Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
ValidatorPool
Compiler Version
v0.8.15+commit.e14f2714
Optimization Enabled:
Yes with 10000 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Constants } from "../libraries/Constants.sol"; import { Predeploys } from "../libraries/Predeploys.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Types } from "../libraries/Types.sol"; import { Semver } from "../universal/Semver.sol"; import { ValidatorRewardVault } from "../L2/ValidatorRewardVault.sol"; import { KromaPortal } from "./KromaPortal.sol"; import { L2OutputOracle } from "./L2OutputOracle.sol"; /** * @custom:proxied * @title ValidatorPool * @notice The ValidatorPool determines whether the validator is present and manages the validator's deposit. */ contract ValidatorPool is ReentrancyGuardUpgradeable, Semver { /** * @notice The gas limit to use when rewarding validator in the ValidatorRewardVault on L2. * This value is measured through simulation. */ uint64 public constant VAULT_REWARD_GAS_LIMIT = 100000; /** * @notice The numerator of the tax. */ uint128 public constant TAX_NUMERATOR = 20; /** * @notice The denominator of the tax. */ uint128 public constant TAX_DENOMINATOR = 100; /** * @notice The address of the L2OutputOracle contract. Can be updated via upgrade. */ L2OutputOracle public immutable L2_ORACLE; /** * @notice The address of the KromaPortal contract. Can be updated via upgrade. */ KromaPortal public immutable PORTAL; /** * @notice The address of the SecurityCouncil contract. Can be updated via upgrade. */ address public immutable SECURITY_COUNCIL; /** * @notice The address of the trusted validator. Can be updated via upgrade. */ address public immutable TRUSTED_VALIDATOR; /** * @notice The required bond amount. Can be updated via upgrade. */ uint128 public immutable REQUIRED_BOND_AMOUNT; /** * @notice The max number of unbonds when trying unbond. */ uint256 public immutable MAX_UNBOND; /** * @notice The duration of a submission round for one output (in seconds). * Note that there are two submission rounds for an output: PRIORITY ROUND and PUBLIC ROUND. */ uint256 public immutable ROUND_DURATION; /** * @notice A mapping of balances. */ mapping(address => uint256) internal balances; /** * @notice The bond corresponding to a specific output index. */ mapping(uint256 => Types.Bond) internal bonds; /** * @notice The output index to unbond next. */ uint256 internal nextUnbondOutputIndex; /** * @notice An array of validator addresses. */ address[] internal validators; /** * @notice The index of the specific address in the validator array. */ mapping(address => uint256) internal validatorIndexes; /** * @notice Address of the next validator with priority for submitting output. */ address internal nextPriorityValidator; /** * @notice A mapping of pending bonds that have not yet been included in a bond. */ mapping(uint256 => mapping(address => uint128)) internal pendingBonds; /** * @notice Emitted when a validator bonds. * * @param submitter Address of submitter. * @param outputIndex Index of the L2 checkpoint output index. * @param amount Amount of bonded. * @param expiresAt The expiration timestamp of bond. */ event Bonded( address indexed submitter, uint256 indexed outputIndex, uint128 amount, uint128 expiresAt ); /** * @notice Emitted when the pending bond is added. * * @param outputIndex Index of the L2 checkpoint output. * @param challenger Address of the challenger. * @param amount Amount of bond added. */ event PendingBondAdded(uint256 indexed outputIndex, address indexed challenger, uint128 amount); /** * @notice Emitted when the bond is increased. * * @param outputIndex Index of the L2 checkpoint output. * @param challenger Address of the challenger. * @param amount Amount of bond increased. */ event BondIncreased(uint256 indexed outputIndex, address indexed challenger, uint128 amount); /** * @notice Emitted when the pending bond is released(refunded). * * @param outputIndex Index of the L2 checkpoint output. * @param challenger Address of the challenger. * @param recipient Address to receive amount from a pending bond. * @param amount Amount of bond released. */ event PendingBondReleased( uint256 indexed outputIndex, address indexed challenger, address indexed recipient, uint128 amount ); /** * @notice Emitted when a validator unbonds. * * @param outputIndex Index of the L2 checkpoint output. * @param recipient Address of the recipient. * @param amount Amount of unbonded. */ event Unbonded(uint256 indexed outputIndex, address indexed recipient, uint128 amount); /** * @notice A modifier that only allows the Colosseum contract to call */ modifier onlyColosseum() { require(msg.sender == L2_ORACLE.COLOSSEUM(), "ValidatorPool: sender is not Colosseum"); _; } /** * @custom:semver 1.0.1 * * @param _l2OutputOracle Address of the L2OutputOracle. * @param _portal Address of the KromaPortal. * @param _securityCouncil Address of the security council. * @param _trustedValidator Address of the trusted validator. * @param _requiredBondAmount The required bond amount. * @param _maxUnbond The max number of unbonds when trying unbond. * @param _roundDuration The duration of one submission round in seconds. */ constructor( L2OutputOracle _l2OutputOracle, KromaPortal _portal, address _securityCouncil, address _trustedValidator, uint256 _requiredBondAmount, uint256 _maxUnbond, uint256 _roundDuration ) Semver(1, 0, 1) { L2_ORACLE = _l2OutputOracle; PORTAL = _portal; SECURITY_COUNCIL = _securityCouncil; TRUSTED_VALIDATOR = _trustedValidator; REQUIRED_BOND_AMOUNT = uint128(_requiredBondAmount); MAX_UNBOND = _maxUnbond; // Note that this value MUST be (SUBMISSION_INTERVAL * L2_BLOCK_TIME) / 2. ROUND_DURATION = _roundDuration; initialize(); } /** * @notice Initializer. */ function initialize() public initializer { __ReentrancyGuard_init_unchained(); } /** * @notice Deposit ETH to be used as bond. */ function deposit() external payable { _increaseBalance(msg.sender, msg.value); } /** * @notice Withdraw a given amount. * * @param _amount Amount to withdraw. */ function withdraw(uint256 _amount) external nonReentrant { _decreaseBalance(msg.sender, _amount); bool success = SafeCall.call(msg.sender, gasleft(), _amount, ""); require(success, "ValidatorPool: ETH transfer failed"); } /** * @notice Bond asset corresponding to the given output index. * This function is called when submitting output. * * @param _outputIndex Index of the L2 checkpoint output. * @param _expiresAt The expiration timestamp of bond. */ function createBond(uint256 _outputIndex, uint128 _expiresAt) external { require(msg.sender == address(L2_ORACLE), "ValidatorPool: sender is not L2OutputOracle"); Types.Bond storage bond = bonds[_outputIndex]; require( bond.expiresAt == 0, "ValidatorPool: bond of the given output index already exists" ); // Unbond the bond of nextUnbondOutputIndex if available. _tryUnbond(); address submitter = L2_ORACLE.getSubmitter(_outputIndex); _decreaseBalance(submitter, REQUIRED_BOND_AMOUNT); bond.amount = REQUIRED_BOND_AMOUNT; bond.expiresAt = _expiresAt; emit Bonded(submitter, _outputIndex, REQUIRED_BOND_AMOUNT, _expiresAt); // Select the next priority validator _updatePriorityValidator(); } /** * @notice Adds a pending bond to the challenge corresponding to the given output index and challenger address. * The pending bond is added to the bond when the challenge is proven or challenger is timed out, * or refunded when the challenge is canceled. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. */ function addPendingBond(uint256 _outputIndex, address _challenger) external onlyColosseum { Types.Bond storage bond = bonds[_outputIndex]; require( bond.expiresAt >= block.timestamp, "ValidatorPool: the output is already finalized" ); _decreaseBalance(_challenger, REQUIRED_BOND_AMOUNT); pendingBonds[_outputIndex][_challenger] = REQUIRED_BOND_AMOUNT; emit PendingBondAdded(_outputIndex, _challenger, REQUIRED_BOND_AMOUNT); } /** * @notice Releases the corresponding pending bond to the given output index and challenger address * if a challenge is canceled. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. * @param _recipient Address to receive amount from a pending bond. */ function releasePendingBond( uint256 _outputIndex, address _challenger, address _recipient ) external onlyColosseum { uint128 bonded = pendingBonds[_outputIndex][_challenger]; require(bonded > 0, "ValidatorPool: the pending bond does not exist"); delete pendingBonds[_outputIndex][_challenger]; _increaseBalance(_recipient, bonded); emit PendingBondReleased(_outputIndex, _challenger, _recipient, bonded); } /** * @notice Increases the bond amount corresponding to the given output index by the pending bond amount. * This is when taxes are charged, and note that taxes are a means of preventing collusive attacks by * the asserter and challenger. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. */ function increaseBond(uint256 _outputIndex, address _challenger) external onlyColosseum { Types.Bond storage bond = bonds[_outputIndex]; require( bond.expiresAt >= block.timestamp, "ValidatorPool: the output is already finalized" ); uint128 pendingBond = pendingBonds[_outputIndex][_challenger]; require(pendingBond > 0, "ValidatorPool: the pending bond does not exist"); uint128 tax = (pendingBond * TAX_NUMERATOR) / TAX_DENOMINATOR; uint128 increased = pendingBond - tax; delete pendingBonds[_outputIndex][_challenger]; unchecked { bond.amount += increased; balances[SECURITY_COUNCIL] += tax; } emit BondIncreased(_outputIndex, _challenger, increased); } /** * @notice Attempt to unbond. Reverts if unbond is not possible. */ function unbond() external { bool released = _tryUnbond(); require(released, "ValidatorPool: no bond that can be unbond"); } /** * @notice Attempts to unbond starting from nextUnbondOutputIndex and returns whether at least * one unbond is executed. Tries unbond at most MAX_UNBOND number of bonds and sends * a reward message to L2 for each unbond. * * @return Whether at least one unbond is executed. */ function _tryUnbond() private returns (bool) { uint256 outputIndex = nextUnbondOutputIndex; uint128 bondAmount; Types.Bond storage bond; Types.CheckpointOutput memory output; uint256 unbondedNum = 0; for (; unbondedNum < MAX_UNBOND; ) { bond = bonds[outputIndex]; bondAmount = bond.amount; if (block.timestamp >= bond.expiresAt && bondAmount > 0) { delete bonds[outputIndex]; output = L2_ORACLE.getL2Output(outputIndex); _increaseBalance(output.submitter, bondAmount); emit Unbonded(outputIndex, output.submitter, bondAmount); // Send reward message to L2 ValidatorRewardVault. _sendRewardMessageToL2Vault(output); unchecked { ++unbondedNum; ++outputIndex; } } else { break; } } if (unbondedNum > 0) { unchecked { nextUnbondOutputIndex = outputIndex; } return true; } return false; } /** * @notice Updates next priority validator address. */ function _updatePriorityValidator() private { uint256 len = validators.length; if (len > 0 && nextUnbondOutputIndex > 0) { // TODO(pangssu): improve next validator selection Types.CheckpointOutput memory output = L2_ORACLE.getL2Output(nextUnbondOutputIndex - 1); uint256 validatorIndex = uint256( keccak256( abi.encodePacked( output.outputRoot, block.number, block.coinbase, block.difficulty, blockhash(block.number - 1) ) ) ) % len; nextPriorityValidator = validators[validatorIndex]; } else { nextPriorityValidator = address(0); } } /** * @notice Sends reward message to ValidatorRewardVault contract on L2 using Portal. * * @param _output The finalized output. */ function _sendRewardMessageToL2Vault(Types.CheckpointOutput memory _output) private { // Pay out rewards via L2 Vault now that the output is finalized. PORTAL.depositTransactionByValidatorPool( Predeploys.VALIDATOR_REWARD_VAULT, VAULT_REWARD_GAS_LIMIT, abi.encodeWithSelector( ValidatorRewardVault.reward.selector, _output.submitter, _output.l2BlockNumber ) ); } /** * @notice Increases the balance of the given address. If the balance is greater than the required bond amount, * add the given address to the validator set. * * @param _validator Address to increase the balance. * @param _amount Amount of balance increased. */ function _increaseBalance(address _validator, uint256 _amount) private { uint256 balance = balances[_validator] + _amount; if (balance >= REQUIRED_BOND_AMOUNT && !isValidator(_validator)) { if (_validator != SECURITY_COUNCIL) { validatorIndexes[_validator] = validators.length; validators.push(_validator); } } balances[_validator] = balance; } /** * @notice Deceases the balance of the given address. If the balance is less than the required bond amount, * remove the given address from the validator set. * * @param _validator Address to decrease the balance. * @param _amount Amount of balance decreased. */ function _decreaseBalance(address _validator, uint256 _amount) private { uint256 balance = balances[_validator]; require(balance >= _amount, "ValidatorPool: insufficient balances"); balance = balance - _amount; if (balance < REQUIRED_BOND_AMOUNT && isValidator(_validator)) { uint256 lastValidatorIndex = validators.length - 1; if (lastValidatorIndex > 0) { uint256 validatorIndex = validatorIndexes[_validator]; address lastValidator = validators[lastValidatorIndex]; validators[validatorIndex] = lastValidator; validatorIndexes[lastValidator] = validatorIndex; } delete validatorIndexes[_validator]; validators.pop(); } balances[_validator] = balance; } /** * @notice Returns the bond corresponding to the output index. Reverts if the bond does not exist. * * @param _outputIndex Index of the L2 checkpoint output. * * @return The bond data. */ function getBond(uint256 _outputIndex) external view returns (Types.Bond memory) { Types.Bond storage bond = bonds[_outputIndex]; require(bond.amount > 0 && bond.expiresAt > 0, "ValidatorPool: the bond does not exist"); return bond; } /** * @notice Returns the pending bond corresponding to the output index and challenger address. * Reverts if the pending bond does not exist. * * @param _outputIndex Index of the L2 checkpoint output. * @param _challenger Address of the challenger. * * @return Amount of the pending bond. */ function getPendingBond(uint256 _outputIndex, address _challenger) external view returns (uint128) { uint128 pendingBond = pendingBonds[_outputIndex][_challenger]; require(pendingBond > 0, "ValidatorPool: the pending bond does not exist"); return pendingBond; } /** * @notice Returns the balance of given address. * * @param _addr Address of validator. * * @return Balance of given address. */ function balanceOf(address _addr) external view returns (uint256) { return balances[_addr]; } /** * @notice Determines whether the given address is an active validator. * * @param _addr Address of validator. * * @return Whether the given address is an active validator. */ function isValidator(address _addr) public view returns (bool) { if (validators.length == 0) { return false; } else if (_addr == address(0)) { return false; } uint256 index = validatorIndexes[_addr]; return validators[index] == _addr; } /** * @notice Returns the number of validators. * * @return The number of validators. */ function validatorCount() external view returns (uint256) { return validators.length; } /** * @notice Determines who can submit the L2 output next. * * @return The address of the validator. */ function nextValidator() public view returns (address) { if (nextPriorityValidator != address(0)) { uint256 l2BlockNumber = L2_ORACLE.nextBlockNumber(); uint256 l2Timestamp = L2_ORACLE.computeL2Timestamp(l2BlockNumber + 1); if (block.timestamp >= l2Timestamp) { uint256 elapsed = block.timestamp - l2Timestamp; // If the current time exceeds one round time, it is a public round. if (elapsed > ROUND_DURATION) { return Constants.VALIDATOR_PUBLIC_ROUND_ADDRESS; } } return nextPriorityValidator; } else { return TRUSTED_VALIDATOR; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /** * @title Constants * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just * the stuff used in multiple contracts. Constants that only apply to a single contract * should be defined in that contract instead. */ library Constants { /** * @notice Special address to be used as the tx origin for gas estimation calls in the * KromaPortal and CrossDomainMessenger calls. You only need to use this address if * the minimum gas limit specified by the user is not actually enough to execute the * given message and you're attempting to estimate the actual necessary gas limit. We * use address(1) because it's the ecrecover precompile and therefore guaranteed to * never have any code on any EVM chain. */ address internal constant ESTIMATION_ADDRESS = address(1); /** * @notice Value used for the L2 sender storage slot in both the KromaPortal and the * CrossDomainMessenger contracts before an actual sender is set. This value is * non-zero to reduce the gas cost of message passing transactions. */ address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /** * @notice Returns the default values for the ResourceConfig. These are the recommended values * for a production network. */ function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } /** * @notice The denominator of the validator reward. * DO NOT change this value if the L2 chain is already operational. */ uint256 internal constant VALIDATOR_REWARD_DENOMINATOR = 10000; /** * @notice An address that identifies that current submission round is a public round. */ address internal constant VALIDATOR_PUBLIC_ROUND_ADDRESS = address(type(uint160).max); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Predeploys * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system. */ library Predeploys { /** * @notice Address of the ProxyAdmin predeploy. */ address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000000; /** * @notice Address of the L1Block predeploy. */ address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000002; /** * @notice Address of the L2ToL1MessagePasser predeploy. */ address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000003; /** * @notice Address of the L2CrossDomainMessenger predeploy. */ address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000004; /** * @notice Address of the GasPriceOracle predeploy. Includes fee information * and helpers for computing the L1 portion of the transaction fee. */ address internal constant GAS_PRICE_ORACLE = 0x4200000000000000000000000000000000000005; /** * @notice Address of the ProtocolVault predeploy. */ address internal constant PROTOCOL_VAULT = 0x4200000000000000000000000000000000000006; /** * @notice Address of the ProposerRewardVault predeploy. */ address internal constant PROPOSER_REWARD_VAULT = 0x4200000000000000000000000000000000000007; /** * @notice Address of the ValidatorRewardVault predeploy. */ address internal constant VALIDATOR_REWARD_VAULT = 0x4200000000000000000000000000000000000008; /** * @notice Address of the L2StandardBridge predeploy. */ address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000009; /** * @notice Address of the L2ERC721Bridge predeploy. */ address internal constant L2_ERC721_BRIDGE = 0x420000000000000000000000000000000000000A; /** * @notice Address of the KromaMintableERC20Factory predeploy. */ address internal constant KROMA_MINTABLE_ERC20_FACTORY = 0x420000000000000000000000000000000000000B; /** * @notice Address of the KromaMintableERC721Factory predeploy. */ address internal constant KROMA_MINTABLE_ERC721_FACTORY = 0x420000000000000000000000000000000000000c; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title SafeCall * @notice Perform low level safe calls */ library SafeCall { /** * @notice Perform a low level call without copying any returndata * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Helper function to determine if there is sufficient gas remaining within the context * to guarantee that the minimum gas requirement for a call will be met as well as * optionally reserving a specified amount of gas for after the call has concluded. * * @param _minGas The minimum amount of gas that may be passed to the target context. * @param _reservedGas Optional amount of gas to reserve for the caller after the execution * of the target context. * * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target * context as well as reserve `_reservedGas` for the caller after the execution of * the target context. * * @dev !!!!! FOOTGUN ALERT !!!!! * 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the * `CALL` opcode's `address_access_cost`, `positive_value_cost`, and * `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is * still possible to self-rekt by initiating a withdrawal with a minimum gas limit * that does not account for the `memory_expansion_cost` & `code_execution_cost` * factors of the dynamic cost of the `CALL` opcode. * 2.) This function should *directly* precede the external call if possible. There is an * added buffer to account for gas consumed between this check and the call, but it * is only 5,700 gas. * 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call * frame may be passed to a subcontext, we need to ensure that the gas will not be * truncated. * 4.) Use wisely. This function is