Source Code
More Info
Private Name Tags
ContractCreator
TokenTracker
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| 0xaf2f2d27d967b87f2accade6eb462bcb0a426efb3b732ace4d05850087a5e77c | Deposit | (pending) | 3 days ago | IN | 0 ETH | (Pending) | |||
| Redeem | 23736146 | 5 hrs ago | IN | 0 ETH | 0.00113471 | ||||
| Redeem | 23729503 | 28 hrs ago | IN | 0 ETH | 0.00075768 | ||||
| Redeem | 23729495 | 28 hrs ago | IN | 0 ETH | 0.00086372 | ||||
| Redeem | 23728587 | 31 hrs ago | IN | 0 ETH | 0.01584149 | ||||
| Redeem | 23727575 | 34 hrs ago | IN | 0 ETH | 0.0075638 | ||||
| Redeem | 23725264 | 42 hrs ago | IN | 0 ETH | 0.00308871 | ||||
| Redeem | 23718278 | 2 days ago | IN | 0 ETH | 0.00240945 | ||||
| Redeem | 23718070 | 2 days ago | IN | 0 ETH | 0.00085723 | ||||
| Redeem | 23718002 | 2 days ago | IN | 0 ETH | 0.00079716 | ||||
| Redeem | 23717996 | 2 days ago | IN | 0 ETH | 0.00067888 | ||||
| Redeem | 23717969 | 2 days ago | IN | 0 ETH | 0.00166567 | ||||
| Redeem | 23717959 | 2 days ago | IN | 0 ETH | 0.00113052 | ||||
| Deposit | 23717958 | 2 days ago | IN | 0 ETH | 0.0006779 | ||||
| Redeem | 23717738 | 2 days ago | IN | 0 ETH | 0.00290481 | ||||
| Redeem | 23717685 | 2 days ago | IN | 0 ETH | 0.00806245 | ||||
| Redeem | 23717571 | 2 days ago | IN | 0 ETH | 0.00024795 | ||||
| Redeem | 23717563 | 2 days ago | IN | 0 ETH | 0.00018858 | ||||
| Redeem | 23717559 | 2 days ago | IN | 0 ETH | 0.00038308 | ||||
| Redeem | 23717557 | 2 days ago | IN | 0 ETH | 0.00027268 | ||||
| Deposit | 23717528 | 2 days ago | IN | 0 ETH | 0.00031071 | ||||
| Deposit | 23717205 | 2 days ago | IN | 0 ETH | 0.00023265 | ||||
| Redeem | 23716761 | 2 days ago | IN | 0 ETH | 0.00009435 | ||||
| Deposit | 23716171 | 3 days ago | IN | 0 ETH | 0.00078346 | ||||
| Deposit | 23715343 | 3 days ago | IN | 0 ETH | 0.00011406 |
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x6101a060 | 22088300 | 230 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
LendingAssetVault
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/interfaces/IERC4626.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./interfaces/ILendingAssetVault.sol";
import "./interfaces/IFraxlendPair.sol";
import {VaultAccount, VaultAccountingLibrary} from "./libraries/VaultAccount.sol";
contract LendingAssetVault is IERC4626, ILendingAssetVault, ERC20, ERC20Permit, Ownable {
using SafeERC20 for IERC20;
using VaultAccountingLibrary for VaultAccount;
uint256 constant PRECISION = 10 ** 27;
address immutable _asset;
uint8 immutable _decimals;
uint256 _totalAssets;
uint256 _totalAssetsUtilized;
uint8 public maxVaults = 20;
mapping(address => bool) public vaultWhitelist;
mapping(address => uint256) public override vaultDeposits;
mapping(address => uint256) public override vaultUtilization;
mapping(address => uint256) public override vaultMaxAllocation;
mapping(address => uint256) _vaultWhitelistCbr;
address[] _vaultWhitelistAry;
// vault address => idx in _vaultWhitelistAry
mapping(address => uint256) _vaultWhitelistAryIdx;
modifier onlyWhitelist() {
require(vaultWhitelist[_msgSender()], "WL");
_;
}
constructor(string memory _name, string memory _symbol, address __asset)
ERC20(_name, _symbol)
ERC20Permit(_name)
Ownable(_msgSender())
{
_asset = __asset;
_decimals = IERC20Metadata(__asset).decimals();
}
function decimals() public view override(IERC20Metadata, ERC20) returns (uint8) {
return _decimals;
}
function asset() external view override returns (address) {
return _asset;
}
function totalAssets() public view override returns (uint256) {
return _totalAssets;
}
function totalAssetsUtilized() public view override returns (uint256) {
return _totalAssetsUtilized;
}
function totalAvailableAssets() public view override returns (uint256) {
return _totalAssets - _totalAssetsUtilized;
}
function getAllWhitelistedVaults() external view override returns (address[] memory) {
return _vaultWhitelistAry;
}
function totalAvailableAssetsForVault(address _vault) public view override returns (uint256 _totalVaultAvailable) {
uint256 _overallAvailable = totalAvailableAssets();
_totalVaultAvailable =
vaultMaxAllocation[_vault] > vaultDeposits[_vault] ? vaultMaxAllocation[_vault] - vaultDeposits[_vault] : 0;
_totalVaultAvailable = _overallAvailable < _totalVaultAvailable ? _overallAvailable : _totalVaultAvailable;
}
function convertToShares(uint256 _assets) public view override returns (uint256 _shares) {
_shares = (_assets * PRECISION) / _cbr();
}
function convertToAssets(uint256 _shares) public view override returns (uint256 _assets) {
_assets = (_shares * _cbr()) / PRECISION;
}
function _previewConvertToShares(uint256 _assets) internal view returns (uint256 _shares) {
_shares = (_assets * PRECISION) / _previewCbr();
}
function _previewConvertToAssets(uint256 _shares) internal view returns (uint256 _assets) {
_assets = (_shares * _previewCbr()) / PRECISION;
}
function maxDeposit(address) external pure override returns (uint256 maxAssets) {
maxAssets = type(uint256).max;
}
function previewDeposit(uint256 _assets) external view override returns (uint256 _shares) {
_shares = _previewConvertToShares(_assets);
}
function deposit(uint256 _assets, address _receiver) external override returns (uint256 _shares) {
_updateInterestAndMdInAllVaults(address(0));
_shares = convertToShares(_assets);
_deposit(_assets, _shares, _receiver);
}
function maxMint(address) external pure override returns (uint256 maxShares) {
maxShares = type(uint256).max;
}
function previewMint(uint256 _shares) external view override returns (uint256 _assets) {
_assets = _previewConvertToAssets(_shares);
}
function mint(uint256 _shares, address _receiver) external override returns (uint256 _assets) {
_updateInterestAndMdInAllVaults(address(0));
_assets = convertToAssets(_shares);
_deposit(_assets, _shares, _receiver);
}
function maxWithdraw(address _owner) external view override returns (uint256 _maxAssets) {
uint256 _totalAvailable = totalAvailableAssets();
uint256 _ownerMax = (balanceOf(_owner) * _previewCbr()) / PRECISION;
_maxAssets = _ownerMax > _totalAvailable ? _totalAvailable : _ownerMax;
}
function previewWithdraw(uint256 _assets) external view override returns (uint256 _shares) {
_shares = _previewConvertToShares(_assets);
}
function withdraw(uint256 _assets, address _receiver, address _owner) external override returns (uint256 _shares) {
_updateInterestAndMdInAllVaults(address(0));
_shares = convertToShares(_assets);
_withdraw(_shares, _assets, _owner, _msgSender(), _receiver);
}
function maxRedeem(address _owner) external view override returns (uint256 _maxShares) {
uint256 _totalAvailableShares = _previewConvertToShares(totalAvailableAssets());
uint256 _ownerMax = balanceOf(_owner);
_maxShares = _ownerMax > _totalAvailableShares ? _totalAvailableShares : _ownerMax;
}
function previewRedeem(uint256 _shares) external view override returns (uint256 _assets) {
return _previewConvertToAssets(_shares);
}
function redeem(uint256 _shares, address _receiver, address _owner) external override returns (uint256 _assets) {
_updateInterestAndMdInAllVaults(address(0));
_assets = convertToAssets(_shares);
_withdraw(_shares, _assets, _owner, _msgSender(), _receiver);
}
/// @notice Internal function to handle asset deposits
/// @param _assets The amount of assets to deposit
/// @param _shares The amount of shares that will be minted
/// @param _receiver The address that will receive the shares
function _deposit(uint256 _assets, uint256 _shares, address _receiver) internal {
require(_assets != 0 && _shares != 0, "M");
_totalAssets += _assets;
_mint(_receiver, _shares);
IERC20(_asset).safeTransferFrom(_msgSender(), address(this), _assets);
emit Deposit(_msgSender(), _receiver, _assets, _shares);
}
/// @notice Internal function to handle share withdrawals
/// @param _shares The amount of shares to withdraw
/// @param _assets The amount of assets to withdraw
/// @param _owner The owner of the shares being withdrawn
/// @param _caller The address who initiated withdrawing
/// @param _receiver The address that will receive the assets
function _withdraw(uint256 _shares, uint256 _assets, address _owner, address _caller, address _receiver) internal {
if (_caller != _owner) {
_spendAllowance(_owner, _caller, _shares);
}
uint256 _totalAvailable = totalAvailableAssets();
_totalAssets -= _assets;
require(_totalAvailable >= _assets, "AV");
_burn(_owner, _shares);
IERC20(_asset).safeTransfer(_receiver, _assets);
emit Withdraw(_owner, _receiver, _receiver, _assets, _shares);
}
/// @notice Assumes underlying vault asset has decimals == 18
function _previewCbr() internal view returns (uint256) {
uint256 _supply = totalSupply();
uint256 _previewTotalAssets = _previewAddInterestAndMdInAllVaults();
return _supply == 0 ? PRECISION : (PRECISION * _previewTotalAssets) / _supply;
}
/// @notice Assumes underlying vault asset has decimals == 18
function _cbr() internal view returns (uint256) {
uint256 _supply = totalSupply();
return _supply == 0 ? PRECISION : (PRECISION * _totalAssets) / _supply;
}
/// @notice Updates interest and metadata for all whitelisted vaults
/// @param _vaultToExclude Address of the vault to exclude from the update
function _updateInterestAndMdInAllVaults(address _vaultToExclude) internal {
uint256 _l = _vaultWhitelistAry.length;
for (uint256 _i; _i < _l; _i++) {
address _vault = _vaultWhitelistAry[_i];
if (_vault == _vaultToExclude) {
continue;
}
(uint256 _interestEarned,,,,,) = IFraxlendPair(_vault).addInterest(false);
if (_interestEarned > 0) {
_updateAssetMetadataFromVault(_vault);
}
}
}
/// @notice The ```whitelistUpdate``` function updates metadata for all vaults
/// @param _onlyCaller If true, only update the caller's vault metadata
function whitelistUpdate(bool _onlyCaller) external override onlyWhitelist {
if (_onlyCaller) {
_updateAssetMetadataFromVault(_msgSender());
} else {
_updateInterestAndMdInAllVaults(_msgSender());
}
}
/// @notice The ```whitelistWithdraw``` function is called by any whitelisted vault to withdraw assets.
