Overview
ETH Balance
0 ETH
Eth Value
$0.00Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x3d602d80 | 23989333 | 8 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989282 | 18 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989255 | 24 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989247 | 25 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989243 | 26 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989234 | 28 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989225 | 30 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989215 | 32 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989196 | 36 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989184 | 38 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989184 | 38 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989171 | 41 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989170 | 41 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989157 | 44 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989152 | 45 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989141 | 47 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989140 | 47 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989139 | 47 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989127 | 50 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989087 | 58 mins ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989080 | 1 hr ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989067 | 1 hr ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989058 | 1 hr ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989046 | 1 hr ago | Contract Creation | 0 ETH | |||
| 0x3d602d80 | 23989036 | 1 hr ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
ATPFactoryNonces
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Clones} from "@oz/proxy/Clones.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {IATPFactory, ATPFactory} from "./ATPFactory.sol";
import {ILATP, RevokableParams} from "./atps/linear/ILATP.sol";
import {LATP} from "./atps/linear/LATP.sol";
import {IMATP, MilestoneId} from "./atps/milestone/IMATP.sol";
import {MATP} from "./atps/milestone/MATP.sol";
import {INCATP} from "./atps/noclaim/INCATP.sol";
import {NCATP} from "./atps/noclaim/NCATP.sol";
import {Nonces} from "./Nonces.sol";
interface IATPFactoryNonces is IATPFactory {
function predictLATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view returns (address);
function predictNCATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view returns (address);
function predictMATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
MilestoneId _milestoneId,
uint256 _nonce
) external view returns (address);
}
contract ATPFactoryNonces is IATPFactoryNonces, ATPFactory, Nonces {
using SafeERC20 for IERC20;
constructor(address __owner, IERC20 _token, uint256 _unlockCliffDuration, uint256 _unlockLockDuration)
ATPFactory(__owner, _token, _unlockCliffDuration, _unlockLockDuration)
{}
/**
* @notice Predict the address of an LATP
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
*
* @return The address of the LATP
*/
function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
override(IATPFactory, ATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = nonces(salt);
salt = keccak256(abi.encode(salt, nonce));
return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Predict the address of an LATP with a given nonce
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
* @param _nonce The nonce to use for the prediction
*
* @return The address of the LATP
*/
function predictLATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view override(IATPFactoryNonces) returns (address) {
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
salt = keccak256(abi.encode(salt, _nonce));
return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
}
/// @inheritdoc IATPFactory
function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
override(IATPFactory, ATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = nonces(salt);
salt = keccak256(abi.encode(salt, nonce));
return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Predict the address of an NCATP with a given nonce
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the NCATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the NCATP is revokable
* @param _nonce The nonce to use for the prediction
*
* @return The address of the NCATP
*/
function predictNCATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
RevokableParams memory _revokableParams,
uint256 _nonce
) external view override(IATPFactoryNonces) returns (address) {
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
salt = keccak256(abi.encode(salt, _nonce));
return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
}
/// @inheritdoc IATPFactory
function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
view
virtual
override(IATPFactory, ATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
uint256 nonce = nonces(salt);
salt = keccak256(abi.encode(salt, nonce));
return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
}
function predictMATPAddressWithNonce(
address _beneficiary,
uint256 _allocation,
MilestoneId _milestoneId,
uint256 _nonce
) external view override(IATPFactoryNonces) returns (address) {
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
salt = keccak256(abi.encode(salt, _nonce));
return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Create and funds a new LATP
* The LATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the LATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock, if the LATP is revokable
*
* @return The LATP
*/
function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
override(IATPFactory, ATPFactory)
onlyMinter
returns (ILATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = useNonce(salt);
salt = keccak256(abi.encode(salt, nonce));
LATP atp = LATP(Clones.cloneDeterministic(address(LATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return ILATP(address(atp));
}
/**
* @notice Create and funds a new NCATP (Non-Claimable ATP)
* The NCATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the NCATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the NCATP
* @param _revokableParams The parameters for the accumulation lock, if the NCATP is revokable
*
* @return The NCATP
*/
function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
override(IATPFactory, ATPFactory)
onlyMinter
returns (INCATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
uint256 nonce = useNonce(salt);
salt = keccak256(abi.encode(salt, nonce));
NCATP atp = NCATP(Clones.cloneDeterministic(address(NCATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return INCATP(address(atp));
}
/**
* @notice Create and funds a new MATP
* The MATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the MATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the MATP
* @param _milestoneId The milestone ID for the MATP
*
* @return The MATP
*/
function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
public
override(IATPFactory, ATPFactory)
onlyMinter
returns (IMATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
uint256 nonce = useNonce(salt);
salt = keccak256(abi.encode(salt, nonce));
MATP atp = MATP(Clones.cloneDeterministic(address(MATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _milestoneId);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return IMATP(address(atp));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/Clones.sol)
pragma solidity ^0.8.20;
import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
error CloneArgumentsTooLong();
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
return clone(implementation, 0);
}
/**
* @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
* to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function clone(address implementation, uint256 value) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(value, 0x09, 0x37)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple times will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
return cloneDeterministic(implementation, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
* a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministic(
address implementation,
bytes32 salt,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(value, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create opcode, which should never revert.