not a silver bullet. */ function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero( lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))) ) } return _hasMinGas; } /** * @notice Perform a low level call without copying any returndata. This function * will revert if the call cannot be performed with the specified minimum * gas. * * @param _target Address to call * @param _minGas The minimum amount of gas that may be passed to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63 + 40_000 - 49) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Types * @notice Contains various types used throughout the Kroma contract system. */ library Types { /** * @notice CheckpointOutput represents a commitment to the state of L2 checkpoint. The timestamp * is the L1 timestamp that the output root is posted. This timestamp is used to verify * that the finalization period has passed since the output root was submitted. * * @custom:field submitter Address of the output submitter. * @custom:field outputRoot Hash of the L2 output. * @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. * @custom:field l2BlockNumber L2 block number that the output corresponds to. */ struct CheckpointOutput { address submitter; bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /** * @notice Struct representing the elements that are hashed together to generate an output root * which itself represents a snapshot of the L2 state. * * @custom:field version Version of the output root. * @custom:field stateRoot Root of the state trie at the block of this output. * @custom:field messagePasserStorageRoot Root of the message passer storage trie. * @custom:field blockHash Hash of the block this output was generated from. * @custom:field nextBlockHash Hash of the next block. */ struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 blockHash; bytes32 nextBlockHash; } /** * @notice Struct representing the elements that are hashed together to generate a public input. * * @custom:field blockHash The hash of the block. * @custom:field parentHash The hash of the previous block. * @custom:field timestamp The block time. * @custom:field number The block number. * @custom:field gasLimit Maximum gas allowed. * @custom:field baseFee The base fee per gas. * @custom:field transactionsRoot Root hash of the transactions. * @custom:field stateRoot Root hash of the state trie. * @custom:field withdrawalsRoot Root hash of the withdrawals. * @custom:field txHashes Array of hash of the transaction. */ struct PublicInput { bytes32 blockHash; bytes32 parentHash; uint64 timestamp; uint64 number; uint64 gasLimit; uint256 baseFee; bytes32 transactionsRoot; bytes32 stateRoot; bytes32 withdrawalsRoot; bytes32[] txHashes; } /** * @notice Struct representing the elements that are hashed together to generate a block hash. * Some of fields that are contained in PublicInput are omitted. * * @custom:field uncleHash RLP encoded uncle hash. * @custom:field coinbase RLP encoded coinbase. * @custom:field receiptsRoot RLP encoded receipts root. * @custom:field logsBloom RLP encoded logs bloom. * @custom:field difficulty RLP encoded difficulty. * @custom:field gasUsed RLP encoded gas used. * @custom:field extraData RLP encoded extra data. * @custom:field mixHash RLP encoded mix hash. * @custom:field nonce RLP encoded nonce. */ struct BlockHeaderRLP { bytes uncleHash; bytes coinbase; bytes receiptsRoot; bytes logsBloom; bytes difficulty; bytes gasUsed; bytes extraData; bytes mixHash; bytes nonce; } /** * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end * user (as opposed to a system deposit transaction generated by the system). * * @custom:field from Address of the sender of the transaction. * @custom:field to Address of the recipient of the transaction. * @custom:field isCreation True if the transaction is a contract creation. * @custom:field value Value to send to the recipient. * @custom:field mint Amount of ETH to mint. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. * @custom:field l1BlockHash Hash of the block the transaction was submitted in. * @custom:field logIndex Index of the log in the block the transaction was submitted in. */ struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint64 logIndex; } /** * @notice Struct representing a withdrawal transaction. * * @custom:field nonce Nonce of the withdrawal transaction * @custom:field sender Address of the sender of the transaction. * @custom:field target Address of the recipient of the transaction. * @custom:field value Value to send to the recipient. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. */ struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } /** * @notice Struct representing a challenge. * * @custom:field turn The current turn. * @custom:field timeoutAt Timeout timestamp of the next turn. * @custom:field asserter Address of the asserter. * @custom:field challenger Address of the challenger. * @custom:field segments Array of the segment. * @custom:field segStart The L2 block number of the first segment. * @custom:field segSize The number of L2 blocks. */ struct Challenge { uint8 turn; uint64 timeoutAt; address asserter; address challenger; bytes32[] segments; uint256 segSize; uint256 segStart; } /** * @notice Struct representing a validator's bond. * * @custom:field amount Amount of the lock. * @custom:field expiresAt The expiration timestamp of bond. */ struct Bond { uint128 amount; uint128 expiresAt; } /** * @notice Struct representing multisig transaction data. * * @custom:field target The destination address to run the transaction. * @custom:field executed Record whether a transaction was executed or not. * @custom:field value The value passed in while executing the transaction. * @custom:field data Calldata for transaction. */ struct MultiSigTransaction { address target; bool executed; uint256 value; bytes data; } /** * @notice Struct representing multisig confirmation data. * * @custom:field confirmationCount The sum of confirmations. * @custom:field confirmedBy Map data that stores whether confirmation is performed by account. */ struct MultiSigConfirmation { uint256 confirmationCount; mapping(address => bool) confirmedBy; } /** * @notice Struct representing the data for verifying the public input. * * @custom:field srcOutputRootProof Proof of the source output root. * @custom:field dstOutputRootProof Proof of the destination output root. * @custom:field publicInput Ingredients to compute the public input used by ZK proof verification. * @custom:field rlps Pre-encoded RLPs to compute the next block hash * of the source output root proof. * @custom:field l2ToL1MessagePasserBalance Balance of the L2ToL1MessagePasser account. * @custom:field l2ToL1MessagePasserCodeHash Codehash of the L2ToL1MessagePasser account. * @custom:field merkleProof Merkle proof of L2ToL1MessagePasser account against the state root. */ struct PublicInputProof { OutputRootProof srcOutputRootProof; OutputRootProof dstOutputRootProof; PublicInput publicInput; BlockHeaderRLP rlps; bytes32 l2ToL1MessagePasserBalance; bytes32 l2ToL1MessagePasserCodeHash; bytes[] merkleProof; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.15; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; /** * @title Semver * @notice Semver is a simple contract for managing contract versions. */ contract Semver { /** * @notice Contract version number (major). */ uint256 private immutable MAJOR_VERSION; /** * @notice Contract version number (minor). */ uint256 private immutable MINOR_VERSION; /** * @notice Contract version number (patch). */ uint256 private immutable PATCH_VERSION; /** * @param _major Version number (major). * @param _minor Version number (minor). * @param _patch Version number (patch). */ constructor( uint256 _major, uint256 _minor, uint256 _patch ) { MAJOR_VERSION = _major; MINOR_VERSION = _minor; PATCH_VERSION = _patch; } /** * @notice Returns the full semver contract version. * * @return Semver contract version as a string. */ function version() public view virtual returns (string memory) { return string( abi.encodePacked( Strings.toString(MAJOR_VERSION), ".", Strings.toString(MINOR_VERSION), ".", Strings.toString(PATCH_VERSION) ) ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { L2StandardBridge } from "../L2/L2StandardBridge.sol"; import { Predeploys } from "../libraries/Predeploys.sol"; import { FeeVault } from "../universal/FeeVault.sol"; import { Semver } from "../universal/Semver.sol"; import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol"; /** * @custom:proxied * @custom:predeploy 0x4200000000000000000000000000000000000008 * @title ValidatorRewardVault * @notice The ValidatorRewardVault accumulates transaction fees and pays rewards to validators. */ contract ValidatorRewardVault is FeeVault, Semver { /** * @notice Address of the ValidatorPool contract on L1. */ address public immutable VALIDATOR_POOL; /** * @notice A value to divide the vault balance by when determining the reward amount. */ uint256 public immutable REWARD_DIVIDER; /** * @notice The reward balance that the validator is eligible to receive. */ mapping(address => uint256) internal rewards; /** * @notice A mapping of whether the reward corresponding to the L2 block number has been paid. */ mapping(uint256 => bool) internal isPaid; /** * @notice The amount of determined as rewards. */ uint256 public totalReserved; /** * @notice Emitted when the balance of a validator has increased. * * @param validator Address of the validator. * @param l2BlockNumber The L2 block number of the output root. * @param amount Amount of the reward. */ event Rewarded(address indexed validator, uint256 indexed l2BlockNumber, uint256 amount); /** * @custom:semver 1.0.0 * * @param _validatorPool Address of the ValidatorPool contract on L1. * @param _rewardDivider A value to divide the vault balance by when determining the reward amount. */ constructor(address _validatorPool, uint256 _rewardDivider) FeeVault(address(0), 0) Semver(1, 0, 0) { VALIDATOR_POOL = _validatorPool; REWARD_DIVIDER = _rewardDivider; } /** * @notice Rewards the validator for submitting the output. * ValidatorPool contract on L1 calls this function over the portal when output is finalized. * * @param _validator Address of the validator. * @param _l2BlockNumber The L2 block number of the output root. */ function reward(address _validator, uint256 _l2BlockNumber) external { require( AddressAliasHelper.undoL1ToL2Alias(msg.sender) == VALIDATOR_POOL, "ValidatorRewardVault: function can only be called from the ValidatorPool" ); require(_validator != address(0), "ValidatorRewardVault: validator address cannot be 0"); require( !isPaid[_l2BlockNumber], "ValidatorRewardVault: the reward has already been paid for the L2 block number" ); uint256 amount = _determineRewardAmount(); unchecked { totalReserved += amount; rewards[_validator] += amount; } isPaid[_l2BlockNumber] = true; emit Rewarded(_validator, _l2BlockNumber, amount); } /** * @notice Withdraws all of the sender's balance. * Reverts if the balance is less than the minimum withdrawal amount. */ function withdraw() external override { uint256 balance = rewards[msg.sender]; require( balance >= MIN_WITHDRAWAL_AMOUNT, "ValidatorRewardVault: withdrawal amount must be greater than minimum withdrawal amount" ); rewards[msg.sender] = 0; unchecked { totalReserved -= balance; totalProcessed += balance; } emit Withdrawal(balance, msg.sender, msg.sender); L2StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE)).bridgeETHTo{ value: balance }( msg.sender, WITHDRAWAL_MIN_GAS, bytes("") ); } /** * @notice Determines the reward amount. * * @return Amount of the reward. */ function _determineRewardAmount() internal view returns (uint256) { return (address(this).balance - totalReserved) / REWARD_DIVIDER; } /** * @notice Returns the reward balance of the given address. * * @param _addr Address to lookup. * * @return The reward balance of the given address. */ function balanceOf(address _addr) external view returns (uint256) { return rewards[_addr]; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Types } from "../libraries/Types.sol"; import { Semver } from "../universal/Semver.sol"; import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol"; import { L2OutputOracle } from "./L2OutputOracle.sol"; import { ResourceMetering } from "./ResourceMetering.sol"; import { SystemConfig } from "./SystemConfig.sol"; import { ZKMerkleTrie } from "./ZKMerkleTrie.sol"; /** * @custom:proxied * @title KromaPortal * @notice The KromaPortal is a low-level contract responsible for passing messages between L1 * and L2. Messages sent directly to the KromaPortal have no form of replayability. * Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface. */ contract KromaPortal is Initializable, ResourceMetering, Semver { /** * @notice Represents a proven withdrawal. * * @custom:field outputRoot Root of the L2 output this was proven against. * @custom:field timestamp Timestamp at whcih the withdrawal was proven. * @custom:field l2OutputIndex Index of the output this was proven against. */ struct ProvenWithdrawal { bytes32 outputRoot; uint128 timestamp; uint128 l2OutputIndex; } /** * @notice Version of the deposit event. */ uint256 internal constant DEPOSIT_VERSION = 0; /** * @notice The L2 gas limit set when eth is deposited using the receive() function. */ uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /** * @notice Address of the L2OutputOracle contract. */ L2OutputOracle public immutable L2_ORACLE; /** * @notice Address of the ValidatorPool contract. */ address public immutable VALIDATOR_POOL; /** /** * @notice Address of the SystemConfig contract. */ SystemConfig public immutable SYSTEM_CONFIG; /** * @notice MultiSig wallet address that has the ability to pause and unpause withdrawals. */ address public immutable GUARDIAN; /** * @notice Address of the ZKMerkleTrie. */ ZKMerkleTrie public immutable ZK_MERKLE_TRIE; /** * @notice Address of the L2 account which initiated a withdrawal in this transaction. If the * of this variable is the default L2 sender address, then we are NOT inside of a call * to finalizeWithdrawalTransaction. */ address public l2Sender; /** * @notice A list of withdrawal hashes which have been successfully finalized. */ mapping(bytes32 => bool) public finalizedWithdrawals; /** * @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data. */ mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals; /** * @notice Determines if cross domain messaging is paused. When set to true, * withdrawals are paused. This may be removed in the future. */ bool public paused; /** * @notice Emitted when a transaction is deposited from L1 to L2. The parameters of this event * are read by the rollup node and used to derive deposit transactions on L2. * * @param from Address that triggered the deposit transaction. * @param to Address that the deposit transaction is directed to. * @param version Version of this deposit transaction event. * @param opaqueData ABI encoded deposit data to be parsed off-chain. */ event TransactionDeposited( address indexed from, address indexed to, uint256 indexed version, bytes opaqueData ); /** * @notice Emitted when a withdrawal transaction is proven. * * @param withdrawalHash Hash of the withdrawal transaction. */ event WithdrawalProven( bytes32 indexed withdrawalHash, address indexed from, address indexed to ); /** * @notice Emitted when a withdrawal transaction is finalized. * * @param withdrawalHash Hash of the withdrawal transaction. * @param success Whether the withdrawal transaction was successful. */ event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success); /** * @notice Emitted when the pause is triggered. * * @param account Address of the account triggering the pause. */ event Paused(address account); /** * @notice Emitted when the pause is lifted. * * @param account Address of the account triggering the unpause. */ event Unpaused(address account); /** * @notice Reverts when paused. */ modifier whenNotPaused() { require(paused == false, "KromaPortal: paused"); _; } /** * @custom:semver 1.0.0 * * @param _l2Oracle Address of the L2OutputOracle contract. * @param _validatorPool Address of the ValidatorPool contract. * @param _guardian MultiSig wallet address that can pause deposits and withdrawals. * @param _paused Sets the contract's pausability state. * @param _config Address of the SystemConfig contract. * @param _zkMerkleTrie Address of the ZKMerkleTrie contract. */ constructor( L2OutputOracle _l2Oracle, address _validatorPool, address _guardian, bool _paused, SystemConfig _config, ZKMerkleTrie _zkMerkleTrie ) Semver(1, 0, 0) { L2_ORACLE = _l2Oracle; VALIDATOR_POOL = _validatorPool; GUARDIAN = _guardian; SYSTEM_CONFIG = _config; ZK_MERKLE_TRIE = _zkMerkleTrie; initialize(_paused); } /** * @notice Initializer. */ function initialize(bool _paused) public initializer { l2Sender = Constants.DEFAULT_L2_SENDER; paused = _paused; __ResourceMetering_init(); } /** * @notice Pause deposits and withdrawals. */ function pause() external { require(msg.sender == GUARDIAN, "KromaPortal: only guardian can pause"); paused = true; emit Paused(msg.sender); } /** * @notice Unpause deposits and withdrawals. */ function unpause() external { require(msg.sender == GUARDIAN, "KromaPortal: only guardian can unpause"); paused = false; emit Unpaused(msg.sender); } /** * @notice Accepts value so that users can send ETH directly to this contract and have the * funds be deposited to their address on L2. This is intended as a convenience * function for EOAs. Contracts should call the depositTransaction() function directly * otherwise any deposited funds will be lost due to address aliasing. */ // solhint-disable-next-line ordering receive() external payable { depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes("")); } /** * @notice Getter for the resource config. Used internally by the ResourceMetering * contract. The SystemConfig is the source of truth for the resource config. * * @return ResourceMetering.ResourceConfig */ function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) { return SYSTEM_CONFIG.resourceConfig(); } /** * @notice Proves a withdrawal transaction. * * @param _tx Withdrawal transaction to finalize. * @param _l2OutputIndex L2 output index to prove against. * @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root. * @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract. */ function proveWithdrawalTransaction( Types.WithdrawalTransaction memory _tx, uint256 _l2OutputIndex, Types.OutputRootProof calldata _outputRootProof, bytes[] calldata _withdrawalProof ) external whenNotPaused { // Prevent users from creating a deposit transaction where this address is the message // sender on L2. Because this is checked here, we do not need to check again in // `finalizeWithdrawalTransaction`. require( _tx.target != address(this), "KromaPortal: you cannot send messages to the portal contract" ); // Get the output root and load onto the stack to prevent multiple mloads. This will // revert if there is no output root for the given block number. bytes32 outputRoot = L2_ORACLE.getL2Output(_l2OutputIndex).outputRoot; // Verify that the output root can be generated with the elements in the proof. require( outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "KromaPortal: invalid output root proof" ); // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // We generally want to prevent users from proving the same withdrawal multiple times // because each successive proof will update the timestamp. A malicious user can take // advantage of this to prevent other users from finalizing their withdrawal. However, // since withdrawals are proven before an output root is finalized, we need to allow users // to re-prove their withdrawal only in the case that the output root for their specified // output index has been updated. require( provenWithdrawal.timestamp == 0 || L2_ORACLE.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot, "KromaPortal: withdrawal hash has already been proven" ); // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract. // Refer to the Solidity documentation for more information on how storage layouts are // computed for mappings. bytes32 storageKey = keccak256( abi.encode( withdrawalHash, uint256(0) // The withdrawals mapping is at the first slot in the layout. ) ); // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract // on L2. If this is true, under the assumption that the ZKMerkleTrie contract does not have // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore // be relayed on L1. require( ZK_MERKLE_TRIE.verifyInclusionProof( storageKey, hex"0000000000000000000000000000000000000000000000000000000000000001", _withdrawalProof, _outputRootProof.messagePasserStorageRoot ), "KromaPortal: invalid withdrawal inclusion proof" ); // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and // `l2OutputIndex` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be // proven once unless it is submitted again with a different outputRoot. provenWithdrawals[withdrawalHash] = ProvenWithdrawal({ outputRoot: outputRoot, timestamp: uint128(block.timestamp), l2OutputIndex: uint128(_l2OutputIndex) }); // Emit a `WithdrawalProven` event. emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target); } /** * @notice Finalizes a withdrawal transaction. * * @param _tx Withdrawal transaction to finalize. */ function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused { // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other // than the default value when a withdrawal transaction is being finalized. This check is // a defacto reentrancy guard. require( l2Sender == Constants.DEFAULT_L2_SENDER, "KromaPortal: can only trigger one withdrawal per transaction" ); // Grab the proven withdrawal from the `provenWithdrawals` map. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have // a timestamp of zero. require(provenWithdrawal.timestamp != 0, "KromaPortal: withdrawal has not been proven yet"); // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of // safety against weird bugs in the proving step. require( provenWithdrawal.timestamp >= L2_ORACLE.startingTimestamp(), "KromaPortal: withdrawal timestamp less than L2 Oracle starting timestamp" ); // A proven withdrawal must wait at least the finalization period before it can be // finalized. This waiting period can elapse in parallel with the waiting period for the // output the withdrawal was proven against. In effect, this means that the minimum // withdrawal time is l2 output submission time + finalization period. require( _isFinalizationPeriodElapsed(provenWithdrawal.timestamp), "KromaPortal: proven withdrawal finalization period has not elapsed" ); // Grab the CheckpointOutput from the L2OutputOracle, will revert if the output that // corresponds to the given index has not been submitted yet. Types.CheckpointOutput memory checkpointOutput = L2_ORACLE.getL2Output( provenWithdrawal.l2OutputIndex ); // Check that the output root that was used to prove the withdrawal is the same as the // current output root for the given output index. An output root may change if it is // deleted by the challenger address and then re-submitted. require( checkpointOutput.outputRoot == provenWithdrawal.outputRoot, "KromaPortal: output root proven is not the same as current output root" ); // Check that the checkpoint output has also been finalized. require( _isFinalizationPeriodElapsed(checkpointOutput.timestamp), "KromaPortal: checkpoint output finalization period has not elapsed" ); // Check that this withdrawal has not already been finalized, this is replay protection. require( finalizedWithdrawals[withdrawalHash] == false, "KromaPortal: withdrawal has already been finalized" ); // Mark the withdrawal as finalized so it can't be replayed. finalizedWithdrawals[withdrawalHash] = true; // Set the l2Sender so contracts know who triggered this withdrawal on L2. l2Sender = _tx.sender; // Trigger the call to the target contract. We use a custom low level method // SafeCall.callWithMinGas to ensure two key properties // 1. Target contracts cannot force this call to run out of gas by returning a very large // amount of data (and this is OK because we don't care about the returndata here). // 2. The amount of gas provided to the execution context of the target is at least the // gas limit specified by the user. If there is not enough gas in the current context // to accomplish this, `callWithMinGas` will revert. bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data); // Reset the l2Sender back to the default value. l2Sender = Constants.DEFAULT_L2_SENDER; // All withdrawals are immediately finalized. Replayability can // be achieved through contracts built on top of this contract emit WithdrawalFinalized(withdrawalHash, success); // Reverting here is useful for determining the exact gas cost to successfully execute the // sub call to the target contract if the minimum gas limit specified by the user would not // be sufficient to execute the sub call. if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) { revert("KromaPortal: withdrawal failed"); } } /** * @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in * deriving deposit transactions. Note that if a deposit is made by a contract, its * address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider * using the CrossDomainMessenger contracts for a simpler developer experience. * * @param _to Target address on L2. * @param _value ETH value to send to the recipient. * @param _gasLimit Minimum L2 gas limit (can be greater than or equal to this value). * @param _isCreation Whether or not the transaction is a contract creation. * @param _data Data to trigger the recipient with. */ function depositTransaction( address _to, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public payable metered(_gasLimit) { // Just to be safe, make sure that people specify address(0) as the target when doing // contract creations. if (_isCreation) { require( _to == address(0), "KromaPortal: must send to address(0) when creating a contract" ); } // Prevent depositing transactions that have too small of a gas limit. require(_gasLimit >= 21_000, "KromaPortal: gas limit must cover instrinsic gas cost"); // Transform the from-address to its alias if the caller is a contract. address from = msg.sender; if (msg.sender != tx.origin) { from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } // Compute the opaque data that will be emitted as part of the TransactionDeposited event. // We use opaque data so that we can update the TransactionDeposited event in the future // without breaking the current interface. bytes memory opaqueData = abi.encodePacked( msg.value, _value, _gasLimit, _isCreation, _data ); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /** * @notice Accepts deposits of data from ValidatorPool contract, and emits a TransactionDeposited event for use in * deriving deposit transactions on L2. * * @param _to Target address on L2. * @param _gasLimit Minimum L2 gas limit (can be greater than or equal to this value). * @param _data Data to trigger the recipient with. */ function depositTransactionByValidatorPool( address _to, uint64 _gasLimit, bytes memory _data ) public { require( msg.sender == VALIDATOR_POOL, "KromaPortal: function can only be called from the ValidatorPool" ); // Transform the from-address to its alias. address from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); // Compute the opaque data that will be emitted as part of the TransactionDeposited event. bytes memory opaqueData = abi.encodePacked(uint256(0), uint256(0), _gasLimit, false, _data); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /** * @notice Determines if the output at the given index is finalized. Reverts if the call to * L2_ORACLE.getL2Output reverts. Returns a boolean otherwise. * * @param _l2OutputIndex Index of the L2 output to check. * * @return Whether or not the output is finalized. */ function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) { return _isFinalizationPeriodElapsed(L2_ORACLE.getL2Output(_l2OutputIndex).timestamp); } /** * @notice Determines whether the finalization period has elapsed w/r/t a given timestamp. * * @param _timestamp Timestamp to check. * * @return Whether or not the finalization period has elapsed. */ function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) { return block.timestamp > _timestamp + L2_ORACLE.FINALIZATION_PERIOD_SECONDS(); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Types } from "../libraries/Types.sol"; import { Semver } from "../universal/Semver.sol"; import { ValidatorPool } from "./ValidatorPool.sol"; /** * @custom:proxied * @title L2OutputOracle * @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a * commitment to the state of the L2 chain. Other contracts like the KromaPortal use * these outputs to verify information about the state of L2. */ contract L2OutputOracle is Initializable, Semver { /** * @notice The address of the validator pool contract. Can be updated via upgrade. */ ValidatorPool public immutable VALIDATOR_POOL; /** * @notice The address of the colosseum contract. Can be updated via upgrade. */ address public immutable COLOSSEUM; /** * @notice The interval in L2 blocks at which checkpoints must be submitted. Although this is * immutable, it can be modified by upgrading the implementation contract. * Note that nodes that fetch and use this value need to restart when it is modified. */ uint256 public immutable SUBMISSION_INTERVAL; /** * @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified. */ uint256 public immutable L2_BLOCK_TIME; /** * @notice Minimum time (in seconds) that must elapse before a withdrawal can be finalized. */ uint256 public immutable FINALIZATION_PERIOD_SECONDS; /** * @notice The number of the first L2 block recorded in this contract. */ uint256 public startingBlockNumber; /** * @notice The timestamp of the first L2 block recorded in this contract. */ uint256 public startingTimestamp; /** * @notice Array of L2 checkpoint outputs. */ Types.CheckpointOutput[] internal l2Outputs; /** * @notice Emitted when an output is submitted. * * @param outputRoot The output root. * @param l2OutputIndex The index of the output in the l2Outputs array. * @param l2BlockNumber The L2 block number of the output root. * @param l1Timestamp The L1 timestamp when submitted. */ event OutputSubmitted( bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp ); /** * @notice Emitted when an output is replaced. * * @param outputIndex Replaced L2 output index. * @param newOutputRoot L2 output root after replacement. */ event OutputReplaced(uint256 indexed outputIndex, bytes32 newOutputRoot); /** * @custom:semver 1.0.0 * * @param _validatorPool The address of the ValidatorPool contract. * @param _colosseum The address of the Colosseum contract. * @param _submissionInterval Interval in blocks at which checkpoints must be submitted. * @param _l2BlockTime The time per L2 block, in seconds. * @param _startingBlockNumber The number of the first L2 block. * @param _startingTimestamp The timestamp of the first L2 block. * @param _finalizationPeriodSeconds Output finalization time in seconds. */ constructor( ValidatorPool _validatorPool, address _colosseum, uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _startingBlockNumber, uint256 _startingTimestamp, uint256 _finalizationPeriodSeconds ) Semver(1, 0, 0) { require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0"); require( _submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0" ); VALIDATOR_POOL = _validatorPool; COLOSSEUM = _colosseum; SUBMISSION_INTERVAL = _submissionInterval; L2_BLOCK_TIME = _l2BlockTime; FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds; initialize(_startingBlockNumber, _startingTimestamp); } /** * @notice Initializer. * * @param _startingBlockNumber Block number for the first recorded L2 block. * @param _startingTimestamp Timestamp for the first recorded L2 block. */ function initialize(uint256 _startingBlockNumber, uint256 _startingTimestamp) public initializer { require( _startingTimestamp <= block.timestamp, "L2OutputOracle: starting L2 timestamp must be less than current time" ); startingTimestamp = _startingTimestamp; startingBlockNumber = _startingBlockNumber; } /** * @notice Replaces the output that corresponds to the given output index. * Only the Colosseum contract can replace an output. * * @param _l2OutputIndex Index of the L2 output to be replaced. * @param _newOutputRoot The L2 output root to replace the existing one. * @param _submitter Address of the L2 output submitter. */ function replaceL2Output( uint256 _l2OutputIndex, bytes32 _newOutputRoot, address _submitter ) external { require( msg.sender == COLOSSEUM, "L2OutputOracle: only the colosseum contract can replace an output" ); require(_submitter != address(0), "L2OutputOracle: submitter address cannot be zero"); // Make sure we're not *increasing* the length of the array. require( _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot replace an output after the latest output index" ); Types.CheckpointOutput storage output = l2Outputs[_l2OutputIndex]; // Do not allow replacing any outputs that have already been finalized. require( block.timestamp - output.timestamp < FINALIZATION_PERIOD_SECONDS, "L2OutputOracle: cannot replace an output that has already been finalized" ); output.outputRoot = _newOutputRoot; output.submitter = _submitter; emit OutputReplaced(_l2OutputIndex, _newOutputRoot); } /** * @notice Accepts an outputRoot and the block number of the corresponding L2 block. * The block number must be equal to the current value returned by `nextBlockNumber()` * in order to be accepted. This function may only be called by the validator. * * @param _outputRoot The L2 output of the checkpoint block. * @param _l2BlockNumber The L2 block number that resulted in _outputRoot. * @param _l1BlockHash A block hash which must be included in the current chain. * @param _l1BlockNumber The block number with the specified block hash. */ function submitL2Output( bytes32 _outputRoot, uint256 _l2BlockNumber, bytes32 _l1BlockHash, uint256 _l1BlockNumber ) external payable { address nextValidator = VALIDATOR_POOL.nextValidator(); // If it's not a public round, only selected validators can submit output. if (nextValidator != Constants.VALIDATOR_PUBLIC_ROUND_ADDRESS) { require( msg.sender == nextValidator, "L2OutputOracle: only the next selected validator can submit output" ); } require( _l2BlockNumber == nextBlockNumber(), "L2OutputOracle: block number must be equal to next expected block number" ); require( computeL2Timestamp(_l2BlockNumber) < block.timestamp, "L2OutputOracle: cannot submit L2 output in the future" ); require( _outputRoot != bytes32(0), "L2OutputOracle: L2 checkpoint output cannot be the zero hash" ); if (_l1BlockHash != bytes32(0) && blockhash(_l1BlockNumber) != bytes32(0)) { // This check allows the validator to submit an output based on a given L1 block, // without fear that it will be reorged out. // It will be skipped if the blockheight provided is more than 256 blocks behind the // chain tip (as the hash will return as zero). require( blockhash(_l1BlockNumber) == _l1BlockHash, "L2OutputOracle: block hash does not match the hash at the expected height" ); } uint256 outputIndex = nextOutputIndex(); l2Outputs.push( Types.CheckpointOutput({ submitter: msg.sender, outputRoot: _outputRoot, timestamp: uint128(block.timestamp), l2BlockNumber: uint128(_l2BlockNumber) }) ); emit OutputSubmitted(_outputRoot, outputIndex, _l2BlockNumber, block.timestamp); VALIDATOR_POOL.createBond( outputIndex, uint128(block.timestamp + FINALIZATION_PERIOD_SECONDS) ); } /** * @notice Returns an output by index. Reverts if output is not found at the given index. * * @param _l2OutputIndex Index of the output to return. * * @return The output at the given index. */ function getL2Output(uint256 _l2OutputIndex) external view returns (Types.CheckpointOutput memory) { return l2Outputs[_l2OutputIndex]; } /** * @notice Returns the index of the L2 output that checkpoints a given L2 block number. Uses a * binary search to find the first output greater than or equal to the given block. * * @param _l2BlockNumber L2 block number to find a checkpoint for. * * @return Index of the first checkpoint that commits to the given L2 block number. */ function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) { // Make sure an output for this block number has actually been submitted. require( _l2BlockNumber <= latestBlockNumber(), "L2OutputOracle: cannot get output for a block that has not been submitted" ); // Make sure there's at least one output submitted. require( l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been submitted yet" ); // Find the output via binary search, guaranteed to exist. uint256 lo = 0; uint256 hi = l2Outputs.length; while (lo < hi) { uint256 mid = (lo + hi) / 2; if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) { lo = mid + 1; } else { hi = mid; } } return lo; } /** * @notice Returns the L2 checkpoint output that checkpoints a given L2 block number. * * @param _l2BlockNumber L2 block number to find a checkpoint for. * * @return First checkpoint that commits to the given L2 block number. */ function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.CheckpointOutput memory) { return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)]; } /** * @notice Returns the index of the latest submitted output. Will revert if no outputs * have been submitted yet. * * @return The index of the latest submitted output. */ function latestOutputIndex() external view returns (uint256) { return l2Outputs.length - 1; } /** * @notice Returns the index of the next output to be submitted. * * @return The index of the next output to be submitted. */ function nextOutputIndex() public view returns (uint256) { return l2Outputs.length; } /** * @notice Returns the block number of the latest submitted L2 checkpoint output. If no outputs * have been submitted yet then this function will return the starting block number. * * @return Latest submitted L2 block number. */ function latestBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber; } /** * @notice Computes the block number of the next L2 block that needs to be checkpointed. If no * outputs have been submitted yet then this function will return the latest block * number, which is the starting block number. * * @return Next L2 block number. */ function nextBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? latestBlockNumber() : latestBlockNumber() + SUBMISSION_INTERVAL; } /** * @notice Returns the L2 timestamp corresponding to a given L2 block number. * * @param _l2BlockNumber The L2 block number of the target block. * * @return L2 timestamp of the given block. */ function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) { return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME); } /** * @notice Returns the address of the L2 output submitter. * * @param _outputIndex Index of an output. * * @return Address of the submitter. */ function getSubmitter(uint256 _outputIndex) external view returns (address) { return l2Outputs[_outputIndex].submitter; } /** * @notice Returns if the output of given index is finalized. * * @param _outputIndex Index of an output. * * @return If the given output is finalized or not. */ function isFinalized(uint256 _outputIndex) external view returns (bool) { return l2Outputs[_outputIndex].timestamp + FINALIZATION_PERIOD_SECONDS < block.timestamp; } /** * @notice Returns the finalization time of given output index. * * @param _outputIndex Index of an output. * * @return The finalization time of given output index. */ function finalizedAt(uint256 _outputIndex) external view returns (uint256) { return l2Outputs[_outputIndex].timestamp + FINALIZATION_PERIOD_SECONDS; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Arithmetic } from "../libraries/Arithmetic.sol"; import { Burn } from "../libraries/Burn.sol"; /** * @custom:upgradeable * @title ResourceMetering * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing * updates automatically based on current demand. */ abstract contract ResourceMetering is Initializable { /** * @notice Represents the various parameters that control the way in which resources are * metered. Corresponds to the EIP-1559 resource metering system. * * @custom:field prevBaseFee Base fee from the previous block(s). * @custom:field prevBoughtGas Amount of gas bought so far in the current block. * @custom:field prevBlockNum Last block number that the base fee was updated. */ struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /** * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas * market. These values should be set with care as it is possible to set them in * a way that breaks the deposit gas market. The target resource limit is defined as * maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a * single word. There is additional space for additions in the future. * * @custom:field maxResourceLimit Represents the maximum amount of deposit gas that * can be purchased per block. * @custom:field elasticityMultiplier Determines the target resource limit along with * the resource limit. * @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. * @custom:field minimumBaseFee The min deposit base fee, it is clamped to this * value. * @custom:field systemTxMaxGas The amount of gas supplied to the system * transaction. This should be set to the same number * that the kroma-node sets as the gas limit for the * system transaction. * @custom:field maximumBaseFee The max deposit base fee, it is clamped to this * value. */ struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /** * @notice EIP-1559 style gas parameters. */ ResourceParams public params; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[48] private __gap; /** * @notice Meters access to a function based an amount of a requested resource. * * @param _amount Amount of the resource requested. */ modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /** * @notice An internal function that holds all of the logic for metering a resource. * * @param _amount Amount of the resource requested. * @param _initialGas The amount of gas before any modifier execution. */ function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /** * @notice Virtual function that returns the