ETH Price: $3,892.59 (+0.21%)

Contract

0x33baeDa08b8afACc4d3d07cf31d49FC1F1f3E893
 

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Approve205830082024-08-22 8:39:47115 days ago1724315987IN
0x33baeDa0...1F1f3E893
0 ETH0.000023940.9
Approve205830082024-08-22 8:39:47115 days ago1724315987IN
0x33baeDa0...1F1f3E893
0 ETH0.000023940.9
Approve205766372024-08-21 11:15:47116 days ago1724238947IN
0x33baeDa0...1F1f3E893
0 ETH0.00002761.0374747
Approve203735652024-07-24 2:58:35144 days ago1721789915IN
0x33baeDa0...1F1f3E893
0 ETH0.000058512.19886514
Approve203217322024-07-16 21:22:23151 days ago1721164943IN
0x33baeDa0...1F1f3E893
0 ETH0.0003542213.31126458
Approve203217322024-07-16 21:22:23151 days ago1721164943IN
0x33baeDa0...1F1f3E893
0 ETH0.0003542213.31126458
Approve203217302024-07-16 21:21:59151 days ago1721164919IN
0x33baeDa0...1F1f3E893
0 ETH0.0003774614.18470763
Approve198970652024-05-18 13:15:59211 days ago1716038159IN
0x33baeDa0...1F1f3E893
0 ETH0.000169833.4922809
Approve198374142024-05-10 5:01:23219 days ago1715317283IN
0x33baeDa0...1F1f3E893
0 ETH0.00013435.04694293
Approve198374142024-05-10 5:01:23219 days ago1715317283IN
0x33baeDa0...1F1f3E893
0 ETH0.00013435.04694293
Approve195018612024-03-24 3:52:23266 days ago1711252343IN
0x33baeDa0...1F1f3E893
0 ETH0.0006815213.93852349
Approve194481192024-03-16 14:42:59274 days ago1710600179IN
0x33baeDa0...1F1f3E893
0 ETH0.0018036536.88837661
Approve192661952024-02-20 3:19:35299 days ago1708399175IN
0x33baeDa0...1F1f3E893
0 ETH0.0010810522.10972547
Approve190629292024-01-22 14:42:11328 days ago1705934531IN
0x33baeDa0...1F1f3E893
0 ETH0.0009661919.87766041
Approve189401962024-01-05 9:30:11345 days ago1704447011IN
0x33baeDa0...1F1f3E893
0 ETH0.000728314.97985461
Approve188315912023-12-21 3:32:35360 days ago1703129555IN
0x33baeDa0...1F1f3E893
0 ETH0.0017329635.4424918
Approve187933912023-12-15 18:46:35365 days ago1702665995IN
0x33baeDa0...1F1f3E893
0 ETH0.0022006845.0083942
Approve187525292023-12-10 1:27:11371 days ago1702171631IN
0x33baeDa0...1F1f3E893
0 ETH0.0011229623.10288946
Approve187517202023-12-09 22:44:23371 days ago1702161863IN
0x33baeDa0...1F1f3E893
0 ETH0.0012473825.5115358
Transfer187511362023-12-09 20:46:35371 days ago1702154795IN
0x33baeDa0...1F1f3E893
0 ETH0.0012199424.92233733
Exchange_underly...186315162023-11-23 2:41:11388 days ago1700707271IN
0x33baeDa0...1F1f3E893
0 ETH0.0071392532.27291501
Remove_liquidity...186270122023-11-22 11:35:11389 days ago1700652911IN
0x33baeDa0...1F1f3E893
0 ETH0.0032222525
Approve186268412023-11-22 11:00:23389 days ago1700650823IN
0x33baeDa0...1F1f3E893
0 ETH0.0012151725
Approve184151072023-10-23 19:39:11418 days ago1698089951IN
0x33baeDa0...1F1f3E893
0 ETH0.001955840
Remove_liquidity...184126182023-10-23 11:17:47419 days ago1698059867IN
0x33baeDa0...1F1f3E893
0 ETH0.0018929114.30025982
View all transactions

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block
From
To
150751822022-07-04 9:26:51895 days ago1656926811  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x33bb0e62d5e8c688e645dd46dfb48cd613250067

Contract Name:
Vyper_contract

Compiler Version
vyper:0.3.1

Optimization Enabled:
N/A

Other Settings:
default evmVersion, None license

Contract Source Code (Vyper language format)

# @version 0.3.1
"""
@title StableSwap
@author Curve.Fi
@license Copyright (c) Curve.Fi, 2020-2021 - all rights reserved
@notice 3pool metapool implementation contract
@dev ERC20 support for return True/revert, return True/False, return None
"""

interface ERC20:
    def approve(_spender: address, _amount: uint256): nonpayable
    def balanceOf(_owner: address) -> uint256: view

interface Curve:
    def coins(i: uint256) -> address: view
    def get_virtual_price() -> uint256: view
    def calc_token_amount(amounts: uint256[BASE_N_COINS], deposit: bool) -> uint256: view
    def calc_withdraw_one_coin(_token_amount: uint256, i: int128) -> uint256: view
    def fee() -> uint256: view
    def get_dy(i: int128, j: int128, dx: uint256) -> uint256: view
    def exchange(i: int128, j: int128, dx: uint256, min_dy: uint256): nonpayable
    def add_liquidity(amounts: uint256[BASE_N_COINS], min_mint_amount: uint256): nonpayable
    def remove_liquidity_one_coin(_token_amount: uint256, i: int128, min_amount: uint256): nonpayable

interface Factory:
    def convert_metapool_fees() -> bool: nonpayable
    def get_fee_receiver(_pool: address) -> address: view
    def admin() -> address: view

interface ERC1271:
    def isValidSignature(_hash: bytes32, _signature: Bytes[65]) -> bytes32: view


event Transfer:
    sender: indexed(address)
    receiver: indexed(address)
    value: uint256

event Approval:
    owner: indexed(address)
    spender: indexed(address)
    value: uint256

