ETH Price: $2,417.25 (+1.94%)

Contract

0x41FAD93F225b5C1C95f2445A5d7fcB85bA46713f
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Redeem Due Inter...167760972023-03-07 11:22:23556 days ago1678188143IN
0x41FAD93F...5bA46713f
0 ETH0.0099322426.19200599
Redeem Due Inter...167172902023-02-27 4:55:59565 days ago1677473759IN
0x41FAD93F...5bA46713f
0 ETH0.0152740620.10123781
Remove Liquidity...167172102023-02-27 4:39:23565 days ago1677472763IN
0x41FAD93F...5bA46713f
0 ETH0.0108484817.91958904
Redeem Due Inter...167171992023-02-27 4:37:11565 days ago1677472631IN
0x41FAD93F...5bA46713f
0 ETH0.0031144518.31517842
Redeem Due Inter...167169482023-02-27 3:46:35565 days ago1677469595IN
0x41FAD93F...5bA46713f
0 ETH0.0079647921
Add Liquidity Si...167153532023-02-26 22:23:59565 days ago1677450239IN
0x41FAD93F...5bA46713f
5 ETH0.0115687224.06144877
Swap Exact Yt Fo...167141612023-02-26 18:23:11565 days ago1677435791IN
0x41FAD93F...5bA46713f
0 ETH0.020106327.85902628
Swap Exact Sy Fo...167141562023-02-26 18:22:11565 days ago1677435731IN
0x41FAD93F...5bA46713f
0 ETH0.0070874526.44828999
Redeem Due Inter...167141522023-02-26 18:21:23565 days ago1677435683IN
0x41FAD93F...5bA46713f
0 ETH0.0045251626.13178078
Redeem Due Inter...167139252023-02-26 17:35:35565 days ago1677432935IN
0x41FAD93F...5bA46713f
0 ETH0.0085686820.72689612
Redeem Due Inter...167131362023-02-26 14:55:35565 days ago1677423335IN
0x41FAD93F...5bA46713f
0 ETH0.0095128221.66679733
Redeem Due Inter...167125852023-02-26 13:04:11565 days ago1677416651IN
0x41FAD93F...5bA46713f
0 ETH0.0105821620.19635273
Swap Exact Sy Fo...167104722023-02-26 5:57:11566 days ago1677391031IN
0x41FAD93F...5bA46713f
0 ETH0.0044272116.23748127
Remove Liquidity...167104592023-02-26 5:54:35566 days ago1677390875IN
0x41FAD93F...5bA46713f
0 ETH0.0056900717.65201695
Redeem Due Inter...167103282023-02-26 5:27:59566 days ago1677389279IN
0x41FAD93F...5bA46713f
0 ETH0.0028061716.5
Swap Exact Yt Fo...167085502023-02-25 23:27:47566 days ago1677367667IN
0x41FAD93F...5bA46713f
0 ETH0.0055169520.16304701
Add Liquidity Si...167081372023-02-25 22:03:47566 days ago1677362627IN
0x41FAD93F...5bA46713f
0 ETH0.0099947421.69906883
Redeem Due Inter...167078692023-02-25 21:09:47566 days ago1677359387IN
0x41FAD93F...5bA46713f
0 ETH0.0208592720.36014741
Redeem Due Inter...167076762023-02-25 20:30:59566 days ago1677357059IN
0x41FAD93F...5bA46713f
0 ETH0.0034461820.26593355
Add Liquidity Si...167067992023-02-25 17:33:35566 days ago1677346415IN
0x41FAD93F...5bA46713f
0 ETH0.0376669123.65958925
Remove Liquidity...167067872023-02-25 17:31:11566 days ago1677346271IN
0x41FAD93F...5bA46713f
0 ETH0.0085336424.67063268
Redeem Due Inter...167067702023-02-25 17:27:35566 days ago1677346055IN
0x41FAD93F...5bA46713f
0 ETH0.0036131920.51737522
Swap Exact Token...167045552023-02-25 9:57:11567 days ago1677319031IN
0x41FAD93F...5bA46713f
0.01 ETH0.0093001519.52648218
Add Liquidity Si...167042922023-02-25 9:03:47567 days ago1677315827IN
0x41FAD93F...5bA46713f
0 ETH0.0126742319.04925319
Remove Liquidity...167032972023-02-25 5:41:59567 days ago1677303719IN
0x41FAD93F...5bA46713f
0 ETH0.0270096223.21994534
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
167172102023-02-27 4:39:23565 days ago1677472763
0x41FAD93F...5bA46713f
0.51200807 ETH
167172102023-02-27 4:39:23565 days ago1677472763
0x41FAD93F...5bA46713f
0.51200807 ETH
167153532023-02-26 22:23:59565 days ago1677450239
0x41FAD93F...5bA46713f
5 ETH
167045552023-02-25 9:57:11567 days ago1677319031
0x41FAD93F...5bA46713f
0.01 ETH
167030022023-02-25 4:42:11567 days ago1677300131
0x41FAD93F...5bA46713f
0.01247115 ETH
167030022023-02-25 4:42:11567 days ago1677300131
0x41FAD93F...5bA46713f
0.01247115 ETH
166878422023-02-23 1:30:11569 days ago1677115811
0x41FAD93F...5bA46713f
0.07984731 ETH
166878422023-02-23 1:30:11569 days ago1677115811
0x41FAD93F...5bA46713f
0.07984731 ETH
166878352023-02-23 1:28:47569 days ago1677115727
0x41FAD93F...5bA46713f
0.30264224 ETH
166878352023-02-23 1:28:47569 days ago1677115727
0x41FAD93F...5bA46713f
0.30264224 ETH
166869852023-02-22 22:36:59569 days ago1677105419
0x41FAD93F...5bA46713f
47.91773685 ETH
166869852023-02-22 22:36:59569 days ago1677105419
0x41FAD93F...5bA46713f
47.91773685 ETH
166869852023-02-22 22:36:59569 days ago1677105419
0x41FAD93F...5bA46713f
0.62 ETH
166851862023-02-22 16:33:11569 days ago1677083591
0x41FAD93F...5bA46713f
93 ETH
166831242023-02-22 9:33:11570 days ago1677058391
0x41FAD93F...5bA46713f
9 ETH
166811922023-02-22 3:01:23570 days ago1677034883
0x41FAD93F...5bA46713f
0.02 ETH
166765122023-02-21 11:15:11570 days ago1676978111
0x41FAD93F...5bA46713f
102.54642561 ETH
166765122023-02-21 11:15:11570 days ago1676978111
0x41FAD93F...5bA46713f
102.54642561 ETH
166730482023-02-20 23:32:35571 days ago1676935955
0x41FAD93F...5bA46713f
2 ETH
166701012023-02-20 13:37:59571 days ago1676900279
0x41FAD93F...5bA46713f
50 ETH
166699432023-02-20 13:05:59571 days ago1676898359
0x41FAD93F...5bA46713f
3.9949933 ETH
166699432023-02-20 13:05:59571 days ago1676898359
0x41FAD93F...5bA46713f
3.9949933 ETH
166688692023-02-20 9:28:35572 days ago1676885315
0x41FAD93F...5bA46713f
0.01 ETH
166667732023-02-20 2:24:59572 days ago1676859899
0x41FAD93F...5bA46713f
0.01 ETH
166667552023-02-20 2:21:23572 days ago1676859683
0x41FAD93F...5bA46713f
0.01 ETH
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
PendleRouter

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 90000 runs

Other Settings:
default evmVersion
File 1 of 35 : PendleRouter.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts/proxy/Proxy.sol";
import "../interfaces/IPAllAction.sol";
import "../interfaces/IPMarketSwapCallback.sol";
import "../core/libraries/Errors.sol";

/// @dev this contract will be deployed behind an ERC1967 proxy
/// calls to the ERC1967 proxy will be resolved at this contract, and proxied again to the
/// corresponding implementation contracts

// solhint-disable no-empty-blocks
contract PendleRouter is Proxy {
    address public immutable ACTION_MINT_REDEEM;
    address public immutable ACTION_ADD_REMOVE_LIQ;
    address public immutable ACTION_SWAP_PT;
    address public immutable ACTION_SWAP_YT;
    address public immutable ACTION_SWAP_PTYT;
    address public immutable ACTION_CALLBACK;
    address public immutable ACTION_MISC;

    constructor(
        address _ACTION_MINT_REDEEM,
        address _ACTION_ADD_REMOVE_LIQ,
        address _ACTION_SWAP_PT,
        address _ACTION_SWAP_YT,
        address _ACTION_SWAP_PTYT,
        address _ACTION_CALLBACK,
        address _ACTION_MISC
    ) {
        ACTION_MINT_REDEEM = _ACTION_MINT_REDEEM;
        ACTION_ADD_REMOVE_LIQ = _ACTION_ADD_REMOVE_LIQ;
        ACTION_SWAP_PT = _ACTION_SWAP_PT;
        ACTION_SWAP_YT = _ACTION_SWAP_YT;
        ACTION_SWAP_PTYT = _ACTION_SWAP_PTYT;
        ACTION_CALLBACK = _ACTION_CALLBACK;
        ACTION_MISC = _ACTION_MISC;
    }

    receive() external payable virtual override {}

    function getRouterImplementation(bytes4 sig) public view returns (address) {
        if (
            sig == IPActionMintRedeem.mintSyFromToken.selector ||
            sig == IPActionMintRedeem.redeemSyToToken.selector ||
            sig == IPActionMintRedeem.mintPyFromToken.selector ||
            sig == IPActionMintRedeem.redeemPyToToken.selector ||
            sig == IPActionMintRedeem.mintPyFromSy.selector ||
            sig == IPActionMintRedeem.redeemPyToSy.selector ||
            sig == IPActionMintRedeem.redeemDueInterestAndRewards.selector ||
            sig == IPActionMintRedeem.redeemDueInterestAndRewardsThenSwapAll.selector
        ) {
            return ACTION_MINT_REDEEM;
        } else if (
            sig == IPActionAddRemoveLiq.addLiquidityDualSyAndPt.selector ||
            sig == IPActionAddRemoveLiq.addLiquidityDualTokenAndPt.selector ||
            sig == IPActionAddRemoveLiq.addLiquiditySinglePt.selector ||
            sig == IPActionAddRemoveLiq.addLiquiditySingleSy.selector ||
            sig == IPActionAddRemoveLiq.addLiquiditySingleToken.selector ||
            sig == IPActionAddRemoveLiq.removeLiquidityDualSyAndPt.selector ||
            sig == IPActionAddRemoveLiq.removeLiquidityDualTokenAndPt.selector ||
            sig == IPActionAddRemoveLiq.removeLiquiditySinglePt.selector ||
            sig == IPActionAddRemoveLiq.removeLiquiditySingleSy.selector ||
            sig == IPActionAddRemoveLiq.removeLiquiditySingleToken.selector
        ) {
            return ACTION_ADD_REMOVE_LIQ;
        } else if (
            sig == IPActionSwapPT.swapExactPtForSy.selector ||
            sig == IPActionSwapPT.swapPtForExactSy.selector ||
            sig == IPActionSwapPT.swapSyForExactPt.selector ||
            sig == IPActionSwapPT.swapExactSyForPt.selector ||
            sig == IPActionSwapPT.swapExactTokenForPt.selector ||
            sig == IPActionSwapPT.swapExactPtForToken.selector
        ) {
            return ACTION_SWAP_PT;
        } else if (
            sig == IPActionSwapYT.swapExactYtForSy.selector ||
            sig == IPActionSwapYT.swapSyForExactYt.selector ||
            sig == IPActionSwapYT.swapExactSyForYt.selector ||
            sig == IPActionSwapYT.swapExactTokenForYt.selector ||
            sig == IPActionSwapYT.swapExactYtForToken.selector ||
            sig == IPActionSwapYT.swapYtForExactSy.selector
        ) {
            return ACTION_SWAP_YT;
        } else if (
            sig == IPActionSwapPTYT.swapExactPtForYt.selector ||
            sig == IPActionSwapPTYT.swapExactYtForPt.selector
        ) {
            return ACTION_SWAP_PTYT;
        } else if (sig == IPMarketSwapCallback.swapCallback.selector) {
            return ACTION_CALLBACK;
        } else if (sig == IPActionMisc.consult.selector) {
            return ACTION_MISC;
        }
        revert Errors.RouterInvalidAction(sig);
    }

    function _implementation() internal view override returns (address) {
        return getRouterImplementation(msg.sig);
    }
}