resource config. Contracts that inherit this * contract must implement this function. * * @return ResourceConfig */ function _resourceConfig() internal virtual returns (ResourceConfig memory); /** * @notice Sets initial resource parameter values. This function must either be called by the * initializer function of an upgradeable child contract. */ // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "../libraries/Predeploys.sol"; import { Semver } from "../universal/Semver.sol"; import { StandardBridge } from "../universal/StandardBridge.sol"; /** * @custom:proxied * @custom:predeploy 0x4200000000000000000000000000000000000009 * @title L2StandardBridge * @notice The L2StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and * L2. In the case that an ERC20 token is native to L2, it will be escrowed within this * contract. If the ERC20 token is native to L1, it will be burnt. * NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples * of some token types that may not be properly supported by this contract include, but are * not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists. */ contract L2StandardBridge is StandardBridge, Semver { /** * @custom:semver 1.0.0 * * @param _otherBridge Address of the L1StandardBridge. */ constructor(address payable _otherBridge) Semver(1, 0, 0) StandardBridge(payable(Predeploys.L2_CROSS_DOMAIN_MESSENGER), _otherBridge) {} /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. */ receive() external payable override onlyEOA { _initiateBridgeETH( msg.sender, msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, bytes("") ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "../libraries/Predeploys.sol"; import { L2StandardBridge } from "../L2/L2StandardBridge.sol"; /** * @title FeeVault * @notice The FeeVault contract contains the basic logic for the various different vault contracts * used to hold fee revenue generated by the L2 system. */ abstract contract FeeVault { /** * @notice Emits each time that a withdrawal occurs. * * @param value Amount that was withdrawn (in wei). * @param to Address that the funds were sent to. * @param from Address that triggered the withdrawal. */ event Withdrawal(uint256 value, address to, address from); /** * @notice Minimum balance before a withdrawal can be triggered. */ uint256 public immutable MIN_WITHDRAWAL_AMOUNT; /** * @notice Wallet that will receive the fees on L1. */ address public immutable RECIPIENT; /** * @notice The minimum gas limit for the FeeVault withdrawal transaction. */ uint32 internal constant WITHDRAWAL_MIN_GAS = 35_000; /** * @notice Total amount of wei processed by the contract. */ uint256 public totalProcessed; /** * @param _recipient Wallet that will receive the fees on L1. * @param _minWithdrawalAmount Minimum balance before a withdrawal can be triggered. */ constructor(address _recipient, uint256 _minWithdrawalAmount) { MIN_WITHDRAWAL_AMOUNT = _minWithdrawalAmount; RECIPIENT = _recipient; } /** * @notice Allow the contract to receive ETH. */ receive() external payable {} /** * @notice Triggers a withdrawal of funds to the L1 fee wallet. */ function withdraw() external virtual { require( address(this).balance >= MIN_WITHDRAWAL_AMOUNT, "FeeVault: withdrawal amount must be greater than minimum withdrawal amount" ); uint256 value = address(this).balance; totalProcessed += value; emit Withdrawal(value, RECIPIENT, msg.sender); L2StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE)).bridgeETHTo{ value: value }( RECIPIENT, WITHDRAWAL_MIN_GAS, bytes("") ); } }
// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Encoding } from "./Encoding.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; import { Types } from "./Types.sol"; /** * @title Hashing * @notice Hashing handles Kroma's various different hashing schemes. */ library Hashing { /** * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a * given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 * system. * * @param _tx User deposit transaction to hash. * * @return Hash of the RLP encoded L2 deposit transaction. */ function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /** * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash * of the L2 transaction that corresponds to a deposit is unique and is * deterministically generated from L1 transaction data. * * @param _l1BlockHash Hash of the L1 block where the deposit was included. * @param _logIndex The index of the log that created the deposit transaction. * * @return Hash of the deposit transaction's "source hash". */ function hashDepositSource(bytes32 _l1BlockHash, uint64 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /** * @notice Hashes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /** * @notice Hashes a cross domain message based on the V0 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV0( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256( Encoding.encodeCrossDomainMessageV0( _nonce, _sender, _target, _value, _gasLimit, _data ) ); } /** * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract * * @param _tx Withdrawal transaction to hash. * * @return Hashed withdrawal transaction. */ function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256( abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data) ); } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. * * @param _outputRootProof Output root proof which should be hashed to an output root. * * @return Hashed output root proof. */ function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { if (_outputRootProof.version == bytes32(uint256(0))) { return hashOutputRootProofV0(_outputRootProof); } else { revert("Hashing: unknown output root proof version"); } } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. (version 0) * * @param _outputRootProof Output root proof which should be hashed to an output root. * * @return Hashed output root proof. */ function hashOutputRootProofV0(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.blockHash, _outputRootProof.nextBlockHash ) ); } /** * @notice Fills the values of the block hash fields to a given bytes. * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * @param _raw An array of bytes to be populated. */ function _fillBlockHashFieldsToBytes( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps, bytes[] memory _raw ) private pure { _raw[0] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.parentHash)); _raw[1] = _rlps.uncleHash; _raw[2] = _rlps.coinbase; _raw[3] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.stateRoot)); _raw[4] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.transactionsRoot)); _raw[5] = _rlps.receiptsRoot; _raw[6] = _rlps.logsBloom; _raw[7] = _rlps.difficulty; _raw[8] = RLPWriter.writeUint(_publicInput.number); _raw[9] = RLPWriter.writeUint(_publicInput.gasLimit); _raw[10] = _rlps.gasUsed; _raw[11] = RLPWriter.writeUint(_publicInput.timestamp); _raw[12] = _rlps.extraData; _raw[13] = _rlps.mixHash; _raw[14] = _rlps.nonce; _raw[15] = RLPWriter.writeUint(_publicInput.baseFee); } /** * @notice Hashes the various elements of a block header into a block hash(before shanghai). * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * * @return Hashed block header. */ function hashBlockHeader( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps ) internal pure returns (bytes32) { bytes[] memory raw = new bytes[](16); _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw); return keccak256(RLPWriter.writeList(raw)); } /** * @notice Hashes the various elements of a block header into a block hash(after shanghai). * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * * @return Hashed block header. */ function hashBlockHeaderShanghai( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps ) internal pure returns (bytes32) { bytes[] memory raw = new bytes[](17); _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw); raw[16] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.withdrawalsRoot)); return keccak256(RLPWriter.writeList(raw)); } /** * @notice Hashes the various elements of a public input into a public input hash. * * @param _prevStateRoot Previous state root. * @param _publicInput Public input which should be hashed to a public input hash. * @param _dummyHashes Dummy hashes returned from generateDummyHashes(). * * @return Hashed block header. */ function hashPublicInput( bytes32 _prevStateRoot, Types.PublicInput memory _publicInput, bytes32[] memory _dummyHashes ) internal pure returns (bytes32) { return keccak256( abi.encodePacked( _prevStateRoot, _publicInput.stateRoot, _publicInput.withdrawalsRoot, _publicInput.blockHash, _publicInput.parentHash, _publicInput.number, _publicInput.timestamp, _publicInput.baseFee, _publicInput.gasLimit, uint16(_publicInput.txHashes.length), _publicInput.txHashes, _dummyHashes ) ); } /** * @notice Generates a bytes32 array filled with a dummy hash for the given length. * * @param _dummyHashes Dummy hash. * @param _length A length of the array. * * @return Bytes32 array filled with dummy hash. */ function generateDummyHashes(bytes32 _dummyHashes, uint256 _length) internal pure returns (bytes32[] memory) { bytes32[] memory hashes = new bytes32[](_length); for (uint256 i = 0; i < _length; i++) { hashes[i] = _dummyHashes; } return hashes; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Semver } from "../universal/Semver.sol"; import { ResourceMetering } from "./ResourceMetering.sol"; /** * @title SystemConfig * @notice The SystemConfig contract is used to manage configuration of a Kroma network. All * configuration is stored on L1 and picked up by L2 as part of the derivation of the L2 * chain. */ contract SystemConfig is OwnableUpgradeable, Semver { /** * @notice Enum representing different types of updates. * * @custom:value BATCHER Represents an update to the batcher hash. * @custom:value GAS_CONFIG Represents an update to txn fee config on L2. * @custom:value GAS_LIMIT Represents an update to gas limit on L2. * @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe * block distribution. * @custom:value VALIDATOR_REWARD_SCALAR Represents an update to validator reward scalar. */ enum UpdateType { BATCHER, GAS_CONFIG, GAS_LIMIT, UNSAFE_BLOCK_SIGNER, VALIDATOR_REWARD_SCALAR } /** * @notice Version identifier, used for upgrades. */ uint256 public constant VERSION = 0; /** * @notice Storage slot that the unsafe block signer is stored at. Storing it at this * deterministic storage slot allows for decoupling the storage layout from the way * that `solc` lays out storage. The `kroma-node` uses a storage proof to fetch this value. */ bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner"); /** * @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation. */ uint256 public overhead; /** * @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation. */ uint256 public scalar; /** * @notice Identifier for the batcher. For version 1 of this configuration, this is represented * as an address left-padded with zeros to 32 bytes. */ bytes32 public batcherHash; /** * @notice L2 block gas limit. */ uint64 public gasLimit; /** * @notice The configuration for the deposit fee market. Used by the KromaPortal * to meter the cost of buying L2 gas on L1. Set as internal and wrapped with a getter * so that the struct is returned instead of a tuple. */ ResourceMetering.ResourceConfig internal _resourceConfig; /** * @notice The scalar value to distribute transaction fees as validator reward. * The denominator is 10000, so the ratio is expressed in 4 decimal places. */ uint256 public validatorRewardScalar; /** * @notice Emitted when configuration is updated * * @param version SystemConfig version. * @param updateType Type of update. * @param data Encoded update data. */ event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); /** * @custom:semver 1.0.0 * * @param _owner Initial owner of the contract. * @param _overhead Initial overhead value. * @param _scalar Initial scalar value. * @param _batcherHash Initial batcher hash. * @param _gasLimit Initial gas limit. * @param _unsafeBlockSigner Initial unsafe block signer address. * @param _config Initial resource config. * @param _validatorRewardScalar Initial validator reward scalar. */ constructor( address _owner, uint256 _overhead, uint256 _scalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config, uint256 _validatorRewardScalar ) Semver(1, 0, 0) { initialize( _owner, _overhead, _scalar, _batcherHash, _gasLimit, _unsafeBlockSigner, _config, _validatorRewardScalar ); } /** * @notice Initializer. The resource config must be set before the * require check. * * @param _owner Initial owner of the contract. * @param _overhead Initial overhead value. * @param _scalar Initial scalar value. * @param _batcherHash Initial batcher hash. * @param _gasLimit Initial gas limit. * @param _unsafeBlockSigner Initial unsafe block signer address. * @param _config Initial ResourceConfig. * @param _validatorRewardScalar Initial validator reward scalar. */ function initialize( address _owner, uint256 _overhead, uint256 _scalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config, uint256 _validatorRewardScalar ) public initializer { __Ownable_init(); transferOwnership(_owner); overhead = _overhead; scalar = _scalar; batcherHash = _batcherHash; gasLimit = _gasLimit; _setUnsafeBlockSigner(_unsafeBlockSigner); _setResourceConfig(_config); require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); validatorRewardScalar = _validatorRewardScalar; } /** * @notice Returns the minimum L2 gas limit that can be safely set for the system to * operate. The L2 gas limit must be larger than or equal to the amount of * gas that is allocated for deposits per block plus the amount of gas that * is allocated for the system transaction. * This function is used to determine if changes to parameters are safe. * * @return uint64 */ function minimumGasLimit() public view returns (uint64) { return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas); } /** * @notice High level getter for the unsafe block signer address. Unsafe blocks can be * propagated across the p2p network if they are signed by the key corresponding to * this address. * * @return Address of the unsafe block signer. */ // solhint-disable-next-line ordering function unsafeBlockSigner() external view returns (address) { address addr; bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT; assembly { addr := sload(slot) } return addr; } /** * @notice Updates the unsafe block signer address. * * @param _unsafeBlockSigner New unsafe block signer address. */ function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner { _setUnsafeBlockSigner(_unsafeBlockSigner); bytes memory data = abi.encode(_unsafeBlockSigner); emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data); } /** * @notice Updates the batcher hash. * * @param _batcherHash New batcher hash. */ function setBatcherHash(bytes32 _batcherHash) external onlyOwner { batcherHash = _batcherHash; bytes memory data = abi.encode(_batcherHash); emit ConfigUpdate(VERSION, UpdateType.BATCHER, data); } /** * @notice Updates gas config. * * @param _overhead New overhead value. * @param _scalar New scalar value. */ function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner { overhead = _overhead; scalar = _scalar; bytes memory data = abi.encode(_overhead, _scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /** * @notice Updates the L2 gas limit. * * @param _gasLimit New gas limit. */ function setGasLimit(uint64 _gasLimit) external onlyOwner { require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); gasLimit = _gasLimit; bytes memory data = abi.encode(_gasLimit); emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data); } /** * @notice Low level setter for the unsafe block signer address. This function exists to * deduplicate code around storing the unsafeBlockSigner address in storage. * * @param _unsafeBlockSigner New unsafeBlockSigner value. */ function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal { bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT; assembly { sstore(slot, _unsafeBlockSigner) } } /** * @notice A getter for the resource config. Ensures that the struct is * returned instead of a tuple. * * @return ResourceConfig */ function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) { return _resourceConfig; } /** * @notice An external setter for the resource config. In the future, this * method may emit an event that the `kroma-node` picks up for when the * resource config is changed. * * @param _config The new resource config values. */ function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner { _setResourceConfig(_config); } /** * @notice An internal setter for the resource config. Ensures that the * config is sane before storing it by checking for invariants. * * @param _config The new resource config. */ function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal { // Min base fee must be less than or equal to max base fee. require( _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base" ); // Base fee change denominator must be greater than 1. require( _config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1" ); // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit. // The gas limit must be increased before these values can be increased. require( _config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low" ); // Elasticity multiplier must be greater than 0. require( _config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0" ); // No precision loss when computing target resource limit. require( ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier) == _config.maxResourceLimit, "SystemConfig: precision loss with target resource limit" ); _resourceConfig = _config; } /** * @notice Updates the validator reward scalar. * * @param _validatorRewardScalar New validator reward scalar. */ function setValidatorRewardScalar(uint256 _validatorRewardScalar) external onlyOwner { require( _validatorRewardScalar <= Constants.VALIDATOR_REWARD_DENOMINATOR, "SystemConfig: the max value of validator reward scalar has been exceeded" ); validatorRewardScalar = _validatorRewardScalar; bytes memory data = abi.encode(_validatorRewardScalar); emit ConfigUpdate(VERSION, UpdateType.VALIDATOR_REWARD_SCALAR, data); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Bytes } from "../libraries/Bytes.sol"; import { NodeReader } from "../libraries/NodeReader.sol"; import { IZKMerkleTrie } from "./IZKMerkleTrie.sol"; import { ZKTrieHasher } from "./ZKTrieHasher.sol"; /** * @custom:proxied * @title ZKMerkleTrie * @notice The ZKMerkleTrie is contract which can produce a hash according to ZKTrie. * This owns an interface of Poseidon2 that is required to compute hash used by ZKTrie. */ contract ZKMerkleTrie is IZKMerkleTrie, ZKTrieHasher { /** * @notice Struct representing a node in the trie. */ struct TrieNode { bytes encoded; NodeReader.Node decoded; } /** * @notice Magic hash which indicates * See https://github.com/kroma-network/zktrie/blob/main/trie/zk_trie_proof.go. */ bytes32 private constant MAGIC_SMT_BYTES_HASH = keccak256( hex"5448495320495320534f4d45204d4147494320425954455320464f5220534d54206d3172525867503278704449" ); /** * @param _poseidon2 The address of poseidon2 contract. */ constructor(address _poseidon2) ZKTrieHasher(_poseidon2) {} /** * @notice Checks if a given bytes is MAGIC_SMT_BYTES_HASH. * * @param _value Bytes to be compared. */ function isMagicSmtBytesHash(bytes memory _value) private pure returns (bool) { return keccak256(_value) == MAGIC_SMT_BYTES_HASH; } /** * @inheritdoc IZKMerkleTrie */ function verifyInclusionProof( bytes32 _key, bytes memory _value, bytes[] memory _proofs, bytes32 _root ) external view returns (bool) { (bool exists, bytes memory value) = this.get(_key, _proofs, _root); return (exists && Bytes.equal(_value, value)); } /** * @notice Retrieves the value associated with a given key. * * @param _key Key to search for, as hex bytes. * @param _proofs Merkle trie inclusion proof for the key. * @param _root Known root of the Merkle trie. * * @return Whether or not the key exists. * @return Value of the key if it exists. */ function get( bytes32 _key, bytes[] memory _proofs, bytes32 _root ) external view returns (bool, bytes memory) { require(_proofs.length >= 2, "ZKMerkleTrie: provided proof is too short"); require( isMagicSmtBytesHash(_proofs[_proofs.length - 1]), "ZKMerkleTrie: the last item is not magic hash" ); bytes32 key = _hashElem(_key); TrieNode[] memory nodes = _parseProofs(_proofs); NodeReader.Node memory currentNode; bytes32 computedKey = bytes32(0); bool exists = false; bool empty = false; bytes memory value = bytes(""); for (uint256 i = nodes.length - 2; i >= 0; ) { currentNode = nodes[i].decoded; if (currentNode.nodeType == NodeReader.NodeType.MIDDLE) { bool isLeft = _isLeft(key, i); if (isLeft) { require(computedKey == currentNode.childL, "ZKMerkleTrie: invalid key L"); } else { require(computedKey == currentNode.childR, "ZKMerkleTrie: invalid key R"); } computedKey = _hashFixed2Elems( currentNode.childL, currentNode.childR ); } else if (currentNode.nodeType == NodeReader.NodeType.LEAF) { require(!exists && !empty, "ZKMerkleTrie: duplicated terminal node"); exists = currentNode.nodeKey == key; if (!exists) { break; } computedKey = _hashFixed3Elems( bytes32(uint256(1)), currentNode.nodeKey, _valueHash(currentNode.compressedFlags, currentNode.valuePreimage) ); bytes32[] memory valuePreimage = currentNode.valuePreimage; uint256 len = valuePreimage.length; assembly { value := valuePreimage mstore(value, mul(len, 32)) } if (currentNode.keyPreimage != bytes32(0)) { // NOTE(chokobole): The comparison order is important, because in this setting, // first condition is mostly evaluted to be true. When we're sure about // database preimage, then we need to enable just one of check below! require( currentNode.keyPreimage == _key || currentNode.keyPreimage == key, "ZKMerkleTrie: invalid key preimage" ); } } else if (currentNode.nodeType == NodeReader.NodeType.EMPTY) { require(!exists && !empty, "ZKMerkleTrie: duplicated terminal node"); empty = true; } if (i == 0) { require(computedKey == _root, "ZKMerkeTrie: invalid root"); break; } unchecked { --i; } } return (exists, value); } /** * @notice Parses an array of proof elements into a new array that contains both the original * encoded element and the decoded element. * * @param _proofs Array of proof elements to parse. * * @return TrieNode parsed into easily accessible structs. */ function _parseProofs(bytes[] memory _proofs) private pure returns (TrieNode[] memory) { uint256 length = _proofs.length; TrieNode[] memory nodes = new TrieNode[](length); // NOTE(chokobole): Last proof is MAGIC_SMT_BYTES_HASH! for (uint256 i = 0; i < length - 1; ) { NodeReader.Node memory node = NodeReader.readNode(_proofs[i]); nodes[i] = TrieNode({ encoded: _proofs[i], decoded: node }); unchecked { ++i; } } return nodes; } /** * @notice Computes merkle path at index n based on a given keyPreimage. * * @param _keyPreimage Keypreimage. * @param _n Bit to mask. * * @return Whether merkle path is left or not. */ function _isLeft(bytes32 _keyPreimage, uint256 _n) private pure returns (bool) { require(_n < 256, "ZKMerkleTrie: too long depth"); return _keyPreimage & bytes32(1 << _n) == 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /** * @title Arithmetic * @notice Even more math than before. */ library Arithmetic { /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( int256 _value, int256 _min, int256 _max ) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( uint256 _value, uint256 _min, uint256 _max ) internal pure returns (uint256) { return Math.min(Math.max(_value, _min), _max); } /** * @notice (c)oefficient (d)enominator (exp)onentiation function. * Returns the result of: c * (1 - 1/d)^exp. * * @param _coefficient Coefficient of the function. * @param _denominator Fractional denominator. * @param _exponent Power function exponent. * * @return Result of c * (1 - 1/d)^exp. */ function cdexp( int256 _coefficient, int256 _denominator, int256 _exponent ) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SafeCall } from "./SafeCall.sol"; /** * @title Burn * @notice Utilities for burning stuff. */ library Burn { /** * Burns a given amount of ETH. * Note that execution engine of Kroma does not support SELFDESTRUCT opcode, so it sends ETH to zero address. * * @param _amount Amount of ETH to burn. */ function eth(uint256 _amount) internal { SafeCall.call(address(0), gasleft(), _amount, ""); } /** * Burns a given amount of gas. * * @param _amount Amount of gas to burn. */ function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { CrossDomainMessenger } from "./CrossDomainMessenger.sol"; import { IKromaMintableERC20 } from "./IKromaMintableERC20.sol"; import { KromaMintableERC20 } from "./KromaMintableERC20.sol"; /** * @custom:upgradeable * @title StandardBridge * @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles * the core bridging logic, including escrowing tokens that are native to the local chain * and minting/burning tokens that are native to the remote chain. */ abstract contract StandardBridge { using SafeERC20 for IERC20; /** * @notice The L2 gas limit set when eth is depoisited using the receive() function. */ uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000; /** * @notice Messenger contract on this domain. */ CrossDomainMessenger public immutable MESSENGER; /** * @notice Corresponding bridge on the other domain. */ StandardBridge public immutable OTHER_BRIDGE; /** * @notice Mapping that stores deposits for a given pair of local and remote tokens. */ mapping(address => mapping(address => uint256)) public deposits; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. * A gap size of 49 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[49] private __gap; /** * @notice Emitted when an ETH bridge is initiated to the other chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeInitiated( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ETH bridge is finalized on this chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeFinalized( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is initiated to the other chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeInitiated( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is finalized on this chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeFinalized( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Only allow EOAs to call the functions. Note that this is not safe against contracts * calling code within their constructors, but also doesn't really matter since we're * just trying to prevent users accidentally depositing with smart contract wallets. */ modifier onlyEOA() { require( !Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA" ); _; } /** * @notice Ensures that the caller is a cross-chain message from the other bridge. */ modifier onlyOtherBridge() { require( msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == address(OTHER_BRIDGE), "StandardBridge: function can only be called from the other bridge" ); _; } /** * @param _messenger Address of CrossDomainMessenger on this network. * @param _otherBridge Address of the other StandardBridge contract. */ constructor(address payable _messenger, address payable _otherBridge) { MESSENGER = CrossDomainMessenger(_messenger); OTHER_BRIDGE = StandardBridge(_otherBridge); } /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. * Must be implemented by contracts that inherit. */ receive() external payable virtual; /** * @notice Sends ETH to the sender's address on the other chain. * * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA { _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a * smart contract and the call fails, the ETH will be temporarily locked in the * StandardBridge on the other chain until the call is replayed. If the call cannot be * replayed with any amount of gas (call always reverts), then the ETH will be * permanently locked in the StandardBridge on the other chain. ETH will also * be locked if the receiver is the other bridge, because finalizeBridgeETH will revert * in that case. * * @param _to Address of the receiver. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETHTo( address _to, uint32 _minGasLimit, bytes calldata _extraData ) public payable { _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20( address _localToken, address _remoteToken, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public onlyEOA { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20To( address _localToken, address _remoteToken, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData ); } /** * @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeETH( address _from, address _to, uint256 _amount, bytes calldata _extraData ) public payable onlyOtherBridge { require(msg.value == _amount, "StandardBridge: amount sent does not match amount required"); require(_to != address(this), "StandardBridge: cannot send to self"); require(_to != address(MESSENGER), "StandardBridge: cannot send to messenger"); emit ETHBridgeFinalized(_from, _to, _amount, _extraData); bool success = SafeCall.call(_to, gasleft(), _amount, hex""); require(success, "StandardBridge: ETH transfer failed"); } /** * @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes calldata _extraData ) public onlyOtherBridge { if (_isKromaMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Kroma Mintable ERC20 local token" ); KromaMintableERC20(_localToken).mint(_to, _amount); } else { deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount; IERC20(_localToken).safeTransfer(_to, _amount); } emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Initiates a bridge of ETH through the CrossDomainMessenger. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeETH( address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { require( msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value" ); emit ETHBridgeInitiated(_from, _to, _amount, _extraData); MESSENGER.sendMessage{ value: _amount }( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { if (_isKromaMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Kroma Mintable ERC20 local token" ); KromaMintableERC20(_localToken).burn(_from, _amount); } else { IERC20(_localToken).safeTransferFrom(_from, address(this), _amount); deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount; } emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); MESSENGER.sendMessage( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeERC20.selector, // Because this call will be executed on the remote chain, we reverse the order of // the remote and local token addresses relative to their order in the // finalizeBridgeERC20 function. _remoteToken, _localToken, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Checks if a given address is a KromaMintableERC20. Not perfect, but good enough. * Just the way we like it. * * @param _token Address of the token to check. * * @return True if the token is a KromaMintableERC20. */ function _isKromaMintableERC20(address _token) internal view returns (bool) { return ERC165Checker.supportsInterface(_token, type(IKromaMintableERC20).interfaceId); } /** * @notice Checks if the "other token" is the correct pair token for the KromaMintableERC20. * * @param _mintableToken KromaMintableERC20 to check against. * @param _otherToken Pair token to check. * * @return True if the other token is the correct pair token for the KromaMintableERC20. */ function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) { return _otherToken == KromaMintableERC20(_mintableToken).REMOTE_TOKEN(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Hashing } from "./Hashing.sol"; import { Types } from "./Types.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; /** * @title Encoding * @notice Encoding handles Kroma's various different encoding schemes. */ library Encoding { /** * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent * to the L2 system. Useful for searching for a deposit in the L2 system. The * transaction is prefixed with 0x7e to identify its EIP-2718 type. * * @param _tx User deposit transaction to encode. * * @return RLP encoded L2 deposit transaction. */ function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](7); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /** * @notice Encodes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /** * @notice Encodes a cross domain message based on the V0 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV0( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /** * @notice Adds a version number into the first two bytes of a message nonce. * * @param _nonce Message nonce to encode into. * @param _version Version number to encode into the message nonce. * * @return Message nonce with version encoded into the first two bytes. */ function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /** * @notice Pulls the version out of a version-encoded nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * * @return Nonce without encoded version. * @return Version of the message. */ function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode * @title RLPWriter * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's * RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor * modifications to improve legibility. */ library RLPWriter { /** * @notice RLP encodes a byte string. * * @param _in The byte string to encode. * * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * @notice RLP encodes a list of RLP encoded byte byte strings. * * @param _in The list of RLP encoded byte strings. * * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * @notice RLP encodes a string. * * @param _in The string to encode. * * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * @notice RLP encodes an address. * * @param _in The address to encode. * * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * @notice RLP encodes a uint. * * @param _in The uint256 to encode. * * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * @notice RLP encodes a bool. * * @param _in The bool to encode. * * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /** * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. * * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * @notice Encode integer in big endian binary form with no leading zeroes. * * @param _x The integer to encode. * * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * @custom:attribution https://github.com/Arachnid/solidity-stringutils * @notice Copies a piece of memory to another location. * * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder * @notice Flattens a list of byte strings into one byte string. * * @param _list List of byte strings to flatten. * * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Bytes * @notice Bytes is a library for manipulating byte arrays. */ library Bytes { /** * @notice Compares two byte arrays by comparing their keccak256 hashes. * * @param _bytes First byte array to compare. * @param _other Second byte array to compare. * * @return True if the two byte arrays are equal, false otherwise. */ function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title NodeReader * @notice NodeReader is a library for reading ZKTrie Node. */ library NodeReader { /** * @notice Node types. * See https://github.com/kroma-network/zktrie/blob/main/types/README.md. * * @custom:value MIDDLE Represents a middle node. * @custom:value LEAF Represents a leaf node. * @custom:value EMPTY Represents a empty node. * @custom:value ROOT Represents a root node. */ enum NodeType { MIDDLE, LEAF, EMPTY, ROOT } /** * @notice Struct representing a Node. * See https://github.com/kroma-network/zktrie/blob/main/types/README.md. */ struct Node { NodeType nodeType; bytes32 childL; bytes32 childR; bytes32 nodeKey; bytes32[] valuePreimage; uint32 compressedFlags; bytes32 valueHash; bytes32 keyPreimage; } /** * @notice Struct representing an Item. */ struct Item { bytes ptr; uint256 len; } /** * @notice Converts bytes to Item. * * @param _bytes bytes to convert. * * @return Item referencing _bytes. */ function toItem(bytes memory _bytes) internal pure returns (Item memory) { bytes memory ptr; assembly { ptr := add(_bytes, 32) } return Item({ ptr: ptr, len: _bytes.length }); } /** * @notice Reads an Item into an uint8. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return An uint8 value. */ function readUint8(Item memory _item) internal pure returns (uint8) { require(_item.len >= 1, "NodeReader: too short for uint8"); bytes memory newPtr; bytes memory ptr = _item.ptr; uint8 ret; assembly { ret := shr(248, mload(ptr)) newPtr := add(ptr, 1) } _item.ptr = newPtr; _item.len -= 1; return ret; } /** * @notice Reads an Item into compressed flags and length of values. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return Compressed flags. * @return Length of values. */ function readCompressedFlags(Item memory _item) internal pure returns (uint32, uint8) { require(_item.len >= 4, "NodeReader: too short for uint32"); bytes memory newPtr; bytes memory ptr = _item.ptr; uint32 temp; uint8 flag; uint8 len; assembly { temp := mload(ptr) len := shr(248, temp) flag := shr(240, temp) newPtr := add(ptr, 4) } _item.ptr = newPtr; _item.len -= 4; return (flag, len); } /** * @notice Reads an Item into a bytes32. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return A bytes32 value. */ function readBytes32(Item memory _item) internal pure returns (bytes32) { require(_item.len >= 32, "NodeReader: too short for bytes32"); bytes memory newPtr; bytes memory ptr = _item.ptr; bytes32 ret; assembly { ret := mload(ptr) newPtr := add(ptr, 32) } _item.ptr = newPtr; _item.len -= 32; return ret; } /** * @notice Reads an Item by n bytes into a bytes32. * Internal ptr and length is updated automatically. * * @param _item Item to read. * * @return A bytes32 value. */ function readBytesN(Item memory _item, uint256 _length) internal pure returns (bytes32) { require(_item.len >= _length, "NodeReader: too short for n bytes"); bytes memory newPtr; bytes memory ptr = _item.ptr; bytes32 ret; uint256 to = 256 - _length * 8; assembly { newPtr := add(ptr, _length) ret := shr(to, mload(ptr)) } _item.ptr = newPtr; _item.len -= _length; return ret; } /** * @notice Reads bytes into a Node. * * @param _proof Bytes to read. * * @return A decoded Node. */ function readNode(bytes memory _proof) internal pure returns (Node memory) { Node memory node; Item memory item = toItem(_proof); uint256 nodeType = readUint8(item); if (nodeType == uint256(NodeType.MIDDLE)) { // TODO(chokobole): Do the length check as much as possible at once and read the bytes. node.childL = readBytes32(item); node.childR = readBytes32(item); } else if (nodeType == uint256(NodeType.LEAF)) { // TODO(chokobole): Do the length check as much as possible at once and read the bytes. node.nodeKey = readBytes32(item); (uint32 compressedFlags, uint256 valuePreimageLen) = readCompressedFlags(item); require((compressedFlags == 1 && valuePreimageLen == 1) || (compressedFlags == 4 && valuePreimageLen == 4), "NodeReader: invalid compressedFlags"); node.compressedFlags = compressedFlags; node.valuePreimage = new bytes32[](valuePreimageLen); for (uint256 i = 0; i < valuePreimageLen; ) { node.valuePreimage[i] = readBytes32(item); unchecked { ++i; } } uint256 keyPreimageLen = readUint8(item); if (keyPreimageLen > 0) { node.keyPreimage = readBytesN(item, keyPreimageLen); } } else if (nodeType == uint256(NodeType.EMPTY)) { // Do nothing. } else if (nodeType == uint256(NodeType.ROOT)) { revert("NodeReader: unexpected root node type"); } else { revert("NodeReader: invalid node type"); } node.nodeType = NodeType(nodeType); return node; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IZKMerkleTrie */ interface IZKMerkleTrie { /** * @notice Verifies a proof that a given key/value pair is present in the trie. * * @param _key Key of the node to search for, as a hex string. * @param _value Value of the node to search for, as a hex string. * @param _proofs Merkle trie inclusion proof for the desired node. * @param _root Known root of the Merkle trie. Used to verify that the included proof is * correctly constructed. * * @return Whether or not the proof is valid. */ function verifyInclusionProof( bytes32 _key, bytes memory _value, bytes[] memory _proofs, bytes32 _root ) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { Bytes32 } from "../libraries/Bytes32.sol"; /** * @title IPoseidon2 */ interface IPoseidon2 { function poseidon(bytes32[2] memory inputs) external pure returns (bytes32); } /** * @custom:proxied * @title ZKTrieHasher * @notice The ZKTrieHasher is contract which can produce a hash according to ZKTrie. * This owns an interface of Poseidon2 that is required to compute hash used by ZKTrie. */ contract ZKTrieHasher { /** * @notice Poseidon2 contract generated by circomlibjs. */ IPoseidon2 public immutable POSEIDON2; /** * @param _poseidon2 The address of poseidon2 contract. */ constructor(address _poseidon2) { POSEIDON2 = IPoseidon2(_poseidon2); } /** * @notice Computes a hash of values. * * @param _compressedFlags Compressed flags. * @param _values Values. * * @return A hash of values. */ function _valueHash(uint32 _compressedFlags, bytes32[] memory _values) internal view returns (bytes32) { require(_values.length >= 1, "ZKTrieHasher: too few values for _valueHash"); bytes32[] memory ret = new bytes32[](_values.length); for (uint256 i = 0; i < _values.length; ) { if ((_compressedFlags & (1 << i)) != 0) { ret[i] = _hashElem(_values[i]); } else { ret[i] = _values[i]; } unchecked { ++i; } } if (_values.length < 2) { return ret[0]; } return _hashElems(ret); } /** * @notice Computes a hash of an element. * * @param _elem Bytes32 to be hashed. * * @return A hash of an element. */ function _hashElem(bytes32 _elem) internal view returns (bytes32) { (bytes32 high, bytes32 low) = Bytes32.split(_elem); return POSEIDON2.poseidon([high, low]); } /** * @notice Computes a root hash of elements tree. * * @param _elems Bytes32 array to be hashed. * * @return A hash of elements tree. */ function _hashElems(bytes32[] memory _elems) internal view returns (bytes32) { require(_elems.length >= 4, "ZKTrieHasher: too few values for _hashElems"); IPoseidon2 iposeidon = POSEIDON2; uint256 idx; uint256 adjacent_idx; uint256 adjacent_offset = 1; uint256 jump = 2; uint256 length = _elems.length; for (; adjacent_offset < length;) { for (idx = 0; idx < length;) { unchecked { adjacent_idx = idx + adjacent_offset; } if (adjacent_idx < length) { _elems[idx] = iposeidon.poseidon( [_elems[idx], _elems[adjacent_idx]] ); } unchecked { idx += jump; } } adjacent_offset = jump; jump <<= 1; } return _elems[0]; } /** * @notice Computes a root hash of 2 elements. * * @param left_leaf Bytes32 left leaf to be hashed. * @param right_leaf Bytes32 right leaf to be hashed. * * @return A hash of 2 elements. */ function _hashFixed2Elems(bytes32 left_leaf, bytes32 right_leaf) internal view returns (bytes32) { return POSEIDON2.poseidon([left_leaf, right_leaf]); } /** * @notice Computes a root hash of 3 elements. * * @param left_leaf Bytes32 left leaf to be hashed. * @param right_leaf Bytes32 right leaf to be hashed. * @param up_leaf Bytes32 up leaf to be hashed with left||right hash. * * @return A hash of 3 elements. */ function _hashFixed3Elems(bytes32 left_leaf, bytes32 right_leaf, bytes32 up_leaf) internal view returns (bytes32) { IPoseidon2 iposeidon = POSEIDON2; left_leaf = iposeidon.poseidon([left_leaf, right_leaf]); return iposeidon.poseidon([left_leaf, up_leaf]); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/introspection/ERC165Checker.