event TokenExchange:
    buyer: indexed(address)
    sold_id: int128
    tokens_sold: uint256
    bought_id: int128
    tokens_bought: uint256

event TokenExchangeUnderlying:
    buyer: indexed(address)
    sold_id: int128
    tokens_sold: uint256
    bought_id: int128
    tokens_bought: uint256

event AddLiquidity:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    fees: uint256[N_COINS]
    invariant: uint256
    token_supply: uint256

event RemoveLiquidity:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    fees: uint256[N_COINS]
    token_supply: uint256

event RemoveLiquidityOne:
    provider: indexed(address)
    token_amount: uint256
    coin_amount: uint256
    token_supply: uint256

event RemoveLiquidityImbalance:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    fees: uint256[N_COINS]
    invariant: uint256
    token_supply: uint256

event RampA:
    old_A: uint256
    new_A: uint256
    initial_time: uint256
    future_time: uint256

event StopRampA:
    A: uint256
    t: uint256


BASE_POOL: constant(address) = 0xDcEF968d416a41Cdac0ED8702fAC8128A64241A2
BASE_N_COINS: constant(int128) = 2
BASE_COINS: constant(address[BASE_N_COINS]) = [0x853d955aCEf822Db058eb8505911ED77F175b99e, 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48]

BASE_LP_TOKEN: constant(address) = 0x3175Df0976dFA876431C2E9eE6Bc45b65d3473CC

N_COINS: constant(int128) = 2
MAX_COIN: constant(int128) = N_COINS - 1
PRECISION: constant(uint256) = 10 ** 18

FEE_DENOMINATOR: constant(uint256) = 10 ** 10
ADMIN_FEE: constant(uint256) = 5000000000

A_PRECISION: constant(uint256) = 100
MAX_A: constant(uint256) = 10 ** 6
MAX_A_CHANGE: constant(uint256) = 10
MIN_RAMP_TIME: constant(uint256) = 86400

EIP712_TYPEHASH: constant(bytes32) = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
PERMIT_TYPEHASH: constant(bytes32) = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")

# keccak256("isValidSignature(bytes32,bytes)")[:4] << 224
ERC1271_MAGIC_VAL: constant(bytes32) = 0x1626ba7e00000000000000000000000000000000000000000000000000000000
VERSION: constant(String[8]) = "v5.0.0"


factory: address

coins: public(address[N_COINS])
balances: public(uint256[N_COINS])
fee: public(uint256)  # fee * 1e10

initial_A: public(uint256)
future_A: public(uint256)
initial_A_time: public(uint256)
future_A_time: public(uint256)

rate_multiplier: uint256

name: public(String[64])
symbol: public(String[32])

balanceOf: public(HashMap[address, uint256])
allowance: public(HashMap[address, HashMap[address, uint256]])
totalSupply: public(uint256)

DOMAIN_SEPARATOR: public(bytes32)
nonces: public(HashMap[address, uint256])


@external
def __init__():
    # we do this to prevent the implementation contract from being used as a pool
    self.fee = 31337


@external
def initialize(
    _name: String[32],
    _symbol: String[10],
    _coin: address,
    _rate_multiplier: uint256,
    _A: uint256,
    _fee: uint256
):
    """
    @notice Contract initializer
    @param _name Name of the new pool
    @param _symbol Token symbol
    @param _coin Addresses of ERC20 conracts of coins
    @param _rate_multiplier Rate multiplier for `_coin` (10 ** (36 - decimals))
    @param _A Amplification coefficient multiplied by n ** (n - 1)
    @param _fee Fee to charge for exchanges
    """
    # check if fee was already set to prevent initializing contract twice
    assert self.fee == 0

    A: uint256 = _A * A_PRECISION
    self.coins = [_coin, BASE_LP_TOKEN]
    self.rate_multiplier = _rate_multiplier
    self.initial_A = A
    self.future_A = A
    self.fee = _fee
    self.factory = msg.sender

    name: String[64] = concat("Curve.fi Factory USD Metapool: ", _name)
    self.name = name
    self.symbol = concat(_symbol, "3CRV-f")

    for coin in BASE_COINS:
        ERC20(coin).approve(BASE_POOL, MAX_UINT256)

    self.DOMAIN_SEPARATOR = keccak256(
        _abi_encode(EIP712_TYPEHASH, keccak256(name), keccak256(VERSION), chain.id, self)
    )

    # fire a transfer event so block explorers identify the contract as an ERC20
    log Transfer(ZERO_ADDRESS, self, 0)


### ERC20 Functionality ###

@view
@external
def decimals() -> uint256:
    """
    @notice Get the number of decimals for this token
    @dev Implemented as a view method to reduce gas costs
    @return uint256 decimal places
    """
    return 18


@internal
def _transfer(_from: address, _to: address, _value: uint256):
    # # NOTE: vyper does not allow underflows
    # #       so the following subtraction would revert on insufficient balance
    self.balanceOf[_from] -= _value
    self.balanceOf[_to] += _value

    log Transfer(_from, _to, _value)


@external
def transfer(_to : address, _value : uint256) -> bool:
    """
    @dev Transfer token for a specified address
    @param _to The address to transfer to.
    @param _value The amount to be transferred.
    """
    self._transfer(msg.sender, _to, _value)
    return True


@external
def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
    """
     @dev Transfer tokens from one address to another.
     @param _from address The address which you want to send tokens from
     @param _to address The address which you want to transfer to
     @param _value uint256 the amount of tokens to be transferred
    """
    self._transfer(_from, _to, _value)

