ETH Price: $3,435.93 (+3.20%)

Contract

0x3717e340140D30F3A077Dd21fAc39A86ACe873AA
 

More Info

Private Name Tags

TokenTracker

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
0xaf2f2d27d967b87f2accade6eb462bcb0a426efb3b732ace4d05850087a5e77c Deposit(pending)2025-11-02 9:01:543 days ago1762074114IN
0x3717e340...6ACe873AA
0 ETH(Pending)(Pending)
Redeem237361462025-11-05 22:43:115 hrs ago1762382591IN
0x3717e340...6ACe873AA
0 ETH0.001134711
Redeem237295032025-11-05 0:23:2328 hrs ago1762302203IN
0x3717e340...6ACe873AA
0 ETH0.000757680.69578605
Redeem237294952025-11-05 0:21:4728 hrs ago1762302107IN
0x3717e340...6ACe873AA
0 ETH0.000863720.77392644
Redeem237285872025-11-04 21:18:3531 hrs ago1762291115IN
0x3717e340...6ACe873AA
0 ETH0.0158414914.27694295
Redeem237275752025-11-04 17:54:3534 hrs ago1762278875IN
0x3717e340...6ACe873AA
0 ETH0.00756386.759606
Redeem237252642025-11-04 10:08:3542 hrs ago1762250915IN
0x3717e340...6ACe873AA
0 ETH0.003088712.71869343
Redeem237182782025-11-03 10:43:232 days ago1762166603IN
0x3717e340...6ACe873AA
0 ETH0.002409452.10206963
Redeem237180702025-11-03 10:01:352 days ago1762164095IN
0x3717e340...6ACe873AA
0 ETH0.000857230.73813292
Redeem237180022025-11-03 9:47:592 days ago1762163279IN
0x3717e340...6ACe873AA
0 ETH0.000797160.70997552
Redeem237179962025-11-03 9:46:472 days ago1762163207IN
0x3717e340...6ACe873AA
0 ETH0.000678880.60506444
Redeem237179692025-11-03 9:41:232 days ago1762162883IN
0x3717e340...6ACe873AA
0 ETH0.001665671.48797363
Redeem237179592025-11-03 9:39:232 days ago1762162763IN
0x3717e340...6ACe873AA
0 ETH0.001130521.01243472
Deposit237179582025-11-03 9:39:112 days ago1762162751IN
0x3717e340...6ACe873AA
0 ETH0.00067790.59858668
Redeem237177382025-11-03 8:55:112 days ago1762160111IN
0x3717e340...6ACe873AA
0 ETH0.002904815.38604785
Redeem237176852025-11-03 8:44:352 days ago1762159475IN
0x3717e340...6ACe873AA
0 ETH0.008062457.69649031
Redeem237175712025-11-03 8:21:472 days ago1762158107IN
0x3717e340...6ACe873AA
0 ETH0.000247950.473
Redeem237175632025-11-03 8:20:112 days ago1762158011IN
0x3717e340...6ACe873AA
0 ETH0.000188580.36362327
Redeem237175592025-11-03 8:19:232 days ago1762157963IN
0x3717e340...6ACe873AA
0 ETH0.000383080.36306188
Redeem237175572025-11-03 8:18:592 days ago1762157939IN
0x3717e340...6ACe873AA
0 ETH0.000272680.35052562
Deposit237175282025-11-03 8:13:112 days ago1762157591IN
0x3717e340...6ACe873AA
0 ETH0.000310710.27096422
Deposit237172052025-11-03 7:08:232 days ago1762153703IN
0x3717e340...6ACe873AA
0 ETH0.000232650.1997184
Redeem237167612025-11-03 5:38:592 days ago1762148339IN
0x3717e340...6ACe873AA
0 ETH0.000094350.07982042
Deposit237161712025-11-03 3:40:113 days ago1762141211IN
0x3717e340...6ACe873AA
0 ETH0.000783460.66235337
Deposit237153432025-11-03 0:53:113 days ago1762131191IN
0x3717e340...6ACe873AA
0 ETH0.000114060.09904
View all transactions

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Method Block
From
To
0x6101a060220883002025-03-20 13:13:47230 days ago1742476427  Contract Creation0 ETH
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
LendingAssetVault

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 30 : LendingAssetVault.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/interfaces/IERC4626.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./interfaces/ILendingAssetVault.sol";
import "./interfaces/IFraxlendPair.sol";
import {VaultAccount, VaultAccountingLibrary} from "./libraries/VaultAccount.sol";

contract LendingAssetVault is IERC4626, ILendingAssetVault, ERC20, ERC20Permit, Ownable {
    using SafeERC20 for IERC20;
    using VaultAccountingLibrary for VaultAccount;

    uint256 constant PRECISION = 10 ** 27;

    address immutable _asset;
    uint8 immutable _decimals;
    uint256 _totalAssets;
    uint256 _totalAssetsUtilized;

    uint8 public maxVaults = 20;
    mapping(address => bool) public vaultWhitelist;
    mapping(address => uint256) public override vaultDeposits;
    mapping(address => uint256) public override vaultUtilization;
    mapping(address => uint256) public override vaultMaxAllocation;
    mapping(address => uint256) _vaultWhitelistCbr;

    address[] _vaultWhitelistAry;
    // vault address => idx in _vaultWhitelistAry
    mapping(address => uint256) _vaultWhitelistAryIdx;

    modifier onlyWhitelist() {
        require(vaultWhitelist[_msgSender()], "WL");
        _;
    }

    constructor(string memory _name, string memory _symbol, address __asset)
        ERC20(_name, _symbol)
        ERC20Permit(_name)
        Ownable(_msgSender())
    {
        _asset = __asset;
        _decimals = IERC20Metadata(__asset).decimals();
    }

    function decimals() public view override(IERC20Metadata, ERC20) returns (uint8) {
        return _decimals;
    }

    function asset() external view override returns (address) {
        return _asset;
    }

    function totalAssets() public view override returns (uint256) {
        return _totalAssets;
    }

    function totalAssetsUtilized() public view override returns (uint256) {
        return _totalAssetsUtilized;
    }

    function totalAvailableAssets() public view override returns (uint256) {
        return _totalAssets - _totalAssetsUtilized;
    }

    function getAllWhitelistedVaults() external view override returns (address[] memory) {
        return _vaultWhitelistAry;
    }

    function totalAvailableAssetsForVault(address _vault) public view override returns (uint256 _totalVaultAvailable) {
        uint256 _overallAvailable = totalAvailableAssets();

        _totalVaultAvailable =
            vaultMaxAllocation[_vault] > vaultDeposits[_vault] ? vaultMaxAllocation[_vault] - vaultDeposits[_vault] : 0;

        _totalVaultAvailable = _overallAvailable < _totalVaultAvailable ? _overallAvailable : _totalVaultAvailable;
    }

    function convertToShares(uint256 _assets) public view override returns (uint256 _shares) {
        _shares = (_assets * PRECISION) / _cbr();
    }

    function convertToAssets(uint256 _shares) public view override returns (uint256 _assets) {
        _assets = (_shares * _cbr()) / PRECISION;
    }

    function _previewConvertToShares(uint256 _assets) internal view returns (uint256 _shares) {
        _shares = (_assets * PRECISION) / _previewCbr();
    }

    function _previewConvertToAssets(uint256 _shares) internal view returns (uint256 _assets) {
        _assets = (_shares * _previewCbr()) / PRECISION;
    }

    function maxDeposit(address) external pure override returns (uint256 maxAssets) {
        maxAssets = type(uint256).max;
    }

    function previewDeposit(uint256 _assets) external view override returns (uint256 _shares) {
        _shares = _previewConvertToShares(_assets);
    }

    function deposit(uint256 _assets, address _receiver) external override returns (uint256 _shares) {
        _updateInterestAndMdInAllVaults(address(0));
        _shares = convertToShares(_assets);
        _deposit(_assets, _shares, _receiver);
    }

    function maxMint(address) external pure override returns (uint256 maxShares) {
        maxShares = type(uint256).max;
    }

    function previewMint(uint256 _shares) external view override returns (uint256 _assets) {
        _assets = _previewConvertToAssets(_shares);
    }

    function mint(uint256 _shares, address _receiver) external override returns (uint256 _assets) {
        _updateInterestAndMdInAllVaults(address(0));
        _assets = convertToAssets(_shares);
        _deposit(_assets, _shares, _receiver);
    }

    function maxWithdraw(address _owner) external view override returns (uint256 _maxAssets) {
        uint256 _totalAvailable = totalAvailableAssets();
        uint256 _ownerMax = (balanceOf(_owner) * _previewCbr()) / PRECISION;
        _maxAssets = _ownerMax > _totalAvailable ? _totalAvailable : _ownerMax;
    }

    function previewWithdraw(uint256 _assets) external view override returns (uint256 _shares) {
        _shares = _previewConvertToShares(_assets);
    }

    function withdraw(uint256 _assets, address _receiver, address _owner) external override returns (uint256 _shares) {
        _updateInterestAndMdInAllVaults(address(0));
        _shares = convertToShares(_assets);
        _withdraw(_shares, _assets, _owner, _msgSender(), _receiver);
    }

    function maxRedeem(address _owner) external view override returns (uint256 _maxShares) {
        uint256 _totalAvailableShares = _previewConvertToShares(totalAvailableAssets());
        uint256 _ownerMax = balanceOf(_owner);
        _maxShares = _ownerMax > _totalAvailableShares ? _totalAvailableShares : _ownerMax;
    }

    function previewRedeem(uint256 _shares) external view override returns (uint256 _assets) {
        return _previewConvertToAssets(_shares);
    }

    function redeem(uint256 _shares, address _receiver, address _owner) external override returns (uint256 _assets) {
        _updateInterestAndMdInAllVaults(address(0));
        _assets = convertToAssets(_shares);
        _withdraw(_shares, _assets, _owner, _msgSender(), _receiver);
    }