*/
function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
return cloneWithImmutableArgs(implementation, args, 0);
}
/**
* @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
* parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneWithImmutableArgs(
address implementation,
bytes memory args,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
assembly ("memory-safe") {
instance := create(value, add(bytecode, 0x20), mload(bytecode))
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
* `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
* at the same address.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal returns (address instance) {
return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
* but with a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
uint256 value
) internal returns (address instance) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.deploy(value, salt, bytecode);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.computeAddress(salt, keccak256(bytecode), deployer);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
}
/**
* @dev Get the immutable args attached to a clone.
*
* - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
* function will return an empty array.
* - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
* `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
* creation.
* - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
* function should only be used to check addresses that are known to be clones.
*/
function fetchCloneArgs(address instance) internal view returns (bytes memory) {
bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
assembly ("memory-safe") {
extcodecopy(instance, add(result, 32), 45, mload(result))
}
return result;
}
/**
* @dev Helper that prepares the initcode of the proxy with immutable args.
*
* An assembly variant of this function requires copying the `args` array, which can be efficiently done using
* `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
* abi.encodePacked is more expensive but also more portable and easier to review.
*
* NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
* With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
*/
function _cloneCodeWithImmutableArgs(
address implementation,
bytes memory args
) private pure returns (bytes memory) {
if (args.length > 24531) revert CloneArgumentsTooLong();
return
abi.encodePacked(
hex"61",
uint16(args.length + 45),
hex"3d81600a3d39f3363d3d373d3d3d363d73",
implementation,
hex"5af43d82803e903d91602b57fd5bf3",
args
);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Ownable2Step, Ownable} from "@oz/access/Ownable2Step.sol";
import {Clones} from "@oz/proxy/Clones.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {ILATP, RevokableParams} from "./atps/linear/ILATP.sol";
import {IMATP, MilestoneId} from "./atps/milestone/IMATP.sol";
import {LATP} from "./atps/linear/LATP.sol";
import {MATP} from "./atps/milestone/MATP.sol";
import {INCATP} from "./atps/noclaim/INCATP.sol";
import {NCATP} from "./atps/noclaim/NCATP.sol";
import {Registry, IRegistry} from "./Registry.sol";
import {LATPFactory} from "./deployment-factories/LATPFactory.sol";
import {NCATPFactory} from "./deployment-factories/NCATPFactory.sol";
import {MATPFactory} from "./deployment-factories/MATPFactory.sol";
interface IATPFactory {
event ATPCreated(address indexed beneficiary, address indexed atp, uint256 allocation);
event MinterSet(address indexed minter, bool isMinter);
error InvalidInputLength();
error NotMinter();
function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
returns (ILATP);
function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
returns (INCATP);
function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId) external returns (IMATP);
function createLATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external returns (ILATP[] memory);
function createNCATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external returns (INCATP[] memory);
function createMATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
MilestoneId[] memory _milestoneIds
) external returns (IMATP[] memory);
function recoverTokens(address _token, address _to, uint256 _amount) external;
function setMinter(address _minter, bool _isMinter) external;
function getRegistry() external view returns (IRegistry);
function getToken() external view returns (IERC20);
function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
returns (address);
function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
returns (address);
function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
view
returns (address);
}
contract ATPFactory is Ownable2Step, IATPFactory {
using SafeERC20 for IERC20;
Registry internal immutable REGISTRY;
IERC20 internal immutable TOKEN;
LATP internal immutable LATP_IMPLEMENTATION;
NCATP internal immutable NCATP_IMPLEMENTATION;
MATP internal immutable MATP_IMPLEMENTATION;
mapping(address => bool) public minter;
modifier onlyMinter() {
require(minter[msg.sender], NotMinter());
_;
}
constructor(address __owner, IERC20 _token, uint256 _unlockCliffDuration, uint256 _unlockLockDuration)
Ownable(__owner)
{
REGISTRY = new Registry(__owner, _unlockCliffDuration, _unlockLockDuration);
TOKEN = _token;
LATP_IMPLEMENTATION = LATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
NCATP_IMPLEMENTATION = NCATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
MATP_IMPLEMENTATION = MATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
minter[__owner] = true;
emit MinterSet(__owner, true);
}
/**
* @notice Recover any token from the contract
*
* @dev The caller must be the `owner`
*
* @dev Does not support Ether as it is not an ERC20,
*
* @param _token The token to rescue
* @param _to The address to rescue the tokens to
* @param _amount The amount of tokens to rescue
*/
function recoverTokens(address _token, address _to, uint256 _amount) external override(IATPFactory) onlyOwner {
IERC20(_token).safeTransfer(_to, _amount);
}
/**
* @notice Set the minter status of an address
*
* @dev The caller must be the `owner`
*
* @param _minter The address to set the minter status of
* @param _isMinter The minter status to set
*/
function setMinter(address _minter, bool _isMinter) external override(IATPFactory) onlyOwner {
minter[_minter] = _isMinter;
emit MinterSet(_minter, _isMinter);
}
/**
* @notice Create and fund multiple LATPs
* Creates the LATPs using the `clones` library, initializes it and funds it.
