Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0xa7100700...7AdfF372e The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
KromaPortal
Compiler Version
v0.8.15+commit.e14f2714
Optimization Enabled:
Yes with 10000 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Types } from "../libraries/Types.sol"; import { Semver } from "../universal/Semver.sol"; import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol"; import { L2OutputOracle } from "./L2OutputOracle.sol"; import { ResourceMetering } from "./ResourceMetering.sol"; import { SystemConfig } from "./SystemConfig.sol"; import { ZKMerkleTrie } from "./ZKMerkleTrie.sol"; /** * @custom:proxied * @title KromaPortal * @notice The KromaPortal is a low-level contract responsible for passing messages between L1 * and L2. Messages sent directly to the KromaPortal have no form of replayability. * Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface. */ contract KromaPortal is Initializable, ResourceMetering, Semver { /** * @notice Represents a proven withdrawal. * * @custom:field outputRoot Root of the L2 output this was proven against. * @custom:field timestamp Timestamp at whcih the withdrawal was proven. * @custom:field l2OutputIndex Index of the output this was proven against. */ struct ProvenWithdrawal { bytes32 outputRoot; uint128 timestamp; uint128 l2OutputIndex; } /** * @notice Version of the deposit event. */ uint256 internal constant DEPOSIT_VERSION = 0; /** * @notice The L2 gas limit set when eth is deposited using the receive() function. */ uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /** * @notice Address of the L2OutputOracle contract. */ L2OutputOracle public immutable L2_ORACLE; /** * @notice Address of the ValidatorPool contract. */ address public immutable VALIDATOR_POOL; /** /** * @notice Address of the SystemConfig contract. */ SystemConfig public immutable SYSTEM_CONFIG; /** * @notice MultiSig wallet address that has the ability to pause and unpause withdrawals. */ address public immutable GUARDIAN; /** * @notice Address of the ZKMerkleTrie. */ ZKMerkleTrie public immutable ZK_MERKLE_TRIE; /** * @notice Address of the L2 account which initiated a withdrawal in this transaction. If the * of this variable is the default L2 sender address, then we are NOT inside of a call * to finalizeWithdrawalTransaction. */ address public l2Sender; /** * @notice A list of withdrawal hashes which have been successfully finalized. */ mapping(bytes32 => bool) public finalizedWithdrawals; /** * @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data. */ mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals; /** * @notice Determines if cross domain messaging is paused. When set to true, * withdrawals are paused. This may be removed in the future. */ bool public paused; /** * @notice Emitted when a transaction is deposited from L1 to L2. The parameters of this event * are read by the rollup node and used to derive deposit transactions on L2. * * @param from Address that triggered the deposit transaction. * @param to Address that the deposit transaction is directed to. * @param version Version of this deposit transaction event. * @param opaqueData ABI encoded deposit data to be parsed off-chain. */ event TransactionDeposited( address indexed from, address indexed to, uint256 indexed version, bytes opaqueData ); /** * @notice Emitted when a withdrawal transaction is proven. * * @param withdrawalHash Hash of the withdrawal transaction. */ event WithdrawalProven( bytes32 indexed withdrawalHash, address indexed from, address indexed to ); /** * @notice Emitted when a withdrawal transaction is finalized. * * @param withdrawalHash Hash of the withdrawal transaction. * @param success Whether the withdrawal transaction was successful. */ event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success); /** * @notice Emitted when the pause is triggered. * * @param account Address of the account triggering the pause. */ event Paused(address account); /** * @notice Emitted when the pause is lifted. * * @param account Address of the account triggering the unpause. */ event Unpaused(address account); /** * @notice Reverts when paused. */ modifier whenNotPaused() { require(paused == false, "KromaPortal: paused"); _; } /** * @custom:semver 1.0.0 * * @param _l2Oracle Address of the L2OutputOracle contract. * @param _validatorPool Address of the ValidatorPool contract. * @param _guardian MultiSig wallet address that can pause deposits and withdrawals. * @param _paused Sets the contract's pausability state. * @param _config Address of the SystemConfig contract. * @param _zkMerkleTrie Address of the ZKMerkleTrie contract. */ constructor( L2OutputOracle _l2Oracle, address _validatorPool, address _guardian, bool _paused, SystemConfig _config, ZKMerkleTrie _zkMerkleTrie ) Semver(1, 0, 0) { L2_ORACLE = _l2Oracle; VALIDATOR_POOL = _validatorPool; GUARDIAN = _guardian; SYSTEM_CONFIG = _config; ZK_MERKLE_TRIE = _zkMerkleTrie; initialize(_paused); } /** * @notice Initializer. */ function initialize(bool _paused) public initializer { l2Sender = Constants.DEFAULT_L2_SENDER; paused = _paused; __ResourceMetering_init(); } /** * @notice Pause deposits and withdrawals. */ function pause() external { require(msg.sender == GUARDIAN, "KromaPortal: only guardian can pause"); paused = true; emit Paused(msg.sender); } /** * @notice Unpause deposits and withdrawals. */ function unpause() external { require(msg.sender == GUARDIAN, "KromaPortal: only guardian can unpause"); paused = false; emit Unpaused(msg.sender); } /** * @notice Accepts value so that users can send ETH directly to this contract and have the * funds be deposited to their address on L2. This is intended as a convenience * function for EOAs. Contracts should call the depositTransaction() function directly * otherwise any deposited funds will be lost due to address aliasing. */ // solhint-disable-next-line ordering receive() external payable { depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes("")); } /** * @notice Getter for the resource config. Used internally by the ResourceMetering * contract. The SystemConfig is the source of truth for the resource config. * * @return ResourceMetering.ResourceConfig */ function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) { return SYSTEM_CONFIG.resourceConfig(); } /** * @notice Proves a withdrawal transaction. * * @param _tx Withdrawal transaction to finalize. * @param _l2OutputIndex L2 output index to prove against. * @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root. * @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract. */ function proveWithdrawalTransaction( Types.WithdrawalTransaction memory _tx, uint256 _l2OutputIndex, Types.OutputRootProof calldata _outputRootProof, bytes[] calldata _withdrawalProof ) external whenNotPaused { // Prevent users from creating a deposit transaction where this address is the message // sender on L2. Because this is checked here, we do not need to check again in // `finalizeWithdrawalTransaction`. require( _tx.target != address(this), "KromaPortal: you cannot send messages to the portal contract" ); // Get the output root and load onto the stack to prevent multiple mloads. This will // revert if there is no output root for the given block number. bytes32 outputRoot = L2_ORACLE.getL2Output(_l2OutputIndex).outputRoot; // Verify that the output root can be generated with the elements in the proof. require( outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "KromaPortal: invalid output root proof" ); // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // We generally want to prevent users from proving the same withdrawal multiple times // because each successive proof will update the timestamp. A malicious user can take // advantage of this to prevent other users from finalizing their withdrawal. However, // since withdrawals are proven before an output root is finalized, we need to allow users // to re-prove their withdrawal only in the case that the output root for their specified // output index has been updated. require( provenWithdrawal.timestamp == 0 || L2_ORACLE.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot, "KromaPortal: withdrawal hash has already been proven" ); // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract. // Refer to the Solidity documentation for more information on how storage layouts are // computed for mappings. bytes32 storageKey = keccak256( abi.encode( withdrawalHash, uint256(0) // The withdrawals mapping is at the first slot in the layout. ) ); // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract // on L2. If this is true, under the assumption that the ZKMerkleTrie contract does not have // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore // be relayed on L1. require( ZK_MERKLE_TRIE.verifyInclusionProof( storageKey, hex"0000000000000000000000000000000000000000000000000000000000000001", _withdrawalProof, _outputRootProof.messagePasserStorageRoot ), "KromaPortal: invalid withdrawal inclusion proof" ); // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and // `l2OutputIndex` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be // proven once unless it is submitted again with a different outputRoot. provenWithdrawals[withdrawalHash] = ProvenWithdrawal({ outputRoot: outputRoot, timestamp: uint128(block.timestamp), l2OutputIndex: uint128(_l2OutputIndex) }); // Emit a `WithdrawalProven` event. emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target); } /** * @notice Finalizes a withdrawal transaction. * * @param _tx Withdrawal transaction to finalize. */ function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused { // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other // than the default value when a withdrawal transaction is being finalized. This check is // a defacto reentrancy guard. require( l2Sender == Constants.DEFAULT_L2_SENDER, "KromaPortal: can only trigger one withdrawal per transaction" ); // Grab the proven withdrawal from the `provenWithdrawals` map. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have // a timestamp of zero. require(provenWithdrawal.timestamp != 0, "KromaPortal: withdrawal has not been proven yet"); // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of // safety against weird bugs in the proving step. require( provenWithdrawal.timestamp >= L2_ORACLE.startingTimestamp(), "KromaPortal: withdrawal timestamp less than L2 Oracle starting timestamp" ); // A proven withdrawal must wait at least the finalization period before it can be // finalized. This waiting period can elapse in parallel with the waiting period for the // output the withdrawal was proven against. In effect, this means that the minimum // withdrawal time is l2 output submission time + finalization period. require( _isFinalizationPeriodElapsed(provenWithdrawal.timestamp), "KromaPortal: proven withdrawal finalization period has not elapsed" ); // Grab the CheckpointOutput from the L2OutputOracle, will revert if the output that // corresponds to the given index has not been submitted yet. Types.CheckpointOutput memory checkpointOutput = L2_ORACLE.getL2Output( provenWithdrawal.l2OutputIndex ); // Check that the output root that was used to prove the withdrawal is the same as the // current output root for the given output index. An output root may change if it is // deleted by the challenger address and then re-submitted. require( checkpointOutput.outputRoot == provenWithdrawal.outputRoot, "KromaPortal: output root proven is not the same as current output root" ); // Check that the checkpoint output has also been finalized. require( _isFinalizationPeriodElapsed(checkpointOutput.timestamp), "KromaPortal: checkpoint output finalization period has not elapsed" ); // Check that this withdrawal has not already been finalized, this is replay protection. require( finalizedWithdrawals[withdrawalHash] == false, "KromaPortal: withdrawal has already been finalized" ); // Mark the withdrawal as finalized so it can't be replayed. finalizedWithdrawals[withdrawalHash] = true; // Set the l2Sender so contracts know who triggered this withdrawal on L2. l2Sender = _tx.sender; // Trigger the call to the target contract. We use a custom low level method // SafeCall.callWithMinGas to ensure two key properties // 1. Target contracts cannot force this call to run out of gas by returning a very large // amount of data (and this is OK because we don't care about the returndata here). // 2. The amount of gas provided to the execution context of the target is at least the // gas limit specified by the user. If there is not enough gas in the current context // to accomplish this, `callWithMinGas` will revert. bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data); // Reset the l2Sender back to the default value. l2Sender = Constants.DEFAULT_L2_SENDER; // All withdrawals are immediately finalized. Replayability can // be achieved through contracts built on top of this contract emit WithdrawalFinalized(withdrawalHash, success); // Reverting here is useful for determining the exact gas cost to successfully execute the // sub call to the target contract if the minimum gas limit specified by the user would not // be sufficient to execute the sub call. if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) { revert("KromaPortal: withdrawal failed"); } } /** * @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in * deriving deposit transactions. Note that if a deposit is made by a contract, its * address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider * using the CrossDomainMessenger contracts for a simpler developer experience. * * @param _to Target address on L2. * @param _value ETH value to send to the recipient. * @param _gasLimit Minimum L2 gas limit (can be greater than or equal to this value). * @param _isCreation Whether or not the transaction is a contract creation. * @param _data Data to trigger the recipient with. */ function depositTransaction( address _to, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public payable metered(_gasLimit) { // Just to be safe, make sure that people specify address(0) as the target when doing // contract creations. if (_isCreation) { require( _to == address(0), "KromaPortal: must send to address(0) when creating a contract" ); } // Prevent depositing transactions that have too small of a gas limit. require(_gasLimit >= 21_000, "KromaPortal: gas limit must cover instrinsic gas cost"); // Transform the from-address to its alias if the caller is a contract. address from = msg.sender; if (msg.sender != tx.origin) { from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } // Compute the opaque data that will be emitted as part of the TransactionDeposited event. // We use opaque data so that we can update the TransactionDeposited event in the future // without breaking the current interface. bytes memory opaqueData = abi.encodePacked( msg.value, _value, _gasLimit, _isCreation, _data ); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /** * @notice Accepts deposits of data from ValidatorPool contract, and emits a TransactionDeposited event for use in * deriving deposit transactions on L2. * * @param _to Target address on L2. * @param _gasLimit Minimum L2 gas limit (can be greater than or equal to this value). * @param _data Data to trigger the recipient with. */ function depositTransactionByValidatorPool( address _to, uint64 _gasLimit, bytes memory _data ) public { require( msg.sender == VALIDATOR_POOL, "KromaPortal: function can only be called from the ValidatorPool" ); // Transform the from-address to its alias. address from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); // Compute the opaque data that will be emitted as part of the TransactionDeposited event. bytes memory opaqueData = abi.encodePacked(uint256(0), uint256(0), _gasLimit, false, _data); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /** * @notice Determines if the output at the given index is finalized. Reverts if the call to * L2_ORACLE.getL2Output reverts. Returns a boolean otherwise. * * @param _l2OutputIndex Index of the L2 output to check. * * @return Whether or not the output is finalized. */ function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) { return _isFinalizationPeriodElapsed(L2_ORACLE.getL2Output(_l2OutputIndex).timestamp); } /** * @notice Determines whether the finalization period has elapsed w/r/t a given timestamp. * * @param _timestamp Timestamp to check. * * @return Whether or not the finalization period has elapsed. */ function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) { return block.timestamp > _timestamp + L2_ORACLE.FINALIZATION_PERIOD_SECONDS(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /** * @title Constants * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just * the stuff used in multiple contracts. Constants that only apply to a single contract * should be defined in that contract instead. */ library Constants { /** * @notice Special address to be used as the tx origin for gas estimation calls in the * KromaPortal and CrossDomainMessenger calls. You only need to use this address if * the minimum gas limit specified by the user is not actually enough to execute the * given message and you're attempting to estimate the actual necessary gas limit. We * use address(1) because it's the ecrecover precompile and therefore guaranteed to * never have any code on any EVM chain. */ address internal constant ESTIMATION_ADDRESS = address(1); /** * @notice Value used for the L2 sender storage slot in both the KromaPortal and the * CrossDomainMessenger contracts before an actual sender is set. This value is * non-zero to reduce the gas cost of message passing transactions. */ address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /** * @notice Returns the default values for the ResourceConfig. These are the recommended values * for a production network. */ function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } /** * @notice The denominator of the validator reward. * DO NOT change this value if the L2 chain is already operational. */ uint256 internal constant VALIDATOR_REWARD_DENOMINATOR = 10000; /** * @notice An address that identifies that current submission round is a public round. */ address internal constant VALIDATOR_PUBLIC_ROUND_ADDRESS = address(type(uint160).max); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Encoding } from "./Encoding.