More Info
Private Name Tags
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
0x337ad3912da4edc3fd4ba5e6d4fc371b8e6a3580729f6e48fcb13e6e9d5262d7 | Claim Dop | (pending) | 44 mins ago | IN | 0 ETH | (Pending) | |||
0xec6bee70136ee7b2cb39cd95a691b1e61da1cf3b5624bc13effdb527dea08e29 | Claim Dop | (pending) | 1 hr ago | IN | 0 ETH | (Pending) | |||
0x286f57cc44a85bd961c01d9d68db6826be0330ad5c82c66784e1b5b6a875f106 | Claim Dop | (pending) | 2 hrs ago | IN | 0 ETH | (Pending) | |||
0x1a38bab8788a7a0bf9fd84c87d19d45416529bc04557425ad46b0c67028e6c44 | Claim Dop | (pending) | 2 hrs ago | IN | 0 ETH | (Pending) | |||
0xbc2fd620bdeb660b1334da0b45d2ffdf6d7bc2a6e1701b4a59b89686198f086a | Claim Dop | (pending) | 19 hrs ago | IN | 0 ETH | (Pending) | |||
0x8bc82333b4e4adbec6189dddb01ea21b5118c323f27d5d3707248637e2be2edb | Claim Dop | (pending) | 27 hrs ago | IN | 0 ETH | (Pending) | |||
0x7cb00f76171dae747109d0aae373054e3dce0c2adb13bfb2360ec03c6fe6c399 | Claim Dop | (pending) | 8 days ago | IN | 0 ETH | (Pending) | |||
Claim Dop | 21260060 | 28 days ago | IN | 0 ETH | 0.00035387 | ||||
Claim Dop | 20946696 | 72 days ago | IN | 0 ETH | 0.00060374 | ||||
Claim Dop | 20946694 | 72 days ago | IN | 0 ETH | 0.00060102 | ||||
Claim Dop | 20946693 | 72 days ago | IN | 0 ETH | 0.00054862 | ||||
Claim Dop | 20946693 | 72 days ago | IN | 0 ETH | 0.00054877 | ||||
Claim Dop | 20659543 | 112 days ago | IN | 0 ETH | 0.00074793 | ||||
Claim Dop | 20659543 | 112 days ago | IN | 0 ETH | 0.00004229 | ||||
Claim Dop | 20648829 | 113 days ago | IN | 0 ETH | 0.00008765 | ||||
Claim Dop | 20648826 | 113 days ago | IN | 0 ETH | 0.00008765 | ||||
Claim Dop | 20646288 | 114 days ago | IN | 0 ETH | 0.00005262 | ||||
Claim Dop | 20495972 | 135 days ago | IN | 0 ETH | 0.00006593 | ||||
Claim Dop | 20495803 | 135 days ago | IN | 0 ETH | 0.00007481 | ||||
Claim Dop | 20453646 | 140 days ago | IN | 0 ETH | 0.0000868 | ||||
Claim Dop | 20453518 | 140 days ago | IN | 0 ETH | 0.00008659 | ||||
Claim Dop | 20453518 | 140 days ago | IN | 0 ETH | 0.00008658 | ||||
Claim Dop | 20453262 | 141 days ago | IN | 0 ETH | 0.00008769 | ||||
Claim Dop | 20453008 | 141 days ago | IN | 0 ETH | 0.00008769 | ||||
Claim Dop | 20452790 | 141 days ago | IN | 0 ETH | 0.00008767 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
DopClaims
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.25; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import { IDopNFT } from "./IDopNFT.sol"; /// @title DopClaims contract /// @notice Implements the claiming of Dop Token and NFT /// @dev The claims contract allows you to claim dop tokens and nfts contract DopClaims is Ownable, ReentrancyGuard { using SafeERC20 for IERC20; /// @notice Thrown when address is blacklisted error Blacklisted(); /// @notice Thrown when updating an address with zero address error ZeroAddress(); /// @notice Thrown when root value is zero error InvalidRoot(); /// @notice Thrown when Merkle proof is invalid error InvalidProof(); /// @notice Thrown when tokens are already claimed error AlreadyClaimed(); /// @notice Thrown when trying to mint nft Id greater than 5 error InvalidNftType(); /// @notice Thrown when two array lengths does not match error ArrayLengthMismatch(); /// @notice Thrown when updating with the same value as previously stored error IdenticalValue(); /// @notice Thrown when Sign is invalid error InvalidSignature(); /// Max length of the array uint8 private constant MAX_LENGTH = 6; /// The address of dop token IERC20 public immutable DOP; /// The address of dop nft contract IDopNFT public immutable dopNFT; /// The address will distribute dop tokens address public dopWallet; /// @notice The address of signerWallet address public signerWallet; /// @notice The tokens root of the tree bytes32 public immutable root; /// @notice Gives info of user's dop token claim mapping(address => bool) public isClaimed; /// @notice Gives info about address's permission mapping(address => bool) public blacklistAddress; /// @dev Emitted when address of dop wallet is updated event DopWalletUpdated(address indexed prevAddress, address indexed newAddress); /// @dev Emitted when dop token are claimed event Claimed(address indexed by, uint256 dopAmount, uint256[] indexed ids, uint256[] indexed quantity); /// @dev Emitted when address of signer is updated event SignerUpdated(address indexed oldSigner, address indexed newSigner); /// @dev Emitted when blacklist access of address is updated event BlacklistUpdated(address indexed which, bool indexed accessNow); /// @notice Restricts when updating wallet/contract address to zero address modifier checkAddressZero(address which) { if (which == address(0)) { revert ZeroAddress(); } _; } /// @notice Confirms whether the user is blacklisted modifier notBlackListed(address user) { if (blacklistAddress[user]) { revert Blacklisted(); } _; } /// @dev Constructor /// @param dopToken The address of dop token /// @param dopNFTAddress The address of dop nft contract /// @param owner The address of the owner wallet /// @param dopWalletAddress The address of the wallet that which transfer tokens /// @param signerAddress The address of the signer wallet /// @param merkleRoot The merkle root of the tree constructor( IERC20 dopToken, IDopNFT dopNFTAddress, address owner, address dopWalletAddress, address signerAddress, bytes32 merkleRoot ) Ownable(owner) { if ( address(dopToken) == address(0) || address(dopNFTAddress) == address(0) || dopWalletAddress == address(0) || signerAddress == address(0) ) { revert ZeroAddress(); } if (merkleRoot == bytes32(0)) { revert InvalidRoot(); } DOP = dopToken; dopNFT = dopNFTAddress; dopWallet = dopWalletAddress; signerWallet = signerAddress; root = merkleRoot; } /// @notice Claims dop tokens and nfts only when `claimNFT` is true /// @param amountToClaim The dop token amount to claim /// @param merkleProof The merkleProof is valid if and only if the rebuilt hash matches the root of the tree /// @param ids The token ids that will be minted to `to` /// @param quantity The amount of nfts that will be minted to `to` /// @param claimNFT The user want to claim nft or not /// @param isKycRequired The user requires KYC verification or not /// @param v The `v` KYC signature parameter /// @param r The `r` signature parameter /// @param s The `s` signature parameter function claimDop( uint256 amountToClaim, bytes32[] calldata merkleProof, uint256[] calldata ids, uint256[] calldata quantity, bool claimNFT, bool isKycRequired, uint8 v, bytes32 r, bytes32 s ) external nonReentrant notBlackListed(msg.sender) { if (isClaimed[msg.sender]) { revert AlreadyClaimed(); } if (isKycRequired) { _verifySign(amountToClaim, ids, quantity, v, r, s); } if (ids.length != quantity.length) { revert ArrayLengthMismatch(); } if (ids.length > MAX_LENGTH) { revert InvalidNftType(); } bytes32 leaf = keccak256(abi.encodePacked(msg.sender, amountToClaim, ids, quantity, isKycRequired)); bool success = MerkleProof.verify(merkleProof, root, leaf); if (!success) { revert InvalidProof(); } isClaimed[msg.sender] = true; DOP.safeTransferFrom(dopWallet, msg.sender, amountToClaim); if (claimNFT && ids.length > 0) { dopNFT.mint(msg.sender, ids, quantity); } emit Claimed({ by: msg.sender, dopAmount: amountToClaim, ids: ids, quantity: quantity }); } /// @notice Changes dop wallet to a new address /// @param newDopWallet The address of the new dop wallet function changeDopWallet(address newDopWallet) external checkAddressZero(newDopWallet) onlyOwner { address oldWallet = dopWallet; if (oldWallet == newDopWallet) { revert IdenticalValue(); } emit DopWalletUpdated({ prevAddress: oldWallet, newAddress: newDopWallet }); dopWallet = newDopWallet; } /// @notice Changes signer wallet address /// @param newSigner The address of the new signer wallet function changeSigner(address newSigner) external checkAddressZero(newSigner) onlyOwner { address oldSigner = signerWallet; if (oldSigner == newSigner) { revert IdenticalValue(); } emit SignerUpdated({ oldSigner: oldSigner, newSigner: newSigner }); signerWallet = newSigner; } /// @notice Changes the access of any address in contract interaction /// @param which The address for which access is updated /// @param access The access decision of `which` address function updateBlackListedUser(address which, bool access) external checkAddressZero(which) onlyOwner { bool oldAccess = blacklistAddress[which]; if (oldAccess == access) { revert IdenticalValue(); } emit BlacklistUpdated({ which: which, accessNow: access }); blacklistAddress[which] = access; } /// @notice The helper function which verifies signature, signed by signerWallet, reverts if Invalid function _verifySign( uint256 dopTokenAmount, uint256[] calldata ids, uint256[] calldata quantity, uint8 v, bytes32 r, bytes32 s ) private view { bytes32 encodedMessageHash = keccak256(abi.encodePacked(msg.sender, dopTokenAmount, ids, quantity)); if (signerWallet != ECDSA.recover(MessageHashUtils.toEthSignedMessageHash(encodedMessageHash), v, r, s)) { revert InvalidSignature(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.20; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Sorts the pair (a, b) and hashes the result. */ function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; interface IDopNFT { /// @notice Mint nfts to the user /// @param to The address to which nfts will be minted, it will be non-zero address /// @param ids The token ids that will be minted to `to` /// @param quantity The amount of nfts that will be minted to `to` function mint(address to, uint256[] memory ids, uint256[] memory quantity) external; }