/// @param _assetAmt the amount of underlying assets to withdraw
function whitelistWithdraw(uint256 _assetAmt) external override onlyWhitelist {
address _vault = _msgSender();
_updateAssetMetadataFromVault(_vault);
// validate max after doing vault accounting above
require(totalAvailableAssetsForVault(_vault) >= _assetAmt, "MAX");
vaultDeposits[_vault] += _assetAmt;
vaultUtilization[_vault] += _assetAmt;
_totalAssetsUtilized += _assetAmt;
IERC20(_asset).safeTransfer(_vault, _assetAmt);
emit WhitelistWithdraw(_vault, _assetAmt);
}
/// @notice The ```whitelistDeposit``` function is called by any whitelisted target vault to deposit assets back into this vault.
/// @notice need this instead of direct depositing in order to handle accounting for used assets and validation
/// @param _assetAmt the amount of underlying assets to deposit
function whitelistDeposit(uint256 _assetAmt) external override onlyWhitelist {
address _vault = _msgSender();
_updateAssetMetadataFromVault(_vault);
vaultDeposits[_vault] -= _assetAmt > vaultDeposits[_vault] ? vaultDeposits[_vault] : _assetAmt;
vaultUtilization[_vault] -= _assetAmt;
_totalAssetsUtilized -= _assetAmt;
IERC20(_asset).safeTransferFrom(_vault, address(this), _assetAmt);
emit WhitelistDeposit(_vault, _assetAmt);
}
function _previewAddInterestAndMdInAllVaults() internal view returns (uint256 _previewTotalAssets) {
_previewTotalAssets = _totalAssets;
uint256 _l = _vaultWhitelistAry.length;
for (uint256 _i; _i < _l; _i++) {
address _vault = _vaultWhitelistAry[_i];
uint256 _prevVaultCbr = _vaultWhitelistCbr[_vault];
if (_prevVaultCbr == 0) {
continue;
}
// the following effectively simulates addInterest + convertToAssets
(,,,, VaultAccount memory _totalAsset,) = IFraxlendPair(_vault).previewAddInterest();
uint256 _newVaultCbr = _totalAsset.toAmount(PRECISION, false);
uint256 _vaultAssetRatioChange = _prevVaultCbr > _newVaultCbr
? PRECISION - ((PRECISION * _newVaultCbr) / _prevVaultCbr)
: ((PRECISION * _newVaultCbr) / _prevVaultCbr) - PRECISION;
uint256 _currentAssetsUtilized = vaultUtilization[_vault];
uint256 _changeUtilizedState = (_currentAssetsUtilized * _vaultAssetRatioChange) / PRECISION;
uint256 _newAssetsUtilized = _prevVaultCbr > _newVaultCbr
? _currentAssetsUtilized < _changeUtilizedState ? 0 : _currentAssetsUtilized - _changeUtilizedState
: _currentAssetsUtilized + _changeUtilizedState;
_previewTotalAssets = _previewTotalAssets - _currentAssetsUtilized + _newAssetsUtilized;
}
}
/// @notice The ```_updateAssetMetadataFromVault``` function updates _totalAssets based on the current ratio
/// @notice of assets in the target vault to previously recorded ratio
/// @notice to correctly calculate the change in total assets here based on how the vault share
/// @notice has changed over time
/// @param _vault the vault we're adjusting _totalAssets from based on it's CBR updates from last check
function _updateAssetMetadataFromVault(address _vault) internal {
uint256 _prevVaultCbr = _vaultWhitelistCbr[_vault];
_vaultWhitelistCbr[_vault] = IERC4626(_vault).convertToAssets(PRECISION);
if (_prevVaultCbr == 0) {
return;
}
uint256 _vaultAssetRatioChange = _prevVaultCbr > _vaultWhitelistCbr[_vault]
? PRECISION - ((PRECISION * _vaultWhitelistCbr[_vault]) / _prevVaultCbr)
: ((PRECISION * _vaultWhitelistCbr[_vault]) / _prevVaultCbr) - PRECISION;
uint256 _currentAssetsUtilized = vaultUtilization[_vault];
uint256 _changeUtilizedState = (_currentAssetsUtilized * _vaultAssetRatioChange) / PRECISION;
vaultUtilization[_vault] = _prevVaultCbr > _vaultWhitelistCbr[_vault]
? _currentAssetsUtilized < _changeUtilizedState ? 0 : _currentAssetsUtilized - _changeUtilizedState
: _currentAssetsUtilized + _changeUtilizedState;
_totalAssetsUtilized = _totalAssetsUtilized - _currentAssetsUtilized + vaultUtilization[_vault];
_totalAssets = _totalAssets - _currentAssetsUtilized + vaultUtilization[_vault];
emit UpdateAssetMetadataFromVault(_vault, _totalAssets, _totalAssetsUtilized);
}
/// @notice The ```depositToVault``` function deposits assets to a specific vault
/// @param _vault The vault to deposit assets to
/// @param _amountAssets The amount of assets to deposit
function depositToVault(address _vault, uint256 _amountAssets) external onlyOwner {
require(_amountAssets > 0);
_updateAssetMetadataFromVault(_vault);
IERC20(_asset).safeIncreaseAllowance(_vault, _amountAssets);
uint256 _amountShares = IERC4626(_vault).deposit(_amountAssets, address(this));
require(totalAvailableAssetsForVault(_vault) >= _amountAssets, "MAX");
vaultDeposits[_vault] += _amountAssets;
vaultUtilization[_vault] += _amountAssets;
_totalAssetsUtilized += _amountAssets;
emit DepositToVault(_vault, _amountAssets, _amountShares);
}
/// @notice The ```redeemFromVault``` function redeems shares from a specific vault
/// @param _vault The vault to redeem shares from
/// @param _amountShares The amount of shares to redeem (0 for all)
function redeemFromVault(address _vault, uint256 _amountShares) external onlyOwner {
_updateAssetMetadataFromVault(_vault);
_amountShares = _amountShares == 0 ? IERC20(_vault).balanceOf(address(this)) : _amountShares;
uint256 _amountAssets = IERC4626(_vault).redeem(_amountShares, address(this), address(this));
uint256 _redeemAmt = vaultUtilization[_vault] < _amountAssets ? vaultUtilization[_vault] : _amountAssets;
vaultDeposits[_vault] -= _redeemAmt > vaultDeposits[_vault] ? vaultDeposits[_vault] : _redeemAmt;
vaultUtilization[_vault] -= _redeemAmt;
_totalAssetsUtilized -= _redeemAmt;
emit RedeemFromVault(_vault, _amountShares, _redeemAmt);
}
/// @notice Set the maximum number of vaults allowed
/// @param _newMax The new maximum number of vaults
function setMaxVaults(uint8 _newMax) external onlyOwner {
uint8 _oldMax = maxVaults;
maxVaults = _newMax;
emit SetMaxVaults(_oldMax, _newMax);
}
/// @notice Add or remove a vault from the whitelist
/// @param _vault The vault to update
/// @param _allowed True to add to whitelist, false to remove
function setVaultWhitelist(address _vault, bool _allowed) external onlyOwner {
require(vaultWhitelist[_vault] != _allowed, "T");
vaultWhitelist[_vault] = _allowed;
if (_allowed) {
require(_vaultWhitelistAry.length < maxVaults, "M");
_vaultWhitelistAryIdx[_vault] = _vaultWhitelistAry.length;
_vaultWhitelistAry.push(_vault);
} else {
uint256 _idx = _vaultWhitelistAryIdx[_vault];
address _movingVault = _vaultWhitelistAry[_vaultWhitelistAry.length - 1];
_vaultWhitelistAry[_idx] = _movingVault;
_vaultWhitelistAryIdx[_movingVault] = _idx;
// clean up state
_vaultWhitelistAry.pop();
delete _vaultWhitelistAryIdx[_vault];
delete vaultMaxAllocation[_vault];
}
emit SetVaultWhitelist(_vault, _allowed);
}
/// @notice The ```setVaultMaxAllocation``` function sets the maximum amount of vault assets allowed to be allocated to a whitelisted vault
/// @param _vaults the vaults we're allocating to
/// @param _allocation the allocation of assets available to these vaults
function setVaultMaxAllocation(address[] memory _vaults, uint256[] memory _allocation) external onlyOwner {
require(_vaults.length == _allocation.length, "SL");
_updateInterestAndMdInAllVaults(address(0));
for (uint256 _i; _i < _vaults.length; _i++) {
address _vault = _vaults[_i];
uint256 _allo = _allocation[_i];
vaultMaxAllocation[_vault] = _allo;
emit SetVaultMaxAllocation(_vault, _allo);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface ILendingAssetVault {
event DonateAssets(address indexed user, uint256 amount, uint256 newShares);
event PayBackUsedAssets(address indexed user, uint256 amount);
event DepositToVault(address indexed vault, uint256 assets, uint256 shares);
event RedeemFromVault(address indexed vault, uint256 shares, uint256 assets);
event SetMaxVaults(uint8 oldMax, uint8 newMax);
event SetVaultWhitelist(address indexed vault, bool isWhitelisted);
event SetLastDepEnabled(bool isEnabled);
event SetVaultMaxAllocation(address indexed vault, uint256 allocation);
event UpdateAssetMetadataFromVault(address indexed vault, uint256 totalAssets, uint256 assetsUtilized);
event WhitelistDeposit(address indexed user, uint256 amount);
event WhitelistWithdraw(address indexed user, uint256 amount);
function vaultDeposits(address vault) external view returns (uint256);
function vaultUtilization(address vault) external view returns (uint256);
function vaultMaxAllocation(address vault) external view returns (uint256);
function totalAssetsUtilized() external view returns (uint256);
function totalAvailableAssets() external view returns (uint256);
function totalAvailableAssetsForVault(address vault) external view returns (uint256);
function getAllWhitelistedVaults() external returns (address[] memory);
function whitelistUpdate(bool onlyCaller) external;
function whitelistDeposit(uint256 amount) external;
function whitelistWithdraw(uint256 amount) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import {VaultAccount} from "../libraries/VaultAccount.sol";
interface IFraxlendPair is IERC20 {
struct CurrentRateInfo {
uint32 lastBlock;
uint32 feeToProtocolRate; // Fee amount 1e5 precision
uint64 lastTimestamp;
uint64 ratePerSec;
uint64 fullUtilizationRate;
}
struct ExchangeRateInfo {
address oracle;
uint32 maxOracleDeviation; // % of larger number, 1e5 precision
uint184 lastTimestamp;
uint256 lowExchangeRate;
uint256 highExchangeRate;
}
function exchangeRateInfo() external view returns (ExchangeRateInfo memory);
function totalBorrow() external view returns (VaultAccount memory);
function asset() external view returns (address);
function collateralContract() external view returns (address);