*
* @dev The caller must be a minter
*
* @param _beneficiaries The addresses of the beneficiaries
* @param _allocations The amounts of tokens to allocate to the LATPs
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary,
* provide empty `LockParams` and `address(0)` as `revokeBeneficiary`
* if the LATP are not revokable
*
* @return The LATPs
*/
function createLATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external virtual override(IATPFactory) onlyMinter returns (ILATP[] memory) {
require(
_beneficiaries.length == _allocations.length && _beneficiaries.length == _revokableParams.length,
InvalidInputLength()
);
ILATP[] memory atps = new ILATP[](_beneficiaries.length);
for (uint256 i = 0; i < _beneficiaries.length; i++) {
atps[i] = createLATP(_beneficiaries[i], _allocations[i], _revokableParams[i]);
}
return atps;
}
/**
* @notice Create and fund multiple NCATPs
* Creates the NCATPs using the `clones` library, initializes it and funds it.
*
* @dev The caller must be a `minter`
*
* @param _beneficiaries The addresses of the beneficiaries
* @param _allocations The amounts of tokens to allocate to the NCATPs
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary,
* provide empty `LockParams` and `address(0)` as `revokeBeneficiary`
* if the NCATP are not revokable
*
* @return The NCATPs
*/
function createNCATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
RevokableParams[] memory _revokableParams
) external virtual override(IATPFactory) onlyMinter returns (INCATP[] memory) {
require(
_beneficiaries.length == _allocations.length && _beneficiaries.length == _revokableParams.length,
InvalidInputLength()
);
INCATP[] memory atps = new INCATP[](_beneficiaries.length);
for (uint256 i = 0; i < _beneficiaries.length; i++) {
atps[i] = createNCATP(_beneficiaries[i], _allocations[i], _revokableParams[i]);
}
return atps;
}
/**
* @notice Create and fund multiple MATPs
* Creates the MATPs using the `clones` library, initializes it and funds it.
*
* @dev The caller must be a `minter`
*
* @param _beneficiaries The addresses of the beneficiaries
* @param _allocations The amounts of tokens to allocate to the MATPs
* @param _milestoneIds The milestone IDs for the MATPs
*
* @return The MATPs
*/
function createMATPs(
address[] memory _beneficiaries,
uint256[] memory _allocations,
MilestoneId[] memory _milestoneIds
) external virtual override(IATPFactory) onlyMinter returns (IMATP[] memory) {
require(
_beneficiaries.length == _allocations.length && _beneficiaries.length == _milestoneIds.length,
InvalidInputLength()
);
IMATP[] memory atps = new IMATP[](_beneficiaries.length);
for (uint256 i = 0; i < _beneficiaries.length; i++) {
atps[i] = createMATP(_beneficiaries[i], _allocations[i], _milestoneIds[i]);
}
return atps;
}
/**
* @notice Get the registry
*
* @return The registry
*/
function getRegistry() external view override(IATPFactory) returns (IRegistry) {
return IRegistry(address(REGISTRY));
}
/**
* @notice Get the token
*
* @return The token
*/
function getToken() external view override(IATPFactory) returns (IERC20) {
return TOKEN;
}
/**
* @notice Predict the address of an LATP
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
*
* @return The address of the LATP
*/
function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
virtual
override(IATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
}
function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
view
virtual
override(IATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
}
function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
view
virtual
override(IATPFactory)
returns (address)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
}
/**
* @notice Create and funds a new LATP
* The LATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the LATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock, if the LATP is revokable
*
* @return The LATP
*/
function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
virtual
override(IATPFactory)
onlyMinter
returns (ILATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
LATP atp = LATP(Clones.cloneDeterministic(address(LATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return ILATP(address(atp));
}
/**
* @notice Create and funds a new NCATP (Non-Claimable ATP)
* The NCATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the NCATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the NCATP
* @param _revokableParams The parameters for the accumulation lock, if the NCATP is revokable
*
* @return The NCATP
*/
function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
public
virtual
override(IATPFactory)
onlyMinter
returns (INCATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
NCATP atp = NCATP(Clones.cloneDeterministic(address(NCATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _revokableParams);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return INCATP(address(atp));
}
/**
* @notice Create and funds a new MATP
* The MATP is created using the `Clones` library and then initialized.
* We deploy deterministically using the initialization params as the salt.
* When created, the MATP is funded with the `_allocation` amount of tokens.
*
* This setup is done to keep gas costs low.
*
* @dev The caller must be a `minter`
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the MATP
* @param _milestoneId The milestone ID for the MATP
*
* @return The MATP
*/
function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
public
virtual
override(IATPFactory)
onlyMinter
returns (IMATP)
{
bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
MATP atp = MATP(Clones.cloneDeterministic(address(MATP_IMPLEMENTATION), salt));
atp.initialize(_beneficiary, _allocation, _milestoneId);
TOKEN.safeTransfer(address(atp), _allocation);
emit ATPCreated(_beneficiary, address(atp), _allocation);
return IMATP(address(atp));
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Lock, LockParams} from "./../../libraries/LockLib.sol";
import {IATPCore, IATPPeriphery} from "./../base/IATP.sol";
struct LATPStorage {
uint32 accumulationStartTime;
uint32 accumulationCliffDuration;
uint32 accumulationLockDuration;
bool isRevokable;
address revokeBeneficiary;
}
struct RevokableParams {
address revokeBeneficiary;
LockParams lockParams;
}
interface ILATPCore is IATPCore {
error InsufficientStakeable(uint256 stakeable, uint256 allowance);
error LockParamsMustBeEmpty();
function initialize(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams) external;
function getAccumulationLock() external view returns (Lock memory);
function getRevokableAmount() external view returns (uint256);
function getStakeableAmount() external view returns (uint256);
}
interface ILATPPeriphery is IATPPeriphery {
function getStore() external view returns (LATPStorage memory);
function getRevokeBeneficiary() external view returns (address);
}
interface ILATP is ILATPCore, ILATPPeriphery {}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ATPType} from "./../base/IATP.sol";
import {ILATP, ILATPPeriphery, IATPPeriphery, LATPStorage} from "./ILATP.sol";
import {LATPCore, IERC20, IRegistry, IBaseStaker} from "./LATPCore.sol";
/**
* @title Linear Aztec Token Position
* @notice Linear Aztec Token Position with additional helper view functions
* This is a helper contract to make it easier to use the LATP contract
* Will not include any state mutating extensions, just easier access to the data
* I might be kinda strange doing this, but I just find it simpler when looking at the state mutating
* functions, as I don't need to skip functions etc.