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Library used to query support of an interface declared via {IERC165}. * * Note that these functions return the actual result of the query: they do not * `revert` if an interface is not supported. It is up to the caller to decide * what to do in these cases. */ library ERC165Checker { // As per the EIP-165 spec, no interface should ever match 0xffffffff bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff; /** * @dev Returns true if `account` supports the {IERC165} interface. */ function supportsERC165(address account) internal view returns (bool) { // Any contract that implements ERC165 must explicitly indicate support of // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid return supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) && !supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID); } /** * @dev Returns true if `account` supports the interface defined by * `interfaceId`. Support for {IERC165} itself is queried automatically. * * See {IERC165-supportsInterface}. */ function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) { // query support of both ERC165 as per the spec and support of _interfaceId return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId); } /** * @dev Returns a boolean array where each value corresponds to the * interfaces passed in and whether they're supported or not. This allows * you to batch check interfaces for a contract where your expectation * is that some interfaces may not be supported. * * See {IERC165-supportsInterface}. * * _Available since v3.4._ */ function getSupportedInterfaces( address account, bytes4[] memory interfaceIds ) internal view returns (bool[] memory) { // an array of booleans corresponding to interfaceIds and whether they're supported or not bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length); // query support of ERC165 itself if (supportsERC165(account)) { // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]); } } return interfaceIdsSupported; } /** * @dev Returns true if `account` supports all the interfaces defined in * `interfaceIds`. Support for {IERC165} itself is queried automatically. * * Batch-querying can lead to gas savings by skipping repeated checks for * {IERC165} support. * * See {IERC165-supportsInterface}. */ function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) { // query support of ERC165 itself if (!supportsERC165(account)) { return false; } // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) { return false; } } // all interfaces supported return true; } /** * @notice Query if a contract implements an interface, does not check ERC165 support * @param account The address of the contract to query for support of an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @return true if the contract at account indicates support of the interface with * identifier interfaceId, false otherwise * @dev Assumes that account contains a contract that supports ERC165, otherwise * the behavior of this method is undefined. This precondition can be checked * with {supportsERC165}. * * Some precompiled contracts will falsely indicate support for a given interface, so caution * should be exercised when using this function. * * Interface identification is specified in ERC-165. */ function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) { // prepare call bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId); // perform static call bool success; uint256 returnSize; uint256 returnValue; assembly { success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20) returnSize := returndatasize() returnValue := mload(0x00) } return success && returnSize >= 0x20 && returnValue > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; /** * @custom:upgradeable * @title CrossDomainMessenger * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 * cross-chain messenger contracts. It's designed to be a universal interface that only * needs to be extended slightly to provide low-level message passing functionality on each * chain it's deployed on. Currently only designed for message passing between two paired * chains and does not support one-to-many interactions. * * Any changes to this contract MUST result in a semver bump for contracts that inherit it. */ abstract contract CrossDomainMessenger is PausableUpgradeable { /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 0; /** * @notice Constant overhead added to the base gas for a message. */ uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /** * @notice Numerator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /** * @notice Denominator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /** * @notice Extra gas added to base gas for each byte of calldata in a message. */ uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /** * @notice Gas reserved for performing the external call in `relayMessage`. */ uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /** * @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. */ uint64 public constant RELAY_RESERVED_GAS = 40_000; /** * @notice Gas reserved for the execution between the `hasMinGas` check and the external * call in `relayMessage`. */ uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /** * @notice Address of the paired CrossDomainMessenger contract on the other chain. */ address public immutable OTHER_MESSENGER; /** * @notice Mapping of message hashes to boolean receipt values. Note that a message will only * be present in this mapping if it has successfully been relayed on this chain, and * can therefore not be relayed again. */ mapping(bytes32 => bool) public successfulMessages; /** * @notice Address of the sender of the currently executing message on the other chain. If the * value of this variable is the default value (0x00000000...dead) then no message is * currently being executed. Use the xDomainMessageSender getter which will throw an * error if this is the case. */ address internal xDomainMsgSender; /** * @notice Nonce for the next message to be sent, without the message version applied. Use the * messageNonce getter which will insert the message version into the nonce to give you * the actual nonce to be used for the message. */ uint240 internal msgNonce; /** * @notice Mapping of message hashes to a boolean if and only if the message has failed to be * executed at least once. A message will not be present in this mapping if it * successfully executed on the first attempt. */ mapping(bytes32 => bool) public failedMessages; /** * @notice Reserve extra slots in the storage layout for future upgrades. * A gap size of 45 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[45] private __gap; /** * @notice Emitted whenever a message is sent to the other chain. * * @param target Address of the recipient of the message. * @param sender Address of the sender of the message. * @param value ETH value sent along with the message to the recipient. * @param message Message to trigger the recipient address with. * @param messageNonce Unique nonce attached to the message. * @param gasLimit Minimum gas limit that the message can be executed with. */ event SentMessage( address indexed target, address indexed sender, uint256 value, bytes message, uint256 messageNonce, uint256 gasLimit ); /** * @notice Emitted whenever a message is successfully relayed on this chain. * * @param msgHash Hash of the message that was relayed. */ event RelayedMessage(bytes32 indexed msgHash); /** * @notice Emitted whenever a message fails to be relayed on this chain. * * @param msgHash Hash of the message that failed to be relayed. */ event FailedRelayedMessage(bytes32 indexed msgHash); /** * @param _otherMessenger Address of the messenger on the paired chain. */ constructor(address _otherMessenger) { OTHER_MESSENGER = _otherMessenger; } /** * @notice Sends a message to some target address on the other chain. Note that if the call * always reverts, then the message will be unrelayable, and any ETH sent will be * permanently locked. The same will occur if the target on the other chain is * considered unsafe (see the _isUnsafeTarget() function). * * @param _target Target contract or wallet address. * @param _message Message to trigger the target address with. * @param _minGasLimit Minimum gas limit that the message can be executed with. */ function sendMessage( address _target, bytes calldata _message, uint32 _minGasLimit ) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage( OTHER_MESSENGER, baseGas(_message, _minGasLimit), msg.value, abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) ); emit SentMessage(_target, msg.sender, msg.value, _message, messageNonce(), _minGasLimit); unchecked { ++msgNonce; } } /** * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only * be executed via cross-chain call from the other messenger OR if the message was * already received once and is currently being replayed. * * @param _nonce Nonce of the message being relayed. * @param _sender Address of the user who sent the message. * @param _target Address that the message is targeted at. * @param _value ETH value to send with the message. * @param _minGasLimit Minimum amount of gas that the message can be executed with. * @param _message Message to send to the target. */ function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require( version < 1, "CrossDomainMessenger: only version 0 messages is supported at this time" ); // We use the v0 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV0( _nonce, _sender, _target, _value, _minGasLimit, _message ); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require( msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address" ); require( failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed" ); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require( successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed" ); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /** * @notice Retrieves the address of the contract or wallet that initiated the currently * executing message on the other chain. Will throw an error if there is no message * currently being executed. Allows the recipient of a call to see who triggered it. * * @return Address of the sender of the currently executing message on the other chain. */ function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /** * @notice Computes the amount of gas required to guarantee that a given message will be * received on the other chain without running out of gas. Guaranteeing that a message * will not run out of gas is important because this ensures that a message can always * be replayed on the other chain if it fails to execute completely. * * @param _message Message to compute the amount of required gas for. * @param _minGasLimit Minimum desired gas limit when message goes to target. * * @return Amount of gas required to guarantee message receipt. */ function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD + // Calldata overhead (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) + // Dynamic overhead (EIP-150) ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) + // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) RELAY_CALL_OVERHEAD + // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) RELAY_RESERVED_GAS + // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) RELAY_GAS_CHECK_BUFFER; } /** * @notice Intializer. */ // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init() internal onlyInitializing { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } /** * @notice Sends a low-level message to the other messenger. Needs to be implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @param _to Recipient of the message on the other chain. * @param _gasLimit Minimum gas limit the message can be executed with. * @param _value Amount of ETH to send with the message. * @param _data Message data. */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal virtual; /** * @notice Checks whether the message is coming from the other messenger. Implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @return Whether the message is coming from the other messenger. */ function _isOtherMessenger() internal view virtual returns (bool); /** * @notice Checks whether a given call target is a system address that could cause the * messenger to peform an unsafe action. This is NOT a mechanism for blocking user * addresses. This is ONLY used to prevent the execution of messages to specific * system addresses that could cause security issues, e.g., having the * CrossDomainMessenger send messages to itself. * * @param _target Address of the contract to check. * * @return Whether or not the address is an unsafe system address. */ function _isUnsafeTarget(address _target) internal view virtual returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @title IKromaMintableERC20 * @notice This interface is available on the KromaMintableERC20 contract. We declare it as a * separate interface so that it can be used in custom implementations of * KromaMintableERC20. */ interface IKromaMintableERC20 { function REMOTE_TOKEN() external view returns (address); function BRIDGE() external view returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import { Semver } from "../universal/Semver.sol"; import { IKromaMintableERC20 } from "./IKromaMintableERC20.sol"; /** * @title KromaMintableERC20 * @notice KromaMintableERC20 is a standard extension of the base ERC20 token contract designed * to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to * use a KromaMintableRC20 as the L2 representation of an L1 token, or vice-versa. * Designed to be backwards compatible with the older StandardL2ERC20 token which was only * meant for use on L2. */ contract KromaMintableERC20 is IKromaMintableERC20, ERC20, Semver { /** * @notice Address of the corresponding version of this token on the remote chain. */ address public immutable REMOTE_TOKEN; /** * @notice Address of the StandardBridge on this network. */ address public immutable BRIDGE; /** * @notice Emitted whenever tokens are minted for an account. * * @param account Address of the account tokens are being minted for. * @param amount Amount of tokens minted. */ event Mint(address indexed account, uint256 amount); /** * @notice Emitted whenever tokens are burned from an account. * * @param account Address of the account tokens are being burned from. * @param amount Amount of tokens burned. */ event Burn(address indexed account, uint256 amount); /** * @notice A modifier that only allows the bridge to call */ modifier onlyBridge() { require(msg.sender == BRIDGE, "KromaMintableERC20: only bridge can mint and burn"); _; } /** * @custom:semver 1.0.0 * * @param _bridge Address of the L2 standard bridge. * @param _remoteToken Address of the corresponding L1 token. * @param _name ERC20 name. * @param _symbol ERC20 symbol. */ constructor( address _bridge, address _remoteToken, string memory _name, string memory _symbol ) ERC20(_name, _symbol) Semver(1, 0, 0) { REMOTE_TOKEN = _remoteToken; BRIDGE = _bridge; } /** * @notice Allows the StandardBridge on this network to mint tokens. * * @param _to Address to mint tokens to. * @param _amount Amount of tokens to mint. */ function mint(address _to, uint256 _amount) external virtual override(IKromaMintableERC20) onlyBridge { _mint(_to, _amount); emit Mint(_to, _amount); } /** * @notice Allows the StandardBridge on this network to burn tokens. * * @param _from Address to burn tokens from. * @param _amount Amount of tokens to burn. */ function burn(address _from, uint256 _amount) external virtual override(IKromaMintableERC20) onlyBridge { _burn(_from, _amount); emit Burn(_from, _amount); } /** * @notice ERC165 interface check function. * * @param _interfaceId Interface ID to check. * * @return Whether or not the interface is supported by this contract. */ function supportsInterface(bytes4 _interfaceId) external pure returns (bool) { bytes4 iface1 = type(IERC165).interfaceId; // Interface corresponding to the updated KromaMintableERC20 (this contract). bytes4 iface2 = type(IKromaMintableERC20).interfaceId; return _interfaceId == iface1 || _interfaceId == iface2; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Bytes32 * @notice Bytes32 is a library for manipulating byte32. */ library Bytes32 { /** * @notice Splits bytes32 to high and low parts. * * @param _bytes Bytes32 to split. * * @return High part of bytes32. * @return Low part of bytes32. */ function split(bytes32 _bytes) internal pure returns (bytes32, bytes32) { bytes16 high = bytes16(_bytes); bytes16 low = bytes16(uint128(uint256(_bytes))); return (fromBytes16(high), fromBytes16(low)); } /** * @notice Converts bytes16 to bytes32. * * @param _bytes Bytes to constrcut to bytes32. * * @return Bytes32 constructed from bytes16. */ function fromBytes16(bytes16 _bytes) internal pure returns (bytes32) { return bytes32(uint256(uint128(_bytes))); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
