ETH Price: $3,292.37 (-1.43%)

Contract

0x35f4817b14718C66DBBdBa085F5F8d2c3A4AA420
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Transaction Hash
Method
Block
From
To
0x337ad3912da4edc3fd4ba5e6d4fc371b8e6a3580729f6e48fcb13e6e9d5262d7 Claim Dop(pending)2024-12-23 5:35:4044 mins ago1734932140IN
0x35f4817b...c3A4AA420
0 ETH(Pending)(Pending)
0xec6bee70136ee7b2cb39cd95a691b1e61da1cf3b5624bc13effdb527dea08e29 Claim Dop(pending)2024-12-23 4:39:271 hr ago1734928767IN
0x35f4817b...c3A4AA420
0 ETH(Pending)(Pending)
0x286f57cc44a85bd961c01d9d68db6826be0330ad5c82c66784e1b5b6a875f106 Claim Dop(pending)2024-12-23 4:19:222 hrs ago1734927562IN
0x35f4817b...c3A4AA420
0 ETH(Pending)(Pending)
0x1a38bab8788a7a0bf9fd84c87d19d45416529bc04557425ad46b0c67028e6c44 Claim Dop(pending)2024-12-23 4:11:282 hrs ago1734927088IN
0x35f4817b...c3A4AA420
0 ETH(Pending)(Pending)
0xbc2fd620bdeb660b1334da0b45d2ffdf6d7bc2a6e1701b4a59b89686198f086a Claim Dop(pending)2024-12-22 10:20:1519 hrs ago1734862815IN
0x35f4817b...c3A4AA420
0 ETH(Pending)(Pending)
0x8bc82333b4e4adbec6189dddb01ea21b5118c323f27d5d3707248637e2be2edb Claim Dop(pending)2024-12-22 2:47:5627 hrs ago1734835676IN
0x35f4817b...c3A4AA420
0 ETH(Pending)(Pending)
0x7cb00f76171dae747109d0aae373054e3dce0c2adb13bfb2360ec03c6fe6c399 Claim Dop(pending)2024-12-15 6:01:168 days ago1734242476IN
0x35f4817b...c3A4AA420
0 ETH(Pending)(Pending)
Claim Dop212600602024-11-24 20:41:5928 days ago1732480919IN
0x35f4817b...c3A4AA420
0 ETH0.000353877.82552598
Claim Dop209466962024-10-12 2:58:2372 days ago1728701903IN
0x35f4817b...c3A4AA420
0 ETH0.0006037413.35801807
Claim Dop209466942024-10-12 2:57:5972 days ago1728701879IN
0x35f4817b...c3A4AA420
0 ETH0.0006010213.30145089
Claim Dop209466932024-10-12 2:57:4772 days ago1728701867IN
0x35f4817b...c3A4AA420
0 ETH0.0005486212.13856392
Claim Dop209466932024-10-12 2:57:4772 days ago1728701867IN
0x35f4817b...c3A4AA420
0 ETH0.0005487712.13856392
Claim Dop206595432024-09-02 1:17:23112 days ago1725239843IN
0x35f4817b...c3A4AA420
0 ETH0.000747938.53051908
Claim Dop206595432024-09-02 1:17:23112 days ago1725239843IN
0x35f4817b...c3A4AA420
0 ETH0.000042290.48241684
Claim Dop206488292024-08-31 13:24:11113 days ago1725110651IN
0x35f4817b...c3A4AA420
0 ETH0.000087651
Claim Dop206488262024-08-31 13:23:35113 days ago1725110615IN
0x35f4817b...c3A4AA420
0 ETH0.000087651
Claim Dop206462882024-08-31 4:53:11114 days ago1725079991IN
0x35f4817b...c3A4AA420
0 ETH0.000052620.6
Claim Dop204959722024-08-10 4:58:35135 days ago1723265915IN
0x35f4817b...c3A4AA420
0 ETH0.000065930.75194887
Claim Dop204958032024-08-10 4:24:35135 days ago1723263875IN
0x35f4817b...c3A4AA420
0 ETH0.000074810.8531925
Claim Dop204536462024-08-04 7:18:35140 days ago1722755915IN
0x35f4817b...c3A4AA420
0 ETH0.00008680.98963374
Claim Dop204535182024-08-04 6:52:59140 days ago1722754379IN
0x35f4817b...c3A4AA420
0 ETH0.000086590.98738754
Claim Dop204535182024-08-04 6:52:59140 days ago1722754379IN
0x35f4817b...c3A4AA420
0 ETH0.000086580.98758737
Claim Dop204532622024-08-04 6:01:35141 days ago1722751295IN
0x35f4817b...c3A4AA420
0 ETH0.000087691
Claim Dop204530082024-08-04 5:10:35141 days ago1722748235IN
0x35f4817b...c3A4AA420
0 ETH0.000087691
Claim Dop204527902024-08-04 4:26:59141 days ago1722745619IN
0x35f4817b...c3A4AA420
0 ETH0.000087671
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
DopClaims

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
paris EvmVersion
File 1 of 15 : DopClaims.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.25;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

import { IDopNFT } from "./IDopNFT.sol";

/// @title DopClaims contract
/// @notice Implements the claiming of Dop Token and NFT
/// @dev The claims contract allows you to claim dop tokens and nfts
contract DopClaims is Ownable, ReentrancyGuard {
    using SafeERC20 for IERC20;

    /// @notice Thrown when address is blacklisted
    error Blacklisted();

    /// @notice Thrown when updating an address with zero address
    error ZeroAddress();

    /// @notice Thrown when root value is zero
    error InvalidRoot();