File 2 of 35 : draft-IERC1822.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.0;

/**
 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

File 3 of 35 : IBeacon.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.0;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {BeaconProxy} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

File 4 of 35 : ERC1967Upgrade.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)

pragma solidity ^0.8.2;

import "../beacon/IBeacon.sol";
import "../../interfaces/draft-IERC1822.sol";
import "../../utils/Address.sol";
import "../../utils/StorageSlot.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 *
 * _Available since v4.1._
 *
 * @custom:oz-upgrades-unsafe-allow delegatecall
 */
abstract contract ERC1967Upgrade {
    // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
    bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Returns the current implementation address.
     */
    function _getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
        StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Perform implementation upgrade
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeTo(address newImplementation) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);
    }

    /**
     * @dev Perform implementation upgrade with additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCall(
        address newImplementation,
        bytes memory data,
        bool forceCall
    ) internal {
        _upgradeTo(newImplementation);
        if (data.length > 0 || forceCall) {
            Address.functionDelegateCall(newImplementation, data);
        }
    }

    /**
     * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCallUUPS(
        address newImplementation,
        bytes memory data,
        bool forceCall
    ) internal {
        // Upgrades from old implementations will perform a rollback test. This test requires the new
        // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
        // this special case will break upgrade paths from old UUPS implementation to new ones.
        if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
            _setImplementation(newImplementation);
        } else {
            try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
            } catch {
                revert("ERC1967Upgrade: new implementation is not UUPS");
            }
            _upgradeToAndCall(newImplementation, data, forceCall);
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Returns the current admin.
     */
    function _getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        require(newAdmin != address(0), "ERC1967: new admin is the zero address");
        StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {AdminChanged} event.
     */
    function _changeAdmin(address newAdmin) internal {
        emit AdminChanged(_getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
     */
    bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Emitted when the beacon is upgraded.
     */
    event BeaconUpgraded(address indexed beacon);

    /**
     * @dev Returns the current beacon.
     */
    function _getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
        require(
            Address.isContract(IBeacon(newBeacon).implementation()),
            "ERC1967: beacon implementation is not a contract"
        );
        StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
    }

    /**
     * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
     * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
     *
     * Emits a {BeaconUpgraded} event.
     */
    function _upgradeBeaconToAndCall(
        address newBeacon,
        bytes memory data,
        bool forceCall
    ) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);
        if (data.length > 0 || forceCall) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        }
    }
}

File 5 of 35 : Proxy.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)

pragma solidity ^0.8.0;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
     * and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _beforeFallback();
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
     * is empty.
     */
    receive() external payable virtual {
        _fallback();
    }

    /**
     * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
     * call, or as part of the Solidity `fallback` or `receive` functions.
     *
     * If overridden should call `super._beforeFallback()`.
     */
    function _beforeFallback() internal virtual {}
}

File 6 of 35 : UUPSUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.0;

import "../../interfaces/draft-IERC1822.sol";
import "../ERC1967/ERC1967Upgrade.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 *
 * _Available since v4.1._
 */
abstract contract UUPSUpgradeable is IERC1822Proxiable, ERC1967Upgrade {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
    address private immutable __self = address(this);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        require(address(this) != __self, "Function must be called through delegatecall");
        require(_getImplementation() == __self, "Function must be called through active proxy");
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
        _;
    }

    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate that the this implementation remains valid after an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
        return _IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     */
    function upgradeTo(address newImplementation) external virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data, true);
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeTo} and {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal override onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;
}

File 7 of 35 : draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 8 of 35 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 9 of 35 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 10 of 35 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 11 of 35 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 12 of 35 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }
}

File 13 of 35 : Errors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

/// Adapted from UniswapV3's Oracle

library Errors {
    // BulkSeller
    error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error BulkNotMaintainer();
    error BulkNotAdmin();
    error BulkSellerAlreadyExisted(address token, address SY, address bulk);
    error BulkSellerInvalidToken(address token, address SY);
    error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps);
    error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps);

    // APPROX
    error ApproxFail();
    error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps);
    error ApproxBinarySearchInputInvalid(
        uint256 approxGuessMin,
        uint256 approxGuessMax,
        uint256 minGuessMin,
        uint256 maxGuessMax
    );

    // MARKET + MARKET MATH CORE
    error MarketExpired();
    error MarketZeroAmountsInput();
    error MarketZeroAmountsOutput();
    error MarketZeroLnImpliedRate();
    error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount);
    error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset);
    error MarketExchangeRateBelowOne(int256 exchangeRate);
    error MarketProportionMustNotEqualOne();
    error MarketRateScalarBelowZero(int256 rateScalar);
    error MarketScalarRootBelowZero(int256 scalarRoot);
    error MarketProportionTooHigh(int256 proportion, int256 maxProportion);

    error OracleUninitialized();
    error OracleTargetTooOld(uint32 target, uint32 oldest);
    error OracleZeroCardinality();

    error MarketFactoryExpiredPt();
    error MarketFactoryInvalidPt();
    error MarketFactoryMarketExists();

    error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot);
    error MarketFactoryReserveFeePercentTooHigh(
        uint8 reserveFeePercent,
        uint8 maxReserveFeePercent
    );
    error MarketFactoryZeroTreasury();
    error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor);

    // ROUTER
    error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut);
    error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut);
    error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut);
    error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut);
    error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error RouterExceededLimitSyIn(uint256 actualSyIn, uint256 limitSyIn);
    error RouterExceededLimitPtIn(uint256 actualPtIn, uint256 limitPtIn);
    error RouterExceededLimitYtIn(uint256 actualYtIn, uint256 limitYtIn);
    error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay);
    error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay);
    error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed);

    error RouterTimeRangeZero();
    error RouterCallbackNotPendleMarket(address caller);
    error RouterInvalidAction(bytes4 selector);

    error RouterKyberSwapDataZero();

    // YIELD CONTRACT
    error YCExpired();
    error YCNotExpired();
    error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy);
    error YCNothingToRedeem();
    error YCPostExpiryDataNotSet();
    error YCNoFloatingSy();

    // YieldFactory
    error YCFactoryInvalidExpiry();
    error YCFactoryYieldContractExisted();
    error YCFactoryZeroExpiryDivisor();
    error YCFactoryZeroTreasury();
    error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate);
    error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate);

    // SY
    error SYInvalidTokenIn(address token);
    error SYInvalidTokenOut(address token);
    error SYZeroDeposit();
    error SYZeroRedeem();
    error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut);
    error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);

    // SY-specific
    error SYQiTokenMintFailed(uint256 errCode);
    error SYQiTokenRedeemFailed(uint256 errCode);
    error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1);
    error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax);

    error SYCurveInvalidPid();
    error SYCurve3crvPoolNotFound();

    // Liquidity Mining
    error VCInactivePool(address pool);
    error VCPoolAlreadyActive(address pool);
    error VCZeroVePendle(address user);
    error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight);
    error VCEpochNotFinalized(uint256 wTime);
    error VCPoolAlreadyAddAndRemoved(address pool);

    error VEInvalidNewExpiry(uint256 newExpiry);
    error VEExceededMaxLockTime();
    error VEInsufficientLockTime();
    error VENotAllowedReduceExpiry();
    error VEZeroAmountLocked();
    error VEPositionNotExpired();
    error VEZeroPosition();
    error VEZeroSlope(uint128 bias, uint128 slope);
    error VEReceiveOldSupply(uint256 msgTime);

    error GCNotPendleMarket(address caller);
    error GCNotVotingController(address caller);

    error InvalidWTime(uint256 wTime);
    error ExpiryInThePast(uint256 expiry);
    error ChainNotSupported(uint256 chainId);

    error FDCantFundFutureEpoch();
    error FDFactoryDistributorAlreadyExisted(address pool, address distributor);

    // Cross-Chain
    error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path);
    error MsgNotFromReceiveEndpoint(address sender);
    error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee);
    error ApproxDstExecutionGasNotSet();
    error InvalidRetryData();

    // GENERIC MSG
    error ArrayLengthMismatch();
    error ArrayEmpty();
    error ArrayOutOfBounds();
    error ZeroAddress();

    error OnlyLayerZeroEndpoint();
    error OnlyYT();
    error OnlyYCFactory();
    error OnlyWhitelisted();
}

File 14 of 35 : LogExpMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity 0.8.17;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2**255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) *
                    y_int256 +
                    ((ln_36_x % ONE_18) * y_int256) /
                    ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

File 15 of 35 : Math.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.17;

/* solhint-disable private-vars-leading-underscore, reason-string */

library Math {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    int256 internal constant IONE = 1e18; // 18 decimal places

    function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            return (a >= b ? a - b : 0);
        }
    }

    function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
        require(a >= b, "negative");
        return a - b; // no unchecked since if b is very negative, a - b might overflow
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        unchecked {
            return product / ONE;
        }
    }

    function mulDown(int256 a, int256 b) internal pure returns (int256) {
        int256 product = a * b;
        unchecked {
            return product / IONE;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 aInflated = a * ONE;
        unchecked {
            return aInflated / b;
        }
    }

    function divDown(int256 a, int256 b) internal pure returns (int256) {
        int256 aInflated = a * IONE;
        unchecked {
            return aInflated / b;
        }
    }

    function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a + b - 1) / b;
    }

    // @author Uniswap
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }

    function abs(int256 x) internal pure returns (uint256) {
        return uint256(x > 0 ? x : -x);
    }

    function neg(int256 x) internal pure returns (int256) {
        return x * (-1);
    }

    function neg(uint256 x) internal pure returns (int256) {
        return Int(x) * (-1);
    }

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x > y ? x : y);
    }

    function max(int256 x, int256 y) internal pure returns (int256) {
        return (x > y ? x : y);
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x < y ? x : y);
    }

    function min(int256 x, int256 y) internal pure returns (int256) {
        return (x < y ? x : y);
    }

    /*///////////////////////////////////////////////////////////////
                               SIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Int(uint256 x) internal pure returns (int256) {
        require(x <= uint256(type(int256).max));
        return int256(x);
    }

    function Int128(int256 x) internal pure returns (int128) {
        require(type(int128).min <= x && x <= type(int128).max);
        return int128(x);
    }

    function Int128(uint256 x) internal pure returns (int128) {
        return Int128(Int(x));
    }