    /// @notice Internal function to handle asset deposits
    /// @param _assets The amount of assets to deposit
    /// @param _shares The amount of shares that will be minted
    /// @param _receiver The address that will receive the shares
    function _deposit(uint256 _assets, uint256 _shares, address _receiver) internal {
        require(_assets != 0 && _shares != 0, "M");
        _totalAssets += _assets;
        _mint(_receiver, _shares);
        IERC20(_asset).safeTransferFrom(_msgSender(), address(this), _assets);
        emit Deposit(_msgSender(), _receiver, _assets, _shares);
    }

    /// @notice Internal function to handle share withdrawals
    /// @param _shares The amount of shares to withdraw
    /// @param _assets The amount of assets to withdraw
    /// @param _owner The owner of the shares being withdrawn
    /// @param _caller The address who initiated withdrawing
    /// @param _receiver The address that will receive the assets
    function _withdraw(uint256 _shares, uint256 _assets, address _owner, address _caller, address _receiver) internal {
        if (_caller != _owner) {
            _spendAllowance(_owner, _caller, _shares);
        }
        uint256 _totalAvailable = totalAvailableAssets();
        _totalAssets -= _assets;

        require(_totalAvailable >= _assets, "AV");
        _burn(_owner, _shares);
        IERC20(_asset).safeTransfer(_receiver, _assets);
        emit Withdraw(_owner, _receiver, _receiver, _assets, _shares);
    }

    /// @notice Assumes underlying vault asset has decimals == 18
    function _previewCbr() internal view returns (uint256) {
        uint256 _supply = totalSupply();
        uint256 _previewTotalAssets = _previewAddInterestAndMdInAllVaults();
        return _supply == 0 ? PRECISION : (PRECISION * _previewTotalAssets) / _supply;
    }

    /// @notice Assumes underlying vault asset has decimals == 18
    function _cbr() internal view returns (uint256) {
        uint256 _supply = totalSupply();
        return _supply == 0 ? PRECISION : (PRECISION * _totalAssets) / _supply;
    }

    /// @notice Updates interest and metadata for all whitelisted vaults
    /// @param _vaultToExclude Address of the vault to exclude from the update
    function _updateInterestAndMdInAllVaults(address _vaultToExclude) internal {
        uint256 _l = _vaultWhitelistAry.length;
        for (uint256 _i; _i < _l; _i++) {
            address _vault = _vaultWhitelistAry[_i];
            if (_vault == _vaultToExclude) {
                continue;
            }
            (uint256 _interestEarned,,,,,) = IFraxlendPair(_vault).addInterest(false);
            if (_interestEarned > 0) {
                _updateAssetMetadataFromVault(_vault);
            }
        }
    }

    /// @notice The ```whitelistUpdate``` function updates metadata for all vaults
    /// @param _onlyCaller If true, only update the caller's vault metadata
    function whitelistUpdate(bool _onlyCaller) external override onlyWhitelist {
        if (_onlyCaller) {
            _updateAssetMetadataFromVault(_msgSender());
        } else {
            _updateInterestAndMdInAllVaults(_msgSender());
        }
    }

    /// @notice The ```whitelistWithdraw``` function is called by any whitelisted vault to withdraw assets.
    /// @param _assetAmt the amount of underlying assets to withdraw
    function whitelistWithdraw(uint256 _assetAmt) external override onlyWhitelist {
        address _vault = _msgSender();
        _updateAssetMetadataFromVault(_vault);

        // validate max after doing vault accounting above
        require(totalAvailableAssetsForVault(_vault) >= _assetAmt, "MAX");
        vaultDeposits[_vault] += _assetAmt;
        vaultUtilization[_vault] += _assetAmt;
        _totalAssetsUtilized += _assetAmt;
        IERC20(_asset).safeTransfer(_vault, _assetAmt);
        emit WhitelistWithdraw(_vault, _assetAmt);
    }

    /// @notice The ```whitelistDeposit``` function is called by any whitelisted target vault to deposit assets back into this vault.
    /// @notice need this instead of direct depositing in order to handle accounting for used assets and validation
    /// @param _assetAmt the amount of underlying assets to deposit
    function whitelistDeposit(uint256 _assetAmt) external override onlyWhitelist {
        address _vault = _msgSender();
        _updateAssetMetadataFromVault(_vault);
        vaultDeposits[_vault] -= _assetAmt > vaultDeposits[_vault] ? vaultDeposits[_vault] : _assetAmt;
        vaultUtilization[_vault] -= _assetAmt;
        _totalAssetsUtilized -= _assetAmt;
        IERC20(_asset).safeTransferFrom(_vault, address(this), _assetAmt);
        emit WhitelistDeposit(_vault, _assetAmt);
    }

    function _previewAddInterestAndMdInAllVaults() internal view returns (uint256 _previewTotalAssets) {
        _previewTotalAssets = _totalAssets;
        uint256 _l = _vaultWhitelistAry.length;
        for (uint256 _i; _i < _l; _i++) {
            address _vault = _vaultWhitelistAry[_i];
            uint256 _prevVaultCbr = _vaultWhitelistCbr[_vault];
            if (_prevVaultCbr == 0) {
                continue;
            }

            // the following effectively simulates addInterest + convertToAssets
            (,,,, VaultAccount memory _totalAsset,) = IFraxlendPair(_vault).previewAddInterest();
            uint256 _newVaultCbr = _totalAsset.toAmount(PRECISION, false);

            uint256 _vaultAssetRatioChange = _prevVaultCbr > _newVaultCbr
                ? PRECISION - ((PRECISION * _newVaultCbr) / _prevVaultCbr)
                : ((PRECISION * _newVaultCbr) / _prevVaultCbr) - PRECISION;
            uint256 _currentAssetsUtilized = vaultUtilization[_vault];
            uint256 _changeUtilizedState = (_currentAssetsUtilized * _vaultAssetRatioChange) / PRECISION;
            uint256 _newAssetsUtilized = _prevVaultCbr > _newVaultCbr
                ? _currentAssetsUtilized < _changeUtilizedState ? 0 : _currentAssetsUtilized - _changeUtilizedState
                : _currentAssetsUtilized + _changeUtilizedState;
            _previewTotalAssets = _previewTotalAssets - _currentAssetsUtilized + _newAssetsUtilized;
        }
    }

    /// @notice The ```_updateAssetMetadataFromVault``` function updates _totalAssets based on  the current ratio
    /// @notice of assets in the target vault to previously recorded ratio
    /// @notice to correctly calculate the change in total assets here based on how the vault share
    /// @notice has changed over time
    /// @param _vault the vault we're adjusting _totalAssets from based on it's CBR updates from last check
    function _updateAssetMetadataFromVault(address _vault) internal {
        uint256 _prevVaultCbr = _vaultWhitelistCbr[_vault];
        _vaultWhitelistCbr[_vault] = IERC4626(_vault).convertToAssets(PRECISION);
        if (_prevVaultCbr == 0) {
            return;
        }
        uint256 _vaultAssetRatioChange = _prevVaultCbr > _vaultWhitelistCbr[_vault]
            ? PRECISION - ((PRECISION * _vaultWhitelistCbr[_vault]) / _prevVaultCbr)
            : ((PRECISION * _vaultWhitelistCbr[_vault]) / _prevVaultCbr) - PRECISION;

        uint256 _currentAssetsUtilized = vaultUtilization[_vault];
        uint256 _changeUtilizedState = (_currentAssetsUtilized * _vaultAssetRatioChange) / PRECISION;
        vaultUtilization[_vault] = _prevVaultCbr > _vaultWhitelistCbr[_vault]
            ? _currentAssetsUtilized < _changeUtilizedState ? 0 : _currentAssetsUtilized - _changeUtilizedState
            : _currentAssetsUtilized + _changeUtilizedState;
        _totalAssetsUtilized = _totalAssetsUtilized - _currentAssetsUtilized + vaultUtilization[_vault];
        _totalAssets = _totalAssets - _currentAssetsUtilized + vaultUtilization[_vault];
        emit UpdateAssetMetadataFromVault(_vault, _totalAssets, _totalAssetsUtilized);
    }

    /// @notice The ```depositToVault``` function deposits assets to a specific vault
    /// @param _vault The vault to deposit assets to
    /// @param _amountAssets The amount of assets to deposit
    function depositToVault(address _vault, uint256 _amountAssets) external onlyOwner {
        require(_amountAssets > 0);
        _updateAssetMetadataFromVault(_vault);
        IERC20(_asset).safeIncreaseAllowance(_vault, _amountAssets);
        uint256 _amountShares = IERC4626(_vault).deposit(_amountAssets, address(this));
        require(totalAvailableAssetsForVault(_vault) >= _amountAssets, "MAX");
        vaultDeposits[_vault] += _amountAssets;
        vaultUtilization[_vault] += _amountAssets;
        _totalAssetsUtilized += _amountAssets;
        emit DepositToVault(_vault, _amountAssets, _amountShares);
    }

    /// @notice The ```redeemFromVault``` function redeems shares from a specific vault
    /// @param _vault The vault to redeem shares from
    /// @param _amountShares The amount of shares to redeem (0 for all)
    function redeemFromVault(address _vault, uint256 _amountShares) external onlyOwner {
        _updateAssetMetadataFromVault(_vault);
        _amountShares = _amountShares == 0 ? IERC20(_vault).balanceOf(address(this)) : _amountShares;
        uint256 _amountAssets = IERC4626(_vault).redeem(_amountShares, address(this), address(this));
        uint256 _redeemAmt = vaultUtilization[_vault] < _amountAssets ? vaultUtilization[_vault] : _amountAssets;
        vaultDeposits[_vault] -= _redeemAmt > vaultDeposits[_vault] ? vaultDeposits[_vault] : _redeemAmt;
        vaultUtilization[_vault] -= _redeemAmt;
        _totalAssetsUtilized -= _redeemAmt;
        emit RedeemFromVault(_vault, _amountShares, _redeemAmt);
    }

    /// @notice Set the maximum number of vaults allowed
    /// @param _newMax The new maximum number of vaults
    function setMaxVaults(uint8 _newMax) external onlyOwner {
        uint8 _oldMax = maxVaults;
        maxVaults = _newMax;
        emit SetMaxVaults(_oldMax, _newMax);
    }