    /// @notice Thrown when Merkle proof is invalid
    error InvalidProof();

    /// @notice Thrown when tokens are already claimed
    error AlreadyClaimed();

    /// @notice Thrown when trying to mint nft Id greater than 5
    error InvalidNftType();

    /// @notice Thrown when two array lengths does not match
    error ArrayLengthMismatch();

    /// @notice Thrown when updating with the same value as previously stored
    error IdenticalValue();

    /// @notice Thrown when Sign is invalid
    error InvalidSignature();

    /// Max length of the array
    uint8 private constant MAX_LENGTH = 6;

    /// The address of dop token
    IERC20 public immutable DOP;

    /// The address of dop nft contract
    IDopNFT public immutable dopNFT;

    /// The address will distribute dop tokens
    address public dopWallet;

    /// @notice The address of signerWallet
    address public signerWallet;

    /// @notice The tokens root of the tree
    bytes32 public immutable root;

    /// @notice Gives info of user's dop token claim
    mapping(address => bool) public isClaimed;

    /// @notice Gives info about address's permission
    mapping(address => bool) public blacklistAddress;

    /// @dev Emitted when address of dop wallet is updated
    event DopWalletUpdated(address indexed prevAddress, address indexed newAddress);

    /// @dev Emitted when dop token are claimed
    event Claimed(address indexed by, uint256 dopAmount, uint256[] indexed ids, uint256[] indexed quantity);

    /// @dev Emitted when address of signer is updated
    event SignerUpdated(address indexed oldSigner, address indexed newSigner);

    /// @dev Emitted when blacklist access of address is updated
    event BlacklistUpdated(address indexed which, bool indexed accessNow);

    /// @notice Restricts when updating wallet/contract address to zero address
    modifier checkAddressZero(address which) {
        if (which == address(0)) {
            revert ZeroAddress();
        }
        _;
    }

    /// @notice Confirms whether the user is blacklisted
    modifier notBlackListed(address user) {
        if (blacklistAddress[user]) {
            revert Blacklisted();
        }
        _;
    }

    /// @dev Constructor
    /// @param dopToken The address of dop token
    /// @param dopNFTAddress The address of dop nft contract
    /// @param owner The address of the owner wallet
    /// @param dopWalletAddress The address of the wallet that which transfer tokens
    /// @param signerAddress The address of the signer wallet
    /// @param merkleRoot The merkle root of the tree
    constructor(
        IERC20 dopToken,
        IDopNFT dopNFTAddress,
        address owner,
        address dopWalletAddress,
        address signerAddress,
        bytes32 merkleRoot
    ) Ownable(owner) {
        if (
            address(dopToken) == address(0) ||
            address(dopNFTAddress) == address(0) ||
            dopWalletAddress == address(0) ||
            signerAddress == address(0)
        ) {
            revert ZeroAddress();
        }
        if (merkleRoot == bytes32(0)) {
            revert InvalidRoot();
        }
        DOP = dopToken;
        dopNFT = dopNFTAddress;
        dopWallet = dopWalletAddress;
        signerWallet = signerAddress;
        root = merkleRoot;
    }

    /// @notice Claims dop tokens and nfts only when `claimNFT` is true
    /// @param amountToClaim The dop token amount to claim
    /// @param merkleProof The merkleProof is valid if and only if the rebuilt hash matches the root of the tree
    /// @param ids The token ids that will be minted to `to`
    /// @param quantity The amount of nfts that will be minted to `to`
    /// @param claimNFT The user want to claim nft or not
    /// @param isKycRequired The user requires KYC verification or not
    /// @param v The `v` KYC signature parameter
    /// @param r The `r` signature parameter
    /// @param s The `s` signature parameter
    function claimDop(
        uint256 amountToClaim,
        bytes32[] calldata merkleProof,
        uint256[] calldata ids,
        uint256[] calldata quantity,
        bool claimNFT,
        bool isKycRequired,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external nonReentrant notBlackListed(msg.sender) {
        if (isClaimed[msg.sender]) {
            revert AlreadyClaimed();
        }

        if (isKycRequired) {
            _verifySign(amountToClaim, ids, quantity, v, r, s);
        }

        if (ids.length != quantity.length) {
            revert ArrayLengthMismatch();
        }

        if (ids.length > MAX_LENGTH) {
            revert InvalidNftType();
        }

        bytes32 leaf = keccak256(abi.encodePacked(msg.sender, amountToClaim, ids, quantity, isKycRequired));
        bool success = MerkleProof.verify(merkleProof, root, leaf);
        if (!success) {
            revert InvalidProof();
        }

        isClaimed[msg.sender] = true;
        DOP.safeTransferFrom(dopWallet, msg.sender, amountToClaim);
        if (claimNFT && ids.length > 0) {
            dopNFT.mint(msg.sender, ids, quantity);
        }

        emit Claimed({ by: msg.sender, dopAmount: amountToClaim, ids: ids, quantity: quantity });
    }

    /// @notice Changes dop wallet to a new address
    /// @param newDopWallet The address of the new dop wallet
    function changeDopWallet(address newDopWallet) external checkAddressZero(newDopWallet) onlyOwner {
        address oldWallet = dopWallet;
        if (oldWallet == newDopWallet) {
            revert IdenticalValue();
        }

        emit DopWalletUpdated({ prevAddress: oldWallet, newAddress: newDopWallet });
        dopWallet = newDopWallet;
    }

