ETH Price: $2,001.43 (+0.60%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
DelphiiDev

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

// ---------------------------
//  OpenZeppelin Upgradeable
// ---------------------------
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";

// ---------------------------
//  Thirdweb Extensions
// ---------------------------
import {Ownable} from "@thirdweb-dev/contracts/extension/Ownable.sol";

// ---------------------------
//  OpenZeppelin & External
// ---------------------------
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "abdk-libraries-solidity/ABDKMath64x64.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
using Strings for uint256;

// USDC contract address on mainnet 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
// USDC contract address on TESTNET 0x1c7D4B196Cb0C7B01d743Fbc6116a902379C7238

// ----------------------------------------------------
// DelphiiDev: UUPS Upgradeable Version
// ----------------------------------------------------
contract DelphiiDev is
    Initializable, // For proxy-safe initialization
    UUPSUpgradeable, // For UUPS upgrade logic
    ReentrancyGuardUpgradeable, // Upgradeable Reentrancy Guard
    Ownable // Thirdweb's Ownable extension
{
    // ------------------------------------------------
    // Enums & Structs (same as before)
    // ------------------------------------------------

    enum MarketOutcome {
        UNRESOLVED,
        OPTION_A,
        OPTION_B
    }

    struct Market {
        uint256 id;
        string question;
        string rules;
        uint256 endTime;
        MarketOutcome outcome;
        string optionA;
        string optionB;
        // The total USDC liquidity in this market
        uint256 liquidity;
        // Total share counts for each outcome
        uint256 totalOptionAShares;
        uint256 totalOptionBShares;
        bool resolved;
        // LMSR liquidity parameter
        uint256 b;
        // Scales the logistic probabilities for pricing (1e6-based now)
        uint256 initialPriceScaling;
        // Tracks user share balances
        mapping(address => uint256) optionAShares;
        mapping(address => uint256) optionBShares;
        // >>> Keep track of addresses that hold shares <<<
        address[] optionAHolders;
        address[] optionBHolders;
        // Optional: track whether an address is already in optionAHolders/optionBHolders
        mapping(address => bool) isOptionAHolder;
        mapping(address => bool) isOptionBHolder;
    }

    // ------------------------------------------------
    // State Variables
    // ------------------------------------------------

    IERC20 public usdc; // The USDC token
    uint256 public marketCount;
    mapping(uint256 => Market) public markets;

    // 2% trading fee
    uint256 public constant FEE_PERCENTAGE = 0;

    // ------------------------------------------------
    // Events (same as before)
    // ------------------------------------------------

    event MarketCreated(
        uint256 indexed marketId,
        string question,
        string rules,
        string optionA,
        string optionB,
        uint256 endTime,
        uint256 scaling,
        uint256 liquidity
    );

    event MarketResolved(uint256 indexed marketId, MarketOutcome outcome);

    event Claimed(
        uint256 indexed marketId,
        address indexed user,
        uint256 amount
    );

    event BoughtShares(
        uint256 indexed marketId,
        address indexed user,
        uint256 shareAmount
    );

    event Failure(uint256 indexed marketId, address indexed user, string err);

    event MarketCreationLog(
        string message,
        address indexed user,
        uint256 amount
    );

    event GenericLog(
        string message,
        address indexed user,
        uint256 marketId,
        string payload
    );

    error ErrorHandler(uint256 marketId, address user, string err);

    // ------------------------------------------------
    // UUPS-Related Functions
    // ------------------------------------------------

    /**
     * @dev UUPS requires we implement _authorizeUpgrade.
     *      Restrict this to onlyOwner (from Thirdweb’s Ownable).
     */
    function _authorizeUpgrade(
        address newImplementation
    ) internal override onlyOwner {}

    /**
     * @dev By default, Thirdweb's Ownable extension prevents changing the owner
     *      unless `_canSetOwner()` returns true. We’ll leave it disabled below
     *      so only upgrades are possible, but feel free to adjust as needed.
     */
    function _canSetOwner() internal view virtual override returns (bool) {
        // If you want the ability to change owners, return true here.
        return false;
    }

    // ------------------------------------------------
    // Initializer (Replaces constructor)
    // ------------------------------------------------

    /**
     * @dev Initialize function for UUPS contract.
     *      Takes the place of the constructor.
     * @param _owner The owner to set for this contract (or msg.sender).
     * @param _usdcAddress The USDC token address.
     */
    function initialize(
        address _owner,
        address _usdcAddress
    ) public initializer {
        // Initialize inherited upgradeable contracts
        __UUPSUpgradeable_init();
        __ReentrancyGuard_init();

        // For Thirdweb's Ownable, we can manually set up the owner:
        _setupOwner(_owner);

        // Set the USDC token address
        usdc = IERC20(_usdcAddress);

        // Other one-time init logic, if needed
        // e.g. initialize some variables, etc.
    }

    // ------------------------------------------------
    // 1) Exponential Function in 1e6 Scale (via ABDK)
    // ------------------------------------------------

    function exponent(int256 x) internal pure returns (uint256) {
        int256 MAX_EXP_ABS = 60e6;
        if (x > MAX_EXP_ABS) {
            x = MAX_EXP_ABS;
        } else if (x < -MAX_EXP_ABS) {
            x = -MAX_EXP_ABS;
        }

        int128 fixedPointX = ABDKMath64x64.div(
            ABDKMath64x64.fromInt(x),
            ABDKMath64x64.fromUInt(1e6)
        );

        int128 expResult = ABDKMath64x64.exp(fixedPointX);

        return ABDKMath64x64.mulu(expResult, 1e6);
    }

    // ------------------------------------------------
    // 2) LMSR Price Calculation in 1e6 Scale
    // ------------------------------------------------

    function getCurrentSharePrice(
        uint256 _marketId,
        bool _isOptionA
    ) public view returns (uint256) {
        Market storage market = markets[_marketId];
        uint256 b = market.b;
        uint256 qYes = market.totalOptionAShares;
        uint256 qNo = market.totalOptionBShares;

        int256 diff = ((int256(qNo) - int256(qYes)) * int256(1e6)) / int256(b);

        int256 MAX_EXP = 135e6;
        if (diff > MAX_EXP) {
            diff = MAX_EXP;
        } else if (diff < -MAX_EXP) {
            diff = -MAX_EXP;
        }

        uint256 expDiff = exponent(diff);

        uint256 numerator = 1e6 * 1e6;
        uint256 denominator = 1e6 + expDiff;
        uint256 pYes = numerator / denominator;
        uint256 pNo = 1e6 - pYes;

        uint256 scaledYes = (pYes * market.initialPriceScaling) / 1e6;
        uint256 scaledNo = (pNo * market.initialPriceScaling) / 1e6;

        return _isOptionA ? scaledYes : scaledNo;
    }

    function getSharePrices(
        uint256 _marketId
    )
        public
        view
        returns (uint256 yesPriceInMicroUSDC, uint256 noPriceInMicroUSDC)
    {
        uint256 priceA = getCurrentSharePrice(_marketId, true);
        uint256 priceB = getCurrentSharePrice(_marketId, false);
        return (priceA, priceB);
    }

    // ------------------------------------------------
    // 3) Market Lifecycle
    // ------------------------------------------------

    function createMarket(
        string memory _question,
        string memory _rules,
        string memory _optionA,
        string memory _optionB,
        uint256 _duration,
        uint256 _b,
        uint256 _initialLiquidity
    ) external onlyOwner returns (uint256) {
        require(_duration > 0, "Duration must be positive");
        require(_b > 0, "Liquidity parameter must be positive");
        require(_initialLiquidity > 0, "Initial liquidity must be > 0");

        emit MarketCreationLog(
            "About to approve contract to spend tokens",
            msg.sender,
            _initialLiquidity
        );

        bool ok = usdc.transferFrom(
            msg.sender,
            address(this),
            _initialLiquidity
        );
        require(ok, "USDC transfer failed");

        uint256 marketId = marketCount++;
        Market storage market = markets[marketId];
        market.id = marketId;
        market.question = _question;
        market.rules = _rules;
        market.optionA = _optionA;
        market.optionB = _optionB;
        market.endTime = block.timestamp + _duration;
        market.outcome = MarketOutcome.UNRESOLVED;
        market.b = _b;
        market.initialPriceScaling = 1e6;
        market.liquidity = _initialLiquidity;
        market.totalOptionAShares = 10;
        market.totalOptionBShares = 10;
        market.resolved = false;

        emit MarketCreated(
            marketId,
            _question,
            _rules,
            _optionA,
            _optionB,
            market.endTime,
            market.initialPriceScaling,
            _initialLiquidity
        );

        emit MarketCreationLog(
            "Market successfully created",
            msg.sender,
            _initialLiquidity
        );

        return marketId;
    }

    function resolveMarket(
        uint256 _marketId,
        MarketOutcome _outcome
    ) external onlyOwner {
        Market storage market = markets[_marketId];
        require(block.timestamp >= market.endTime, "Market not yet ended");
        require(!market.resolved, "Market already resolved");
        require(_outcome != MarketOutcome.UNRESOLVED, "Invalid outcome");

        market.outcome = _outcome;
        market.resolved = true;

        emit MarketResolved(_marketId, _outcome);
    }

    // ------------------------------------------------
    // 4) Buying Shares in USDC (1e6 logic)
    // ------------------------------------------------

    function buyShares(
        uint256 _marketId,
        bool _isOptionA,
        uint256 amountUSDC
    ) external nonReentrant {
        Market storage market = markets[_marketId];
        require(block.timestamp < market.endTime, "Market has ended");
        require(!market.resolved, "Market resolved");
        require(amountUSDC > 0, "Must send USDC to buy shares");

        bool ok = usdc.transferFrom(msg.sender, address(this), amountUSDC);
        emit GenericLog(
            "Tranfer done",
            msg.sender,
            _marketId,
            ok ? "true" : "false"
        );
        require(ok, "USDC transfer failed");

        uint256 fee = (amountUSDC * FEE_PERCENTAGE) / 100; // 2% fee
        uint256 amountAfterFee = amountUSDC - fee;

        if (fee > 0) {
            bool feeSent = usdc.transfer(
                address(0x71a2D2F2bC3d34DB8Ceaf8f219941DB959c36E94),
                fee
            );
            require(feeSent, "Fee transfer failed");

            emit GenericLog("Fees", msg.sender, _marketId, fee.toString());
        }

        emit GenericLog(
            "Amount actually paid!",
            msg.sender,
            _marketId,
            amountAfterFee.toString()
        );

        market.liquidity += amountAfterFee;

        uint256 price = getCurrentSharePrice(_marketId, _isOptionA);
        require(price > 0, "Price calc err");

        // # of shares = (amountAfterFee) / price
        uint256 shares = (amountAfterFee) / price;

        if (_isOptionA) {
            market.totalOptionAShares += shares;
            market.optionAShares[msg.sender] += shares;

            if (!market.isOptionAHolder[msg.sender]) {
                market.isOptionAHolder[msg.sender] = true;
                market.optionAHolders.push(msg.sender);
            }
        } else {
            market.totalOptionBShares += shares;
            market.optionBShares[msg.sender] += shares;

            if (!market.isOptionBHolder[msg.sender]) {
                market.isOptionBHolder[msg.sender] = true;
                market.optionBHolders.push(msg.sender);
            }
        }

        emit BoughtShares(_marketId, msg.sender, shares);
    }

    // ------------------------------------------------
    // 5) Claiming Winnings
    // ------------------------------------------------

    function claimWinnings(uint256 _marketId) external nonReentrant {
        Market storage market = markets[_marketId];
        require(market.resolved, "Market not resolved yet");

        uint256 userShares;
        uint256 totalWinningShares;

        if (market.outcome == MarketOutcome.OPTION_A) {
            userShares = market.optionAShares[msg.sender];
            totalWinningShares = market.totalOptionAShares;
        } else if (market.outcome == MarketOutcome.OPTION_B) {
            userShares = market.optionBShares[msg.sender];
            totalWinningShares = market.totalOptionBShares;
        } else {
            revert("Invalid outcome");
        }

        require(userShares > 0, "No shares to claim");

        uint256 payout = (market.liquidity * userShares) / totalWinningShares;

        if (market.outcome == MarketOutcome.OPTION_A) {
            market.optionAShares[msg.sender] = 0;
        } else {
            market.optionBShares[msg.sender] = 0;
        }

        bool success = usdc.transfer(msg.sender, payout);
        require(success, "USDC transfer failed");

        emit Claimed(_marketId, msg.sender, payout);
    }

    // ------------------------------------------------
    // 6) View Functions
    // ------------------------------------------------

    function getSharesBalance(
        uint256 _marketId,
        address _user
    ) external view returns (uint256 optionAShares, uint256 optionBShares) {
        Market storage market = markets[_marketId];
        return (market.optionAShares[_user], market.optionBShares[_user]);
    }

    function getMarketShareHolders(
        uint256 _marketId
    ) external view returns (address[] memory) {
        Market storage market = markets[_marketId];

        uint256 aCount = market.optionAHolders.length;
        uint256 bCount = market.optionBHolders.length;