    /// @notice Add or remove a vault from the whitelist
    /// @param _vault The vault to update
    /// @param _allowed True to add to whitelist, false to remove
    function setVaultWhitelist(address _vault, bool _allowed) external onlyOwner {
        require(vaultWhitelist[_vault] != _allowed, "T");
        vaultWhitelist[_vault] = _allowed;
        if (_allowed) {
            require(_vaultWhitelistAry.length < maxVaults, "M");
            _vaultWhitelistAryIdx[_vault] = _vaultWhitelistAry.length;
            _vaultWhitelistAry.push(_vault);
        } else {
            uint256 _idx = _vaultWhitelistAryIdx[_vault];
            address _movingVault = _vaultWhitelistAry[_vaultWhitelistAry.length - 1];
            _vaultWhitelistAry[_idx] = _movingVault;
            _vaultWhitelistAryIdx[_movingVault] = _idx;

            // clean up state
            _vaultWhitelistAry.pop();
            delete _vaultWhitelistAryIdx[_vault];
            delete vaultMaxAllocation[_vault];
        }
        emit SetVaultWhitelist(_vault, _allowed);
    }

    /// @notice The ```setVaultMaxAllocation``` function sets the maximum amount of vault assets allowed to be allocated to a whitelisted vault
    /// @param _vaults the vaults we're allocating to
    /// @param _allocation the allocation of assets available to these vaults
    function setVaultMaxAllocation(address[] memory _vaults, uint256[] memory _allocation) external onlyOwner {
        require(_vaults.length == _allocation.length, "SL");
        _updateInterestAndMdInAllVaults(address(0));
        for (uint256 _i; _i < _vaults.length; _i++) {
            address _vault = _vaults[_i];
            uint256 _allo = _allocation[_i];
            vaultMaxAllocation[_vault] = _allo;
            emit SetVaultMaxAllocation(_vault, _allo);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface ILendingAssetVault {
    event DonateAssets(address indexed user, uint256 amount, uint256 newShares);

    event PayBackUsedAssets(address indexed user, uint256 amount);

    event DepositToVault(address indexed vault, uint256 assets, uint256 shares);

    event RedeemFromVault(address indexed vault, uint256 shares, uint256 assets);

    event SetMaxVaults(uint8 oldMax, uint8 newMax);

    event SetVaultWhitelist(address indexed vault, bool isWhitelisted);

    event SetLastDepEnabled(bool isEnabled);

    event SetVaultMaxAllocation(address indexed vault, uint256 allocation);

    event UpdateAssetMetadataFromVault(address indexed vault, uint256 totalAssets, uint256 assetsUtilized);

    event WhitelistDeposit(address indexed user, uint256 amount);

    event WhitelistWithdraw(address indexed user, uint256 amount);

    function vaultDeposits(address vault) external view returns (uint256);

    function vaultUtilization(address vault) external view returns (uint256);

    function vaultMaxAllocation(address vault) external view returns (uint256);

    function totalAssetsUtilized() external view returns (uint256);

    function totalAvailableAssets() external view returns (uint256);

    function totalAvailableAssetsForVault(address vault) external view returns (uint256);

    function getAllWhitelistedVaults() external returns (address[] memory);

    function whitelistUpdate(bool onlyCaller) external;

    function whitelistDeposit(uint256 amount) external;

    function whitelistWithdraw(uint256 amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "@openzeppelin/contracts/interfaces/IERC20.sol";
import {VaultAccount} from "../libraries/VaultAccount.sol";

interface IFraxlendPair is IERC20 {
    struct CurrentRateInfo {
        uint32 lastBlock;
        uint32 feeToProtocolRate; // Fee amount 1e5 precision
        uint64 lastTimestamp;
        uint64 ratePerSec;
        uint64 fullUtilizationRate;
    }

    struct ExchangeRateInfo {
        address oracle;
        uint32 maxOracleDeviation; // % of larger number, 1e5 precision
        uint184 lastTimestamp;
        uint256 lowExchangeRate;
        uint256 highExchangeRate;
    }

    function exchangeRateInfo() external view returns (ExchangeRateInfo memory);

    function totalBorrow() external view returns (VaultAccount memory);

    function asset() external view returns (address);

    function collateralContract() external view returns (address);

    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    function convertToShares(uint256 assets) external view returns (uint256 shares);

    function userCollateralBalance(address user) external view returns (uint256); // amount of collateral each user is backed

    function userBorrowShares(address user) external view returns (uint256); // represents the shares held by individuals

    function previewAddInterest()
        external
        view
        returns (
            uint256 _interestEarned,
            uint256 _feesAmount,
            uint256 _feesShare,
            CurrentRateInfo memory _newCurrentRateInfo,
            VaultAccount memory _totalAsset,
            VaultAccount memory _totalBorrow
        );

    function addInterest(bool _returnAccounting)
        external
        returns (uint256, uint256, uint256, CurrentRateInfo memory, VaultAccount memory, VaultAccount memory);

    function updateExchangeRate()
        external
        returns (bool _isBorrowAllowed, uint256 _lowExchangeRate, uint256 _highExchangeRate);

    function deposit(uint256 _amount, address _receiver) external returns (uint256 _sharesReceived);

    function redeem(uint256 _shares, address _receiver, address _owner) external returns (uint256 _amountToReturn);

    function borrowAsset(uint256 _borrowAmount, uint256 _collateralAmount, address _receiver)
        external
        returns (uint256 _shares);

    function repayAsset(uint256 _shares, address _borrower) external returns (uint256 _amountToRepay);

    function addCollateral(uint256 _collateralAmount, address _borrower) external;

    function removeCollateral(uint256 _collateralAmount, address _receiver) external;
}

// SPDX-License-Identifier: ISC
pragma solidity ^0.8.28;

struct VaultAccount {
    uint128 amount; // Total amount, analogous to market cap
    uint128 shares; // Total shares, analogous to shares outstanding
}

/// @title VaultAccount Library
/// @author Drake Evans (Frax Finance) github.com/drakeevans, modified from work by @Boring_Crypto github.com/boring_crypto
/// @notice Provides a library for use with the VaultAccount struct, provides convenient math implementations
/// @dev Uses uint128 to save on storage
library VaultAccountingLibrary {
    /// @notice Calculates the shares value in relationship to `amount` and `total`
    /// @dev Given an amount, return the appropriate number of shares
    function toShares(VaultAccount memory total, uint256 amount, bool roundUp) internal pure returns (uint256 shares) {
        if (total.amount == 0) {
            shares = amount;
        } else {
            shares = (amount * total.shares) / total.amount;
            if (roundUp && (shares * total.amount) / total.shares < amount) {
                shares = shares + 1;
            }
        }
    }

    /// @notice Calculates the amount value in relationship to `shares` and `total`
    /// @dev Given a number of shares, returns the appropriate amount
    function toAmount(VaultAccount memory total, uint256 shares, bool roundUp) internal pure returns (uint256 amount) {
        if (total.shares == 0) {
            amount = shares;
        } else {
            amount = (shares * total.amount) / total.shares;
            if (roundUp && (amount * total.shares) / total.amount < shares) {
                amount = amount + 1;
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 19 of 30 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 22 of 30 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 23 of 30 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 28 of 30 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@chainlink/=node_modules/@chainlink/",
    "@fraxlend/=test/invariant/modules/fraxlend/",
    "fuzzlib/=lib/fuzzlib/src/",
    "swap-router/=test/invariant/modules/v3-periphery/swapRouter/",
    "v3-core/=test/invariant/modules/v3-core/",
    "v3-periphery/=test/invariant/modules/v3-periphery/",
    "v2-core/=test/invariant/modules/uniswap-v2/v2-core/contracts/",
    "v2-periphery/=test/invariant/modules/uniswap-v2/v2-periphery/contracts/",
    "uniswap-v2/=test/invariant/modules/uniswap-v2/",
    "solidity-bytes-utils/contracts/=test/invariant/modules/fraxlend/libraries/",
    "@rari-capital/solmate/=node_modules/solmate/",
    "@arbitrum/=node_modules/@arbitrum/",
    "@ensdomains/=node_modules/@ensdomains/",
    "@eth-optimism/=node_modules/@eth-optimism/",
    "@ethereum-waffle/=node_modules/@ethereum-waffle/",
    "@mean-finance/=node_modules/@mean-finance/",
    "@offchainlabs/=node_modules/@offchainlabs/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@scroll-tech/=node_modules/@scroll-tech/",
    "@uniswap/=node_modules/@uniswap/",
    "@zksync/=node_modules/@zksync/",
    "base64-sol/=node_modules/base64-sol/",
    "ds-test/=lib/fuzzlib/lib/forge-std/lib/ds-test/src/",
    "erc721a/=node_modules/erc721a/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat/=node_modules/hardhat/",
    "solidity-code-metrics/=node_modules/solidity-code-metrics/",
    "solmate/=node_modules/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"address","name":"__asset","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"DepositToVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newShares","type":"uint256"}],"name":"DonateAssets","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PayBackUsedAssets","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"}],"name":"RedeemFromVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"isEnabled","type":"bool"}],"name":"SetLastDepEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"oldMax","type":"uint8"},{"indexed":false,"internalType":"uint8","name":"newMax","type":"uint8"}],"name":"SetMaxVaults","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"allocation","type":"uint256"}],"name":"SetVaultMaxAllocation","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"bool","name":"isWhitelisted","type":"bool"}],"name":"SetVaultWhitelist","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalAssets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assetsUtilized","type":"uint256"}],"name":"UpdateAssetMetadataFromVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WhitelistDeposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WhitelistWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"uint256","name":"_amountAssets","type":"uint256"}],"name":"depositToVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllWhitelistedVaults","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"_maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxVaults","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"_maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"uint256","name":"_amountShares","type":"uint256"}],"name":"redeemFromVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_newMax","type":"uint8"}],"name":"setMaxVaults","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_vaults","type":"address[]"},{"internalType":"uint256[]","name":"_allocation","type":"uint256[]"}],"name":"setVaultMaxAllocation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"bool","name":"_allowed","type":"bool"}],"name":"setVaultWhitelist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssetsUtilized","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAvailableAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"}],"name":"totalAvailableAssetsForVault","outputs":[{"internalType":"uint256","name":"_totalVaultAvailable","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultMaxAllocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultUtilization","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultWhitelist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assetAmt","type":"uint256"}],"name":"whitelistDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_onlyCaller","type":"bool"}],"name":"whitelistUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assetAmt","type":"uint256"}],"name":"whitelistWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]