    /// @notice Changes signer wallet address
    /// @param newSigner The address of the new signer wallet
    function changeSigner(address newSigner) external checkAddressZero(newSigner) onlyOwner {
        address oldSigner = signerWallet;
        if (oldSigner == newSigner) {
            revert IdenticalValue();
        }
        emit SignerUpdated({ oldSigner: oldSigner, newSigner: newSigner });
        signerWallet = newSigner;
    }

    /// @notice Changes the access of any address in contract interaction
    /// @param which The address for which access is updated
    /// @param access The access decision of `which` address
    function updateBlackListedUser(address which, bool access) external checkAddressZero(which) onlyOwner {
        bool oldAccess = blacklistAddress[which];
        if (oldAccess == access) {
            revert IdenticalValue();
        }
        emit BlacklistUpdated({ which: which, accessNow: access });
        blacklistAddress[which] = access;
    }

    /// @notice The helper function which verifies signature, signed by signerWallet, reverts if Invalid
    function _verifySign(
        uint256 dopTokenAmount,
        uint256[] calldata ids,
        uint256[] calldata quantity,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) private view {
        bytes32 encodedMessageHash = keccak256(abi.encodePacked(msg.sender, dopTokenAmount, ids, quantity));
        if (signerWallet != ECDSA.recover(MessageHashUtils.toEthSignedMessageHash(encodedMessageHash), v, r, s)) {
            revert InvalidSignature();
        }
    }
}

File 2 of 15 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 15 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 4 of 15 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 5 of 15 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 6 of 15 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 7 of 15 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 8 of 15 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 9 of 15 : MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.20;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

File 10 of 15 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 11 of 15 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 12 of 15 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 13 of 15 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 14 of 15 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 15 of 15 : IDopNFT.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

interface IDopNFT {
    /// @notice Mint nfts to the user
    /// @param to The address to which nfts will be minted, it will be non-zero address
    /// @param ids The token ids that will be minted to `to`
    /// @param quantity The amount of nfts that will be minted to `to`
    function mint(address to, uint256[] memory ids, uint256[] memory quantity) external;
}