        // Create a new array sized to fit both sets of holders
        address[] memory allHolders = new address[](aCount + bCount);

        // Copy optionAHolders into the first part of allHolders
        for (uint256 i = 0; i < aCount; i++) {
            allHolders[i] = market.optionAHolders[i];
        }

        // Copy optionBHolders into the second part of allHolders
        for (uint256 i = 0; i < bCount; i++) {
            allHolders[aCount + i] = market.optionBHolders[i];
        }

        return allHolders;
    }

    function injectLiquidity(
        uint256 _marketId,
        uint256 amountUSDC
    ) external nonReentrant {
        Market storage market = markets[_marketId];
        require(amountUSDC > 0, "Must send USDC to buy shares");

        usdc.transferFrom(msg.sender, address(this), amountUSDC);
        market.liquidity += amountUSDC;
    }

    function getMarketInfo(
        uint256 _marketId
    )
        external
        view
        returns (
            string memory question,
            string memory rules,
            string memory optionA,
            string memory optionB,
            uint256 endTime,
            MarketOutcome outcome,
            uint256 totalOptionAShares,
            uint256 totalOptionBShares,
            bool resolved,
            uint256 liquidity
        )
    {
        Market storage market = markets[_marketId];
        return (
            market.question,
            market.rules,
            market.optionA,
            market.optionB,
            market.endTime,
            market.outcome,
            market.totalOptionAShares,
            market.totalOptionBShares,
            market.resolved,
            market.liquidity
        );
    }

    function getPotentialWinnings(
        uint256 _marketId,
        address _user
    )
        public
        view
        returns (
            uint256 potentialWinningsIfOptionA,
            uint256 potentialWinningsIfOptionB
        )
    {
        Market storage market = markets[_marketId];
        uint256 userSharesOptionA = market.optionAShares[_user];
        uint256 userSharesOptionB = market.optionBShares[_user];
        uint256 totalSharesOptionA = market.totalOptionAShares;
        uint256 totalSharesOptionB = market.totalOptionBShares;

        if (market.liquidity == 0) {
            return (0, 0);
        }

        if (totalSharesOptionA > 0) {
            potentialWinningsIfOptionA =
                (market.liquidity * userSharesOptionA) /
                totalSharesOptionA;
        } else {
            potentialWinningsIfOptionA = 0;
        }

        if (totalSharesOptionB > 0) {
            potentialWinningsIfOptionB =
                (market.liquidity * userSharesOptionB) /
                totalSharesOptionB;
        } else {
            potentialWinningsIfOptionB = 0;
        }

        return (potentialWinningsIfOptionA, potentialWinningsIfOptionB);
    }
}

File 2 of 19 : IERC1967Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.0;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 *
 * _Available since v4.8.3._
 */
interface IERC1967Upgradeable {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

File 3 of 19 : draft-IERC1822Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.0;

/**
 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822ProxiableUpgradeable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)

pragma solidity ^0.8.2;

import "../beacon/IBeaconUpgradeable.sol";
import "../../interfaces/IERC1967Upgradeable.sol";
import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../../utils/AddressUpgradeable.sol";
import "../../utils/StorageSlotUpgradeable.sol";
import "../utils/Initializable.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 *
 * _Available since v4.1._
 */
abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
    function __ERC1967Upgrade_init() internal onlyInitializing {
    }

    function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
    }
    // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
    bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev Returns the current implementation address.
     */
    function _getImplementation() internal view returns (address) {
        return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
        StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Perform implementation upgrade
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeTo(address newImplementation) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);
    }

    /**
     * @dev Perform implementation upgrade with additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
        _upgradeTo(newImplementation);
        if (data.length > 0 || forceCall) {
            AddressUpgradeable.functionDelegateCall(newImplementation, data);
        }
    }

    /**
     * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
        // Upgrades from old implementations will perform a rollback test. This test requires the new
        // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
        // this special case will break upgrade paths from old UUPS implementation to new ones.
        if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
            _setImplementation(newImplementation);
        } else {
            try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
            } catch {
                revert("ERC1967Upgrade: new implementation is not UUPS");
            }
            _upgradeToAndCall(newImplementation, data, forceCall);
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     */
    function _getAdmin() internal view returns (address) {
        return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        require(newAdmin != address(0), "ERC1967: new admin is the zero address");
        StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {AdminChanged} event.
     */
    function _changeAdmin(address newAdmin) internal {
        emit AdminChanged(_getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
     */
    bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function _getBeacon() internal view returns (address) {
        return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
        require(
            AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
            "ERC1967: beacon implementation is not a contract"
        );
        StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
    }

    /**
     * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
     * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
     *
     * Emits a {BeaconUpgraded} event.
     */
    function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);
        if (data.length > 0 || forceCall) {
            AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
        }
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

File 5 of 19 : IBeaconUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.0;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeaconUpgradeable {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {BeaconProxy} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.0;

import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
import "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 *
 * _Available since v4.1._
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
    address private immutable __self = address(this);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        require(address(this) != __self, "Function must be called through delegatecall");
        require(_getImplementation() == __self, "Function must be called through active proxy");
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
        _;
    }

    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
        return _IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeTo(address newImplementation) public virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data, true);
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeTo} and {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal override onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlotUpgradeable {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 15 of 19 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.0;

/// @author thirdweb

import "./interface/IOwnable.sol";

/**
 *  @title   Ownable
 *  @notice  Thirdweb's `Ownable` is a contract extension to be used with any base contract. It exposes functions for setting and reading
 *           who the 'owner' of the inheriting smart contract is, and lets the inheriting contract perform conditional logic that uses
 *           information about who the contract's owner is.
 */

abstract contract Ownable is IOwnable {
    /// @dev The sender is not authorized to perform the action
    error OwnableUnauthorized();

    /// @dev Owner of the contract (purpose: OpenSea compatibility)
    address private _owner;

    /// @dev Reverts if caller is not the owner.
    modifier onlyOwner() {
        if (msg.sender != _owner) {
            revert OwnableUnauthorized();
        }
        _;
    }

    /**
     *  @notice Returns the owner of the contract.
     */
    function owner() public view override returns (address) {
        return _owner;
    }

    /**
     *  @notice Lets an authorized wallet set a new owner for the contract.
     *  @param _newOwner The address to set as the new owner of the contract.
     */
    function setOwner(address _newOwner) external override {
        if (!_canSetOwner()) {
            revert OwnableUnauthorized();
        }
        _setupOwner(_newOwner);
    }

    /// @dev Lets a contract admin set a new owner for the contract. The new owner must be a contract admin.
    function _setupOwner(address _newOwner) internal {
        address _prevOwner = _owner;
        _owner = _newOwner;

        emit OwnerUpdated(_prevOwner, _newOwner);
    }

    /// @dev Returns whether owner can be set in the given execution context.
    function _canSetOwner() internal view virtual returns (bool);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.0;

/// @author thirdweb

/**
 *  Thirdweb's `Ownable` is a contract extension to be used with any base contract. It exposes functions for setting and reading
 *  who the 'owner' of the inheriting smart contract is, and lets the inheriting contract perform conditional logic that uses
 *  information about who the contract's owner is.
 */

interface IOwnable {
    /// @dev Returns the owner of the contract.
    function owner() external view returns (address);

    /// @dev Lets a module admin set a new owner for the contract. The new owner must be a module admin.
    function setOwner(address _newOwner) external;

    /// @dev Emitted when a new Owner is set.
    event OwnerUpdated(address indexed prevOwner, address indexed newOwner);
}

// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.8.0;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library ABDKMath64x64 {
  /*
   * Minimum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

  /*
   * Maximum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

  /**
   * Convert signed 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromInt (int256 x) internal pure returns (int128) {
    unchecked {
      require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (x << 64);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 64-bit integer number
   * rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64-bit integer number
   */
  function toInt (int128 x) internal pure returns (int64) {
    unchecked {
      return int64 (x >> 64);
    }
  }

  /**
   * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromUInt (uint256 x) internal pure returns (int128) {
    unchecked {
      require (x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (int256 (x << 64));
    }
  }

  /**
   * Convert signed 64.64 fixed point number into unsigned 64-bit integer
   * number rounding down.  Revert on underflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return unsigned 64-bit integer number
   */
  function toUInt (int128 x) internal pure returns (uint64) {
    unchecked {
      require (x >= 0);
      return uint64 (uint128 (x >> 64));
    }
  }

  /**
   * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
   * number rounding down.  Revert on overflow.
   *
   * @param x signed 128.128-bin fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function from128x128 (int256 x) internal pure returns (int128) {
    unchecked {
      int256 result = x >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 128.128 fixed point
   * number.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 128.128 fixed point number
   */
  function to128x128 (int128 x) internal pure returns (int256) {
    unchecked {
      return int256 (x) << 64;
    }
  }

  /**
   * Calculate x + y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function add (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) + y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x - y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sub (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) - y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding down.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function mul (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) * y >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
   * number and y is signed 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y signed 256-bit integer number
   * @return signed 256-bit integer number
   */
  function muli (int128 x, int256 y) internal pure returns (int256) {
    unchecked {
      if (x == MIN_64x64) {
        require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
          y <= 0x1000000000000000000000000000000000000000000000000);
        return -y << 63;
      } else {
        bool negativeResult = false;
        if (x < 0) {
          x = -x;
          negativeResult = true;
        }
        if (y < 0) {
          y = -y; // We rely on overflow behavior here
          negativeResult = !negativeResult;
        }
        uint256 absoluteResult = mulu (x, uint256 (y));
        if (negativeResult) {
          require (absoluteResult <=
            0x8000000000000000000000000000000000000000000000000000000000000000);
          return -int256 (absoluteResult); // We rely on overflow behavior here
        } else {
          require (absoluteResult <=
            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          return int256 (absoluteResult);
        }
      }
    }
  }

  /**
   * Calculate x * y rounding down, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y unsigned 256-bit integer number
   * @return unsigned 256-bit integer number
   */
  function mulu (int128 x, uint256 y) internal pure returns (uint256) {
    unchecked {
      if (y == 0) return 0;

      require (x >= 0);

      uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
      uint256 hi = uint256 (int256 (x)) * (y >> 128);

      require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      hi <<= 64;

      require (hi <=
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
      return hi + lo;
    }
  }

  /**
   * Calculate x / y rounding towards zero.  Revert on overflow or when y is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function div (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      int256 result = (int256 (x) << 64) / y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are signed 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x signed 256-bit integer number
   * @param y signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divi (int256 x, int256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);

      bool negativeResult = false;
      if (x < 0) {
        x = -x; // We rely on overflow behavior here
        negativeResult = true;
      }
      if (y < 0) {
        y = -y; // We rely on overflow behavior here
        negativeResult = !negativeResult;
      }
      uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
      if (negativeResult) {
        require (absoluteResult <= 0x80000000000000000000000000000000);
        return -int128 (absoluteResult); // We rely on overflow behavior here
      } else {
        require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int128 (absoluteResult); // We rely on overflow behavior here
      }
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divu (uint256 x, uint256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      uint128 result = divuu (x, y);
      require (result <= uint128 (MAX_64x64));
      return int128 (result);
    }
  }

  /**
   * Calculate -x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function neg (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return -x;
    }
  }

  /**
   * Calculate |x|.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function abs (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return x < 0 ? -x : x;
    }
  }

  /**
   * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function inv (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != 0);
      int256 result = int256 (0x100000000000000000000000000000000) / x;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function avg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      return int128 ((int256 (x) + int256 (y)) >> 1);
    }
  }

  /**
   * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
   * Revert on overflow or in case x * y is negative.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function gavg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 m = int256 (x) * int256 (y);
      require (m >= 0);
      require (m <
          0x4000000000000000000000000000000000000000000000000000000000000000);
      return int128 (sqrtu (uint256 (m)));
    }
  }

  /**
   * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y uint256 value
   * @return signed 64.64-bit fixed point number
   */
  function pow (int128 x, uint256 y) internal pure returns (int128) {
    unchecked {
      bool negative = x < 0 && y & 1 == 1;

      uint256 absX = uint128 (x < 0 ? -x : x);
      uint256 absResult;
      absResult = 0x100000000000000000000000000000000;

      if (absX <= 0x10000000000000000) {
        absX <<= 63;
        while (y != 0) {
          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x2 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x4 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x8 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          y >>= 4;
        }

        absResult >>= 64;
      } else {
        uint256 absXShift = 63;
        if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
        if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
        if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
        if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
        if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
        if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }

        uint256 resultShift = 0;
        while (y != 0) {
          require (absXShift < 64);