{ "viaIR": true, "optimizer": { "enabled": true, "runs": 1000000, "details": { "yulDetails": { "optimizerSteps": "u" } } }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IERC20","name":"dopToken","type":"address"},{"internalType":"contract IDopNFT","name":"dopNFTAddress","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"dopWalletAddress","type":"address"},{"internalType":"address","name":"signerAddress","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"Blacklisted","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"IdenticalValue","type":"error"},{"inputs":[],"name":"InvalidNftType","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidRoot","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"which","type":"address"},{"indexed":true,"internalType":"bool","name":"accessNow","type":"bool"}],"name":"BlacklistUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"uint256","name":"dopAmount","type":"uint256"},{"indexed":true,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":true,"internalType":"uint256[]","name":"quantity","type":"uint256[]"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"prevAddress","type":"address"},{"indexed":true,"internalType":"address","name":"newAddress","type":"address"}],"name":"DopWalletUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"inputs":[],"name":"DOP","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"blacklistAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newDopWallet","type":"address"}],"name":"changeDopWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"changeSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountToClaim","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"quantity","type":"uint256[]"},{"internalType":"bool","name":"claimNFT","type":"bool"},{"internalType":"bool","name":"isKycRequired","type":"bool"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"claimDop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"dopNFT","outputs":[{"internalType":"contract IDopNFT","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dopWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"root","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"signerWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"which","type":"address"},{"internalType":"bool","name":"access","type":"bool"}],"name":"updateBlackListedUser","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60e0604052346100615761002061001461016f565b9493909392919261020e565b6040516118b361042582396080518181816104c30152610b4d015260a05181818161018c0152610bdf015260c0518181816105380152610b0101526118b390f35b600080fd5b634e487b7160e01b600052604160045260246000fd5b90601f01601f191681019081106001600160401b0382111761009d57604052565b610066565b906100b66100af60405190565b928361007c565b565b6001600160a01b031690565b90565b6001600160a01b0381165b0361006157565b905051906100b6826100c7565b6001600160a01b0381166100d2565b905051906100b6826100e6565b806100d2565b905051906100b682610102565b909160c0828403126100615761012b83836100d9565b9261013981602085016100d9565b9261014782604083016100f5565b926100c461015884606085016100f5565b9360a061016882608087016100f5565b9401610108565b61018d611cd880380380610182816100a2565b928339810190610115565b909192939495565b6100c4906100b8906001600160a01b031682565b6100c490610195565b6100c4906101a9565b6100b86100c46100c49290565b6100c4906101bb565b6100c46100c46100c49290565b906001600160a01b03905b9181191691161790565b906102036100c461020a926101b2565b82546101de565b9055565b9161021c909493919461034c565b610225826101b2565b600090610231826101c8565b9061024d6001600160a01b0383165b916001600160a01b031690565b149081156102fd575b81156102e0575b81156102c4575b506102b2576100c4610275916101d1565b851461029c57610297936102909260805260a05260026101f3565b60036101f3565b60c052565b60405163504570e360e01b8152600490fd5b0390fd5b60405163d92e233d60e01b8152600490fd5b6001600160a01b031690506001600160a01b0385161438610264565b90506001600160a01b0381166001600160a01b038416149061025d565b9050610308866101b2565b61031a6001600160a01b038316610240565b1490610256565b6100c460016101d1565b90600019906101e9565b906103456100c461020a926101d1565b825461032b565b61035590610367565b6100b6610360610321565b6001610335565b61037160006101c8565b6001600160a01b0381166001600160a01b0383161461039457506100b6906103c5565b6102ae906103a160405190565b631e4fbdf760e01b8152918291600483016001600160a01b03909116815260200190565b6103f36103ed6103dd6000546001600160a01b031690565b6103e88460006101f3565b6101b2565b916101b2565b907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e061041e60405190565b600090a356fe6080604052600436101561001257600080fd5b60003560e01c806348b64884146100f2578063648b5ab2146100ed57806364f0d35e146100e8578063715018a6146100e357806383092e47146100de5780638cc08025146100d95780638da5cb5b146100d4578063aad2b723146100cf578063cc518abf146100ca578063d1328bb7146100c5578063e09590d1146100c0578063ebf0c717146100bb578063f2fde38b146100b65763f3290d750361010257610590565b610568565b610523565b61050a565b6104ae565b610493565b61046f565b610454565b610427565b6103b8565b61026e565b610247565b6101ed565b610177565b600091031261010257565b600080fd5b61012d61012a61012a9273ffffffffffffffffffffffffffffffffffffffff1690565b90565b73ffffffffffffffffffffffffffffffffffffffff1690565b61012a90610107565b61012a90610146565b6101619061014f565b9052565b6020810192916101759190610158565b565b34610102576101873660046100f7565b6101b87f00000000000000000000000000000000000000000000000000000000000000005b60405191829182610165565b0390f35b6101c58161012d565b0361010257565b90503590610175826101bc565b906020828203126101025761012a916101