Settings
{
  "viaIR": true,
  "optimizer": {
    "enabled": true,
    "runs": 1000000,
    "details": {
      "yulDetails": {
        "optimizerSteps": "u"
      }
    }
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract IERC20","name":"dopToken","type":"address"},{"internalType":"contract IDopNFT","name":"dopNFTAddress","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"dopWalletAddress","type":"address"},{"internalType":"address","name":"signerAddress","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"Blacklisted","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"IdenticalValue","type":"error"},{"inputs":[],"name":"InvalidNftType","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidRoot","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"which","type":"address"},{"indexed":true,"internalType":"bool","name":"accessNow","type":"bool"}],"name":"BlacklistUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"uint256","name":"dopAmount","type":"uint256"},{"indexed":true,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":true,"internalType":"uint256[]","name":"quantity","type":"uint256[]"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"prevAddress","type":"address"},{"indexed":true,"internalType":"address","name":"newAddress","type":"address"}],"name":"DopWalletUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"inputs":[],"name":"DOP","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"blacklistAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newDopWallet","type":"address"}],"name":"changeDopWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"changeSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountToClaim","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"quantity","type":"uint256[]"},{"internalType":"bool","name":"claimNFT","type":"bool"},{"internalType":"bool","name":"isKycRequired","type":"bool"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"claimDop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"dopNFT","outputs":[{"internalType":"contract IDopNFT","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dopWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"root","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"signerWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"which","type":"address"},{"internalType":"bool","name":"access","type":"bool"}],"name":"updateBlackListedUser","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60e0604052346100615761002061001461016f565b9493909392919261020e565b6040516118b361042582396080518181816104c30152610b4d015260a05181818161018c0152610bdf015260c0518181816105380152610b0101526118b390f35b600080fd5b634e487b7160e01b600052604160045260246000fd5b90601f01601f191681019081106001600160401b0382111761009d57604052565b610066565b906100b66100af60405190565b928361007c565b565b6001600160a01b031690565b90565b6001600160a01b0381165b0361006157565b905051906100b6826100c7565b6001600160a01b0381166100d2565b905051906100b6826100e6565b806100d2565b905051906100b682610102565b909160c0828403126100615761012b83836100d9565b9261013981602085016100d9565b9261014782604083016100f5565b926100c461015884606085016100f5565b9360a061016882608087016100f5565b9401610108565b61018d611cd880380380610182816100a2565b928339810190610115565b909192939495565b6100c4906100b8906001600160a01b031682565b6100c490610195565b6100c4906101a9565b6100b86100c46100c49290565b6100c4906101bb565b6100c46100c46100c49290565b906001600160a01b03905b9181191691161790565b906102036100c461020a926101b2565b82546101de565b9055565b9161021c909493919461034c565b610225826101b2565b600090610231826101c8565b9061024d6001600160a01b0383165b916001600160a01b031690565b149081156102fd575b81156102e0575b81156102c4575b506102b2576100c4610275916101d1565b851461029c57610297936102909260805260a05260026101f3565b60036101f3565b60c052565b60405163504570e360e01b8152600490fd5b0390fd5b60405163d92e233d60e01b8152600490fd5b6001600160a01b031690506001600160a01b0385161438610264565b90506001600160a01b0381166001600160a01b038416149061025d565b9050610308866101b2565b61031a6001600160a01b038316610240565b1490610256565b6100c460016101d1565b90600019906101e9565b906103456100c461020a926101d1565b825461032b565b61035590610367565b6100b6610360610321565b6001610335565b61037160006101c8565b6001600160a01b0381166001600160a01b0383161461039457506100b6906103c5565b6102ae906103a160405190565b631e4fbdf760e01b8152918291600483016001600160a01b03909116815260200190565b6103f36103ed6103dd6000546001600160a01b031690565b6103e88460006101f3565b6101b2565b916101b2565b907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e061041e60405190565b600090a356fe6080604052600436101561001257600080fd5b60003560e01c806348b64884146100f2578063648b5ab2146100ed57806364f0d35e146100e8578063715018a6146100e357806383092e47146100de5780638cc08025146100d95780638da5cb5b146100d4578063aad2b723146100cf578063cc518abf146100ca578063d1328bb7146100c5578063e09590d1146100c0578063ebf0c717146100bb578063f2fde38b146100b65763f3290d750361010257610590565b610568565b610523565b61050a565b6104ae565b610493565b61046f565b610454565b610427565b6103b8565b61026e565b610247565b6101ed565b610177565b600091031261010257565b600080fd5b61012d61012a61012a9273ffffffffffffffffffffffffffffffffffffffff1690565b90565b73ffffffffffffffffffffffffffffffffffffffff1690565b61012a90610107565b61012a90610146565b6101619061014f565b9052565b6020810192916101759190610158565b565b34610102576101873660046100f7565b6101b87f00000000000000000000000000000000000000000000000000000000000000005b60405191829182610165565b0390f35b6101c58161012d565b0361010257565b90503590610175826101bc565b906020828203126101025761012a916101cc565b34610102576102056102003660046101d9565b610712565b604051005b61012a916008021c61012d565b9061012a915461020a565b61012a60006003610217565b6101619061012d565b602081019291610175919061022e565b34610102576102573660046100f7565b6101b8610262610222565b60405191829182610237565b346101025761027e3660046100f7565b610205610738565b806101c5565b9050359061017582610286565b909182601f830112156101025781359167ffffffffffffffff831161010257602001926020830284011161010257565b8015156101c5565b90503590610175826102c9565b60ff81166101c5565b90503590610175826102de565b91610120838303126101025761030a828461028c565b92602081013567ffffffffffffffff8111610102578361032b918301610299565b929093604083013567ffffffffffffffff8111610102578161034e918501610299565b929093606081013567ffffffffffffffff81116101025783610371918301610299565b92909361038181608085016102d1565b9261038f8260a083016102d1565b9261012a6103a08460c085016102e7565b936101006103b18260e0870161028c565b940161028c565b34610102576102056103cb3660046102f4565b9a999099989198979297969396959495610dcd565b906103ea9061014f565b600052602052604060002090565b61012a916008021c5b60ff1690565b9061012a91546103f8565b600061042261012a9260046103e0565b610407565b34610102576101b861044261043d3660046101d9565b610412565b60405191829182901515815260200190565b34610102576104643660046100f7565b6101b8610262610de1565b34610102576102056104823660046101d9565b610e83565b61012a60006002610217565b34610102576104a33660046100f7565b6101b8610262610487565b34610102576104be3660046100f7565b6101b87f00000000000000000000000000000000000000000000000000000000000000006101ac565b91906040838203126101025761012a90602061050382866101cc565b94016102d1565b346101025761020561051d3660046104e7565b90610f21565b34610102576105333660046100f7565b6101b87f00000000000000000000000000000000000000000000000000000000000000006040515b9182918290815260200190565b346101025761020561057b3660046101d9565b610f9e565b600061042261012a9260056103e0565b34610102576101b86104426105a63660046101d9565b610580565b61012d61012a61012a9290565b61012a906105ab565b6105d36105ce60006105b8565b61012d565b6105dc8261012d565b146105ea5761017590610619565b6040517fd92e233d000000000000000000000000000000000000000000000000000000008152600490fd5b0390fd5b61017590610625610fa7565b61067a565b61012a9061012d565b61012a905461062a565b9073ffffffffffffffffffffffffffffffffffffffff905b9181191691161790565b9061066f61012a6106769261014f565b825461063d565b9055565b6106846002610633565b9061068e8161012d565b6106978361012d565b146106e7576106a86101759261014f565b6106b18261014f565b907f445140bbf7687e3ded463ffa17db847fcd77210c567e166de0ab6e85c9aeed376106dc60405190565b600090a3600261065f565b6040517f2620eb3a000000000000000000000000000000000000000000000000000000008152600490fd5b610175906105c1565b610723610fa7565b61017561017561073360006105b8565b611007565b61017561071b565b9061075c9b9a9998979695949392916107576110b8565b610777565b610175611111565b61012a90610401565b61012a9054610764565b9a999897969594939291906107956107903360056103e0565b61076d565b6107a2576101759b610a56565b6040517f09550c77000000000000000000000000000000000000000000000000000000008152600490fd5b61040161012a61012a9290565b61012a60066107cd565b61