*
* It is also a neat way to make sure that all of the getters follow a similar pattern, as we like using
* different naming conventions for different types of data, e.g., constant vs mutable.
*/
contract LATP is ILATP, LATPCore {
constructor(IRegistry _registry, IERC20 _token) LATPCore(_registry, _token) {}
function getToken() external view override(IATPPeriphery) returns (IERC20) {
return TOKEN;
}
function getRegistry() external view override(IATPPeriphery) returns (IRegistry) {
return REGISTRY;
}
function getStaker() external view override(IATPPeriphery) returns (IBaseStaker) {
return staker;
}
function getExecuteAllowedAt() external view override(IATPPeriphery) returns (uint256) {
return REGISTRY.getExecuteAllowedAt();
}
function getClaimed() external view override(IATPPeriphery) returns (uint256) {
return claimed;
}
function getRevoker() external view override(IATPPeriphery) returns (address) {
return REGISTRY.getRevoker();
}
function getIsRevokable() external view override(IATPPeriphery) returns (bool) {
return store.isRevokable;
}
function getAllocation() external view override(IATPPeriphery) returns (uint256) {
return allocation;
}
function getStore() external view override(ILATPPeriphery) returns (LATPStorage memory) {
return store;
}
function getRevokeBeneficiary() external view override(ILATPPeriphery) returns (address) {
return store.revokeBeneficiary;
}
function getType() external pure virtual override(IATPPeriphery) returns (ATPType) {
return ATPType.Linear;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {MilestoneId} from "./../../Registry.sol";
import {IATPCore, IATPPeriphery} from "./../base/IATP.sol";
interface IMATPCore is IATPCore {
error RevokedOrFailed();
function initialize(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId) external;
}
interface IMATPPeriphery is IATPPeriphery {
function getMilestoneId() external view returns (MilestoneId);
function getIsRevoked() external view returns (bool);
}
interface IMATP is IMATPCore, IMATPPeriphery {}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ATPType} from "./../base/IATP.sol";
import {IMATP, IMATPPeriphery, IATPPeriphery} from "./IMATP.sol";
import {MATPCore, MilestoneId, IRegistry, IERC20, IBaseStaker} from "./MATPCore.sol";
contract MATP is IMATP, MATPCore {
constructor(IRegistry _registry, IERC20 _token) MATPCore(_registry, _token) {}
function getToken() external view override(IATPPeriphery) returns (IERC20) {
return TOKEN;
}
function getRegistry() external view override(IATPPeriphery) returns (IRegistry) {
return REGISTRY;
}
function getStaker() external view override(IATPPeriphery) returns (IBaseStaker) {
return staker;
}
function getExecuteAllowedAt() external view override(IATPPeriphery) returns (uint256) {
return REGISTRY.getExecuteAllowedAt();
}
function getClaimed() external view override(IATPPeriphery) returns (uint256) {
return claimed;
}
function getRevoker() external view override(IATPPeriphery) returns (address) {
return REGISTRY.getRevoker();
}
function getIsRevokable() external view override(IATPPeriphery) returns (bool) {
return !isRevoked;
}
function getAllocation() external view override(IATPPeriphery) returns (uint256) {
return allocation;
}
function getMilestoneId() external view override(IMATPPeriphery) returns (MilestoneId) {
return milestoneId;
}
function getIsRevoked() external view override(IMATPPeriphery) returns (bool) {
return isRevoked;
}
function getType() external pure override(IATPPeriphery) returns (ATPType) {
return ATPType.Milestone;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {LockParams} from "./../../libraries/LockLib.sol";
import {IATPPeriphery} from "./../base/IATP.sol";
import {ILATPCore} from "./../linear/ILATP.sol";
struct NCATPStorage {
uint32 accumulationStartTime;
uint32 accumulationCliffDuration;
uint32 accumulationLockDuration;
bool isRevokable;
address revokeBeneficiary;
}
struct RevokableParams {
address revokeBeneficiary;
LockParams lockParams;
}
interface INCATPCore is ILATPCore {}
interface INCATPPeriphery is IATPPeriphery {
function getStore() external view returns (NCATPStorage memory);
function getRevokeBeneficiary() external view returns (address);
}
interface INCATP is INCATPCore, INCATPPeriphery {}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ATPType, IATPCore} from "./../base/IATP.sol";
import {LATP} from "./../linear/LATP.sol";
import {LATPCore, IERC20, IRegistry} from "./../linear/LATPCore.sol";
/**
* @title Non Claimable Linear Aztec Position
* @notice An override of the LATP contract to make it non-claimable.