function convertToAssets(uint256 shares) external view returns (uint256 assets);
function convertToShares(uint256 assets) external view returns (uint256 shares);
function userCollateralBalance(address user) external view returns (uint256); // amount of collateral each user is backed
function userBorrowShares(address user) external view returns (uint256); // represents the shares held by individuals
function previewAddInterest()
external
view
returns (
uint256 _interestEarned,
uint256 _feesAmount,
uint256 _feesShare,
CurrentRateInfo memory _newCurrentRateInfo,
VaultAccount memory _totalAsset,
VaultAccount memory _totalBorrow
);
function addInterest(bool _returnAccounting)
external
returns (uint256, uint256, uint256, CurrentRateInfo memory, VaultAccount memory, VaultAccount memory);
function updateExchangeRate()
external
returns (bool _isBorrowAllowed, uint256 _lowExchangeRate, uint256 _highExchangeRate);
function deposit(uint256 _amount, address _receiver) external returns (uint256 _sharesReceived);
function redeem(uint256 _shares, address _receiver, address _owner) external returns (uint256 _amountToReturn);
function borrowAsset(uint256 _borrowAmount, uint256 _collateralAmount, address _receiver)
external
returns (uint256 _shares);
function repayAsset(uint256 _shares, address _borrower) external returns (uint256 _amountToRepay);
function addCollateral(uint256 _collateralAmount, address _borrower) external;
function removeCollateral(uint256 _collateralAmount, address _receiver) external;
}// SPDX-License-Identifier: ISC
pragma solidity ^0.8.28;
struct VaultAccount {
uint128 amount; // Total amount, analogous to market cap
uint128 shares; // Total shares, analogous to shares outstanding
}
/// @title VaultAccount Library
/// @author Drake Evans (Frax Finance) github.com/drakeevans, modified from work by @Boring_Crypto github.com/boring_crypto
/// @notice Provides a library for use with the VaultAccount struct, provides convenient math implementations
/// @dev Uses uint128 to save on storage
library VaultAccountingLibrary {
/// @notice Calculates the shares value in relationship to `amount` and `total`
/// @dev Given an amount, return the appropriate number of shares
function toShares(VaultAccount memory total, uint256 amount, bool roundUp) internal pure returns (uint256 shares) {
if (total.amount == 0) {
shares = amount;
} else {
shares = (amount * total.shares) / total.amount;
if (roundUp && (shares * total.amount) / total.shares < amount) {
shares = shares + 1;
}
}
}
/// @notice Calculates the amount value in relationship to `shares` and `total`
/// @dev Given a number of shares, returns the appropriate amount
function toAmount(VaultAccount memory total, uint256 shares, bool roundUp) internal pure returns (uint256 amount) {
if (total.shares == 0) {
amount = shares;
} else {
amount = (shares * total.amount) / total.shares;
if (roundUp && (amount * total.shares) / total.amount < shares) {
amount = amount + 1;
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}{
"remappings": [
"@chainlink/=node_modules/@chainlink/",
"@fraxlend/=test/invariant/modules/fraxlend/",
"fuzzlib/=lib/fuzzlib/src/",
"swap-router/=test/invariant/modules/v3-periphery/swapRouter/",
"v3-core/=test/invariant/modules/v3-core/",
"v3-periphery/=test/invariant/modules/v3-periphery/",
"v2-core/=test/invariant/modules/uniswap-v2/v2-core/contracts/",
"v2-periphery/=test/invariant/modules/uniswap-v2/v2-periphery/contracts/",
"uniswap-v2/=test/invariant/modules/uniswap-v2/",
"solidity-bytes-utils/contracts/=test/invariant/modules/fraxlend/libraries/",
"@rari-capital/solmate/=node_modules/solmate/",
"@arbitrum/=node_modules/@arbitrum/",
"@ensdomains/=node_modules/@ensdomains/",
"@eth-optimism/=node_modules/@eth-optimism/",
"@ethereum-waffle/=node_modules/@ethereum-waffle/",
"@mean-finance/=node_modules/@mean-finance/",
"@offchainlabs/=node_modules/@offchainlabs/",
"@openzeppelin/=node_modules/@openzeppelin/",
"@scroll-tech/=node_modules/@scroll-tech/",
"@uniswap/=node_modules/@uniswap/",
"@zksync/=node_modules/@zksync/",
"base64-sol/=node_modules/base64-sol/",
"ds-test/=lib/fuzzlib/lib/forge-std/lib/ds-test/src/",
"erc721a/=node_modules/erc721a/",
"eth-gas-reporter/=node_modules/eth-gas-reporter/",
"forge-std/=lib/forge-std/src/",
"hardhat/=node_modules/hardhat/",
"solidity-code-metrics/=node_modules/solidity-code-metrics/",
"solmate/=node_modules/solmate/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"address","name":"__asset","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"DepositToVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newShares","type":"uint256"}],"name":"DonateAssets","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PayBackUsedAssets","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"}],"name":"RedeemFromVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"isEnabled","type":"bool"}],"name":"SetLastDepEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"oldMax","type":"uint8"},{"indexed":false,"internalType":"uint8","name":"newMax","type":"uint8"}],"name":"SetMaxVaults","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"allocation","type":"uint256"}],"name":"SetVaultMaxAllocation","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"bool","name":"isWhitelisted","type":"bool"}],"name":"SetVaultWhitelist","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalAssets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assetsUtilized","type":"uint256"}],"name":"UpdateAssetMetadataFromVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WhitelistDeposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WhitelistWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"uint256","name":"_amountAssets","type":"uint256"}],"name":"depositToVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllWhitelistedVaults","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"_maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxVaults","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"_maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"uint256","name":"_amountShares","type":"uint256"}],"name":"redeemFromVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_newMax","type":"uint8"}],"name":"setMaxVaults","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_vaults","type":"address[]"},{"internalType":"uint256[]","name":"_allocation","type":"uint256[]"}],"name":"setVaultMaxAllocation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"bool","name":"_allowed","type":"bool"}],"name":"setVaultWhitelist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssetsUtilized","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAvailableAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"}],"name":"totalAvailableAssetsForVault","outputs":[{"internalType":"uint256","name":"_totalVaultAvailable","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultMaxAllocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultUtilization","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultWhitelist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assetAmt","type":"uint256"}],"name":"whitelistDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_onlyCaller","type":"bool"}],"name":"whitelistUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assetAmt","type":"uint256"}],"name":"whitelistWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
6101a0604052600b805460ff1916601417905534801561001d575f5ffd5b5060405161374e38038061374e83398101604081905261003c9161033b565b336040805180820190915260018152603160f81b602082015284908190818660036100678382610444565b5060046100748282610444565b50610084915083905060056101de565b610120526100938160066101de565b61014052815160208084019190912060e052815190820120610100524660a05261011f60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052506001600160a01b03811661015757604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61016081610210565b506001600160a01b0381166101608190526040805163313ce56760e01b8152905163313ce567916004808201926020929091908290030181865afa1580156101aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101ce91906104fe565b60ff16610180525061057d915050565b5f6020835110156101f9576101f283610261565b905061020a565b816102048482610444565b5060ff90505b92915050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f829050601f8151111561028b578260405163305a27a960e01b815260040161014e9190610525565b80516102968261055a565b179392505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f8301126102c1575f5ffd5b81516001600160401b038111156102da576102da61029e565b604051601f8201601f19908116603f011681016001600160401b03811182821017156103085761030861029e565b60405281815283820160200185101561031f575f5ffd5b8160208501602083015e5f918101602001919091529392505050565b5f5f5f6060848603121561034d575f5ffd5b83516001600160401b03811115610362575f5ffd5b61036e868287016102b2565b602086015190945090506001600160401b0381111561038b575f5ffd5b610397868287016102b2565b604086015190935090506001600160a01b03811681146103b5575f5ffd5b809150509250925092565b600181811c908216806103d457607f821691505b6020821081036103f257634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561043f57805f5260205f20601f840160051c8101602085101561041d5750805b601f840160051c820191505b8181101561043c575f8155600101610429565b50505b505050565b81516001600160401b0381111561045d5761045d61029e565b6104718161046b84546103c0565b846103f8565b6020601f8211600181146104a3575f831561048c5750848201515b5f19600385901b1c1916600184901b17845561043c565b5f84815260208120601f198516915b828110156104d257878501518255602094850194600190920191016104b2565b50848210156104ef57