          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
            resultShift += absXShift;
            if (absResult > 0x100000000000000000000000000000000) {
              absResult >>= 1;
              resultShift += 1;
            }
          }
          absX = absX * absX >> 127;
          absXShift <<= 1;
          if (absX >= 0x100000000000000000000000000000000) {
              absX >>= 1;
              absXShift += 1;
          }

          y >>= 1;
        }

        require (resultShift < 64);
        absResult >>= 64 - resultShift;
      }
      int256 result = negative ? -int256 (absResult) : int256 (absResult);
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down.  Revert if x < 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sqrt (int128 x) internal pure returns (int128) {
    unchecked {
      require (x >= 0);
      return int128 (sqrtu (uint256 (int256 (x)) << 64));
    }
  }

  /**
   * Calculate binary logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function log_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      int256 msb = 0;
      int256 xc = x;
      if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
      if (xc >= 0x100) { xc >>= 8; msb += 8; }
      if (xc >= 0x10) { xc >>= 4; msb += 4; }
      if (xc >= 0x4) { xc >>= 2; msb += 2; }
      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

      int256 result = msb - 64 << 64;
      uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
      for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
        ux *= ux;
        uint256 b = ux >> 255;
        ux >>= 127 + b;
        result += bit * int256 (b);
      }

      return int128 (result);
    }
  }

  /**
   * Calculate natural logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function ln (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      return int128 (int256 (
          uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
    }
  }

  /**
   * Calculate binary exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      uint256 result = 0x80000000000000000000000000000000;

      if (x & 0x8000000000000000 > 0)
        result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
      if (x & 0x4000000000000000 > 0)
        result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
      if (x & 0x2000000000000000 > 0)
        result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
      if (x & 0x1000000000000000 > 0)
        result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
      if (x & 0x800000000000000 > 0)
        result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
      if (x & 0x400000000000000 > 0)
        result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
      if (x & 0x200000000000000 > 0)
        result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
      if (x & 0x100000000000000 > 0)
        result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
      if (x & 0x80000000000000 > 0)
        result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
      if (x & 0x40000000000000 > 0)
        result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
      if (x & 0x20000000000000 > 0)
        result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
      if (x & 0x10000000000000 > 0)
        result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
      if (x & 0x8000000000000 > 0)
        result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
      if (x & 0x4000000000000 > 0)
        result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
      if (x & 0x2000000000000 > 0)
        result = result * 0x1000162E525EE054754457D5995292026 >> 128;
      if (x & 0x1000000000000 > 0)
        result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
      if (x & 0x800000000000 > 0)
        result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
      if (x & 0x400000000000 > 0)
        result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
      if (x & 0x200000000000 > 0)
        result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
      if (x & 0x100000000000 > 0)
        result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
      if (x & 0x80000000000 > 0)
        result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
      if (x & 0x40000000000 > 0)
        result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
      if (x & 0x20000000000 > 0)
        result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
      if (x & 0x10000000000 > 0)
        result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
      if (x & 0x8000000000 > 0)
        result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
      if (x & 0x4000000000 > 0)
        result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
      if (x & 0x2000000000 > 0)
        result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
      if (x & 0x1000000000 > 0)
        result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
      if (x & 0x800000000 > 0)
        result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
      if (x & 0x400000000 > 0)
        result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
      if (x & 0x200000000 > 0)
        result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
      if (x & 0x100000000 > 0)
        result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
      if (x & 0x80000000 > 0)
        result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
      if (x & 0x40000000 > 0)
        result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
      if (x & 0x20000000 > 0)
        result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
      if (x & 0x10000000 > 0)
        result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
      if (x & 0x8000000 > 0)
        result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
      if (x & 0x4000000 > 0)
        result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
      if (x & 0x2000000 > 0)
        result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
      if (x & 0x1000000 > 0)
        result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
      if (x & 0x800000 > 0)
        result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
      if (x & 0x400000 > 0)
        result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
      if (x & 0x200000 > 0)
        result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
      if (x & 0x100000 > 0)
        result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
      if (x & 0x80000 > 0)
        result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
      if (x & 0x40000 > 0)
        result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
      if (x & 0x20000 > 0)
        result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
      if (x & 0x10000 > 0)
        result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
      if (x & 0x8000 > 0)
        result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
      if (x & 0x4000 > 0)
        result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
      if (x & 0x2000 > 0)
        result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
      if (x & 0x1000 > 0)
        result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
      if (x & 0x800 > 0)
        result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
      if (x & 0x400 > 0)
        result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
      if (x & 0x200 > 0)
        result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
      if (x & 0x100 > 0)
        result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
      if (x & 0x80 > 0)
        result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
      if (x & 0x40 > 0)
        result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
      if (x & 0x20 > 0)
        result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
      if (x & 0x10 > 0)
        result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
      if (x & 0x8 > 0)
        result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
      if (x & 0x4 > 0)
        result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
      if (x & 0x2 > 0)
        result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
      if (x & 0x1 > 0)
        result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;

      result >>= uint256 (int256 (63 - (x >> 64)));
      require (result <= uint256 (int256 (MAX_64x64)));

      return int128 (int256 (result));
    }
  }

  /**
   * Calculate natural exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      return exp_2 (
          int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return unsigned 64.64-bit fixed point number
   */
  function divuu (uint256 x, uint256 y) private pure returns (uint128) {
    unchecked {
      require (y != 0);

      uint256 result;

      if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        result = (x << 64) / y;
      else {
        uint256 msb = 192;
        uint256 xc = x >> 192;
        if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
        if (xc >= 0x10000) { xc >>= 16; msb += 16; }
        if (xc >= 0x100) { xc >>= 8; msb += 8; }
        if (xc >= 0x10) { xc >>= 4; msb += 4; }
        if (xc >= 0x4) { xc >>= 2; msb += 2; }
        if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

        result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
        require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 hi = result * (y >> 128);
        uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 xh = x >> 192;
        uint256 xl = x << 64;

        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here
        lo = hi << 128;
        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here

        result += xh == hi >> 128 ? xl / y : 1;
      }

      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return uint128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
   * number.
   *
   * @param x unsigned 256-bit integer number
   * @return unsigned 128-bit integer number
   */
  function sqrtu (uint256 x) private pure returns (uint128) {
    unchecked {
      if (x == 0) return 0;
      else {
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
        if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
        if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
        if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
        if (xx >= 0x100) { xx >>= 8; r <<= 4; }
        if (xx >= 0x10) { xx >>= 4; r <<= 2; }
        if (xx >= 0x4) { r <<= 1; }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return uint128 (r < r1 ? r : r1);
      }
    }
  }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "cancun",
  "remappings": [
    ":@chainlink/=node_modules/@chainlink/",
    ":@openzeppelin/=node_modules/@openzeppelin/",
    ":@thirdweb-dev/=node_modules/@thirdweb-dev/",
    ":abdk-libraries-solidity/=node_modules/abdk-libraries-solidity/",
    ":forge-std/=lib/forge-std/src/"
  ],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"marketId","type":"uint256"},{"internalType":"address","name":"user","type":"address"},{"internalType":"string","name":"err","type":"string"}],"name":"ErrorHandler","type":"error"},{"inputs":[],"name":"OwnableUnauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"beacon","type":"address"}],"name":"BeaconUpgraded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"marketId","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"shareAmount","type":"uint256"}],"name":"BoughtShares","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"marketId","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"marketId","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"string","name":"err","type":"string"}],"name":"Failure","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"message","type":"string"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"marketId","type":"uint256"},{"indexed":false,"internalType":"string","name":"payload","type":"string"}],"name":"GenericLog","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"marketId","type":"uint256"},{"indexed":false,"internalType":"string","name":"question","type":"string"},{"indexed":false,"internalType":"string","name":"rules","type":"string"},{"indexed":false,"internalType":"string","name":"optionA","type":"string"},{"indexed":false,"internalType":"string","name":"optionB","type":"string"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"scaling","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidity","type":"uint256"}],"name":"MarketCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"message","type":"string"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"MarketCreationLog","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"marketId","type":"uint256"},{"indexed":false,"internalType":"enum DelphiiDev.MarketOutcome","name":"outcome","type":"uint8"}],"name":"MarketResolved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"prevOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"},{"internalType":"bool","name":"_isOptionA","type":"bool"},{"internalType":"uint256","name":"amountUSDC","type":"uint256"}],"name":"buyShares","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"}],"name":"claimWinnings","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_question","type":"string"},{"internalType":"string","name":"_rules","type":"string"},{"internalType":"string","name":"_optionA","type":"string"},{"internalType":"string","name":"_optionB","type":"string"},{"internalType":"uint256","name":"_duration","type":"uint256"},{"internalType":"uint256","name":"_b","type":"uint256"},{"internalType":"uint256","name":"_initialLiquidity","type":"uint256"}],"name":"createMarket","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"},{"internalType":"bool","name":"_isOptionA","type":"bool"}],"name":"getCurrentSharePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"}],"name":"getMarketInfo","outputs":[{"internalType":"string","name":"question","type":"string"},{"internalType":"string","name":"rules","type":"string"},{"internalType":"string","name":"optionA","type":"string"},{"internalType":"string","name":"optionB","type":"string"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"enum DelphiiDev.MarketOutcome","name":"outcome","type":"uint8"},{"internalType":"uint256","name":"totalOptionAShares","type":"uint256"},{"internalType":"uint256","name":"totalOptionBShares","type":"uint256"},{"internalType":"bool","name":"resolved","type":"bool"},{"internalType":"uint256","name":"liquidity","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"}],"name":"getMarketShareHolders","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"getPotentialWinnings","outputs":[{"internalType":"uint256","name":"potentialWinningsIfOptionA","type":"uint256"},{"internalType":"uint256","name":"potentialWinningsIfOptionB","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"}],"name":"getSharePrices","outputs":[{"internalType":"uint256","name":"yesPriceInMicroUSDC","type":"uint256"},{"internalType":"uint256","name":"noPriceInMicroUSDC","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"getSharesBalance","outputs":[{"internalType":"uint256","name":"optionAShares","type":"uint256"},{"internalType":"uint256","name":"optionBShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_usdcAddress","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"},{"internalType":"uint256","name":"amountUSDC","type":"uint256"}],"name":"injectLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"marketCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"markets","outputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"string","name":"question","type":"string"},{"internalType":"string","name":"rules","type":"string"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"enum DelphiiDev.MarketOutcome","name":"outcome","type":"uint8"},{"internalType":"string","name":"optionA","type":"string"},{"internalType":"string","name":"optionB","type":"string"},{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint256","name":"totalOptionAShares","type":"uint256"},{"internalType":"uint256","name":"totalOptionBShares","type":"uint256"},{"internalType":"bool","name":"resolved","type":"bool"},{"internalType":"uint256","name":"b","type":"uint256"},{"internalType":"uint256","name":"initialPriceScaling","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_marketId","type":"uint256"},{"internalType":"enum DelphiiDev.MarketOutcome","name":"_outcome","type":"uint8"}],"name":"resolveMarket","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"setOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"}],"name":"upgradeTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"usdc","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