012a61012a61012a9260ff1690565b60601b90565b61012a906107f4565b61080f6101619161012d565b6107fa565b9037565b90915b917f07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811161010257829160206108549202938491610814565b0190565b60f81b90565b61012a90610858565b61016190151561085e565b926108a8946020600199989461089b6014886108956108549c9a6108a299610803565b01918252565b0191610818565b91610818565b8092610867565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810190811067ffffffffffffffff82111761091e57604052565b6108af565b9061017561093060405190565b92836108de565b67ffffffffffffffff811161091e5760208091020190565b9092919261096461095f82610937565b610923565b938185526020808601920283019281841161010257915b8383106109885750505050565b60208091610996848661028c565b81520192019161097b565b61012a91369161094f565b9060ff90610655565b151590565b906109ca61012a610676926109b5565b82546109ac565b61012a61012a61012a9290565b818352909160200161081b565b93919061012a9593610a1692610a096060880193600089019061022e565b86830360208801526109de565b9260408185039101526109de565b6040513d6000823e3d90fd5b909161012a92610818565b610a50610a4760405190565b92839283610a30565b03902090565b9a90919298959793969499600496610a71610790338a6103e0565b610d9557908c92918a8d8b8e8a610d7f575b509550610a91945050505050565b92878403610d4757610aa9610aa46107da565b6107e4565b8411610d0f5791610b2b91610b2688610aeb8c8f8f610b2f998f610adf92610ad060405190565b97889660208801963388610872565b908103825203826108de565b610afd610af6825190565b9160200190565b20927f0000000000000000000000000000000000000000000000000000000000000000926109a1565b6111ef565b1590565b610cd757610b476001610b4233866103e0565b6109ba565b610b7d887f0000000000000000000000000000000000000000000000000000000000000000610b766002610633565b339161127d565b81610cbd575b50610bda575b50610bcb7f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa92610bc5610bd593610bbf3361014f565b96610a3b565b95610a3b565b9461055b60405190565b0390a4565b610c037f000000000000000000000000000000000000000000000000000000000000000061014f565b803b15610102578260009186838995610c5289610c1f60405190565b988997889687957f9727756a000000000000000000000000000000000000000000000000000000008752339087016109eb565b03925af1928315610cb857610bc5610bd593610bcb937f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa96610c9a575b509350509250610b89565b610cb2906000610caa81836108de565b8101906100f7565b38610c8f565b610a24565b9050610cd0610ccc60006109d1565b9190565b1138610b83565b61061583610ce460405190565b7f09bde339000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d1c60405190565b7f7128f7f5000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d5460405190565b7fa24a13a6000000000000000000000000000000000000000000000000000000008152918291820190565b610d889761113f565b893880808a8d8b8e610a83565b61061588610da260405190565b7f646cf558000000000000000000000000000000000000000000000000000000008152918291820190565b906101759b9a999897969594939291610740565b61012a6000610633565b610df86105ce60006105b8565b610e018261012d565b146105ea576101759061017590610e16610fa7565b610e206003610633565b90610e2a8161012d565b610e338361012d565b146106e757610e446101759261014f565b610e4d8261014f565b907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb610e7860405190565b600090a3600361065f565b61017590610deb565b90610e9a6105ce60006105b8565b610ea38361012d565b146105ea57610175919061017591610eb9610fa7565b90610ec86107908360056103e0565b1515811515146106e757610b4282610ee26101759461014f565b610eeb846109b5565b907f6a12b3df6cba4203bd7fd06b816789f87de8c594299aed5717ae070fac781bac610f1660405190565b600090a360056103e0565b9061017591610e8c565b61017590610f37610fa7565b610f4160006105b8565b610f4a8161012d565b610f538361012d565b14610f62575061017590611007565b61061590610f6f60405190565b9182917f1e4fbdf700000000000000000000000000000000000000000000000000000000835260048301610237565b61017590610f2b565b610faf610de1565b3390610fc3610fbd8361012d565b9161012d565b03610fcb5750565b61061590610fd860405190565b9182917f118cdaa700000000000000000000000000000000000000000000000000000000835260048301610237565b61102d6110276110176000610633565b61102284600061065f565b61014f565b9161014f565b907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e061105860405190565b600090a3565b61012a9081565b61012a905461105e565b61012a60026109d1565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90610655565b906110b161012a610676926109d1565b8254611079565b6110c26001611065565b6110ca61106f565b9081146110dc576101759060016110a1565b6040517f3ee5aeb5000000000000000000000000000000000000000000000000000000008152600490fd5b61012a60016109d1565b61017561111c611107565b60016110a1565b6108a2939261089b60148361089560209561012a9c9a97610803565b6111bd96929161116e91610adf6105ce97610fbd999b9761115f60405190565b96879560208701953387611123565b611179610af6825190565b20956111b86111886003610633565b977f19457468657265756d205369676e6564204d6573736167653a0a333200000000600052601c52603c60002090565b6112c7565b036111c457565b6040517f8baa579f000000000000000000000000000000000000000000000000000000008152600490fd5b61120961120d9293610ccc92611203600090565b50611340565b9290565b1490565b61122a61122461012a9263ffffffff1690565b60e01b90565b7fffffffff000000000000000000000000000000000000000000000000000000001690565b604090611279610175949695939661126f6060840198600085019061022e565b602083019061022e565b0152565b906112c2906112b3610175956004956112996323b872dd611211565b936112a360405190565b978895602087019081520161124f565b602082018103825203836108de565b6113b0565b9161012a93916112df936112d9600090565b5061147c565b90929192611589565b60010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b90611326825190565b811015611337576020809102010190565b6112ee565b5190565b61134a60006109d1565b915b61135761012a835190565b8310156113895761137d61138391611377611372868661131d565b61133c565b9061169d565b926112e8565b9161134c565b91505090565b90505190610175826102c9565b906020828203126101025761012a9161138f565b6113bc6113c39161014f565b91826116ca565b80516113d2610ccc60006109d1565b1415908161141f575b506113e35750565b610615906113f060405190565b9182917f5274afe700000000000000000000000000000000000000000000000000000000835260048301610237565b61143d9150806020611432610b2b935190565b81830101910161139c565b386113db565b61012a906109d1565b6112796101759461147560609498979561146b608086019a6000870152565b60ff166020850152565b6040830152565b909161148784611443565b6114b3610ccc7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a06109d1565b1161152d57906114d5602094600094936114cc60405190565b9485948561144c565b838052039060015afa15610cb8576000516000916114f2836105b8565b6114fb8161012d565b6115048461012d565b146115195750611513836109d1565b91929190565b915091611525906109d1565b909160019190565b50505061153a60006105b8565b9160039190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b6004111561157a57565b611541565b9061017582611570565b611593600061157f565b61159c8261157f565b036115a5575050565b6115af600161157f565b6115b88261157f565b036115e8576040517ff645eedf000000000000000000000000000000000000000000000000000000008152600490fd5b6115f2600261157f565b6115fb8261157f565b036116425761061561160c83611443565b6040519182917ffce698f70000000000000000000000000000000000000000000000000000000083526004830190815260200190565b61165561164f600361157f565b9161157f565b1461165d5750565b6106159061166a60405190565b9182917fd78bce0c0000000000000000000000000000000000000000000000000000000083526004830190815260200190565b818110156116b8579061012a91600052602052604060002090565b61012a91600052602052604060002090565b61012a916116d860006109d1565b9161174a565b67ffffffffffffffff811161091e57602090601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0160190565b9061172661095f836116de565b918252565b3d156117455761173a3d611719565b903d6000602084013e565b606090565b916117543061014f565b8181311061177e57506000828192602061012a969551920190855af161177861172b565b916117ba565b6106159061178b60405190565b9182917fcd78605900000000000000000000000000000000000000000000000000000000835260048301610237565b906117c55750611835565b81516117d4610ccc60006109d1565b148061181f575b6117e3575090565b610615906117f060405190565b9182917f9996b31500000000000000000000000000000000000000000000000000000000835260048301610237565b50803b61182f610ccc60006109d1565b146117db565b8051611844610ccc60006109d1565b111561185257805190602001fd5b6040517f1425ea42000000000000000000000000000000000000000000000000000000008152600490fdfea264697066735822122026b05c4b05a12df5c74dcef63578387e12f06d42d7e71481d322c90f9e543c7e64736f6c6343000819003300000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad09780000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a00000000000000000000000004607c83b39690c3a8ada0a03cc920514e48d2c8f0000000000000000000000006e97eac711f309bf18d536a92428b13280d6f6e7000000000000000000000000c2fc26805e9c3201cbeced85f8759f38426dfbf40abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e