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f6020828403121561050e575f5ffd5b815160ff8116811461051e575f5ffd5b9392505050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b805160208083015191908110156103f2575f1960209190910360031b1b16919050565b60805160a05160c05160e05161010051610120516101405161016051610180516131496106055f395f61037701525f81816103e701528181610c6001528181610dad015281816113f101528181611d6e0152611fad01525f611e6f01525f611e4201525f6118cf01525f6118a701525f61180201525f61182c01525f61185601526131495ff3fe608060405234801561000f575f5ffd5b50600436106102b1575f3560e01c80637ecebe001161017b578063b460af94116100e4578063d505accf1161009e578063ef8b30f711610079578063ef8b30f714610317578063f2fde38b14610674578063f556d88914610687578063fbb052481461069a575f5ffd5b8063d505accf14610616578063d905777e14610629578063dd62ed3e1461063c575f5ffd5b8063b460af94146105b7578063ba087652146105ca578063c63d75b614610454578063c6e6f592146105dd578063ce96cb77146105f0578063d2c9a94f14610603575f5ffd5b80639cfd2f2e116101355780639cfd2f2e146105575780639d6c63511461055f578063a3d111581461057e578063a9059cbb14610591578063b0145280146105a4578063b3d7f6b914610468575f5ffd5b80637ecebe00146104f057806384b0196e146105035780638da5cb5b1461051e5780638eea33381461052f57806394bf804d1461053c57806395d89b411461054f575f5ffd5b80633644e5151161021d5780634cdad506116101d75780634cdad506146104685780635293a8ae1461047b57806361325e181461049a5780636e553f65146104ad57806370a08231146104c0578063715018a6146104e8575f5ffd5b80633644e515146103be57806337082c15146103c657806338d52e0f146103e557806339daa1b21461041f5780633c36728214610441578063402d267d14610454575f5ffd5b806318160ddd1161026e57806318160ddd1461033257806322bbc2d21461033a57806323b872dd1461034d5780632530e16f14610360578063313ce567146103755780633302a6a1146103a9575f5ffd5b806301e1d114146102b557806306fdde03146102cc57806307a2d13a146102e1578063095ea7b3146102f45780630a28a4771461031757806313b98c0f1461032a575b5f5ffd5b6009545b6040519081526020015b60405180910390f35b6102d46106ad565b6040516102c391906129d6565b6102b96102ef3660046129e8565b61073d565b610307610302366004612a1a565b61076c565b60405190151581526020016102c3565b6102b96103253660046129e8565b610783565b6102b961078d565b6002546102b9565b6102b9610348366004612a42565b6107a3565b61030761035b366004612a5b565b610825565b610368610848565b6040516102c39190612a95565b7f00000000000000000000000000000000000000000000000000000000000000005b60405160ff90911681526020016102c3565b6103bc6103b7366004612aef565b6108a7565b005b6102b9610b11565b6102b96103d4366004612a42565b600f6020525f908152604090205481565b7f00000000000000000000000000000000000000000000000000000000000000005b6040516001600160a01b0390911681526020016102c3565b61030761042d366004612a42565b600c6020525f908152604090205460ff1681565b6103bc61044f366004612b20565b610b1a565b6102b9610462366004612a42565b505f1990565b6102b96104763660046129e8565b610b63565b6102b9610489366004612a42565b600d6020525f908152604090205481565b6103bc6104a83660046129e8565b610b6d565b6102b96104bb366004612b39565b610cc3565b6102b96104ce366004612a42565b6001600160a01b03165f9081526020819052604090205490565b6103bc610ce3565b6102b96104fe366004612a42565b610cf6565b61050b610d13565b6040516102c39796959493929190612b5a565b6008546001600160a01b0316610407565b600b546103979060ff1681565b6102b961054a366004612b39565b610d55565b6102d4610d75565b600a546102b9565b6102b961056d366004612a42565b600e6020525f908152604090205481565b6103bc61058c366004612a1a565b610d84565b61030761059f366004612a1a565b610f3d565b6103bc6105b2366004612ceb565b610f4a565b6102b96105c5366004612dae565b611035565b6102b96105d8366004612dae565b611058565b6102b96105eb3660046129e8565b611079565b6102b96105fe366004612a42565b611097565b6103bc610611366004612df7565b6110fd565b6103bc610624366004612e10565b61115a565b6102b9610637366004612a42565b611290565b6102b961064a366004612e76565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b6103bc610682366004612a42565b6112c3565b6103bc6106953660046129e8565b6112fd565b6103bc6106a8366004612a1a565b611453565b6060600380546106bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546106e890612e9e565b80156107335780601f1061070a57610100808354040283529160200191610733565b820191905f5260205f20905b81548152906001019060200180831161071657829003601f168201915b5050505050905090565b5f676765c793fa10079d601b1b61075261168b565b61075c9084612eea565b6107669190612f01565b92915050565b5f336107798185856116da565b5060019392505050565b5f610766826116e7565b5f600a5460095461079e9190612f20565b905090565b5f5f6107ad61078d565b6001600160a01b0384165f908152600d6020908152604080832054600f90925290912054919250106107df575f61080d565b6001600160a01b0383165f908152600d6020908152604080832054600f9092529091205461080d9190612f20565b915081811061081c578161081e565b805b9392505050565b5f336108328582856116f0565b61083d85858561176c565b506001949350505050565b6060601180548060200260200160405190810160405280929190818152602001828054801561073357602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311610880575050505050905090565b6108af6117c9565b6001600160a01b0382165f908152600c602052604090205481151560ff9091161515036109075760405162461bcd60e51b81526020600482015260016024820152601560fa1b60448201526064015b60405180910390fd5b6001600160a01b0382165f908152600c60205260409020805460ff191682158015919091179091556109cf57600b5460115460ff9091161161096f5760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b601180546001600160a01b0384165f818152601260205260408120839055600183018455929092527f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319169091179055610ac8565b6001600160a01b0382165f90815260126020526040812054601180549192916109fa90600190612f20565b81548110610a0a57610a0a612f33565b5f91825260209091200154601180546001600160a01b039092169250829184908110610a3857610a38612f33565b5f91825260208083209190910180546001600160a01b0319166001600160a01b0394851617905591831681526012909152604090208290556011805480610a8157610a81612f47565b5f828152602080822083015f1990810180546001600160a01b03191690559092019092556001600160a01b0386168252601281526040808320839055600f90915281205550505b816001600160a01b03167f116f51cdebd8bed41fe13da2a0d0bfb7b85e1067f9086579840adae790a9d56282604051610b05911515815260200190565b60405180910390a25050565b5f61079e6117f6565b335f908152600c602052604090205460ff16610b485760405162461bcd60e51b81526004016108fe90612f5b565b8015610b5a57610b573361191f565b50565b610b5733611bb9565b5f61076682611c8e565b335f908152600c602052604090205460ff16610b9b5760405162461bcd60e51b81526004016108fe90612f5b565b33610ba58161191f565b6001600160a01b0381165f908152600d60205260409020548211610bc95781610be2565b6001600160a01b0381165f908152600d60205260409020545b6001600160a01b0382165f908152600d602052604081208054909190610c09908490612f20565b90915550506001600160a01b0381165f908152600e602052604081208054849290610c35908490612f20565b9250508190555081600a5f828254610c4d9190612f20565b90915550610c8890506001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016823085611ca3565b806001600160a01b03167fb6c22585684dd990935b9395908b0ee4813b361c0ca4d27ce0fdd1595c20f7d183604051610b0591815260200190565b5f610ccd5f611bb9565b610cd683611079565b9050610766838284611d0a565b610ceb6117c9565b610cf45f611dea565b565b6001600160a01b0381165f90815260076020526040812054610766565b5f6060805f5f5f6060610d24611e3b565b610d2c611e68565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b5f610d5f5f611bb9565b610d688361073d565b9050610766818484611d0a565b6060600480546106bc90612e9e565b610d8c6117c9565b5f8111610d97575f5ffd5b610da08261191f565b610dd46001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168383611e95565b604051636e553f6560e01b8152600481018290523060248201525f906001600160a01b03841690636e553f65906044016020604051808303815f875af1158015610e20573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e449190612f77565b905081610e50846107a3565b1015610e845760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0383165f908152600d602052604081208054849290610eab908490612f8e565b90915550506001600160a01b0383165f908152600e602052604081208054849290610ed7908490612f8e565b9250508190555081600a5f828254610eef9190612f8e565b909155505060408051838152602081018390526001600160a01b038516917f5ee2ae50f4fd1e9147abd154cb6eb43e2df1f68c4ff36b33f366bcce26911c47910160405180910390a2505050565b5f3361077981858561176c565b610f526117c9565b8051825114610f885760405162461bcd60e51b815260206004820152600260248201526114d360f21b60448201526064016108fe565b610f915f611bb9565b5f5b8251811015611030575f838281518110610faf57610faf612f33565b602002602001015190505f838381518110610fcc57610fcc612f33565b6020908102919091018101516001600160a01b0384165f818152600f845260409081902083905551828152919350917f8b958c988d0f1f7427e8c3a319933292e4f6b2b5689e559bb81aecfdf179e808910160405180910390a25050600101610f93565b505050565b5f61103f5f611bb9565b61104884611079565b905061081e818584335b87611f1c565b5f6110625f611bb9565b61106b8461073d565b905061081e84828433611052565b5f61108261168b565b61075c676765c793fa10079d601b1b84612eea565b5f5f6110a161078d565b90505f676765c793fa10079d601b1b6110b8612027565b6001600160a01b0386165f908152602081905260409020546110da9190612eea565b6110e49190612f01565b90508181116110f357806110f5565b815b949350505050565b6111056117c9565b600b805460ff83811660ff1983168117909355604080519190921680825260208201939093527f3bff4bf5fff81065e90c2b5772249385e8ec96b3ed81a13bc9ac7afc2c87496f910160405180910390a15050565b8342111561117e5760405163313c898160e11b8152600481018590526024016108fe565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886111c98c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6112238261207e565b90505f611232828787876120aa565b9050896001600160a01b0316816001600160a01b031614611279576040516325c0072360e11b81526001600160a01b0380831660048301528b1660248201526044016108fe565b6112848a8a8a6116da565b50505050505050505050565b5f5f6112a261129d61078