*/
contract NCATP is LATP {
uint256 public immutable CREATED_AT_TIMESTAMP;
constructor(IRegistry _registry, IERC20 _token) LATP(_registry, _token) {
CREATED_AT_TIMESTAMP = block.timestamp;
}
function claim() external override(IATPCore, LATPCore) onlyBeneficiary returns (uint256) {
revert NoClaimable();
}
function getType() external pure override(LATP) returns (ATPType) {
return ATPType.NonClaim;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
/**
* @title Track hash Nonces
* @dev See OpenZeppelin's Nonces.sol
*/
abstract contract Nonces {
mapping(bytes32 hash => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for a hash.
*/
function nonces(bytes32 _hash) public view virtual returns (uint256) {
return _nonces[_hash];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function useNonce(bytes32 _hash) internal virtual returns (uint256) {
// For each hash, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[_hash]++;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
* `CREATE2` can be used to compute in advance the address where a smart
* contract will be deployed, which allows for interesting new mechanisms known
* as 'counterfactual interactions'.
*
* See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
* information.
*/
library Create2 {
/**
* @dev There's no code to deploy.
*/
error Create2EmptyBytecode();
/**
* @dev Deploys a contract using `CREATE2`. The address where the contract
* will be deployed can be known in advance via {computeAddress}.
*
* The bytecode for a contract can be obtained from Solidity with
* `type(contractName).creationCode`.
*
* Requirements:
*
* - `bytecode` must not be empty.
* - `salt` must have not been used for `bytecode` already.
* - the factory must have a balance of at least `amount`.
* - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
*/
function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
if (bytecode.length == 0) {
revert Create2EmptyBytecode();
}
assembly ("memory-safe") {
addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
// if no address was created, and returndata is not empty, bubble revert
if and(iszero(addr), not(iszero(returndatasize()))) {
let p := mload(0x40)
returndatacopy(p, 0, returndatasize())
revert(p, returndatasize())
}
}
if (addr == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
* `bytecodeHash` or `salt` will result in a new destination address.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
return computeAddress(salt, bytecodeHash, address(this));
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
* `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
assembly ("memory-safe") {
let ptr := mload(0x40) // Get free memory pointer
// | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... |
// |-------------------|---------------------------------------------------------------------------|
// | bytecodeHash | CCCCCCCCCCCCC...CC |
// | salt | BBBBBBBBBBBBB...BB |
// | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA |
// | 0xFF | FF |
// |-------------------|---------------------------------------------------------------------------|
// | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
// | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |
mstore(add(ptr, 0x40), bytecodeHash)
mstore(add(ptr, 0x20), salt)
mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
mstore8(start, 0xff)
addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {Ownable2Step, Ownable} from "@oz/access/Ownable2Step.sol";
import {UUPSUpgradeable, ERC1967Utils} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {LockParams} from "./libraries/LockLib.sol";
import {BaseStaker} from "./staker/BaseStaker.sol";
type MilestoneId is uint96;
type StakerVersion is uint256;
enum MilestoneStatus {
Pending,
Failed,
Succeeded
}
interface IRegistry {
event UpdatedRevoker(address revoker);
event UpdatedRevokerOperator(address revokerOperator);
event UpdatedExecuteAllowedAt(uint256 executeAllowedAt);
event UpdatedUnlockStartTime(uint256 unlockStartTime);
event StakerRegistered(StakerVersion version, address implementation);
event MilestoneAdded(MilestoneId milestoneId);
event MilestoneStatusUpdated(MilestoneId milestoneId, MilestoneStatus status);
error InvalidExecuteAllowedAt(uint256 newExecuteAllowedAt, uint256 currentExecuteAllowedAt);
error InvalidUnlockStartTime(uint256 newUnlockStartTime, uint256 currentUnlockStartTime);
error InvalidUnlockDuration();
error InvalidUnlockCliffDuration();
error InvalidStakerImplementation(address implementation);
error UnRegisteredStaker(StakerVersion version);
error InvalidMilestoneId(MilestoneId milestoneId);
error InvalidMilestoneStatus(MilestoneId milestoneId);
function setRevoker(address _revoker) external;
function setRevokerOperator(address _revokerOperator) external;
function setExecuteAllowedAt(uint256 _executeAllowedAt) external;
function setUnlockStartTime(uint256 _unlockStartTime) external;
function registerStakerImplementation(address _implementation) external;
function addMilestone() external returns (MilestoneId);
function setMilestoneStatus(MilestoneId _milestoneId, MilestoneStatus _status) external;
function getRevoker() external view returns (address);
function getRevokerOperator() external view returns (address);
function getExecuteAllowedAt() external view returns (uint256);
function getUnlockStartTime() external view returns (uint256);
function getGlobalLockParams() external view returns (LockParams memory);