Deployed Bytecode

0x6080604052600436101561001257600080fd5b60003560e01c806348b64884146100f2578063648b5ab2146100ed57806364f0d35e146100e8578063715018a6146100e357806383092e47146100de5780638cc08025146100d95780638da5cb5b146100d4578063aad2b723146100cf578063cc518abf146100ca578063d1328bb7146100c5578063e09590d1146100c0578063ebf0c717146100bb578063f2fde38b146100b65763f3290d750361010257610590565b610568565b610523565b61050a565b6104ae565b610493565b61046f565b610454565b610427565b6103b8565b61026e565b610247565b6101ed565b610177565b600091031261010257565b600080fd5b61012d61012a61012a9273ffffffffffffffffffffffffffffffffffffffff1690565b90565b73ffffffffffffffffffffffffffffffffffffffff1690565b61012a90610107565b61012a90610146565b6101619061014f565b9052565b6020810192916101759190610158565b565b34610102576101873660046100f7565b6101b87f0000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a05b60405191829182610165565b0390f35b6101c58161012d565b0361010257565b90503590610175826101bc565b906020828203126101025761012a916101cc565b34610102576102056102003660046101d9565b610712565b604051005b61012a916008021c61012d565b9061012a915461020a565b61012a60006003610217565b6101619061012d565b602081019291610175919061022e565b34610102576102573660046100f7565b6101b8610262610222565b60405191829182610237565b346101025761027e3660046100f7565b610205610738565b806101c5565b9050359061017582610286565b909182601f830112156101025781359167ffffffffffffffff831161010257602001926020830284011161010257565b8015156101c5565b90503590610175826102c9565b60ff81166101c5565b90503590610175826102de565b91610120838303126101025761030a828461028c565b92602081013567ffffffffffffffff8111610102578361032b918301610299565b929093604083013567ffffffffffffffff8111610102578161034e918501610299565b929093606081013567ffffffffffffffff81116101025783610371918301610299565b92909361038181608085016102d1565b9261038f8260a083016102d1565b9261012a6103a08460c085016102e7565b936101006103b18260e0870161028c565b940161028c565b34610102576102056103cb3660046102f4565b9a999099989198979297969396959495610dcd565b906103ea9061014f565b600052602052604060002090565b61012a916008021c5b60ff1690565b9061012a91546103f8565b600061042261012a9260046103e0565b610407565b34610102576101b861044261043d3660046101d9565b610412565b60405191829182901515815260200190565b34610102576104643660046100f7565b6101b8610262610de1565b34610102576102056104823660046101d9565b610e83565b61012a60006002610217565b34610102576104a33660046100f7565b6101b8610262610487565b34610102576104be3660046100f7565b6101b87f00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad09786101ac565b91906040838203126101025761012a90602061050382866101cc565b94016102d1565b346101025761020561051d3660046104e7565b90610f21565b34610102576105333660046100f7565b6101b87f0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e6040515b9182918290815260200190565b346101025761020561057b3660046101d9565b610f9e565b600061042261012a9260056103e0565b34610102576101b86104426105a63660046101d9565b610580565b61012d61012a61012a9290565b61012a906105ab565b6105d36105ce60006105b8565b61012d565b6105dc8261012d565b146105ea5761017590610619565b6040517fd92e233d000000000000000000000000000000000000000000000000000000008152600490fd5b0390fd5b61017590610625610fa7565b61067a565b61012a9061012d565b61012a905461062a565b9073ffffffffffffffffffffffffffffffffffffffff905b9181191691161790565b9061066f61012a6106769261014f565b825461063d565b9055565b6106846002610633565b9061068e8161012d565b6106978361012d565b146106e7576106a86101759261014f565b6106b18261014f565b907f445140bbf7687e3ded463ffa17db847fcd77210c567e166de0ab6e85c9aeed376106dc60405190565b600090a3600261065f565b6040517f2620eb3a000000000000000000000000000000000000000000000000000000008152600490fd5b610175906105c1565b610723610fa7565b61017561017561073360006105b8565b611007565b61017561071b565b9061075c9b9a9998979695949392916107576110b8565b610777565b610175611111565b61012a90610401565b61012a9054610764565b9a999897969594939291906107956107903360056103e0565b61076d565b6107a2576101759b610a56565b6040517f09550c77000000000000000000000000000000000000000000000000000000008152600490fd5b61040161012a61012a9290565b61012a60066107cd565b61012a61012a61012a9260ff1690565b60601b90565b61012a906107f4565b61080f6101619161012d565b6107fa565b9037565b90915b917f07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811161010257829160206108549202938491610814565b0190565b60f81b90565b61012a90610858565b61016190151561085e565b926108a8946020600199989461089b6014886108956108549c9a6108a299610803565b01918252565b0191610818565b91610818565b8092610867565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810190811067ffffffffffffffff82111761091e57604052565b6108af565b9061017561093060405190565b92836108de565b67ffffffffffffffff811161091e5760208091020190565b9092919261096461095f82610937565b610923565b938185526020808601920283019281841161010257915b8383106109885750505050565b60208091610996848661028c565b81520192019161097b565b61012a91369161094f565b9060ff90610655565b151590565b906109ca61012a610676926109b5565b82546109ac565b61012a61012a61012a9290565b818352909160200161081b565b93919061012a9593610a1692610a096060880193600089019061022e565b86830360208801526109de565b9260408185039101526109de565b6040513d6000823e3d90fd5b909161012a92610818565b610a50610a4760405190565b92839283610a30565b03902090565b9a90919298959793969499600496610a71610790338a6103e0565b610d9557908c92918a8d8b8e8a610d7f575b509550610a91945050505050565b92878403610d4757610aa9610aa46107da565b6107e4565b8411610d0f5791610b2b91610b2688610aeb8c8f8f610b2f998f610adf92610ad060405190565b97889660208801963388610872565b908103825203826108de565b610afd610af6825190565b9160200190565b20927f0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e926109a1565b6111ef565b1590565b610cd757610b476001610b4233866103e0565b6109ba565b610b7d887f00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad0978610b766002610633565b339161127d565b81610cbd575b50610bda575b50610bcb7f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa92610bc5610bd593610bbf3361014f565b96610a3b565b95610a3b565b9461055b60405190565b0390a4565b610c037f0000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a061014f565b803b15610102578260009186838995610c5289610c1f60405190565b988997889687957f9727756a000000000000000000000000000000000000000000000000000000008752339087016109eb565b03925af1928315610cb857610bc5610bd593610bcb937f42103fa0eeaa26645ba1c99347e3c5a902bdf5fe04e611affb25c41d72e438aa96610c9a575b509350509250610b89565b610cb2906000610caa81836108de565b8101