    /*///////////////////////////////////////////////////////////////
                               UNSIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Uint(int256 x) internal pure returns (uint256) {
        require(x >= 0);
        return uint256(x);
    }

    function Uint32(uint256 x) internal pure returns (uint32) {
        require(x <= type(uint32).max);
        return uint32(x);
    }

    function Uint112(uint256 x) internal pure returns (uint112) {
        require(x <= type(uint112).max);
        return uint112(x);
    }

    function Uint96(uint256 x) internal pure returns (uint96) {
        require(x <= type(uint96).max);
        return uint96(x);
    }

    function Uint128(uint256 x) internal pure returns (uint128) {
        require(x <= type(uint128).max);
        return uint128(x);
    }

    function isAApproxB(
        uint256 a,
        uint256 b,
        uint256 eps
    ) internal pure returns (bool) {
        return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
    }

    function isAGreaterApproxB(
        uint256 a,
        uint256 b,
        uint256 eps
    ) internal pure returns (bool) {
        return a >= b && a <= mulDown(b, ONE + eps);
    }

    function isASmallerApproxB(
        uint256 a,
        uint256 b,
        uint256 eps
    ) internal pure returns (bool) {
        return a <= b && a >= mulDown(b, ONE - eps);
    }
}

File 16 of 35 : MiniHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

library MiniHelpers {
    function isCurrentlyExpired(uint256 expiry) internal view returns (bool) {
        return (expiry <= block.timestamp);
    }

    function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) {
        return (expiry <= blockTime);
    }

    function isTimeInThePast(uint256 timestamp) internal view returns (bool) {
        return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired
    }
}

File 17 of 35 : TokenHelper.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

abstract contract TokenHelper {
    using SafeERC20 for IERC20;
    address internal constant NATIVE = address(0);
    uint256 internal constant LOWER_BOUND_APPROVAL = type(uint96).max / 2; // some tokens use 96 bits for approval

    function _transferIn(
        address token,
        address from,
        uint256 amount
    ) internal {
        if (token == NATIVE) require(msg.value == amount, "eth mismatch");
        else if (amount != 0) IERC20(token).safeTransferFrom(from, address(this), amount);
    }

    function _transferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        if (amount != 0) token.safeTransferFrom(from, to, amount);
    }

    function _transferOut(
        address token,
        address to,
        uint256 amount
    ) internal {
        if (amount == 0) return;
        if (token == NATIVE) {
            (bool success, ) = to.call{ value: amount }("");
            require(success, "eth send failed");
        } else {
            IERC20(token).safeTransfer(to, amount);
        }
    }

    function _transferOut(
        address[] memory tokens,
        address to,
        uint256[] memory amounts
    ) internal {
        uint256 numTokens = tokens.length;
        require(numTokens == amounts.length, "length mismatch");
        for (uint256 i = 0; i < numTokens; ) {
            _transferOut(tokens[i], to, amounts[i]);
            unchecked {
                i++;
            }
        }
    }

    function _selfBalance(address token) internal view returns (uint256) {
        return (token == NATIVE) ? address(this).balance : IERC20(token).balanceOf(address(this));
    }

    function _selfBalance(IERC20 token) internal view returns (uint256) {
        return token.balanceOf(address(this));
    }

    /// @notice Approves the stipulated contract to spend the given allowance in the given token
    /// @dev PLS PAY ATTENTION to tokens that requires the approval to be set to 0 before changing it
    function _safeApprove(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20.approve.selector, to, value)
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))), "Safe Approve");
    }

    function _safeApproveInf(address token, address to) internal {
        if (token == NATIVE) return;
        if (IERC20(token).allowance(address(this), to) < LOWER_BOUND_APPROVAL) {
            _safeApprove(token, to, 0);
            _safeApprove(token, to, type(uint256).max);
        }
    }
}

File 18 of 35 : MarketMathCore.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../libraries/math/Math.sol";
import "../libraries/math/LogExpMath.sol";

import "../StandardizedYield/PYIndex.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";

struct MarketState {
    int256 totalPt;
    int256 totalSy;
    int256 totalLp;
    address treasury;
    /// immutable variables ///
    int256 scalarRoot;
    uint256 expiry;
    /// fee data ///
    uint256 lnFeeRateRoot;
    uint256 reserveFeePercent; // base 100
    /// last trade data ///
    uint256 lastLnImpliedRate;
}

// params that are expensive to compute, therefore we pre-compute them
struct MarketPreCompute {
    int256 rateScalar;
    int256 totalAsset;
    int256 rateAnchor;
    int256 feeRate;
}

// solhint-disable ordering
library MarketMathCore {
    using Math for uint256;
    using Math for int256;
    using LogExpMath for int256;
    using PYIndexLib for PYIndex;

    int256 internal constant MINIMUM_LIQUIDITY = 10**3;
    int256 internal constant PERCENTAGE_DECIMALS = 100;
    uint256 internal constant DAY = 86400;
    uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;

    int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100;

    using Math for uint256;
    using Math for int256;

    /*///////////////////////////////////////////////////////////////
                UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidity(
        MarketState memory market,
        uint256 syDesired,
        uint256 ptDesired,
        uint256 blockTime
    )
        internal
        pure
        returns (
            uint256 lpToReserve,
            uint256 lpToAccount,
            uint256 syUsed,
            uint256 ptUsed
        )
    {
        (
            int256 _lpToReserve,
            int256 _lpToAccount,
            int256 _syUsed,
            int256 _ptUsed
        ) = addLiquidityCore(market, syDesired.Int(), ptDesired.Int(), blockTime);

        lpToReserve = _lpToReserve.Uint();
        lpToAccount = _lpToAccount.Uint();
        syUsed = _syUsed.Uint();
        ptUsed = _ptUsed.Uint();
    }

    function removeLiquidity(MarketState memory market, uint256 lpToRemove)
        internal
        pure
        returns (uint256 netSyToAccount, uint256 netPtToAccount)
    {
        (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int());

        netSyToAccount = _syToAccount.Uint();
        netPtToAccount = _ptToAccount.Uint();
    }

    function swapExactPtForSy(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToMarket,
        uint256 blockTime
    )
        internal
        pure
        returns (
            uint256 netSyToAccount,
            uint256 netSyFee,
            uint256 netSyToReserve
        )
    {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToMarket.neg(),
            blockTime
        );

        netSyToAccount = _netSyToAccount.Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    function swapSyForExactPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToAccount,
        uint256 blockTime
    )
        internal
        pure
        returns (
            uint256 netSyToMarket,
            uint256 netSyFee,
            uint256 netSyToReserve
        )
    {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToAccount.Int(),
            blockTime
        );

        netSyToMarket = _netSyToAccount.neg().Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    /*///////////////////////////////////////////////////////////////
                    CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidityCore(
        MarketState memory market,
        int256 syDesired,
        int256 ptDesired,
        uint256 blockTime
    )
        internal
        pure
        returns (
            int256 lpToReserve,
            int256 lpToAccount,
            int256 syUsed,
            int256 ptUsed
        )
    {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput();
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        if (market.totalLp == 0) {
            lpToAccount = Math.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY;
            lpToReserve = MINIMUM_LIQUIDITY;
            syUsed = syDesired;
            ptUsed = ptDesired;
        } else {
            int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt;
            int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy;
            if (netLpByPt < netLpBySy) {
                lpToAccount = netLpByPt;
                ptUsed = ptDesired;
                syUsed = (market.totalSy * lpToAccount) / market.totalLp;
            } else {
                lpToAccount = netLpBySy;
                syUsed = syDesired;
                ptUsed = (market.totalPt * lpToAccount) / market.totalLp;
            }
        }

        if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalSy += syUsed;
        market.totalPt += ptUsed;
        market.totalLp += lpToAccount + lpToReserve;
    }

    function removeLiquidityCore(MarketState memory market, int256 lpToRemove)
        internal
        pure
        returns (int256 netSyToAccount, int256 netPtToAccount)
    {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp;
        netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp;

        if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalLp = market.totalLp.subNoNeg(lpToRemove);
        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount);
    }

    function executeTradeCore(
        MarketState memory market,
        PYIndex index,
        int256 netPtToAccount,
        uint256 blockTime
    )
        internal
        pure
        returns (
            int256 netSyToAccount,
            int256 netSyFee,
            int256 netSyToReserve
        )
    {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
        if (market.totalPt <= netPtToAccount)
            revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount);

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime);

        (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(
            market,
            comp,
            index,
            netPtToAccount
        );

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        _setNewMarketStateTrade(
            market,
            comp,
            index,
            netPtToAccount,
            netSyToAccount,
            netSyToReserve,
            blockTime
        );
    }

    function getMarketPreCompute(
        MarketState memory market,
        PYIndex index,
        uint256 blockTime
    ) internal pure returns (MarketPreCompute memory res) {
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        uint256 timeToExpiry = market.expiry - blockTime;

        res.rateScalar = _getRateScalar(market, timeToExpiry);
        res.totalAsset = index.syToAsset(market.totalSy);

        if (market.totalPt == 0 || res.totalAsset == 0)
            revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset);

        res.rateAnchor = _getRateAnchor(
            market.totalPt,
            market.lastLnImpliedRate,
            res.totalAsset,
            res.rateScalar,
            timeToExpiry
        );
        res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry);
    }

    function calcTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount
    )
        internal
        pure
        returns (
            int256 netSyToAccount,
            int256 netSyFee,
            int256 netSyToReserve
        )
    {
        int256 preFeeExchangeRate = _getExchangeRate(
            market.totalPt,
            comp.totalAsset,
            comp.rateScalar,
            comp.rateAnchor,
            netPtToAccount
        );

        int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg();
        int256 fee = comp.feeRate;

        if (netPtToAccount > 0) {
            int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee);
            if (postFeeExchangeRate < Math.IONE)
                revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate);

            fee = preFeeAssetToAccount.mulDown(Math.IONE - fee);
        } else {
            fee = ((preFeeAssetToAccount * (Math.IONE - fee)) / fee).neg();
        }

        int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS;
        int256 netAssetToAccount = preFeeAssetToAccount - fee;

        netSyToAccount = netAssetToAccount < 0
            ? index.assetToSyUp(netAssetToAccount)
            : index.assetToSy(netAssetToAccount);
        netSyFee = index.assetToSy(fee);
        netSyToReserve = index.assetToSy(netAssetToReserve);
    }

    function _setNewMarketStateTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount,
        int256 netSyToAccount,
        int256 netSyToReserve,
        uint256 blockTime
    ) internal pure {
        uint256 timeToExpiry = market.expiry - blockTime;

        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve);

        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            index.syToAsset(market.totalSy),
            comp.rateScalar,
            comp.rateAnchor,
            timeToExpiry
        );

        if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate();
    }

    function _getRateAnchor(
        int256 totalPt,
        uint256 lastLnImpliedRate,
        int256 totalAsset,
        int256 rateScalar,
        uint256 timeToExpiry
    ) internal pure returns (int256 rateAnchor) {
        int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);

        if (newExchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate);