cc565b34610102576102056102003660046101d9565b610712565b604051005b61012a916008021c61012d565b9061012a915461020a565b61012a60006003610217565b6101619061012d565b602081019291610175919061022e565b34610102576102573660046100f7565b6101b8610262610222565b60405191829182610237565b346101025761027e3660046100f7565b610205610738565b806101c5565b9050359061017582610286565b909182601f830112156101025781359167ffffffffffffffff831161010257602001926020830284011161010257565b8015156101c5565b90503590610175826102c9565b60ff81166101c5565b90503590610175826102de565b91610120838303126101025761030a828461028c565b92602081013567ffffffffffffffff8111610102578361032b918301610299565b929093604083013567ffffffffffffffff8111610102578161034e918501610299565b929093606081013567ffffffffffffffff81116101025783610371918301610299565b92909361038181608085016102d1565b9261038f8260a083016102d1565b9261012a6103a08460c085016102e7565b936101006103b18260e0870161028c565b940161028c565b34610102576102056103cb3660046102f4565b9a999099989198979297969396959495610dcd565b906103ea9061014f565b600052602052604060002090565b61012a916008021c5b60ff1690565b9061012a91546103f8565b600061042261012a9260046103e0565b610407565b34610102576101b861044261043d3660046101d9565b610412565b60405191829182901515815260200190565b34610102576104643660046100f7565b6101b8610262610de1565b34610102576102056104823660046101d9565b610e83565b61012a60006002610217565b34610102576104a33660046100f7565b6101b8610262610487565b34610102576104be3660046100f7565b6101b87f00000000000000000000000000000000000000000000000000000000000000006101ac565b91906040838203126101025761012a90602061050382866101cc565b94016102d1565b346101025761020561051d3660046104e7565b90610f21565b34610102576105333660046100f7565b6101b87f00000000000000000000000000000000000000000000000000000000000000006040515b9182918290815260200190565b346101025761020561057b3660046101d9565b610f9e565b600061042261012a9260056103e0565b34610102576101b86104426105a63660046101d9565b610580565b61012d61012a61012a9290565b61012a906105ab565b6105d36105ce60006105b8565b61012d565b6105dc8261012d565b146105ea5761017590610619565b6040517fd92e233d000000000000000000000000000000000000000000000000000000008152600490fd5b0390fd5b61017590610625610fa7565b61067a565b61012a9061012d565b61012a905461062a565b9073ffffffffffffffffffffffffffffffffffffffff905b9181191691161790565b9061066f61012a6106769261014f565b825461063d565b9055565b6106846002610633565b9061068e8161012d565b6106978361012d565b146106e7576106a86101759261014f565b6106b18261014f565b907f445140bbf7687e3ded463ffa17db847fcd77210c567e166de0ab6e85c9aeed376106dc60405190565b600090a3600261065f565b6040517f2620eb3a000000000000000000000000000000000000000000000000000000008152600490fd5b610175906105c1565b610723610fa7565b61017561017561073360006105b8565b611007565b61017561071b565b9061075c9b9a9998979695949392916107576110b8565b610777565b610175611111565b61012a90610401565b61012a9054610764565b9a999897969594939291906107956107903360056103e0565b61076d565b6107a2576101759b610a56565b6040517f09550c77000000000000000000000000000000000000000000000000000000008152600490fd5b61040161012a61012a9290565b61012a60066107cd565b61012a61012a61012a9260ff1690565b60601b90565b61012a906107f4565b61080f6101619161012d565b6107fa565b9037565b90915b917f07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811161010257829160206108549202938491610814565b0190565b60f81b90565b61012a90610858565b61016190151561085e565b926108a8946020600199989461089b6014886108956108549c9a6108a299610803565b01918252565b0191610818565b91610818565b8092610867565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810190811067ffffffffffffffff82111761091e57604052565b6108af565b9061017561093060405190565b92836108de565b67ffffffffffffffff811161091e5760208091020190565b9092919261096461095f82610937565b610923565b938185526020808601920283019281841161010257915b8383106109885750505050565b60208091610996848661028c565b81520192019161097b565b61012a91369161094f565b9060ff90610655565b151590565b906109ca61012a610676926109b5565b82546109ac565b61012a61012a61012a9290565b818352909160200161081b565b93919061012a9593610a1692610a096060880193600089019061022e565b86830360208801526109de565b9260408185039101526109de565b6040513d6000823e3d90fd5b909161012a92610818565b610a50610a4760405190565b92839283610a30565b03902090565b9a90919298959793969499600496610a71610790338a6103e0565b610d9557908c92918a8d8b8e8a610d7f575b509550610a91945050505050565b92878403610d4757610aa9610aa46107da565b6107e4565b8411610d0f5791610b2b91610b2688610aeb8c8f8f610b2f998f610adf92610ad060405190565b97889660208801963388610872565b908103825203826108de565b610afd610af6825190565b9160200190565b20927f0000000000000000000000000000000000000000000000000000000000000000926109a1565b6111ef565b1590565b610cd757610b476001610b4233866103e0565b6109ba565b610b7d887f0000000000000000000000000000000000000000000000000000000000000000610b766002610633565b339161127d565b81610cbd575b50610bda575b50610bcb7f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa92610bc5610bd593610bbf3361014f565b96610a3b565b95610a3b565b9461055b60405190565b0390a4565b610c037f000000000000000000000000000000000000000000000000000000000000000061014f565b