6101a0604052600b805460ff1916601417905534801561001d575f5ffd5b5060405161374e38038061374e83398101604081905261003c9161033b565b336040805180820190915260018152603160f81b602082015284908190818660036100678382610444565b5060046100748282610444565b50610084915083905060056101de565b610120526100938160066101de565b61014052815160208084019190912060e052815190820120610100524660a05261011f60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052506001600160a01b03811661015757604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61016081610210565b506001600160a01b0381166101608190526040805163313ce56760e01b8152905163313ce567916004808201926020929091908290030181865afa1580156101aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101ce91906104fe565b60ff16610180525061057d915050565b5f6020835110156101f9576101f283610261565b905061020a565b816102048482610444565b5060ff90505b92915050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f829050601f8151111561028b578260405163305a27a960e01b815260040161014e9190610525565b80516102968261055a565b179392505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f8301126102c1575f5ffd5b81516001600160401b038111156102da576102da61029e565b604051601f8201601f19908116603f011681016001600160401b03811182821017156103085761030861029e565b60405281815283820160200185101561031f575f5ffd5b8160208501602083015e5f918101602001919091529392505050565b5f5f5f6060848603121561034d575f5ffd5b83516001600160401b03811115610362575f5ffd5b61036e868287016102b2565b602086015190945090506001600160401b0381111561038b575f5ffd5b610397868287016102b2565b604086015190935090506001600160a01b03811681146103b5575f5ffd5b809150509250925092565b600181811c908216806103d457607f821691505b6020821081036103f257634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561043f57805f5260205f20601f840160051c8101602085101561041d5750805b601f840160051c820191505b8181101561043c575f8155600101610429565b50505b505050565b81516001600160401b0381111561045d5761045d61029e565b6104718161046b84546103c0565b846103f8565b6020601f8211600181146104a3575f831561048c5750848201515b5f19600385901b1c1916600184901b17845561043c565b5f84815260208120601f198516915b828110156104d257878501518255602094850194600190920191016104b2565b50848210156104ef57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b5f6020828403121561050e575f5ffd5b815160ff8116811461051e575f5ffd5b9392505050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b805160208083015191908110156103f2575f1960209190910360031b1b16919050565b60805160a05160c05160e05161010051610120516101405161016051610180516131496106055f395f61037701525f81816103e701528181610c6001528181610dad015281816113f101528181611d6e0152611fad01525f611e6f01525f611e4201525f6118cf01525f6118a701525f61180201525f61182c01525f61185601526131495ff3fe608060405234801561000f575f5ffd5b50600436106102b1575f3560e01c80637ecebe001161017b578063b460af94116100e4578063d505accf1161009e578063ef8b30f711610079578063ef8b30f714610317578063f2fde38b14610674578063f556d88914610687578063fbb052481461069a575f5ffd5b8063d505accf14610616578063d905777e14610629578063dd62ed3e1461063c575f5ffd5b8063b460af94146105b7578063ba087652146105ca578063c63d75b614610454578063c6e6f592146105dd578063ce96cb77146105f0578063d2c9a94f14610603575f5ffd5b80639cfd2f2e116101355780639cfd2f2e146105575780639d6c63511461055f578063a3d111581461057e578063a9059cbb14610591578063b0145280146105a4578063b3d7f6b914610468575f5ffd5b80637ecebe00146104f057806384b0196e146105035780638da5cb5b1461051e5780638eea33381461052f57806394bf804d1461053c57806395d89b411461054f575f5ffd5b80633644e5151161021d5780634cdad506116101d75780634cdad506146104685780635293a8ae1461047b57806361325e181461049a5780636e553f65146104ad57806370a08231146104c0578063715018a6146104e8575f5ffd5b80633644e515146103be57806337082c15146103c657806338d52e0f146103e557806339daa1b21461041f5780633c36728214610441578063402d267d14610454575f5ffd5b806318160ddd1161026e57806318160ddd1461033257806322bbc2d21461033a57806323b872dd1461034d5780632530e16f14610360578063313ce567146103755780633302a6a1146103a9575f5ffd5b806301e1d114146102b557806306fdde03146102cc57806307a2d13a146102e1578063095ea7b3146102f45780630a28a4771461031757806313b98c0f1461032a575b5f5ffd5b6009545b6040519081526020015b60405180910390f35b6102d46106ad565b6040516102c391906129d6565b6102b96102ef3660046129e8565b61073d565b610307610302366004612a1a565b61076c565b60405190151581526020016102c3565b6102b96103253660046129e8565b610783565b6102b961078d565b6002546102b9565b6102b9610348366004612a42565b6107a3565b61030761035b366004612a5b565b610825565b610368610848565b6040516102c39190612a95565b7f00000000000000000000000000000000000000000000000000000000000000005b60405160ff90911681526020016102c3565b6103bc6103b7366004612aef565b6108a7565b005b6102b9610b11565b6102b96103d4366004612a42565b600f6020525f908152604090205481565b7f00000000000000000000000000000000000000000000000000000000000000005b6040516001600160a01b0390911681526020016102c3565b61030761042d366004612a42565b600c6020525f908152604090205460ff1681565b6103bc61044f366004612b20565b610b1a565b6102b9610462366004612a42565b505f1990565b6102b96104763660046129e8565b610b63565b6102b9610489366004612a42565b600d6020525f908152604090205481565b6103bc6104a83660046129e8565b610b6d565b6102b96104bb366004612b39565b610cc3565b6102b96104ce366004612a42565b6001600160a01b03165f9081526020819052604090205490565b6103bc610ce3565b6102b96104fe366004612a42565b610cf6565b61050b610d13565b6040516102c39796959493929190612b5a565b6008546001600160a01b0316610407565b600b546103979060ff1681565b6102b961054a366004612b39565b610d55565b6102d4610d75565b600a546102b9565b6102b961056d366004612a42565b600e6020525f908152604090205481565b6103bc61058c366004612a1a565b610d84565b61030761059f366004612a1a565b610f3d565b6103bc6105b2366004612ceb565b610f4a565b6102b96105c5366004612dae565b611035565b6102b96105d8366004612dae565b611058565b6102b96105eb3660046129e8565b611079565b6102b96105fe366004612a42565b611097565b6103bc610611366004612df7565b6110fd565b6103bc610624366004612e10565b61115a565b6102b9610637366004612a42565b611290565b6102b961064a366004612e76565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b6103bc610682366004612a42565b6112c3565b6103bc6106953660046129e8565b6112fd565b6103bc6106a8366004612a1a565b611453565b6060600380546106bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546106e890612e9e565b80156107335780601f1061070a57610100808354040283529160200191610733565b820191905f5260205f20905b81548152906001019060200180831161071657829003601f168201915b5050505050905090565b5f676765c793fa10079d601b1b61075261168b565b61075c9084612eea565b6107669190612f01565b92915050565b5f336107798185856116da565b5060019392505050565b5f610766826116e7565b5f600a5460095461079e9190612f20565b905090565b5f5f6107ad61078d565b6001600160a01b0384165f908152600d6020908152604080832054600f90925290912054919250106107df575f61080d565b6001600160a01b0383165f908152600d6020908152604080832054600f9092529091205461080d9190612f20565b915081811061081c578161081e565b805b9392505050565b5f336108328582856116f0565b61083d85858561176c565b506001949350505050565b6060601180548060200260200160405190810160405280929190818152602001828054801561073357602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311610880575050505050905090565b6108af6117c9565b6001600160a01b0382165f908152600c602052604090205481151560ff9091161515036109075760405162461bcd60e51b81526020600482015260016024820152601560fa1b60448201526064015b60405180910390fd5b6001600160a01b0382165f908152600c60205260409020805460ff191682158015919091179091556109cf57600b5460115460ff9091161161096f5760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b601180546001600160a01b0384165f818152601260205260408120839055600183018455929092527f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319169091179055610ac8565b6001600160a01b0382165f90815260126020526040812054601180549192916109fa90600190612f20565b81548110610a0a57610a0a612f33565b5f91825260209091200154601180546001600160a01b039092169250829184908110610a3857610a38612f33565b5f91825260208083209190910180546001600160a01b0319166001600160a01b0394851617905591831681526012909152604090208290556011805480610a8157610a81612f47565b5f828152602080822083015f1990810180546001600160a01b03191690559092019092556001600160a01b0386168252601281526040808320839055600f90915281205550505b816001600160a01b03167f116f51cdebd8bed41fe13da2a0d0bfb7b85e1067f9086579840adae790a9d56282604051610b05911515815260200190565b60405180910390a25050565b5f61079e6117f6565b335f908152600c602052604090205460ff16610b485760405162461bcd60e51b81526004016108fe90612f5b565b8015610b5a57610b573361191f565b50565b610b5733611bb9565b5f61076682611c8e565b335f908152600c602052604090205460ff16610b9b5760405162461bcd60e51b81526004016108fe90612f5b565b33610ba58161191f565b6001600160a01b0381165f908152600d60205260409020548211610bc95781610be2565b6001600160a01b0381165f908152600d60205260409020545b6001600160a01b0382165f908152600d602052604081208054909190610c09908490612f20565b90915550506001600160a01b0381165f908152600e602052604081208054849290610c35908490612f20565b9250508190555081600a5f828254610c4d9190612f20565b90915550610c8890506001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016823085611ca3565b806001600160a01b03167fb6c22585684dd990935b9395908b0ee4813b361c0ca4d27ce0fdd1595c20f7d183604051610b0591815260200190565b5f610ccd5f611bb9565b610cd683611079565b9050610766838284611d0a565b610ceb6117c9565b610cf45f611dea565b565b6001600160a01b0381165f90815260076020526040812054610766565b5f6060805f5f5f6060610d24611e3b565b610d2c611e68565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b5f610d5f5f611bb9565b610d688361073d565b9050610766818484611d0a565b6060600480546106bc90612e9e565b610d8c6117c9565b5f8111610d97575f5ffd5b610da08261191f565b610dd46001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168383611e95565b604051636e553f6560e01b8152600481018290523060248201525f906001600160a01b03841690636e553f65906044016020604051808303815f875af1158015610e20573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e449190612f77565b905081610e50846107a3565b1015610e845760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0383165f908152600d602052604081208054849290610eab908490612f8e565b90915550506001600160a01b0383165f908152600e602052604081208054849290610ed7908490612f8e565b9250508190555081600a5f828254610