906100f7565b38610c8f565b610a24565b9050610cd0610ccc60006109d1565b9190565b1138610b83565b61061583610ce460405190565b7f09bde339000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d1c60405190565b7f7128f7f5000000000000000000000000000000000000000000000000000000008152918291820190565b61061586610d5460405190565b7fa24a13a6000000000000000000000000000000000000000000000000000000008152918291820190565b610d889761113f565b893880808a8d8b8e610a83565b61061588610da260405190565b7f646cf558000000000000000000000000000000000000000000000000000000008152918291820190565b906101759b9a999897969594939291610740565b61012a6000610633565b610df86105ce60006105b8565b610e018261012d565b146105ea576101759061017590610e16610fa7565b610e206003610633565b90610e2a8161012d565b610e338361012d565b146106e757610e446101759261014f565b610e4d8261014f565b907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb610e7860405190565b600090a3600361065f565b61017590610deb565b90610e9a6105ce60006105b8565b610ea38361012d565b146105ea57610175919061017591610eb9610fa7565b90610ec86107908360056103e0565b1515811515146106e757610b4282610ee26101759461014f565b610eeb846109b5565b907f6a12b3df6cba4203bd7fd06b816789f87de8c594299aed5717ae070fac781bac610f1660405190565b600090a360056103e0565b9061017591610e8c565b61017590610f37610fa7565b610f4160006105b8565b610f4a8161012d565b610f538361012d565b14610f62575061017590611007565b61061590610f6f60405190565b9182917f1e4fbdf700000000000000000000000000000000000000000000000000000000835260048301610237565b61017590610f2b565b610faf610de1565b3390610fc3610fbd8361012d565b9161012d565b03610fcb5750565b61061590610fd860405190565b9182917f118cdaa700000000000000000000000000000000000000000000000000000000835260048301610237565b61102d6110276110176000610633565b61102284600061065f565b61014f565b9161014f565b907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e061105860405190565b600090a3565b61012a9081565b61012a905461105e565b61012a60026109d1565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90610655565b906110b161012a610676926109d1565b8254611079565b6110c26001611065565b6110ca61106f565b9081146110dc576101759060016110a1565b6040517f3ee5aeb5000000000000000000000000000000000000000000000000000000008152600490fd5b61012a60016109d1565b61017561111c611107565b60016110a1565b6108a2939261089b60148361089560209561012a9c9a97610803565b6111bd96929161116e91610adf6105ce97610fbd999b9761115f60405190565b96879560208701953387611123565b611179610af6825190565b20956111b86111886003610633565b977f19457468657265756d205369676e6564204d6573736167653a0a333200000000600052601c52603c60002090565b6112c7565b036111c457565b6040517f8baa579f000000000000000000000000000000000000000000000000000000008152600490fd5b61120961120d9293610ccc92611203600090565b50611340565b9290565b1490565b61122a61122461012a9263ffffffff1690565b60e01b90565b7fffffffff000000000000000000000000000000000000000000000000000000001690565b604090611279610175949695939661126f6060840198600085019061022e565b602083019061022e565b0152565b906112c2906112b3610175956004956112996323b872dd611211565b936112a360405190565b978895602087019081520161124f565b602082018103825203836108de565b6113b0565b9161012a93916112df936112d9600090565b5061147c565b90929192611589565b60010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b90611326825190565b811015611337576020809102010190565b6112ee565b5190565b61134a60006109d1565b915b61135761012a835190565b8310156113895761137d61138391611377611372868661131d565b61133c565b9061169d565b926112e8565b9161134c565b91505090565b90505190610175826102c9565b906020828203126101025761012a9161138f565b6113bc6113c39161014f565b91826116ca565b80516113d2610ccc60006109d1565b1415908161141f575b506113e35750565b610615906113f060405190565b9182917f5274afe700000000000000000000000000000000000000000000000000000000835260048301610237565b61143d9150806020611432610b2b935190565b81830101910161139c565b386113db565b61012a906109d1565b6112796101759461147560609498979561146b608086019a6000870152565b60ff166020850152565b6040830152565b909161148784611443565b6114b3610ccc7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a06109d1565b1161152d57906114d5602094600094936114cc60405190565b9485948561144c565b838052039060015afa15610cb8576000516000916114f2836105b8565b6114fb8161012d565b6115048461012d565b146115195750611513836109d1565b91929190565b915091611525906109d1565b909160019190565b50505061153a60006105b8565b9160039190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b6004111561157a57565b611541565b9061017582611570565b611593600061157f565b61159c8261157f565b036115a5575050565b6115af600161157f565b6115b88261157f565b036115e8576040517ff645eedf000000000000000000000000000000000000000000000000000000008152600490fd5b6115f2600261157f565b6115fb8261157f565b036116425761061561160c83611443565b6040519182917ffce698f70000000000000000000000000000000000000000000000000000000083526004830190815260200190565b61165561164f600361157f565b9161157f565b1461165d5750565b6106159061166a60405190565b9182917fd78bce0c0000000000000000000000000000000000000000000000000000000083526004830190815260200190565b818110156116b8579061012a91600052602052604060002090565b61012a91600052602052604060002090565b61012a916116d860006109d1565b9161174a565b67ffffffffffffffff811161091e57602090601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0160190565b9061172661095f836116de565b918252565b3d156117455761173a3d611719565b903d6000602084013e565b606090565b916117543061014f565b8181311061177e57506000828192602061012a969551920190855af161177861172b565b916117ba565b6106159061178b60405190565b9182917fcd78605900000000000000000000000000000000000000000000000000000000835260048301610237565b906117c55750611835565b81516117d4610ccc60006109d1565b148061181f575b6117e3575090565b610615906117f060405190565b9182917f9996b31500000000000000000000000000000000000000000000000000000000835260048301610237565b50803b61182f610ccc60006109d1565b146117db565b8051611844610ccc60006109d1565b111561185257805190602001fd5b6040517f1425ea42000000000000000000000000000000000000000000000000000000008152600490fdfea264697066735822122026b05c4b05a12df5c74dcef63578387e12f06d42d7e71481d322c90f9e543c7e64736f6c63430008190033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad09780000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a00000000000000000000000004607c83b39690c3a8ada0a03cc920514e48d2c8f0000000000000000000000006e97eac711f309bf18d536a92428b13280d6f6e7000000000000000000000000c2fc26805e9c3201cbeced85f8759f38426dfbf40abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e