803b15610102578260009186838995610c5289610c1f60405190565b988997889687957f9727756a000000000000000000000000000000000000000000000000000000008752339087016109eb565b03925af1928315610cb857610bc5610bd593610bcb937f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa96610c9a575b509350509250610b89565b610cb2906000610caa81836108de565b8101906100f7565b38610c8f565b610a24565b9050610cd0610ccc60006109d1565b9190565b1138610b83565b61061583610ce460405190565b7f09bde339000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d1c60405190565b7f7128f7f5000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d5460405190565b7fa24a13a6000000000000000000000000000000000000000000000000000000008152918291820190565b610d889761113f565b893880808a8d8b8e610a83565b61061588610da260405190565b7f646cf558000000000000000000000000000000000000000000000000000000008152918291820190565b906101759b9a999897969594939291610740565b61012a6000610633565b610df86105ce60006105b8565b610e018261012d565b146105ea576101759061017590610e16610fa7565b610e206003610633565b90610e2a8161012d565b610e338361012d565b146106e757610e446101759261014f565b610e4d8261014f565b907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb610e7860405190565b600090a3600361065f565b61017590610deb565b90610e9a6105ce60006105b8565b610ea38361012d565b146105ea57610175919061017591610eb9610fa7565b90610ec86107908360056103e0565b1515811515146106e757610b4282610ee26101759461014f565b610eeb846109b5565b907f6a12b3df6cba4203bd7fd06b816789f87de8c594299aed5717ae070fac781bac610f1660405190565b600090a360056103e0565b9061017591610e8c565b61017590610f37610fa7565b610f4160006105b8565b610f4a8161012d565b610f538361012d565b14610f62575061017590611007565b61061590610f6f60405190565b9182917f1e4fbdf700000000000000000000000000000000000000000000000000000000835260048301610237565b61017590610f2b565b610faf610de1565b3390610fc3610fbd8361012d565b9161012d565b03610fcb5750565b61061590610fd860405190565b9182917f118cdaa700000000000000000000000000000000000000000000000000000000835260048301610237565b61102d6110276110176000610633565b61102284600061065f565b61014f565b9161014f565b907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e061105860405190565b600090a3565b61012a9081565b61012a905461105e565b61012a60026109d1565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90610655565b906110b161012a610676926109d1565b8254611079565b6110c26001611065565b6110ca61106f565b9081146110dc576101759060016110a1565b6040517f3ee5aeb5000000000000000000000000000000000000000000000000000000008152600490fd5b61012a60016109d1565b61017561111c611107565b60016110a1565b6108a2939261089b60148361089560209561012a9c9a97610803565b6111bd96929161116e91610adf6105ce97610fbd999b9761115f60405190565b96879560208701953387611123565b611179610af6825190565b20956111b86111886003610633565b977f19457468657265756d205369676e6564204d6573736167653a0a333200000000600052601c52603c60002090565b6112c7565b036111c457565b6040517f8baa579f000000000000000000000000000000000000000000000000000000008152600490fd5b61120961120d9293610ccc92611203600090565b50611340565b9290565b1490565b61122a61122461012a9263ffffffff1690565b60e01b90565b7fffffffff000000000000000000000000000000000000000000000000000000001690565b604090611279610175949695939661126f6060840198600085019061022e565b602083019061022e565b0152565b906112c2906112b3610175956004956112996323b872dd611211565b936112a360405190565b978895602087019081520161124f565b602082018103825203836108de565b6113b0565b9161012a93916112df936112d9600090565b5061147c565b90929192611589565b60010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b90611326825190565b811015611337576020809102010190565b6112ee565b5190565b61134a60006109d1565b915b61135761012a835190565b8310156113895761137d61138391611377611372868661131d565b61133c565b9061169d565b926112e8565b9161134c565b91505090565b90505190610175826102c9565b906020828203126101025761012a9161138f565b6113bc6113c39161014f565b91826116ca565b80516113d2610ccc60006109d1565b1415908161141f575b506113e35750565b610615906113f060405190565b9182917f5274afe700000000000000000000000000000000000000000000000000000000835260048301610237565b61143d9150806020611432610b2b935190565b81830101910161139c565b386113db565b61012a906109d1565b6112796101759461147560609498979561146b608086019a6000870152565b60ff166020850152565b6040830152565b909161148784611443565b6114b3610ccc7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a06109d1565b1161152d57906114d5602094600094936114cc60405190565b9485948561144c565b838052039060015afa15610cb8576000516000916114f2836105b8565b6114fb8161012d565b6115048461012d565b146115195750611513836109d1565b91929190565b915091611525906109d1565b909160019190565b50505061153a60006105b8565b9160039190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b6004111561157a57565b611541565b9061017582611570565b611593600061157f565b61159c8261157f565b036115a5575050565b6115af600161157f565b6115b88261157f565b036115e8576040517ff645eedf000000000000000000000000000000000000000000000000000000008152600490fd5b6115f2600261157f565b6115fb8261157f565b036116425761061561160c83611443565b6040519182917ffce698f70000000000000000000000000000000000000000000000000000000083526004830190815260200190