eef9190612f8e565b909155505060408051838152602081018390526001600160a01b038516917f5ee2ae50f4fd1e9147abd154cb6eb43e2df1f68c4ff36b33f366bcce26911c47910160405180910390a2505050565b5f3361077981858561176c565b610f526117c9565b8051825114610f885760405162461bcd60e51b815260206004820152600260248201526114d360f21b60448201526064016108fe565b610f915f611bb9565b5f5b8251811015611030575f838281518110610faf57610faf612f33565b602002602001015190505f838381518110610fcc57610fcc612f33565b6020908102919091018101516001600160a01b0384165f818152600f845260409081902083905551828152919350917f8b958c988d0f1f7427e8c3a319933292e4f6b2b5689e559bb81aecfdf179e808910160405180910390a25050600101610f93565b505050565b5f61103f5f611bb9565b61104884611079565b905061081e818584335b87611f1c565b5f6110625f611bb9565b61106b8461073d565b905061081e84828433611052565b5f61108261168b565b61075c676765c793fa10079d601b1b84612eea565b5f5f6110a161078d565b90505f676765c793fa10079d601b1b6110b8612027565b6001600160a01b0386165f908152602081905260409020546110da9190612eea565b6110e49190612f01565b90508181116110f357806110f5565b815b949350505050565b6111056117c9565b600b805460ff83811660ff1983168117909355604080519190921680825260208201939093527f3bff4bf5fff81065e90c2b5772249385e8ec96b3ed81a13bc9ac7afc2c87496f910160405180910390a15050565b8342111561117e5760405163313c898160e11b8152600481018590526024016108fe565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886111c98c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6112238261207e565b90505f611232828787876120aa565b9050896001600160a01b0316816001600160a01b031614611279576040516325c0072360e11b81526001600160a01b0380831660048301528b1660248201526044016108fe565b6112848a8a8a6116da565b50505050505050505050565b5f5f6112a261129d61078d565b6116e7565b90505f6110e4846001600160a01b03165f9081526020819052604090205490565b6112cb6117c9565b6001600160a01b0381166112f457604051631e4fbdf760e01b81525f60048201526024016108fe565b610b5781611dea565b335f908152600c602052604090205460ff1661132b5760405162461bcd60e51b81526004016108fe90612f5b565b336113358161191f565b8161133f826107a3565b10156113735760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0381165f908152600d60205260408120805484929061139a908490612f8e565b90915550506001600160a01b0381165f908152600e6020526040812080548492906113c6908490612f8e565b9250508190555081600a5f8282546113de9190612f8e565b9091555061141890506001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001682846120d6565b806001600160a01b03167fef505329317f5ae933759f15a2053c0e8999363f3256a766ffd8453e28108d0a83604051610b0591815260200190565b61145b6117c9565b6114648261191f565b801561147057806114d6565b6040516370a0823160e01b81523060048201526001600160a01b038316906370a0823190602401602060405180830381865afa1580156114b2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114d69190612f77565b604051635d043b2960e11b815260048101829052306024820181905260448201529091505f906001600160a01b0384169063ba087652906064016020604051808303815f875af115801561152c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115509190612f77565b6001600160a01b0384165f908152600e60205260408120549192509082116115785781611591565b6001600160a01b0384165f908152600e60205260409020545b6001600160a01b0385165f908152600d602052604090205490915081116115b857806115d1565b6001600160a01b0384165f908152600d60205260409020545b6001600160a01b0385165f908152600d6020526040812080549091906115f8908490612f20565b90915550506001600160a01b0384165f908152600e602052604081208054839290611624908490612f20565b9250508190555080600a5f82825461163c9190612f20565b909155505060408051848152602081018390526001600160a01b038616917fdaf428d238d4ca04f9d4e3eb7bcf27b6c386b7913cc4a27c7f810c93270a2ac0910160405180910390a250505050565b5f5f61169660025490565b905080156116c75780600954676765c793fa10079d601b1b6116b89190612eea565b6116c29190612f01565b6116d4565b676765c793fa10079d601b1b5b91505090565b6110308383836001612107565b5f611082612027565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f19811015611766578181101561175857604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016108fe565b61176684848484035f612107565b50505050565b6001600160a01b03831661179557604051634b637e8f60e11b81525f60048201526024016108fe565b6001600160a01b0382166117be5760405163ec442f0560e01b81525f60048201526024016108fe565b6110308383836121d9565b6008546001600160a01b03163314610cf45760405163118cdaa760e01b81523360048201526024016108fe565b5f306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561184e57507f000000000000000000000000000000000000000000000000000000000000000046145b1561187857507f000000000000000000000000000000000000000000000000000000000000000090565b61079e604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0381165f81815260106020526040908190205490516303d1689d60e11b8152676765c793fa10079d601b1b60048201529091906307a2d13a90602401602060405180830381865afa15801561197d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119a19190612f77565b6001600160a01b0383165f908152601060205260408120919091558190036119c7575050565b6001600160a01b0382165f908152601060205260408120548211611a2f576001600160a01b0383165f90815260106020526040902054676765c793fa10079d601b1b908390611a169083612eea565b611a209190612f01565b611a2a9190612f20565b611a7d565b6001600160a01b0383165f908152601060205260409020548290611a5e90676765c793fa10079d601b1b612eea565b611a689190612f01565b611a7d90676765c793fa10079d601b1b612f20565b6001600160a01b0384165f908152600e6020526040812054919250676765c793fa10079d601b1b611aae8484612eea565b611ab89190612f01565b6001600160a01b0386165f908152601060205260409020549091508411611ae857611ae38183612f8e565b611afb565b808210611af957611ae38183612f20565b5f5b6001600160a01b0386165f908152600e60205260409020819055600a54611b23908490612f20565b611b2d9190612f8e565b600a556001600160a01b0385165f908152600e6020526040902054600954611b56908490612f20565b611b609190612f8e565b6009819055600a546040516001600160a01b038816927f8c46ebcf63e62100063b73002864698a375020e7c2952d5ea006ac1643ba505192611baa92918252602082015260400190565b60405180910390a25050505050565b6011545f5b81811015611030575f60118281548110611bda57611bda612f33565b5f918252602090912001546001600160a01b03908116915084168103611c005750611c86565b604051631c6c959760e01b81525f60048201819052906001600160a01b03831690631c6c959790602401610180604051808303815f875af1158015611c47573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6b919061303d565b505050505090505f811115611c8357611c838261191f565b50505b600101611bbe565b5f676765c793fa10079d601b1b610752612027565b6040516001600160a01b0384811660248301528381166044830152606482018390526117669186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506122f2565b8215801590611d1857508115155b611d485760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b8260095f828254611d599190612f8e565b90915550611d699050818361235e565b611d9e7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316333086611ca3565b60408051848152602081018490526001600160a01b0383169133917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d791015b60405180910390a3505050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b606061079e7f00000000000000000000000000000000000000000000000000000000000000006005612396565b606061079e7f00000000000000000000000000000000000000000000000000000000000000006006612396565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611ee2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f069190612f77565b90506117668484611f178585612f8e565b61243f565b826001600160a01b0316826001600160a01b031614611f4057611f408383876116f0565b5f611f4961078d565b90508460095f828254611f5c9190612f20565b909155505084811015611f965760405162461bcd60e51b815260206004820152600260248201526120ab60f11b60448201526064016108fe565b611fa084876124ce565b611fd46001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001683876120d6565b60408051868152602081018890526001600160a01b03808516928392918816917ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db910160405180910390a4505050505050565b5f5f61203260025490565b90505f61203d612502565b9050811561206a578161205b82676765c793fa10079d601b1b612eea565b6120659190612f01565b612077565b676765c793fa10079d601b1b5b9250505090565b5f61076661208a6117f6565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f6120ba888888886126ea565b9250925092506120ca82826127b2565b50909695505050505050565b6040516001600160a01b0383811660248301526044820183905261103091859182169063a9059cbb90606401611cd8565b6001600160a01b0384166121305760405163e602df0560e01b81525f60048201526024016108fe565b6001600160a01b03831661215957604051634a1406b160e11b81525f60048201526024016108fe565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561176657826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516121cb91815260200190565b60405180910390a350505050565b6001600160a01b038316612203578060025f8282546121f89190612f8e565b909155506122739050565b6001600160a01b0383165f90815260208190526040902054818110156122555760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016108fe565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661228f576002805482900390556122ad565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ddd91815260200190565b5f5f60205f8451602086015f885af180612311576040513d5f823e3d81fd5b50505f513d91508115612328578060011415612335565b6001600160a01b0384163b155b1561176657604051635274afe760e01b81526001600160a01b03851660048201526024016108fe565b6001600160a01b0382166123875760405163ec442f0560e01b81525f60048201526024016108fe565b6123925f83836121d9565b5050565b606060ff83146123b0576123a98361286a565b9050610766565b8180546123bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546123e890612e9e565b80156124335780601f1061240a57610100808354040283529160200191612433565b820191905f5260205f20905b81548152906001019060200180831161241657829003601f168201915b50505050509050610766565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b17905261249084826128a7565b611766576040516001600160a01b0384811660248301525f60448301526124c491869182169063095ea7b390606401611cd8565b61176684826122f2565b6001600160a01b0382166124f757604051634b637e8f60e11b81525f60048201526024016108fe565b612392825f836121d9565b6009546011545f5b818110156126e5575f6011828154811061252657612526612f33565b5f9182526020808320909101546001600160a01b0316808352601090915260408220549092509081900361255b5750506126dd565b5f826001600160a01b031663cacf3b586040518163ffffffff1660e01b815260040161018060405180830381865afa158015612599573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906125bd919061303d565b509450505050505f6125e5676765c793fa10079d601b1b5f846128f09092919063ffffffff16565b90505f81841161261f57676765c793fa10079d601b1b846126068483612eea565b6126109190612f01565b61261a9190612f20565b612654565b8361263583676765c793fa10079d601b1b612eea565b61263f9190612f01565b61265490676765c793fa10079d601b1b612f20565b6001600160a01b0386165f908152600e6020526040812054919250676765c793fa10079d601b1b6126858484612eea565b61268f9190612f01565b90505f8487116126a8576126a38284612f8e565b6126bb565b8183106126b9576126a38284612f20565b5f5b9050806126c8848d612f20565b6126d29190612f8e565b9a5050505050505050505b60010161250a565b505090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561272357505f915060039050826127a8565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612774573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661279f57505f9250600191508290506127a8565b92505f91508190505b9450945094915050565b5f8260038111156127c5576127c56130ff565b036127ce575050565b60018260038111156127e2576127e26130ff565b036128005760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115612814576128146130ff565b036128355760405163fce698f760e01b8152600481018290526024016108fe565b6003826003811115612849576128496130ff565b03612392576040516335e2f38360e21b8152600481018290526024016108fe565b60605f61287683612981565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f5f5f5f60205f8651602088015f8a5af192503d91505f5190508280156128e6575081156128d857806001146128e6565b5f866001600160a01b03163b115b9695505050505050565b5f83602001516001600160801b03165f0361290c57508161081e565b602084015184516001600160801b039182169161292a911685612eea565b6129349190612f01565b9050818015612971575082845f01516001600160801b031685602001516001600160801b0316836129659190612eea565b61296f9190612f01565b105b1561081e576110f5816001612f8e565b5f60ff8216601f81111561081c57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f61081e60208301846129a8565b5f602082840312156129f8575f5ffd5b5035919050565b80356001600160a01b0381168114612a15575f5ffd5b919050565b5f5f60408385031215612a2b575f5ffd5b612a34836129ff565b946020939093013593505050565b5f60208284031215612a52575f5ffd5b61081e826129ff565b5f5f5f60608486031215612a6d575f5ffd5b612a76846129ff565b9250612a84602085016129ff565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b81811015612ad55783516001600160a01b0316835260209384019390920191600101612aae565b509095945050505050565b80358015158114612a15575f5ffd5b5f5f60408385031215612b00575f5ffd5b612b09836129ff565b9150612b1760208401612ae0565b90509250929050565b5f60208284031215612b30575f5ffd5b61081e82612ae0565b5f5f60408385031215612b4a575f5ffd5b82359150612b17602084016129ff565b60ff60f81b8816815260e060208201525f612b7860e08301896129a8565b8281036040840152612b8a81896129a8565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015612bdf578351835260209384019390920191600101612bc1565b50909b9a5050505050505050505050565b634e487b7160e01b5f52604160045260245ffd5b60405160a0810167ffffffffffffffff81118282101715612c2757612c27612bf0565b60405290565b604051601f8201601f1916810167ffffffffffffffff81118282101715612c5657612c56612bf0565b604052919050565b5f67ffffffffffffffff821115612c7757612c77612bf0565b5060051b60200190565b5f82601f830112612c90575f5ffd5b8135612ca3612c9e82612c5e565b612c2d565b8082825260208201915060208360051b860101925085831115612cc4575f5ffd5b602085015b83811015612ce1578035835260209283019201612cc9565b5095945050505050565b5f5f60408385031215612cfc575f5ffd5b823567ffffffffffffffff811115612d12575f5ffd5b8301601f81018513612d22575f5ffd5b8035612d30612c9e82612c5e565b8082825260208201915060208360051b850101925087831115612d51575f5ffd5b6020840193505b82841015612d7a57612d69846129ff565b825260209384019390910190612d58565b9450505050602083013567ffffffffffffffff811115612d98575f5ffd5b612da485828601612c81565b9150509250929050565b5f5f5f60608486031215612dc0575f5ffd5b83359250612dd0602085016129ff565b9150612dde604085016129ff565b90509250925092565b803560ff81168114612a15575f5ffd5b5f60208284031215612e07575f5ffd5b61081e82612de7565b5f5f5f5f5f5f5f60e0888a031215612e26575f5ffd5b612e2f886129ff565b9650612e3d602089016129ff565b95506040880135945060608801359350612e5960808901612de7565b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215612e87575f5ffd5b612e90836129ff565b9150612b17602084016129ff565b600181811c90821680612eb257607f821691505b602082108103612ed057634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761076657610766612ed6565b5f82612f1b57634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561076657610766612ed6565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52603160045260245ffd5b60208082526002908201526115d360f21b604082015260600190565b5f60208284031215612f87575f5ffd5b5051919050565b8082018082111561076657610766612ed6565b805163ffffffff81168114612a15575f5ffd5b805167ffffffffffffffff81168114612a15575f5ffd5b80516001600160801b0381168114612a15575f5ffd5b5f60408284031215612ff1575f5ffd5b6040805190810167ffffffffffffffff8111828210171561301457613014612bf0565b60405290508061302383612fcb565b815261303160208401612fcb565b60208201525092915050565b5f5f5f5f5f5f868803610180811215613054575f5ffd5b8751602089015160408a01519198509650945060a0605f1982011215613078575f5ffd5b50613081612c04565b61308d60608901612fa1565b815261309b60808901612fa1565b60208201526130ac60a08901612fb4565b60408201526130bd60c08901612fb4565b60608201526130ce60e08901612fb4565b608082015292506130e3886101008901612fe1565b91506130f3886101408901612fe1565b90509295509295509295565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212208912b464e32c6da3b0dbea1c8522f26577a550cd46a1c6397a71216c6364503f64736f6c634300081c0033000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000000000000000000000000000000000000000001e506561706f6473204d6574617661756c7420666f722055534420436f696e000000000000000000000000000000000000000000000000000000000000000000067076555344430000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561000f575f5ffd5b50600436106102b1575f3560e01c80637ecebe001161017b578063b460af94116100e4578063d505accf1161009e578063ef8b30f711610079578063ef8b30f714610317578063f2fde38b14610674578063f556d88914610687578063fbb052481461069a575f5ffd5b8063d505accf14610616578063d905777e14610629578063dd62ed3e1461063c575f5ffd5b8063b460af94146105b7578063ba087652146105ca578063c63d75b614610454578063c6e6f592146105dd578063ce96cb77146105f0578063d2c9a94f14610603575f5ffd5b80639cfd2f2e116101355780639cfd2f2e146105575780639d6c63511461055f578063a3d111581461057e578063a9059cbb14610591578063b0145280146105a4578063b3d7f6b914610468575f5ffd5b80637ecebe00146104f057806384b0196e146105035780638da5cb5b1461051e5780638eea33381461052f57806394bf804d1461053c57806395d89b411461054f575f5ffd5b80633644e5151161021d5780634cdad506116101d75780634cdad506146104685780635293a8ae1461047b57806361325e181461049a5780636e553f65146104ad57806370a08231146104c0578063715018a6146104e8575f5ffd5b80633644e515146103be57806337082c15146103c657806338d52e0f146103e557806339daa1b21461041f5780633c36728214610441578063402d267d14610454575f5ffd5b806318160ddd1161026e57806318160ddd1461033257806322bbc2d21461033a57806323b872dd1461034d5780632530e16f14610360578063313ce567146103755780633302a6a1146103a9575f5ffd5b806301e1d114146102b557806306fdde03146102cc57806307a2d13a146102e1578063095ea7b3146102f45780630a28a4771461031757806313b98c0f1461032a575b5f5ffd5b6009545b6040519081526020015b60405180910390f35b6102d46106ad565b6040516102c391906129d6565b6102b96102ef3660046129e8565b61073d565b610307610302366004612a1a565b61076c565b60405190151581526020016102c3565b6102b96103253660046129e8565b610783565b6102b961078d565b6002546102b9565b6102b9610348366004612a42565b6107a3565b61030761035b366004612a5b565b610825565b610368610848565b6040516102c39190612a95565b7f00000000000000000000000000000000000000000000000000000000000000065b60405160ff90911681526020016102c3565b6103bc6103b7366004612aef565b6108a7565b005b6102b9610b11565b6102b96103d4366004612a42565b600f6020525f908152604090205481565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb485b6040516001600160a01b0390911681526020016102c3565b61030761042d366004612a42565b600c6020525f908152604090205460ff1681565b6103bc61044f366004612b20565b610b1a565b6102b9610462366004612a42565b505f1990565b6102b96104763660046129e8565b610b63565b6102b9610489366004612a42565b600d6020525f908152604090205481565b6103bc6104a83660046129e8565b610b6d565b6102b96104bb366004612b39565b610cc3565b6102b96104ce366004612a42565b6001600160a01b03165f9081526020819052604090205490565b6103bc610ce3565b6102b96104fe366004612a42565b610cf6565b61050b610d13565b6040516102c39796959493929190612b5a565b6008546001600160a01b0316610407565b600b546103979060ff1681565b6102b961054a366004612b39565b610d55565b6102d4610d75565b600a546102b9565b6102b961056d366004612a42565b600e6020525f908152604090205481565b6103bc61058c366004612a1a565b610d84565b61030761059f366004612a1a565b610f3d565b6103bc6105b2366004612ceb565b610f4a565b6102b96105c5366004612dae565b611035565b6102b96105d8366004612dae565b611058565b6102b96105eb3660046129e8565b611079565b6102b96105fe366004612a42565b611097565b6103bc610611366004612df7565b6110fd565b6103bc610624366004612e10565b61115a565b6102b9610637366004612a42565b611290565b6102b961064a366004612e76565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b6103bc610682366004612a42565b6112c3565b6103bc6106953660046129e8565b6112fd565b6103bc6106a8366004612a1a565b611453565b6060600380546106bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546106e890612e9e565b80156107335780601f1061070a57610100808354040283529160200191610733565b820191905f5260205f20905b81548152906001019060200180831161071657829003601f168201915b5050505050905090565b5f676765c793fa10079d601b1b61075261168b565b61075c9084612eea565b6107669190612f01565b92915050565b5f336107798185856116da565b5060019392505050565b5f610766826116e7565b5f600a5460095461079e9190612f20565b905090565b5f5f6107ad61078d565b6001600160a01b0384165f908152600d6020908152604080832054600f90925290912054919250106107df575f61080d565b6001600160a01b0383165f908152600d6020908152604080832054600f9092529091205461080d9190612f20565b915081811061081c578161081e565b805b9392505050565b5f336108328582856116f0565b61083d85858561