60a0604052306080523480156012575f5ffd5b50608051613c5c6100475f395f81816104500152818161049901528181610e9701528181610ed7015261144e0152613c5c5ff3fe608060405260043610610125575f3560e01c80634fb113ab116100a8578063b1283e771161006d578063b1283e771461032d578063b510ceb714610365578063c1433f4414610391578063df55406e146103b0578063e1b009f2146103cf578063ec979082146103ee575f5ffd5b80634fb113ab1461029f57806352d1902d146102be578063677bd9ff146102d25780637f1a10da146102f15780638da5cb5b14610310575f5ffd5b80633e413bee116100ee5780633e413bee146101e25780633ec7919314610219578063485cc9551461024e5780634f1ef2861461026d5780634f7438f914610280575f5ffd5b80620b46f81461012957806313af40351461014f57806327ce8c51146101705780633659cfe6146101a457806339b46372146101c3575b5f5ffd5b348015610134575f5ffd5b5061013c5f81565b6040519081526020015b60405180910390f35b34801561015a575f5ffd5b5061016e6101693660046131d5565b610403565b005b34801561017b575f5ffd5b5061018f61018a3660046131ee565b61041f565b60408051928352602083019190915201610146565b3480156101af575f5ffd5b5061016e6101be3660046131d5565b610446565b3480156101ce575f5ffd5b5061016e6101dd366004613212565b610529565b3480156101ed575f5ffd5b50609854610201906001600160a01b031681565b6040516001600160a01b039091168152602001610146565b348015610224575f5ffd5b506102386102333660046131ee565b610aa5565b6040516101469a999897969594939291906132a9565b348015610259575f5ffd5b5061016e610268366004613337565b610d55565b61016e61027b3660046133f3565b610e8d565b34801561028b575f5ffd5b5061013c61029a36600461346f565b610f5c565b3480156102aa575f5ffd5b5061013c6102b9366004613541565b61132b565b3480156102c9575f5ffd5b5061013c611442565b3480156102dd575f5ffd5b5061016e6102ec3660046131ee565b6114f3565b3480156102fc575f5ffd5b5061018f61030b36600461356f565b611793565b34801561031b575f5ffd5b506097546001600160a01b0316610201565b348015610338575f5ffd5b5061034c6103473660046131ee565b6117cd565b6040516101469d9c9b9a99989796959493929190613590565b348015610370575f5ffd5b5061038461037f3660046131ee565b611a51565b604051610146919061363a565b34801561039c575f5ffd5b5061016e6103ab366004613685565b611b9e565b3480156103bb575f5ffd5b5061016e6103ca3660046136a5565b611c9b565b3480156103da575f5ffd5b5061018f6103e936600461356f565b611e39565b3480156103f9575f5ffd5b5061013c60995481565b6040516316ccb9cb60e11b815260040160405180910390fd5b50565b5f5f5f61042d84600161132b565b90505f61043a855f61132b565b91959194509092505050565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001630036104975760405162461bcd60e51b815260040161048e906136cb565b60405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166104df5f516020613be05f395f51905f52546001600160a01b031690565b6001600160a01b0316146105055760405162461bcd60e51b815260040161048e90613717565b61050e81611f4a565b604080515f8082526020820190925261041c91839190611f75565b6105316120df565b5f838152609a60205260409020600381015442106105845760405162461bcd60e51b815260206004820152601060248201526f13585c9ad95d081a185cc8195b99195960821b604482015260640161048e565b600a81015460ff16156105cb5760405162461bcd60e51b815260206004820152600f60248201526e13585c9ad95d081c995cdbdb1d9959608a1b604482015260640161048e565b5f821161061a5760405162461bcd60e51b815260206004820152601c60248201527f4d7573742073656e64205553444320746f206275792073686172657300000000604482015260640161048e565b6098546040516323b872dd60e01b8152336004820152306024820152604481018490525f916001600160a01b0316906323b872dd906064016020604051808303815f875af115801561066e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106929190613763565b9050337fc64d203bdd634d8a38663ba6281285fef3addc9e7e00f5b4966c67a217bebf2e86836106df576040518060400160405280600581526020016466616c736560d81b8152506106fd565b604051806040016040528060048152602001637472756560e01b8152505b60405161070b92919061377e565b60405180910390a2806107305760405162461bcd60e51b815260040161048e906137b9565b5f606461073d82866137fb565b6107479190613826565b90505f6107548286613839565b9050811561086b5760985460405163a9059cbb60e01b81527371a2d2f2bc3d34db8ceaf8f219941db959c36e946004820152602481018490525f916001600160a01b03169063a9059cbb906044016020604051808303815f875af11580156107be573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107e29190613763565b9050806108275760405162461bcd60e51b8152602060048201526013602482015272119959481d1c985b9cd9995c8819985a5b1959606a1b604482015260640161048e565b337fc64d203bdd634d8a38663ba6281285fef3addc9e7e00f5b4966c67a217bebf2e8961085386612138565b60405161086192919061384c565b60405180910390a2505b337fc64d203bdd634d8a38663ba6281285fef3addc9e7e00f5b4966c67a217bebf2e8861089784612138565b6040516108a592919061387f565b60405180910390a280846007015f8282546108c091906138c3565b909155505f90506108d1888861132b565b90505f81116109135760405162461bcd60e51b815260206004820152600e60248201526d283934b1b29031b0b6319032b93960911b604482015260640161048e565b5f61091e8284613826565b905087156109c25780866008015f82825461093991906138c3565b9091555050335f908152600d870160205260408120805483929061095e9084906138c3565b9091555050335f90815260118701602052604090205460ff166109bd57335f81815260118801602090815260408220805460ff19166001908117909155600f8a0180549182018155835291200180546001600160a01b03191690911790555b610a59565b80866009015f8282546109d591906138c3565b9091555050335f908152600e87016020526040812080548392906109fa9084906138c3565b9091555050335f90815260128701602052604090205460ff16610a5957335f81815260128801602090815260408220805460ff1916600190811790915560108a0180549182018155835291200180546001600160a01b03191690911790555b60405181815233908a907f3704aababc4a932e42bcc46613dd1b566f25e54dbeb2562a9752cffccdc102dd9060200160405180910390a3505050505050610aa06001606555565b505050565b6060806060805f5f5f5f5f5f5f609a5f8d81526020019081526020015f209050806001018160020182600501836006018460030154856004015f9054906101000a900460ff168660080154876009015488600a015f9054906101000a900460ff168960070154898054610b17906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610b43906138d6565b8015610b8e5780601f10610b6557610100808354040283529160200191610b8e565b820191905f5260205f20905b815481529060010190602001808311610b7157829003601f168201915b50505050509950888054610ba1906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610bcd906138d6565b8015610c185780601f10610bef57610100808354040283529160200191610c18565b820191905f5260205f20905b815481529060010190602001808311610bfb57829003601f168201915b50505050509850878054610c2b906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610c57906138d6565b8015610ca25780601f10610c7957610100808354040283529160200191610ca2565b820191905f5260205f20905b815481529060010190602001808311610c8557829003601f168201915b50505050509750868054610cb5906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610ce1906138d6565b8015610d2c5780601f10610d0357610100808354040283529160200191610d2c565b820191905f5260205f20905b815481529060010190602001808311610d0f57829003601f168201915b505050505096509a509a509a509a509a509a509a509a509a509a50509193959799509193959799565b5f54610100900460ff1615808015610d7357505f54600160ff909116105b80610d8c5750303b158015610d8c57505f5460ff166001145b610def5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b606482015260840161048e565b5f805460ff191660011790558015610e10575f805461ff0019166101001790555b610e186121cf565b610e206121f7565b610e2983611ef9565b609880546001600160a01b0319166001600160a01b0384161790558015610aa0575f805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a1505050565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163003610ed55760405162461bcd60e51b815260040161048e906136cb565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316610f1d5f516020613be05f395f51905f52546001600160a01b031690565b6001600160a01b031614610f435760405162461bcd60e51b815260040161048e90613717565b610f4c82611f4a565b610f5882826001611f75565b5050565b6097545f906001600160a01b03163314610f89576040516316ccb9cb60e11b815260040160405180910390fd5b5f8411610fd85760405162461bcd60e51b815260206004820152601960248201527f4475726174696f6e206d75737420626520706f73697469766500000000000000604482015260640161048e565b5f83116110335760405162461bcd60e51b8152602060048201526024808201527f4c697175696469747920706172616d65746572206d75737420626520706f73696044820152637469766560e01b606482015260840161048e565b5f82116110825760405162461bcd60e51b815260206004820152601d60248201527f496e697469616c206c6971756964697479206d757374206265203e2030000000604482015260640161048e565b604080518181526029818301527f41626f757420746f20617070726f766520636f6e747261637420746f207370656060820152686e6420746f6b656e7360b81b608082015260208101849052905133917f76da6772a2e95e57d9e4d33e2afe7ae4679a7b267f98756879808547d2dfef52919081900360a00190a26098546040516323b872dd60e01b8152336004820152306024820152604481018490525f916001600160a01b0316906323b872dd906064016020604051808303815f875af1158015611151573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111759190613763565b9050806111945760405162461bcd60e51b815260040161048e906137b9565b609980545f91826111a48361390e565b909155505f818152609a60205260409020818155909150600181016111c98c82613971565b50600281016111d88b82613971565b50600581016111e78a82613971565b50600681016111f68982613971565b5061120187426138c3565b60038201556004810180545f919060ff191660018302179055508581600b0181905550620f424081600c0181905550848160070181905550600a8160080181905550600a81600901819055505f81600a015f6101000a81548160ff021916908315150217905550817f03381006daa9d80a6e22b92f6a6c56de1478beaa1cf38f27c9ce5d69fcb139268c8c8c8c866003015487600c01548c6040516112ac9796959493929190613a2c565b60405180910390a260408051818152601b818301527f4d61726b6574207375636365737366756c6c7920637265617465640000000000606082015260208101879052905133917f76da6772a2e95e57d9e4d33e2afe7ae4679a7b267f98756879808547d2dfef52919081900360800190a2509998505050505050505050565b5f828152609a60205260408120600b810154600882015460098301548483620f42406113578585613a98565b6113619190613abe565b61136b9190613aed565b905063080befc0808213156113825780915061139e565b61138b81613b19565b82121561139e5761139b81613b19565b91505b5f6113a883612225565b905064e8d4a510005f6113be83620f42406138c3565b90505f6113cb8284613826565b90505f6113db82620f4240613839565b90505f620f42408c600c0154846113f291906137fb565b6113fc9190613826565b90505f620f42408d600c01548461141391906137fb565b61141d9190613826565b90508e61142a578061142c565b815b9d50505050505050505050505050505b92915050565b5f306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146114e15760405162461bcd60e51b815260206004820152603860248201527f555550535570677261646561626c653a206d757374206e6f742062652063616c60448201527f6c6564207468726f7567682064656c656761746563616c6c0000000000000000606482015260840161048e565b505f516020613be05f395f51905f5290565b6114fb6120df565b5f818152609a60205260409020600a81015460ff1661155c5760405162461bcd60e51b815260206004820152601760248201527f4d61726b6574206e6f74207265736f6c76656420796574000000000000000000604482015260640161048e565b5f806001600484015460ff16600281111561157957611579613275565b0361159b575050335f908152600d820160205260409020546008820154611612565b6002600484015460ff1660028111156115b6576115b6613275565b036115d8575050335f908152600e820160205260409020546009820154611612565b60405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964206f7574636f6d6560881b604482015260640161048e565b5f82116116565760405162461bcd60e51b81526020600482015260126024820152714e6f2073686172657320746f20636c61696d60701b604482015260640161048e565b5f8183856007015461166891906137fb565b6116729190613826565b90506001600485015460ff16600281111561168f5761168f613275565b036116aa57335f908152600d850160205260408120556116bc565b335f908152600e850160205260408120555b60985460405163a9059cbb60e01b8152336004820152602481018390525f916001600160a01b03169063a9059cbb906044016020604051808303815f875af115801561170a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061172e9190613763565b90508061174d5760405162461bcd60e51b815260040161048e906137b9565b604051828152339087907f4ec90e965519d92681267467f775ada5bd214aa92c0dc93d90a5e880ce9ed0269060200160405180910390a3505050505061041c6001606555565b5f828152609a602090815260408083206001600160a01b0385168452600d8101835281842054600e909101909252909120545b9250929050565b609a6020525f9081526040902080546001820180549192916117ee906138d6565b80601f016020809104026020016040519081016040528092919081815260200182805461181a906138d6565b80156118655780601f1061183c57610100808354040283529160200191611865565b820191905f5260205f20905b81548152906001019060200180831161184857829003601f168201915b50505050509080600201805461187a906138d6565b80601f01602080910402602001604051908101604052809291908181526020018280546118a6906138d6565b80156118f15780601f106118c8576101008083540402835291602001916118f1565b820191905f5260205f20905b8154815290600101906020018083116118d457829003601f168201915b50505050600383015460048401546005850180549495929460ff90921693509061191a906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054611946906138d6565b80156119915780601f1061196857610100808354040283529160200191611991565b820191905f5260205f20905b81548152906001019060200180831161197457829003601f168201915b5050505050908060060180546119a6906138d6565b80601f01602080910402602001604051908101604052809291908181526020018280546119d2906138d6565b8015611a1d5780601f106119f457610100808354040283529160200191611a1d565b820191905f5260205f20905b815481529060010190602001808311611a0057829003601f168201915b505050600784015460088501546009860154600a870154600b880154600c909801549697939692955090935060ff1691908d565b5f818152609a60205260408120600f8101546010820154606093611a7582846138c3565b67ffffffffffffffff811115611a8d57611a8d613368565b604051908082528060200260200182016040528015611ab6578160200160208202803683370190505b5090505f5b83811015611b255784600f018181548110611ad857611ad8613b33565b905f5260205f20015f9054906101000a90046001600160a01b0316828281518110611b0557611b05613b33565b6001600160a01b0390921660209283029190910190910152600101611abb565b505f5b82811015611b9457846010018181548110611b4557611b45613b33565b5f918252602090912001546001600160a01b031682611b6483876138c3565b81518110611b7457611b74613b33565b6001600160a01b0390921660209283029190910190910152600101611b28565b5095945050505050565b611ba66120df565b5f828152609a6020526040902081611c005760405162461bcd60e51b815260206004820152601c60248201527f4d7573742073656e64205553444320746f206275792073686172657300000000604482015260640161048e565b6098546040516323b872dd60e01b8152336004820152306024820152604481018490526001600160a01b03909116906323b872dd906064016020604051808303815f875af1158015611c54573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c789190613763565b5081816007015f828254611c8c91906138c3565b90915550506001606555505050565b6097546001600160a01b03163314611cc6576040516316ccb9cb60e11b815260040160405180910390fd5b5f828152609a602052604090206003810154421015611d1e5760405162461bcd60e51b815260206004820152601460248201527313585c9ad95d081b9bdd081e595d08195b99195960621b604482015260640161048e565b600a81015460ff1615611d735760405162461bcd60e51b815260206004820152601760248201527f4d61726b657420616c7265616479207265736f6c766564000000000000000000604482015260640161048e565b5f826002811115611d8657611d86613275565b03611dc55760405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964206f7574636f6d6560881b604482015260640161048e565b60048101805483919060ff19166001836002811115611de657611de6613275565b0217905550600a8101805460ff1916600117905560405183907f