        {
            int256 proportion = totalPt.divDown(totalPt + totalAsset);

            int256 lnProportion = _logProportion(proportion);

            rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar);
        }
    }

    /// @notice Calculates the current market implied rate.
    /// @return lnImpliedRate the implied rate
    function _getLnImpliedRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        uint256 timeToExpiry
    ) internal pure returns (uint256 lnImpliedRate) {
        // This will check for exchange rates < Math.IONE
        int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0);

        // exchangeRate >= 1 so its ln >= 0
        uint256 lnRate = exchangeRate.ln().Uint();

        lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry;
    }

    /// @notice Converts an implied rate to an exchange rate given a time to expiry. The
    /// formula is E = e^rt
    function _getExchangeRateFromImpliedRate(uint256 lnImpliedRate, uint256 timeToExpiry)
        internal
        pure
        returns (int256 exchangeRate)
    {
        uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;

        exchangeRate = LogExpMath.exp(rt.Int());
    }

    function _getExchangeRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        int256 netPtToAccount
    ) internal pure returns (int256 exchangeRate) {
        int256 numerator = totalPt.subNoNeg(netPtToAccount);

        int256 proportion = (numerator.divDown(totalPt + totalAsset));

        if (proportion > MAX_MARKET_PROPORTION)
            revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION);

        int256 lnProportion = _logProportion(proportion);

        exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor;

        if (exchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate);
    }

    function _logProportion(int256 proportion) internal pure returns (int256 res) {
        if (proportion == Math.IONE) revert Errors.MarketProportionMustNotEqualOne();

        int256 logitP = proportion.divDown(Math.IONE - proportion);

        res = logitP.ln();
    }

    function _getRateScalar(MarketState memory market, uint256 timeToExpiry)
        internal
        pure
        returns (int256 rateScalar)
    {
        rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int();
        if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar);
    }

    function setInitialLnImpliedRate(
        MarketState memory market,
        PYIndex index,
        int256 initialAnchor,
        uint256 blockTime
    ) internal pure {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        int256 totalAsset = index.syToAsset(market.totalSy);
        uint256 timeToExpiry = market.expiry - blockTime;
        int256 rateScalar = _getRateScalar(market, timeToExpiry);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            totalAsset,
            rateScalar,
            initialAnchor,
            timeToExpiry
        );
    }
}

File 19 of 35 : PYIndex.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";

import "./SYUtils.sol";
import "../libraries/math/Math.sol";

type PYIndex is uint256;

library PYIndexLib {
    using Math for uint256;
    using Math for int256;

    function newIndex(IPYieldToken YT) internal returns (PYIndex) {
        return PYIndex.wrap(YT.pyIndexCurrent());
    }

    function syToAsset(PYIndex index, uint256 syAmount)
        internal
        pure
        returns (uint256)
    {
        return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount);
    }

    function assetToSy(PYIndex index, uint256 assetAmount)
        internal
        pure
        returns (uint256)
    {
        return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount);
    }

    function assetToSyUp(PYIndex index, uint256 assetAmount)
        internal
        pure
        returns (uint256)
    {
        return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount);
    }

    function syToAssetUp(PYIndex index, uint256 syAmount)
        internal
        pure
        returns (uint256)
    {
        uint256 _index = PYIndex.unwrap(index);
        return SYUtils.syToAssetUp(_index, syAmount);
    }

    function syToAsset(PYIndex index, int256 syAmount)
        internal
        pure
        returns (int256)
    {
        int256 sign = syAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int();
    }

    function assetToSy(PYIndex index, int256 assetAmount)
        internal
        pure
        returns (int256)
    {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }

    function assetToSyUp(PYIndex index, int256 assetAmount)
        internal
        pure
        returns (int256)
    {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }

}

File 20 of 35 : SYUtils.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

library SYUtils {
    uint256 internal constant ONE = 1e18;

    function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate) / ONE;
    }

    function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate + ONE - 1) / ONE;
    }

    function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE) / exchangeRate;
    }

    function assetToSyUp(uint256 exchangeRate, uint256 assetAmount)
        internal
        pure
        returns (uint256)
    {
        return (assetAmount * ONE + exchangeRate - 1) / exchangeRate;
    }
}

File 21 of 35 : IPActionAddRemoveLiq.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/kyberswap/KyberSwapHelper.sol";

interface IPActionAddRemoveLiq {
    event AddLiquidityDualSyAndPt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netSyUsed,
        uint256 netPtUsed,
        uint256 netLpOut
    );

    event AddLiquidityDualTokenAndPt(
        address indexed caller,
        address indexed market,
        address indexed tokenIn,
        address receiver,
        uint256 netTokenUsed,
        uint256 netPtUsed,
        uint256 netLpOut
    );

    event AddLiquiditySinglePt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netPtIn,
        uint256 netLpOut
    );

    event AddLiquiditySingleSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netSyIn,
        uint256 netLpOut
    );

    event AddLiquiditySingleToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        uint256 netTokenIn,
        uint256 netLpOut
    );

    event RemoveLiquidityDualSyAndPt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netLpToRemove,
        uint256 netPtOut,
        uint256 netSyOut
    );

    event RemoveLiquidityDualTokenAndPt(
        address indexed caller,
        address indexed market,
        address indexed tokenOut,
        address receiver,
        uint256 netLpToRemove,
        uint256 netPtOut,
        uint256 netTokenOut
    );

    event RemoveLiquiditySinglePt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netLpToRemove,
        uint256 netPtOut
    );

    event RemoveLiquiditySingleSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netLpToRemove,
        uint256 netSyOut
    );

    event RemoveLiquiditySingleToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        uint256 netLpToRemove,
        uint256 netTokenOut
    );

    function addLiquidityDualSyAndPt(
        address receiver,
        address market,
        uint256 netSyDesired,
        uint256 netPtDesired,
        uint256 minLpOut
    )
        external
        returns (
            uint256 netLpOut,
            uint256 netSyUsed,
            uint256 netPtUsed
        );

    function addLiquidityDualTokenAndPt(
        address receiver,
        address market,
        TokenInput calldata input,
        uint256 netPtDesired,
        uint256 minLpOut
    )
        external
        payable
        returns (
            uint256 netLpOut,
            uint256 netTokenUsed,
            uint256 netPtUsed
        );

    function addLiquiditySinglePt(
        address receiver,
        address market,
        uint256 netPtIn,
        uint256 minLpOut,
        ApproxParams calldata guessPtSwapToSy
    ) external returns (uint256 netLpOut, uint256 netSyFee);

    function addLiquiditySingleSy(
        address receiver,
        address market,
        uint256 netSyIn,
        uint256 minLpOut,
        ApproxParams calldata guessPtReceivedFromSy
    ) external returns (uint256 netLpOut, uint256 netSyFee);

    function addLiquiditySingleToken(
        address receiver,
        address market,
        uint256 minLpOut,
        ApproxParams calldata guessPtReceivedFromSy,
        TokenInput calldata input
    ) external payable returns (uint256 netLpOut, uint256 netSyFee);

    function removeLiquidityDualSyAndPt(
        address receiver,
        address market,
        uint256 netLpToRemove,
        uint256 minSyOut,
        uint256 minPtOut
    ) external returns (uint256 netSyOut, uint256 netPtOut);

    function removeLiquidityDualTokenAndPt(
        address receiver,
        address market,
        uint256 netLpToRemove,
        TokenOutput calldata output,
        uint256 minPtOut
    ) external returns (uint256 netTokenOut, uint256 netPtOut);

    function removeLiquiditySinglePt(
        address receiver,
        address market,
        uint256 netLpToRemove,
        uint256 minPtOut,
        ApproxParams calldata guessPtOut
    ) external returns (uint256 netPtOut, uint256 netSyFee);

    function removeLiquiditySingleSy(
        address receiver,
        address market,
        uint256 netLpToRemove,
        uint256 minSyOut
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function removeLiquiditySingleToken(
        address receiver,
        address market,
        uint256 netLpToRemove,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyFee);
}

File 22 of 35 : IPActionMintRedeem.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/kyberswap/KyberSwapHelper.sol";

interface IPActionMintRedeem {
    event MintSyFromToken(
        address indexed caller,
        address indexed tokenIn,
        address indexed SY,
        address receiver,
        uint256 netTokenIn,
        uint256 netSyOut
    );

    event RedeemSyToToken(
        address indexed caller,
        address indexed tokenOut,
        address indexed SY,
        address receiver,
        uint256 netSyIn,
        uint256 netTokenOut
    );

    event MintPyFromSy(
        address indexed caller,
        address indexed receiver,
        address indexed YT,
        uint256 netSyIn,
        uint256 netPyOut
    );

    event RedeemPyToSy(
        address indexed caller,
        address indexed receiver,
        address indexed YT,
        uint256 netPyIn,
        uint256 netSyOut
    );

    event MintPyFromToken(
        address indexed caller,
        address indexed tokenIn,
        address indexed YT,
        address receiver,
        uint256 netTokenIn,
        uint256 netPyOut
    );

    event RedeemPyToToken(
        address indexed caller,
        address indexed tokenOut,
        address indexed YT,
        address receiver,
        uint256 netPyIn,
        uint256 netTokenOut
    );

    event RedeemDueInterestAndRewards(
        address indexed user,
        address[] sys,
        address[] yts,
        address[] markets,
        uint256[][] syRewards,
        uint256[] ytInterests,
        uint256[][] ytRewards,
        uint256[][] marketRewards
    );

    event RedeemDueInterestAndRewardsThenSwapAll(
        address indexed user,
        address[] sys,
        address[] yts,
        address[] markets,
        address indexed tokenOut,
        uint256 netTokenOut
    );

    function mintSyFromToken(
        address receiver,
        address SY,
        uint256 minSyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netSyOut);

    function redeemSyToToken(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut);

    function mintPyFromToken(
        address receiver,
        address YT,
        uint256 minPyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netPyOut);

    function redeemPyToToken(
        address receiver,
        address YT,
        uint256 netPyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut);

    function mintPyFromSy(
        address receiver,
        address YT,
        uint256 netSyIn,
        uint256 minPyOut
    ) external returns (uint256 netPyOut);

    function redeemPyToSy(
        address receiver,
        address YT,
        uint256 netPyIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut);

    function redeemDueInterestAndRewards(
        address user,
        address[] calldata sys,
        address[] calldata yts,
        address[] calldata markets
    )
        external
        returns (
            uint256[][] memory syRewards,
            uint256[] memory ytInterests,
            uint256[][] memory ytRewards,
            uint256[][] memory marketRewards
        );

    struct RouterYtRedeemStruct {
        address[] yts;
        // key-value pair
        address[] syAddrs;
        address[] tokenRedeemSys;
        address[] bulks;
        //
    }

    struct RouterSwapAllStruct {
        // key-value pair
        address[] tokens;
        bytes[] kybercalls;
        //
        address kyberRouter;
        address outputToken;
        uint256 minTokenOut;
    }

    function redeemDueInterestAndRewardsThenSwapAll(
        address[] calldata sys,
        RouterYtRedeemStruct calldata dataYT,
        address[] calldata markets,
        RouterSwapAllStruct calldata dataSwap
    ) external returns (uint256 netTokenOut, uint256[] memory amountsSwapped);
}

File 23 of 35 : IPActionMisc.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPActionMisc {
    function consult(address market, uint32 secondsAgo)
        external
        view
        returns (uint96 lnImpliedRateMean);
}