d565b6116e7565b90505f6110e4846001600160a01b03165f9081526020819052604090205490565b6112cb6117c9565b6001600160a01b0381166112f457604051631e4fbdf760e01b81525f60048201526024016108fe565b610b5781611dea565b335f908152600c602052604090205460ff1661132b5760405162461bcd60e51b81526004016108fe90612f5b565b336113358161191f565b8161133f826107a3565b10156113735760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0381165f908152600d60205260408120805484929061139a908490612f8e565b90915550506001600160a01b0381165f908152600e6020526040812080548492906113c6908490612f8e565b9250508190555081600a5f8282546113de9190612f8e565b9091555061141890506001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001682846120d6565b806001600160a01b03167fef505329317f5ae933759f15a2053c0e8999363f3256a766ffd8453e28108d0a83604051610b0591815260200190565b61145b6117c9565b6114648261191f565b801561147057806114d6565b6040516370a0823160e01b81523060048201526001600160a01b038316906370a0823190602401602060405180830381865afa1580156114b2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114d69190612f77565b604051635d043b2960e11b815260048101829052306024820181905260448201529091505f906001600160a01b0384169063ba087652906064016020604051808303815f875af115801561152c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115509190612f77565b6001600160a01b0384165f908152600e60205260408120549192509082116115785781611591565b6001600160a01b0384165f908152600e60205260409020545b6001600160a01b0385165f908152600d602052604090205490915081116115b857806115d1565b6001600160a01b0384165f908152600d60205260409020545b6001600160a01b0385165f908152600d6020526040812080549091906115f8908490612f20565b90915550506001600160a01b0384165f908152600e602052604081208054839290611624908490612f20565b9250508190555080600a5f82825461163c9190612f20565b909155505060408051848152602081018390526001600160a01b038616917fdaf428d238d4ca04f9d4e3eb7bcf27b6c386b7913cc4a27c7f810c93270a2ac0910160405180910390a250505050565b5f5f61169660025490565b905080156116c75780600954676765c793fa10079d601b1b6116b89190612eea565b6116c29190612f01565b6116d4565b676765c793fa10079d601b1b5b91505090565b6110308383836001612107565b5f611082612027565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f19811015611766578181101561175857604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016108fe565b61176684848484035f612107565b50505050565b6001600160a01b03831661179557604051634b637e8f60e11b81525f60048201526024016108fe565b6001600160a01b0382166117be5760405163ec442f0560e01b81525f60048201526024016108fe565b6110308383836121d9565b6008546001600160a01b03163314610cf45760405163118cdaa760e01b81523360048201526024016108fe565b5f306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561184e57507f000000000000000000000000000000000000000000000000000000000000000046145b1561187857507f000000000000000000000000000000000000000000000000000000000000000090565b61079e604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0381165f81815260106020526040908190205490516303d1689d60e11b8152676765c793fa10079d601b1b60048201529091906307a2d13a90602401602060405180830381865afa15801561197d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119a19190612f77565b6001600160a01b0383165f908152601060205260408120919091558190036119c7575050565b6001600160a01b0382165f908152601060205260408120548211611a2f576001600160a01b0383165f90815260106020526040902054676765c793fa10079d601b1b908390611a169083612eea565b611a209190612f01565b611a2a9190612f20565b611a7d565b6001600160a01b0383165f908152601060205260409020548290611a5e90676765c793fa10079d601b1b612eea565b611a689190612f01565b611a7d90676765c793fa10079d601b1b612f20565b6001600160a01b0384165f908152600e6020526040812054919250676765c793fa10079d601b1b611aae8484612eea565b611ab89190612f01565b6001600160a01b0386165f908152601060205260409020549091508411611ae857611ae38183612f8e565b611afb565b808210611af957611ae38183612f20565b5f5b6001600160a01b0386165f908152600e60205260409020819055600a54611b23908490612f20565b611b2d9190612f8e565b600a556001600160a01b0385165f908152600e6020526040902054600954611b56908490612f20565b611b609190612f8e565b6009819055600a546040516001600160a01b038816927f8c46ebcf63e62100063b73002864698a375020e7c2952d5ea006ac1643ba505192611baa92918252602082015260400190565b60405180910390a25050505050565b6011545f5b81811015611030575f60118281548110611bda57611bda612f33565b5f918252602090912001546001600160a01b03908116915084168103611c005750611c86565b604051631c6c959760e01b81525f60048201819052906001600160a01b03831690631c6c959790602401610180604051808303815f875af1158015611c47573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6b919061303d565b505050505090505f811115611c8357611c838261191f565b50505b600101611bbe565b5f676765c793fa10079d601b1b610752612027565b6040516001600160a01b0384811660248301528381166044830152606482018390526117669186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506122f2565b8215801590611d1857508115155b611d485760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b8260095f828254611d599190612f8e565b90915550611d699050818361235e565b611d9e7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316333086611ca3565b60408051848152602081018490526001600160a01b0383169133917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d791015b60405180910390a3505050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b606061079e7f00000000000000000000000000000000000000000000000000000000000000006005612396565b606061079e7f00000000000000000000000000000000000000000000000000000000000000006006612396565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611ee2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f069190612f77565b90506117668484611f178585612f8e565b61243f565b826001600160a01b0316826001600160a01b031614611f4057611f408383876116f0565b5f611f4961078d565b90508460095f828254611f5c9190612f20565b909155505084811015611f965760405162461bcd60e51b815260206004820152600260248201526120ab60f11b60448201526064016108fe565b611fa084876124ce565b611fd46001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001683876120d6565b60408051868152602081018890526001600160a01b03808516928392918816917ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db910160405180910390a4505050505050565b5f5f61203260025490565b90505f61203d612502565b9050811561206a578161205b82676765c793fa10079d601b1b612eea565b6120659190612f01565b612077565b676765c793fa10079d601b1b5b9250505090565b5f61076661208a6117f6565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f6120ba888888886126ea565b9250925092506120ca82826127b2565b50909695505050505050565b6040516001600160a01b0383811660248301526044820183905261103091859182169063a9059cbb90606401611cd8565b6001600160a01b0384166121305760405163e602df0560e01b81525f60048201526024016108fe565b6001600160a01b03831661215957604051634a1406b160e11b81525f60048201526024016108fe565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561176657826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516121cb91815260200190565b60405180910390a350505050565b6001600160a01b038316612203578060025f8282546121f89190612f8e565b909155506122739050565b6001600160a01b0383165f90815260208190526040902054818110156122555760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016108fe565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661228f576002805482900390556122ad565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ddd91815260200190565b5f5f60205f8451602086015f885af180612311576040513d5f823e3d81fd5b50505f513d91508115612328578060011415612335565b6001600160a01b0384163b155b1561176657604051635274afe760e01b81526001600160a01b03851660048201526024016108fe565b6001600160a01b0382166123875760405163ec442f0560e01b81525f60048201526024016108fe565b6123925f83836121d9565b5050565b606060ff83146123b0576123a98361286a565b9050610766565b8180546123bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546123e890612e9e565b80156124335780601f1061240a57610100808354040283529160200191612433565b820191905f5260205f20905b81548152906001019060200180831161241657829003601f168201915b50505050509050610766565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b17905261249084826128a7565b611766576040516001600160a01b0384811660248301525f60448301526124c491869182169063095ea7b390606401611cd8565b61176684826122f2565b6001600160a01b0382166124f757604051634b637e8f60e11b81525f60048201526024016108fe565b612392825f836121d9565b6009546011545f5b818110156126e5575f6011828154811061252657612526612f33565b5f9182526020808320909101546001600160a01b0316808352601090915260408220549092509081900361255b5750506126dd565b5f826001600160a01b031663cacf3b586040518163ffffffff1660e01b815260040161018060405180830381865afa158015612599573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906125bd919061303d565b509450505050505f6125e5676765c793fa10079d601b1b5f846128f09092919063ffffffff16565b90505f81841161261f57676765c793fa10079d601b1b846126068483612eea565b6126109190612f01565b61261a9190612f20565b612654565b8361263583676765c793fa10079d601b1b612eea565b61263f9190612f01565b61265490676765c793fa10079d601b1b612f20565b6001600160a01b0386165f908152600e6020526040812054919250676765c793fa10079d601b1b6126858484612eea565b61268f9190612f01565b90505f8487116126a8576126a38284612f8e565b6126bb565b8183106126b9576126a38284612f20565b5f5b9050806126c8848d612f20565b6126d29190612f8e565b9a5050505050505050505b60010161250a565b505090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561272357505f915060039050826127a8565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612774573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661279f57505f9250600191508290506127a8565b92505f91508190505b9450945094915050565b5f8260038111156127c5576127c56130ff565b036127ce575050565b60018260038111156127e2576127e26130ff565b036128005760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115612814576128146130