{ "remappings": [ "@openzeppelin/=node_modules/@openzeppelin/", "@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/", "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/", "@rari-capital/=node_modules/@rari-capital/", "@rari-capital/solmate/=node_modules/@rari-capital/solmate/", "ds-test/=node_modules/ds-test/src/", "forge-std/=node_modules/forge-std/src/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "bytecodeHash": "none" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract L2OutputOracle","name":"_l2OutputOracle","type":"address"},{"internalType":"contract KromaPortal","name":"_portal","type":"address"},{"internalType":"address","name":"_securityCouncil","type":"address"},{"internalType":"address","name":"_trustedValidator","type":"address"},{"internalType":"uint256","name":"_requiredBondAmount","type":"uint256"},{"internalType":"uint256","name":"_maxUnbond","type":"uint256"},{"internalType":"uint256","name":"_roundDuration","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"outputIndex","type":"uint256"},{"indexed":true,"internalType":"address","name":"challenger","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"BondIncreased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"submitter","type":"address"},{"indexed":true,"internalType":"uint256","name":"outputIndex","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"expiresAt","type":"uint128"}],"name":"Bonded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"outputIndex","type":"uint256"},{"indexed":true,"internalType":"address","name":"challenger","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"PendingBondAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"outputIndex","type":"uint256"},{"indexed":true,"internalType":"address","name":"challenger","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"PendingBondReleased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"outputIndex","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Unbonded","type":"event"},{"inputs":[],"name":"L2_ORACLE","outputs":[{"internalType":"contract L2OutputOracle","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_UNBOND","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PORTAL","outputs":[{"internalType":"contract KromaPortal","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REQUIRED_BOND_AMOUNT","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ROUND_DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SECURITY_COUNCIL","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TAX_DENOMINATOR","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TAX_NUMERATOR","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TRUSTED_VALIDATOR","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VAULT_REWARD_GAS_LIMIT","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputIndex","type":"uint256"},{"internalType":"address","name":"_challenger","type":"address"}],"name":"addPendingBond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputIndex","type":"uint256"},{"internalType":"uint128","name":"_expiresAt","type":"uint128"}],"name":"createBond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputIndex","type":"uint256"}],"name":"getBond","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"expiresAt","type":"uint128"}],"internalType":"struct Types.Bond","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputIndex","type":"uint256"},{"internalType":"address","name":"_challenger","type":"address"}],"name":"getPendingBond","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputIndex","type":"uint256"},{"internalType":"address","name":"_challenger","type":"address"}],"name":"increaseBond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"isValidator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextValidator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputIndex","type":"uint256"},{"internalType":"address","name":"_challenger","type":"address"},{"internalType":"address","name":"_recipient","type":"address"}],"name":"releasePendingBond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unbond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"validatorCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6101c06040523480156200001257600080fd5b5060405162002cbb38038062002cbb833981016040819052620000359162000261565b60016080819052600060a05260c0526001600160a01b0380881660e05286811661010052858116610120528416610140526001600160801b038316610160526101808290526101a08190526200008a62000097565b50505050505050620002e8565b600054610100900460ff1615808015620000b85750600054600160ff909116105b80620000e85750620000d530620001c960201b620018551760201c565b158015620000e8575060005460ff166001145b620001515760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084015b60405180910390fd5b6000805460ff19166001179055801562000175576000805461ff0019166101001790555b6200017f620001d8565b8015620001c6576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50565b6001600160a01b03163b151590565b600054610100900460ff16620002455760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b606482015260840162000148565b60018055565b6001600160a01b0381168114620001c657600080fd5b600080600080600080600060e0888a0312156200027d57600080fd5b87516200028a816200024b565b60208901519097506200029d816200024b565b6040890151909650620002b0816200024b565b6060890151909550620002c3816200024b565b809450506080880151925060a0880151915060c0880151905092959891949750929550565b60805160a05160c05160e05161010051610120516101405161016051610180516101a0516128c4620003f7600039600081816103660152610a1301526000818161043b0152611d530152600081816104b401528181610ce001528181610d610152818161127d015281816112b5015281816119590152611b570152600081816102db0152610a610152600081816102720152818161176b0152611ba401526000818161021c01526122810152600081816101ac01528181610656015281816108dd0152818161096b01528181610b280152818161108b015281816112020152818161147a01528181611e1d0152611fd901526000610adc01526000610ab301526000610a8a01526128c46000f3fe6080604052600436106101955760003560e01c806370a08231116100e1578063ab91f1901161008a578063d38dc7ee11610064578063d38dc7ee146104de578063d8fe7642146104fe578063dd215c5d1461054e578063facd743b1461056e57600080fd5b8063ab91f19014610472578063b7d636a5146104a2578063d0e30db0146104d657600080fd5b80638f09ade4116100bb5780638f09ade414610409578063946765fd14610429578063a51c9ace1461045d57600080fd5b806370a08231146103885780638129fc1c146103be57806382dae3aa146103d357600080fd5b80633a549046116101435780635a5447421161011d5780635a5447421461031f5780635df6a6bc1461033f5780636641ea081461035457600080fd5b80633a549046146102b45780633ee4d4a3146102c957806354fd4d50146102fd57600080fd5b80632e1a7d4d116101745780632e1a7d4d1461023e578063360864171461026057806336b834691461029457600080fd5b80621c2ff61461019a5780630f43a677146101eb5780630ff754ea1461020a575b600080fd5b3480156101a657600080fd5b506101ce7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020015b60405180910390f35b3480156101f757600080fd5b506036545b6040519081526020016101e2565b34801561021657600080fd5b506101ce7f000000000000000000000000000000000000000000000000000000000000000081565b34801561024a57600080fd5b5061025e6102593660046123de565b61059e565b005b34801561026c57600080fd5b506101ce7f000000000000000000000000000000000000000000000000000000000000000081565b3480156102a057600080fd5b5061025e6102af36600461240c565b610654565b3480156102c057600080fd5b506101ce6108c5565b3480156102d557600080fd5b506101ce7f000000000000000000000000000000000000000000000000000000000000000081565b34801561030957600080fd5b50610312610a83565b6040516101e291906124c4565b34801561032b57600080fd5b5061025e61033a3660046124d7565b610b26565b34801561034b57600080fd5b5061025e610dcf565b34801561036057600080fd5b506101fc7f000000000000000000000000000000000000000000000000000000000000000081565b34801561039457600080fd5b506101fc6103a3366004612507565b6001600160a01b031660009081526033602052604090205490565b3480156103ca57600080fd5b5061025e610e4e565b3480156103df57600080fd5b506103e8601481565b6040516fffffffffffffffffffffffffffffffff90911681526020016101e2565b34801561041557600080fd5b506103e86104243660046124d7565b610fc5565b34801561043557600080fd5b506101fc7f000000000000000000000000000000000000000000000000000000000000000081565b34801561046957600080fd5b506103e8606481565b34801561047e57600080fd5b50610489620186a081565b60405167ffffffffffffffff90911681526020016101e2565b3480156104ae57600080fd5b506103e87f000000000000000000000000000000000000000000000000000000000000000081565b61025e611074565b3480156104ea57600080fd5b5061025e6104f9366004612542565b611080565b34801561050a57600080fd5b5061051e6105193660046123de565b611359565b6040805182516fffffffffffffffffffffffffffffffff90811682526020938401511692810192909252016101e2565b34801561055a57600080fd5b5061025e6105693660046124d7565b611478565b34801561057a57600080fd5b5061058e610589366004612507565b6117de565b60405190151581526020016101e2565b6105a6611864565b6105b033826118bd565b60006105cd335a8460405180602001604052806000815250611b0f565b9050806106475760405162461bcd60e51b815260206004820152602260248201527f56616c696461746f72506f6f6c3a20455448207472616e73666572206661696c60448201527f656400000000000000000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b5061065160018055565b50565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316639e45e8f46040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106b2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d69190612567565b6001600160a01b0316336001600160a01b03161461075c5760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f7420436f6c60448201527f6f737365756d0000000000000000000000000000000000000000000000000000606482015260840161063e565b60008381526039602090815260408083206001600160a01b03861684529091529020546fffffffffffffffffffffffffffffffff16806108045760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a207468652070656e64696e6720626f6e642060448201527f646f6573206e6f74206578697374000000000000000000000000000000000000606482015260840161063e565b60008481526039602090815260408083206001600160a01b0387168452909152902080547fffffffffffffffffffffffffffffffff00000000000000000000000000000000169055610868826fffffffffffffffffffffffffffffffff8316611b2f565b6040516fffffffffffffffffffffffffffffffff821681526001600160a01b03808416919085169086907f8c95336a279406edcc768d685e8eb6667368a77d840a188144b8e3719423198f9060200160405180910390a450505050565b6038546000906001600160a01b031615610a5e5760007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663dcec33486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610939573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061095d9190612584565b905060006001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001663d1de856c61099b8460016125cc565b6040518263ffffffff1660e01b81526004016109b991815260200190565b602060405180830381865afa1580156109d6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109fa9190612584565b9050804210610a4b576000610a0f82426125e4565b90507f0000000000000000000000000000000000000000000000000000000000000000811115610a49576001600160a01b03935050505090565b505b50506038546001600160a01b0316919050565b507f000000000000000000000000000000000000000000000000000000000000000090565b6060610aae7f0000000000000000000000000000000000000000000000000000000000000000611c63565b610ad77f0000000000000000000000000000000000000000000000000000000000000000611c63565b610b007f0000000000000000000000000000000000000000000000000000000000000000611c63565b604051602001610b12939291906125fb565b604051602081830303815290604052905090565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316639e45e8f46040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b84573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ba89190612567565b6001600160a01b0316336001600160a01b031614610c2e5760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f7420436f6c60448201527f6f737365756d0000000000000000000000000000000000000000000000000000606482015260840161063e565b60008281526034602052604090208054427001000000000000000000000000000000009091046fffffffffffffffffffffffffffffffff161015610cda5760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a20746865206f757470757420697320616c7260448201527f656164792066696e616c697a6564000000000000000000000000000000000000606482015260840161063e565b610d16827f00000000000000000000000000000000000000000000000000000000000000006fffffffffffffffffffffffffffffffff166118bd565b60008381526039602090815260408083206001600160a01b0386168085529083529281902080547fffffffffffffffffffffffffffffffff00000000000000000000000000000000167f00000000000000000000000000000000000000000000000000000000000000006fffffffffffffffffffffffffffffffff16908117909155905190815285917f2904258f32adf74dd8f23ad6f17ff50209896039c8ee3d4728ff55bd05c4cf2a910160405180910390a3505050565b6000610dd9611d21565b9050806106515760405162461bcd60e51b815260206004820152602960248201527f56616c696461746f72506f6f6c3a206e6f20626f6e6420746861742063616e2060448201527f626520756e626f6e640000000000000000000000000000000000000000000000606482015260840161063e565b600054610100900460ff1615808015610e6e5750600054600160ff909116105b80610e885750303b158015610e88575060005460ff166001145b610efa5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a6564000000000000000000000000000000000000606482015260840161063e565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015610f5857600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b610f60611f3f565b801561065157600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a150565b60008281526039602090815260408083206001600160a01b03851684529091528120546fffffffffffffffffffffffffffffffff168061106d5760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a207468652070656e64696e6720626f6e642060448201527f646f6573206e6f74206578697374000000000000000000000000000000000000606482015260840161063e565b9392505050565b61107e3334611b2f565b565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161461111e5760405162461bcd60e51b815260206004820152602b60248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f74204c324f60448201527f75747075744f7261636c65000000000000000000000000000000000000000000606482015260840161063e565b6000828152603460205260409020805470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff16156111c75760405162461bcd60e51b815260206004820152603c60248201527f56616c696461746f72506f6f6c3a20626f6e64206f662074686520676976656e60448201527f206f757470757420696e64657820616c72656164792065786973747300000000606482015260840161063e565b6111cf611d21565b506040517fb0ea09a8000000000000000000000000000000000000000000000000000000008152600481018490526000907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063b0ea09a890602401602060405180830381865afa158015611251573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112759190612567565b90506112b3817f00000000000000000000000000000000000000000000000000000000000000006fffffffffffffffffffffffffffffffff166118bd565b7f00000000000000000000000000000000000000000000000000000000000000006fffffffffffffffffffffffffffffffff9081167001000000000000000000000000000000009185169182028117845560408051918252602082019290925285916001600160a01b038416917f5ca130257b8f76f72ad2965efcbe166f3918d820e4a49956e70081ea311f97c4910160405180910390a3611353611fbc565b50505050565b6040805180820190915260008082526020820152600082815260346020526040902080546fffffffffffffffffffffffffffffffff16158015906113c35750805470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1615155b6114355760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2074686520626f6e6420646f6573206e6f7460448201527f2065786973740000000000000000000000000000000000000000000000000000606482015260840161063e565b6040805180820190915290546fffffffffffffffffffffffffffffffff808216835270010000000000000000000000000000000090910416602082015292915050565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316639e45e8f46040518163ffffffff1660e01b8152600401602060405180830381865afa1580156114d6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114fa9190612567565b6001600160a01b0316336001600160a01b0316146115805760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f7420436f6c60448201527f6f737365756d0000000000000000000000000000000000000000000000000000606482015260840161063e565b60008281526034602052604090208054427001000000000000000000000000000000009091046fffffffffffffffffffffffffffffffff16101561162c5760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a20746865206f757470757420697320616c7260448201527f656164792066696e616c697a6564000000000000000000000000000000000000606482015260840161063e565b60008381526039602090815260408083206001600160a01b03861684529091529020546fffffffffffffffffffffffffffffffff16806116d45760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a207468652070656e64696e6720626f6e642060448201527f646f6573206e6f74206578697374000000000000000000000000000000000000606482015260840161063e565b600060646116e3601484612671565b6116ed91906126d8565b905060006116fb8284612707565b60008781526039602090815260408083206001600160a01b038a811680865291845282852080547fffffffffffffffffffffffffffffffff000000000000000000000000000000009081169091558a549081166fffffffffffffffffffffffffffffffff91821688018216178b557f00000000000000000000000000000000000000000000000000000000000000009091168552603384529382902080548886160190559051928416835292935088917f383f9b8b5a1fc2ec555726eb895621a312042e18b764135fa12ef1a520ad30db910160405180910390a3505050505050565b60365460009081036117f257506000919050565b6001600160a01b03821661180857506000919050565b6001600160a01b038216600081815260376020526040902054603680549192918390811061183857611838612738565b6000918252602090912001546001600160a01b0316149392505050565b6001600160a01b03163b151590565b6002600154036118b65760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161063e565b6002600155565b6001600160a01b0382166000908152603360205260409020548181101561194b5760405162461bcd60e51b8152602060048201526024808201527f56616c696461746f72506f6f6c3a20696e73756666696369656e742062616c6160448201527f6e63657300000000000000000000000000000000000000000000000000000000606482015260840161063e565b61195582826125e4565b90507f00000000000000000000000000000000000000000000000000000000000000006fffffffffffffffffffffffffffffffff168110801561199c575061199c836117de565b15611aef576036546000906119b3906001906125e4565b90508015611a6b576001600160a01b03841660009081526037602052604081205460368054919291849081106119eb576119eb612738565b600091825260209091200154603680546001600160a01b039092169250829184908110611a1a57611a1a612738565b600091825260208083209190910180547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b03948516179055929091168152603790915260409020555b6001600160a01b0384166000908152603760205260408120556036805480611a9557611a95612767565b60008281526020902081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90810180547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055019055505b6001600160a01b0390921660009081526033602052604090209190915550565b600080600080845160208601878a8af19695505050505050565b60018055565b6001600160a01b038216600090815260336020526040812054611b539083906125cc565b90507f00000000000000000000000000000000000000000000000000000000000000006fffffffffffffffffffffffffffffffff168110158015611b9d5750611b9b836117de565b155b15611aef577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b031614611aef57603680546001600160a01b03949094166000818152603760209081526040808320889055600188019094557f4a11f94e20a93c79f6ec743a1954ec4fc2c08429ae2122118bf234b2185c81b890960180547fffffffffffffffffffffffff00000000000000000000000000000000000000001690921790915560339094529092209190915550565b60606000611c708361218a565b600101905060008167ffffffffffffffff811115611c9057611c90612796565b6040519080825280601f01601f191660200182016040528015611cba576020820181803683370190505b5090508181016020015b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff017f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8504945084611cc457509392505050565b60355460408051608081018252600080825260208201819052918101829052606081018290529091908290819060005b7f0000000000000000000000000000000000000000000000000000000000000000811015611f1c57600085815260346020526040902080546fffffffffffffffffffffffffffffffff80821696509194507001000000000000000000000000000000009004164210801590611dd857506000846fffffffffffffffffffffffffffffffff16115b15611f1c5760008581526034602052604080822091909155517fa25ae557000000000000000000000000000000000000000000000000000000008152600481018690527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063a25ae55790602401608060405180830381865afa158015611e6c573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611e9091906127c5565b9150611eb28260000151856fffffffffffffffffffffffffffffffff16611b2f565b81516040516fffffffffffffffffffffffffffffffff861681526001600160a01b039091169086907f7047a0fb8bfae78c0ebbd4117437945bb85240453235ac4fd2e55712eb5bf0c39060200160405180910390a3611f108261226d565b60019485019401611d51565b8015611f3357505050603591909155506001919050565b60009550505050505090565b600054610100900460ff16611b295760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e67000000000000000000000000000000000000000000606482015260840161063e565b6036548015801590611fd057506000603554115b1561215f5760007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663a25ae557600160355461201591906125e4565b6040518263ffffffff1660e01b815260040161203391815260200190565b608060405180830381865afa158015612050573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061207491906127c5565b9050600082826020015143414460014361208e91906125e4565b6040805160208101969096528501939093527fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606092831b1691840191909152607483015240609482015260b4016040516020818303038152906040528051906020012060001c6120ff9190612868565b90506036818154811061211457612114612738565b600091825260209091200154603880547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b03909216919091179055506106519050565b603880547fffffffffffffffffffffffff000000000000000000000000000000000000000016905550565b6000807a184f03e93ff9f4daa797ed6e38ed64bf6a1f01000000000000000083106121d3577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef810000000083106121ff576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061221d57662386f26fc10000830492506010015b6305f5e1008310612235576305f5e100830492506008015b612710831061224957612710830492506004015b6064831061225b576064830492506002015b600a8310612267576001015b92915050565b805160608201516040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169263c30af3889273420000000000000000000000000000000000000892620186a0927f21670f220000000000000000000000000000000000000000000000000000000092612317926024016001600160a01b039290921682526fffffffffffffffffffffffffffffffff16602082015260400190565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009485161790525160e086901b90921682526123a993929160040161287c565b600060405180830381600087803b1580156123c357600080fd5b505af11580156123d7573d6000803e3d6000fd5b5050505050565b6000602082840312156123f057600080fd5b5035919050565b6001600160a01b038116811461065157600080fd5b60008060006060848603121561242157600080fd5b833592506020840135612433816123f7565b91506040840135612443816123f7565b809150509250925092565b60005b83811015612469578181015183820152602001612451565b838111156113535750506000910152565b6000815180845261249281602086016020860161244e565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061106d602083018461247a565b600080604083850312156124ea57600080fd5b8235915060208301356124fc816123f7565b809150509250929050565b60006020828403121561251957600080fd5b813561106d816123f7565b6fffffffffffffffffffffffffffffffff8116811461065157600080fd5b6000806040838503121561255557600080fd5b8235915060208301356124fc81612524565b60006020828403121561257957600080fd5b815161106d816123f7565b60006020828403121561259657600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600082198211156125df576125df61259d565b500190565b6000828210156125f6576125f661259d565b500390565b6000845161260d81846020890161244e565b80830190507f2e000000000000000000000000000000000000000000000000000000000000008082528551612649816001850160208a0161244e565b6001920191820152835161266481600284016020880161244e565b0160020195945050505050565b60006fffffffffffffffffffffffffffffffff808316818516818304811182151516156126a0576126a061259d565b02949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b60006fffffffffffffffffffffffffffffffff808416806126fb576126fb6126a9565b92169190910492915050565b60006fffffffffffffffffffffffffffffffff838116908316818110156127305761273061259d565b039392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6000608082840312156127d757600080fd5b6040516080810181811067ffffffffffffffff82111715612821577f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604052825161282f816123f7565b815260208381015190820152604083015161284981612524565b6040820152606083015161285c81612524565b60608201529392505050565b600082612877576128776126a9565b500690565b6001600160a01b038416815267ffffffffffffffff831660208201526060604082015260006128ae606083018461247a565b9594505050505056fea164736f6c634300080f000a000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a600000000000000000000000031f648572b67e60ec6eb8e197e1848cc5f5558de0000000000000000000000003de211088df516da72efe68d386b561bee256ec40000000000000000000000003aa00bb915a8e78b0523e4c365e3e70a19d329e600000000000000000000000000000000000000000000000002c68af0bb140000000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000708