739f283563fb51ab6b89ee95d937b2e63a6cfcb83c385dbebb629f9d97bd43e690611e2c908590613b47565b60405180910390a2505050565b5f828152609a602090815260408083206001600160a01b0385168452600d8101835281842054600e8201909352908320546008820154600983015460078401548695939291908603611e95575f5f9650965050505050506117c6565b8115611ebd5781848660070154611eac91906137fb565b611eb69190613826565b9650611ec1565b5f96505b8015611ee95780838660070154611ed891906137fb565b611ee29190613826565b9550611eed565b5f95505b50505050509250929050565b609780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8292fce18fa69edf4db7b94ea2e58241df0ae57f97e0a6c9b29067028bf92d76905f90a35050565b6097546001600160a01b0316331461041c576040516316ccb9cb60e11b815260040160405180910390fd5b7f4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd91435460ff1615611fa857610aa083612299565b826001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa925050508015612002575060408051601f3d908101601f19168201909252611fff91810190613b55565b60015b6120655760405162461bcd60e51b815260206004820152602e60248201527f45524331393637557067726164653a206e657720696d706c656d656e7461746960448201526d6f6e206973206e6f74205555505360901b606482015260840161048e565b5f516020613be05f395f51905f5281146120d35760405162461bcd60e51b815260206004820152602960248201527f45524331393637557067726164653a20756e737570706f727465642070726f786044820152681a58589b195555525160ba1b606482015260840161048e565b50610aa0838383612334565b6002606554036121315760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161048e565b6002606555565b60605f6121448361235e565b60010190505f8167ffffffffffffffff81111561216357612163613368565b6040519080825280601f01601f19166020018201604052801561218d576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461219757509392505050565b6001606555565b5f54610100900460ff166121f55760405162461bcd60e51b815260040161048e90613b6c565b565b5f54610100900460ff1661221d5760405162461bcd60e51b815260040161048e90613b6c565b6121f5612435565b5f63039387008083131561223b57809250612257565b61224481613b19565b8312156122575761225481613b19565b92505b5f6122756122648561245b565b612270620f424061248c565b6124a1565b90505f61228182612504565b905061229081620f4240612556565b95945050505050565b6001600160a01b0381163b6123065760405162461bcd60e51b815260206004820152602d60248201527f455243313936373a206e657720696d706c656d656e746174696f6e206973206e60448201526c1bdd08184818dbdb9d1c9858dd609a1b606482015260840161048e565b5f516020613be05f395f51905f5280546001600160a01b0319166001600160a01b0392909216919091179055565b61233d836125c3565b5f825111806123495750805b15610aa0576123588383612602565b50505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b831061239c5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef810000000083106123c8576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc1000083106123e657662386f26fc10000830492506010015b6305f5e10083106123fe576305f5e100830492506008015b612710831061241257612710830492506004015b60648310612424576064830492506002015b600a831061143c5760010192915050565b5f54610100900460ff166121c85760405162461bcd60e51b815260040161048e90613b6c565b5f677fffffffffffffff19821215801561247d5750677fffffffffffffff8213155b612485575f5ffd5b5060401b90565b5f677fffffffffffffff821115612485575f5ffd5b5f81600f0b5f036124b0575f5ffd5b5f82600f0b604085600f0b901b816124ca576124ca613812565b0590506f7fffffffffffffffffffffffffffffff1981128015906124f5575060016001607f1b038113155b6124fd575f5ffd5b9392505050565b5f600160461b82600f0b12612517575f5ffd5b683fffffffffffffffff1982600f0b121561253357505f919050565b61143c608083600f0b700171547652b82fe1777d0ffda0d23a7d1202901d612627565b5f815f0361256557505f61143c565b5f83600f0b1215612574575f5ffd5b600f83900b6fffffffffffffffffffffffffffffffff8316810260401c90608084901c026001600160c01b038111156125ab575f5ffd5b60401b81198111156125bb575f5ffd5b019392505050565b6125cc81612299565b6040516001600160a01b038216907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a250565b60606124fd8383604051806060016040528060278152602001613c006027913961309c565b5f600160461b82600f0b1261263a575f5ffd5b683fffffffffffffffff1982600f0b121561265657505f919050565b6001607f1b5f6780000000000000008416600f0b13156126875770016a09e667f3bcc908b2fb1366ea957d3e0260801c5b5f8367400000000000000016600f0b13156126b3577001306fe0a31b7152de8d5a46305c85edec0260801c5b5f8367200000000000000016600f0b13156126df577001172b83c7d517adcdf7c8c50eb14a791f0260801c5b5f8367100000000000000016600f0b131561270b5770010b5586cf9890f6298b92b71842a983630260801c5b5f8367080000000000000016600f0b1315612737577001059b0d31585743ae7c548eb68ca417fd0260801c5b5f8367040000000000000016600f0b131561276357700102c9a3e778060ee6f7caca4f7a29bde80260801c5b5f8367020000000000000016600f0b131561278f5770010163da9fb33356d84a66ae336dcdfa3f0260801c5b5f8367010000000000000016600f0b13156127bb57700100b1afa5abcbed6129ab13ec11dc95430260801c5b5f83668000000000000016600f0b13156127e65770010058c86da1c09ea1ff19d294cf2f679b0260801c5b5f83664000000000000016600f0b1315612811577001002c605e2e8cec506d21bfc89a23a00f0260801c5b5f83662000000000000016600f0b131561283c57700100162f3904051fa128bca9c55c31e5df0260801c5b5f83661000000000000016600f0b1315612867577001000b175effdc76ba38e31671ca9397250260801c5b5f83660800000000000016600f0b131561289257700100058ba01fb9f96d6cacd4b180917c3d0260801c5b5f83660400000000000016600f0b13156128bd5770010002c5cc37da9491d0985c348c68e7b30260801c5b5f83660200000000000016600f0b13156128e8577001000162e525ee054754457d59952920260260801c5b5f83660100000000000016600f0b13156129135770010000b17255775c040618bf4a4ade83fc0260801c5b5f836580000000000016600f0b131561293d577001000058b91b5bc9ae2eed81e9b7d4cfab0260801c5b5f836540000000000016600f0b131561296757700100002c5c89d5ec6ca4d7c8acc017b7c90260801c5b5f836520000000000016600f0b13156129915770010000162e43f4f831060e02d839a9d16d0260801c5b5f836510000000000016600f0b13156129bb57700100000b1721bcfc99d9f890ea069117630260801c5b5f836508000000000016600f0b13156129e55770010000058b90cf1e6d97f9ca14dbcc16280260801c5b5f836504000000000016600f0b1315612a0f577001000002c5c863b73f016468f6bac5ca2b0260801c5b5f836502000000000016600f0b1315612a3957700100000162e430e5a18f6119e3c02282a50260801c5b5f836501000000000016600f0b1315612a63577001000000b1721835514b86e6d96efd1bfe0260801c5b5f8364800000000016600f0b1315612a8c57700100000058b90c0b48c6be5df846c5b2ef0260801c5b5f8364400000000016600f0b1315612ab55770010000002c5c8601cc6b9e94213c72737a0260801c5b5f8364200000000016600f0b1315612ade577001000000162e42fff037df38aa2b219f060260801c5b5f8364100000000016600f0b1315612b075770010000000b17217fba9c739aa5819f44f90260801c5b5f8364080000000016600f0b1315612b30577001000000058b90bfcdee5acd3c1cedc8230260801c5b5f8364040000000016600f0b1315612b5957700100000002c5c85fe31f35a6a30da1be500260801c5b5f8364020000000016600f0b1315612b825770010000000162e42ff0999ce3541b9fffcf0260801c5b5f8364010000000016600f0b1315612bab57700100000000b17217f80f4ef5aadda455540260801c5b5f83638000000016600f0b1315612bd35770010000000058b90bfbf8479bd5a81b51ad0260801c5b5f83634000000016600f0b1315612bfb577001000000002c5c85fdf84bd62ae30a74cc0260801c5b5f83632000000016600f0b1315612c2357700100000000162e42fefb2fed257559bdaa0260801c5b5f83631000000016600f0b1315612c4b577001000000000b17217f7d5a7716bba4a9ae0260801c5b5f83630800000016600f0b1315612c7357700100000000058b90bfbe9ddbac5e109cce0260801c5b5f83630400000016600f0b1315612c9b5770010000000002c5c85fdf4b15de6f17eb0d0260801c5b5f83630200000016600f0b1315612cc3577001000000000162e42fefa494f1478fde050260801c5b5f83630100000016600f0b1315612ceb5770010000000000b17217f7d20cf927c8e94c0260801c5b5f836280000016600f0b1315612d12577001000000000058b90bfbe8f71cb4e4b33d0260801c5b5f836240000016600f0b1315612d3957700100000000002c5c85fdf477b662b269450260801c5b5f836220000016600f0b1315612d605770010000000000162e42fefa3ae53369388c0260801c5b5f836210000016600f0b1315612d8757700100000000000b17217f7d1d351a389d400260801c5b5f836208000016600f0b1315612dae5770010000000000058b90bfbe8e8b2d3d4ede0260801c5b5f836204000016600f0b1315612dd5577001000000000002c5c85fdf4741bea6e77e0260801c5b5f836202000016600f0b1315612dfc57700100000000000162e42fefa39fe95583c20260801c5b5f836201000016600f0b1315612e23577001000000000000b17217f7d1cfb72b45e10260801c5b5f8361800016600f0b1315612e4957700100000000000058b90bfbe8e7cc35c3f00260801c5b5f8361400016600f0b1315612e6f5770010000000000002c5c85fdf473e242ea380260801c5b5f8361200016600f0b1315612e95577001000000000000162e42fefa39f02b772c0260801c5b5f8361100016600f0b1315612ebb5770010000000000000b17217f7d1cf7d83c1a0260801c5b5f8361080016600f0b1315612ee1577001000000000000058b90bfbe8e7bdcbe2e0260801c5b5f8361040016600f0b1315612f0757700100000000000002c5c85fdf473dea871f0260801c5b5f8361020016600f0b1315612f2d5770010000000000000162e42fefa39ef44d910260801c5b5f8361010016600f0b1315612f5357700100000000000000b17217f7d1cf79e9490260801c5b5f83608016600f0b1315612f785770010000000000000058b90bfbe8e7bce5440260801c5b5f83604016600f0b1315612f9d577001000000000000002c5c85fdf473de6eca0260801c5b5f83602016600f0b1315612fc257700100000000000000162e42fefa39ef366f0260801c5b5f83601016600f0b1315612fe7577001000000000000000b17217f7d1cf79afa0260801c5b5f83600816600f0b131561300c57700100000000000000058b90bfbe8e7bcd6d0260801c5b5f83600416600f0b13156130315770010000000000000002c5c85fdf473de6b20260801c5b5f83600216600f0b1315613056577001000000000000000162e42fefa39ef3580260801c5b5f83600116600f0b131561307b5770010000000000000000b17217f7d1cf79ab0260801c5b600f83810b60401d603f03900b1c60016001607f1b0381111561143c575f5ffd5b60605f5f856001600160a01b0316856040516130b89190613bb7565b5f60405180830381855af49150503d805f81146130f0576040519150601f19603f3d011682016040523d82523d5f602084013e6130f5565b606091505b509150915061310686838387613110565b9695505050505050565b6060831561317e5782515f03613177576001600160a01b0385163b6131775760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161048e565b5081613188565b6131888383613190565b949350505050565b8151156131a05781518083602001fd5b8060405162461bcd60e51b815260040161048e9190613bcd565b80356001600160a01b03811681146131d0575f5ffd5b919050565b5f602082840312156131e5575f5ffd5b6124fd826131ba565b5f602082840312156131fe575f5ffd5b5035919050565b801515811461041c575f5ffd5b5f5f5f60608486031215613224575f5ffd5b83359250602084013561323681613205565b929592945050506040919091013590565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b634e487b7160e01b5f52602160045260245ffd5b600381106132a557634e487b7160e01b5f52602160045260245ffd5b9052565b61014081525f6132bd61014083018d613247565b82810360208401526132cf818d613247565b905082810360408401526132e3818c613247565b905082810360608401526132f7818b613247565b91505087608083015261330d60a0830188613289565b60c082019590955260e0810193909352901515610100830152610120909101529695505050505050565b5f5f60408385031215613348575f5ffd5b613351836131ba565b915061335f602084016131ba565b90509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f5f67ffffffffffffffff84111561339657613396613368565b50604051601f19601f85018116603f0116810181811067ffffffffffffffff821117156133c5576133c5613368565b6040528381529050808284018510156133dc575f5ffd5b838360208301375f60208583010152509392505050565b5f5f60408385031215613404575f5ffd5b61340d836131ba565b9150602083013567ffffffffffffffff811115613428575f5ffd5b8301601f81018513613438575f5ffd5b6134478582356020840161337c565b9150509250929050565b5f82601f830112613460575f5ffd5b6124fd8383356020850161337c565b5f5f5f5f5f5f5f60e0888a031215613485575f5ffd5b873567ffffffffffffffff81111561349b575f5ffd5b6134a78a828b01613451565b975050602088013567ffffffffffffffff8111156134c3575f5ffd5b6134cf8a828b01613451565b965050604088013567ffffffffffffffff8111156134eb575f5ffd5b6134f78a828b01613451565b955050606088013567ffffffffffffffff811115613513575f5ffd5b61351f8a828b01613451565b979a969950949760808101359660a0820135965060c090910135945092505050565b5f5f60408385031215613552575f5ffd5b82359150602083013561356481613205565b809150509250929050565b5f5f60408385031215613580575f5ffd5b8235915061335f602084016131ba565b8d81526101a060208201525f6135aa6101a083018f613247565b82810360408401526135bc818f613247565b90508c60608401526135d1608084018d613289565b82810360a08401526135e3818c613247565b905082810360c08401526135f7818b613247565b9150508760e0830152866101008301528561012083015261361d61014083018615159052565b61016082019390935261018001529b9a5050505050505050505050565b602080825282518282018190525f918401906040840190835b8181101561367a5783516001600160a01b0316835260209384019390920191600101613653565b509095945050505050565b5f5f60408385031215613696575f5ffd5b50508035926020909101359150565b5f5f604083850312156136b6575f5ffd5b82359150602083013560038110613564575f5ffd5b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b19195b1959d85d1958d85b1b60a21b606082015260800190565b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b6163746976652070726f787960a01b606082015260800190565b5f60208284031215613773575f5ffd5b81516124fd81613205565b60608152600c60608201526b5472616e66657220646f6e6560a01b608082015282602082015260a060408201525f61318860a0830184613247565b6020808252601490820152731554d110c81d1c985b9cd9995c8819985a5b195960621b604082015260600190565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761143c5761143c6137e7565b634e487b7160e01b5f52601260045260245ffd5b5f8261383457613834613812565b500490565b8181038181111561143c5761143c6137e7565b6060815260046060820152634665657360e01b608082015282602082015260a060408201525f61318860a0830184613247565b606081526015606082015274416d6f756e742061637475616c6c7920706169642160581b608082015282602082015260a060408201525f61318860a0830184613247565b8082018082111561143c5761143c6137e7565b600181811c908216806138ea57607f821691505b60208210810361390857634e487b7160e01b5f52602260045260245ffd5b50919050565b5f6001820161391f5761391f6137e7565b5060010190565b601f821115610aa057805f5260205f20601f840160051c8101602085101561394b5750805b601f840160051c820191505b8181101561396a575f8155600101613957565b5050505050565b815167ffffffffffffffff81111561398b5761398b613368565b61399f8161399984546138d6565b84613926565b6020601f8211600181146139d1575f83156139ba5750848201515b5f19600385901b1c1916600184901b17845561396a565b5f84815260208120601f198516915b82811015613a0057878501518255602094850194600190920191016139e0565b5084821015613a1d57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b60e081525f613a3e60e083018a613247565b8281036020840152613a50818a613247565b90508281036040840152613a648189613247565b90508281036060840152613a788188613247565b6080840196909652505060a081019290925260c090910152949350505050565b8181035f831280158383131683831282161715613ab757613ab76137e7565b5092915050565b8082025f8212600160ff1b84141615613ad957613ad96137e7565b818105831482151761143c5761143c6137e7565b5f82613afb57613afb613812565b600160ff1b82145f1984141615613b1457613b146137e7565b500590565b5f600160ff1b8201613b2d57613b2d6137e7565b505f0390565b634e487b7160e01b5f52603260045260245ffd5b6020810161143c8284613289565b5f60208284031215613b65575f5ffd5b5051919050565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b5f82518060208501845e5f920191825250919050565b602081525f6124fd602083018461324756fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc416464726573733a206c6f772d6c6576656c2064656c65676174652063616c6c206661696c6564a26469706673582212203ab761c067a10c296ec374173ffa688f9bef59fb9b5a84883bad48208956833a64736f6c634300081c0033