    _allowance: uint256 = self.allowance[_from][msg.sender]
    if _allowance != MAX_UINT256:
        self.allowance[_from][msg.sender] = _allowance - _value

    return True


@external
def approve(_spender : address, _value : uint256) -> bool:
    """
    @notice Approve the passed address to transfer the specified amount of
            tokens on behalf of msg.sender
    @dev Beware that changing an allowance via this method brings the risk that
         someone may use both the old and new allowance by unfortunate transaction
         ordering: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
    @param _spender The address which will transfer the funds
    @param _value The amount of tokens that may be transferred
    @return bool success
    """
    self.allowance[msg.sender][_spender] = _value

    log Approval(msg.sender, _spender, _value)
    return True


@external
def permit(
    _owner: address,
    _spender: address,
    _value: uint256,
    _deadline: uint256,
    _v: uint8,
    _r: bytes32,
    _s: bytes32
) -> bool:
    """
    @notice Approves spender by owner's signature to expend owner's tokens.
        See https://eips.ethereum.org/EIPS/eip-2612.
    @dev Inspired by https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L753-L793
    @dev Supports smart contract wallets which implement ERC1271
        https://eips.ethereum.org/EIPS/eip-1271
    @param _owner The address which is a source of funds and has signed the Permit.
    @param _spender The address which is allowed to spend the funds.
    @param _value The amount of tokens to be spent.
    @param _deadline The timestamp after which the Permit is no longer valid.
    @param _v The bytes[64] of the valid secp256k1 signature of permit by owner
    @param _r The bytes[0:32] of the valid secp256k1 signature of permit by owner
    @param _s The bytes[32:64] of the valid secp256k1 signature of permit by owner
    @return True, if transaction completes successfully
    """
    assert _owner != ZERO_ADDRESS
    assert block.timestamp <= _deadline

    nonce: uint256 = self.nonces[_owner]
    digest: bytes32 = keccak256(
        concat(
            b"\x19\x01",
            self.DOMAIN_SEPARATOR,
            keccak256(_abi_encode(PERMIT_TYPEHASH, _owner, _spender, _value, nonce, _deadline))
        )
    )

    if _owner.is_contract:
        sig: Bytes[65] = concat(_abi_encode(_r, _s), slice(convert(_v, bytes32), 31, 1))
        # reentrancy not a concern since this is a staticcall
        assert ERC1271(_owner).isValidSignature(digest, sig) == ERC1271_MAGIC_VAL
    else:
        assert ecrecover(digest, convert(_v, uint256), convert(_r, uint256), convert(_s, uint256)) == _owner

    self.allowance[_owner][_spender] = _value
    self.nonces[_owner] = nonce + 1

    log Approval(_owner, _spender, _value)
    return True


### StableSwap Functionality ###

@view
@internal
def _A() -> uint256:
    """
    Handle ramping A up or down
    """
    t1: uint256 = self.future_A_time
    A1: uint256 = self.future_A

    if block.timestamp < t1:
        A0: uint256 = self.initial_A
        t0: uint256 = self.initial_A_time
        # Expressions in uint256 cannot have negative numbers, thus "if"
        if A1 > A0:
            return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
        else:
            return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0)

    else:  # when t1 == 0 or block.timestamp >= t1
        return A1


@view
@external
def admin_fee() -> uint256:
    return ADMIN_FEE


@view
@external
def A() -> uint256:
    return self._A() / A_PRECISION


@view
@external
def A_precise() -> uint256:
    return self._A()


@pure
@internal
def _xp_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256[N_COINS]:
    result: uint256[N_COINS] = empty(uint256[N_COINS])
    for i in range(N_COINS):
        result[i] = _rates[i] * _balances[i] / PRECISION
    return result


@pure
@internal
def get_D(_xp: uint256[N_COINS], _amp: uint256) -> uint256:
    """
    D invariant calculation in non-overflowing integer operations
    iteratively

    A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) / (n**n * prod(x_i))

    Converging solution:
    D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) / (n**n prod(x_i))) / (A * n**n - 1)
    """
    S: uint256 = 0
    Dprev: uint256 = 0
    for x in _xp:
        S += x
    if S == 0:
        return 0

    D: uint256 = S
    Ann: uint256 = _amp * N_COINS
    for i in range(255):
        D_P: uint256 = D
        for x in _xp:
            D_P = D_P * D / (x * N_COINS)  # If division by 0, this will be borked: only withdrawal will work. And that is good
        Dprev = D
        D = (Ann * S / A_PRECISION + D_P * N_COINS) * D / ((Ann - A_PRECISION) * D / A_PRECISION + (N_COINS + 1) * D_P)
        # Equality with the precision of 1
        if D > Dprev:
            if D - Dprev <= 1:
                return D
        else:
            if Dprev - D <= 1:
                return D
    # convergence typically occurs in 4 rounds or less, this should be unreachable!
    # if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
    raise


@view
@internal
def get_D_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS], _amp: uint256) -> uint256:
    xp: uint256[N_COINS] = self._xp_mem(_rates, _balances)
    return self.get_D(xp, _amp)


@view
@external
def get_virtual_price() -> uint256:
    """
    @notice The current virtual price of the pool LP token
    @dev Useful for calculating profits
    @return LP token virtual price normalized to 1e18
    """
    amp: uint256 = self._A()
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]
    xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)
    D: uint256 = self.get_D(xp, amp)
    # D is in the units similar to DAI (e.g. converted to precision 1e18)
    # When balanced, D = n * x_u - total virtual value of the portfolio
    return D * PRECISION / self.totalSupply


@view
@external
def calc_token_amount(_amounts: uint256[N_COINS], _is_deposit: bool) -> uint256:
    """
    @notice Calculate addition or reduction in token supply from a deposit or withdrawal
    @dev This calculation accounts for slippage, but not fees.
         Needed to prevent front-running, not for precise calculations!
    @param _amounts Amount of each coin being deposited
    @param _is_deposit set True for deposits, False for withdrawals
    @return Expected amount of LP tokens received
    """
    amp: uint256 = self._A()
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]
    balances: uint256[N_COINS] = self.balances

    D0: uint256 = self.get_D_mem(rates, balances, amp)
    for i in range(N_COINS):
        amount: uint256 = _amounts[i]
        if _is_deposit:
            balances[i] += amount
        else:
            balances[i] -= amount
    D1: uint256 = self.get_D_mem(rates, balances, amp)
    diff: uint256 = 0
    if _is_deposit:
        diff = D1 - D0
    else:
        diff = D0 - D1
    return diff * self.totalSupply / D0