176c565b506001949350505050565b6060601180548060200260200160405190810160405280929190818152602001828054801561073357602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311610880575050505050905090565b6108af6117c9565b6001600160a01b0382165f908152600c602052604090205481151560ff9091161515036109075760405162461bcd60e51b81526020600482015260016024820152601560fa1b60448201526064015b60405180910390fd5b6001600160a01b0382165f908152600c60205260409020805460ff191682158015919091179091556109cf57600b5460115460ff9091161161096f5760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b601180546001600160a01b0384165f818152601260205260408120839055600183018455929092527f31ecc21a745e3968a04e9570e4425bc18fa8019c68028196b546d1669c200c680180546001600160a01b0319169091179055610ac8565b6001600160a01b0382165f90815260126020526040812054601180549192916109fa90600190612f20565b81548110610a0a57610a0a612f33565b5f91825260209091200154601180546001600160a01b039092169250829184908110610a3857610a38612f33565b5f91825260208083209190910180546001600160a01b0319166001600160a01b0394851617905591831681526012909152604090208290556011805480610a8157610a81612f47565b5f828152602080822083015f1990810180546001600160a01b03191690559092019092556001600160a01b0386168252601281526040808320839055600f90915281205550505b816001600160a01b03167f116f51cdebd8bed41fe13da2a0d0bfb7b85e1067f9086579840adae790a9d56282604051610b05911515815260200190565b60405180910390a25050565b5f61079e6117f6565b335f908152600c602052604090205460ff16610b485760405162461bcd60e51b81526004016108fe90612f5b565b8015610b5a57610b573361191f565b50565b610b5733611bb9565b5f61076682611c8e565b335f908152600c602052604090205460ff16610b9b5760405162461bcd60e51b81526004016108fe90612f5b565b33610ba58161191f565b6001600160a01b0381165f908152600d60205260409020548211610bc95781610be2565b6001600160a01b0381165f908152600d60205260409020545b6001600160a01b0382165f908152600d602052604081208054909190610c09908490612f20565b90915550506001600160a01b0381165f908152600e602052604081208054849290610c35908490612f20565b9250508190555081600a5f828254610c4d9190612f20565b90915550610c8890506001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4816823085611ca3565b806001600160a01b03167fb6c22585684dd990935b9395908b0ee4813b361c0ca4d27ce0fdd1595c20f7d183604051610b0591815260200190565b5f610ccd5f611bb9565b610cd683611079565b9050610766838284611d0a565b610ceb6117c9565b610cf45f611dea565b565b6001600160a01b0381165f90815260076020526040812054610766565b5f6060805f5f5f6060610d24611e3b565b610d2c611e68565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b5f610d5f5f611bb9565b610d688361073d565b9050610766818484611d0a565b6060600480546106bc90612e9e565b610d8c6117c9565b5f8111610d97575f5ffd5b610da08261191f565b610dd46001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48168383611e95565b604051636e553f6560e01b8152600481018290523060248201525f906001600160a01b03841690636e553f65906044016020604051808303815f875af1158015610e20573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e449190612f77565b905081610e50846107a3565b1015610e845760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0383165f908152600d602052604081208054849290610eab908490612f8e565b90915550506001600160a01b0383165f908152600e602052604081208054849290610ed7908490612f8e565b9250508190555081600a5f828254610eef9190612f8e565b909155505060408051838152602081018390526001600160a01b038516917f5ee2ae50f4fd1e9147abd154cb6eb43e2df1f68c4ff36b33f366bcce26911c47910160405180910390a2505050565b5f3361077981858561176c565b610f526117c9565b8051825114610f885760405162461bcd60e51b815260206004820152600260248201526114d360f21b60448201526064016108fe565b610f915f611bb9565b5f5b8251811015611030575f838281518110610faf57610faf612f33565b602002602001015190505f838381518110610fcc57610fcc612f33565b6020908102919091018101516001600160a01b0384165f818152600f845260409081902083905551828152919350917f8b958c988d0f1f7427e8c3a319933292e4f6b2b5689e559bb81aecfdf179e808910160405180910390a25050600101610f93565b505050565b5f61103f5f611bb9565b61104884611079565b905061081e818584335b87611f1c565b5f6110625f611bb9565b61106b8461073d565b905061081e84828433611052565b5f61108261168b565b61075c676765c793fa10079d601b1b84612eea565b5f5f6110a161078d565b90505f676765c793fa10079d601b1b6110b8612027565b6001600160a01b0386165f908152602081905260409020546110da9190612eea565b6110e49190612f01565b90508181116110f357806110f5565b815b949350505050565b6111056117c9565b600b805460ff83811660ff1983168117909355604080519190921680825260208201939093527f3bff4bf5fff81065e90c2b5772249385e8ec96b3ed81a13bc9ac7afc2c87496f910160405180910390a15050565b8342111561117e5760405163313c898160e11b8152600481018590526024016108fe565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886111c98c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6112238261207e565b90505f611232828787876120aa565b9050896001600160a01b0316816001600160a01b031614611279576040516325c0072360e11b81526001600160a01b0380831660048301528b1660248201526044016108fe565b6112848a8a8a6116da565b50505050505050505050565b5f5f6112a261129d61078d565b6116e7565b90505f6110e4846001600160a01b03165f9081526020819052604090205490565b6112cb6117c9565b6001600160a01b0381166112f457604051631e4fbdf760e01b81525f60048201526024016108fe565b610b5781611dea565b335f908152600c602052604090205460ff1661132b5760405162461bcd60e51b81526004016108fe90612f5b565b336113358161191f565b8161133f826107a3565b10156113735760405162461bcd60e51b815260206004820152600360248201526209a82b60eb1b60448201526064016108fe565b6001600160a01b0381165f908152600d60205260408120805484929061139a908490612f8e565b90915550506001600160a01b0381165f908152600e6020526040812080548492906113c6908490612f8e565b9250508190555081600a5f8282546113de9190612f8e565b9091555061141890506001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb481682846120d6565b806001600160a01b03167fef505329317f5ae933759f15a2053c0e8999363f3256a766ffd8453e28108d0a83604051610b0591815260200190565b61145b6117c9565b6114648261191f565b801561147057806114d6565b6040516370a0823160e01b81523060048201526001600160a01b038316906370a0823190602401602060405180830381865afa1580156114b2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114d69190612f77565b604051635d043b2960e11b815260048101829052306024820181905260448201529091505f906001600160a01b0384169063ba087652906064016020604051808303815f875af115801561152c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115509190612f77565b6001600160a01b0384165f908152600e60205260408120549192509082116115785781611591565b6001600160a01b0384165f908152600e60205260409020545b6001600160a01b0385165f908152600d602052604090205490915081116115b857806115d1565b6001600160a01b0384165f908152600d60205260409020545b6001600160a01b0385165f908152600d6020526040812080549091906115f8908490612f20565b90915550506001600160a01b0384165f908152600e602052604081208054839290611624908490612f20565b9250508190555080600a5f82825461163c9190612f20565b909155505060408051848152602081018390526001600160a01b038616917fdaf428d238d4ca04f9d4e3eb7bcf27b6c386b7913cc4a27c7f810c93270a2ac0910160405180910390a250505050565b5f5f61169660025490565b905080156116c75780600954676765c793fa10079d601b1b6116b89190612eea565b6116c29190612f01565b6116d4565b676765c793fa10079d601b1b5b91505090565b6110308383836001612107565b5f611082612027565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f19811015611766578181101561175857604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016108fe565b61176684848484035f612107565b50505050565b6001600160a01b03831661179557604051634b637e8f60e11b81525f60048201526024016108fe565b6001600160a01b0382166117be5760405163ec442f0560e01b81525f60048201526024016108fe565b6110308383836121d9565b6008546001600160a01b03163314610cf45760405163118cdaa760e01b81523360048201526024016108fe565b5f306001600160a01b037f0000000000000000000000003717e340140d30f3a077dd21fac39a86ace873aa1614801561184e57507f000000000000000000000000000000000000000000000000000000000000000146145b1561187857507faa41856771e17353221fe8bbf0bd8598133f5d37de35f32b1ede25d7f27714e690565b61079e604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f07e7f663f99ab4f85e5f432216a85de03b9c779fb4131ae1e2ae174f92d9fffa918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0381165f81815260106020526040908190205490516303d1689d60e11b8152676765c793fa10079d601b1b60048201529091906307a2d13a90602401602060405180830381865afa15801561197d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119a19190612f77565b6001600160a01b0383165f908152601060205260408120919091558190036119c7575050565b6001600160a01b0382165f908152601060205260408120548211611a2f576001600160a01b0383165f90815260106020526040902054676765c793fa10079d601b1b908390611a169083612eea565b611a209190612f01565b611a2a9190612f20565b611a7d565b6001600160a01b0383165f908152601060205260409020548290611a5e90676765c793fa10079d601b1b612eea565b611a689190612f01565b611a7d90676765c793fa10079d601b1b612f20565b6001600160a01b0384165f908152600e6020526040812054919250676765c793fa10079d601b1b611aae8484612eea565b611ab89190612f01565b6001600160a01b0386165f908152601060205260409020549091508411611ae857611ae38183612f8e565b611afb565b808210611af957611ae38183612f20565b5f5b6001600160a01b0386165f908152600e60205260409020819055600a54611b23908490612f20565b611b2d9190612f8e565b600a556001600160a01b0385165f908152600e6020526040902054600954611b56908490612f20565b611b609190612f8e565b6009819055600a546040516001600160a01b038816927f8c46ebcf63e62100063b73002864698a375020e7c2952d5ea006ac1643ba505192611baa92918252602082015260400190565b60405180910390a25050505050565b6011545f5b81811015611030575f60118281548110611bda57611bda612f33565b5f918252602090912001546001600160a01b03908116915084168103611c005750611c86565b604051631c6c959760e01b81525f60048201819052906001600160a01b03831690631c6c959790602401610180604051808303815f875af1158015611c47573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6b919061303d565b505050505090505f811115611c8357611c838261191f565b50505b600101611bbe565b5f676765c793fa10079d601b1b610752612027565b6040516001600160a01b0384811660248301528381166044830152606482018390526117669186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506122f2565b8215801590611d1857508115155b611d485760405162461bcd60e51b81526020600482015260016024820152604d60f81b60448201526064016108fe565b8260095f828254611d599