ff565b036128355760405163fce698f760e01b8152600481018290526024016108fe565b6003826003811115612849576128496130ff565b03612392576040516335e2f38360e21b8152600481018290526024016108fe565b60605f61287683612981565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f5f5f5f60205f8651602088015f8a5af192503d91505f5190508280156128e6575081156128d857806001146128e6565b5f866001600160a01b03163b115b9695505050505050565b5f83602001516001600160801b03165f0361290c57508161081e565b602084015184516001600160801b039182169161292a911685612eea565b6129349190612f01565b9050818015612971575082845f01516001600160801b031685602001516001600160801b0316836129659190612eea565b61296f9190612f01565b105b1561081e576110f5816001612f8e565b5f60ff8216601f81111561081c57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f61081e60208301846129a8565b5f602082840312156129f8575f5ffd5b5035919050565b80356001600160a01b0381168114612a15575f5ffd5b919050565b5f5f60408385031215612a2b575f5ffd5b612a34836129ff565b946020939093013593505050565b5f60208284031215612a52575f5ffd5b61081e826129ff565b5f5f5f60608486031215612a6d575f5ffd5b612a76846129ff565b9250612a84602085016129ff565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b81811015612ad55783516001600160a01b0316835260209384019390920191600101612aae565b509095945050505050565b80358015158114612a15575f5ffd5b5f5f60408385031215612b00575f5ffd5b612b09836129ff565b9150612b1760208401612ae0565b90509250929050565b5f60208284031215612b30575f5ffd5b61081e82612ae0565b5f5f60408385031215612b4a575f5ffd5b82359150612b17602084016129ff565b60ff60f81b8816815260e060208201525f612b7860e08301896129a8565b8281036040840152612b8a81896129a8565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015612bdf578351835260209384019390920191600101612bc1565b50909b9a5050505050505050505050565b634e487b7160e01b5f52604160045260245ffd5b60405160a0810167ffffffffffffffff81118282101715612c2757612c27612bf0565b60405290565b604051601f8201601f1916810167ffffffffffffffff81118282101715612c5657612c56612bf0565b604052919050565b5f67ffffffffffffffff821115612c7757612c77612bf0565b5060051b60200190565b5f82601f830112612c90575f5ffd5b8135612ca3612c9e82612c5e565b612c2d565b8082825260208201915060208360051b860101925085831115612cc4575f5ffd5b602085015b83811015612ce1578035835260209283019201612cc9565b5095945050505050565b5f5f60408385031215612cfc575f5ffd5b823567ffffffffffffffff811115612d12575f5ffd5b8301601f81018513612d22575f5ffd5b8035612d30612c9e82612c5e565b8082825260208201915060208360051b850101925087831115612d51575f5ffd5b6020840193505b82841015612d7a57612d69846129ff565b825260209384019390910190612d58565b9450505050602083013567ffffffffffffffff811115612d98575f5ffd5b612da485828601612c81565b9150509250929050565b5f5f5f60608486031215612dc0575f5ffd5b83359250612dd0602085016129ff565b9150612dde604085016129ff565b90509250925092565b803560ff81168114612a15575f5ffd5b5f60208284031215612e07575f5ffd5b61081e82612de7565b5f5f5f5f5f5f5f60e0888a031215612e26575f5ffd5b612e2f886129ff565b9650612e3d602089016129ff565b95506040880135945060608801359350612e5960808901612de7565b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215612e87575f5ffd5b612e90836129ff565b9150612b17602084016129ff565b600181811c90821680612eb257607f821691505b602082108103612ed057634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761076657610766612ed6565b5f82612f1b57634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561076657610766612ed6565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52603160045260245ffd5b60208082526002908201526115d360f21b604082015260600190565b5f60208284031215612f87575f5ffd5b5051919050565b8082018082111561076657610766612ed6565b805163ffffffff81168114612a15575f5ffd5b805167ffffffffffffffff81168114612a15575f5ffd5b80516001600160801b0381168114612a15575f5ffd5b5f60408284031215612ff1575f5ffd5b6040805190810167ffffffffffffffff8111828210171561301457613014612bf0565b60405290508061302383612fcb565b815261303160208401612fcb565b60208201525092915050565b5f5f5f5f5f5f868803610180811215613054575f5ffd5b8751602089015160408a01519198509650945060a0605f1982011215613078575f5ffd5b50613081612c04565b61308d60608901612fa1565b815261309b60808901612fa1565b60208201526130ac60a08901612fb4565b60408201526130bd60c08901612fb4565b60608201526130ce60e08901612fb4565b608082015292506130e3886101008901612fe1565b91506130f3886101408901612fe1565b90509295509295509295565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212208912b464e32c6da3b0dbea1c8522f26577a550cd46a1c6397a71216c6364503f64736f6c634300081c0033000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000000000000000000000000000000000000000001e506561706f6473204d6574617661756c7420666f722055534420436f696e000000000000000000000000000000000000000000000000000000000000000000067076555344430000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106102b1575f3560e01c80637ecebe001161017b578063b460af94116100e4578063d505accf1161009e578063ef8b30f711610079578063ef8b30f714610317578063f2fde38b14610674578063f556d88914610687578063fbb052481461069a575f5ffd5b8063d505accf14610616578063d905777e14610629578063dd62ed3e1461063c575f5ffd5b8063b460af94146105b7578063ba087652146105ca578063c63d75b614610454578063c6e6f592146105dd578063ce96cb77146105f0578063d2c9a94f14610603575f5ffd5b80639cfd2f2e116101355780639cfd2f2e146105575780639d6c63511461055f578063a3d111581461057e578063a9059cbb14610591578063b0145280146105a4578063b3d7f6b914610468575f5ffd5b80637ecebe00146104f057806384b0196e146105035780638da5cb5b1461051e5780638eea33381461052f57806394bf804d1461053c57806395d89b411461054f575f5ffd5b80633644e5151161021d5780634cdad506116101d75780634cdad506146104685780635293a8ae1461047b57806361325e181461049a5780636e553f65146104ad57806370a08231146104c0578063715018a6146104e8575f5ffd5b80633644e515146103be57806337082c15146103c657806338d52e0f146103e557806339daa1b21461041f5780633c36728214610441578063402d267d14610454575f5ffd5b806318160ddd1161026e57806318160ddd1461033257806322bbc2d21461033a57806323b872dd1461034d5780632530e16f14610360578063313ce567146103755780633302a6a1146103a9575f5ffd5b806301e1d114146102b557806306fdde03146102cc57806307a2d13a146102e1578063095ea7b3146102f45780630a28a4771461031757806313b98c0f1461032a575b5f5ffd5b6009545b6040519081526020015b60405180910390f35b6102d46106ad565b6040516102c391906129d6565b6102b96102ef3660046129e8565b61073d565b610307610302366004612a1a565b61076c565b60405190151581526020016102c3565b6102b96103253660046129e8565b610783565b6102b961078d565b6002546102b9565b6102b9610348366004612a42565b6107a3565b61030761035b366004612a5b565b610825565b610368610848565b6040516102c39190612a95565b7f00000000000000000000000000000000000000000000000000000000000000065b60405160ff90911681526020016102c3565b6103bc6103b7366004612aef565b6108a7565b005b6102b9610b11565b6102b96103d4366004612a42565b600f6020525f908152604090205481565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb485b6040516001600160a01b0390911681526020016102c3565b61030761042d366004612a42565b600c6020525f908152604090205460ff1681565b6103bc61044f366004612b20565b610b1a565b6102b9610462366004612a42565b505f1990565b6102b96104763660046129e8565b610b63565b6102b9610489366004612a42565b600d6020525f908152604090205481565b6103bc6104a83660046129e8565b610b6d565b6102b96104bb366004612b39565b610cc3565b6102b96104ce366004612a42565b6001600160a01b03165f9081526020819052604090205490565b6103bc610ce3565b6102b96104fe366004612a42565b610cf6565b61050b610d13565b6040516102c39796959493929190612b5a565b6008546001600160a01b0316610407565b600b546103979060ff1681565b6102b961054a366004612b39565b610d55565b6102d4610d75565b600a546102b9565b6102b961056d366004612a42565b600e6020525f908152604090205481565b6103bc61058c366004612a1a565b610d84565b61030761059f366004612a1a565b610f3d565b6103bc6105b2366004612ceb565b610f4a565b6102b96105c5366004612dae565b611035565b6102b96105d8366004612dae565b611058565b6102b96105eb3660046129e8565b611079565b6102b96105fe366004612a42565b611097565b6103bc610611366004612df7565b6110fd565b6103bc610624366004612e10565b61115a565b6102b9610637366004612a42565b611290565b6102b961064a366004612e76565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b6103bc610682366004612a42565b6112c3565b6103bc6106953660046129e8565b6112fd565b6103bc6106a8366004612a1a565b611453565b6060600380546106bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546106e890612e9e565b80156107335780601f1061070a57610100808354040283529160200191610733565b820191905f5260205f20905b81548152906001019060200180831161071657829003601f168201915b5050505050905090565b5f676765c793fa10079d601b1b61075261168b565b61075c9084612eea565b6107669190612f01565b92915050565b5f336107798185856116da565b5060019392505050565b5f610766826116e7565b5f600a5460095461079e9190612f20565b905090565b5f5f6107ad61078d565b6001600160a01b0384165f908152600d6020908152604080832054600f90925290912054919250106107df575f61080d565b6001600160a01b0383165f908152600d6020908152604080832054600f9092529091205461080d9190612f20565b915081811061081c578161081e565b805b9392505050565b5f336108328582856116f0565b61083d85858561176c565b506001949350505050565b6060601180548060200260200160405190810160405280929190818152602001828054801561073357602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311610880575050505050905090565b6108af6117c9565b6001600160a01b0382165f908152600c602052604090205481151560ff9091161515036109075760405162461bcd60e51b81526020600482015260016024820152601560fa1b60448201526064015b60405180910390fd5b6001600160a01b0382165f908152600c60205260409020805460ff191682158015919091179091556109cf57600b5460115460ff9091161161096f5760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b601180546001600160a01b0384165f818152601260205260408120839055600183018455929092527f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319169091179055610ac8565b6001600160a01b0382165f90815260126020526040