@external
@nonreentrant('lock')
def add_liquidity(
    _amounts: uint256[N_COINS],
    _min_mint_amount: uint256,
    _receiver: address = msg.sender
) -> uint256:
    """
    @notice Deposit coins into the pool
    @param _amounts List of amounts of coins to deposit
    @param _min_mint_amount Minimum amount of LP tokens to mint from the deposit
    @param _receiver Address that owns the minted LP tokens
    @return Amount of LP tokens received by depositing
    """
    amp: uint256 = self._A()
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]

    # Initial invariant
    old_balances: uint256[N_COINS] = self.balances
    D0: uint256 = self.get_D_mem(rates, old_balances, amp)
    new_balances: uint256[N_COINS] = old_balances

    total_supply: uint256 = self.totalSupply
    for i in range(N_COINS):
        amount: uint256 = _amounts[i]
        if amount == 0:
            assert total_supply > 0
        else:
            response: Bytes[32] = raw_call(
                self.coins[i],
                _abi_encode(
                    msg.sender,
                    self,
                    amount,
                    method_id=method_id("transferFrom(address,address,uint256)")
                ),
                max_outsize=32,
            )
            if len(response) > 0:
                assert convert(response, bool)
            new_balances[i] += amount

    # Invariant after change
    D1: uint256 = self.get_D_mem(rates, new_balances, amp)
    assert D1 > D0

    # We need to recalculate the invariant accounting for fees
    # to calculate fair user's share
    fees: uint256[N_COINS] = empty(uint256[N_COINS])
    mint_amount: uint256 = 0
    if total_supply > 0:
        # Only account for fees if we are not the first to deposit
        base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
        for i in range(N_COINS):
            ideal_balance: uint256 = D1 * old_balances[i] / D0
            difference: uint256 = 0
            new_balance: uint256 = new_balances[i]
            if ideal_balance > new_balance:
                difference = ideal_balance - new_balance
            else:
                difference = new_balance - ideal_balance
            fees[i] = base_fee * difference / FEE_DENOMINATOR
            self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
            new_balances[i] -= fees[i]
        D2: uint256 = self.get_D_mem(rates, new_balances, amp)
        mint_amount = total_supply * (D2 - D0) / D0
    else:
        self.balances = new_balances
        mint_amount = D1  # Take the dust if there was any

    assert mint_amount >= _min_mint_amount

    # Mint pool tokens
    total_supply += mint_amount
    self.balanceOf[_receiver] += mint_amount
    self.totalSupply = total_supply
    log Transfer(ZERO_ADDRESS, _receiver, mint_amount)
    log AddLiquidity(msg.sender, _amounts, fees, D1, total_supply)

    return mint_amount


@view
@internal
def get_y(i: int128, j: int128, x: uint256, xp: uint256[N_COINS]) -> uint256:
    # x in the input is converted to the same price/precision

    assert i != j       # dev: same coin
    assert j >= 0       # dev: j below zero
    assert j < N_COINS  # dev: j above N_COINS

    # should be unreachable, but good for safety
    assert i >= 0
    assert i < N_COINS

    amp: uint256 = self._A()
    D: uint256 = self.get_D(xp, amp)
    S_: uint256 = 0
    _x: uint256 = 0
    y_prev: uint256 = 0
    c: uint256 = D
    Ann: uint256 = amp * N_COINS

    for _i in range(N_COINS):
        if _i == i:
            _x = x
        elif _i != j:
            _x = xp[_i]
        else:
            continue
        S_ += _x
        c = c * D / (_x * N_COINS)

    c = c * D * A_PRECISION / (Ann * N_COINS)
    b: uint256 = S_ + D * A_PRECISION / Ann  # - D
    y: uint256 = D

    for _i in range(255):
        y_prev = y
        y = (y*y + c) / (2 * y + b - D)
        # Equality with the precision of 1
        if y > y_prev:
            if y - y_prev <= 1:
                return y
        else:
            if y_prev - y <= 1:
                return y
    raise


@view
@external
def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
    """
    @notice Calculate the current output dy given input dx
    @dev Index values can be found via the `coins` public getter method
    @param i Index value for the coin to send
    @param j Index valie of the coin to recieve
    @param dx Amount of `i` being exchanged
    @return Amount of `j` predicted
    """
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]
    xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)

    x: uint256 = xp[i] + (dx * rates[i] / PRECISION)
    y: uint256 = self.get_y(i, j, x, xp)
    dy: uint256 = xp[j] - y - 1
    fee: uint256 = self.fee * dy / FEE_DENOMINATOR
    return (dy - fee) * PRECISION / rates[j]


@view
@external
def get_dy_underlying(i: int128, j: int128, dx: uint256) -> uint256:
    """
    @notice Calculate the current output dy given input dx on underlying
    @dev Index values can be found via the `coins` public getter method
    @param i Index value for the coin to send
    @param j Index valie of the coin to recieve
    @param dx Amount of `i` being exchanged
    @return Amount of `j` predicted
    """
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]
    xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)

    x: uint256 = 0
    base_i: int128 = 0
    base_j: int128 = 0
    meta_i: int128 = 0
    meta_j: int128 = 0

    if i != 0:
        base_i = i - MAX_COIN
        meta_i = 1
    if j != 0:
        base_j = j - MAX_COIN
        meta_j = 1

    if i == 0:
        x = xp[i] + dx * (rates[0] / 10**18)
    else:
        if j == 0:
            # i is from BasePool
            # At first, get the amount of pool tokens
            base_inputs: uint256[BASE_N_COINS] = empty(uint256[BASE_N_COINS])
            base_inputs[base_i] = dx
            # Token amount transformed to underlying "dollars"
            x = Curve(BASE_POOL).calc_token_amount(base_inputs, True) * rates[1] / PRECISION
            # Accounting for deposit/withdraw fees approximately
            x -= x * Curve(BASE_POOL).fee() / (2 * FEE_DENOMINATOR)
            # Adding number of pool tokens
            x += xp[MAX_COIN]
        else:
            # If both are from the base pool
            return Curve(BASE_POOL).get_dy(base_i, base_j, dx)