190612f8e565b90915550611d699050818361235e565b611d9e7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b0316333086611ca3565b60408051848152602081018490526001600160a01b0383169133917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d791015b60405180910390a3505050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b606061079e7f506561706f6473204d6574617661756c7420666f722055534420436f696e001e6005612396565b606061079e7f31000000000000000000000000000000000000000000000000000000000000016006612396565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611ee2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f069190612f77565b90506117668484611f178585612f8e565b61243f565b826001600160a01b0316826001600160a01b031614611f4057611f408383876116f0565b5f611f4961078d565b90508460095f828254611f5c9190612f20565b909155505084811015611f965760405162461bcd60e51b815260206004820152600260248201526120ab60f11b60448201526064016108fe565b611fa084876124ce565b611fd46001600160a01b037f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb481683876120d6565b60408051868152602081018890526001600160a01b03808516928392918816917ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db910160405180910390a4505050505050565b5f5f61203260025490565b90505f61203d612502565b9050811561206a578161205b82676765c793fa10079d601b1b612eea565b6120659190612f01565b612077565b676765c793fa10079d601b1b5b9250505090565b5f61076661208a6117f6565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f6120ba888888886126ea565b9250925092506120ca82826127b2565b50909695505050505050565b6040516001600160a01b0383811660248301526044820183905261103091859182169063a9059cbb90606401611cd8565b6001600160a01b0384166121305760405163e602df0560e01b81525f60048201526024016108fe565b6001600160a01b03831661215957604051634a1406b160e11b81525f60048201526024016108fe565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561176657826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516121cb91815260200190565b60405180910390a350505050565b6001600160a01b038316612203578060025f8282546121f89190612f8e565b909155506122739050565b6001600160a01b0383165f90815260208190526040902054818110156122555760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016108fe565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661228f576002805482900390556122ad565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ddd91815260200190565b5f5f60205f8451602086015f885af180612311576040513d5f823e3d81fd5b50505f513d91508115612328578060011415612335565b6001600160a01b0384163b155b1561176657604051635274afe760e01b81526001600160a01b03851660048201526024016108fe565b6001600160a01b0382166123875760405163ec442f0560e01b81525f60048201526024016108fe565b6123925f83836121d9565b5050565b606060ff83146123b0576123a98361286a565b9050610766565b8180546123bc90612e9e565b80601f01602080910402602001604051908101604052809291908181526020018280546123e890612e9e565b80156124335780601f1061240a57610100808354040283529160200191612433565b820191905f5260205f20905b81548152906001019060200180831161241657829003601f168201915b50505050509050610766565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b17905261249084826128a7565b611766576040516001600160a01b0384811660248301525f60448301526124c491869182169063095ea7b390606401611cd8565b61176684826122f2565b6001600160a01b0382166124f757604051634b637e8f60e11b81525f60048201526024016108fe565b612392825f836121d9565b6009546011545f5b818110156126e5575f6011828154811061252657612526612f33565b5f9182526020808320909101546001600160a01b0316808352601090915260408220549092509081900361255b5750506126dd565b5f826001600160a01b031663cacf3b586040518163ffffffff1660e01b815260040161018060405180830381865afa158015612599573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906125bd919061303d565b509450505050505f6125e5676765c793fa10079d601b1b5f846128f09092919063ffffffff16565b90505f81841161261f57676765c793fa10079d601b1b846126068483612eea565b6126109190612f01565b61261a9190612f20565b612654565b8361263583676765c793fa10079d601b1b612eea565b61263f9190612f01565b61265490676765c793fa10079d601b1b612f20565b6001600160a01b0386165f908152600e6020526040812054919250676765c793fa10079d601b1b6126858484612eea565b61268f9190612f01565b90505f8487116126a8576126a38284612f8e565b6126bb565b8183106126b9576126a38284612f20565b5f5b9050806126c8848d612f20565b6126d29190612f8e565b9a5050505050505050505b60010161250a565b505090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561272357505f915060039050826127a8565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612774573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661279f57505f9250600191508290506127a8565b92505f91508190505b9450945094915050565b5f8260038111156127c5576127c56130ff565b036127ce575050565b60018260038111156127e2576127e26130ff565b036128005760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115612814576128146130ff565b036128355760405163fce698f760e01b8152600481018290526024016108fe565b6003826003811115612849576128496130ff565b03612392576040516335e2f38360e21b8152600481018290526024016108fe565b60605f61287683612981565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f5f5f5f60205f8651602088015f8a5af192503d91505f5190508280156128e6575081156128d857806001146128e6565b5f866001600160a01b03163b115b9695505050505050565b5f83602001516001600160801b03165f0361290c57508161081e565b602084015184516001600160801b039182169161292a911685612eea565b6129349190612f01565b9050818015612971575082845f01516001600160801b031685602001516001600160801b0316836129659190612eea565b61296f9190612f01565b105b1561081e576110f5816001612f8e565b5f60ff8216601f81111561081c57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f61081e60208301846129a8565b5f602082840312156129f8575f5ffd5b5035919050565b80356001600160a01b0381168114612a15575f5ffd5b919050565b5f5f60408385031215612a2b575f5ffd5b612a34836129ff565b946020939093013593505050565b5f60208284031215612a52575f5ffd5b61081e826129ff565b5f5f5f60608486031215612a6d575f5ffd5b612a76846129ff565b9250612a84602085016129ff565b929592945050506040919091013590565b602080825282518282018190525f918401906040840190835b81811015612ad55783516001600160a01b0316835260209384019390920191600101612aae565b509095945050505050565b80358015158114612a15575f5ffd5b5f5f60408385031215612b00575f5ffd5b612b09836129ff565b9150612b1760208401612ae0565b90509250929050565b5f60208284031215612b30575f5ffd5b61081e82612ae0565b5f5f60408385031215612b4a575f5ffd5b82359150612b17602084016129ff565b60ff60f81b8816815260e060208201525f612b7860e08301896129a8565b8281036040840152612b8a81896129a8565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015612bdf578351835260209384019390920191600101612bc1565b50909b9a5050505050505050505050565b634e487b7160e01b5f52604160045260245ffd5b60405160a0810167ffffffffffffffff81118282101715612c2757612c27612bf0565b60405290565b604051601f8201601f1916810167ffffffffffffffff81118282101715612c5657612c56612bf0565b604052919050565b5f67ffffffffffffffff821115612c7757612c77612bf0565b5060051b60200190565b5f82601f830112612c90575f5ffd5b8135612ca3612c9e82612c5e565b612c2d565b8082825260208201915060208360051b860101925085831115612cc4575f5ffd5b602085015b83811015612ce1578035835260209283019201612cc9565b5095945050505050565b5f5f60408385031215612cfc575f5ffd5b823567ffffffffffffffff811115612d12575f5ffd5b8301601f81018513612d22575f5ffd5b8035612d30612c9e82612c5e565b8082825260208201915060208360051b850101925087831115612d51575f5ffd5b6020840193505b82841015612d7a57612d69846129ff565b825260209384019390910190612d58565b9450505050602083013567ffffffffffffffff811115612d98575f5ffd5b612da485828601612c81565b9150509250929050565b5f5f5f60608486031215612dc0575f5ffd5b83359250612dd0602085016129ff565b9150612dde604085016129ff565b90509250925092565b803560ff81168114612a15575f5ffd5b5f60208284031215612e07575f5ffd5b61081e82612de7565b5f5f5f5f5f5f5f60e0888a031215612e26575f5ffd5b612e2f886129ff565b9650612e3d602089016129ff565b95506040880135945060608801359350612e5960808901612de7565b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215612e87575f5ffd5b612e90836129ff565b9150612b17602084016129ff565b600181811c90821680612eb257607f821691505b602082108103612ed057634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761076657610766612ed6565b5f82612f1b57634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561076657610766612ed6565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52603160045260245ffd5b60208082526002908201526115d360f21b604082015260600190565b5f60208284031215612f87575f5ffd5b5051919050565b8082018082111561076657610766612ed6565b805163ffffffff81168114612a15575f5ffd5b805167ffffffffffffffff81168114612a15575f5ffd5b80516001600160801b0381168114612a15575f5ffd5b5f60408284031215612ff1575f5ffd5b6040805190810167ffffffffffffffff8111828210171561301457613014612bf0565b60405290508061302383612fcb565b815261303160208401612fcb565b60208201525092915050565b5f5f5f5f5f5f868803610180811215613054575f5ffd5b8751602089015160408a01519198509650945060a0605f1982011215613078575f5ffd5b50613081612c04565b61308d60608901612fa1565b815261309b60808901612fa1565b60208201526130ac60a08901612fb4565b60408201526130bd60c08901612fb4565b60608201526130ce60e08901612fb4565b608082015292506130e3886101008901612fe1565b91506130f3886101408901612fe1565b90509295509295509295565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212208912b464e32c6da3b0dbea1c8522f26577a550cd46a1c6397a71216c6364503f64736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000000000000000000000000000000000000000001e506561706f6473204d6574617661756c7420666f722055534420436f696e000000000000000000000000000000000000000000000000000000000000000000067076555344430000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _name (string): Peapods Metavault for USD Coin
Arg [1] : _symbol (string): pvUSDC
Arg [2] : __asset (address): 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48

-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [2] : 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Arg [3] : 000000000000000000000000000000000000000000000000000000000000001e
Arg [4] : 506561706f6473204d6574617661756c7420666f722055534420436f696e0000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [6] : 7076555344430000000000000000000000000000000000000000000000000000


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.