffffffffffff811115610d0657610d0661104e565b604051908082528060200260200182016040528015610d2f578160200160208202803683370190505b50905060008060005b8751811015610e0257878181518110610d5357610d53611331565b6020026020010151878281518110610d6d57610d6d611331565b602002602001015162ffffff16610d849190611347565b858281518110610d9657610d96611331565b602002602001018181525050878181518110610db457610db4611331565b602002602001015183610dc79190611388565b9250848181518110610ddb57610ddb611331565b602002602001015182610dee9190611388565b915080610dfa816113fd565b915050610d38565b508015610e765760005b8751811015610e74578183868381518110610e2957610e29611331565b6020026020010151610e3b9190611347565b610e459190611366565b848281518110610e5757610e57611331565b602090810291909101015280610e6c816113fd565b915050610e0c565b505b509095945050505050565b80356001600160a01b0381168114610e9857600080fd5b919050565b60008060008060808587031215610eb357600080fd5b610ebc85610e81565b9350610eca60208601610e81565b93969395505050506040820135916060013590565b6020808252825182820181905260009190848201906040850190845b81811015610f255783516bffffffffffffffffffffffff1683529284019291840191600101610efb565b50909695505050505050565b6020808252825182820181905260009190848201906040850190845b81811015610f255783516fffffffffffffffffffffffffffffffff1683529284019291840191600101610f4d565b600080600060608486031215610f9057600080fd5b610f9984610e81565b9250610fa760208501610e81565b9150604084013590509250925092565b600081518084526020808501945080840160005b83811015610fe757815187529582019590820190600101610fcb565b509495945050505050565b6040815260006110056040830185610fb7565b82810360208481019190915284518083528582019282019060005b8181101561104157845162ffffff1683529383019391830191600101611020565b5090979650505050505050565b634e487b7160e01b600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff811182821017156110ab576110ab61104e565b604052919050565b600067ffffffffffffffff8211156110cd576110cd61104e565b5060051b60200190565b62ffffff811681146110e857600080fd5b50565b600082601f8301126110fc57600080fd5b8135602061111161110c836110b3565b611064565b82815260059290921b8401810191818101908684111561113057600080fd5b8286015b84811015611154578035611147816110d7565b8352918301918301611134565b509695505050505050565b6000806040838503121561117257600080fd5b823567ffffffffffffffff8082111561118a57600080fd5b818501915085601f83011261119e57600080fd5b813560206111ae61110c836110b3565b82815260059290921b840181019181810190898411156111cd57600080fd5b948201945b838610156111eb578535825294820194908201906111d2565b9650508601359250508082111561120157600080fd5b5061120e858286016110eb565b9150509250929050565b60208152600061122b6020830184610fb7565b9392505050565b634e487b7160e01b600052601160045260246000fd5b60008282101561125a5761125a611232565b500390565b80516fffffffffffffffffffffffffffffffff81168114610e9857600080fd5b6000806040838503121561129257600080fd5b61129b8361125f565b91506112a96020840161125f565b90509250929050565b80516bffffffffffffffffffffffff81168114610e9857600080fd5b600080600080608085870312156112e457600080fd5b6112ed856112b2565b9350602085015164ffffffffff8116811461130757600080fd5b6040860151909350611318816110d7565b9150611326606086016112b2565b905092959194509250565b634e487b7160e01b600052603260045260246000fd5b600081600019048311821515161561136157611361611232565b500290565b60008261138357634e487b7160e01b600052601260045260246000fd5b500490565b6000821982111561139b5761139b611232565b500190565b60006bffffffffffffffffffffffff838116908316818110156113c5576113c5611232565b039392505050565b60006bffffffffffffffffffffffff8083168185168083038211156113f4576113f4611232565b01949350505050565b6000600019820361141057611410611232565b5060010190565b60006020828403121561142957600080fd5b815160ff8116811461122b57600080fd5b60006020828403121561144c57600080fd5b505191905056fea264697066735822122090c60bd8110029c4bf27ec64384571b37180a64405fdf0fe95037961ad1241fa64736f6c634300080d0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.