Deployed Bytecode
0x6080604052600436106101955760003560e01c806370a08231116100e1578063ab91f1901161008a578063d38dc7ee11610064578063d38dc7ee146104de578063d8fe7642146104fe578063dd215c5d1461054e578063facd743b1461056e57600080fd5b8063ab91f19014610472578063b7d636a5146104a2578063d0e30db0146104d657600080fd5b80638f09ade4116100bb5780638f09ade414610409578063946765fd14610429578063a51c9ace1461045d57600080fd5b806370a08231146103885780638129fc1c146103be57806382dae3aa146103d357600080fd5b80633a549046116101435780635a5447421161011d5780635a5447421461031f5780635df6a6bc1461033f5780636641ea081461035457600080fd5b80633a549046146102b45780633ee4d4a3146102c957806354fd4d50146102fd57600080fd5b80632e1a7d4d116101745780632e1a7d4d1461023e578063360864171461026057806336b834691461029457600080fd5b80621c2ff61461019a5780630f43a677146101eb5780630ff754ea1461020a575b600080fd5b3480156101a657600080fd5b506101ce7f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a681565b6040516001600160a01b0390911681526020015b60405180910390f35b3480156101f757600080fd5b506036545b6040519081526020016101e2565b34801561021657600080fd5b506101ce7f00000000000000000000000031f648572b67e60ec6eb8e197e1848cc5f5558de81565b34801561024a57600080fd5b5061025e6102593660046123de565b61059e565b005b34801561026c57600080fd5b506101ce7f0000000000000000000000003de211088df516da72efe68d386b561bee256ec481565b3480156102a057600080fd5b5061025e6102af36600461240c565b610654565b3480156102c057600080fd5b506101ce6108c5565b3480156102d557600080fd5b506101ce7f0000000000000000000000003aa00bb915a8e78b0523e4c365e3e70a19d329e681565b34801561030957600080fd5b50610312610a83565b6040516101e291906124c4565b34801561032b57600080fd5b5061025e61033a3660046124d7565b610b26565b34801561034b57600080fd5b5061025e610dcf565b34801561036057600080fd5b506101fc7f000000000000000000000000000000000000000000000000000000000000070881565b34801561039457600080fd5b506101fc6103a3366004612507565b6001600160a01b031660009081526033602052604090205490565b3480156103ca57600080fd5b5061025e610e4e565b3480156103df57600080fd5b506103e8601481565b6040516fffffffffffffffffffffffffffffffff90911681526020016101e2565b34801561041557600080fd5b506103e86104243660046124d7565b610fc5565b34801561043557600080fd5b506101fc7f000000000000000000000000000000000000000000000000000000000000000a81565b34801561046957600080fd5b506103e8606481565b34801561047e57600080fd5b50610489620186a081565b60405167ffffffffffffffff90911681526020016101e2565b3480156104ae57600080fd5b506103e87f00000000000000000000000000000000000000000000000002c68af0bb14000081565b61025e611074565b3480156104ea57600080fd5b5061025e6104f9366004612542565b611080565b34801561050a57600080fd5b5061051e6105193660046123de565b611359565b6040805182516fffffffffffffffffffffffffffffffff90811682526020938401511692810192909252016101e2565b34801561055a57600080fd5b5061025e6105693660046124d7565b611478565b34801561057a57600080fd5b5061058e610589366004612507565b6117de565b60405190151581526020016101e2565b6105a6611864565b6105b033826118bd565b60006105cd335a8460405180602001604052806000815250611b0f565b9050806106475760405162461bcd60e51b815260206004820152602260248201527f56616c696461746f72506f6f6c3a20455448207472616e73666572206661696c60448201527f656400000000000000000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b5061065160018055565b50565b7f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a66001600160a01b0316639e45e8f46040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106b2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d69190612567565b6001600160a01b0316336001600160a01b03161461075c5760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f7420436f6c60448201527f6f737365756d0000000000000000000000000000000000000000000000000000606482015260840161063e565b60008381526039602090815260408083206001600160a01b03861684529091529020546fffffffffffffffffffffffffffffffff16806108045760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a207468652070656e64696e6720626f6e642060448201527f646f6573206e6f74206578697374000000000000000000000000000000000000606482015260840161063e565b60008481526039602090815260408083206001600160a01b0387168452909152902080547fffffffffffffffffffffffffffffffff00000000000000000000000000000000169055610868826fffffffffffffffffffffffffffffffff8316611b2f565b6040516fffffffffffffffffffffffffffffffff821681526001600160a01b03808416919085169086907f8c95336a279406edcc768d685e8eb6667368a77d840a188144b8e3719423198f9060200160405180910390a450505050565b6038546000906001600160a01b031615610a5e5760007f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a66001600160a01b031663dcec33486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610939573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061095d9190612584565b905060006001600160a01b037f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a61663d1de856c61099b8460016125cc565b6040518263ffffffff1660e01b81526004016109b991815260200190565b602060405180830381865afa1580156109d6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109fa9190612584565b9050804210610a4b576000610a0f82426125e4565b90507f0000000000000000000000000000000000000000000000000000000000000708811115610a49576001600160a01b03935050505090565b505b50506038546001600160a01b0316919050565b507f0000000000000000000000003aa00bb915a8e78b0523e4c365e3e70a19d329e690565b6060610aae7f0000000000000000000000000000000000000000000000000000000000000001611c63565b610ad77f0000000000000000000000000000000000000000000000000000000000000000611c63565b610b007f0000000000000000000000000000000000000000000000000000000000000001611c63565b604051602001610b12939291906125fb565b604051602081830303815290604052905090565b7f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a66001600160a01b0316639e45e8f46040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b84573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ba89190612567565b6001600160a01b0316336001600160a01b031614610c2e5760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f7420436f6c60448201527f6f737365756d0000000000000000000000000000000000000000000000000000606482015260840161063e565b60008281526034602052604090208054427001000000000000000000000000000000009091046fffffffffffffffffffffffffffffffff161015610cda5760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a20746865206f757470757420697320616c7260448201527f656164792066696e616c697a6564000000000000000000000000000000000000606482015260840161063e565b610d16827f00000000000000000000000000000000000000000000000002c68af0bb1400006fffffffffffffffffffffffffffffffff166118bd565b60008381526039602090815260408083206001600160a01b0386168085529083529281902080547fffffffffffffffffffffffffffffffff00000000000000000000000000000000167f00000000000000000000000000000000000000000000000002c68af0bb1400006fffffffffffffffffffffffffffffffff16908117909155905190815285917f2904258f32adf74dd8f23ad6f17ff50209896039c8ee3d4728ff55bd05c4cf2a910160405180910390a3505050565b6000610dd9611d21565b9050806106515760405162461bcd60e51b815260206004820152602960248201527f56616c696461746f72506f6f6c3a206e6f20626f6e6420746861742063616e2060448201527f626520756e626f6e640000000000000000000000000000000000000000000000606482015260840161063e565b600054610100900460ff1615808015610e6e5750600054600160ff909116105b80610e885750303b158015610e88575060005460ff166001145b610efa5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a6564000000000000000000000000000000000000606482015260840161063e565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015610f5857600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b610f60611f3f565b801561065157600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a150565b60008281526039602090815260408083206001600160a01b03851684529091528120546fffffffffffffffffffffffffffffffff168061106d5760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a207468652070656e64696e6720626f6e642060448201527f646f6573206e6f74206578697374000000000000000000000000000000000000606482015260840161063e565b9392505050565b61107e3334611b2f565b565b336001600160a01b037f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a6161461111e5760405162461bcd60e51b815260206004820152602b60248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f74204c324f60448201527f75747075744f7261636c65000000000000000000000000000000000000000000606482015260840161063e565b6000828152603460205260409020805470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff16156111c75760405162461bcd60e51b815260206004820152603c60248201527f56616c696461746f72506f6f6c3a20626f6e64206f662074686520676976656e60448201527f206f757470757420696e64657820616c72656164792065786973747300000000606482015260840161063e565b6111cf611d21565b506040517fb0ea09a8000000000000000000000000000000000000000000000000000000008152600481018490526000907f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a66001600160a01b03169063b0ea09a890602401602060405180830381865afa158015611251573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112759190612567565b90506112b3817f00000000000000000000000000000000000000000000000002c68af0bb1400006fffffffffffffffffffffffffffffffff166118bd565b7f00000000000000000000000000000000000000000000000002c68af0bb1400006fffffffffffffffffffffffffffffffff9081167001000000000000000000000000000000009185169182028117845560408051918252602082019290925285916001600160a01b038416917f5ca130257b8f76f72ad2965efcbe166f3918d820e4a49956e70081ea311f97c4910160405180910390a3611353611fbc565b50505050565b6040805180820190915260008082526020820152600082815260346020526040902080546fffffffffffffffffffffffffffffffff16158015906113c35750805470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff1615155b6114355760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2074686520626f6e6420646f6573206e6f7460448201527f2065786973740000000000000000000000000000000000000000000000000000606482015260840161063e565b6040805180820190915290546fffffffffffffffffffffffffffffffff808216835270010000000000000000000000000000000090910416602082015292915050565b7f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a66001600160a01b0316639e45e8f46040518163ffffffff1660e01b8152600401602060405180830381865afa1580156114d6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114fa9190612567565b6001600160a01b0316336001600160a01b0316146115805760405162461bcd60e51b815260206004820152602660248201527f56616c696461746f72506f6f6c3a2073656e646572206973206e6f7420436f6c60448201527f6f737365756d0000000000000000000000000000000000000000000000000000606482015260840161063e565b60008281526034602052604090208054427001000000000000000000000000000000009091046fffffffffffffffffffffffffffffffff16101561162c5760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a20746865206f757470757420697320616c7260448201527f656164792066696e616c697a6564000000000000000000000000000000000000606482015260840161063e565b60008381526039602090815260408083206001600160a01b03861684529091529020546fffffffffffffffffffffffffffffffff16806116d45760405162461bcd60e51b815260206004820152602e60248201527f56616c696461746f72506f6f6c3a207468652070656e64696e6720626f6e642060448201527f646f6573206e6f74206578697374000000000000000000000000000000000000606482015260840161063e565b600060646116e3601484612671565b6116ed91906126d8565b905060006116fb8284612707565b60008781526039602090815260408083206001600160a01b038a811680865291845282852080547fffffffffffffffffffffffffffffffff000000000000000000000000000000009081169091558a549081166fffffffffffffffffffffffffffffffff91821688018216178b557f0000000000000000000000003de211088df516da72efe68d386b561bee256ec49091168552603384529382902080548886160190559051928416835292935088917f383f9b8b5a1fc2ec555726eb895621a312042e18b764135fa12ef1a520ad30db910160405180910390a3505050505050565b60365460009081036117f257506000919050565b6001600160a01b03821661180857506000919050565b6001600160a01b038216600081815260376020526040902054603680549192918390811061183857611838612738565b6000918252602090912001546001600160a01b0316149392505050565b6001600160a01b03163b151590565b6002600154036118b65760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161063e565b6002600155565b6001600160a01b0382166000908152603360205260409020548181101561194b5760405162461bcd60e51b8152602060048201526024808201527f56616c696461746f72506f6f6c3a20696e73756666696369656e742062616c6160448201527f6e63657300000000000000000000000000000000000000000000000000000000606482015260840161063e565b61195582826125e4565b90507f00000000000000000000000000000000000000000000000002c68af0bb1400006fffffffffffffffffffffffffffffffff168110801561199c575061199c836117de565b15611aef576036546000906119b3906001906125e4565b90508015611a6b576001600160a01b03841660009081526037602052604081205460368054919291849081106119eb576119eb612738565b600091825260209091200154603680546001600160a01b039092169250829184908110611a1a57611a1a612738565b600091825260208083209190910180547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b03948516179055929091168152603790915260409020555b6001600160a01b0384166000908152603760205260408120556036805480611a9557611a95612767565b60008281526020902081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90810180547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055019055505b6001600160a01b0390921660009081526033602052604090209190915550565b600080600080845160208601878a8af19695505050505050565b60018055565b6001600160a01b038216600090815260336020526040812054611b539083906125cc565b90507f00000000000000000000000000000000000000000000000002c68af0bb1400006fffffffffffffffffffffffffffffffff168110158015611b9d5750611b9b836117de565b155b15611aef577f0000000000000000000000003de211088df516da72efe68d386b561bee256ec46001600160a01b0316836001600160a01b031614611aef57603680546001600160a01b03949094166000818152603760209081526040808320889055600188019094557f4a11f94e20a93c79f6ec743a1954ec4fc2c08429ae2122118bf234b2185c81b890960180547fffffffffffffffffffffffff00000000000000000000000000000000000000001690921790915560339094529092209190915550565b60606000611c708361218a565b600101905060008167ffffffffffffffff811115611c9057611c90612796565b6040519080825280601f01601f191660200182016040528015611cba576020820181803683370190505b5090508181016020015b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff017f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8504945084611cc457509392505050565b60355460408051608081018252600080825260208201819052918101829052606081018290529091908290819060005b7f000000000000000000000000000000000000000000000000000000000000000a811015611f1c57600085815260346020526040902080546fffffffffffffffffffffffffffffffff80821696509194507001000000000000000000000000000000009004164210801590611dd857506000846fffffffffffffffffffffffffffffffff16115b15611f1c5760008581526034602052604080822091909155517fa25ae557000000000000000000000000000000000000000000000000000000008152600481018690527f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a66001600160a01b03169063a25ae55790602401608060405180830381865afa158015611e6c573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611e9091906127c5565b9150611eb28260000151856fffffffffffffffffffffffffffffffff16611b2f565b81516040516fffffffffffffffffffffffffffffffff861681526001600160a01b039091169086907f7047a0fb8bfae78c0ebbd4117437945bb85240453235ac4fd2e55712eb5bf0c39060200160405180910390a3611f108261226d565b60019485019401611d51565b8015611f3357505050603591909155506001919050565b60009550505050505090565b600054610100900460ff16611b295760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e67000000000000000000000000000000000000000000606482015260840161063e565b6036548015801590611fd057506000603554115b1561215f5760007f000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a66001600160a01b031663a25ae557600160355461201591906125e4565b6040518263ffffffff1660e01b815260040161203391815260200190565b608060405180830381865afa158015612050573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061207491906127c5565b9050600082826020015143414460014361208e91906125e4565b6040805160208101969096528501939093527fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606092831b1691840191909152607483015240609482015260b4016040516020818303038152906040528051906020012060001c6120ff9190612868565b90506036818154811061211457612114612738565b600091825260209091200154603880547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b03909216919091179055506106519050565b603880547fffffffffffffffffffffffff000000000000000000000000000000000000000016905550565b6000807a184f03e93ff9f4daa797ed6e38ed64bf6a1f01000000000000000083106121d3577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef810000000083106121ff576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061221d57662386f26fc10000830492506010015b6305f5e1008310612235576305f5e100830492506008015b612710831061224957612710830492506004015b6064831061225b576064830492506002015b600a8310612267576001015b92915050565b805160608201516040516001600160a01b037f00000000000000000000000031f648572b67e60ec6eb8e197e1848cc5f5558de169263c30af3889273420000000000000000000000000000000000000892620186a0927f21670f220000000000000000000000000000000000000000000000000000000092612317926024016001600160a01b039290921682526fffffffffffffffffffffffffffffffff16602082015260400190565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009485161790525160e086901b90921682526123a993929160040161287c565b600060405180830381600087803b1580156123c357600080fd5b505af11580156123d7573d6000803e3d6000fd5b5050505050565b6000602082840312156123f057600080fd5b5035919050565b6001600160a01b038116811461065157600080fd5b60008060006060848603121561242157600080fd5b833592506020840135612433816123f7565b91506040840135612443816123f7565b809150509250925092565b60005b83811015612469578181015183820152602001612451565b838111156113535750506000910152565b6000815180845261249281602086016020860161244e565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061106d602083018461247a565b600080604083850312156124ea57600080fd5b8235915060208301356124fc816123f7565b809150509250929050565b60006020828403121561251957600080fd5b813561106d816123f7565b6fffffffffffffffffffffffffffffffff8116811461065157600080fd5b6000806040838503121561255557600080fd5b8235915060208301356124fc81612524565b60006020828403121561257957600080fd5b815161106d816123f7565b60006020828403121561259657600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600082198211156125df576125df61259d565b500190565b6000828210156125f6576125f661259d565b500390565b6000845161260d81846020890161244e565b80830190507f2e000000000000000000000000000000000000000000000000000000000000008082528551612649816001850160208a0161244e565b6001920191820152835161266481600284016020880161244e565b0160020195945050505050565b60006fffffffffffffffffffffffffffffffff808316818516818304811182151516156126a0576126a061259d565b02949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b60006fffffffffffffffffffffffffffffffff808416806126fb576126fb6126a9565b92169190910492915050565b60006fffffffffffffffffffffffffffffffff838116908316818110156127305761273061259d565b039392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6000608082840312156127d757600080fd5b6040516080810181811067ffffffffffffffff82111715612821577f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604052825161282f816123f7565b815260208381015190820152604083015161284981612524565b6040820152606083015161285c81612524565b60608201529392505050565b600082612877576128776126a9565b500690565b6001600160a01b038416815267ffffffffffffffff831660208201526060604082015260006128ae606083018461247a565b9594505050505056fea164736f6c634300080f000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a600000000000000000000000031f648572b67e60ec6eb8e197e1848cc5f5558de0000000000000000000000003de211088df516da72efe68d386b561bee256ec40000000000000000000000003aa00bb915a8e78b0523e4c365e3e70a19d329e600000000000000000000000000000000000000000000000002c68af0bb140000000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000708
-----Decoded View---------------
Arg [0] : _l2OutputOracle (address): 0x180c77aE51a9c505a43A2C7D81f8CE70cacb93A6
Arg [1] : _portal (address): 0x31F648572b67e60Ec6eb8E197E1848CC5F5558de
Arg [2] : _securityCouncil (address): 0x3de211088dF516da72efe68D386b561BEE256Ec4
Arg [3] : _trustedValidator (address): 0x3aa00bb915A8e78b0523E4c365e3E70A19d329e6
Arg [4] : _requiredBondAmount (uint256): 200000000000000000
Arg [5] : _maxUnbond (uint256): 10
Arg [6] : _roundDuration (uint256): 1800
-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 000000000000000000000000180c77ae51a9c505a43a2c7d81f8ce70cacb93a6
Arg [1] : 00000000000000000000000031f648572b67e60ec6eb8e197e1848cc5f5558de
Arg [2] : 0000000000000000000000003de211088df516da72efe68d386b561bee256ec4
Arg [3] : 0000000000000000000000003aa00bb915a8e78b0523e4c365e3e70a19d329e6
Arg [4] : 00000000000000000000000000000000000000000000000002c68af0bb140000
Arg [5] : 000000000000000000000000000000000000000000000000000000000000000a
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000708
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.