565b61165561164f600361157f565b9161157f565b1461165d5750565b6106159061166a60405190565b9182917fd78bce0c0000000000000000000000000000000000000000000000000000000083526004830190815260200190565b818110156116b8579061012a91600052602052604060002090565b61012a91600052602052604060002090565b61012a916116d860006109d1565b9161174a565b67ffffffffffffffff811161091e57602090601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0160190565b9061172661095f836116de565b918252565b3d156117455761173a3d611719565b903d6000602084013e565b606090565b916117543061014f565b8181311061177e57506000828192602061012a969551920190855af161177861172b565b916117ba565b6106159061178b60405190565b9182917fcd78605900000000000000000000000000000000000000000000000000000000835260048301610237565b906117c55750611835565b81516117d4610ccc60006109d1565b148061181f575b6117e3575090565b610615906117f060405190565b9182917f9996b31500000000000000000000000000000000000000000000000000000000835260048301610237565b50803b61182f610ccc60006109d1565b146117db565b8051611844610ccc60006109d1565b111561185257805190602001fd5b6040517f1425ea42000000000000000000000000000000000000000000000000000000008152600490fdfea264697066735822122026b05c4b05a12df5c74dcef63578387e12f06d42d7e71481d322c90f9e543c7e64736f6c6343000819003300000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad09780000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a00000000000000000000000004607c83b39690c3a8ada0a03cc920514e48d2c8f0000000000000000000000006e97eac711f309bf18d536a92428b13280d6f6e7000000000000000000000000c2fc26805e9c3201cbeced85f8759f38426dfbf40abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e
Deployed Bytecode
0x6080604052600436101561001257600080fd5b60003560e01c806348b64884146100f2578063648b5ab2146100ed57806364f0d35e146100e8578063715018a6146100e357806383092e47146100de5780638cc08025146100d95780638da5cb5b146100d4578063aad2b723146100cf578063cc518abf146100ca578063d1328bb7146100c5578063e09590d1146100c0578063ebf0c717146100bb578063f2fde38b146100b65763f3290d750361010257610590565b610568565b610523565b61050a565b6104ae565b610493565b61046f565b610454565b610427565b6103b8565b61026e565b610247565b6101ed565b610177565b600091031261010257565b600080fd5b61012d61012a61012a9273ffffffffffffffffffffffffffffffffffffffff1690565b90565b73ffffffffffffffffffffffffffffffffffffffff1690565b61012a90610107565b61012a90610146565b6101619061014f565b9052565b6020810192916101759190610158565b565b34610102576101873660046100f7565b6101b87f0000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a05b60405191829182610165565b0390f35b6101c58161012d565b0361010257565b90503590610175826101bc565b906020828203126101025761012a916101cc565b34610102576102056102003660046101d9565b610712565b604051005b61012a916008021c61012d565b9061012a915461020a565b61012a60006003610217565b6101619061012d565b602081019291610175919061022e565b34610102576102573660046100f7565b6101b8610262610222565b60405191829182610237565b346101025761027e3660046100f7565b610205610738565b806101c5565b9050359061017582610286565b909182601f830112156101025781359167ffffffffffffffff831161010257602001926020830284011161010257565b8015156101c5565b90503590610175826102c9565b60ff81166101c5565b90503590610175826102de565b91610120838303126101025761030a828461028c565b92602081013567ffffffffffffffff8111610102578361032b918301610299565b929093604083013567ffffffffffffffff8111610102578161034e918501610299565b929093606081013567ffffffffffffffff81116101025783610371918301610299565b92909361038181608085016102d1565b9261038f8260a083016102d1565b9261012a6103a08460c085016102e7565b936101006103b18260e0870161028c565b940161028c565b34610102576102056103cb3660046102f4565b9a999099989198979297969396959495610dcd565b906103ea9061014f565b600052602052604060002090565b61012a916008021c5b60ff1690565b9061012a91546103f8565b600061042261012a9260046103e0565b610407565b34610102576101b861044261043d3660046101d9565b610412565b60405191829182901515815260200190565b34610102576104643660046100f7565b6101b8610262610de1565b34610102576102056104823660046101d9565b610e83565b61012a60006002610217565b34610102576104a33660046100f7565b6101b8610262610487565b34610102576104be3660046100f7565b6101b87f00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad09786101ac565b91906040838203126101025761012a90602061050382866101cc565b94016102d1565b346101025761020561051d3660046104e7565b90610f21565b34610102576105333660046100f7565b6101b87f0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e6040515b9182918290815260200190565b346101025761020561057b3660046101d9565b610f9e565b600061042261012a9260056103e0565b34610102576101b86104426105a63660046101d9565b610580565b61012d61012a61012a9290565b61012a906105ab565b6105d36105ce60006105b8565b61012d565b6105dc8261012d565b146105ea5761017590610619565b6040517fd92e233d000000000000000000000000000000000000000000000000000000008152600490fd5b0390fd5b61017590610625610fa7565b61067a565b61012a9061012d565b61012a905461062a565b9073ffffffffffffffffffffffffffffffffffffffff905b9181191691161790565b9061066f61012a6106769261014f565b825461063d565b9055565b6106846002610633565b9061068e8161012d565b6106978361012d565b146106e7576106a86101759261014f565b6106b18261