File 24 of 35 : IPActionSwapPT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/kyberswap/KyberSwapHelper.sol";

interface IPActionSwapPT {
    event SwapPtAndSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        int256 netPtToAccount,
        int256 netSyToAccount
    );

    event SwapPtAndToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        int256 netPtToAccount,
        int256 netTokenToAccount
    );

    function swapExactPtForSy(
        address receiver,
        address market,
        uint256 exactPtIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapPtForExactSy(
        address receiver,
        address market,
        uint256 exactSyOut,
        uint256 maxPtIn,
        ApproxParams calldata guessPtIn
    ) external returns (uint256 netPtIn, uint256 netSyFee);

    function swapSyForExactPt(
        address receiver,
        address market,
        uint256 exactPtOut,
        uint256 maxSyIn
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function swapExactSyForPt(
        address receiver,
        address market,
        uint256 exactSyIn,
        uint256 minPtOut,
        ApproxParams calldata guessPtOut
    ) external returns (uint256 netPtOut, uint256 netSyFee);

    function swapExactTokenForPt(
        address receiver,
        address market,
        uint256 minPtOut,
        ApproxParams calldata guessPtOut,
        TokenInput calldata input
    ) external payable returns (uint256 netPtOut, uint256 netSyFee);

    function swapExactPtForToken(
        address receiver,
        address market,
        uint256 exactPtIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyFee);
}

File 25 of 35 : IPActionSwapPTYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/kyberswap/KyberSwapHelper.sol";

interface IPActionSwapPTYT {
    event SwapPtAndYt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        int256 netPtToAccount,
        int256 netYtToAccount
    );

    function swapExactPtForYt(
        address receiver,
        address market,
        uint256 exactPtIn,
        uint256 minYtOut,
        ApproxParams calldata guessTotalPtToSwap
    ) external returns (uint256 netYtOut, uint256 netSyFee);

    function swapExactYtForPt(
        address receiver,
        address market,
        uint256 exactYtIn,
        uint256 minPtOut,
        ApproxParams calldata guessTotalPtSwapped
    ) external returns (uint256 netPtOut, uint256 netSyFee);
}

File 26 of 35 : IPActionSwapYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/kyberswap/KyberSwapHelper.sol";

interface IPActionSwapYT {
    event SwapYtAndSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        int256 netYtToAccount,
        int256 netSyToAccount
    );

    event SwapYtAndToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        int256 netYtToAccount,
        int256 netTokenToAccount
    );

    function swapExactSyForYt(
        address receiver,
        address market,
        uint256 exactSyIn,
        uint256 minYtOut,
        ApproxParams memory guessYtOut
    ) external returns (uint256 netYtOut, uint256 netSyFee);

    function swapExactYtForSy(
        address receiver,
        address market,
        uint256 exactYtIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapSyForExactYt(
        address receiver,
        address market,
        uint256 exactYtOut,
        uint256 maxSyIn
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function swapYtForExactSy(
        address receiver,
        address market,
        uint256 exactSyOut,
        uint256 maxYtIn,
        ApproxParams memory guessYtIn
    ) external returns (uint256 netYtIn, uint256 netSyFee);

    function swapExactTokenForYt(
        address receiver,
        address market,
        uint256 minYtOut,
        ApproxParams memory guessYtOut,
        TokenInput calldata input
    ) external payable returns (uint256 netYtOut, uint256 netSyFee);

    function swapExactYtForToken(
        address receiver,
        address market,
        uint256 netYtIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyFee);
}

File 27 of 35 : IPAllAction.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity 0.8.17;

import "./IPActionAddRemoveLiq.sol";
import "./IPActionSwapPT.sol";
import "./IPActionSwapYT.sol";
import "./IPActionSwapPTYT.sol";
import "./IPActionMintRedeem.sol";
import "./IPActionMisc.sol";

interface IPAllAction is
    IPActionAddRemoveLiq,
    IPActionSwapPT,
    IPActionSwapYT,
    IPActionSwapPTYT,
    IPActionMintRedeem,
    IPActionMisc
{}

File 28 of 35 : IPInterestManagerYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPInterestManagerYT {
    function userInterest(address user)
        external
        view
        returns (uint128 lastPYIndex, uint128 accruedInterest);
}

File 29 of 35 : IPMarketSwapCallback.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPMarketSwapCallback {
    function swapCallback(
        int256 ptToAccount,
        int256 syToAccount,
        bytes calldata data
    ) external;
}

File 30 of 35 : IPPrincipalToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IPPrincipalToken is IERC20Metadata {
    function burnByYT(address user, uint256 amount) external;

    function mintByYT(address user, uint256 amount) external;

    function initialize(address _YT) external;

    function SY() external view returns (address);

    function YT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);
}

File 31 of 35 : IPYieldToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IRewardManager.sol";
import "./IPInterestManagerYT.sol";

interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT {
    event NewInterestIndex(uint256 indexed newIndex);

    event Mint(
        address indexed caller,
        address indexed receiverPT,
        address indexed receiverYT,
        uint256 amountSyToMint,
        uint256 amountPYOut
    );

    event Burn(
        address indexed caller,
        address indexed receiver,
        uint256 amountPYToRedeem,
        uint256 amountSyOut
    );

    event RedeemRewards(address indexed user, uint256[] amountRewardsOut);

    event RedeemInterest(address indexed user, uint256 interestOut);

    event WithdrawFeeToTreasury(uint256[] amountRewardsOut, uint256 syOut);

    function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut);

    function redeemPY(address receiver) external returns (uint256 amountSyOut);

    function redeemPYMulti(address[] calldata receivers, uint256[] calldata amountPYToRedeems)
        external
        returns (uint256[] memory amountSyOuts);

    function redeemDueInterestAndRewards(
        address user,
        bool redeemInterest,
        bool redeemRewards
    ) external returns (uint256 interestOut, uint256[] memory rewardsOut);

    function rewardIndexesCurrent() external returns (uint256[] memory);

    function pyIndexCurrent() external returns (uint256);

    function pyIndexStored() external view returns (uint256);

    function getRewardTokens() external view returns (address[] memory);

    function SY() external view returns (address);

    function PT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);

    function doCacheIndexSameBlock() external view returns (bool);
}

File 32 of 35 : IRewardManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IRewardManager {
    function userReward(address token, address user)
        external
        view
        returns (uint128 index, uint128 accrued);
}

File 33 of 35 : MarketApproxLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../core/libraries/math/Math.sol";
import "../../core/Market/MarketMathCore.sol";

struct ApproxParams {
    uint256 guessMin;
    uint256 guessMax;
    uint256 guessOffchain; // pass 0 in to skip this variable
    uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2
    uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set
    // to 1e15 (1e18/1000 = 0.1%)

    /// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out,
    /// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula
    /// To approx, the 5 values above will have to be provided, and the approx process will run as follows:
    /// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out
    /// netSyNeed = calcSwapSyForExactPt(mid)
    /// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn
    /// else guessMin = mid (1)
    /// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of
    /// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result

    /// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result
    /// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the
    /// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases
    /// except in cases that there is a trade in the same market right before the tx
}

library MarketApproxPtInLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using Math for uint256;
    using Math for int256;
    using LogExpMath for int256;

    struct ApproxParamsPtIn {
        uint256 guessMin;
        uint256 guessMax;
        uint256 guessOffchain;
        uint256 maxIteration;
        uint256 eps;
        //
        uint256 biggestGoodGuess;
    }

    struct Args1 {
        MarketState market;
        PYIndex index;
        uint256 minSyOut;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap in
        - Try swapping & get netSyOut
        - Stop when netSyOut greater & approx minSyOut
        - guess & approx is for netPtIn
     */
    function approxSwapPtForExactSy(
        MarketState memory _market,
        PYIndex _index,
        uint256 _minSyOut,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netPtIn*/
            uint256, /*netSyOut*/
            uint256 /*netSyFee*/
        )
    {
        Args1 memory a = Args1(_market, _index, _minSyOut, _blockTime);
        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        ApproxParamsPtIn memory p = newApproxParamsPtIn(_approx, 0, calcMaxPtIn(comp.totalAsset));

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            (bool isGoodSlope, uint256 guess) = nextGuess(p, comp, a.market.totalPt, iter);
            if (!isGoodSlope) {
                p.guessMax = guess;
                continue;
            }

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(a.market, comp, a.index, guess);

            if (netSyOut >= a.minSyOut) {
                p.guessMax = guess;
                bool isAnswerAccepted = Math.isAGreaterApproxB(netSyOut, a.minSyOut, p.eps);
                if (isAnswerAccepted) {
                    return (guess, netSyOut, netSyFee);
                }
            } else {
                p.guessMin = guess;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args2 {
        MarketState market;
        PYIndex index;
        uint256 exactSyIn;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap in
        - Flashswap the corresponding amount of SY out
        - Pair those amount with exactSyIn SY to tokenize into PT & YT
        - PT to repay the flashswap, YT transferred to user
        - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn
        - guess & approx is for netYtOut (also netPtIn)
     */
    function approxSwapExactSyForYt(
        MarketState memory _market,
        PYIndex _index,
        uint256 _exactSyIn,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netYtOut*/
            uint256 /*netSyFee*/
        )
    {
        Args2 memory a = Args2(_market, _index, _exactSyIn, _blockTime);
        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);

        // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan
        ApproxParamsPtIn memory p = newApproxParamsPtIn(
            _approx,
            a.index.syToAsset(a.exactSyIn),
            calcMaxPtIn(comp.totalAsset)
        );

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            (bool isGoodSlope, uint256 guess) = nextGuess(p, comp, a.market.totalPt, iter);
            if (!isGoodSlope) {
                p.guessMax = guess;
                continue;
            }

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(a.market, comp, a.index, guess);

            uint256 netSyToTokenizePt = a.index.assetToSyUp(guess);

            // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY
            uint256 netSyToPull = netSyToTokenizePt - netSyOut;

            if (netSyToPull <= a.exactSyIn) {
                p.guessMin = guess;
                bool isAnswerAccepted = Math.isASmallerApproxB(netSyToPull, a.exactSyIn, p.eps);
                if (isAnswerAccepted) return (guess, netSyFee);
            } else {
                p.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args6 {
        MarketState market;
        PYIndex index;
        uint256 totalPtIn;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap to SY
        - Swap PT to SY
        - Pair the remaining PT with the SY to add liquidity
        - Stop when the ratio of PT / totalPt & SY / totalSy is approx
        - guess & approx is for netPtSwap
     */
    function approxSwapPtToAddLiquidity(
        MarketState memory _market,
        PYIndex _index,
        uint256 _totalPtIn,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netPtSwap*/
            uint256, /*netSyFromSwap*/
            uint256 /*netSyFee*/
        )
    {
        Args6 memory a = Args6(_market, _index, _totalPtIn, _blockTime);
        require(a.market.totalLp != 0, "no existing lp");

        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        ApproxParamsPtIn memory p = newApproxParamsPtIn(
            _approx,
            0,
            Math.min(a.totalPtIn, calcMaxPtIn(comp.totalAsset))
        );

        p.guessMax = Math.min(p.guessMax, a.totalPtIn);

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            (bool isGoodSlope, uint256 guess) = nextGuess(p, comp, a.market.totalPt, iter);

            if (!isGoodSlope) {
                p.guessMax = guess;
                continue;
            }