function getStakerImplementation(StakerVersion _version) external view returns (address);
function getNextStakerVersion() external view returns (StakerVersion);
function getMilestoneStatus(MilestoneId _milestoneId) external view returns (MilestoneStatus);
function getNextMilestoneId() external view returns (MilestoneId);
}
contract Registry is Ownable2Step, IRegistry {
uint256 internal immutable UNLOCK_CLIFF_DURATION;
uint256 internal immutable UNLOCK_LOCK_DURATION;
// @note An initial value set to be the unix timestamp of 1st of January 2027
uint256 internal unlockStartTime = 1798761600;
uint256 internal executeAllowedAt = 1798761600;
address internal revoker;
address internal revokerOperator;
StakerVersion internal nextStakerVersion;
mapping(StakerVersion version => address implementation) internal stakerImplementations;
MilestoneId internal nextMilestoneId;
mapping(MilestoneId milestoneId => MilestoneStatus status) internal milestones;
constructor(address __owner, uint256 _unlockCliffDuration, uint256 _unlockLockDuration) Ownable(__owner) {
require(_unlockLockDuration > 0, InvalidUnlockDuration());
require(_unlockLockDuration >= _unlockCliffDuration, InvalidUnlockCliffDuration());
UNLOCK_CLIFF_DURATION = _unlockCliffDuration;
UNLOCK_LOCK_DURATION = _unlockLockDuration;
// @note Register the base staker implementation
stakerImplementations[StakerVersion.wrap(0)] = address(new BaseStaker());
nextStakerVersion = StakerVersion.wrap(1);
}
/**
* @notice Add a new milestone
*
* @dev Only callable by the owner
*
* @return The milestone id
*/
function addMilestone() external override(IRegistry) onlyOwner returns (MilestoneId) {
MilestoneId milestoneId = nextMilestoneId;
nextMilestoneId = MilestoneId.wrap(MilestoneId.unwrap(nextMilestoneId) + 1);
milestones[milestoneId] = MilestoneStatus.Pending; // To be explicit
emit MilestoneAdded(milestoneId);
return milestoneId;
}
function setMilestoneStatus(MilestoneId _milestoneId, MilestoneStatus _status)
external
override(IRegistry)
onlyOwner
{
require(getMilestoneStatus(_milestoneId) == MilestoneStatus.Pending, InvalidMilestoneStatus(_milestoneId));
require(_status != MilestoneStatus.Pending, InvalidMilestoneStatus(_milestoneId));
milestones[_milestoneId] = _status;
emit MilestoneStatusUpdated(_milestoneId, _status);
}
/**
* @notice Register a new staker implementation
*
* @dev Only callable by the owner
*
* @param _implementation The address of the staker implementation
*/
function registerStakerImplementation(address _implementation) external override(IRegistry) onlyOwner {
require(
UUPSUpgradeable(_implementation).proxiableUUID() == ERC1967Utils.IMPLEMENTATION_SLOT,
InvalidStakerImplementation(_implementation)
);
StakerVersion version = nextStakerVersion;
nextStakerVersion = StakerVersion.wrap(StakerVersion.unwrap(nextStakerVersion) + 1);
stakerImplementations[version] = _implementation;
emit StakerRegistered(version, _implementation);
}
/**
* @notice Set the revoker address
*
* @dev Only callable by the owner
*
* @param _revoker The address of the revoker
*/
function setRevoker(address _revoker) external override(IRegistry) onlyOwner {
revoker = _revoker;
emit UpdatedRevoker(_revoker);
}
function setRevokerOperator(address _revokerOperator) external override(IRegistry) onlyOwner {
revokerOperator = _revokerOperator;
emit UpdatedRevokerOperator(_revokerOperator);
}
/**
* @notice Set the execute allowed at timestamp
* Can only be decreased to avoid unintentional updates and give some guarantees to LATP beneficiaries
*
* @dev Only callable by the owner
*
* @param _executeAllowedAt The timestamp of when the execute is allowed
*/
function setExecuteAllowedAt(uint256 _executeAllowedAt) external override(IRegistry) onlyOwner {
require(_executeAllowedAt < executeAllowedAt, InvalidExecuteAllowedAt(_executeAllowedAt, executeAllowedAt));
executeAllowedAt = _executeAllowedAt;
emit UpdatedExecuteAllowedAt(_executeAllowedAt);
}
/**
* @notice Set the unlock start time
* Can only be decreased to avoid unintentional updates and give some guarantees to LATP beneficiaries
*
* @dev Only callable by the owner
*
* @param _unlockStartTime The timestamp of when the unlock starts
*/
function setUnlockStartTime(uint256 _unlockStartTime) external override(IRegistry) onlyOwner {
require(_unlockStartTime < unlockStartTime, InvalidUnlockStartTime(_unlockStartTime, unlockStartTime));
unlockStartTime = _unlockStartTime;
emit UpdatedUnlockStartTime(_unlockStartTime);
}
/**
* @notice Get the revoker address
*
* @return The address of the revoker
*/
function getRevoker() external view override(IRegistry) returns (address) {
return revoker;
}
function getRevokerOperator() external view override(IRegistry) returns (address) {
return revokerOperator;
}
/**
* @notice Get the execute allowed at timestamp
*
* @return The timestamp of when the execute is allowed
*/
function getExecuteAllowedAt() external view override(IRegistry) returns (uint256) {
return executeAllowedAt;
}
/**
* @notice Get the unlock start time
*
* @return The timestamp of when the unlock starts
*/
function getUnlockStartTime() external view override(IRegistry) returns (uint256) {
return unlockStartTime;
}
/**
* @notice Get the lock params for the global unlocking schedule
*
* @return The global lock params
*/
function getGlobalLockParams() external view override(IRegistry) returns (LockParams memory) {
return LockParams({
startTime: unlockStartTime, cliffDuration: UNLOCK_CLIFF_DURATION, lockDuration: UNLOCK_LOCK_DURATION
});
}
/**