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; import { Types } from "./Types.sol"; /** * @title Hashing * @notice Hashing handles Kroma's various different hashing schemes. */ library Hashing { /** * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a * given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 * system. * * @param _tx User deposit transaction to hash. * * @return Hash of the RLP encoded L2 deposit transaction. */ function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /** * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash * of the L2 transaction that corresponds to a deposit is unique and is * deterministically generated from L1 transaction data. * * @param _l1BlockHash Hash of the L1 block where the deposit was included. * @param _logIndex The index of the log that created the deposit transaction. * * @return Hash of the deposit transaction's "source hash". */ function hashDepositSource(bytes32 _l1BlockHash, uint64 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /** * @notice Hashes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /** * @notice Hashes a cross domain message based on the V0 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV0( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256( Encoding.encodeCrossDomainMessageV0( _nonce, _sender, _target, _value, _gasLimit, _data ) ); } /** * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract * * @param _tx Withdrawal transaction to hash. * * @return Hashed withdrawal transaction. */ function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256( abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data) ); } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. * * @param _outputRootProof Output root proof which should be hashed to an output root. * * @return Hashed output root proof. */ function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { if (_outputRootProof.version == bytes32(uint256(0))) { return hashOutputRootProofV0(_outputRootProof); } else { revert("Hashing: unknown output root proof version"); } } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. (version 0) * * @param _outputRootProof Output root proof which should be hashed to an output root. * * @return Hashed output root proof. */ function hashOutputRootProofV0(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.blockHash, _outputRootProof.nextBlockHash ) ); } /** * @notice Fills the values of the block hash fields to a given bytes. * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * @param _raw An array of bytes to be populated. */ function _fillBlockHashFieldsToBytes( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps, bytes[] memory _raw ) private pure { _raw[0] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.parentHash)); _raw[1] = _rlps.uncleHash; _raw[2] = _rlps.coinbase; _raw[3] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.stateRoot)); _raw[4] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.transactionsRoot)); _raw[5] = _rlps.receiptsRoot; _raw[6] = _rlps.logsBloom; _raw[7] = _rlps.difficulty; _raw[8] = RLPWriter.writeUint(_publicInput.number); _raw[9] = RLPWriter.writeUint(_publicInput.gasLimit); _raw[10] = _rlps.gasUsed; _raw[11] = RLPWriter.writeUint(_publicInput.timestamp); _raw[12] = _rlps.extraData; _raw[13] = _rlps.mixHash; _raw[14] = _rlps.nonce; _raw[15] = RLPWriter.writeUint(_publicInput.baseFee); } /** * @notice Hashes the various elements of a block header into a block hash(before shanghai). * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * * @return Hashed block header. */ function hashBlockHeader( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps ) internal pure returns (bytes32) { bytes[] memory raw = new bytes[](16); _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw); return keccak256(RLPWriter.writeList(raw)); } /** * @notice Hashes the various elements of a block header into a block hash(after shanghai). * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * * @return Hashed block header. */ function hashBlockHeaderShanghai( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps ) internal pure returns (bytes32) { bytes[] memory raw = new bytes[](17); _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw); raw[16] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.withdrawalsRoot)); return keccak256(RLPWriter.writeList(raw)); } /** * @notice Hashes the various elements of a public input into a public input hash. * * @param _prevStateRoot Previous state root. * @param _publicInput Public input which should be hashed to a public input hash. * @param _dummyHashes Dummy hashes returned from generateDummyHashes(). * * @return Hashed block header. */ function hashPublicInput( bytes32 _prevStateRoot, Types.PublicInput memory _publicInput, bytes32[] memory _dummyHashes ) internal pure returns (bytes32) { return keccak256( abi.encodePacked( _prevStateRoot, _publicInput.stateRoot, _publicInput.withdrawalsRoot, _publicInput.blockHash, _publicInput.parentHash, _publicInput.number, _publicInput.timestamp, _publicInput.baseFee, _publicInput.gasLimit, uint16(_publicInput.txHashes.length), _publicInput.txHashes, _dummyHashes ) ); } /** * @notice Generates a bytes32 array filled with a dummy hash for the given length. * * @param _dummyHashes Dummy hash. * @param _length A length of the array. * * @return Bytes32 array filled with dummy hash. */ function generateDummyHashes(bytes32 _dummyHashes, uint256 _length) internal pure returns (bytes32[] memory) { bytes32[] memory hashes = new bytes32[](_length); for (uint256 i = 0; i < _length; i++) { hashes[i] = _dummyHashes; } return hashes; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title SafeCall * @notice Perform low level safe calls */ library SafeCall { /** * @notice Perform a low level call without copying any returndata * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Helper function to determine if there is sufficient gas remaining within the context * to guarantee that the minimum gas requirement for a call will be met as well as * optionally reserving a specified amount of gas for after the call has concluded. * * @param _minGas The minimum amount of gas that may be passed to the target context. * @param _reservedGas Optional amount of gas to reserve for the caller after the execution * of the target context. * * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target * context as well as reserve `_reservedGas` for the caller after the execution of * the target context. * * @dev !!!!! FOOTGUN ALERT !!!!! * 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the * `CALL` opcode's `address_access_cost`, `positive_value_cost`, and * `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is * still possible to self-rekt by initiating a withdrawal with a minimum gas limit * that does not account for the `memory_expansion_cost` & `code_execution_cost` * factors of the dynamic cost of the `CALL` opcode. * 2.) This function should *directly* precede the external call if possible. There is an * added buffer to account for gas consumed between this check and the call, but it * is only 5,700 gas. * 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call * frame may be passed to a subcontext, we need to ensure that the gas will not be * truncated. * 4.) Use wisely. This function is not a silver bullet. */ function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero( lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))) ) } return _hasMinGas; } /** * @notice Perform a low level call without copying any returndata. This function * will revert if the call cannot be performed with the specified minimum * gas. * * @param _target Address to call * @param _minGas The minimum amount of gas that may be passed to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63 + 40_000 - 49) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Types * @notice Contains various types used throughout the Kroma contract system. */ library Types { /** * @notice CheckpointOutput represents a commitment to the state of L2 checkpoint. The timestamp * is the L1 timestamp that the output root is posted. This timestamp is used to verify * that the finalization period has passed since the output root was submitted. * * @custom:field submitter Address of the output submitter. * @custom:field outputRoot Hash of the L2 output. * @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. * @custom:field l2BlockNumber L2 block number that the output corresponds to. */ struct CheckpointOutput { address submitter; bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /** * @notice Struct representing the elements that are hashed together to generate an output root * which itself represents a snapshot of the L2 state. * * @custom:field version Version of the output root. * @custom:field stateRoot Root of the state trie at the block of this output. * @custom:field messagePasserStorageRoot Root of the message passer storage trie. * @custom:field blockHash Hash of the block this output was generated from. * @custom:field nextBlockHash Hash of the next block. */ struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 blockHash; bytes32 nextBlockHash; } /** * @notice Struct representing the elements that are hashed together to generate a public input. * * @custom:field blockHash The hash of the block. * @custom:field parentHash The hash of the previous block. * @custom:field timestamp The block time. * @custom:field number The block number. * @custom:field gasLimit Maximum gas allowed. * @custom:field baseFee The base fee per gas. * @custom:field transactionsRoot Root hash of the transactions. * @custom:field stateRoot Root hash of the state trie. * @custom:field withdrawalsRoot Root hash of the withdrawals. * @custom:field txHashes Array of hash of the transaction. */ struct PublicInput { bytes32 blockHash; bytes32 parentHash; uint64 timestamp; uint64 number; uint64 gasLimit; uint256 baseFee; bytes32 transactionsRoot; bytes32 stateRoot; bytes32 withdrawalsRoot; bytes32[] txHashes; } /** * @notice Struct representing the elements that are hashed together to generate a block hash. * Some of fields that are contained in PublicInput are omitted. * * @custom:field uncleHash RLP encoded uncle hash. * @custom:field coinbase RLP encoded coinbase. * @custom:field receiptsRoot RLP encoded receipts root. * @custom:field logsBloom RLP encoded logs bloom. * @custom:field difficulty RLP encoded difficulty. * @custom:field gasUsed RLP encoded gas used. * @custom:field extraData RLP encoded extra data. * @custom:field mixHash RLP encoded mix hash. * @custom:field nonce RLP encoded nonce. */ struct BlockHeaderRLP { bytes uncleHash; bytes coinbase; bytes receiptsRoot; bytes logsBloom; bytes difficulty; bytes gasUsed; bytes extraData; bytes mixHash; bytes nonce; } /** * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end * user (as opposed to a system deposit transaction generated by the system). * * @custom:field from Address of the sender of the transaction. * @custom:field to Address of the recipient of the transaction. * @custom:field isCreation True if the transaction is a contract creation. * @custom:field value Value to send to the recipient. * @custom:field mint Amount of ETH to mint. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. * @custom:field l1BlockHash Hash of the block the transaction was submitted in. * @custom:field logIndex Index of the log in the block the transaction was submitted in. */ struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint64 logIndex; } /** * @notice Struct representing a withdrawal transaction. * * @custom:field nonce Nonce of the withdrawal transaction * @custom:field sender Address of the sender of the transaction. * @custom:field target Address of the recipient of the transaction. * @custom:field value Value to send to the recipient. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. */ struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } /** * @notice Struct representing a challenge. * * @custom:field turn The current turn. * @custom:field timeoutAt Timeout timestamp of the next turn. * @custom:field asserter Address of the asserter. * @custom:field challenger Address of the challenger. * @custom:field segments Array of the segment. * @custom:field segStart The L2 block number of the first segment. * @custom:field segSize The number of L2 blocks. */ struct Challenge { uint8 turn; uint64 timeoutAt; address asserter; address challenger; bytes32[] segments; uint256 segSize; uint256 segStart; } /** * @notice Struct representing a validator's bond. * * @custom:field amount Amount of the lock. * @custom:field expiresAt The expiration timestamp of bond. */ struct Bond { uint128 amount; uint128 expiresAt; } /** * @notice Struct representing multisig transaction data. * * @custom:field destination The destination address to run the transaction. * @custom:field executed Record whether a transaction was executed or not. * @custom:field value The value passed in while executing the transaction. * @custom:field data Calldata for transaction. */ struct MultiSigTransaction { address destination; bool executed; uint256 value; bytes data; } /** * @notice Struct representing the data for verifying the public input. * * @custom:field srcOutputRootProof Proof of the source output root. * @custom:field dstOutputRootProof Proof of the destination output root. * @custom:field publicInput Ingredients to compute the public input used by ZK proof verification. * @custom:field rlps Pre-encoded RLPs to compute the next block hash * of the source output root proof. * @custom:field l2ToL1MessagePasserBalance Balance of the L2ToL1MessagePasser account. * @custom:field l2ToL1MessagePasserCodeHash Codehash of the L2ToL1MessagePasser account. * @custom:field merkleProof Merkle proof of L2ToL1MessagePasser account against the state root. */ struct PublicInputProof { OutputRootProof srcOutputRootProof; OutputRootProof dstOutputRootProof; PublicInput publicInput; BlockHeaderRLP rlps; bytes32 l2ToL1MessagePasserBalance; bytes32 l2ToL1MessagePasserCodeHash; bytes[] merkleProof; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.15; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; /** * @title Semver * @notice Semver is a simple contract for managing contract versions. */ contract Semver { /** * @notice Contract version number (major). */ uint256 private immutable MAJOR_VERSION; /** * @notice Contract version number (minor). */ uint256 private immutable MINOR_VERSION; /** * @notice Contract version number (patch). */ uint256 private immutable PATCH_VERSION; /** * @param _major Version number (major). * @param _minor Version number (minor). * @param _patch Version number (patch). */ constructor( uint256 _major, uint256 _minor, uint256 _patch ) { MAJOR_VERSION = _major; MINOR_VERSION = _minor; PATCH_VERSION = _patch; } /** * @notice Returns the full semver contract version. * * @return Semver contract version as a string. */ function version() public view virtual returns (string memory) { return string( abi.encodePacked( Strings.toString(MAJOR_VERSION), ".", Strings.toString(MINOR_VERSION), ".", Strings.toString(PATCH_VERSION) ) ); } }
// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Types } from "../libraries/Types.sol"; import { Semver } from "../universal/Semver.sol"; import { ValidatorPool } from "./ValidatorPool.sol"; /** * @custom:proxied * @title L2OutputOracle * @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a * commitment to the state of the L2 chain. Other contracts like the KromaPortal use * these outputs to verify information about the state of L2. */ contract L2OutputOracle is Initializable, Semver { /** * @notice The address of the validator pool contract. Can be updated via upgrade. */ ValidatorPool public immutable VALIDATOR_POOL; /** * @notice The address of the colosseum contract. Can be updated via upgrade. */ address public immutable COLOSSEUM; /** * @notice The interval in L2 blocks at which checkpoints must be submitted. Although this is * immutable, it can be modified by upgrading the implementation contract. * Note that nodes that fetch and use this value need to restart when it is modified. */ uint256 public immutable SUBMISSION_INTERVAL; /** * @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified. */ uint256 public immutable L2_BLOCK_TIME; /** * @notice Minimum time (in seconds) that must elapse before a withdrawal can be finalized. */ uint256 public immutable FINALIZATION_PERIOD_SECONDS; /** * @notice The number of the first L2 block recorded in this contract. */ uint256 public startingBlockNumber; /** * @notice The timestamp of the first L2 block recorded in this contract. */ uint256 public startingTimestamp; /** * @notice Array of L2 checkpoint outputs. */ Types.CheckpointOutput[] internal l2Outputs; /** * @notice Emitted when an output is submitted. * * @param outputRoot The output root. * @param l2OutputIndex The index of the output in the l2Outputs array. * @param l2BlockNumber The L2 block number of the output root. * @param l1Timestamp The L1 timestamp when submitted. */ event OutputSubmitted( bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp ); /** * @notice Emitted when an output is replaced. * * @param outputIndex Replaced L2 output index. * @param newOutputRoot L2 output root after replacement. */ event OutputReplaced(uint256 indexed outputIndex, bytes32 newOutputRoot); /** * @custom:semver 1.0.0 * * @param _validatorPool The address of the ValidatorPool contract. * @param _colosseum The address of the Colosseum contract. * @param _submissionInterval Interval in blocks at which checkpoints must be submitted. * @param _l2BlockTime The time per L2 block, in seconds. * @param _startingBlockNumber The number of the first L2 block. * @param _startingTimestamp The timestamp of the first L2 block. * @param _finalizationPeriodSeconds Output finalization time in seconds. */ constructor( ValidatorPool _validatorPool, address _colosseum, uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _startingBlockNumber, uint256 _startingTimestamp, uint256 _finalizationPeriodSeconds ) Semver(1, 0, 0) { require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0"); require( _submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0" ); VALIDATOR_POOL = _validatorPool; COLOSSEUM = _colosseum; SUBMISSION_INTERVAL = _submissionInterval; L2_BLOCK_TIME = _l2BlockTime; FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds; initialize(_startingBlockNumber, _startingTimestamp); } /** * @notice Initializer. * * @param _startingBlockNumber Block number for the first recorded L2 block. * @param _startingTimestamp Timestamp for the first recorded L2 block. */ function initialize(uint256 _startingBlockNumber, uint256 _startingTimestamp) public initializer { require( _startingTimestamp <= block.timestamp, "L2OutputOracle: starting L2 timestamp must be less than current time" ); startingTimestamp = _startingTimestamp; startingBlockNumber = _startingBlockNumber; } /** * @notice Replaces the output that corresponds to the given output index. * Only the Colosseum contract can replace an output. * * @param _l2OutputIndex Index of the L2 output to be replaced. * @param _newOutputRoot The L2 output root to replace the existing one. * @param _submitter Address of the L2 output submitter. */ function replaceL2Output( uint256 _l2OutputIndex, bytes32 _newOutputRoot, address _submitter ) external { require( msg.sender == COLOSSEUM, "L2OutputOracle: only the colosseum contract can replace an output" ); require(_submitter != address(0), "L2OutputOracle: submitter address cannot be zero"); // Make sure we're not *increasing* the length of the array. require( _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot replace an output after the latest output index" ); Types.CheckpointOutput storage output = l2Outputs[_l2OutputIndex]; // Do not allow replacing any outputs that have already been finalized. require( block.timestamp - output.timestamp < FINALIZATION_PERIOD_SECONDS, "L2OutputOracle: cannot replace an output that has already been finalized" ); output.outputRoot = _newOutputRoot; output.submitter = _submitter; emit OutputReplaced(_l2OutputIndex, _newOutputRoot); } /** * @notice Accepts an outputRoot and the block number of the corresponding L2 block. * The block number must be equal to the current value returned by `nextBlockNumber()` * in order to be accepted. This function may only be called by the validator. * * @param _outputRoot The L2 output of the checkpoint block. * @param _l2BlockNumber The L2 block number that resulted in _outputRoot. * @param _l1BlockHash A block hash which must be included in the current chain. * @param _l1BlockNumber The block number with the specified block hash. */ function submitL2Output( bytes32 _outputRoot, uint256 _l2BlockNumber, bytes32 _l1BlockHash, uint256 _l1BlockNumber ) external payable { address nextValidator = VALIDATOR_POOL.nextValidator(); // If it's not a public round, only selected validators can submit output. if (nextValidator != Constants.VALIDATOR_PUBLIC_ROUND_ADDRESS) { require( msg.sender == nextValidator, "L2OutputOracle: only the next selected validator can submit output" ); } require( _l2BlockNumber == nextBlockNumber(), "L2OutputOracle: block number must be equal to next expected block number" ); require( computeL2Timestamp(_l2BlockNumber) < block.timestamp, "L2OutputOracle: cannot submit L2 output in the future" ); require( _outputRoot != bytes32(0), "L2OutputOracle: L2 checkpoint output cannot be the zero hash" ); if (_l1BlockHash != bytes32(0) && blockhash(_l1BlockNumber) != bytes32(0)) { // This check allows the validator to submit an output based on a given L1 block, // without fear that it will be reorged out. // It will be skipped if the blockheight provided is more than 256 blocks behind the // chain tip (as the hash will return as zero). require( blockhash(_l1BlockNumber) == _l1BlockHash, "L2OutputOracle: block hash does not match the hash at the expected height" ); } uint256 outputIndex = nextOutputIndex(); l2Outputs.push( Types.CheckpointOutput({ submitter: msg.sender, outputRoot: _outputRoot, timestamp: uint128(block.timestamp), l2BlockNumber: uint128(_l2BlockNumber) }) ); emit OutputSubmitted(_outputRoot, outputIndex, _l2BlockNumber, block.timestamp); VALIDATOR_POOL.createBond( outputIndex, uint128(block.timestamp + FINALIZATION_PERIOD_SECONDS) ); } /** * @notice Returns an output by index. Reverts if output is not found at the given index. * * @param _l2OutputIndex Index of the output to return. * * @return The output at the given index. */ function getL2Output(uint256 _l2OutputIndex) external view returns (Types.CheckpointOutput memory) { return l2Outputs[_l2OutputIndex]; } /** * @notice Returns the index of the L2 output that checkpoints a given L2 block number. Uses a * binary search to find the first output greater than or equal to the given block. * * @param _l2BlockNumber L2 block number to find a checkpoint for. * * @return Index of the first checkpoint that commits to the given L2 block number. */ function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) { // Make sure an output for this block number has actually been submitted. require( _l2BlockNumber <= latestBlockNumber(), "L2OutputOracle: cannot get output for a block that has not been submitted" ); // Make sure there's at least one output submitted. require( l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been submitted yet" ); // Find the output via binary search, guaranteed to exist. uint256 lo = 0; uint256 hi = l2Outputs.length; while (lo < hi) { uint256 mid = (lo + hi) / 2; if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) { lo = mid + 1; } else { hi = mid; } } return lo; } /** * @notice Returns the L2 checkpoint output that checkpoints a given L2 block number. * * @param _l2BlockNumber L2 block number to find a checkpoint for. * * @return First checkpoint that commits to the given L2 block number. */ function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.CheckpointOutput memory) { return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)]; } /** * @notice Returns the index of the latest submitted output. Will revert if no outputs * have been submitted yet. * * @return The index of the latest submitted output. */ function latestOutputIndex() external view returns (uint256) { return l2Outputs.length - 1; } /** * @notice Returns the index of the next output to be submitted. * * @return The index of the next output to be submitted. */ function nextOutputIndex() public view returns (uint256) { return l2Outputs.length; } /** * @notice Returns the block number of the latest submitted L2 checkpoint output. If no outputs * have been submitted yet then this function will return the starting block number. * * @return Latest submitted L2 block number. */ function latestBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber; } /** * @notice Computes the block number of the next L2 block that needs to be checkpointed. If no * outputs have been submitted yet then this function will return the latest block * number, which is the starting block number. * * @return Next L2 block number. */ function nextBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? latestBlockNumber() : latestBlockNumber() + SUBMISSION_INTERVAL; } /** * @notice Returns the L2 timestamp corresponding to a given L2 block number. * * @param _l2BlockNumber The L2 block number of the target block. * * @return L2 timestamp of the given block. */ function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) { return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME); } /** * @notice Returns the address of the L2 output submitter. * * @param _outputIndex Index of an output. * * @return Address of the submitter. */ function getSubmitter(uint256 _outputIndex) external view returns (address) { return l2Outputs[_outputIndex].submitter; } /** * @notice Returns if the output of given index is finalized. * * @param _outputIndex Index of an output. * * @return If the given output is finalized or not. */ function isFinalized(uint256 _outputIndex) external view returns (bool) { return l2Outputs[_outputIndex].timestamp + FINALIZATION_PERIOD_SECONDS < block.timestamp; } /** * @notice Returns the finalization time of given output index. * * @param _outputIndex Index of an output. * * @return The finalization time of given output index. */ function finalizedAt(uint256 _outputIndex) external view returns (uint256) { return l2Outputs[_outputIndex].timestamp + FINALIZATION_PERIOD_SECONDS; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Arithmetic } from "../libraries/Arithmetic.sol"; import { Burn } from "../libraries/Burn.sol"; /** * @custom:upgradeable * @title ResourceMetering * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing * updates automatically based on current demand. */ abstract contract ResourceMetering is Initializable { /** * @notice Represents the various parameters that control the way in which resources are * metered. Corresponds to the EIP-1559 resource metering system. * * @custom:field prevBaseFee Base fee from the previous block(s). * @custom:field prevBoughtGas Amount of gas bought so far in the current block. * @custom:field prevBlockNum Last block number that the base fee was updated. */ struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /** * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas * market. These values should be set with care as it is possible to set them in * a way that breaks the deposit gas market. The target resource limit is defined as * maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a * single word. There is additional space for additions in the future. * * @custom:field maxResourceLimit Represents the maximum amount of deposit gas that * can be purchased per block. * @custom:field elasticityMultiplier Determines the target resource limit along with * the resource limit. * @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. * @custom:field minimumBaseFee The min deposit base fee, it is clamped to this * value. * @custom:field systemTxMaxGas The amount of gas supplied to the system * transaction. This should be set to the same number * that the kroma-node sets as the gas limit for the * system transaction. * @custom:field maximumBaseFee The max deposit base fee, it is clamped to this * value. */ struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /** * @notice EIP-1559 style gas parameters. */ ResourceParams public params; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[48] private __gap; /** * @notice Meters access to a function based an amount of a requested resource. * * @param _amount Amount of the resource requested. */ modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /** * @notice An internal function that holds all of the logic for metering a resource. * * @param _amount Amount of the resource requested. * @param _initialGas The amount of gas before any modifier execution. */ function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /** * @notice Virtual function that returns the resource config. Contracts that inherit this * contract must implement this function. * * @return ResourceConfig */ function _resourceConfig() internal virtual returns (ResourceConfig memory); /** * @notice Sets initial resource parameter values. This function must either be called by the * initializer function of an upgradeable child contract. */ // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Semver } from "../universal/Semver.sol"; import { ResourceMetering } from "./ResourceMetering.sol"; /** * @title SystemConfig * @notice The SystemConfig contract is used to manage configuration of a Kroma network. All * configuration is stored on L1 and picked up by L2 as part of the derivation of the L2 * chain. */ contract SystemConfig is OwnableUpgradeable, Semver { /** * @notice Enum representing different types of updates. * * @custom:value BATCHER Represents an update to the batcher hash. * @custom:value GAS_CONFIG Represents an update to txn fee config on L2. * @custom:value GAS_LIMIT Represents an update to gas limit on L2. * @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe * block distribution. * @custom:value VALIDATOR_REWARD_SCALAR Represents an update to validator reward scalar. */ enum UpdateType { BATCHER, GAS_CONFIG, GAS_LIMIT, UNSAFE_BLOCK_SIGNER, VALIDATOR_REWARD_SCALAR } /** * @notice Version identifier, used for upgrades. */ uint256 public constant VERSION = 0; /** * @notice Storage slot that the unsafe block signer is stored at. Storing it at this * deterministic storage slot allows for decoupling the storage layout from the way * that `solc` lays out storage. The `kroma-node` uses a storage proof to fetch this value. */ bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner"); /** * @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation. */ uint256 public overhead; /** * @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation. */ uint256 public scalar; /** * @notice Identifier for the batcher. For version 1 of this configuration, this is represented * as an address left-padded with zeros to 32 bytes. */ bytes32 public batcherHash; /** * @notice L2 block gas limit. */ uint64 public gasLimit; /** * @notice The configuration for the deposit fee market. Used by the KromaPortal * to meter the cost of buying L2 gas on L1. Set as internal and wrapped with a getter * so that the struct is returned instead of a tuple. */ ResourceMetering.ResourceConfig internal _resourceConfig; /** * @notice The scalar value to distribute transaction fees as validator reward. * The denominator is 10000, so the ratio is expressed in 4 decimal places. */ uint256 public validatorRewardScalar; /** * @notice Emitted when configuration is updated * * @param version SystemConfig version. * @param updateType Type of update. * @param data Encoded update data. */ event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); /** * @custom:semver 1.0.0 * * @param _owner Initial owner of the contract. * @param _overhead Initial overhead value. * @param _scalar Initial scalar value. * @param _batcherHash Initial batcher hash. * @param _gasLimit Initial gas limit. * @param _unsafeBlockSigner Initial unsafe block signer address. * @param _config Initial resource config. * @param _validatorRewardScalar Initial validator reward scalar. */ constructor( address _owner, uint256 _overhead, uint256 _scalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config, uint256 _validatorRewardScalar ) Semver(1, 0, 0) { initialize( _owner, _overhead, _scalar, _batcherHash, _gasLimit, _unsafeBlockSigner, _config, _validatorRewardScalar ); } /** * @notice Initializer. The resource config must be set before the * require check. * * @param _owner Initial owner of the contract. * @param _overhead Initial overhead value. * @param _scalar Initial scalar value. * @param _batcherHash Initial batcher hash. * @param _gasLimit Initial gas limit. * @param _unsafeBlockSigner Initial unsafe block signer address. * @param _config Initial ResourceConfig. * @param _validatorRewardScalar Initial validator reward scalar. */ function initialize( address _owner, uint256 _overhead, uint256 _scalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config, uint256 _validatorRewardScalar ) public initializer { __Ownable_init(); transferOwnership(_owner); overhead = _overhead; scalar = _scalar; batcherHash = _batcherHash; gasLimit = _gasLimit; _setUnsafeBlockSigner(_unsafeBlockSigner); _setResourceConfig(_config); require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); validatorRewardScalar = _validatorRewardScalar; } /** * @notice Returns the minimum L2 gas limit that can be safely set for the system to * operate. The L2 gas limit must be larger than or equal to the amount of * gas that is allocated for deposits per block plus the amount of gas that * is allocated for the system transaction. * This function is used to determine if changes to parameters are safe. * * @return uint64 */ function minimumGasLimit() public view returns (uint64) { return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas); } /** * @notice High level getter for the unsafe block signer address. Unsafe blocks can be * propagated across the p2p network if they are signed by the key corresponding to * this address. * * @return Address of the unsafe block signer. */ // solhint-disable-next-line ordering function unsafeBlockSigner() external view returns (address) { address addr; bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT; assembly { addr := sload(slot) } return addr; } /** * @notice Updates the unsafe block signer address. * * @param _unsafeBlockSigner New unsafe block signer address. */ function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner { _setUnsafeBlockSigner(_unsafeBlockSigner); bytes memory data = abi.encode(_unsafeBlockSigner); emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data); } /** * @notice Updates the batcher hash. * * @param _batcherHash New batcher hash. */ function setBatcherHash(bytes32 _batcherHash) external onlyOwner { batcherHash = _batcherHash; bytes memory data = abi.encode(_batcherHash); emit ConfigUpdate(VERSION, UpdateType.BATCHER, data); } /** * @notice Updates gas config. * * @param _overhead New overhead value. * @param _scalar New scalar value. */ function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner { overhead = _overhead; scalar = _scalar; bytes memory data = abi.encode(_overhead, _scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /** * @notice Updates the L2 gas limit. * * @param _gasLimit New gas limit. */ function setGasLimit(uint64 _gasLimit) external onlyOwner { require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); gasLimit = _gasLimit; bytes memory data = abi.encode(_gasLimit); emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data); } /** * @notice Low level setter for the unsafe block signer address. This function exists to * deduplicate code around storing the unsafeBlockSigner address in storage. * * @param _unsafeBlockSigner New unsafeBlockSigner value. */ function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal { bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT; assembly { sstore(slot, _unsafeBlockSigner) } } /** * @notice A getter for the resource config. Ensures that the struct is * returned instead of a tuple. * * @return ResourceConfig */ function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) { return _resourceConfig; } /** * @notice An external setter for the resource config. In the future, this * method may emit an event that the `kroma-node` picks up for when the * resource config is changed. * * @param _config The new resource config values. */ function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner { _setResourceConfig(_config); } /** * @notice An internal setter for the resource config. Ensures that the * config is sane before storing it by checking for invariants. * * @param _config The new resource config. */ function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal { // Min base fee must be less than or equal to max base fee. require( _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base" ); // Base fee change denominator must be greater than 1. require( _config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1" ); // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit. // The gas limit must be increased before these values can be increased. require( _config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low" ); // Elasticity multiplier must be greater than 0. require( _config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0" ); // No precision loss when computing target resource limit. require( ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier) == _config.maxResourceLimit, "SystemConfig: precision loss with target resource limit" ); _resourceConfig = _config; } /** * @notice Updates the validator reward scalar. * * @param _validatorRewardScalar New validator reward scalar. */ function setValidatorRewardScalar(uint256 _validatorRewardScalar) external onlyOwner { require( _validatorRewardScalar <= Constants.VALIDATOR_REWARD_DENOMINATOR, "SystemConfig: the max value of validator reward scalar has been exceeded" ); validatorRewardScalar = _validatorRewardScalar; bytes memory data = abi.encode(_validatorRewardScalar); emit ConfigUpdate(VERSION, UpdateType.VALIDATOR_REWARD_SCALAR, data); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Bytes } from "../libraries/Bytes.sol"; import { NodeReader } from "../libraries/NodeReader.sol"; import { IZKMerkleTrie } from "./IZKMerkleTrie.sol"; import { ZKTrieHasher } from "./ZKTrieHasher.sol"; /** * @custom:proxied * @title ZKMerkleTrie * @notice The ZKMerkleTrie is contract which can produce a hash according to ZKTrie. * This owns an interface of Poseidon2 that is required to compute hash used by ZKTrie. */ contract ZKMerkleTrie is IZKMerkleTrie, ZKTrieHasher { /** * @notice Struct representing a node in the trie. */ struct TrieNode { bytes encoded; NodeReader.Node decoded; } /** * @notice Magic hash which indicates * See https://github.com/kroma-network/zktrie/blob/main/trie/zk_trie_proof.go. */ bytes32 private constant MAGIC_SMT_BYTES_HASH = keccak256( hex"5448495320495320534f4d45204d4147494320425954455320464f5220534d54206d3172525867503278704449" ); /** * @param _poseidon2 The address of