Deployed Bytecode

0x608060405260043610610125575f3560e01c80634fb113ab116100a8578063b1283e771161006d578063b1283e771461032d578063b510ceb714610365578063c1433f4414610391578063df55406e146103b0578063e1b009f2146103cf578063ec979082146103ee575f5ffd5b80634fb113ab1461029f57806352d1902d146102be578063677bd9ff146102d25780637f1a10da146102f15780638da5cb5b14610310575f5ffd5b80633e413bee116100ee5780633e413bee146101e25780633ec7919314610219578063485cc9551461024e5780634f1ef2861461026d5780634f7438f914610280575f5ffd5b80620b46f81461012957806313af40351461014f57806327ce8c51146101705780633659cfe6146101a457806339b46372146101c3575b5f5ffd5b348015610134575f5ffd5b5061013c5f81565b6040519081526020015b60405180910390f35b34801561015a575f5ffd5b5061016e6101693660046131d5565b610403565b005b34801561017b575f5ffd5b5061018f61018a3660046131ee565b61041f565b60408051928352602083019190915201610146565b3480156101af575f5ffd5b5061016e6101be3660046131d5565b610446565b3480156101ce575f5ffd5b5061016e6101dd366004613212565b610529565b3480156101ed575f5ffd5b50609854610201906001600160a01b031681565b6040516001600160a01b039091168152602001610146565b348015610224575f5ffd5b506102386102333660046131ee565b610aa5565b6040516101469a999897969594939291906132a9565b348015610259575f5ffd5b5061016e610268366004613337565b610d55565b61016e61027b3660046133f3565b610e8d565b34801561028b575f5ffd5b5061013c61029a36600461346f565b610f5c565b3480156102aa575f5ffd5b5061013c6102b9366004613541565b61132b565b3480156102c9575f5ffd5b5061013c611442565b3480156102dd575f5ffd5b5061016e6102ec3660046131ee565b6114f3565b3480156102fc575f5ffd5b5061018f61030b36600461356f565b611793565b34801561031b575f5ffd5b506097546001600160a01b0316610201565b348015610338575f5ffd5b5061034c6103473660046131ee565b6117cd565b6040516101469d9c9b9a99989796959493929190613590565b348015610370575f5ffd5b5061038461037f3660046131ee565b611a51565b604051610146919061363a565b34801561039c575f5ffd5b5061016e6103ab366004613685565b611b9e565b3480156103bb575f5ffd5b5061016e6103ca3660046136a5565b611c9b565b3480156103da575f5ffd5b5061018f6103e936600461356f565b611e39565b3480156103f9575f5ffd5b5061013c60995481565b6040516316ccb9cb60e11b815260040160405180910390fd5b50565b5f5f5f61042d84600161132b565b90505f61043a855f61132b565b91959194509092505050565b6001600160a01b037f000000000000000000000000364b44cdc418becd390516cede656c9ecfcbd76e1630036104975760405162461bcd60e51b815260040161048e906136cb565b60405180910390fd5b7f000000000000000000000000364b44cdc418becd390516cede656c9ecfcbd76e6001600160a01b03166104df5f516020613be05f395f51905f52546001600160a01b031690565b6001600160a01b0316146105055760405162461bcd60e51b815260040161048e90613717565b61050e81611f4a565b604080515f8082526020820190925261041c91839190611f75565b6105316120df565b5f838152609a60205260409020600381015442106105845760405162461bcd60e51b815260206004820152601060248201526f13585c9ad95d081a185cc8195b99195960821b604482015260640161048e565b600a81015460ff16156105cb5760405162461bcd60e51b815260206004820152600f60248201526e13585c9ad95d081c995cdbdb1d9959608a1b604482015260640161048e565b5f821161061a5760405162461bcd60e51b815260206004820152601c60248201527f4d7573742073656e64205553444320746f206275792073686172657300000000604482015260640161048e565b6098546040516323b872dd60e01b8152336004820152306024820152604481018490525f916001600160a01b0316906323b872dd906064016020604051808303815f875af115801561066e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106929190613763565b9050337fc64d203bdd634d8a38663ba6281285fef3addc9e7e00f5b4966c67a217bebf2e86836106df576040518060400160405280600581526020016466616c736560d81b8152506106fd565b604051806040016040528060048152602001637472756560e01b8152505b60405161070b92919061377e565b60405180910390a2806107305760405162461bcd60e51b815260040161048e906137b9565b5f606461073d82866137fb565b6107479190613826565b90505f6107548286613839565b9050811561086b5760985460405163a9059cbb60e01b81527371a2d2f2bc3d34db8ceaf8f219941db959c36e946004820152602481018490525f916001600160a01b03169063a9059cbb906044016020604051808303815f875af11580156107be573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107e29190613763565b9050806108275760405162461bcd60e51b8152602060048201526013602482015272119959481d1c985b9cd9995c8819985a5b1959606a1b604482015260640161048e565b337fc64d203bdd634d8a38663ba6281285fef3addc9e7e00f5b4966c67a217bebf2e8961085386612138565b60405161086192919061384c565b60405180910390a2505b337fc64d203bdd634d8a38663ba6281285fef3addc9e7e00f5b4966c67a217bebf2e8861089784612138565b6040516108a592919061387f565b60405180910390a280846007015f8282546108c091906138c3565b909155505f90506108d1888861132b565b90505f81116109135760405162461bcd60e51b815260206004820152600e60248201526d283934b1b29031b0b6319032b93960911b604482015260640161048e565b5f61091e8284613826565b905087156109c25780866008015f82825461093991906138c3565b9091555050335f908152600d870160205260408120805483929061095e9084906138c3565b9091555050335f90815260118701602052604090205460ff166109bd57335f81815260118801602090815260408220805460ff19166001908117909155600f8a0180549182018155835291200180546001600160a01b03191690911790555b610a59565b80866009015f8282546109d591906138c3565b9091555050335f908152600e87016020526040812080548392906109fa9084906138c3565b9091555050335f90815260128701602052604090205460ff16610a5957335f81815260128801602090815260408220805460ff1916600190811790915560108a0180549182018155835291200180546001600160a01b03191690911790555b60405181815233908a907f3704aababc4a932e42bcc46613dd1b566f25e54dbeb2562a9752cffccdc102dd9060200160405180910390a3505050505050610aa06001606555565b505050565b6060806060805f5f5f5f5f5f5f609a5f8d81526020019081526020015f209050806001018160020182600501836006018460030154856004015f9054906101000a900460ff168660080154876009015488600a015f9054906101000a900460ff168960070154898054610b17906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610b43906138d6565b8015610b8e5780601f10610b6557610100808354040283529160200191610b8e565b820191905f5260205f20905b815481529060010190602001808311610b7157829003601f168201915b50505050509950888054610ba1906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610bcd906138d6565b8015610c185780601f10610bef57610100808354040283529160200191610c18565b820191905f5260205f20905b815481529060010190602001808311610bfb57829003601f168201915b50505050509850878054610c2b906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610c57906138d6565b8015610ca25780601f10610c7957610100808354040283529160200191610ca2565b820191905f5260205f20905b815481529060010190602001808311610c8557829003601f168201915b50505050509750868054610cb5906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054610ce1906138d6565b8015610d2c5780601f10610d0357610100808354040283529160200191610d2c565b820191905f5260205f20905b815481529060010190602001808311610d0f57829003601f168201915b505050505096509a509a509a509a509a509a509a509a509a509a50509193959799509193959799565b5f54610100900460ff1615808015610d7357505f54600160ff909116105b80610d8c5750303b158015610d8c57505f5460ff166001145b610def5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b606482015260840161048e565b5f805460ff191660011790558015610e10575f805461ff0019166101001790555b610e186121cf565b610e206121f7565b610e2983611ef9565b609880546001600160a01b0319166001600160a01b0384161790558015610aa0575f805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a1505050565b6001600160a01b037f000000000000000000000000364b44cdc418becd390516cede656c9ecfcbd76e163003610ed55760405162461bcd60e51b815260040161048e906136cb565b7f000000000000000000000000364b44cdc418becd390516cede656c9ecfcbd76e6001600160a01b0316610f1d5f516020613be05f395f51905f52546001600160a01b031690565b6001600160a01b031614610f435760405162461bcd60e51b815260040161048e90613717565b610f4c82611f4a565b610f5882826001611f75565b5050565b6097545f906001600160a01b03163314610f89576040516316ccb9cb60e11b815260040160405180910390fd5b5f8411610fd85760405162461bcd60e51b815260206004820152601960248201527f4475726174696f6e206d75737420626520706f73697469766500000000000000604482015260640161048e565b5f83116110335760405162461bcd60e51b8152602060048201526024808201527f4c697175696469747920706172616d65746572206d75737420626520706f73696044820152637469766560e01b606482015260840161048e565b5f82116110825760405162461bcd60e51b815260206004820152601d60248201527f496e697469616c206c6971756964697479206d757374206265203e2030000000604482015260640161048e565b604080518181526029818301527f41626f757420746f20617070726f766520636f6e747261637420746f207370656060820152686e6420746f6b656e7360b81b608082015260208101849052905133917f76da6772a2e95e57d9e4d33e2afe7ae4679a7b267f98756879808547d2dfef52919081900360a00190a26098546040516323b872dd60e01b8152336004820152306024820152604481018490525f916001600160a01b0316906323b872dd906064016020604051808303815f875af1158015611151573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111759190613763565b9050806111945760405162461bcd60e51b815260040161048e906137b9565b609980545f91826111a48361390e565b909155505f818152609a60205260409020818155909150600181016111c98c82613971565b50600281016111d88b82613971565b50600581016111e78a82613971565b50600681016111f68982613971565b5061120187426138c3565b60038201556004810180545f919060ff191660018302179055508581600b0181905550620f424081600c0181905550848160070181905550600a8160080181905550600a81600901819055505f81600a015f6101000a81548160ff021916908315150217905550817f03381006daa9d80a6e22b92f6a6c56de1478beaa1cf38f27c9ce5d69fcb139268c8c8c8c866003015487600c01548c6040516112ac9796959493929190613a2c565b60405180910390a260408051818152601b818301527f4d61726b6574207375636365737366756c6c7920637265617465640000000000606082015260208101879052905133917f76da6772a2e95e57d9e4d33e2afe7ae4679a7b267f98756879808547d2dfef52919081900360800190a2509998505050505050505050565b5f828152609a60205260408120600b810154600882015460098301548483620f42406113578585613a98565b6113619190613abe565b61136b9190613aed565b905063080befc0808213156113825780915061139e565b61138b81613b19565b82121561139e5761139b81613b19565b91505b5f6113a883612225565b905064e8d4a510005f6113be83620f42406138c3565b90505f6113cb8284613826565b90505f6113db82620f4240613839565b90505f620f42408c600c0154846113f291906137fb565b6113fc9190613826565b90505f620f42408d600c01548461141391906137fb565b61141d9190613826565b90508e61