* @notice Get the implementation for a given staker version
*
* @param _version The version of the staker
*
* @return The implementation for the given staker version
*/
function getStakerImplementation(StakerVersion _version) external view override(IRegistry) returns (address) {
require(StakerVersion.unwrap(_version) < StakerVersion.unwrap(nextStakerVersion), UnRegisteredStaker(_version));
return stakerImplementations[_version];
}
/**
* @notice Get the next staker version
*
* @return The next staker version
*/
function getNextStakerVersion() external view override(IRegistry) returns (StakerVersion) {
return nextStakerVersion;
}
function getNextMilestoneId() external view override(IRegistry) returns (MilestoneId) {
return nextMilestoneId;
}
function getMilestoneStatus(MilestoneId _milestoneId) public view override(IRegistry) returns (MilestoneStatus) {
require(
MilestoneId.unwrap(_milestoneId) < MilestoneId.unwrap(nextMilestoneId), InvalidMilestoneId(_milestoneId)
);
return milestones[_milestoneId];
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IRegistry} from "../Registry.sol";
import {LATP} from "../atps/linear/LATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
library LATPFactory {
/**
* @notice Deploy the LATP implementation
* @param _registry The registry
* @param _token The token
* @return The LATP implementation
*/
function deployImplementation(IRegistry _registry, IERC20 _token) external returns (LATP) {
return new LATP(_registry, _token);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IRegistry} from "../Registry.sol";
import {NCATP} from "../atps/noclaim/NCATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
library NCATPFactory {
/**
* @notice Deploy the NCATP implementation
* @param _registry The registry
* @param _token The token
* @return The NCATP implementation
*/
function deployImplementation(IRegistry _registry, IERC20 _token) external returns (NCATP) {
return new NCATP(_registry, _token);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IRegistry} from "../Registry.sol";
import {MATP} from "../atps/milestone/MATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
library MATPFactory {
/**
* @notice Deploy the MATP implementation
* @param _registry The registry
* @param _token The token
* @return The MATP implementation
*/
function deployImplementation(IRegistry _registry, IERC20 _token) external returns (MATP) {
return new MATP(_registry, _token);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
/**
* @notice The parameters for a lock
* The parameters used to derive the actual lock.
*
* @param startTime The timestamp that the lock starts at (0 before this value)
* @param cliffDuration Time until the cliff is reached
* @param lockDuration Time until the lock is fully unlocked
*/
struct LockParams {
uint256 startTime;
uint256 cliffDuration;
uint256 lockDuration;
}
/**
* @notice The lock struct
* @param startTime The timestamp that the lock starts at (0 before this value)
* @param cliff The timestamp of the cliff of the lock (0 before this value, >= startTime)
* @param endTime The timestamp that the lock ends at, >= cliff
* @param allocation The amount of tokens that are locked
*/
struct Lock {
uint256 startTime;
uint256 cliff;
uint256 endTime;
uint256 allocation;
}
/**
* @title LockLib
* @notice Library for handling "locks" on assets
* A lock is in this case, a curve defining the amount available at any given timestamp.
* The particular lock is a linear curve with a cliff.
*/
library LockLib {
error LockDurationMustBeGTZero();
error LockDurationMustBeGECliffDuration(uint256 lockDuration, uint256 cliffDuration);
/**
* @notice Check if the lock has ended
*
* @param _lock The lock
* @param _timestamp The timestamp to check
*
* @return True if the lock has ended
*/
function hasEnded(Lock memory _lock, uint256 _timestamp) internal pure returns (bool) {
return _timestamp >= _lock.endTime;
}
/**
* @notice Get the unlocked value of the lock at a given timestamp
*
* @param _lock The lock
* @param _timestamp The timestamp to get the value at
*
* @return The unlocked value at the given timestamp
*/
function unlockedAt(Lock memory _lock, uint256 _timestamp) internal pure returns (uint256) {
if (_timestamp < _lock.cliff) {
return 0;
}
if (_timestamp >= _lock.endTime) {
return _lock.allocation;
}
return (_lock.allocation * (_timestamp - _lock.startTime)) / (_lock.endTime - _lock.startTime);
}
/**
* @notice Create a lock
*
* @dev The caller should make sure that `_allocation` is not zero
*
* @param _params The lock params
* @param _allocation The allocation of the lock
*
* @return The lock
*/
function createLock(LockParams memory _params, uint256 _allocation) internal pure returns (Lock memory) {
LockLib.assertValid(_params);
return Lock({
startTime: _params.startTime,
cliff: _params.startTime + _params.cliffDuration,
endTime: _params.startTime + _params.lockDuration,
allocation: _allocation
});
}
/**
* @notice Assert that the lock params are valid
*
* @param _params The lock params
*/
function assertValid(LockParams memory _params) internal pure {
require(_params.lockDuration > 0, LockDurationMustBeGTZero());
require(
_params.lockDuration >= _params.cliffDuration,
LockDurationMustBeGECliffDuration(_params.lockDuration, _params.cliffDuration)
);
}
/**
* @notice Check if the lock params are empty
*
* @param _params The lock params
*
* @return True if the lock params are empty
*/
function isEmpty(LockParams memory _params) internal pure returns (bool) {