poseidon2 contract. */ constructor(address _poseidon2) ZKTrieHasher(_poseidon2) {} /** * @notice Checks if a given bytes is MAGIC_SMT_BYTES_HASH. * * @param _value Bytes to be compared. */ function isMagicSmtBytesHash(bytes memory _value) private pure returns (bool) { return keccak256(_value) == MAGIC_SMT_BYTES_HASH; } /** * @inheritdoc IZKMerkleTrie */ function verifyInclusionProof( bytes32 _key, bytes memory _value, bytes[] memory _proofs, bytes32 _root ) external view returns (bool) { (bool exists, bytes memory value) = this.get(_key, _proofs, _root); return (exists && Bytes.equal(_value, value)); } /** * @notice Retrieves the value associated with a given key. * * @param _key Key to search for, as hex bytes. * @param _proofs Merkle trie inclusion proof for the key. * @param _root Known root of the Merkle trie. * * @return Whether or not the key exists. * @return Value of the key if it exists. */ function get( bytes32 _key, bytes[] memory _proofs, bytes32 _root ) external view returns (bool, bytes memory) { require(_proofs.length >= 2, "ZKMerkleTrie: provided proof is too short"); require( isMagicSmtBytesHash(_proofs[_proofs.length - 1]), "ZKMerkleTrie: the last item is not magic hash" ); bytes32 key = _hashElem(_key); TrieNode[] memory nodes = _parseProofs(_proofs); NodeReader.Node memory currentNode; bytes32 computedKey = bytes32(0); bool exists = false; bool empty = false; bytes memory value = bytes(""); for (uint256 i = nodes.length - 2; i >= 0; ) { currentNode = nodes[i].decoded; if (currentNode.nodeType == NodeReader.NodeType.MIDDLE) { bool isLeft = _isLeft(key, i); if (isLeft) { require(computedKey == currentNode.childL, "ZKMerkleTrie: invalid key L"); } else { require(computedKey == currentNode.childR, "ZKMerkleTrie: invalid key R"); } computedKey = _hashFixed2Elems( currentNode.childL, currentNode.childR ); } else if (currentNode.nodeType == NodeReader.NodeType.LEAF) { require(!exists && !empty, "ZKMerkleTrie: duplicated terminal node"); exists = currentNode.nodeKey == key; if (!exists) { break; } computedKey = _hashFixed3Elems( bytes32(uint256(1)), currentNode.nodeKey, _valueHash(currentNode.compressedFlags, currentNode.valuePreimage) ); bytes32[] memory valuePreimage = currentNode.valuePreimage; uint256 len = valuePreimage.length; assembly { value := valuePreimage mstore(value, mul(len, 32)) } if (currentNode.keyPreimage != bytes32(0)) { // NOTE(chokobole): The comparison order is important, because in this setting, // first condition is mostly evaluted to be true. When we're sure about // database preimage, then we need to enable just one of check below! require( currentNode.keyPreimage == _key || currentNode.keyPreimage == key, "ZKMerkleTrie: invalid key preimage" ); } } else if (currentNode.nodeType == NodeReader.NodeType.EMPTY) { require(!exists && !empty, "ZKMerkleTrie: duplicated terminal node"); empty = true; } if (i == 0) { require(computedKey == _root, "ZKMerkeTrie: invalid root"); break; } unchecked { --i; } } return (exists, value); } /** * @notice Parses an array of proof elements into a new array that contains both the original * encoded element and the decoded element. * * @param _proofs Array of proof elements to parse. * * @return TrieNode parsed into easily accessible structs. */ function _parseProofs(bytes[] memory _proofs) private pure returns (TrieNode[] memory) { uint256 length = _proofs.length; TrieNode[] memory nodes = new TrieNode[](length); // NOTE(chokobole): Last proof is MAGIC_SMT_BYTES_HASH! for (uint256 i = 0; i < length - 1; ) { NodeReader.Node memory node = NodeReader.readNode(_proofs[i]); nodes[i] = TrieNode({ encoded: _proofs[i], decoded: node }); unchecked { ++i; } } return nodes; } /** * @notice Computes merkle path at index n based on a given keyPreimage. * * @param _keyPreimage Keypreimage. * @param _n Bit to mask. * * @return Whether merkle path is left or not. */ function _isLeft(bytes32 _keyPreimage, uint256 _n) private pure returns (bool) { require(_n < 256, "ZKMerkleTrie: too long depth"); return _keyPreimage & bytes32(1 << _n) == 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Hashing } from "./Hashing.sol"; import { Types } from "./Types.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; /** * @title Encoding * @notice Encoding handles Kroma's various different encoding schemes. */ library Encoding { /** * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent * to the L2 system. Useful for searching for a deposit in the L2 system. The * transaction is prefixed with 0x7e to identify its EIP-2718 type. * * @param _tx User deposit transaction to encode. * * @return RLP encoded L2 deposit transaction. */ function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](7); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /** * @notice Encodes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /** * @notice Encodes a cross domain message based on the V0 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV0( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /** * @notice Adds a version number into the first two bytes of a message nonce. * * @param _nonce Message nonce to encode into. * @param _version Version number to encode into the message nonce. * * @return Message nonce with version encoded into the first two bytes. */ function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /** * @notice Pulls the version out of a version-encoded nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * * @return Nonce without encoded version. * @return Version of the message. */ function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode * @title RLPWriter * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's * RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor * modifications to improve legibility. */ library RLPWriter { /** * @notice RLP encodes a byte string. * * @param _in The byte string to encode. * * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * @notice RLP encodes a list of RLP encoded byte byte strings. * * @param _in The list of RLP encoded byte strings. * * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * @notice RLP encodes a string. * * @param _in The string to encode. * * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * @notice RLP encodes an address. * * @param _in The address to encode. * * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * @notice RLP encodes a uint. * * @param _in The uint256 to encode. * * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * @notice RLP encodes a bool. * * @param _in The bool to encode. * * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /** * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. * * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * @notice Encode integer in big endian binary form with no leading zeroes. * * @param _x The integer to encode. * * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * @custom:attribution https://github.com/Arachnid/solidity-stringutils * @notice Copies a piece of memory to another location. * * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder * @notice Flattens a list of byte strings into one byte string. * * @param _list List of byte strings to flatten. * * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Constants } from "../libraries/Constants.sol"; import { Predeploys } from "../libraries/Predeploys.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Types } from "../libraries/Types.sol"; import { Semver } from "../universal/Semver.sol"; import { ValidatorRewardVault } from "../L2/ValidatorRewardVault.sol"; import { KromaPortal } from "./KromaPortal.sol"; import { L2OutputOracle } from "./L2OutputOracle.sol"; /** * @custom:proxied * @title ValidatorPool * @notice The ValidatorPool determines whether the validator is present and manages the validator's deposit. */ contract ValidatorPool is ReentrancyGuardUpgradeable, Semver { /** * @notice The gas limit to use when rewarding validator in the ValidatorRewardVault on L2. * This value is measured through simulation. */ uint64 public constant VAULT_REWARD_GAS_LIMIT = 100000; /** * @notice The numerator of the tax. */ uint128 public constant TAX_NUMERATOR = 20; /** * @notice The denominator of the tax. */ uint128 public constant TAX_DENOMINATOR = 100; /** * @notice The address of the L2OutputOracle contract. Can be updated via upgrade. */ L2OutputOracle public immutable L2_ORACLE; /** * @notice The address of the KromaPortal contract. Can be updated via upgrade. */ KromaPortal public immutable PORTAL; /** * @notice The address of the SecurityCouncil contract. Can be updated via upgrade. */ address public immutable SECURITY_COUNCIL; /** * @notice The address of the trusted validator. Can be updated via upgrade. */ address public immutable TRUSTED_VALIDATOR; /** * @notice The required bond amount. Can be updated via upgrade. */ uint128 public immutable REQUIRED_BOND_AMOUNT; /** * @notice The max number of unbonds when trying unbond. */ uint256 public immutable MAX_UNBOND; /** * @notice The duration of a submission round for one output (in seconds). * Note that there are two submission rounds for an output: PRIORITY ROUND and PUBLIC ROUND. */ uint256 public immutable ROUND_DURATION; /** * @notice A mapping of balances. */ mapping(address => uint256) internal balances; /** * @notice The bond corresponding to a specific output index. */ mapping(uint256 => Types.Bond) internal bonds; /** * @notice The output index to unbond next. */ uint256 internal nextUnbondOutputIndex; /** * @notice An array of validator addresses. */ address[] internal validators; /** * @notice The index of the specific address in the validator array. */ mapping(address => uint256) internal validatorIndexes; /** * @notice Address of the next validator with priority for submitting output. */ address internal nextPriorityValidator; /** * @notice A mapping of pending bonds that have not yet been included in a bond. */ mapping(uint256 => mapping(address => uint128)) internal pendingBonds; /** * @notice Emitted when a validator bonds. * * @param submitter Address of submitter. * @param outputIndex Index of the L2 checkpoint output index. * @param amount Amount of bonded. * @param expiresAt The expiration timestamp of bond. */ event Bonded( address indexed submitter, uint256 indexed outputIndex, uint128 amount, uint128 expiresAt ); /** * @notice Emitted when the pending bond is added. * * @param outputIndex Index of the L2 checkpoint output. * @param challenger Address of the challenger. * @param amount Amount of bond added. */ event PendingBondAdded(uint256 indexed outputIndex, address indexed challenger, uint128 amount); /** * @notice Emitted when the bond is increased. * * @param outputIndex Index of the L2 checkpoint output. * @param challenger Address of the challenger. * @param amount Amount of bond increased. */ event BondIncreased(uint256 indexed outputIndex, address indexed challenger, uint128 amount); /** * @notice Emitted when the pending bond is released(refunded). * * @param outputIndex Index of the L2 checkpoint output. * @param challenger Address of the challenger. * @param recipient Address to receive amount from a pending bond. * @param amount Amount of bond released. */ event PendingBondReleased( uint256 indexed outputIndex, address indexed challenger, address indexed recipient, uint128 amount ); /** * @notice Emitted when a validator unbonds. * * @param outputIndex Index of the L2 checkpoint output. * @param recipient Address of the recipient. * @param amount Amount of unbonded. */ event Unbonded(uint256 indexed outputIndex, address indexed recipient, uint128 amount); /** * @notice A modifier that only allows the Colosseum contract to call */ modifier onlyColosseum() { require(msg.sender == L2_ORACLE.COLOSSEUM(), "ValidatorPool: sender is not Colosseum"); _; } /** * @custom:semver 1.0.0 * * @param _l2OutputOracle Address of the L2OutputOracle. * @param _portal Address of the KromaPortal. * @param _securityCouncil Address of the security council. * @param _trustedValidator Address of the trusted validator. * @param _requiredBondAmount The required bond amount. * @param _maxUnbond The max number of unbonds when trying unbond. * @param _roundDuration The duration of one submission round in seconds. */ constructor( L2OutputOracle _l2OutputOracle, KromaPortal _portal, address _securityCouncil, address _trustedValidator, uint256 _requiredBondAmount, uint256 _maxUnbond, uint256 _roundDuration ) Semver(1, 0, 0) { L2_ORACLE = _l2OutputOracle; PORTAL = _portal; SECURITY_COUNCIL = _securityCouncil; TRUSTED_VALIDATOR = _trustedValidator; REQUIRED_BOND_AMOUNT = uint128(_requiredBondAmount); MAX_UNBOND = _maxUnbond; // Note that this value MUST be (SUBMISSION_INTERVAL * L2_BLOCK_TIME) / 2. ROUND_DURATION = _roundDuration; initialize(); } /** * @notice Initializer. */ function initialize() public initializer { __ReentrancyGuard_init_unchained(); } /** * @notice Deposit ETH to be used as bond. */ function deposit() external payable { _increaseBalance(msg.sender, msg.value); } /** * @notice Withdraw a given amount. * * @param _amount Amount to withdraw. */ function withdraw(uint256 _amount) external nonReentrant { _decreaseBalance(msg.sender, _amount); bool success = SafeCall.call(msg.sender, gasleft(), _amount, ""); require(success, "ValidatorPool: ETH transfer failed"); } /** * @notice Bond asset corresponding to the given output index. * This function is called when submitting output. * * @param _outputIndex Index of the L2 checkpoint output. * @param _expiresAt The expiration timestamp of bond. */ function createBond(uint256 _outputIndex, uint128 _expiresAt) external { require(msg.sender == address(L2_ORACLE), "ValidatorPool: sender is not L2OutputOracle"); Types.Bond storage bond = bonds[_outputIndex]; require( bond.expiresAt == 0, "ValidatorPool: bond of the given output index already exists" ); // Unbond the bond of nextUnbondOutputIndex if available. _tryUnbond(); address submitter = L2_ORACLE.getSubmitter(_outputIndex); _decreaseBalance(submitter, REQUIRED_BOND_AMOUNT); bond.amount = REQUIRED_BOND_AMOUNT; bond.expiresAt = _expiresAt; emit Bonded(submitter, _outputIndex, REQUIRED_BOND_AMOUNT, _expiresAt); } /** * @notice Adds a pending bond to the challenge corresponding to the given output index and challenger address. * The pending bond is added to the bond when the challenge is proven or challenger is timed out, * or refunded when the challenge is canceled. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. */ function addPendingBond(uint256 _outputIndex, address _challenger) external onlyColosseum { Types.Bond storage bond = bonds[_outputIndex]; require( bond.expiresAt >= block.timestamp, "ValidatorPool: the output is already finalized" ); _decreaseBalance(_challenger, REQUIRED_BOND_AMOUNT); pendingBonds[_outputIndex][_challenger] = REQUIRED_BOND_AMOUNT; emit PendingBondAdded(_outputIndex, _challenger, REQUIRED_BOND_AMOUNT); } /** * @notice Releases the corresponding pending bond to the given output index and challenger address * if a challenge is canceled. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. * @param _recipient Address to receive amount from a pending bond. */ function releasePendingBond( uint256 _outputIndex, address _challenger, address _recipient ) external onlyColosseum { uint128 bonded = pendingBonds[_outputIndex][_challenger]; require(bonded > 0, "ValidatorPool: the pending bond does not exist"); delete pendingBonds[_outputIndex][_challenger]; _increaseBalance(_recipient, bonded); emit PendingBondReleased(_outputIndex, _challenger, _recipient, bonded); } /** * @notice Increases the bond amount corresponding to the given output index by the pending bond amount. * This is when taxes are charged, and note that taxes are a means of preventing collusive attacks by * the asserter and challenger. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. */ function increaseBond(uint256 _outputIndex, address _challenger) external onlyColosseum { Types.Bond storage bond = bonds[_outputIndex]; require( bond.expiresAt >= block.timestamp, "ValidatorPool: the output is already finalized" ); uint128 pendingBond = pendingBonds[_outputIndex][_challenger]; require(pendingBond > 0, "ValidatorPool: the pending bond does not exist"); uint128 tax = (pendingBond * TAX_NUMERATOR) / TAX_DENOMINATOR; uint128 increased = pendingBond - tax; delete pendingBonds[_outputIndex][_challenger]; unchecked { bond.amount += increased; balances[SECURITY_COUNCIL] += tax; } emit BondIncreased(_outputIndex, _challenger, increased); } /** * @notice Attempt to unbond. Reverts if unbond is not possible. */ function unbond() external { bool released = _tryUnbond(); require(released, "ValidatorPool: no bond that can be unbond"); } /** * @notice Attempts to unbond starting from nextUnbondOutputIndex and returns whether at least * one unbond is executed. Tries unbond at most MAX_UNBOND number of bonds and sends * a reward message to L2 for each unbond. * Note that it updates the next priority validator using last unbond, and not updates * when no unbond. * * @return Whether at least one unbond is executed. */ function _tryUnbond() private returns (bool) { uint256 outputIndex = nextUnbondOutputIndex; uint128 bondAmount; Types.Bond storage bond; Types.CheckpointOutput memory output; uint256 unbondedNum = 0; for (; unbondedNum < MAX_UNBOND; ) { bond = bonds[outputIndex]; bondAmount = bond.amount; if (block.timestamp >= bond.expiresAt && bondAmount > 0) { delete bonds[outputIndex]; output = L2_ORACLE.getL2Output(outputIndex); _increaseBalance(output.submitter, bondAmount); emit Unbonded(outputIndex, output.submitter, bondAmount); // Send reward message to L2 ValidatorRewardVault. _sendRewardMessageToL2Vault(output); unchecked { ++unbondedNum; ++outputIndex; } } else { break; } } if (unbondedNum > 0) { // Select the next priority validator. _updatePriorityValidator(output.outputRoot); unchecked { nextUnbondOutputIndex = outputIndex; } return true; } return false; } /** * @notice Updates next priority validator address. * * @param _outputRoot The L2 output of the checkpoint block. */ function _updatePriorityValidator(bytes32 _outputRoot) private { uint256 len = validators.length; if (len > 0) { // TODO(pangssu): improve next validator selection uint256 validatorIndex = uint256( keccak256( abi.encodePacked( _outputRoot, block.number, block.coinbase, block.difficulty, blockhash(block.number - 1) ) ) ) % len; nextPriorityValidator = validators[validatorIndex]; } else { nextPriorityValidator = address(0); } } /** * @notice Sends reward message to ValidatorRewardVault contract on L2 using Portal. * * @param _output The finalized output. */ function _sendRewardMessageToL2Vault(Types.CheckpointOutput memory _output) private { // Pay out rewards via L2 Vault now that the output is finalized. PORTAL.depositTransactionByValidatorPool( Predeploys.VALIDATOR_REWARD_VAULT, VAULT_REWARD_GAS_LIMIT, abi.encodeWithSelector( ValidatorRewardVault.reward.selector, _output.submitter, _output.l2BlockNumber ) ); } /** * @notice Increases the balance of the given address. If the balance is greater than the required bond amount, * add the given address to the validator set. * * @param _validator Address to increase the balance. * @param _amount Amount of balance increased. */ function _increaseBalance(address _validator, uint256 _amount) private { uint256 balance = balances[_validator] + _amount; if (balance >= REQUIRED_BOND_AMOUNT && !isValidator(_validator)) { if (_validator != SECURITY_COUNCIL) { validatorIndexes[_validator] = validators.length; validators.push(_validator); } } balances[_validator] = balance; } /** * @notice Deceases the balance of the given address. If the balance is less than the required bond amount, * remove the given address from the validator set. * * @param _validator Address to decrease the balance. * @param _amount Amount of balance decreased. */ function _decreaseBalance(address _validator, uint256 _amount) private { uint256 balance = balances[_validator]; require(balance >= _amount, "ValidatorPool: insufficient balances"); balance = balance - _amount; if (balance < REQUIRED_BOND_AMOUNT && isValidator(_validator)) { uint256 lastValidatorIndex = validators.length - 1; if (lastValidatorIndex > 0) { uint256 validatorIndex = validatorIndexes[_validator]; address lastValidator = validators[lastValidatorIndex]; validators[validatorIndex] = lastValidator; validatorIndexes[lastValidator] = validatorIndex; } delete validatorIndexes[_validator]; validators.pop(); } balances[_validator] = balance; } /** * @notice Returns the bond corresponding to the output index. Reverts if the bond does not exist. * * @param _outputIndex Index of the L2 checkpoint output. * * @return The bond data. */ function getBond(uint256 _outputIndex) external view returns (Types.Bond memory) { Types.Bond storage bond = bonds[_outputIndex]; require(bond.amount > 0 && bond.expiresAt > 0, "ValidatorPool: the bond does not exist"); return bond; } /** * @notice Returns the pending bond corresponding to the output index and challenger address. * Reverts if the pending bond does not exist. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. * * @return Amount of the pending bond. */ function getPendingBond(uint256 _outputIndex, address _challenger) external view returns (uint128) { uint128 pendingBond = pendingBonds[_outputIndex][_challenger]; require(pendingBond > 0, "ValidatorPool: the pending bond does not exist"); return pendingBond; } /** * @notice Returns the balance of given address. * * @param _addr Address of validator. * * @return Balance of given address. */ function balanceOf(address _addr) external view returns (uint256) { return balances[_addr]; } /** * @notice Determines whether the given address is an active validator. * * @param _addr Address of validator. * * @return Whether the given address is an active validator. */ function isValidator(address _addr) public view returns (bool) { if (validators.length == 0) { return false; } else if (_addr == address(0)) { return false; } uint256 index = validatorIndexes[_addr]; return validators[index] == _addr; } /** * @notice Returns the number of validators. * * @return The number of validators. */ function validatorCount() external view returns (uint256) { return validators.length; } /** * @notice Determines who can submit the L2 output next. * * @return The address of the validator. */ function nextValidator() public view returns (address) { if (nextPriorityValidator != address(0)) { uint256 l2BlockNumber = L2_ORACLE.nextBlockNumber(); uint256 l2Timestamp = L2_ORACLE.computeL2Timestamp(l2BlockNumber + 1); if (block.timestamp >= l2Timestamp) { uint256 elapsed = block.timestamp - l2Timestamp; // If the current time exceeds one round time, it is a public round. if (elapsed > ROUND_DURATION) { return Constants.VALIDATOR_PUBLIC_ROUND_ADDRESS; } } return nextPriorityValidator; } else { return TRUSTED_VALIDATOR; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /** * @title Arithmetic * @notice Even more math than before. */ library Arithmetic { /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( int256 _value, int256 _min, int256 _max ) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( uint256 _value, uint256 _min, uint256 _max ) internal pure returns (uint256) { return Math.min(Math.max(_value, _min), _max); } /** * @notice (c)oefficient (d)enominator (exp)onentiation function. * Returns the result of: c * (1 - 1/d)^exp. * * @param _coefficient Coefficient of the function. * @param _denominator Fractional denominator. * @param _exponent Power function exponent. * * @return Result of c * (1 - 1/d)^exp. */ function cdexp( int256 _coefficient, int256 _denominator, int256 _exponent ) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SafeCall } from "./SafeCall.sol"; /** * @title Burn * @notice Utilities for burning stuff. */ library Burn { /** * Burns a given amount of ETH. * Note that execution engine of Kroma does not support SELFDESTRUCT opcode, so it sends ETH to zero address. * * @param _amount Amount of ETH to burn. */ function eth(uint256 _amount) internal { SafeCall.call(address(0), gasleft(), _amount, ""); } /** * Burns a given amount of gas. * * @param _amount Amount of gas to burn. */ function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Bytes * @notice Bytes is a library for manipulating byte arrays. */ library Bytes { /** * @notice Compares two byte arrays by comparing their keccak256 hashes. * * @param _bytes First byte array to compare. * @param _other Second byte array to compare. * * @return True if the two byte arrays are equal, false otherwise. */ function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title NodeReader * @notice NodeReader is a library for reading ZKTrie Node. */ library NodeReader { /** * @notice Node types. * See https://github.com/kroma-network/zktrie/blob/main/types/README.md. * * @custom:value MIDDLE Represents a middle node. * @custom:value LEAF Represents a leaf node. * @custom:value EMPTY Represents a empty node. * @custom:value ROOT Represents a root node. */ enum NodeType { MIDDLE, LEAF, EMPTY, ROOT } /** * @notice Struct representing a Node. * See https://github.com/kroma-network/zktrie/blob/main/types/README.md. */ struct Node { NodeType nodeType; bytes32 childL; bytes32 childR; bytes32 nodeKey; bytes32[] valuePreimage; uint32 compressedFlags; bytes32 valueHash; bytes32 keyPreimage; } /** * @notice Struct representing an Item. */ struct Item { bytes ptr; uint256 len; } /** * @notice Converts bytes to Item. * * @param _bytes bytes to convert. * * @return Item referencing _bytes. */ function toItem(bytes memory _bytes) internal pure returns (Item memory) { bytes memory ptr; assembly { ptr := add(_bytes, 32) } return Item({ ptr: ptr, len: _bytes.length }); } /** * @notice Reads an Item into an uint8. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return An uint8 value. */ function readUint8(Item memory _item) internal pure returns (uint8) { require(_item.len >= 1, "NodeReader: too short for uint8"); bytes memory newPtr; bytes memory ptr = _item.ptr; uint8 ret; assembly { ret := shr(248, mload(ptr)) newPtr := add(ptr, 1) } _item.ptr = newPtr; _item.len -= 1; return ret; } /** * @notice Reads an Item into compressed flags and length of values. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return Compressed flags. * @return Length of values. */ function readCompressedFlags(Item memory _item) internal pure returns (uint32, uint8) { require(_item.len >= 4, "NodeReader: too short for uint32"); bytes memory newPtr; bytes memory ptr = _item.ptr; uint32 temp; uint8 flag; uint8 len; assembly { temp := mload(ptr) len := shr(248, temp) flag := shr(240, temp) newPtr := add(ptr, 4) } _item.ptr = newPtr; _item.len -= 4; return (flag, len); } /** * @notice Reads an Item into a bytes32. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return A bytes32 value. */ function readBytes32(Item memory _item) internal pure returns (bytes32) { require(_item.len >= 32, "NodeReader: too short for bytes32"); bytes memory newPtr; bytes memory ptr = _item.ptr; bytes32 ret; assembly { ret := mload(ptr) newPtr := add(ptr, 32) } _item.ptr = newPtr; _item.len -= 32; return ret; } /** * @notice Reads an Item by n bytes into a bytes32. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return A bytes32 value. */ function readBytesN(Item memory _item, uint256 _length) internal pure returns (bytes32) { require(_item.len >= _length, "NodeReader: too short for n bytes"); bytes memory newPtr; bytes memory ptr = _item.ptr; bytes32 ret; uint256 to = 256 - _length * 8; assembly { newPtr := add(ptr, _length) ret := shr(to, mload(ptr)) } _item.ptr = newPtr; _item.len -= _length; return ret; } /** * @notice Reads bytes into a Node. * * @param _proof Bytes to read. * * @return A decoded Node. */ function readNode(bytes memory _proof) internal pure returns (Node memory) { Node memory node; Item memory item = toItem(_proof); uint256 nodeType = readUint8(item); if (nodeType == uint256(NodeType.MIDDLE)) { // TODO(chokobole): Do the length check as much as possible at once and read the bytes. node.childL = readBytes32(item); node.childR = readBytes32(item); } else if (nodeType == uint256(NodeType.LEAF)) { // TODO(chokobole): Do the length check as much as possible at once and read the bytes. node.nodeKey = readBytes32(item); (uint32 compressedFlags, uint256 valuePreimageLen) = readCompressedFlags(item); require((compressedFlags == 1 && valuePreimageLen == 1) || (compressedFlags == 4 && valuePreimageLen == 4), "NodeReader: invalid compressedFlags"); node.compressedFlags = compressedFlags; node.valuePreimage = new bytes32[](valuePreimageLen); for (uint256 i = 0; i < valuePreimageLen; ) { node.valuePreimage[i] = readBytes32(item); unchecked { ++i; } } uint256 keyPreimageLen = readUint8(item); if (keyPreimageLen > 0) { node.keyPreimage = readBytesN(item, keyPreimageLen); } } else if (nodeType == uint256(NodeType.EMPTY)) { // Do nothing. } else if (nodeType == uint256(NodeType.ROOT)) { revert("NodeReader: unexpected root node type"); } else { revert("NodeReader: invalid node type"); } node.nodeType = NodeType(nodeType); return node; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IZKMerkleTrie */ interface IZKMerkleTrie { /** * @notice Verifies a proof that a given key/value pair is present in the trie. * * @param _key Key of the node to search for, as a hex string. * @param _value Value of the node to search for, as a hex string. * @param _proofs Merkle trie inclusion proof for the desired node. * @param _root Known root of the Merkle trie. Used to verify that the included proof is * correctly constructed. * * @return Whether or not the proof is valid. */ function verifyInclusionProof( bytes32 _key, bytes memory _value, bytes[] memory _proofs, bytes32 _root ) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { Bytes32 } from "../libraries/Bytes32.sol"; /** * @title IPoseidon2 */ interface IPoseidon2 { function poseidon(bytes32[2] memory inputs) external pure returns (bytes32); } /** * @custom:proxied * @title ZKTrieHasher * @notice The ZKTrieHasher is contract which can produce a hash according to ZKTrie. * This owns an interface of Poseidon2 that is required to compute hash used by ZKTrie. */ contract ZKTrieHasher { /** * @notice Poseidon2 contract generated by circomlibjs. */ IPoseidon2 public immutable POSEIDON2; /** * @param _poseidon2 The address of poseidon2 contract. */ constructor(address _poseidon2) { POSEIDON2 = IPoseidon2(_poseidon2); } /** * @notice Computes a hash of values. * * @param _compressedFlags Compressed flags. * @param _values Values. * * @return A hash of values. */ function _valueHash(uint32 _compressedFlags, bytes32[] memory _values) internal view returns (bytes32) { require(_values.length >= 1, "ZKTrieHasher: too few values for _valueHash"); bytes32[] memory ret = new bytes32[](_values.length); for (uint256 i = 0; i < _values.length; ) { if ((_compressedFlags & (1 << i)) != 0) { ret[i] = _hashElem(_values[i]); } else { ret[i] = _values[i]; } unchecked { ++i; } } if (_values.length < 2) { return ret[0]; } return _hashElems(ret); } /** * @notice Computes a hash of an element. * * @param _elem Bytes32 to be hashed. * * @return A hash of an element. */ function _hashElem(bytes32 _elem) internal view returns (bytes32) { (bytes32 high, bytes32 low) = Bytes32.split(_elem); return POSEIDON2.poseidon([high, low]); } /** * @notice Computes a root hash of elements tree. * * @param _elems Bytes32 array to be hashed. * * @return A hash of elements tree. */ function _hashElems(bytes32[] memory _elems) internal view returns (bytes32) { require(_elems.length >= 4, "ZKTrieHasher: too few values for _hashElems"); IPoseidon2 iposeidon = POSEIDON2; uint256 idx; uint256 adjacent_idx; uint256 adjacent_offset = 1; uint256 jump = 2; uint256 length = _elems.length; for (; adjacent_offset < length;) { for (idx = 0; idx < length;) { unchecked { adjacent_idx = idx + adjacent_offset; } if (adjacent_idx < length) { _elems[idx] = iposeidon.poseidon( [_elems[idx], _elems[adjacent_idx]] ); } unchecked { idx += jump; } } adjacent_offset = jump; jump <<= 1; } return _elems[0]; } /** * @notice Computes a root hash of 2 elements. * * @param left_leaf Bytes32 left leaf to be hashed. * @param right_leaf Bytes32 right leaf to be hashed. * * @return A hash of 2 elements. */ function _hashFixed2Elems(bytes32 left_leaf, bytes32 right_leaf) internal view returns (bytes32) { return POSEIDON2.poseidon([left_leaf, right_leaf]); } /** * @notice Computes a root hash of 3 elements. * * @param left_leaf Bytes32 left leaf to be hashed. * @param right_leaf Bytes32 right leaf to be hashed. * @param up_leaf Bytes32 up leaf to be hashed with left||right hash. * * @return A hash of 3 elements. */ function _hashFixed3Elems(bytes32 left_leaf, bytes32 right_leaf, bytes32 up_leaf) internal view returns (bytes32) { IPoseidon2 iposeidon = POSEIDON2; left_leaf = iposeidon.poseidon([left_leaf, right_leaf]); return iposeidon.poseidon([left_leaf, up_leaf]); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Predeploys * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system. */ library Predeploys { /** * @notice Address of the ProxyAdmin predeploy. */ address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000000; /** * @notice Address of the L1Block predeploy. */ address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000002; /** * @notice Address of the L2ToL1MessagePasser predeploy. */ address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000003; /** * @notice Address of the L2CrossDomainMessenger predeploy. */ address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000004; /** * @notice Address of the GasPriceOracle predeploy. Includes fee information * and helpers for computing the L1 portion of the transaction fee. */ address internal constant GAS_PRICE_ORACLE = 0x4200000000000000000000000000000000000005; /** * @notice Address of the ProtocolVault predeploy. */ address internal constant PROTOCOL_VAULT = 0x4200000000000000000000000000000000000006; /** * @notice Address of the ProposerRewardVault predeploy. */ address internal constant PROPOSER_REWARD_VAULT = 0x4200000000000000000000000000000000000007; /** * @notice Address of the ValidatorRewardVault predeploy. */ address internal constant VALIDATOR_REWARD_VAULT = 0x4200000000000000000000000000000000000008; /** * @notice Address of the L2StandardBridge predeploy. */ address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000009; /** * @notice Address of the L2ERC721Bridge predeploy. */ address internal constant L2_ERC721_BRIDGE = 0x420000000000000000000000000000000000000A; /** * @notice Address of the KromaMintableERC20Factory predeploy. */ address internal constant KROMA_MINTABLE_ERC20_FACTORY = 0x420000000000000000000000000000000000000B; /** * @notice Address of the KromaMintableERC721Factory predeploy. */ address internal constant KROMA_MINTABLE_ERC721_FACTORY = 0x420000000000000000000000000000000000000c; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { L2StandardBridge } from "../L2/L2StandardBridge.sol"; import { Predeploys } from "../libraries/Predeploys.sol"; import { FeeVault } from "../universal/FeeVault.sol"; import { Semver } from "../universal/Semver.sol"; import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol"; /** * @custom:proxied * @custom:predeploy 0x4200000000000000000000000000000000000008 * @title ValidatorRewardVault * @notice The ValidatorRewardVault accumulates transaction fees and pays rewards to validators. */ contract ValidatorRewardVault is FeeVault, Semver { /** * @notice Address of the ValidatorPool contract on L1. */ address public immutable VALIDATOR_POOL; /** * @notice A value to divide the vault balance by when determining the reward amount. */ uint256 public immutable REWARD_DIVIDER; /** * @notice The reward balance that the validator is eligible to receive. */ mapping(address => uint256) internal rewards; /** * @notice A mapping of whether the reward corresponding to the L2 block number has been paid. */ mapping(uint256 => bool) internal isPaid; /** * @notice The amount of determined as rewards. */ uint256 public totalReserved; /** * @notice Emitted when the balance of a validator has increased. * * @param validator Address of the validator. * @param l2BlockNumber The L2 block number of the output root. * @param amount Amount of the reward. */ event Rewarded(address indexed validator, uint256 indexed l2BlockNumber, uint256 amount); /** * @custom:semver 1.0.0 * * @param _validatorPool Address of the ValidatorPool contract on L1. * @param _rewardDivider A value to divide the vault balance by when determining the reward amount. */ constructor(address _validatorPool, uint256 _rewardDivider) FeeVault(address(0), 10 ether) Semver(1, 0, 0) { VALIDATOR_POOL = _validatorPool; REWARD_DIVIDER = _rewardDivider; } /** * @notice Rewards the validator for submitting the output. * ValidatorPool contract on L1 calls this function over the portal when output is finalized. * * @param _validator Address of the validator. * @param _l2BlockNumber The L2 block number of the output root. */ function reward(address _validator, uint256 _l2BlockNumber) external { require( AddressAliasHelper.undoL1ToL2Alias(msg.sender) == VALIDATOR_POOL, "ValidatorRewardVault: function can only be called from the ValidatorPool" ); require(_validator != address(0), "ValidatorRewardVault: validator address cannot be 0"); require( !isPaid[_l2BlockNumber], "ValidatorRewardVault: the reward has already been paid for the L2 block number" ); uint256 amount = _determineRewardAmount(); unchecked { totalReserved += amount; rewards[_validator] += amount; } isPaid[_l2BlockNumber] = true; emit Rewarded(_validator, _l2BlockNumber, amount); } /** * @notice Withdraws all of the sender's balance. * Reverts if the balance is less than the minimum withdrawal amount. */ function withdraw() external override { uint256 balance = rewards[msg.sender]; require( balance >= MIN_WITHDRAWAL_AMOUNT, "ValidatorRewardVault: withdrawal amount must be greater than minimum withdrawal amount" ); rewards[msg.sender] = 0; unchecked { totalReserved -= balance; totalProcessed += balance; } emit Withdrawal(balance, msg.sender, msg.sender); L2StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE)).bridgeETHTo{ value: balance }( msg.sender, WITHDRAWAL_MIN_GAS, bytes("") ); } /** * @notice Determines the reward amount. * * @return Amount of the reward. */ function _determineRewardAmount() internal view returns (uint256) { return (address(this).balance - totalReserved) / REWARD_DIVIDER; } /** * @notice Returns the reward balance of the given address. * * @param _addr Address to lookup. * * @return The reward balance of the given address. */ function balanceOf(address _addr) external view returns (uint256) { return rewards[_addr]; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Bytes32 * @notice Bytes32 is a library for manipulating byte32. */ library Bytes32 { /** * @notice Splits bytes32 to high and low parts. * * @param _bytes Bytes32 to split. * * @return High part of bytes32. * @return Low part of bytes32. */ function split(bytes32 _bytes) internal pure returns (bytes32, bytes32) { bytes16 high = bytes16(_bytes); bytes16 low = bytes16(uint128(uint256(_bytes))); return (fromBytes16(high), fromBytes16(low)); } /** * @notice Converts bytes16 to bytes32. * * @param _bytes Bytes to constrcut to bytes32. * * @return Bytes32 constructed from bytes16. */ function fromBytes16(bytes16 _bytes) internal pure returns (bytes32) { return bytes32(uint256(uint128(_bytes))); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "../libraries/Predeploys.sol"; import { Semver } from "../universal/Semver.sol"; import { StandardBridge } from "../universal/StandardBridge.sol"; /** * @custom:proxied * @custom:predeploy 0x4200000000000000000000000000000000000009 * @title L2StandardBridge * @notice The L2StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and * L2. In the case that an ERC20 token is native to L2, it will be escrowed within this * contract. If the ERC20 token is native to L1, it will be burnt. * NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples * of some token types that may not be properly supported by this contract include, but are * not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists. */ contract L2StandardBridge is StandardBridge, Semver { /** * @custom:semver 1.0.0 * * @param _otherBridge Address of the L1StandardBridge. */ constructor(address payable _otherBridge) Semver(1, 0, 0) StandardBridge(payable(Predeploys.L2_CROSS_DOMAIN_MESSENGER), _otherBridge) {} /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. */ receive() external payable override onlyEOA { _initiateBridgeETH( msg.sender, msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, bytes("") ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "../libraries/Predeploys.sol"; import { L2StandardBridge } from "../L2/L2StandardBridge.sol"; /** * @title FeeVault * @notice The FeeVault contract contains the basic logic for the various different vault contracts * used to hold fee revenue generated by the L2 system. */ abstract contract FeeVault { /** * @notice Emits each time that a withdrawal occurs. * * @param value Amount that was withdrawn (in wei). * @param to Address that the funds were sent to. * @param from Address that triggered the withdrawal. */ event Withdrawal(uint256 value, address to, address from); /** * @notice Minimum balance before a withdrawal can be triggered. */ uint256 public immutable MIN_WITHDRAWAL_AMOUNT; /** * @notice Wallet that will receive the fees on L1. */ address public immutable RECIPIENT; /** * @notice The minimum gas limit for the FeeVault withdrawal transaction. */ uint32 internal constant WITHDRAWAL_MIN_GAS = 35_000; /** * @notice Total amount of wei processed by the contract. */ uint256 public totalProcessed; /** * @param _recipient Wallet that will receive the fees on L1. * @param _minWithdrawalAmount Minimum balance before a withdrawal can be triggered. */ constructor(address _recipient, uint256 _minWithdrawalAmount) { MIN_WITHDRAWAL_AMOUNT = _minWithdrawalAmount; RECIPIENT = _recipient; } /** * @notice Allow the contract to receive ETH. */ receive() external payable {} /** * @notice Triggers a withdrawal of funds to the L1 fee wallet. */ function withdraw() external virtual { require( address(this).balance >= MIN_WITHDRAWAL_AMOUNT, "FeeVault: withdrawal amount must be greater than minimum withdrawal amount" ); uint256 value = address(this).balance; totalProcessed += value; emit Withdrawal(value, RECIPIENT, msg.sender); L2StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE)).bridgeETHTo{ value: value }( RECIPIENT, WITHDRAWAL_MIN_GAS, bytes("") ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { CrossDomainMessenger } from "./CrossDomainMessenger.sol"; import { IKromaMintableERC20 } from "./IKromaMintableERC20.sol"; import { KromaMintableERC20 } from "./KromaMintableERC20.sol"; /** * @custom:upgradeable * @title StandardBridge * @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles * the core bridging logic, including escrowing tokens that are native to the local chain * and minting/burning tokens that are native to the remote chain. */ abstract contract StandardBridge { using SafeERC20 for IERC20; /** * @notice The L2 gas limit set when eth is depoisited using the receive() function. */ uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000; /** * @notice Messenger contract on this domain. */ CrossDomainMessenger public immutable MESSENGER; /** * @notice Corresponding bridge on the other domain. */ StandardBridge public immutable OTHER_BRIDGE; /** * @notice Mapping that stores deposits for a given pair of local and remote tokens. */ mapping(address => mapping(address => uint256)) public deposits; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. * A gap size of 49 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[49] private __gap; /** * @notice Emitted when an ETH bridge is initiated to the other chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeInitiated( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ETH bridge is finalized on this chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeFinalized( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is initiated to the other chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeInitiated( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is finalized on this chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeFinalized( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Only allow EOAs to call the functions. Note that this is not safe against contracts * calling code within their constructors, but also doesn't really matter since we're * just trying to prevent users accidentally depositing with smart contract wallets. */ modifier onlyEOA() { require( !Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA" ); _; } /** * @notice Ensures that the caller is a cross-chain message from the other bridge. */ modifier onlyOtherBridge() { require( msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == address(OTHER_BRIDGE), "StandardBridge: function can only be called from the other bridge" ); _; } /** * @param _messenger Address of CrossDomainMessenger on this network. * @param _otherBridge Address of the other StandardBridge contract. */ constructor(address payable _messenger, address payable _otherBridge) { MESSENGER = CrossDomainMessenger(_messenger); OTHER_BRIDGE = StandardBridge(_otherBridge); } /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. * Must be implemented by contracts that inherit. */ receive() external payable virtual; /** * @notice Sends ETH to the sender's address on the other chain. * * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA { _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a * smart contract and the call fails, the ETH will be temporarily locked in the * StandardBridge on the other chain until the call is replayed. If the call cannot be * replayed with any amount of gas (call always reverts), then the ETH will be * permanently locked in the StandardBridge on the other chain. ETH will also * be locked if the receiver is the other bridge, because finalizeBridgeETH will revert * in that case. * * @param _to Address of the receiver. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETHTo( address _to, uint32 _minGasLimit, bytes calldata _extraData ) public payable { _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20( address _localToken, address _remoteToken, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public onlyEOA { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20To( address _localToken, address _remoteToken, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData ); } /** * @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeETH( address _from, address _to, uint256 _amount, bytes calldata _extraData ) public payable onlyOtherBridge { require(msg.value == _amount, "StandardBridge: amount sent does not match amount required"); require(_to != address(this), "StandardBridge: cannot send to self"); require(_to != address(MESSENGER), "StandardBridge: cannot send to messenger"); emit ETHBridgeFinalized(_from, _to, _amount, _extraData); bool success = SafeCall.call(_to, gasleft(), _amount, hex""); require(success, "StandardBridge: ETH transfer failed"); } /** * @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes calldata _extraData ) public onlyOtherBridge { if (_isKromaMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Kroma Mintable ERC20 local token" ); KromaMintableERC20(_localToken).mint(_to, _amount); } else { deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount; IERC20(_localToken).safeTransfer(_to, _amount); } emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Initiates a bridge of ETH through the CrossDomainMessenger. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeETH( address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { require( msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value" ); emit ETHBridgeInitiated(_from, _to, _amount, _extraData); MESSENGER.sendMessage{ value: _amount }( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { if (_isKromaMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Kroma Mintable ERC20 local token" ); KromaMintableERC20(_localToken).burn(_from, _amount); } else { IERC20(_localToken).safeTransferFrom(_from, address(this), _amount); deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount; } emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); MESSENGER.sendMessage( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeERC20.selector, // Because this call will be executed on the remote chain, we reverse the order of // the remote and local token addresses relative to their order in the // finalizeBridgeERC20 function. _remoteToken, _localToken, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Checks if a given address is a KromaMintableERC20. Not perfect, but good enough. * Just the way we like it. * * @param _token Address of the token to check. * * @return True if the token is a KromaMintableERC20. */ function _isKromaMintableERC20(address _token) internal view returns (bool) { return ERC165Checker.supportsInterface(_token, type(IKromaMintableERC20).interfaceId); } /** * @notice Checks if the "other token" is the correct pair token for the KromaMintableERC20. * * @param _mintableToken KromaMintableERC20 to check against. * @param _otherToken Pair token to check. * * @return True if the other token is the correct pair token for the KromaMintableERC20. */ function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) { return _otherToken == KromaMintableERC20(_mintableToken).REMOTE_TOKEN(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/introspection/ERC165Checker.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Library used to query support of an interface declared via {IERC165}. * * Note that these functions return the actual result of the query: they do not * `revert` if an interface is not supported. It is up to the caller to decide * what to do in these cases. */ library ERC165Checker { // As per the EIP-165 spec, no interface should ever match 0xffffffff bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff; /** * @dev Returns true if `account` supports the {IERC165} interface. */ function supportsERC165(address account) internal view returns (bool) { // Any contract that implements ERC165 must explicitly indicate support of // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid return supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) && !supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID); } /** * @dev Returns true if `account` supports the interface defined by * `interfaceId`. Support for {IERC165} itself is queried automatically. * * See {IERC165-supportsInterface}. */ function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) { // query support of both ERC165 as per the spec and support of _interfaceId return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId); } /** * @dev Returns a boolean array where each value corresponds to the * interfaces passed in and whether they're supported or not. This allows * you to batch check interfaces for a contract where your expectation * is that some interfaces may not be supported. * * See {IERC165-supportsInterface}. * * _Available since v3.4._ */ function getSupportedInterfaces( address account, bytes4[] memory interfaceIds ) internal view returns (bool[] memory) { // an array of booleans corresponding to interfaceIds and whether they're supported or not bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length); // query support of ERC165 itself if (supportsERC165(account)) { // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]); } } return interfaceIdsSupported; } /** * @dev Returns true if `account` supports all the interfaces defined in * `interfaceIds`. Support for {IERC165} itself is queried automatically. * * Batch-querying can lead to gas savings by skipping repeated checks for * {IERC165} support. * * See {IERC165-supportsInterface}. */ function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) { // query support of ERC165 itself if (!supportsERC165(account)) { return false; } // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) { return false; } } // all interfaces supported return true; } /** * @notice Query if a contract implements an interface, does not check ERC165 support * @param account The address of the contract to query for support of an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @return true if the contract at account indicates support of the interface with * identifier interfaceId, false otherwise * @dev Assumes that account contains a contract that supports ERC165, otherwise * the behavior of this method is undefined. This precondition can be checked * with {supportsERC165}. * * Some precompiled contracts will falsely indicate support for a given interface, so caution * should be exercised when using this function. * * Interface identification is specified in ERC-165. */ function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) { // prepare call bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId); // perform static call bool success; uint256 returnSize; uint256 returnValue; assembly { success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20) returnSize := returndatasize() returnValue := mload(0x00) } return success && returnSize >= 0x20 && returnValue > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; /** * @custom:upgradeable * @title CrossDomainMessenger * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 * cross-chain messenger contracts. It's designed to be a universal interface that only * needs to be extended slightly to provide low-level message passing functionality on each * chain it's deployed on. Currently only designed for message passing between two paired * chains and does not support one-to-many interactions. * * Any changes to this contract MUST result in a semver bump for contracts that inherit it. */ abstract contract CrossDomainMessenger is PausableUpgradeable { /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 0; /** * @notice Constant overhead added to the base gas for a message. */ uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /** * @notice Numerator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /** * @notice Denominator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /** * @notice Extra gas added to base gas for each byte of calldata in a message. */ uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /** * @notice Gas reserved for performing the external call in `relayMessage`. */ uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /** * @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. */ uint64 public constant RELAY_RESERVED_GAS = 40_000; /** * @notice Gas reserved for the execution between the `hasMinGas` check and the external * call in `relayMessage`. */ uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /** * @notice Address of the paired CrossDomainMessenger contract on the other chain. */ address public immutable OTHER_MESSENGER; /** * @notice Mapping of message hashes to boolean receipt values. Note that a message will only * be present in this mapping if it has successfully been relayed on this chain, and * can therefore not be relayed again. */ mapping(bytes32 => bool) public successfulMessages; /** * @notice Address of the sender of the currently executing message on the other chain. If the * value of this variable is the default value (0x00000000...dead) then no message is * currently being executed. Use the xDomainMessageSender getter which will throw an * error if this is the case. */ address internal xDomainMsgSender; /** * @notice Nonce for the next message to be sent, without the message version applied. Use the * messageNonce getter which will insert the message version into the nonce to give you * the actual nonce to be used for the message. */ uint240 internal msgNonce; /** * @notice Mapping of message hashes to a boolean if and only if the message has failed to be * executed at least once. A message will not be present in this mapping if it * successfully executed on the first attempt. */ mapping(bytes32 => bool) public failedMessages; /** * @notice Reserve extra slots in the storage layout for future upgrades. * A gap size of 45 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[45] private __gap; /** * @notice Emitted whenever a message is sent to the other chain. * * @param target Address of the recipient of the message. * @param sender Address of the sender of the message. * @param value ETH value sent along with the message to the recipient. * @param message Message to trigger the recipient address with. * @param messageNonce Unique nonce attached to the message. * @param gasLimit Minimum gas limit that the message can be executed with. */ event SentMessage( address indexed target, address indexed sender, uint256 value, bytes message, uint256 messageNonce, uint256 gasLimit ); /** * @notice Emitted whenever a message is successfully relayed on this chain. * * @param msgHash Hash of the message that was relayed. */ event RelayedMessage(bytes32 indexed msgHash); /** * @notice Emitted whenever a message fails to be relayed on this chain. * * @param msgHash Hash of the message that failed to be relayed. */ event FailedRelayedMessage(bytes32 indexed msgHash); /** * @param _otherMessenger Address of the messenger on the paired chain. */ constructor(address _otherMessenger) { OTHER_MESSENGER = _otherMessenger; } /** * @notice Sends a message to some target address on the other chain. Note that if the call * always reverts, then the message will be unrelayable, and any ETH sent will be * permanently locked. The same will occur if the target on the other chain is * considered unsafe (see the _isUnsafeTarget() function). * * @param _target Target contract or wallet address. * @param _message Message to trigger the target address with. * @param _minGasLimit Minimum gas limit that the message can be executed with. */ function sendMessage( address _target, bytes calldata _message, uint32 _minGasLimit ) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage( OTHER_MESSENGER, baseGas(_message, _minGasLimit), msg.value, abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) ); emit SentMessage(_target, msg.sender, msg.value, _message, messageNonce(), _minGasLimit); unchecked { ++msgNonce; } } /** * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only * be executed via cross-chain call from the other messenger OR if the message was * already received once and is currently being replayed. * * @param _nonce Nonce of the message being relayed. * @param _sender Address of the user who sent the message. * @param _target Address that the message is targeted at. * @param _value ETH value to send with the message. * @param _minGasLimit Minimum amount of gas that the message can be executed with. * @param _message Message to send to the target. */ function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require( version < 1, "CrossDomainMessenger: only version 0 messages is supported at this time" ); // We use the v0 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV0( _nonce, _sender, _target, _value, _minGasLimit, _message ); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require( msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address" ); require( failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed" ); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require( successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed" ); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /** * @notice Retrieves the address of the contract or wallet that initiated the currently * executing message on the other chain. Will throw an error if there is no message * currently being executed. Allows the recipient of a call to see who triggered it. * * @return Address of the sender of the currently executing message on the other chain. */ function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /** * @notice Computes the amount of gas required to guarantee that a given message will be * received on the other chain without running out of gas. Guaranteeing that a message * will not run out of gas is important because this ensures that a message can always * be replayed on the other chain if it fails to execute completely. * * @param _message Message to compute the amount of required gas for. * @param _minGasLimit Minimum desired gas limit when message goes to target. * * @return Amount of gas required to guarantee message receipt. */ function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD + // Calldata overhead (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) + // Dynamic overhead (EIP-150) ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) + // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) RELAY_CALL_OVERHEAD + // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) RELAY_RESERVED_GAS + // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) RELAY_GAS_CHECK_BUFFER; } /** * @notice Intializer. */ // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init() internal onlyInitializing { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } /** * @notice Sends a low-level message to the other messenger. Needs to be implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @param _to Recipient of the message on the other chain. * @param _gasLimit Minimum gas limit the message can be executed with. * @param _value Amount of ETH to send with the message. * @param _data Message data. */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal virtual; /** * @notice Checks whether the message is coming from the other messenger. Implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @return Whether the message is coming from the other messenger. */ function _isOtherMessenger() internal view virtual returns (bool); /** * @notice Checks whether a given call target is a system address that could cause the * messenger to peform an unsafe action. This is NOT a mechanism for blocking user * addresses. This is ONLY used to prevent the execution of messages to specific * system addresses that could cause security issues, e.g., having the * CrossDomainMessenger send messages to itself. * * @param _target Address of the contract to check. * * @return Whether or not the address is an unsafe system address. */ function _isUnsafeTarget(address _target) internal view virtual returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @title IKromaMintableERC20 * @notice This interface is available on the KromaMintableERC20 contract. We declare it as a * separate interface so that it can be used in custom implementations of * KromaMintableERC20. */ interface IKromaMintableERC20 { function REMOTE_TOKEN() external view returns (address); function BRIDGE() external view returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import { Semver } from "../universal/Semver.sol"; import { IKromaMintableERC20 } from "./IKromaMintableERC20.sol"; /** * @title KromaMintableERC20 * @notice KromaMintableERC20 is a standard extension of the base ERC20 token contract designed * to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to * use a KromaMintableRC20 as the L2 representation of an L1 token, or vice-versa. * Designed to be backwards compatible with the older StandardL2ERC20 token which was only * meant for use on L2. */ contract KromaMintableERC20 is IKromaMintableERC20, ERC20, Semver { /** * @notice Address of the corresponding version of this token on the remote chain. */ address public immutable REMOTE_TOKEN; /** * @notice Address of the StandardBridge on this network. */ address public immutable BRIDGE; /** * @notice Emitted whenever tokens are minted for an account. * * @param account Address of the account tokens are being minted for. * @param amount Amount of tokens minted. */ event Mint(address indexed account, uint256 amount); /** * @notice Emitted whenever tokens are burned from an account. * * @param account Address of the account tokens are being burned from. * @param amount Amount of tokens burned. */ event Burn(address indexed account, uint256 amount); /** * @notice A modifier that only allows the bridge to call */ modifier onlyBridge() { require(msg.sender == BRIDGE, "KromaMintableERC20: only bridge can mint and burn"); _; } /** * @custom:semver 1.0.0 * * @param _bridge Address of the L2 standard bridge. * @param _remoteToken Address of the corresponding L1 token. * @param _name ERC20 name. * @param _symbol ERC20 symbol. */ constructor( address _bridge, address _remoteToken, string memory _name, string memory _symbol ) ERC20(_name, _symbol) Semver(1, 0, 0) { REMOTE_TOKEN = _remoteToken; BRIDGE = _bridge; } /** * @notice Allows the StandardBridge on this network to mint tokens. * * @param _to Address to mint tokens to. * @param _amount Amount of tokens to mint. */ function mint(address _to, uint256 _amount) external virtual override(IKromaMintableERC20) onlyBridge { _mint(_to, _amount); emit Mint(_to, _amount); } /** * @notice Allows the StandardBridge on this network to burn tokens. * * @param _from Address to burn tokens from. * @param _amount Amount of tokens to burn. */ function burn(address _from, uint256 _amount) external virtual override(IKromaMintableERC20) onlyBridge { _burn(_from, _amount); emit Burn(_from, _amount); } /** * @notice ERC165 interface check function. * * @param _interfaceId Interface ID to check. * * @return Whether or not the interface is supported by this contract. */ function supportsInterface(bytes4 _interfaceId) external pure returns (bool) { bytes4 iface1 = type(IERC165).interfaceId; // Interface corresponding to the updated KromaMintableERC20 (this contract). bytes4 iface2 = type(IKromaMintableERC20).interfaceId; return _interfaceId == iface1 || _interfaceId == iface2; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
{ "remappings": [ "@openzeppelin/=node_modules/@openzeppelin/", "@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/", "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/", "@rari-capital/=node_modules/@rari-capital/", "@rari-capital/solmate/=node_modules/@rari-capital/solmate/", "ds-test/=node_modules/ds-test/src/", "forge-std/=node_modules/forge-std/src/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "bytecodeHash": "none" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract L2OutputOracle","name":"_l2Oracle","type":"address"},{"internalType":"address","name":"_validatorPool","type":"address"},{"internalType":"address","name":"_guardian","type":"address"},{"internalType":"bool","name":"_paused","type":"bool"},{"internalType":"contract SystemConfig","name":"_config","type":"address"},{"internalType":"contract ZKMerkleTrie","name":"_zkMerkleTrie","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"version","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"opaqueData","type":"bytes"}],"name":"TransactionDeposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"withdrawalHash","type":"bytes32"},{"indexed":false,"internalType":"bool","name":"success","type":"bool"}],"name":"WithdrawalFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"withdrawalHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"WithdrawalProven","type":"event"},{"inputs":[],"name":"GUARDIAN","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L2_ORACLE","outputs":[{"internalType":"contract L2OutputOracle","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SYSTEM_CONFIG","outputs":[{"internalType":"contract SystemConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VALIDATOR_POOL","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ZK_MERKLE_TRIE","outputs":[{"internalType":"contract ZKMerkleTrie","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"uint64","name":"_gasLimit","type":"uint64"},{"internalType":"bool","name":"_isCreation","type":"bool"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"depositTransaction","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint64","name":"_gasLimit","type":"uint64"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"depositTransactionByValidatorPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Types.WithdrawalTransaction","name":"_tx","type":"tuple"}],"name":"finalizeWithdrawalTransaction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"finalizedWithdrawals","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"_paused","type":"bool"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2OutputIndex","type":"uint256"}],"name":"isOutputFinalized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"l2Sender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"params","outputs":[{"internalType":"uint128","name":"prevBaseFee","type":"uint128"},{"internalType":"uint64","name":"prevBoughtGas","type":"uint64"},{"internalType":"uint64","name":"prevBlockNum","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Types.WithdrawalTransaction","name":"_tx","type":"tuple"},{"internalType":"uint256","name":"_l2OutputIndex","type":"uint256"},{"components":[{"internalType":"bytes32","name":"version","type":"bytes32"},{"internalType":"bytes32","name":"stateRoot","type":"bytes32"},{"internalType":"bytes32","name":"messagePasserStorageRoot","type":"bytes32"},{"internalType":"bytes32","name":"blockHash","type":"bytes32"},{"internalType":"bytes32","name":"nextBlockHash","type":"bytes32"}],"internalType":"struct Types.OutputRootProof","name":"_outputRootProof","type":"tuple"},{"internalType":"bytes[]","name":"_withdrawalProof","type":"bytes[]"}],"name":"proveWithdrawalTransaction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"provenWithdrawals","outputs":[{"internalType":"bytes32","name":"outputRoot","type":"bytes32"},{"internalType":"uint128","name":"timestamp","type":"uint128"},{"internalType":"uint128","name":"l2OutputIndex","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Deployed Bytecode
0x6080604052600436106101475760003560e01c80638c3152e9116100c0578063cff0ab9611610074578063e965084c11610059578063e965084c14610481578063e9e05c421461050d578063f04987501461052057600080fd5b8063cff0ab96146103c0578063d53a822f1461046157600080fd5b8063a14238e7116100a5578063a14238e71461033c578063b98debbf1461036c578063c30af388146103a057600080fd5b80638c3152e9146102ef5780639bf62d821461030f57600080fd5b80635865b607116101175780636dbffb78116100fc5780636dbffb7814610286578063724c184c146102a65780638456cb59146102da57600080fd5b80635865b607146102285780635c975abb1461025c57600080fd5b80621c2ff6146101735780630757b244146101d15780633f4ba83a146101f157806354fd4d501461020657600080fd5b3661016e5761016c3334620186a0600060405180602001604052806000815250610554565b005b600080fd5b34801561017f57600080fd5b506101a77f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b3480156101dd57600080fd5b5061016c6101ec366004612c17565b61073a565b3480156101fd57600080fd5b5061016c610d3e565b34801561021257600080fd5b5061021b610e47565b6040516101c89190612d6e565b34801561023457600080fd5b506101a77f000000000000000000000000339208824010425cbe73201ced4372308acd610b81565b34801561026857600080fd5b506035546102769060ff1681565b60405190151581526020016101c8565b34801561029257600080fd5b506102766102a1366004612d81565b610eea565b3480156102b257600080fd5b506101a77f0000000000000000000000003de211088df516da72efe68d386b561bee256ec481565b3480156102e657600080fd5b5061016c610fc1565b3480156102fb57600080fd5b5061016c61030a366004612d9a565b6110c6565b34801561031b57600080fd5b506032546101a79073ffffffffffffffffffffffffffffffffffffffff1681565b34801561034857600080fd5b50610276610357366004612d81565b60336020526000908152604090205460ff1681565b34801561037857600080fd5b506101a77f000000000000000000000000fdff462845953d90719a78fd12a2d103541d210381565b3480156103ac57600080fd5b5061016c6103bb366004612de7565b611894565b3480156103cc57600080fd5b50600154610428906fffffffffffffffffffffffffffffffff81169067ffffffffffffffff7001000000000000000000000000000000008204811691780100000000000000000000000000000000000000000000000090041683565b604080516fffffffffffffffffffffffffffffffff909416845267ffffffffffffffff92831660208501529116908201526060016101c8565b34801561046d57600080fd5b5061016c61047c366004612e55565b6119f2565b34801561048d57600080fd5b506104df61049c366004612d81565b603460205260009081526040902080546001909101546fffffffffffffffffffffffffffffffff8082169170010000000000000000000000000000000090041683565b604080519384526fffffffffffffffffffffffffffffffff92831660208501529116908201526060016101c8565b61016c61051b366004612e72565b610554565b34801561052c57600080fd5b506101a77f0000000000000000000000003971eb866aa9b2b8afea8a7c816f3b7e8b195a3581565b8260005a905083156105ef5773ffffffffffffffffffffffffffffffffffffffff8716156105ef5760405162461bcd60e51b815260206004820152603d60248201527f4b726f6d61506f7274616c3a206d7573742073656e6420746f2061646472657360448201527f73283029207768656e206372656174696e67206120636f6e747261637400000060648201526084015b60405180910390fd5b6152088567ffffffffffffffff1610156106715760405162461bcd60e51b815260206004820152603560248201527f4b726f6d61506f7274616c3a20676173206c696d6974206d75737420636f766560448201527f7220696e737472696e7369632067617320636f7374000000000000000000000060648201526084016105e6565b33328114610692575033731111000000000000000000000000000000001111015b600034888888886040516020016106ad959493929190612eef565b604051602081830303815290604052905060008973ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c328460405161071d9190612d6e565b60405180910390a450506107318282611be1565b50505050505050565b60355460ff161561078d5760405162461bcd60e51b815260206004820152601360248201527f4b726f6d61506f7274616c3a207061757365640000000000000000000000000060448201526064016105e6565b3073ffffffffffffffffffffffffffffffffffffffff16856040015173ffffffffffffffffffffffffffffffffffffffff16036108325760405162461bcd60e51b815260206004820152603c60248201527f4b726f6d61506f7274616c3a20796f752063616e6e6f742073656e64206d657360448201527f736167657320746f2074686520706f7274616c20636f6e74726163740000000060648201526084016105e6565b6040517fa25ae557000000000000000000000000000000000000000000000000000000008152600481018590526000907f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a673ffffffffffffffffffffffffffffffffffffffff169063a25ae55790602401608060405180830381865afa1580156108c0573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108e49190612f74565b6020015190506109016108fc36869003860186612fec565b611ef4565b81146109755760405162461bcd60e51b815260206004820152602660248201527f4b726f6d61506f7274616c3a20696e76616c6964206f757470757420726f6f7460448201527f2070726f6f66000000000000000000000000000000000000000000000000000060648201526084016105e6565b600061098087611f79565b6000818152603460209081526040918290208251606081018452815481526001909101546fffffffffffffffffffffffffffffffff8082169383018490527001000000000000000000000000000000009091041692810192909252919250901580610ab55750805160408083015190517fa25ae5570000000000000000000000000000000000000000000000000000000081526fffffffffffffffffffffffffffffffff90911660048201527f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a673ffffffffffffffffffffffffffffffffffffffff169063a25ae55790602401608060405180830381865afa158015610a8a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610aae9190612f74565b6020015114155b610b275760405162461bcd60e51b815260206004820152603460248201527f4b726f6d61506f7274616c3a207769746864726177616c20686173682068617360448201527f20616c7265616479206265656e2070726f76656e00000000000000000000000060648201526084016105e6565b60408051602080820185905260008284015282518083038401815260608301808552815191909201207f12e64a7200000000000000000000000000000000000000000000000000000000909152917f000000000000000000000000339208824010425cbe73201ced4372308acd610b73ffffffffffffffffffffffffffffffffffffffff16916312e64a7291610bc99185918b918b918e0135906064016130a5565b602060405180830381865afa158015610be6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c0a91906131a6565b610c7c5760405162461bcd60e51b815260206004820152602f60248201527f4b726f6d61506f7274616c3a20696e76616c6964207769746864726177616c2060448201527f696e636c7573696f6e2070726f6f66000000000000000000000000000000000060648201526084016105e6565b604080516060810182528581526fffffffffffffffffffffffffffffffff42811660208084019182528c831684860190815260008981526034835286812095518655925190518416700100000000000000000000000000000000029316929092176001909301929092558b830151908c0151925173ffffffffffffffffffffffffffffffffffffffff918216939091169186917f67a6208cfcc0801d50f6cbe764733f4fddf66ac0b04442061a8a8c0cb6b63f629190a4505050505050505050565b3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000003de211088df516da72efe68d386b561bee256ec41614610de95760405162461bcd60e51b815260206004820152602660248201527f4b726f6d61506f7274616c3a206f6e6c7920677561726469616e2063616e207560448201527f6e7061757365000000000000000000000000000000000000000000000000000060648201526084016105e6565b603580547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001690556040513381527f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa906020015b60405180910390a1565b6060610e727f0000000000000000000000000000000000000000000000000