            (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) = calcSyOut(
                a.market,
                comp,
                a.index,
                guess
            );

            uint256 syNumerator;
            uint256 ptNumerator;
            {
                uint256 newTotalPt = a.market.totalPt.Uint() + guess;
                uint256 newTotalSy = (a.market.totalSy.Uint() - netSyOut - netSyToReserve);

                // it is desired that
                // netSyOut / newTotalSy = netPtRemaining / newTotalPt
                // which is equivalent to
                // netSyOut * newTotalPt = netPtRemaining * newTotalSy

                syNumerator = netSyOut * newTotalPt;
                ptNumerator = (a.totalPtIn - guess) * newTotalSy;
            }

            if (Math.isAApproxB(syNumerator, ptNumerator, p.eps)) {
                return (guess, netSyOut, netSyFee);
            }

            if (syNumerator <= ptNumerator) {
                // needs more SY --> swap more PT
                p.guessMin = guess + 1;
            } else {
                // needs less SY --> swap less PT
                p.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args7 {
        MarketState market;
        PYIndex index;
        uint256 exactPtIn;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap to SY
        - Flashswap the corresponding amount of SY out
        - Tokenize all the SY into PT + YT
        - PT to repay the flashswap, YT transferred to user
        - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn
        - guess & approx is for totalPtToSwap
     */
    function approxSwapExactPtForYt(
        MarketState memory _market,
        PYIndex _index,
        uint256 _exactPtIn,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netYtOut*/
            uint256, /*totalPtToSwap*/
            uint256 /*netSyFee*/
        )
    {
        Args7 memory a = Args7(_market, _index, _exactPtIn, _blockTime);

        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        ApproxParamsPtIn memory p = newApproxParamsPtIn(
            _approx,
            a.exactPtIn,
            calcMaxPtIn(comp.totalAsset)
        );

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            (bool isGoodSlope, uint256 guess) = nextGuess(p, comp, a.market.totalPt, iter);

            if (!isGoodSlope) {
                p.guessMax = guess;
                continue;
            }

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(a.market, comp, a.index, guess);

            uint256 netAssetOut = a.index.syToAsset(netSyOut);

            // guess >= netAssetOut since we are swapping PT to SY
            uint256 netPtToPull = guess - netAssetOut;

            if (netPtToPull <= a.exactPtIn) {
                p.guessMin = guess;
                if (Math.isASmallerApproxB(netPtToPull, a.exactPtIn, p.eps)) {
                    return (netAssetOut, guess, netSyFee);
                }
            } else {
                p.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyOut(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtIn
    )
        internal
        pure
        returns (
            uint256 netSyOut,
            uint256 netSyFee,
            uint256 netSyToReserve
        )
    {
        (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(
            comp,
            index,
            netPtIn.neg()
        );
        netSyOut = _netSyOut.Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    function newApproxParamsPtIn(
        ApproxParams memory _approx,
        uint256 minGuessMin,
        uint256 maxGuessMax
    ) internal pure returns (ApproxParamsPtIn memory res) {
        res.guessMin = Math.max(_approx.guessMin, minGuessMin);
        res.guessMax = Math.min(_approx.guessMax, maxGuessMax);

        if (res.guessMin > res.guessMax || _approx.eps > Math.ONE)
            revert Errors.ApproxParamsInvalid(_approx.guessMin, _approx.guessMax, _approx.eps);

        res.guessOffchain = _approx.guessOffchain;
        res.maxIteration = _approx.maxIteration;
        res.eps = _approx.eps;
    }

    function calcMaxPtIn(int256 totalAsset) internal pure returns (uint256) {
        return totalAsset.Uint() - 1;
    }

    function nextGuess(
        ApproxParamsPtIn memory p,
        MarketPreCompute memory comp,
        int256 totalPt,
        uint256 iter
    ) internal pure returns (bool, uint256) {
        uint256 guess = _nextGuessPrivate(p, iter);
        if (guess <= p.biggestGoodGuess) return (true, guess);

        int256 slope = calcSlope(comp, totalPt, guess.Int());
        if (slope < 0) return (false, guess);

        p.biggestGoodGuess = guess;
        return (true, guess);
    }

    /**
     * @dev it is safe to assume that p.guessMin <= p.guessMax from the initialization of p
     * So once guessMin becomes larger, it should always be the case of ApproxFail
     */
    function _nextGuessPrivate(ApproxParamsPtIn memory p, uint256 iter)
        private
        pure
        returns (uint256)
    {
        if (iter == 0 && p.guessOffchain != 0) return p.guessOffchain;
        if (p.guessMin <= p.guessMax) return (p.guessMin + p.guessMax) / 2;
        revert Errors.ApproxFail();
    }

    function calcSlope(
        MarketPreCompute memory comp,
        int256 totalPt,
        int256 ptToMarket //
    ) internal pure returns (int256) {
        int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket;
        int256 sumPt = ptToMarket + totalPt; // probably can skip sumPt check

        require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket");

        int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(
            sumPt * diffAssetPtToMarket
        );

        int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln();
        int256 part3 = Math.IONE.divDown(comp.rateScalar);

        return comp.rateAnchor - (part1 - part2).mulDown(part3);
    }
}

library MarketApproxPtOutLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using Math for uint256;
    using Math for int256;
    using LogExpMath for int256;

    struct ApproxParamsPtOut {
        uint256 guessMin;
        uint256 guessMax;
        uint256 guessOffchain;
        uint256 maxIteration;
        uint256 eps;
    }

    struct Args4 {
        MarketState market;
        PYIndex index;
        uint256 exactSyIn;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Calculate the amount of SY needed
        - Stop when the netSyIn is smaller approx exactSyIn
        - guess & approx is for netSyIn
     */
    function approxSwapExactSyForPt(
        MarketState memory _market,
        PYIndex _index,
        uint256 _exactSyIn,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netPtOut*/
            uint256 /*netSyFee*/
        )
    {
        Args4 memory a = Args4(_market, _index, _exactSyIn, _blockTime);
        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        ApproxParamsPtOut memory p = newApproxParamsPtOut(
            _approx,
            0,
            calcMaxPtOut(comp, a.market.totalPt)
        );

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            uint256 guess = nextGuess(p, iter);

            (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(a.market, comp, a.index, guess);

            if (netSyIn <= a.exactSyIn) {
                p.guessMin = guess;
                bool isAnswerAccepted = Math.isASmallerApproxB(netSyIn, a.exactSyIn, p.eps);
                if (isAnswerAccepted) return (guess, netSyFee);
            } else {
                p.guessMax = guess - 1;
            }
        }

        revert Errors.ApproxFail();
    }

    struct Args5 {
        MarketState market;
        PYIndex index;
        uint256 minSyOut;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Flashswap that amount of PT & pair with YT to redeem SY
        - Use the SY to repay the flashswap debt and the remaining is transferred to user
        - Stop when the netSyOut is greater approx the minSyOut
        - guess & approx is for netSyOut
     */
    function approxSwapYtForExactSy(
        MarketState memory _market,
        PYIndex _index,
        uint256 _minSyOut,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netYtIn*/
            uint256, /*netSyOut*/
            uint256 /*netSyFee*/
        )
    {
        Args5 memory a = Args5(_market, _index, _minSyOut, _blockTime);
        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        ApproxParamsPtOut memory p = newApproxParamsPtOut(
            _approx,
            0,
            calcMaxPtOut(comp, a.market.totalPt)
        );

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            uint256 guess = nextGuess(p, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(a.market, comp, a.index, guess);

            uint256 netAssetToRepay = a.index.syToAssetUp(netSyOwed);
            uint256 netSyOut = a.index.assetToSy(guess - netAssetToRepay);

            if (netSyOut >= a.minSyOut) {
                p.guessMax = guess;
                if (Math.isAGreaterApproxB(netSyOut, a.minSyOut, p.eps)) {
                    return (guess, netSyOut, netSyFee);
                }
            } else {
                p.guessMin = guess + 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args6 {
        MarketState market;
        PYIndex index;
        uint256 totalSyIn;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Swap that amount of PT out
        - Pair the remaining PT with the SY to add liquidity
        - Stop when the ratio of PT / totalPt & SY / totalSy is approx
        - guess & approx is for netPtFromSwap
     */
    function approxSwapSyToAddLiquidity(
        MarketState memory _market,
        PYIndex _index,
        uint256 _totalSyIn,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netPtFromSwap*/
            uint256, /*netSySwap*/
            uint256 /*netSyFee*/
        )
    {
        Args6 memory a = Args6(_market, _index, _totalSyIn, _blockTime);
        require(a.market.totalLp != 0, "no existing lp");

        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        ApproxParamsPtOut memory p = newApproxParamsPtOut(
            _approx,
            0,
            calcMaxPtOut(comp, a.market.totalPt)
        );

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            uint256 guess = nextGuess(p, iter);

            (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(
                a.market,
                comp,
                a.index,
                guess
            );

            if (netSyIn > a.totalSyIn) {
                p.guessMax = guess - 1;
                continue;
            }

            uint256 syNumerator;
            uint256 ptNumerator;

            {
                uint256 newTotalPt = a.market.totalPt.Uint() - guess;
                uint256 netTotalSy = a.market.totalSy.Uint() + netSyIn - netSyToReserve;

                // it is desired that
                // netPtFromSwap / newTotalPt = netSyRemaining / netTotalSy
                // which is equivalent to
                // netPtFromSwap * netTotalSy = netSyRemaining * newTotalPt

                ptNumerator = guess * netTotalSy;
                syNumerator = (a.totalSyIn - netSyIn) * newTotalPt;
            }

            if (Math.isAApproxB(ptNumerator, syNumerator, p.eps)) {
                return (guess, netSyIn, netSyFee);
            }

            if (ptNumerator <= syNumerator) {
                // needs more PT
                p.guessMin = guess + 1;
            } else {
                // needs less PT
                p.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args8 {
        MarketState market;
        PYIndex index;
        uint256 exactYtIn;
        uint256 blockTime;
        uint256 maxSyPayable;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Flashswap that amount of PT out
        - Pair all the PT with the YT to redeem SY
        - Use the SY to repay the flashswap debt
        - Stop when the amount of SY owed is smaller approx the amount of SY to repay the flashswap
        - guess & approx is for netPtFromSwap
     */
    function approxSwapExactYtForPt(
        MarketState memory _market,
        PYIndex _index,
        uint256 _exactYtIn,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (
            uint256, /*netPtOut*/
            uint256, /*totalPtSwapped*/
            uint256 /*netSyFee*/
        )
    {
        Args8 memory a = Args8(
            _market,
            _index,
            _exactYtIn,
            _blockTime,
            _index.assetToSy(_exactYtIn)
        );
        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        ApproxParamsPtOut memory p = newApproxParamsPtOut(
            _approx,
            a.exactYtIn,
            calcMaxPtOut(comp, a.market.totalPt)
        );

        for (uint256 iter = 0; iter < p.maxIteration; ++iter) {
            uint256 guess = nextGuess(p, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(a.market, comp, a.index, guess);

            if (netSyOwed <= a.maxSyPayable) {
                p.guessMin = guess;

                if (Math.isASmallerApproxB(netSyOwed, a.maxSyPayable, p.eps)) {
                    return (guess - a.exactYtIn, guess, netSyFee);
                }
            } else {
                p.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyIn(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtOut
    )
        internal
        pure
        returns (
            uint256 netSyIn,
            uint256 netSyFee,
            uint256 netSyToReserve
        )
    {
        (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(
            comp,
            index,
            netPtOut.Int()
        );

        netSyIn = _netSyIn.abs();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    function newApproxParamsPtOut(
        ApproxParams memory _approx,
        uint256 minGuessMin,
        uint256 maxGuessMax
    ) internal pure returns (ApproxParamsPtOut memory res) {
        if (_approx.guessMin > _approx.guessMax || _approx.eps > Math.ONE)
            revert Errors.ApproxParamsInvalid(_approx.guessMin, _approx.guessMax, _approx.eps);

        res.guessMin = Math.max(_approx.guessMin, minGuessMin);
        res.guessMax = Math.min(_approx.guessMax, maxGuessMax);

        if (res.guessMin > res.guessMax)
            revert Errors.ApproxBinarySearchInputInvalid(
                _approx.guessMin,
                _approx.guessMax,
                minGuessMin,
                maxGuessMax
            );

        res.guessOffchain = _approx.guessOffchain;
        res.maxIteration = _approx.maxIteration;
        res.eps = _approx.eps;
    }

    function calcMaxPtOut(MarketPreCompute memory comp, int256 totalPt)
        internal
        pure
        returns (uint256)
    {
        int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp();
        int256 proportion = logitP.divDown(logitP + Math.IONE);
        int256 numerator = proportion.mulDown(totalPt + comp.totalAsset);
        int256 maxPtOut = totalPt - numerator;
        // only get 99.9% of the theoretical max to accommodate some precision issues
        return (maxPtOut.Uint() * 999) / 1000;
    }