142a578061142c565b815b9d50505050505050505050505050505b92915050565b5f306001600160a01b037f000000000000000000000000364b44cdc418becd390516cede656c9ecfcbd76e16146114e15760405162461bcd60e51b815260206004820152603860248201527f555550535570677261646561626c653a206d757374206e6f742062652063616c60448201527f6c6564207468726f7567682064656c656761746563616c6c0000000000000000606482015260840161048e565b505f516020613be05f395f51905f5290565b6114fb6120df565b5f818152609a60205260409020600a81015460ff1661155c5760405162461bcd60e51b815260206004820152601760248201527f4d61726b6574206e6f74207265736f6c76656420796574000000000000000000604482015260640161048e565b5f806001600484015460ff16600281111561157957611579613275565b0361159b575050335f908152600d820160205260409020546008820154611612565b6002600484015460ff1660028111156115b6576115b6613275565b036115d8575050335f908152600e820160205260409020546009820154611612565b60405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964206f7574636f6d6560881b604482015260640161048e565b5f82116116565760405162461bcd60e51b81526020600482015260126024820152714e6f2073686172657320746f20636c61696d60701b604482015260640161048e565b5f8183856007015461166891906137fb565b6116729190613826565b90506001600485015460ff16600281111561168f5761168f613275565b036116aa57335f908152600d850160205260408120556116bc565b335f908152600e850160205260408120555b60985460405163a9059cbb60e01b8152336004820152602481018390525f916001600160a01b03169063a9059cbb906044016020604051808303815f875af115801561170a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061172e9190613763565b90508061174d5760405162461bcd60e51b815260040161048e906137b9565b604051828152339087907f4ec90e965519d92681267467f775ada5bd214aa92c0dc93d90a5e880ce9ed0269060200160405180910390a3505050505061041c6001606555565b5f828152609a602090815260408083206001600160a01b0385168452600d8101835281842054600e909101909252909120545b9250929050565b609a6020525f9081526040902080546001820180549192916117ee906138d6565b80601f016020809104026020016040519081016040528092919081815260200182805461181a906138d6565b80156118655780601f1061183c57610100808354040283529160200191611865565b820191905f5260205f20905b81548152906001019060200180831161184857829003601f168201915b50505050509080600201805461187a906138d6565b80601f01602080910402602001604051908101604052809291908181526020018280546118a6906138d6565b80156118f15780601f106118c8576101008083540402835291602001916118f1565b820191905f5260205f20905b8154815290600101906020018083116118d457829003601f168201915b50505050600383015460048401546005850180549495929460ff90921693509061191a906138d6565b80601f0160208091040260200160405190810160405280929190818152602001828054611946906138d6565b80156119915780601f1061196857610100808354040283529160200191611991565b820191905f5260205f20905b81548152906001019060200180831161197457829003601f168201915b5050505050908060060180546119a6906138d6565b80601f01602080910402602001604051908101604052809291908181526020018280546119d2906138d6565b8015611a1d5780601f106119f457610100808354040283529160200191611a1d565b820191905f5260205f20905b815481529060010190602001808311611a0057829003601f168201915b505050600784015460088501546009860154600a870154600b880154600c909801549697939692955090935060ff1691908d565b5f818152609a60205260408120600f8101546010820154606093611a7582846138c3565b67ffffffffffffffff811115611a8d57611a8d613368565b604051908082528060200260200182016040528015611ab6578160200160208202803683370190505b5090505f5b83811015611b255784600f018181548110611ad857611ad8613b33565b905f5260205f20015f9054906101000a90046001600160a01b0316828281518110611b0557611b05613b33565b6001600160a01b0390921660209283029190910190910152600101611abb565b505f5b82811015611b9457846010018181548110611b4557611b45613b33565b5f918252602090912001546001600160a01b031682611b6483876138c3565b81518110611b7457611b74613b33565b6001600160a01b0390921660209283029190910190910152600101611b28565b5095945050505050565b611ba66120df565b5f828152609a6020526040902081611c005760405162461bcd60e51b815260206004820152601c60248201527f4d7573742073656e64205553444320746f206275792073686172657300000000604482015260640161048e565b6098546040516323b872dd60e01b8152336004820152306024820152604481018490526001600160a01b03909116906323b872dd906064016020604051808303815f875af1158015611c54573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c789190613763565b5081816007015f828254611c8c91906138c3565b90915550506001606555505050565b6097546001600160a01b03163314611cc6576040516316ccb9cb60e11b815260040160405180910390fd5b5f828152609a602052604090206003810154421015611d1e5760405162461bcd60e51b815260206004820152601460248201527313585c9ad95d081b9bdd081e595d08195b99195960621b604482015260640161048e565b600a81015460ff1615611d735760405162461bcd60e51b815260206004820152601760248201527f4d61726b657420616c7265616479207265736f6c766564000000000000000000604482015260640161048e565b5f826002811115611d8657611d86613275565b03611dc55760405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964206f7574636f6d6560881b604482015260640161048e565b60048101805483919060ff19166001836002811115611de657611de6613275565b0217905550600a8101805460ff1916600117905560405183907f739f283563fb51ab6b89ee95d937b2e63a6cfcb83c385dbebb629f9d97bd43e690611e2c908590613b47565b60405180910390a2505050565b5f828152609a602090815260408083206001600160a01b0385168452600d8101835281842054600e8201909352908320546008820154600983015460078401548695939291908603611e95575f5f9650965050505050506117c6565b8115611ebd5781848660070154611eac91906137fb565b611eb69190613826565b9650611ec1565b5f96505b8015611ee95780838660070154611ed891906137fb565b611ee29190613826565b9550611eed565b5f95505b50505050509250929050565b609780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8292fce18fa69edf4db7b94ea2e58241df0ae57f97e0a6c9b29067028bf92d76905f90a35050565b6097546001600160a01b0316331461041c576040516316ccb9cb60e11b815260040160405180910390fd5b7f4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd91435460ff1615611fa857610aa083612299565b826001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa925050508015612002575060408051601f3d908101601f19168201909252611fff91810190613b55565b60015b6120655760405162461bcd60e51b815260206004820152602e60248201527f45524331393637557067726164653a206e657720696d706c656d656e7461746960448201526d6f6e206973206e6f74205555505360901b606482015260840161048e565b5f516020613be05f395f51905f5281146120d35760405162461bcd60e51b815260206004820152602960248201527f45524331393637557067726164653a20756e737570706f727465642070726f786044820152681a58589b195555525160ba1b606482015260840161048e565b50610aa0838383612334565b6002606554036121315760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161048e565b6002606555565b60605f6121448361235e565b60010190505f8167ffffffffffffffff81111561216357612163613368565b6040519080825280601f01601f19166020018201604052801561218d576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461219757509392505050565b6001606555565b5f54610100900460ff166121f55760405162461bcd60e51b815260040161048e90613b6c565b565b5f54610100900460ff1661221d5760405162461bcd60e51b815260040161048e90613b6c565b6121f5612435565b5f63039387008083131561223b57809250612257565b61224481613b19565b8312156122575761225481613b19565b92505b5f6122756122648561245b565b612270620f424061248c565b6124a1565b90505f61228182612504565b905061229081620f4240612556565b95945050505050565b6001600160a01b0381163b6123065760405162461bcd60e51b815260206004820152602d60248201527f455243313936373a206e657720696d706c656d656e746174696f6e206973206e60448201526c1bdd08184818dbdb9d1c9858dd609a1b606482015260840161048e565b5f516020613be05f395f51905f5280546001600160a01b0319166001600160a01b0392909216919091179055565b61233d836125c3565b5f825111806123495750805b15610aa0576123588383612602565b50505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b831061239c5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef810000000083106123c8576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc1000083106123e657662386f26fc10000830492506010015b6305f5e10083106123fe576305f5e100830492506008015b612710831061241257612710830492506004015b60648310612424576064830492506002015b600a831061143c5760010192915050565b5f54610100900460ff166121c85760405162461bcd60e51b815260040161048e90613b6c565b5f677fffffffffffffff19821215801561247d5750677fffffffffffffff8213155b612485575f5ffd5b5060401b90565b5f677fffffffffffffff821115612485575f5ffd5b5f81600f0b5f036124b0575f5ffd5b5f82600f0b604085600f0b901b816124ca576124ca613812565b0590506f7fffffffffffffffffffffffffffffff1981128015906124f5575060016001607f1b038113155b6124fd575f5ffd5b9392505050565b5f600160461b82600f0b12612517575f5ffd5b683fffffffffffffffff1982600f0b121561253357505f919050565b61143c608083600f0b700171547652b82fe1777d0ffda0d23a7d1202901d612627565b5f815f0361256557505f61143c565b5f83600f0b1215612574575f5ffd5b600f83900b6fffffffffffffffffffffffffffffffff8316810260401c90608084901c026001600160c01b038111156125ab575f5ffd5b60401b81198111156125bb575f5ffd5b019392505050565b6125cc81612299565b6040516001600160a01b038216907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a250565b60606124fd8383604051806060016040528060278152602001613c006027913961309c565b5f600160461b82600f0b1261263a575f5ffd5b683fffffffffffffffff1982600f0b121561265657505f919050565b6001607f1b5f6780000000000000008416600f0b13156126875770016a09e667f3bcc908b2fb1366ea957d3e0260801c5b5f8367400000000000000016600f0b13156126b3577001306fe0a31b7152de8d5a46305c85edec0260801c5b5f8367200000000000000016600f0b13156126df577001172b83c7d517adcdf7c8c50eb14a791f0260801c5b5f8367100000000000000016600f0b131561270b5770010b5586cf9890f6298b92b71842a983630260801c5b5f8367080000000000000016600f0b1315612737577001059b0d31585743ae7c548eb68ca417fd0260801c5b5f8367040000000000000016600f0b131561276357700102c9a3e778060ee6f7caca4f7a29bde80260801c5b5f8367020000000000000016600f0b131561278f5770010163da9fb33356d84a66ae336dcdfa3f0260801c5b5f8367010000000000000016600f0b13156127bb57700100b1afa5abcbed6129ab13ec11dc95430260801c5b5f83668000000000000016600f0b13156127e65770010058c86da1c09ea1ff19d294cf2f679b0260801c5b5f83664000000000000016600f0b1315612811577001002c605e2e8cec506d21bfc89a23a00f0260801c5b5f83662000000000000016600f0b131561283c57700100162f3904051fa128bca9c55c31e5df0260801c5b5f83661000