000000000000001611fc6565b610e9b7f0000000000000000000000000000000000000000000000000000000000000000611fc6565b610ec47f0000000000000000000000000000000000000000000000000000000000000000611fc6565b604051602001610ed6939291906131c3565b604051602081830303815290604052905090565b6040517fa25ae55700000000000000000000000000000000000000000000000000000000815260048101829052600090610fbb9073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a6169063a25ae55790602401608060405180830381865afa158015610f7c573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610fa09190612f74565b604001516fffffffffffffffffffffffffffffffff16612084565b92915050565b3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000003de211088df516da72efe68d386b561bee256ec4161461106b5760405162461bcd60e51b8152602060048201526024808201527f4b726f6d61506f7274616c3a206f6e6c7920677561726469616e2063616e207060448201527f617573650000000000000000000000000000000000000000000000000000000060648201526084016105e6565b603580547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790556040513381527f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25890602001610e3d565b60355460ff16156111195760405162461bcd60e51b815260206004820152601360248201527f4b726f6d61506f7274616c3a207061757365640000000000000000000000000060448201526064016105e6565b60325473ffffffffffffffffffffffffffffffffffffffff1661dead146111a85760405162461bcd60e51b815260206004820152603c60248201527f4b726f6d61506f7274616c3a2063616e206f6e6c792074726967676572206f6e60448201527f65207769746864726177616c20706572207472616e73616374696f6e0000000060648201526084016105e6565b60006111b382611f79565b60008181526034602090815260408083208151606081018352815481526001909101546fffffffffffffffffffffffffffffffff808216948301859052700100000000000000000000000000000000909104169181019190915292935090036112845760405162461bcd60e51b815260206004820152602f60248201527f4b726f6d61506f7274616c3a207769746864726177616c20686173206e6f742060448201527f6265656e2070726f76656e20796574000000000000000000000000000000000060648201526084016105e6565b7f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a673ffffffffffffffffffffffffffffffffffffffff1663887862726040518163ffffffff1660e01b8152600401602060405180830381865afa1580156112ef573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113139190613239565b81602001516fffffffffffffffffffffffffffffffff1610156113c45760405162461bcd60e51b815260206004820152604860248201527f4b726f6d61506f7274616c3a207769746864726177616c2074696d657374616d60448201527f70206c657373207468616e204c32204f7261636c65207374617274696e67207460648201527f696d657374616d70000000000000000000000000000000000000000000000000608482015260a4016105e6565b6113e381602001516fffffffffffffffffffffffffffffffff16612084565b61147b5760405162461bcd60e51b815260206004820152604260248201527f4b726f6d61506f7274616c3a2070726f76656e207769746864726177616c206660448201527f696e616c697a6174696f6e20706572696f6420686173206e6f7420656c61707360648201527f6564000000000000000000000000000000000000000000000000000000000000608482015260a4016105e6565b60408181015190517fa25ae5570000000000000000000000000000000000000000000000000000000081526fffffffffffffffffffffffffffffffff90911660048201526000907f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a673ffffffffffffffffffffffffffffffffffffffff169063a25ae55790602401608060405180830381865afa158015611520573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115449190612f74565b82516020820151919250146115e75760405162461bcd60e51b815260206004820152604660248201527f4b726f6d61506f7274616c3a206f757470757420726f6f742070726f76656e2060448201527f6973206e6f74207468652073616d652061732063757272656e74206f7574707560648201527f7420726f6f740000000000000000000000000000000000000000000000000000608482015260a4016105e6565b61160681604001516fffffffffffffffffffffffffffffffff16612084565b61169e5760405162461bcd60e51b815260206004820152604260248201527f4b726f6d61506f7274616c3a20636865636b706f696e74206f7574707574206660448201527f696e616c697a6174696f6e20706572696f6420686173206e6f7420656c61707360648201527f6564000000000000000000000000000000000000000000000000000000000000608482015260a4016105e6565b60008381526033602052604090205460ff16156117235760405162461bcd60e51b815260206004820152603260248201527f4b726f6d61506f7274616c3a207769746864726177616c2068617320616c726560448201527f616479206265656e2066696e616c697a6564000000000000000000000000000060648201526084016105e6565b600083815260336020908152604080832080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055908601516032805473ffffffffffffffffffffffffffffffffffffffff9092167fffffffffffffffffffffffff00000000000000000000000000000000000000009092169190911790558501516080860151606087015160a08801516117c593929190612127565b603280547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead17905560405190915084907fdb5c7652857aa163daadd670e116628fb42e869d8ac4251ef8971d9e5727df1b9061182a90841515815260200190565b60405180910390a2801580156118405750326001145b1561188d5760405162461bcd60e51b815260206004820152601e60248201527f4b726f6d61506f7274616c3a207769746864726177616c206661696c6564000060448201526064016105e6565b5050505050565b3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000fdff462845953d90719a78fd12a2d103541d2103161461193f5760405162461bcd60e51b815260206004820152603f60248201527f4b726f6d61506f7274616c3a2066756e6374696f6e2063616e206f6e6c79206260448201527f652063616c6c65642066726f6d207468652056616c696461746f72506f6f6c0060648201526084016105e6565b6040513373111100000000000000000000000000000000111101906000906119739082908190879082908890602001612eef565b604051602081830303815290604052905060008573ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32846040516119e39190612d6e565b60405180910390a45050505050565b600054610100900460ff1615808015611a125750600054600160ff909116105b80611a2c5750303b158015611a2c575060005460ff166001145b611a9e5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016105e6565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015611afc57600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b603280547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead179055603580548315157fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00909116179055611b5e612185565b8015611bc157600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b5050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b600154600090611c17907801000000000000000000000000000000000000000000000000900467ffffffffffffffff1643613281565b90506000611c2361224e565b90506000816020015160ff16826000015163ffffffff16611c4491906132c7565b90508215611d7b57600154600090611c7b908390700100000000000000000000000000000000900467ffffffffffffffff1661332f565b90506000836040015160ff1683611c9291906133a3565b600154611cb29084906fffffffffffffffffffffffffffffffff166133a3565b611cbc91906132c7565b600154909150600090611d0d90611ce69084906fffffffffffffffffffffffffffffffff1661345f565b866060015163ffffffff168760a001516fffffffffffffffffffffffffffffffff16612314565b90506001861115611d3c57611d39611ce682876040015160ff1660018a611d349190613281565b612331565b90505b6fffffffffffffffffffffffffffffffff16780100000000000000000000000000000000000000000000000067ffffffffffffffff4316021760015550505b60018054869190601090611dae908490700100000000000000000000000000000000900467ffffffffffffffff166134d3565b92506101000a81548167ffffffffffffffff021916908367ffffffffffffffff160217905550816000015163ffffffff16600160000160109054906101000a900467ffffffffffffffff1667ffffffffffffffff161315611e775760405162461bcd60e51b815260206004820152603e60248201527f5265736f757263654d65746572696e673a2063616e6e6f7420627579206d6f7260448201527f6520676173207468616e20617661696c61626c6520676173206c696d6974000060648201526084016105e6565b600154600090611ea3906fffffffffffffffffffffffffffffffff1667ffffffffffffffff88166134ff565b90506000611eb548633b9aca00612386565b611ebf908361353c565b905060005a611ece9088613281565b905080821115611eea57611eea611ee58284613281565b61239e565b5050505050505050565b8051600090611f0657610fbb826123cc565b60405162461bcd60e51b815260206004820152602a60248201527f48617368696e673a20756e6b6e6f776e206f757470757420726f6f742070726f60448201527f6f662076657273696f6e0000000000000000000000000000000000000000000060648201526084016105e6565b919050565b80516020808301516040808501516060860151608087015160a08801519351600097611fa9979096959101613550565b604051602081830303815290604052805190602001209050919050565b60606000611fd38361240f565b600101905060008167ffffffffffffffff811115611ff357611ff3612a69565b6040519080825280601f01601f19166020018201604052801561201d576020820181803683370190505b5090508181016020015b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff017f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a850494508461202757509392505050565b60007f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a673ffffffffffffffffffffffffffffffffffffffff1663f4daa2916040518163ffffffff1660e01b8152600401602060405180830381865afa1580156120f1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906121159190613239565b61211f90836135a7565b421192915050565b60008060006121378660006124f1565b90508061216d576308c379a06000526020805278185361666543616c6c3a204e6f7420656e6f756768206761736058526064601cfd5b600080855160208701888b5af1979650505050505050565b600054610100900460ff166122025760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e6700000000000000000000000000000000000000000060648201526084016105e6565b60408051606081018252633b9aca00808252600060208301524367ffffffffffffffff169190920181905278010000000000000000000000000000000000000000000000000217600155565b6040805160c081018252600080825260208201819052918101829052606081018290526080810182905260a08101919091527f0000000000000000000000003971eb866aa9b2b8afea8a7c816f3b7e8b195a3573ffffffffffffffffffffffffffffffffffffffff1663cc731b026040518163ffffffff1660e01b815260040160c060405180830381865afa1580156122eb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061230f91906135e4565b905090565b6000612329612323858561250f565b8361251e565b949350505050565b6000670de0b6b3a764000061237261234985836132c7565b61235b90670de0b6b3a764000061332f565b61236d85670de0b6b3a76400006133a3565b61252d565b61237c90866133a3565b61232991906132c7565b60008183116123955781612397565b825b9392505050565b6000805a90505b825a6123b19083613281565b10156123c7576123c082613683565b91506123a5565b505050565b80516020808301516040808501516060808701516080808901518551978801989098529386019490945284015282015260a081019190915260009060c001611fa9565b6000807a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310612458577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef81000000008310612484576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc1000083106124a257662386f26fc10000830492506010015b6305f5e10083106124ba576305f5e100830492506008015b61271083106124ce57612710830492506004015b606483106124e0576064830492506002015b600a8310610fbb5760010192915050565b600080603f83619c4001026040850201603f5a021015949350505050565b60008183136123955781612397565b60008183126123955781612397565b6000612397670de0b6b3a7640000836125458661255e565b61254f91906133a3565b61255991906132c7565b612788565b60008082136125af5760405162461bcd60e51b815260206004820152600960248201527f554e444546494e4544000000000000000000000000000000000000000000000060448201526064016105e6565b600060606125bc846129ad565b03609f8181039490941b90931c6c465772b2bbbb5f824b15207a3081018102606090811d6d0388eaa27412d5aca026815d636e018202811d6d0df99ac502031bf953eff472fdcc018202811d6d13cdffb29d51d99322bdff5f2211018202811d6d0a0f742023def783a307a986912e018202811d6d01920d8043ca89b5239253284e42018202811d6c0b7a86d7375468fac667a0a527016c29508e458543d8aa4df2abee7883018302821d6d0139601a2efabe717e604cbb4894018302821d6d02247f7a7b6594320649aa03aba1018302821d7fffffffffffffffffffffffffffffffffffffff73c0c716a594e00d54e3c4cbc9018302821d7ffffffffffffffffffffffffffffffffffffffdc7b88c420e53a9890533129f6f01830290911d7fffffffffffffffffffffffffffffffffffffff465fda27eb4d63ded474e5f832019091027ffffffffffffffff5f6af8f7b3396644f18e157960000000000000000000000000105711340daa0d5f769dba1915cef59f0815a5506027d0267a36c0c95b3975ab3ee5b203a7614a3f75373f047d803ae7b6687f2b393909302929092017d57115e47018c7177eebf7cd370a3356a1b7863008a5ae8028c72b88642840160ae1d92915050565b60007ffffffffffffffffffffffffffffffffffffffffffffffffdb731c958f34d94c182136127b957506000919050565b680755bf798b4a1bf1e582126128115760405162461bcd60e51b815260206004820152600c60248201527f4558505f4f564552464c4f57000000000000000000000000000000000000000060448201526064016105e6565b6503782dace9d9604e83901b059150600060606bb17217f7d1cf79abc9e3b39884821b056b80000000000000000000000001901d6bb17217f7d1cf79abc9e3b39881029093037fffffffffffffffffffffffffffffffffffffffdbf3ccf1604d263450f02a550481018102606090811d6d0277594991cfc85f6e2461837cd9018202811d7fffffffffffffffffffffffffffffffffffffe5adedaa1cb095af9e4da10e363c018202811d6db1bbb201f443cf962f1a1d3db4a5018202811d7ffffffffffffffffffffffffffffffffffffd38dc772608b0ae56cce01296c0eb018202811d6e05180bb14799ab47a8a8cb2a527d57016d02d16720577bd19bf614176fe9ea6c10fe68e7fd37d0007b713f765084018402831d9081019084017ffffffffffffffffffffffffffffffffffffffe2c69812cf03b0763fd454a8f7e010290911d6e0587f503bb6ea29d25fcb7401964500190910279d835ebba824c98fb31b83b2ca45c000000000000000000000000010574029d9dc38563c32e5c2f6dc192ee70ef65f9978af30260c3939093039290921c92915050565b60008082116129fe5760405162461bcd60e51b815260206004820152600960248201527f554e444546494e4544000000000000000000000000000000000000000000000060448201526064016105e6565b5060016fffffffffffffffffffffffffffffffff821160071b82811c67ffffffffffffffff1060061b1782811c63ffffffff1060051b1782811c61ffff1060041b1782811c60ff10600390811b90911783811c600f1060021b1783811c909110821b1791821c111790565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b73ffffffffffffffffffffffffffffffffffffffff81168114612aba57600080fd5b50565b600082601f830112612ace57600080fd5b813567ffffffffffffffff80821115612ae957612ae9612a69565b604051601f83017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f01168101908282118183101715612b2f57612b2f612a69565b81604052838152866020858801011115612b4857600080fd5b836020870160208301376000602085830101528094505050505092915050565b600060c08284031215612b7a57600080fd5b60405160c0810167ffffffffffffffff8282108183111715612b9e57612b9e612a69565b816040528293508435835260208501359150612bb982612a98565b81602084015260408501359150612bcf82612a98565b816040840152606085013560608401526080850135608084015260a0850135915080821115612bfd57600080fd5b50612c0a85828601612abd565b60a0830152505092915050565b6000806000806000858703610100811215612c3157600080fd5b863567ffffffffffffffff80821115612c4957600080fd5b612c558a838b01612b68565b97506020890135965060a07fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc084011215612c8e57600080fd5b60408901955060e0890135925080831115612ca857600080fd5b828901925089601f840112612cbc57600080fd5b8235915080821115612ccd57600080fd5b508860208260051b8401011115612ce357600080fd5b959894975092955050506020019190565b60005b83811015612d0f578181015183820152602001612cf7565b83811115612d1e576000848401525b50505050565b60008151808452612d3c816020860160208601612cf4565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6020815260006123976020830184612d24565b600060208284031215612d9357600080fd5b5035919050565b600060208284031215612dac57600080fd5b813567ffffffffffffffff811115612dc357600080fd5b61232984828501612b68565b803567ffffffffffffffff81168114611f7457600080fd5b600080600060608486031215612dfc57600080fd5b8335612e0781612a98565b9250612e1560208501612dcf565b9150604084013567ffffffffffffffff811115612e3157600080fd5b612e3d86828701612abd565b9150509250925092565b8015158114612aba57600080fd5b600060208284031215612e6757600080fd5b813561239781612e47565b600080600080600060a08688031215612e8a57600080fd5b8535612e9581612a98565b945060208601359350612eaa60408701612dcf565b92506060860135612eba81612e47565b9150608086013567ffffffffffffffff811115612ed657600080fd5b612ee288828901612abd565b9150509295509295909350565b8581528460208201527fffffffffffffffff0000000000000000000000000000000000000000000000008460c01b16604082015282151560f81b604882015260008251612f43816049850160208701612cf4565b919091016049019695505050505050565b80516fffffffffffffffffffffffffffffffff81168114611f7457600080fd5b600060808284031215612f8657600080fd5b6040516080810181811067ffffffffffffffff82111715612fa957612fa9612a69565b6040528251612fb781612a98565b815260208381015190820152612fcf60408401612f54565b6040820152612fe060608401612f54565b60608201529392505050565b600060a08284031215612ffe57600080fd5b60405160a0810181811067ffffffffffffffff8211171561302157613021612a69565b806040525082358152602083013560208201526040830135604082015260608301356060820152608083013560808201528091505092915050565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b8481526000602060808184015280608084015260018060a085015260c0840160c060408601528087825260e08601905060e08860051b87010191508860005b8981101561318e577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff2088850301835281357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18c360301811261314557600080fd5b8b01868101903567ffffffffffffffff81111561316157600080fd5b80360382131561317057600080fd5b61317b86828461305c565b95505050918501919085019084016130e4565b50505080935050505082606083015295945050505050565b6000602082840312156131b857600080fd5b815161239781612e47565b600084516131d5818460208901612cf4565b80830190507f2e000000000000000000000000000000000000000000000000000000000000008082528551613211816001850160208a01612cf4565b6001920191820152835161322c816002840160208801612cf4565b0160020195945050505050565b60006020828403121561324b57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b60008282101561329357613293613252565b500390565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b6000826132d6576132d6613298565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83147f80000000000000000000000000000000000000000000000000000000000000008314161561332a5761332a613252565b500590565b6000808312837f80000000000000000000000000000000000000000000000000000000000000000183128115161561336957613369613252565b837f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff01831381161561339d5761339d613252565b50500390565b60007f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6000841360008413858304851182821616156133e4576133e4613252565b7f8000000000000000000000000000000000000000000000000000000000000000600087128682058812818416161561341f5761341f613252565b6000871292508782058712848416161561343b5761343b613252565b8785058712818416161561345157613451613252565b505050929093029392505050565b6000808212827f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0384138115161561349957613499613252565b827f80000000000000000000000000000000000000000000000000000000000000000384128116156134cd576134cd613252565b50500190565b600067ffffffffffffffff8083168185168083038211156134f6576134f6613252565b01949350505050565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048311821515161561353757613537613252565b500290565b60008261354b5761354b613298565b500490565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a083015261359b60c0830184612d24565b98975050505050505050565b600082198211156135ba576135ba613252565b500190565b805163ffffffff81168114611f7457600080fd5b805160ff81168114611f7457600080fd5b600060c082840312156135f657600080fd5b60405160c0810181811067ffffffffffffffff8211171561361957613619612a69565b604052613625836135bf565b8152613633602084016135d3565b6020820152613644604084016135d3565b6040820152613655606084016135bf565b6060820152613666608084016135bf565b608082015261367760a08401612f54565b60a08201529392505050565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036136b4576136b4613252565b506001019056fea164736f6c634300080f000a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.