    /**
     * @dev it is safe to assume that p.guessMin <= p.guessMax from the initialization of p
     * So once guessMin becomes larger, it should always be the case of ApproxFail
     */
    function nextGuess(ApproxParamsPtOut memory p, uint256 iter) private pure returns (uint256) {
        if (iter == 0 && p.guessOffchain != 0) return p.guessOffchain;
        if (p.guessMin <= p.guessMax) return (p.guessMin + p.guessMax) / 2;
        revert Errors.ApproxFail();
    }
}

File 34 of 35 : IAggregatorRouterHelper.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity 0.8.17;

interface IAggregationRouterHelper {
    function getScaledInputData(bytes calldata kybercall, uint256 newAmount)
        external
        pure
        returns (bytes memory);
}

File 35 of 35 : KyberSwapHelper.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */

pragma solidity 0.8.17;

import "@openzeppelin/contracts/utils/Address.sol";
import "../../core/libraries/TokenHelper.sol";
import "./IAggregatorRouterHelper.sol";
import "../../core/libraries/Errors.sol";

struct TokenInput {
    // Token/Sy data
    address tokenIn;
    uint256 netTokenIn;
    address tokenMintSy;
    address bulk;
    // Kyber data
    address kyberRouter;
    bytes kybercall;
}

struct TokenOutput {
    // Token/Sy data
    address tokenOut;
    uint256 minTokenOut;
    address tokenRedeemSy;
    address bulk;
    // Kyber data
    address kyberRouter;
    bytes kybercall;
}

abstract contract KyberSwapHelper is TokenHelper {
    using Address for address;

    address public immutable kyberScalingLib;

    constructor(address _kyberScalingLib) {
        kyberScalingLib = _kyberScalingLib;
    }

    function _kyberswap(
        address tokenIn,
        uint256 amountIn,
        address kyberRouter,
        bytes memory rawKybercall
    ) internal {
        if (kyberRouter == address(0) || rawKybercall.length == 0)
            revert Errors.RouterKyberSwapDataZero();

        _safeApproveInf(tokenIn, kyberRouter);

        bytes memory kybercall = IAggregationRouterHelper(kyberScalingLib).getScaledInputData(
            rawKybercall,
            amountIn
        );
        kyberRouter.functionCallWithValue(kybercall, tokenIn == NATIVE ? amountIn : 0);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 90000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_ACTION_MINT_REDEEM","type":"address"},{"internalType":"address","name":"_ACTION_ADD_REMOVE_LIQ","type":"address"},{"internalType":"address","name":"_ACTION_SWAP_PT","type":"address"},{"internalType":"address","name":"_ACTION_SWAP_YT","type":"address"},{"internalType":"address","name":"_ACTION_SWAP_PTYT","type":"address"},{"internalType":"address","name":"_ACTION_CALLBACK","type":"address"},{"internalType":"address","name":"_ACTION_MISC","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"RouterInvalidAction","type":"error"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"ACTION_ADD_REMOVE_LIQ","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ACTION_CALLBACK","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ACTION_MINT_REDEEM","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ACTION_MISC","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ACTION_SWAP_PT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ACTION_SWAP_PTYT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ACTION_SWAP_YT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"sig","type":"bytes4"}],"name":"getRouterImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

6101606040523480156200001257600080fd5b506040516200104b3803806200104b833981016040819052620000359162000089565b6001600160a01b0396871660805294861660a05292851660c05290841660e05283166101005282166101205216610140526200011e565b80516001600160a01b03811681146200008457600080fd5b919050565b600080600080600080600060e0888a031215620000a557600080fd5b620000b0886200006c565b9650620000c0602089016200006c565b9550620000d0604089016200006c565b9450620000e0606089016200006c565b9350620000f0608089016200006c565b92506200010060a089016200006c565b91506200011060c089016200006c565b905092959891949750929550565b60805160a05160c05160e051610100516101205161014051610ea3620001a8600039600081816101870152610d4e0152600081816101ef0152610cde0152600081816101bb0152610c6e01526000818160a20152610bb101526000818160ff01526109c401526000818161013301526107d701526000818161022301526104ba0152610ea36000f3fe60806040526004361061007f5760003560e01c80637c868aa11161004e5780637c868aa11461017557806386df0976146101a9578063a25228c9146101dd578063b06cc6b01461021157610086565b806305b91e121461009057806306ddc9a6146100ed578063552407d21461012157806376e1df481461015557610086565b3661008657005b61008e610245565b005b34801561009c57600080fd5b506100c47f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200160405180910390f35b3480156100f957600080fd5b506100c47f000000000000000000000000000000000000000000000000000000000000000081565b34801561012d57600080fd5b506100c47f000000000000000000000000000000000000000000000000000000000000000081565b34801561016157600080fd5b506100c4610170366004610e24565b610257565b34801561018157600080fd5b506100c47f000000000000000000000000000000000000000000000000000000000000000081565b3480156101b557600080fd5b506100c47f000000000000000000000000000000000000000000000000000000000000000081565b3480156101e957600080fd5b506100c47f000000000000000000000000000000000000000000000000000000000000000081565b34801561021d57600080fd5b506100c47f000000000000000000000000000000000000000000000000000000000000000081565b610255610250610dcc565b610e00565b565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f46fd07b10000000000000000000000000000000000000000000000000000000014806102ea57507fffffffff0000000000000000000000000000000000000000000000000000000082167fb6fece9800000000000000000000000000000000000000000000000000000000145b8061033657507fffffffff0000000000000000000000000000000000000000000000000000000082167f7298779b00000000000000000000000000000000000000000000000000000000145b8061038257507fffffffff0000000000000000000000000000000000000000000000000000000082167f59be67bf00000000000000000000000000000000000000000000000000000000145b806103ce57507fffffffff0000000000000000000000000000000000000000000000000000000082167f1a8631b200000000000000000000000000000000000000000000000000000000145b8061041a57507fffffffff0000000000000000000000000000000000000000000000000000000082167f339748cb00000000000000000000000000000000000000000000000000000000145b8061046657507fffffffff0000000000000000000000000000000000000000000000000000000082167ff7e375e800000000000000000000000000000000000000000000000000000000145b806104b257507fffffffff0000000000000000000000000000000000000000000000000000000082167f5b8c874f00000000000000000000000000000000000000000000000000000000145b156104de57507f0000000000000000000000000000000000000000000000000000000000000000919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167f97ee279e00000000000000000000000000000000000000000000000000000000148061056f57507fffffffff0000000000000000000000000000000000000000000000000000000082167f67c2a9a800000000000000000000000000000000000000000000000000000000145b806105bb57507fffffffff0000000000000000000000000000000000000000000000000000000082167f3af1f32900000000000000000000000000000000000000000000000000000000145b8061060757507fffffffff0000000000000000000000000000000000000000000000000000000082167f409c7a8900000000000000000000000000000000000000000000000000000000145b8061065357507fffffffff0000000000000000000000000000000000000000000000000000000082167f5b67cdad00000000000000000000000000000000000000000000000000000000145b8061069f57507fffffffff0000000000000000000000000000000000000000000000000000000082167fb7d75b8b00000000000000000000000000000000000000000000000000000000145b806106eb57507fffffffff0000000000000000000000000000000000000000000000000000000082167fa45c302200000000000000000000000000000000000000000000000000000000145b8061073757507fffffffff0000000000000000000000000000000000000000000000000000000082167f694ab55900000000000000000000000000000000000000000000000000000000145b8061078357507fffffffff0000000000000000000000000000000000000000000000000000000082167f178d29d300000000000000000000000000000000000000000000000000000000145b806107cf57507fffffffff0000000000000000000000000000000000000000000000000000000082167f942244eb00000000000000000000000000000000000000000000000000000000145b156107fb57507f0000000000000000000000000000000000000000000000000000000000000000919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167f2032aecd00000000000000000000000000000000000000000000000000000000148061088c57507fffffffff0000000000000000000000000000000000000000000000000000000082167fdd371acd00000000000000000000000000000000000000000000000000000000145b806108d857507fffffffff0000000000000000000000000000000000000000000000000000000082167f6b8bdf3200000000000000000000000000000000000000000000000000000000145b8061092457507fffffffff0000000000000000000000000000000000000000000000000000000082167f83c71b6900000000000000000000000000000000000000000000000000000000145b8061097057507fffffffff0000000000000000000000000000000000000000000000000000000082167f1b7077d500000000000000000000000000000000000000000000000000000000145b806109bc57507fffffffff0000000000000000000000000000000000000000000000000000000082167fb3ad2faa00000000000000000000000000000000000000000000000000000000145b156109e857507f0000000000000000000000000000000000000000000000000000000000000000919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167f357d6540000000000000000000000000000000000000000000000000000000001480610a7957507fffffffff0000000000000000000000000000000000000000000000000000000082167fbf1bd43400000000000000000000000000000000000000000000000000000000145b80610ac557507fffffffff0000000000000000000000000000000000000000000000000000000082167ffdd71f4300000000000000000000000000000000000000000000000000000000145b80610b1157507fffffffff0000000000000000000000000000000000000000000000000000000082167fa000aaa900000000000000000000000000000000000000000000000000000000145b80610b5d57507fffffffff0000000000000000000000000000000000000000000000000000000082167fabbc79d000000000000000000000000000000000000000000000000000000000145b80610ba957507fffffffff0000000000000000000000000000000000000000000000000000000082167fe15cc09800000000000000000000000000000000000000000000000000000000145b15610bd557507f0000000000000000000000000000000000000000000000000000000000000000919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167fc861a898000000000000000000000000000000000000000000000000000000001480610c6657507fffffffff0000000000000000000000000000000000000000000000000000000082167f448b9b9500000000000000000000000000000000000000000000000000000000145b15610c9257507f0000000000000000000000000000000000000000000000000000000000000000919050565b7f05b7c18e000000000000000000000000000000000000000000000000000000007fffffffff00000000000000000000000000000000000000000000000000000000831601610d0257507f0000000000000000000000000000000000000000000000000000000000000000919050565b7f7dbecb77000000000000000000000000000000000000000000000000000000007fffffffff00000000000000000000000000000000000000000000000000000000831601610d7257507f0000000000000000000000000000000000000000000000000000000000000000919050565b6040517fd5acfbc20000000000000000000000000000000000000000000000000000000081527fffffffff000000000000000000000000000000000000000000000000000000008316600482015260240160405180910390fd5b6000610dfb6000357fffffffff0000000000000000000000000000000000000000000000000000000016610257565b905090565b3660008037600080366000845af43d6000803e808015610e1f573d6000f35b3d6000fd5b600060208284031215610e3657600080fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114610e6657600080fd5b939250505056fea2646970667358221220e579fb1f506c33a3e65f8032a37468261b93b4ec152d398f5f446559bba5f54164736f6c634300081100330000000000000000000000004dba367d0f05bcd6a405f3d90c4c4fd93e1853690000000000000000000000003bbacda010e7f4347e54f2bf0f42ff30b5a897da0000000000000000000000006c0df4896b4b57dcc6d121aa4fd8569b4451bf5000000000000000000000000041d81daf401a0aa7422a769243fa933f351a0d640000000000000000000000005f438e5d032fd933fca63335a8097b466241c3b700000000000000000000000009f4acb1023fe06e0f7a2f8f1ae9ae2c011c3d07000000000000000000000000fc49c4fec5306c73cd21661f9b2fe4b14f94065c