    # This pool is involved only when in-pool assets are used
    y: uint256 = self.get_y(meta_i, meta_j, x, xp)
    dy: uint256 = xp[meta_j] - y - 1
    dy = (dy - self.fee * dy / FEE_DENOMINATOR)

    # If output is going via the metapool
    if j == 0:
        dy /= (rates[0] / 10**18)
    else:
        # j is from BasePool
        # The fee is already accounted for
        dy = Curve(BASE_POOL).calc_withdraw_one_coin(dy * PRECISION / rates[1], base_j)

    return dy


@external
@nonreentrant('lock')
def exchange(
    i: int128,
    j: int128,
    _dx: uint256,
    _min_dy: uint256,
    _receiver: address = msg.sender,
) -> uint256:
    """
    @notice Perform an exchange between two coins
    @dev Index values can be found via the `coins` public getter method
    @param i Index value for the coin to send
    @param j Index valie of the coin to recieve
    @param _dx Amount of `i` being exchanged
    @param _min_dy Minimum amount of `j` to receive
    @param _receiver Address that receives `j`
    @return Actual amount of `j` received
    """
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]

    old_balances: uint256[N_COINS] = self.balances
    xp: uint256[N_COINS] = self._xp_mem(rates, old_balances)

    x: uint256 = xp[i] + _dx * rates[i] / PRECISION
    y: uint256 = self.get_y(i, j, x, xp)

    dy: uint256 = xp[j] - y - 1  # -1 just in case there were some rounding errors
    dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR

    # Convert all to real units
    dy = (dy - dy_fee) * PRECISION / rates[j]
    assert dy >= _min_dy

    dy_admin_fee: uint256 = dy_fee * ADMIN_FEE / FEE_DENOMINATOR
    dy_admin_fee = dy_admin_fee * PRECISION / rates[j]

    # Change balances exactly in same way as we change actual ERC20 coin amounts
    self.balances[i] = old_balances[i] + _dx
    # When rounding errors happen, we undercharge admin fee in favor of LP
    self.balances[j] = old_balances[j] - dy - dy_admin_fee

    response: Bytes[32] = raw_call(
        self.coins[i],
        _abi_encode(
            msg.sender, self, _dx, method_id=method_id("transferFrom(address,address,uint256)")
        ),
        max_outsize=32,
    )
    if len(response) > 0:
        assert convert(response, bool)

    response = raw_call(
        self.coins[j],
        _abi_encode(_receiver, dy, method_id=method_id("transfer(address,uint256)")),
        max_outsize=32,
    )
    if len(response) > 0:
        assert convert(response, bool)

    log TokenExchange(msg.sender, i, _dx, j, dy)

    return dy


@external
@nonreentrant('lock')
def exchange_underlying(
    i: int128,
    j: int128,
    _dx: uint256,
    _min_dy: uint256,
    _receiver: address = msg.sender,
) -> uint256:
    """
    @notice Perform an exchange between two underlying coins
    @param i Index value for the underlying coin to send
    @param j Index valie of the underlying coin to receive
    @param _dx Amount of `i` being exchanged
    @param _min_dy Minimum amount of `j` to receive
    @param _receiver Address that receives `j`
    @return Actual amount of `j` received
    """
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]
    old_balances: uint256[N_COINS] = self.balances
    xp: uint256[N_COINS] = self._xp_mem(rates, old_balances)

    base_coins: address[BASE_N_COINS] = BASE_COINS

    dy: uint256 = 0
    base_i: int128 = 0
    base_j: int128 = 0
    meta_i: int128 = 0
    meta_j: int128 = 0
    x: uint256 = 0
    input_coin: address = ZERO_ADDRESS
    output_coin: address = ZERO_ADDRESS

    if i == 0:
        input_coin = self.coins[0]
    else:
        base_i = i - MAX_COIN
        meta_i = 1
        input_coin = base_coins[base_i]
    if j == 0:
        output_coin = self.coins[0]
    else:
        base_j = j - MAX_COIN
        meta_j = 1
        output_coin = base_coins[base_j]

    response: Bytes[32] = raw_call(
        input_coin,
        _abi_encode(
            msg.sender, self, _dx, method_id=method_id("transferFrom(address,address,uint256)")
        ),
        max_outsize=32,
    )
    if len(response) > 0:
        assert convert(response, bool)

    dx: uint256 = _dx
    if i == 0 or j == 0:
        if i == 0:
            x = xp[i] + dx * rates[i] / PRECISION
        else:
            # i is from BasePool
            # At first, get the amount of pool tokens
            base_inputs: uint256[BASE_N_COINS] = empty(uint256[BASE_N_COINS])
            base_inputs[base_i] = dx
            coin_i: address = self.coins[MAX_COIN]
            # Deposit and measure delta
            x = ERC20(coin_i).balanceOf(self)
            Curve(BASE_POOL).add_liquidity(base_inputs, 0)
            # Need to convert pool token to "virtual" units using rates
            # dx is also different now
            dx = ERC20(coin_i).balanceOf(self) - x
            x = dx * rates[MAX_COIN] / PRECISION
            # Adding number of pool tokens
            x += xp[MAX_COIN]

        y: uint256 = self.get_y(meta_i, meta_j, x, xp)

        # Either a real coin or token
        dy = xp[meta_j] - y - 1  # -1 just in case there were some rounding errors
        dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR

        # Convert all to real units
        # Works for both pool coins and real coins
        dy = (dy - dy_fee) * PRECISION / rates[meta_j]

        dy_admin_fee: uint256 = dy_fee * ADMIN_FEE / FEE_DENOMINATOR
        dy_admin_fee = dy_admin_fee * PRECISION / rates[meta_j]

        # Change balances exactly in same way as we change actual ERC20 coin amounts
        self.balances[meta_i] = old_balances[meta_i] + dx
        # When rounding errors happen, we undercharge admin fee in favor of LP
        self.balances[meta_j] = old_balances[meta_j] - dy - dy_admin_fee