812054601180549192916109fa90600190612f20565b81548110610a0a57610a0a612f33565b5f91825260209091200154601180546001600160a01b039092169250829184908110610a3857610a38612f33565b5f91825260208083209190910180546001600160a01b0319166001600160a01b0394851617905591831681526012909152604090208290556011805480610a8157610a81612f47565b5f828152602080822083015f1990810180546001600160a01b03191690559092019092556001600160a01b0386168252601281526040808320839055600f90915281205550505b816001600160a01b03167f116f51cdebd8bed41fe13da2a0d0bfb7b85e1067f9086579840adae790a9d56282604051610b05911515815260200190565b60405180910390a25050565b5f61079e6117f6565b335f908152600c602052604090205460ff16610b485760405162461bcd60e51b81526004016108fe90612f5b565b8015610b5a57610b573361191f565b50565b610b5733611bb9565b5f61076682611c8e565b335f908152600c602052604090205460ff16610b9b5760405162461bcd60e51b81526004016108fe90612f5b565b33610ba58161191f565b6001600160a01b0381165f908152600d60205260409020548211610bc95781610be2565b6001600160a01b0381165f908152600d60205260409020545b6001600160a01b0382165f908152600d602052604081208054909190610c09908490612f20565b90915550506001600160a01b0381165f908152600e602052604081208054849290610c35908490612f20565b9250508190555081600a5f828254610c4d9190612f20565b90915550610c8890506001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4816823085611ca3565b806001600160a01b03167fb6c22585684dd990935b9395908b0ee4813b361c0ca4d27ce0fdd1595c20f7d183604051610b0591815260200190565b5f610ccd5f611bb9565b610cd683611079565b9050610766838284611d0a565b610ceb6117c9565b610cf45f611dea565b565b6001600160a01b0381165f90815260076020526040812054610766565b5f6060805f5f5f6060610d24611e3b565b610d2c611e68565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b5f610d5f5f611bb9565b610d688361073d565b9050610766818484611d0a565b6060600480546106bc90612e9e565b610d8c6117c9565b5f8111610d97575f5ffd5b610da08261191f565b610dd46001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48168383611e95565b604051636e553f6560e01b8152600481018290523060248201525f906001600160a01b03841690636e553f65906044016020604051808303815f875af1158015610e20573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e449190612f77565b905081610e50846107a3565b1015610e845760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0383165f908152600d602052604081208054849290610eab908490612f8e565b90915550506001600160a01b0383165f908152600e602052604081208054849290610ed7908490612f8e565b9250508190555081600a5f828254610eef9190612f8e565b909155505060408051838152602081018390526001600160a01b038516917f5ee2ae50f4fd1e9147abd154cb6eb43e2df1f68c4ff36b33f366bcce26911c47910160405180910390a2505050565b5f3361077981858561176c565b610f526117c9565b8051825114610f885760405162461bcd60e51b815260206004820152600260248201526114d360f21b60448201526064016108fe565b610f915f611bb9565b5f5b8251811015611030575f838281518110610faf57610faf612f33565b602002602001015190505f838381518110610fcc57610fcc612f33565b6020908102919091018101516001600160a01b0384165f818152600f845260409081902083905551828152919350917f8b958c988d0f1f7427e8c3a319933292e4f6b2b5689e559bb81aecfdf179e808910160405180910390a25050600101610f93565b505050565b5f61103f5f611bb9565b61104884611079565b905061081e818584335b87611f1c565b5f6110625f611bb9565b61106b8461073d565b905061081e84828433611052565b5f61108261168b565b61075c676765c793fa10079d601b1b84612eea565b5f5f6110a161078d565b90505f676765c793fa10079d601b1b6110b8612027565b6001600160a01b0386165f908152602081905260409020546110da9190612eea565b6110e49190612f01565b90508181116110f357806110f5565b815b949350505050565b6111056117c9565b600b805460ff83811660ff1983168117909355604080519190921680825260208201939093527f3bff4bf5fff81065e90c2b5772249385e8ec96b3ed81a13bc9ac7afc2c87496f910160405180910390a15050565b8342111561117e5760405163313c898160e11b8152600481018590526024016108fe565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886111c98c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6112238261207e565b90505f611232828787876120aa565b9050896001600160a01b0316816001600160a01b031614611279576040516325c0072360e11b81526001600160a01b0380831660048301528b1660248201526044016108fe565b6112848a8a8a6116da565b50505050505050505050565b5f5f6112a261129d61078d565b6116e7565b90505f6110e4846001600160a01b03165f9081526020819052604090205490565b6112cb6117c9565b6001600160a01b0381166112f457604051631e4fbdf760e01b81525f60048201526024016108fe565b610b5781611dea565b335f908152600c602052604090205460ff1661132b5760405162461bcd60e51b81526004016108fe90612f5b565b336113358161191f565b8161133f826107a3565b10156113735760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0381165f908152600d60205260408120805484929061139a908490612f8e565b90915550506001600160a01b0381165f908152600e6020526040812080548492906113c6908490612f8e565b9250508190555081600a5f8282546113de9190612f8e565b9091555061141890506001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb481682846120d6565b806001600160a01b03167fef505329317f5ae933759f15a2053c0e8999363f3256a766ffd8453e28108d0a83604051610b0591815260200190565b61145b6117c9565b6114648261191f565b801561147057806114d6565b6040516370a0823160e01b81523060048201526001600160a01b038316906370a0823190602401602060405180830381865afa1580156114b2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114d69190612f77565b604051635d043b2960e11b815260048101829052306024820181905260448201529091505f906001600160a01b0384169063ba087652906064016020604051808303815f875af115801561152c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115509190612f77565b6001600160a01b0384165f908152600e60205260408120549192509082116115785781611591565b6001600160a01b0384165f908152600e60205260409020545b6001600160a01b0385165f908152600d602052604090205490915081116115b857806115d1565b6001600160a01b0384165f908152600d60205260409020545b6001600160a01b0385165f908152600d6020526040812080549091906115f8908490612f20565b90915550506001600160a01b0384165f908152600e602052604081208054839290611624908490612f20565b9250508190555080600a5f82825461163c9190612f20565b909155505060408051848152602081018390526001600160a01b038616917fdaf428d238d4ca04f9d4e3eb7bcf27b6c386b7913cc4a27c7f810c93270a2ac0910160405180910390a250505050565b5f5f61169660025490565b905080156116c75780600954676765c793fa10079d601b1b6116b89190612eea565b6116c29190612f01565b6116d4565b676765c793fa10079d601b1b5b91505090565b6110308383836001612107565b5f611082612027565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f19811015611766578181101561175857604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016108fe565b61176684848484035f612107565b50505050565b6001600160a01b03831661179557604051634b637e8f60e11b81525f60048201526024016108fe565b6001600160a01b0382166117be5760405163ec442f0560e01b81525f60048201526024016108fe565b6110308383836121d9565b6008546001600160a01b03163314610cf45760405163118cdaa760e01b81523360048201526024016108fe565b5f306001600160a01b037f0000000000000000000000003717e340140d30f3a077dd21fac39a86ace873aa1614801561184e57507f000000000000000000000000000000000000000000000000000000000000000146145b1561187857507faa41856771e17353221fe8bbf0bd8598133f5d37de35f32b1ede25d7f27714e690565b61079e604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f07e7f663f99ab4f85e5f432216a85de03b9c779fb4131ae1e2ae174f92d9fffa918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0381165f81815260106020526040908190205490516303d1689d60e11b8152676765c793fa10079d601b1b60048201529091906307a2d13a90602401602060405180830381865afa15801561197d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119a19190612f77565b6001600160a01b0383165f908152601060205260408120919091558190036119c7575050565b6001600160a01b0382165f908152601060205260408120548211611a2f576001600160a01b0383165f90815260106020526040902054676765c793fa10079d601b1b908390611a169083612eea565b611a209190612f01565b611a2a9190612f20565b611a7d565b6001600160a01b0383165f908152601060205260409020548290611a5e90676765c793fa10079d601b1b612eea565b611a689190612f01565b611a7d90676765c793fa10079d601b1b612f20565b6001600160a01b0384165f908152600e6020526040812054919250676765c793fa10079d601b1b611aae8484612eea565b611ab89190612f01565b6001600160a01b0386165f908152601060205260409020549091508411611ae857611ae38183612f8e565b611afb565b808210611af957611ae38183612f20565b5f5b6001600160a01b0386165f908152600e60205260409020819055600a54611b23908490612f20565b611b2d9190612f8e565b600a556001600160a01b0385165f908152600e6020526040902054600954611b56908490612f20565b611b609190612f8e565b6009819055600a546040516001600160a01b038816927f8c46ebcf63e62100063b73002864698a375020e7c2952d5ea006ac1643ba505192611baa92918252602082015260400190565b60405180910390a25050505050565b6011545f5b81811015611030575f60118281548110611bda57611bda612f33565b5f918252602090912001546001600160a01b03908116915084168103611c005750611c86565b604051631c6c959760e01b81525f60048201819052906001600160a01b03831690631c6c959790602401610180604051808303815f875af1158015611c47573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6b919061303d565b505050505090505f811115611c8357611c838261191f565b50505b600101611bbe565b5f676765c793fa10079d601b1b610752612027565b6040516001600160a01b0384811660248301528381166044830152606482018390526117669186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506122f2565b8215801590611d1857508115155b611d485760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b8260095f828254611d599190612f8e565b90915550611d699050818361235e565b611d9e7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b0316333086611ca3565b60408051848152602081018490526001600160a01b0383169133917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d791015b60405180910390a3505050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b606061079e7f506561706f6473204d6574617661756c7420666f722055534420436f696e001e6005612