000000000016600f0b1315612867577001000b175effdc76ba38e31671ca9397250260801c5b5f83660800000000000016600f0b131561289257700100058ba01fb9f96d6cacd4b180917c3d0260801c5b5f83660400000000000016600f0b13156128bd5770010002c5cc37da9491d0985c348c68e7b30260801c5b5f83660200000000000016600f0b13156128e8577001000162e525ee054754457d59952920260260801c5b5f83660100000000000016600f0b13156129135770010000b17255775c040618bf4a4ade83fc0260801c5b5f836580000000000016600f0b131561293d577001000058b91b5bc9ae2eed81e9b7d4cfab0260801c5b5f836540000000000016600f0b131561296757700100002c5c89d5ec6ca4d7c8acc017b7c90260801c5b5f836520000000000016600f0b13156129915770010000162e43f4f831060e02d839a9d16d0260801c5b5f836510000000000016600f0b13156129bb57700100000b1721bcfc99d9f890ea069117630260801c5b5f836508000000000016600f0b13156129e55770010000058b90cf1e6d97f9ca14dbcc16280260801c5b5f836504000000000016600f0b1315612a0f577001000002c5c863b73f016468f6bac5ca2b0260801c5b5f836502000000000016600f0b1315612a3957700100000162e430e5a18f6119e3c02282a50260801c5b5f836501000000000016600f0b1315612a63577001000000b1721835514b86e6d96efd1bfe0260801c5b5f8364800000000016600f0b1315612a8c57700100000058b90c0b48c6be5df846c5b2ef0260801c5b5f8364400000000016600f0b1315612ab55770010000002c5c8601cc6b9e94213c72737a0260801c5b5f8364200000000016600f0b1315612ade577001000000162e42fff037df38aa2b219f060260801c5b5f8364100000000016600f0b1315612b075770010000000b17217fba9c739aa5819f44f90260801c5b5f8364080000000016600f0b1315612b30577001000000058b90bfcdee5acd3c1cedc8230260801c5b5f8364040000000016600f0b1315612b5957700100000002c5c85fe31f35a6a30da1be500260801c5b5f8364020000000016600f0b1315612b825770010000000162e42ff0999ce3541b9fffcf0260801c5b5f8364010000000016600f0b1315612bab57700100000000b17217f80f4ef5aadda455540260801c5b5f83638000000016600f0b1315612bd35770010000000058b90bfbf8479bd5a81b51ad0260801c5b5f83634000000016600f0b1315612bfb577001000000002c5c85fdf84bd62ae30a74cc0260801c5b5f83632000000016600f0b1315612c2357700100000000162e42fefb2fed257559bdaa0260801c5b5f83631000000016600f0b1315612c4b577001000000000b17217f7d5a7716bba4a9ae0260801c5b5f83630800000016600f0b1315612c7357700100000000058b90bfbe9ddbac5e109cce0260801c5b5f83630400000016600f0b1315612c9b5770010000000002c5c85fdf4b15de6f17eb0d0260801c5b5f83630200000016600f0b1315612cc3577001000000000162e42fefa494f1478fde050260801c5b5f83630100000016600f0b1315612ceb5770010000000000b17217f7d20cf927c8e94c0260801c5b5f836280000016600f0b1315612d12577001000000000058b90bfbe8f71cb4e4b33d0260801c5b5f836240000016600f0b1315612d3957700100000000002c5c85fdf477b662b269450260801c5b5f836220000016600f0b1315612d605770010000000000162e42fefa3ae53369388c0260801c5b5f836210000016600f0b1315612d8757700100000000000b17217f7d1d351a389d400260801c5b5f836208000016600f0b1315612dae5770010000000000058b90bfbe8e8b2d3d4ede0260801c5b5f836204000016600f0b1315612dd5577001000000000002c5c85fdf4741bea6e77e0260801c5b5f836202000016600f0b1315612dfc57700100000000000162e42fefa39fe95583c20260801c5b5f836201000016600f0b1315612e23577001000000000000b17217f7d1cfb72b45e10260801c5b5f8361800016600f0b1315612e4957700100000000000058b90bfbe8e7cc35c3f00260801c5b5f8361400016600f0b1315612e6f5770010000000000002c5c85fdf473e242ea380260801c5b5f8361200016600f0b1315612e95577001000000000000162e42fefa39f02b772c0260801c5b5f8361100016600f0b1315612ebb5770010000000000000b17217f7d1cf7d83c1a0260801c5b5f8361080016600f0b1315612ee1577001000000000000058b90bfbe8e7bdcbe2e0260801c5b5f8361040016600f0b1315612f0757700100000000000002c5c85fdf473dea871f0260801c5b5f8361020016600f0b1315612f2d5770010000000000000162e42fefa39ef44d910260801c5b5f8361010016600f0b1315612f5357700100000000000000b17217f7d1cf79e9490260801c5b5f83608016600f0b1315612f785770010000000000000058b90bfbe8e7bce5440260801c5b5f83604016600f0b1315612f9d577001000000000000002c5c85fdf473de6eca0260801c5b5f83602016600f0b1315612fc257700100000000000000162e42fefa39ef366f0260801c5b5f83601016600f0b1315612fe7577001000000000000000b17217f7d1cf79afa0260801c5b5f83600816600f0b131561300c57700100000000000000058b90bfbe8e7bcd6d0260801c5b5f83600416600f0b13156130315770010000000000000002c5c85fdf473de6b20260801c5b5f83600216600f0b1315613056577001000000000000000162e42fefa39ef3580260801c5b5f83600116600f0b131561307b5770010000000000000000b17217f7d1cf79ab0260801c5b600f83810b60401d603f03900b1c60016001607f1b0381111561143c575f5ffd5b60605f5f856001600160a01b0316856040516130b89190613bb7565b5f60405180830381855af49150503d805f81146130f0576040519150601f19603f3d011682016040523d82523d5f602084013e6130f5565b606091505b509150915061310686838387613110565b9695505050505050565b6060831561317e5782515f03613177576001600160a01b0385163b6131775760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161048e565b5081613188565b6131888383613190565b949350505050565b8151156131a05781518083602001fd5b8060405162461bcd60e51b815260040161048e9190613bcd565b80356001600160a01b03811681146131d0575f5ffd5b919050565b5f602082840312156131e5575f5ffd5b6124fd826131ba565b5f602082840312156131fe575f5ffd5b5035919050565b801515811461041c575f5ffd5b5f5f5f60608486031215613224575f5ffd5b83359250602084013561323681613205565b929592945050506040919091013590565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b634e487b7160e01b5f52602160045260245ffd5b600381106132a557634e487b7160e01b5f52602160045260245ffd5b9052565b61014081525f6132bd61014083018d613247565b82810360208401526132cf818d613247565b905082810360408401526132e3818c613247565b905082810360608401526132f7818b613247565b91505087608083015261330d60a0830188613289565b60c082019590955260e0810193909352901515610100830152610120909101529695505050505050565b5f5f60408385031215613348575f5ffd5b613351836131ba565b915061335f602084016131ba565b90509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f5f67ffffffffffffffff84111561339657613396613368565b50604051601f19601f85018116603f0116810181811067ffffffffffffffff821117156133c5576133c5613368565b6040528381529050808284018510156133dc575f5ffd5b838360208301375f60208583010152509392505050565b5f5f60408385031215613404575f5ffd5b61340d836131ba565b9150602083013567ffffffffffffffff811115613428575f5ffd5b8301601f81018513613438575f5ffd5b6134478582356020840161337c565b9150509250929050565b5f82601f830112613460575f5ffd5b6124fd8383356020850161337c565b5f5f5f5f5f5f5f60e0888a031215613485575f5ffd5b873567ffffffffffffffff81111561349b575f5ffd5b6134a78a828b01613451565b975050602088013567ffffffffffffffff8111156134c3575f5ffd5b6134cf8a828b01613451565b965050604088013567ffffffffffffffff8111156134eb575f5ffd5b6134f78a828b01613451565b955050606088013567ffffffffffffffff811115613513575f5ffd5b61351f8a828b01613451565b979a969950949760808101359660a0820135965060c090910135945092505050565b5f5f60408385031215613552575f5ffd5b82359150602083013561356481613205565b809150509250929050565b5f5f60408385031215613580575f5ffd5b8235915061335f602084016131ba565b8d81526101a060208201525f6135aa6101a083018f613247565b82810360408401526135bc818f613247565b90508c60608401526135d1608084018d613289565b82810360a08401526135e3818c613247565b905082810360c08401526135f7818b613247565b9150508760e0830152866101008301528561012083015261361d61014083018615159052565b61016082019390935261018001529b9a5050505050505050505050565b602080825282518282018190525f918401906040840190835b8181101561367a5783516001600160a01b0316835260209384019390920191600101613653565b509095945050505050565b5f5f60408385031215613696575f5ffd5b50508035926020909101359150565b5f5f604083850312156136b6575f5ffd5b82359150602083013560038110613564575f5ffd5b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b19195b1959d85d1958d85b1b60a21b606082015260800190565b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b6163746976652070726f787960a01b606082015260800190565b5f60208284031215613773575f5ffd5b81516124fd81613205565b60608152600c60608201526b5472616e66657220646f6e6560a01b608082015282602082015260a060408201525f61318860a0830184613247565b6020808252601490820152731554d110c81d1c985b9cd9995c8819985a5b195960621b604082015260600190565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761143c5761143c6137e7565b634e487b7160e01b5f52601260045260245ffd5b5f8261383457613834613812565b500490565b8181038181111561143c5761143c6137e7565b6060815260046060820152634665657360e01b608082015282602082015260a060408201525f61318860a0830184613247565b606081526015606082015274416d6f756e742061637475616c6c7920706169642160581b608082015282602082015260a060408201525f61318860a0830184613247565b8082018082111561143c5761143c6137e7565b600181811c908216806138ea57607f821691505b60208210810361390857634e487b7160e01b5f52602260045260245ffd5b50919050565b5f6001820161391f5761391f6137e7565b5060010190565b601f821115610aa057805f5260205f20601f840160051c8101602085101561394b5750805b601f840160051c820191505b8181101561396a575f8155600101613957565b5050505050565b815167ffffffffffffffff81111561398b5761398b613368565b61399f8161399984546138d6565b84613926565b6020601f8211600181146139d1575f83156139ba5750848201515b5f19600385901b1c1916600184901b17845561396a565b5f84815260208120601f198516915b82811015613a0057878501518255602094850194600190920191016139e0565b5084821015613a1d57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b60e081525f613a3e60e083018a613247565b8281036020840152613a50818a613247565b90508281036040840152613a648189613247565b90508281036060840152613a788188613247565b6080840196909652505060a081019290925260c090910152949350505050565b8181035f831280158383131683831282161715613ab757613ab76137e7565b5092915050565b8082025f8212600160ff1b84141615613ad957613ad96137e7565b818105831482151761143c5761143c6137e7565b5f82613afb57613afb613812565b600160ff1b82145f1984141615613b1457613b146137e7565b500590565b5f600160ff1b8201613b2d57613b2d6137e7565b505f0390565b634e487b7160e01b5f52603260045260245ffd5b6020810161143c8284613289565b5f60208284031215613b65575f5ffd5b5051919050565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b5f82518060208501845e5f920191825250919050565b602081525f6124fd602083018461324756fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc416464726573733a206c6f772d6c6576656c2064656c65676174652063616c6c206661696c6564a26469706673582212203ab761c067a10c296ec374173ffa688f9bef59fb9b5a84883bad48208956833a64736f6c634300081c0033

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.