        # Withdraw from the base pool if needed
        if j > 0:
            out_amount: uint256 = ERC20(output_coin).balanceOf(self)
            Curve(BASE_POOL).remove_liquidity_one_coin(dy, base_j, 0)
            dy = ERC20(output_coin).balanceOf(self) - out_amount

        assert dy >= _min_dy

    else:
        # If both are from the base pool
        dy = ERC20(output_coin).balanceOf(self)
        Curve(BASE_POOL).exchange(base_i, base_j, dx, _min_dy)
        dy = ERC20(output_coin).balanceOf(self) - dy

    response = raw_call(
        output_coin,
        _abi_encode(_receiver, dy, method_id=method_id("transfer(address,uint256)")),
        max_outsize=32,
    )
    if len(response) > 0:
        assert convert(response, bool)

    log TokenExchangeUnderlying(msg.sender, i, dx, j, dy)

    return dy


@external
@nonreentrant('lock')
def remove_liquidity(
    _burn_amount: uint256,
    _min_amounts: uint256[N_COINS],
    _receiver: address = msg.sender
) -> uint256[N_COINS]:
    """
    @notice Withdraw coins from the pool
    @dev Withdrawal amounts are based on current deposit ratios
    @param _burn_amount Quantity of LP tokens to burn in the withdrawal
    @param _min_amounts Minimum amounts of underlying coins to receive
    @param _receiver Address that receives the withdrawn coins
    @return List of amounts of coins that were withdrawn
    """
    total_supply: uint256 = self.totalSupply
    amounts: uint256[N_COINS] = empty(uint256[N_COINS])

    for i in range(N_COINS):
        old_balance: uint256 = self.balances[i]
        value: uint256 = old_balance * _burn_amount / total_supply
        assert value >= _min_amounts[i]
        self.balances[i] = old_balance - value
        amounts[i] = value
        response: Bytes[32] = raw_call(
            self.coins[i],
            _abi_encode(_receiver, value, method_id=method_id("transfer(address,uint256)")),
            max_outsize=32,
        )
        if len(response) > 0:
            assert convert(response, bool)

    total_supply -= _burn_amount
    self.balanceOf[msg.sender] -= _burn_amount
    self.totalSupply = total_supply
    log Transfer(msg.sender, ZERO_ADDRESS, _burn_amount)

    log RemoveLiquidity(msg.sender, amounts, empty(uint256[N_COINS]), total_supply)

    return amounts


@external
@nonreentrant('lock')
def remove_liquidity_imbalance(
    _amounts: uint256[N_COINS],
    _max_burn_amount: uint256,
    _receiver: address = msg.sender
) -> uint256:
    """
    @notice Withdraw coins from the pool in an imbalanced amount
    @param _amounts List of amounts of underlying coins to withdraw
    @param _max_burn_amount Maximum amount of LP token to burn in the withdrawal
    @param _receiver Address that receives the withdrawn coins
    @return Actual amount of the LP token burned in the withdrawal
    """
    amp: uint256 = self._A()
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]
    old_balances: uint256[N_COINS] = self.balances
    D0: uint256 = self.get_D_mem(rates, old_balances, amp)

    new_balances: uint256[N_COINS] = old_balances
    for i in range(N_COINS):
        amount: uint256 = _amounts[i]
        if amount != 0:
            new_balances[i] -= amount
            response: Bytes[32] = raw_call(
                self.coins[i],
                _abi_encode(_receiver, amount, method_id=method_id("transfer(address,uint256)")),
                max_outsize=32,
            )
            if len(response) > 0:
                assert convert(response, bool)
    D1: uint256 = self.get_D_mem(rates, new_balances, amp)

    fees: uint256[N_COINS] = empty(uint256[N_COINS])
    base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
    for i in range(N_COINS):
        ideal_balance: uint256 = D1 * old_balances[i] / D0
        difference: uint256 = 0
        new_balance: uint256 = new_balances[i]
        if ideal_balance > new_balance:
            difference = ideal_balance - new_balance
        else:
            difference = new_balance - ideal_balance
        fees[i] = base_fee * difference / FEE_DENOMINATOR
        self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
        new_balances[i] -= fees[i]
    D2: uint256 = self.get_D_mem(rates, new_balances, amp)

    total_supply: uint256 = self.totalSupply
    burn_amount: uint256 = ((D0 - D2) * total_supply / D0) + 1
    assert burn_amount > 1  # dev: zero tokens burned
    assert burn_amount <= _max_burn_amount

    total_supply -= burn_amount
    self.totalSupply = total_supply
    self.balanceOf[msg.sender] -= burn_amount
    log Transfer(msg.sender, ZERO_ADDRESS, burn_amount)
    log RemoveLiquidityImbalance(msg.sender, _amounts, fees, D1, total_supply)

    return burn_amount


@view
@internal
def get_y_D(A: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256:
    """
    Calculate x[i] if one reduces D from being calculated for xp to D

    Done by solving quadratic equation iteratively.
    x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
    x_1**2 + b*x_1 = c

    x_1 = (x_1**2 + c) / (2*x_1 + b)
    """
    # x in the input is converted to the same price/precision

    assert i >= 0  # dev: i below zero
    assert i < N_COINS  # dev: i above N_COINS

    S_: uint256 = 0
    _x: uint256 = 0
    y_prev: uint256 = 0
    c: uint256 = D
    Ann: uint256 = A * N_COINS

    for _i in range(N_COINS):
        if _i != i:
            _x = xp[_i]
        else:
            continue
        S_ += _x
        c = c * D / (_x * N_COINS)

    c = c * D * A_PRECISION / (Ann * N_COINS)
    b: uint256 = S_ + D * A_PRECISION / Ann
    y: uint256 = D

    for _i in range(255):
        y_prev = y
        y = (y*y + c) / (2 * y + b - D)
        # Equality with the precision of 1
        if y > y_prev:
            if y - y_prev <= 1:
                return y
        else:
            if y_prev - y <= 1:
                return y
    raise