-----Decoded View---------------
Arg [0] : dopToken (address): 0x97A9a15168C22B3C137E6381037E1499C8ad0978
Arg [1] : dopNFTAddress (address): 0x2c2512ABa6E0a095548e94a15572DD005C6fE2a0
Arg [2] : owner (address): 0x4607c83B39690c3A8aDa0a03cc920514E48D2c8f
Arg [3] : dopWalletAddress (address): 0x6e97Eac711f309Bf18D536A92428B13280d6f6e7
Arg [4] : signerAddress (address): 0xC2fC26805E9C3201CbecED85F8759f38426dfBf4
Arg [5] : merkleRoot (bytes32): 0x0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 00000000000000000000000097a9a15168c22b3c137e6381037e1499c8ad0978
Arg [1] : 0000000000000000000000002c2512aba6e0a095548e94a15572dd005c6fe2a0
Arg [2] : 0000000000000000000000004607c83b39690c3a8ada0a03cc920514e48d2c8f
Arg [3] : 0000000000000000000000006e97eac711f309bf18d536a92428b13280d6f6e7
Arg [4] : 000000000000000000000000c2fc26805e9c3201cbeced85f8759f38426dfbf4
Arg [5] : 0abad684336a33543c368285b5ef9963886aac97c274f2025585d7d02d04007e


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.