014f565b907f445140bbf7687e3ded463ffa17db847fcd77210c567e166de0ab6e85c9aeed376106dc60405190565b600090a3600261065f565b6040517f2620eb3a000000000000000000000000000000000000000000000000000000008152600490fd5b610175906105c1565b610723610fa7565b61017561017561073360006105b8565b611007565b61017561071b565b9061075c9b9a9998979695949392916107576110b8565b610777565b610175611111565b61012a90610401565b61012a9054610764565b9a999897969594939291906107956107903360056103e0565b61076d565b6107a2576101759b610a56565b6040517f09550c77000000000000000000000000000000000000000000000000000000008152600490fd5b61040161012a61012a9290565b61012a60066107cd565b61012a61012a61012a9260ff1690565b60601b90565b61012a906107f4565b61080f6101619161012d565b6107fa565b9037565b90915b917f07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811161010257829160206108549202938491610814565b0190565b60f81b90565b61012a90610858565b61016190151561085e565b926108a8946020600199989461089b6014886108956108549c9a6108a299610803565b01918252565b0191610818565b91610818565b8092610867565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810190811067ffffffffffffffff82111761091e57604052565b6108af565b9061017561093060405190565b92836108de565b67ffffffffffffffff811161091e5760208091020190565b9092919261096461095f82610937565b610923565b938185526020808601920283019281841161010257915b8383106109885750505050565b60208091610996848661028c565b81520192019161097b565b61012a91369161094f565b9060ff90610655565b151590565b906109ca61012a610676926109b5565b82546109ac565b61012a61012a61012a9290565b818352909160200161081b565b93919061012a9593610a1692610a096060880193600089019061022e565b86830360208801526109de565b9260408185039101526109de565b6040513d6000823e3d90fd5b909161012a92610818565b610a50610a4760405190565b92839283610a30565b03902090565b9a90919298959793969499600496610a71610790338a6103e0565b610d9557908c92918a8d8b8e8a610d7f575b509550610a91945050505050565b92878403610d4757610aa9610aa46107da565b6107e4565b8411610d0f5791610b2b91610b2688610aeb8c8f8f610b2f998f610adf92610ad060405190565b97889660208801963388610872565b908103825203826108de565b610afd610af6825190565b9160200190565b20927f0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e926109a1565b6111ef565b1590565b610cd757610b476001610b4233866103e0565b6109ba565b610b7d887f00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad0978610b766002610633565b339161127d565b81610cbd575b50610bda575b50610bcb7f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa92610bc5610bd593610bbf3361014f565b96610a3b565b95610a3b565b9461055b60405190565b0390a4565b610c037f0000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a061014f565b803b15610102578260009186838995610c5289610c1f60405190565b988997889687957f9727756a000000000000000000000000000000000000000000000000000000008752339087016109eb565b03925af1928315610cb857610bc5610bd593610bcb937f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa96610c9a575b509350509250610b89565b610cb2906000610caa81836108de565b8101906100f7565b38610c8f565b610a24565b9050610cd0610ccc60006109d1565b9190565b1138610b83565b61061583610ce460405190565b7f09bde339000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d1c60405190565b7f7128f7f5000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d5460405190565b7fa24a13a6000000000000000000000000000000000000000000000000000000008152918291820190565b610d889761113f565b893880808a8d8b8e610a83565b61061588610da260405190565b7f646cf558000000000000000000000000000000000000000000000000000000008152918291820190565b906101759b9a999897969594939291610740565b61012a6000610633565b610df86105ce60006105b8565b610e018261012d565b146105ea576101759061017590610e16610fa7565b610e206003610633565b90610e2a8161012d565b610e338361012d565b146106e757610e446101759261014f565b610e4d8261014f565b907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb610e7860405190565b600090a3600361065f565b61017590610deb565b90610e9a6105ce60006105b8565b610ea38361012d565b146105ea57610175919061017591610eb9610fa7565b90610ec86107908360056103e0565b1515811515146106e757610b4282610ee26101759461014f565b610eeb846109b5565b907f6a12b3df6cba4203bd7fd06b816789f87de8c594299aed5717ae070fac781bac610f1660405190565b600090a360056103e0565b9061017591610e8c565b61017590610f37610fa7565b610f4160006105b8565b610f4a8161012d565b610f538361012d565b14610f62575061017590611007565b61061590610f6f60405190565b9182917f1e4fbdf700000000000000000000000000000000000000000000000000000000835260048301610237565b61017590610f2b565b610faf610de1565b3390610fc3610fbd8361012d565b9161012d565b03610fcb5750565b61061590610fd860405190565b9182917f118cdaa700000000000000000000000000000000000000000000000000000000835260048301610237565b61102d6110276110176000610633565b61102284600061065f565b61014f565b9161014f565b907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e061105860405190565b600090a3565b61012a9081565b61012a905461105e565b61012a60026109d1565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90610655565b906110b161012a610676926109d1565b8254611079565b6110c26001611065565b6110ca61106f565b9081146110dc576101759060016110a1565b6040517f3ee5aeb5000000000000000000000000000000000000000000000000000000008152600490