Deployed Bytecode

0x60806040526004361061007f5760003560e01c80637c868aa11161004e5780637c868aa11461017557806386df0976146101a9578063a25228c9146101dd578063b06cc6b01461021157610086565b806305b91e121461009057806306ddc9a6146100ed578063552407d21461012157806376e1df481461015557610086565b3661008657005b61008e610245565b005b34801561009c57600080fd5b506100c47f00000000000000000000000041d81daf401a0aa7422a769243fa933f351a0d6481565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200160405180910390f35b3480156100f957600080fd5b506100c47f0000000000000000000000006c0df4896b4b57dcc6d121aa4fd8569b4451bf5081565b34801561012d57600080fd5b506100c47f0000000000000000000000003bbacda010e7f4347e54f2bf0f42ff30b5a897da81565b34801561016157600080fd5b506100c4610170366004610e24565b610257565b34801561018157600080fd5b506100c47f000000000000000000000000fc49c4fec5306c73cd21661f9b2fe4b14f94065c81565b3480156101b557600080fd5b506100c47f0000000000000000000000005f438e5d032fd933fca63335a8097b466241c3b781565b3480156101e957600080fd5b506100c47f00000000000000000000000009f4acb1023fe06e0f7a2f8f1ae9ae2c011c3d0781565b34801561021d57600080fd5b506100c47f0000000000000000000000004dba367d0f05bcd6a405f3d90c4c4fd93e18536981565b610255610250610dcc565b610e00565b565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f46fd07b10000000000000000000000000000000000000000000000000000000014806102ea57507fffffffff0000000000000000000000000000000000000000000000000000000082167fb6fece9800000000000000000000000000000000000000000000000000000000145b8061033657507fffffffff0000000000000000000000000000000000000000000000000000000082167f7298779b00000000000000000000000000000000000000000000000000000000145b8061038257507fffffffff0000000000000000000000000000000000000000000000000000000082167f59be67bf00000000000000000000000000000000000000000000000000000000145b806103ce57507fffffffff0000000000000000000000000000000000000000000000000000000082167f1a8631b200000000000000000000000000000000000000000000000000000000145b8061041a57507fffffffff0000000000000000000000000000000000000000000000000000000082167f339748cb00000000000000000000000000000000000000000000000000000000145b8061046657507fffffffff0000000000000000000000000000000000000000000000000000000082167ff7e375e800000000000000000000000000000000000000000000000000000000145b806104b257507fffffffff0000000000000000000000000000000000000000000000000000000082167f5b8c874f00000000000000000000000000000000000000000000000000000000145b156104de57507f0000000000000000000000004dba367d0f05bcd6a405f3d90c4c4fd93e185369919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167f97ee279e00000000000000000000000000000000000000000000000000000000148061056f57507fffffffff0000000000000000000000000000000000000000000000000000000082167f67c2a9a800000000000000000000000000000000000000000000000000000000145b806105bb57507fffffffff0000000000000000000000000000000000000000000000000000000082167f3af1f32900000000000000000000000000000000000000000000000000000000145b8061060757507fffffffff0000000000000000000000000000000000000000000000000000000082167f409c7a8900000000000000000000000000000000000000000000000000000000145b8061065357507fffffffff0000000000000000000000000000000000000000000000000000000082167f5b67cdad00000000000000000000000000000000000000000000000000000000145b8061069f57507fffffffff0000000000000000000000000000000000000000000000000000000082167fb7d75b8b00000000000000000000000000000000000000000000000000000000145b806106eb57507fffffffff0000000000000000000000000000000000000000000000000000000082167fa45c302200000000000000000000000000000000000000000000000000000000145b8061073757507fffffffff0000000000000000000000000000000000000000000000000000000082167f694ab55900000000000000000000000000000000000000000000000000000000145b8061078357507fffffffff0000000000000000000000000000000000000000000000000000000082167f178d29d300000000000000000000000000000000000000000000000000000000145b806107cf57507fffffffff0000000000000000000000000000000000000000000000000000000082167f942244eb00000000000000000000000000000000000000000000000000000000145b156107fb57507f0000000000000000000000003bbacda010e7f4347e54f2bf0f42ff30b5a897da919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167f2032aecd00000000000000000000000000000000000000000000000000000000148061088c57507fffffffff0000000000000000000000000000000000000000000000000000000082167fdd371acd00000000000000000000000000000000000000000000000000000000145b806108d857507fffffffff0000000000000000000000000000000000000000000000000000000082167f6b8bdf3200000000000000000000000000000000000000000000000000000000145b8061092457507fffffffff0000000000000000000000000000000000000000000000000000000082167f83c71b6900000000000000000000000000000000000000000000000000000000145b8061097057507fffffffff0000000000000000000000000000000000000000000000000000000082167f1b7077d500000000000000000000000000000000000000000000000000000000145b806109bc57507fffffffff0000000000000000000000000000000000000000000000000000000082167fb3ad2faa00000000000000000000000000000000000000000000000000000000145b156109e857507f0000000000000000000000006c0df4896b4b57dcc6d121aa4fd8569b4451bf50919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167f357d6540000000000000000000000000000000000000000000000000000000001480610a7957507fffffffff0000000000000000000000000000000000000000000000000000000082167fbf1bd43400000000000000000000000000000000000000000000000000000000145b80610ac557507fffffffff0000000000000000000000000000000000000000000000000000000082167ffdd71f4300000000000000000000000000000000000000000000000000000000145b80610b1157507fffffffff0000000000000000000000000000000000000000000000000000000082167fa000aaa900000000000000000000000000000000000000000000000000000000145b80610b5d57507fffffffff0000000000000000000000000000000000000000000000000000000082167fabbc79d000000000000000000000000000000000000000000000000000000000145b80610ba957507fffffffff0000000000000000000000000000000000000000000000000000000082167fe15cc09800000000000000000000000000000000000000000000000000000000145b15610bd557507f00000000000000000000000041d81daf401a0aa7422a769243fa933f351a0d64919050565b7fffffffff0000000000000000000000000000000000000000000000000000000082167fc861a898000000000000000000000000000000000000000000000000000000001480610c6657507fffffffff0000000000000000000000000000000000000000000000000000000082167f448b9b9500000000000000000000000000000000000000000000000000000000145b15610c9257507f0000000000000000000000005f438e5d032fd933fca63335a8097b466241c3b7919050565b7f05b7c18e000000000000000000000000000000000000000000000000000000007fffffffff00000000000000000000000000000000000000000000000000000000831601610d0257507f00000000000000000000000009f4acb1023fe06e0f7a2f8f1ae9ae2c011c3d07919050565b7f7dbecb77000000000000000000000000000000000000000000000000000000007fffffffff00000000000000000000000000000000000000000000000000000000831601610d7257507f000000000000000000000000fc49c4fec5306c73cd21661f9b2fe4b14f94065c919050565b6040517fd5acfbc20000000000000000000000000000000000000000000000000000000081527fffffffff000000000000000000000000000000000000000000000000000000008316600482015260240160405180910390fd5b6000610dfb6000357fffffffff0000000000000000000000000000000000000000000000000000000016610257565b905090565b3660008037600080366000845af43d6000803e808015610e1f573d6000f35b3d6000fd5b600060208284031215610e3657600080fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114610e6657600080fd5b939250505056fea2646970667358221220e579fb1f506c33a3e65f8032a37468261b93b4ec152d398f5f446559bba5f54164736f6c63430008110033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000004dba367d0f05bcd6a405f3d90c4c4fd93e1853690000000000000000000000003bbacda010e7f4347e54f2bf0f42ff30b5a897da0000000000000000000000006c0df4896b4b57dcc6d121aa4fd8569b4451bf5000000000000000000000000041d81daf401a0aa7422a769243fa933f351a0d640000000000000000000000005f438e5d032fd933fca63335a8097b466241c3b700000000000000000000000009f4acb1023fe06e0f7a2f8f1ae9ae2c011c3d07000000000000000000000000fc49c4fec5306c73cd21661f9b2fe4b14f94065c

-----Decoded View---------------
Arg [0] : _ACTION_MINT_REDEEM (address): 0x4DbA367D0f05BCD6A405F3d90c4C4fD93E185369
Arg [1] : _ACTION_ADD_REMOVE_LIQ (address): 0x3bBaCDa010e7F4347E54f2bf0f42FF30B5A897Da
Arg [2] : _ACTION_SWAP_PT (address): 0x6C0Df4896B4B57dcc6d121Aa4fD8569B4451Bf50
Arg [3] : _ACTION_SWAP_YT (address): 0x41D81Daf401a0AA7422a769243fa933f351a0D64
Arg [4] : _ACTION_SWAP_PTYT (address): 0x5f438e5d032Fd933fCa63335A8097B466241C3b7
Arg [5] : _ACTION_CALLBACK (address): 0x09F4ACB1023Fe06e0F7A2f8F1ae9Ae2c011C3D07
Arg [6] : _ACTION_MISC (address): 0xFc49c4fEC5306c73Cd21661f9B2fe4B14f94065c

-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 0000000000000000000000004dba367d0f05bcd6a405f3d90c4c4fd93e185369
Arg [1] : 0000000000000000000000003bbacda010e7f4347e54f2bf0f42ff30b5a897da
Arg [2] : 0000000000000000000000006c0df4896b4b57dcc6d121aa4fd8569b4451bf50
Arg [3] : 00000000000000000000000041d81daf401a0aa7422a769243fa933f351a0d64
Arg [4] : 0000000000000000000000005f438e5d032fd933fca63335a8097b466241c3b7
Arg [5] : 00000000000000000000000009f4acb1023fe06e0f7a2f8f1ae9ae2c011c3d07
Arg [6] : 000000000000000000000000fc49c4fec5306c73cd21661f9b2fe4b14f94065c


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.