@view
@internal
def _calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256[2]:
    # First, need to calculate
    # * Get current D
    # * Solve Eqn against y_i for D - _token_amount
    amp: uint256 = self._A()
    rates: uint256[N_COINS] = [self.rate_multiplier, Curve(BASE_POOL).get_virtual_price()]
    xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)
    D0: uint256 = self.get_D(xp, amp)

    total_supply: uint256 = self.totalSupply
    D1: uint256 = D0 - _burn_amount * D0 / total_supply
    new_y: uint256 = self.get_y_D(amp, i, xp, D1)

    base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
    xp_reduced: uint256[N_COINS] = empty(uint256[N_COINS])

    for j in range(N_COINS):
        dx_expected: uint256 = 0
        xp_j: uint256 = xp[j]
        if j == i:
            dx_expected = xp_j * D1 / D0 - new_y
        else:
            dx_expected = xp_j - xp_j * D1 / D0
        xp_reduced[j] = xp_j - base_fee * dx_expected / FEE_DENOMINATOR

    dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
    dy_0: uint256 = (xp[i] - new_y) * PRECISION / rates[i]  # w/o fees
    dy = (dy - 1) * PRECISION / rates[i]  # Withdraw less to account for rounding errors

    return [dy, dy_0 - dy]


@view
@external
def calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256:
    """
    @notice Calculate the amount received when withdrawing a single coin
    @param _burn_amount Amount of LP tokens to burn in the withdrawal
    @param i Index value of the coin to withdraw
    @return Amount of coin received
    """
    return self._calc_withdraw_one_coin(_burn_amount, i)[0]


@external
@nonreentrant('lock')
def remove_liquidity_one_coin(
    _burn_amount: uint256,
    i: int128,
    _min_received: uint256,
    _receiver: address = msg.sender,
) -> uint256:
    """
    @notice Withdraw a single coin from the pool
    @param _burn_amount Amount of LP tokens to burn in the withdrawal
    @param i Index value of the coin to withdraw
    @param _min_received Minimum amount of coin to receive
    @param _receiver Address that receives the withdrawn coins
    @return Amount of coin received
    """
    dy: uint256[2] = self._calc_withdraw_one_coin(_burn_amount, i)
    assert dy[0] >= _min_received

    self.balances[i] -= (dy[0] + dy[1] * ADMIN_FEE / FEE_DENOMINATOR)
    total_supply: uint256 = self.totalSupply - _burn_amount
    self.totalSupply = total_supply
    self.balanceOf[msg.sender] -= _burn_amount
    log Transfer(msg.sender, ZERO_ADDRESS, _burn_amount)

    response: Bytes[32] = raw_call(
        self.coins[i],
        _abi_encode(_receiver, dy[0], method_id=method_id("transfer(address,uint256)")),
        max_outsize=32,
    )
    if len(response) > 0:
        assert convert(response, bool)

    log RemoveLiquidityOne(msg.sender, _burn_amount, dy[0], total_supply)

    return dy[0]


@external
def ramp_A(_future_A: uint256, _future_time: uint256):
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner
    assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME
    assert _future_time >= block.timestamp + MIN_RAMP_TIME  # dev: insufficient time

    _initial_A: uint256 = self._A()
    _future_A_p: uint256 = _future_A * A_PRECISION

    assert _future_A > 0 and _future_A < MAX_A
    if _future_A_p < _initial_A:
        assert _future_A_p * MAX_A_CHANGE >= _initial_A
    else:
        assert _future_A_p <= _initial_A * MAX_A_CHANGE

    self.initial_A = _initial_A
    self.future_A = _future_A_p
    self.initial_A_time = block.timestamp
    self.future_A_time = _future_time

    log RampA(_initial_A, _future_A_p, block.timestamp, _future_time)


@external
def stop_ramp_A():
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner

    current_A: uint256 = self._A()
    self.initial_A = current_A
    self.future_A = current_A
    self.initial_A_time = block.timestamp
    self.future_A_time = block.timestamp
    # now (block.timestamp < t1) is always False, so we return saved A

    log StopRampA(current_A, block.timestamp)


@view
@external
def admin_balances(i: uint256) -> uint256:
    return ERC20(self.coins[i]).balanceOf(self) - self.balances[i]


@external
def withdraw_admin_fees():
    # transfer coin 0 to Factory and call `convert_fees` to swap it for coin 1
    factory: address = self.factory
    coin: address = self.coins[0]
    amount: uint256 = ERC20(coin).balanceOf(self) - self.balances[0]
    if amount > 0:
        response: Bytes[32] = raw_call(
            coin,
            _abi_encode(factory, amount, method_id=method_id("transfer(address,uint256)")),
            max_outsize=32,
        )
        if len(response) > 0:
            assert convert(response, bool)
        Factory(factory).convert_metapool_fees()

    # transfer coin 1 to the receiver
    coin = self.coins[1]
    amount = ERC20(coin).balanceOf(self) - self.balances[1]
    if amount > 0:
        receiver: address = Factory(factory).get_fee_receiver(self)
        response: Bytes[32] = raw_call(
            coin,
            _abi_encode(receiver, amount, method_id=method_id("transfer(address,uint256)")),
            max_outsize=32,
        )
        if len(response) > 0:
            assert convert(response, bool)


@view
@external
def version() -> String[8]:
    """
    @notice Get the version of this token contract
    """
    return VERSION