fd5b61012a60016109d1565b61017561111c611107565b60016110a1565b6108a2939261089b60148361089560209561012a9c9a97610803565b6111bd96929161116e91610adf6105ce97610fbd999b9761115f60405190565b96879560208701953387611123565b611179610af6825190565b20956111b86111886003610633565b977f19457468657265756d205369676e6564204d6573736167653a0a333200000000600052601c52603c60002090565b6112c7565b036111c457565b6040517f8baa579f000000000000000000000000000000000000000000000000000000008152600490fd5b61120961120d9293610ccc92611203600090565b50611340565b9290565b1490565b61122a61122461012a9263ffffffff1690565b60e01b90565b7fffffffff000000000000000000000000000000000000000000000000000000001690565b604090611279610175949695939661126f6060840198600085019061022e565b602083019061022e565b0152565b906112c2906112b3610175956004956112996323b872dd611211565b936112a360405190565b978895602087019081520161124f565b602082018103825203836108de565b6113b0565b9161012a93916112df936112d9600090565b5061147c565b90929192611589565b60010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b90611326825190565b811015611337576020809102010190565b6112ee565b5190565b61134a60006109d1565b915b61135761012a835190565b8310156113895761137d61138391611377611372868661131d565b61133c565b9061169d565b926112e8565b9161134c565b91505090565b90505190610175826102c9565b906020828203126101025761012a9161138f565b6113bc6113c39161014f565b91826116ca565b80516113d2610ccc60006109d1565b1415908161141f575b506113e35750565b610615906113f060405190565b9182917f5274afe700000000000000000000000000000000000000000000000000000000835260048301610237565b61143d9150806020611432610b2b935190565b81830101910161139c565b386113db565b61012a906109d1565b6112796101759461147560609498979561146b608086019a6000870152565b60ff166020850152565b6040830152565b909161148784611443565b6114b3610ccc7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a06109d1565b1161152d57906114d5602094600094936114cc60405190565b9485948561144c565b838052039060015afa15610cb8576000516000916114f2836105b8565b6114fb8161012d565b6115048461012d565b146115195750611513836109d1565b91929190565b915091611525906109d1565b909160019190565b50505061153a60006105b8565b9160039190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b6004111561157a57565b611541565b9061017582611570565b611593600061157f565b61159c8261157f565b036115a5575050565b6115af600161157f565b6115b88261157f565b036115e8576040517ff645eedf000000000000000000000000000000000000000000000000000000008152600490fd5b6115f2600261157f565b6115fb8261157f565b036116425761061561160c83611443565b6040519182917ffce698f70000000000000000000000000000000000000000000000000000000083526004830190815260200190565b61165561164f600361157f565b9161157f565b1461165d5750565b6106159061166a60405190565b9182917fd78bce0c0000000000000000000000000000000000000000000000000000000083526004830190815260200190565b818110156116b8579061012a91600052602052604060002090565b61012a91600052602052604060002090565b61012a916116d860006109d1565b9161174a565b67ffffffffffffffff811161091e57602090601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0160190565b9061172661095f836116de565b918252565b3d156117455761173a3d611719565b903d6000602084013e565b606090565b916117543061014f565b8181311061177e57506000828192602061012a969551920190855af161177861172b565b916117ba565b6106159061178b60405190565b9182917fcd78605900000000000000000000000000000000000000000000000000000000835260048301610237565b906117c55750611835565b81516117d4610ccc60006109d1565b148061181f575b6117e3575090565b610615906117f060405190565b9182917f9996b31500000000000000000000000000000000000000000000000000000000835260048301610237565b50803b61182f610ccc60006109d1565b146117db565b8051611844610ccc60006109d1565b111561185257805190602001fd5b6040517f1425ea42000000000000000000000000000000000000000000000000000000008152600490fdfea264697066735822122026b05c4b05a12df5c74dcef63578387e12f06d42d7e71481d322c90f9e543c7e64736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad09780000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a00000000000000000000000004607c83b39690c3a8ada0a03cc920514e48d2c8f0000000000000000000000006e97eac711f309bf18d536a92428b13280d6f6e7000000000000000000000000c2fc26805e9c3201cbeced85f8759f38426dfbf40abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e
-----Decoded View---------------
Arg [0] : dopToken (address): 0x97A9a15168C22B3C137E6381037E1499C8ad0978
Arg [1] : dopNFTAddress (address): 0x2c2512ABa6E0a095548e94a15572DD005C6fE2a0
Arg [2] : owner (address): 0x4607c83B39690c3A8aDa0a03cc920514E48D2c8f
Arg [3] : dopWalletAddress (address): 0x6e97Eac711f309Bf18D536A92428B13280d6f6e7
Arg [4] : signerAddress (address): 0xC2fC26805E9C3201CbecED85F8759f38426dfBf4
Arg [5] : merkleRoot (bytes32): 0x0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad0978
Arg [1] : 0000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a0
Arg [2] : 0000000000000000000000004607c83b39690c3a8ada0a03cc920514e48d2c8f
Arg [3] : 0000000000000000000000006e97eac711f309bf18d536a92428b13280d6f6e7
Arg [4] : 000000000000000000000000c2fc26805e9c3201cbeced85f8759f38426dfbf4
Arg [5] : 0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.