396565b606061079e7f31000000000000000000000000000000000000000000000000000000000000016006612396565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611ee2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f069190612f77565b90506117668484611f178585612f8e565b61243f565b826001600160a01b0316826001600160a01b031614611f4057611f408383876116f0565b5f611f4961078d565b90508460095f828254611f5c9190612f20565b909155505084811015611f965760405162461bcd60e51b815260206004820152600260248201526120ab60f11b60448201526064016108fe565b611fa084876124ce565b611fd46001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb481683876120d6565b60408051868152602081018890526001600160a01b03808516928392918816917ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db910160405180910390a4505050505050565b5f5f61203260025490565b90505f61203d612502565b9050811561206a578161205b82676765c793fa10079d601b1b612eea565b6120659190612f01565b612077565b676765c793fa10079d601b1b5b9250505090565b5f61076661208a6117f6565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f6120ba888888886126ea565b9250925092506120ca82826127b2565b50909695505050505050565b6040516001600160a01b0383811660248301526044820183905261103091859182169063a9059cbb90606401611cd8565b6001600160a01b0384166121305760405163e602df0560e01b81525f60048201526024016108fe565b6001600160a01b03831661215957604051634a1406b160e11b81525f60048201526024016108fe565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561176657826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516121cb91815260200190565b60405180910390a350505050565b6001600160a01b038316612203578060025f8282546121f89190612f8e565b909155506122739050565b6001600160a01b0383165f90815260208190526040902054818110156122555760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016108fe565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661228f576002805482900390556122ad565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ddd91815260200190565b5f5f60205f8451602086015f885af180612311576040513d5f823e3d81fd5b50505f513d91508115612328578060011415612335565b6001600160a01b0384163b155b1561176657604051635274afe760e01b81526001600160a01b03851660048201526024016108fe565b6001600160a01b0382166123875760405163ec442f0560e01b81525f60048201526024016108fe565b6123925f83836121d9565b5050565b606060ff83146123b0576123a98361286a565b9050610766565b8180546123bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546123e890612e9e565b80156124335780601f1061240a57610100808354040283529160200191612433565b820191905f5260205f20905b81548152906001019060200180831161241657829003601f168201915b50505050509050610766565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b17905261249084826128a7565b611766576040516001600160a01b0384811660248301525f60448301526124c491869182169063095ea7b390606401611cd8565b61176684826122f2565b6001600160a01b0382166124f757604051634b637e8f60e11b81525f60048201526024016108fe565b612392825f836121d9565b6009546011545f5b818110156126e5575f6011828154811061252657612526612f33565b5f9182526020808320909101546001600160a01b0316808352601090915260408220549092509081900361255b5750506126dd565b5f826001600160a01b031663cacf3b586040518163ffffffff1660e01b815260040161018060405180830381865afa158015612599573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906125bd919061303d565b509450505050505f6125e5676765c793fa10079d601b1b5f846128f09092919063ffffffff16565b90505f81841161261f57676765c793fa10079d601b1b846126068483612eea565b6126109190612f01565b61261a9190612f20565b612654565b8361263583676765c793fa10079d601b1b612eea565b61263f9190612f01565b61265490676765c793fa10079d601b1b612f20565b6001600160a01b0386165f908152600e6020526040812054919250676765c793fa10079d601b1b6126858484612eea565b61268f9190612f01565b90505f8487116126a8576126a38284612f8e565b6126bb565b8183106126b9576126a38284612f20565b5f5b9050806126c8848d612f20565b6126d29190612f8e565b9a5050505050505050505b60010161250a565b505090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561272357505f915060039050826127a8565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612774573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661279f57505f9250600191508290506127a8565b92505f91508190505b9450945094915050565b5f8260038111156127c5576127c56130ff565b036127ce575050565b60018260038111156127e2576127e26130ff565b036128005760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115612814576128146130ff565b036128355760405163fce698f760e01b8152600481018290526024016108fe565b6003826003811115612849576128496130ff565b03612392576040516335e2f38360e21b8152600481018290526024016108fe565b60605f61287683612981565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f5f5f5f60205f8651602088015f8a5af192503d91505f5190508280156128e6575081156128d857806001146128e6565b5f866001600160a01b03163b115b9695505050505050565b5f83602001516001600160801b03165f0361290c57508161081e565b602084015184516001600160801b039182169161292a911685612eea565b6129349190612f01565b9050818015612971575082845f01516001600160801b031685602001516001600160801b0316836129659190612eea565b61296f9190612f01565b105b1561081e576110f5816001612f8e565b5f60ff8216601f81111561081c57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f61081e60208301846129a8565b5f602082840312156129f8575f5ffd5b5035919050565b80356001600160a01b0381168114612a15575f5ffd5b919050565b5f5f60408385031215612a2b575f5ffd5b612a34836129ff565b946020939093013593505050565b5f60208284031215612a52575f5ffd5b61081e826129ff565b5f5f5f60608486031215612a6d575f5ffd5b612a76846129ff565b9250612a84602085016129ff565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b81811015612ad55783516001600160a01b0316835260209384019390920191600101612aae565b509095945050505050565b80358015158114612a15575f5ffd5b5f5f60408385031215612b00575f5ffd5b612b09836129ff565b9150612b1760208401612ae0565b90509250929050565b5f60208284031215612b30575f5ffd5b61081e82612ae0565b5f5f60408385031215612b4a575f5ffd5b82359150612b17602084016129ff565b60ff60f81b8816815260e060208201525f612b7860e08301896129a8565b8281036040840152612b8a81896129a8565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015612bdf578351835260209384019390920191600101612bc1565b50909b9a5050505050505050505050565b634e487b7160e01b5f52604160045260245ffd5b60405160a0810167ffffffffffffffff81118282101715612c2757612c27612bf0565b60405290565b604051601f8201601f1916810167ffffffffffffffff81118282101715612c5657612c56612bf0565b604052919050565b5f67ffffffffffffffff821115612c7757612c77612bf0565b5060051b60200190565b5f82601f830112612c90575f5ffd5b8135612ca3612c9e82612c5e565b612c2d565b8082825260208201915060208360051b860101925085831115612cc4575f5ffd5b602085015b83811015612ce1578035835260209283019201612cc9565b5095945050505050565b5f5f60408385031215612cfc575f5ffd5b823567ffffffffffffffff811115612d12575f5ffd5b8301601f81018513612d22575f5ffd5b8035612d30612c9e82612c5e565b8082825260208201915060208360051b850101925087831115612d51575f5ffd5b6020840193505b82841015612d7a57612d69846129ff565b825260209384019390910190612d58565b9450505050602083013567ffffffffffffffff811115612d98575f5ffd5b612da485828601612c81565b9150509250929050565b5f5f5f60608486031215612dc0575f5ffd5b83359250612dd0602085016129ff565b9150612dde604085016129ff565b90509250925092565b803560ff81168114612a15575f5ffd5b5f60208284031215612e07575f5ffd5b61081e82612de7565b5f5f5f5f5f5f5f60e0888a031215612e26575f5ffd5b612e2f886129ff565b9650612e3d602089016129ff565b95506040880135945060608801359350612e5960808901612de7565b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215612e87575f5ffd5b612e90836129ff565b9150612b17602084016129ff565b600181811c90821680612eb257607f821691505b602082108103612ed057634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761076657610766612ed6565b5f82612f1b57634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561076657610766612ed6565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52603160045260245ffd5b60208082526002908201526115d360f21b604082015260600190565b5f60208284031215612f87575f5ffd5b5051919050565b8082018082111561076657610766612ed6565b805163ffffffff81168114612a15575f5ffd5b805167ffffffffffffffff81168114612a15575f5ffd5b80516001600160801b0381168114612a15575f5ffd5b5f60408284031215612ff1575f5ffd5b6040805190810167ffffffffffffffff8111828210171561301457613014612bf0565b60405290508061302383612fcb565b815261303160208401612fcb565b60208201525092915050565b5f5f5f5f5f5f868803610180811215613054575f5ffd5b8751602089015160408a01519198509650945060a0605f1982011215613078575f5ffd5b50613081612c04565b61308d60608901612fa1565b815261309b60808901612fa1565b60208201526130ac60a08901612fb4565b60408201526130bd60c08901612fb4565b60608201526130ce60e08901612fb4565b608082015292506130e3886101008901612fe1565b91506130f3886101408901612fe1565b90509295509295509295565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212208912b464e32c6da3b0dbea1c8522f26577a550cd46a1c6397a71216c6364503f64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000000000000000000000000000000000000000001e506561706f6473204d6574617661756c7420666f722055534420436f696e000000000000000000000000000000000000000000000000000000000000000000067076555344430000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _name (string): Peapods Metavault for USD Coin
Arg [1] : _symbol (string): pvUSDC
Arg [2] : __asset (address): 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [2] : 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Arg [3] : 000000000000000000000000000000000000000000000000000000000000001e
Arg [4] : 506561706f6473204d6574617661756c7420666f722055534420436f696e0000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [6] : 7076555344430000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| ETH | 100.00% | $0.999791 | 175,182.8339 | $175,146.22 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.