Contract ABI

[{"name":"Transfer","inputs":[{"name":"sender","type":"address","indexed":true},{"name":"receiver","type":"address","indexed":true},{"name":"value","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"Approval","inputs":[{"name":"owner","type":"address","indexed":true},{"name":"spender","type":"address","indexed":true},{"name":"value","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"TokenExchange","inputs":[{"name":"buyer","type":"address","indexed":true},{"name":"sold_id","type":"int128","indexed":false},{"name":"tokens_sold","type":"uint256","indexed":false},{"name":"bought_id","type":"int128","indexed":false},{"name":"tokens_bought","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"TokenExchangeUnderlying","inputs":[{"name":"buyer","type":"address","indexed":true},{"name":"sold_id","type":"int128","indexed":false},{"name":"tokens_sold","type":"uint256","indexed":false},{"name":"bought_id","type":"int128","indexed":false},{"name":"tokens_bought","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"AddLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"invariant","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityOne","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amount","type":"uint256","indexed":false},{"name":"coin_amount","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityImbalance","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"invariant","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RampA","inputs":[{"name":"old_A","type":"uint256","indexed":false},{"name":"new_A","type":"uint256","indexed":false},{"name":"initial_time","type":"uint256","indexed":false},{"name":"future_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"StopRampA","inputs":[{"name":"A","type":"uint256","indexed":false},{"name":"t","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"stateMutability":"nonpayable","type":"constructor","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"initialize","inputs":[{"name":"_name","type":"string"},{"name":"_symbol","type":"string"},{"name":"_coin","type":"address"},{"name":"_rate_multiplier","type":"uint256"},{"name":"_A","type":"uint256"},{"name":"_fee","type":"uint256"}],"outputs":[],"gas":491073},{"stateMutability":"view","type":"function","name":"decimals","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":390},{"stateMutability":"nonpayable","type":"function","name":"transfer","inputs":[{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}],"gas":79005},{"stateMutability":"nonpayable","type":"function","name":"transferFrom","inputs":[{"name":"_from","type":"address"},{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}],"gas":116985},{"stateMutability":"nonpayable","type":"function","name":"approve","inputs":[{"name":"_spender","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}],"gas":39211},{"stateMutability":"nonpayable","type":"function","name":"permit","inputs":[{"name":"_owner","type":"address"},{"name":"_spender","type":"address"},{"name":"_value","type":"uint256"},{"name":"_deadline","type":"uint256"},{"name":"_v","type":"uint8"},{"name":"_r","type":"bytes32"},{"name":"_s","type":"bytes32"}],"outputs":[{"name":"","type":"bool"}],"gas":102281},{"stateMutability":"view","type":"function","name":"admin_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":540},{"stateMutability":"view","type":"function","name":"A","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":10448},{"stateMutability":"view","type":"function","name":"A_precise","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":10448},{"stateMutability":"view","type":"function","name":"get_virtual_price","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":807920},{"stateMutability":"view","type":"function","name":"calc_token_amount","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_is_deposit","type":"bool"}],"outputs":[{"name":"","type":"uint256"}],"gas":1597346},{"stateMutability":"nonpayable","type":"function","name":"add_liquidity","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_min_mint_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":2611832},{"stateMutability":"nonpayable","type":"function","name":"add_liquidity","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_min_mint_amount","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":2611832},{"stateMutability":"view","type":"function","name":"get_dy","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"dx","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":1154525},{"stateMutability":"view","type":"function","name":"get_dy_underlying","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"dx","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":1162775},{"stateMutability":"nonpayable","type":"function","name":"exchange","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":1300799},{"stateMutability":"nonpayable","type":"function","name":"exchange","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":1300799},{"stateMutability":"nonpayable","type":"function","name":"exchange_underlying","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":1323223},{"stateMutability":"nonpayable","type":"function","name":"exchange_underlying","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":1323223},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"_min_amounts","type":"uint256[2]"}],"outputs":[{"name":"","type":"uint256[2]"}],"gas":229848},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"_min_amounts","type":"uint256[2]"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256[2]"}],"gas":229848},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_imbalance","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_max_burn_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":2612120},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_imbalance","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_max_burn_amount","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":2612120},{"stateMutability":"view","type":"function","name":"calc_withdraw_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"}],"outputs":[{"name":"","type":"uint256"}],"gas":1259},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"},{"name":"_min_received","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":1688189},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"},{"name":"_min_received","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":1688189},{"stateMutability":"nonpayable","type":"function","name":"ramp_A","inputs":[{"name":"_future_A","type":"uint256"},{"name":"_future_time","type":"uint256"}],"outputs":[],"gas":161164},{"stateMutability":"nonpayable","type":"function","name":"stop_ramp_A","inputs":[],"outputs":[],"gas":157387},{"stateMutability":"view","type":"function","name":"admin_balances","inputs":[{"name":"i","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":7859},{"stateMutability":"nonpayable","type":"function","name":"withdraw_admin_fees","inputs":[],"outputs":[],"gas":31294},{"stateMutability":"view","type":"function","name":"version","inputs":[],"outputs":[{"name":"","type":"string"}],"gas":6707},{"stateMutability":"view","type":"function","name":"coins","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"address"}],"gas":3255},{"stateMutability":"view","type":"function","name":"balances","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}],"gas":3285},{"stateMutability":"view","type":"function","name":"fee","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":3270},{"stateMutability":"view","type":"function","name":"initial_A","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":3300},{"stateMutability":"view","type":"function","name":"future_A","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":3330},{"stateMutability":"view","type":"function","name":"initial_A_time","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":3360},{"stateMutability":"view","type":"function","name":"future_A_time","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":3390},{"stateMutability":"view","type":"function","name":"name","inputs":[],"outputs":[{"name":"","type":"string"}],"gas":13709},{"stateMutability":"view","type":"function","name":"symbol","inputs":[],"outputs":[{"name":"","type":"string"}],"gas":11468},{"stateMutability":"view","type":"function","name":"balanceOf","inputs":[{"name":"arg0","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":3746},{"stateMutability":"view","type":"function","name":"allowance","inputs":[{"name":"arg0","type":"address"},{"name":"arg1","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":4042},{"stateMutability":"view","type":"function","name":"totalSupply","inputs":[],"outputs":[{"name":"","type":"uint256"}],"gas":3540},{"stateMutability":"view","type":"function","name":"DOMAIN_SEPARATOR","inputs":[],"outputs":[{"name":"","type":"bytes32"}],"gas":3570},{"stateMutability":"view","type":"function","name":"nonces","inputs":[{"name":"arg0","type":"address"}],"outputs":[{"name":"","type":"uint256"}],"gas":3866}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.