return _params.startTime == 0 && _params.cliffDuration == 0 && _params.lockDuration == 0;
}
/**
* @notice Get an empty lock params
*
* @return An empty lock params
*/
function empty() internal pure returns (LockParams memory) {
return LockParams({startTime: 0, cliffDuration: 0, lockDuration: 0});
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {Lock} from "../../libraries/LockLib.sol";
import {IRegistry, StakerVersion} from "../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
enum ATPType {
Linear,
Milestone,
NonClaim
}
interface IATPCore {
event StakerInitialized(IBaseStaker staker);
event StakerUpgraded(StakerVersion version);
event StakerOperatorUpdated(address operator);
event Claimed(uint256 amount);
event ApprovedStaker(uint256 allowance);
event Rescued(address asset, address to, uint256 amount);
event Revoked(uint256 amount);
error AlreadyInitialized();
error InvalidBeneficiary(address beneficiary);
error NotBeneficiary(address caller, address beneficiary);
error LockHasEnded();
error InvalidTokenAddress(address token);
error InvalidRegistry(address registry);
error AllocationMustBeGreaterThanZero();
error InvalidAsset(address asset);
error ExecutionNotAllowedYet(uint256 timestamp, uint256 executeAllowedAt);
error NotRevokable();
error NotRevoker(address caller, address revoker);
error NoClaimable();
error LockDurationMustBeGTZero(string variant);
error InvalidUpgrade();
function upgradeStaker(StakerVersion _version) external;
function approveStaker(uint256 _allowance) external;
function updateStakerOperator(address _operator) external;
function claim() external returns (uint256);
function rescueFunds(address _asset, address _to) external;
function revoke() external returns (uint256);
function getClaimable() external view returns (uint256);
function getGlobalLock() external view returns (Lock memory);
function getBeneficiary() external view returns (address);
function getOperator() external view returns (address);
}
interface IATPPeriphery {
function getToken() external view returns (IERC20);
function getRegistry() external view returns (IRegistry);
function getExecuteAllowedAt() external view returns (uint256);
function getClaimed() external view returns (uint256);
function getRevoker() external view returns (address);
function getIsRevokable() external view returns (bool);
function getAllocation() external view returns (uint256);
function getType() external view returns (ATPType);
function getStaker() external view returns (IBaseStaker);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ERC1967Proxy} from "@oz/proxy/ERC1967/ERC1967Proxy.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {LockParams, Lock, LockLib} from "./../../libraries/LockLib.sol";
import {IRegistry, StakerVersion} from "./../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
import {ILATPCore, IATPCore, LATPStorage, RevokableParams} from "./ILATP.sol";
/**
* @title Linear Aztec Token Position Core
* @notice The core logic of the Linear Aztec Token Position
* @dev This contract is abstract and cannot be deployed on its own.
* It is meant to be inherited by the `LATP` contract.
* MUST be deployed using the `ATPFactory` contract.
*/
abstract contract LATPCore is ILATPCore {
using SafeCast for uint256;
using SafeERC20 for IERC20;
using LockLib for Lock;
IERC20 internal immutable TOKEN;
IRegistry internal immutable REGISTRY;
uint256 internal allocation;
address internal beneficiary;
IBaseStaker internal staker;
address internal operator;
uint256 internal claimed = 0;
LATPStorage internal store;
/**
* @dev The caller must be the beneficiary
*/
modifier onlyBeneficiary() {
require(msg.sender == beneficiary, NotBeneficiary(msg.sender, beneficiary));
_;
}
/**
* @dev Since we are using the `Clones` library to create the LATP's to use
* we can't use the constructor to initialize the individual ones, but
* we can use it to initialize values that will be shared across all the clones.
*
* @param _registry The registry
* @param _token The token
*/
constructor(IRegistry _registry, IERC20 _token) {
require(address(_registry) != address(0), InvalidRegistry(address(_registry)));
require(address(_token) != address(0), InvalidTokenAddress(address(_token)));
TOKEN = _token;
REGISTRY = _registry;
staker = IBaseStaker(address(0xdead));
}
/**
* @notice Initialize the Aztec Token Position
* Creates a `Staker`, sets the `beneficiary` and `allocation`
* If the LATP is revokable, it will set the `accumulation` lock as well
*
* @dev If run twice, the `staker` will already be set and this will revert
* with the `AlreadyInitialized` error
*
* @dev When done by the `ATPFactory` this will happen in the same transaction as LATP creation
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the LATP
* @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATP is revokable
*/
function initialize(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
external
override(ILATPCore)
{
require(address(staker) == address(0), AlreadyInitialized());
require(_beneficiary != address(0), InvalidBeneficiary(address(0)));
require(_allocation > 0, AllocationMustBeGreaterThanZero());
beneficiary = _beneficiary;
allocation = _allocation;
staker = createStaker();
if (_revokableParams.revokeBeneficiary != address(0)) {
LockLib.assertValid(_revokableParams.lockParams);
store = LATPStorage({
isRevokable: true,
accumulationStartTime: _revokableParams.lockParams.startTime.toUint32(),
accumulationCliffDuration: _revokableParams.lockParams.cliffDuration.toUint32(),
accumulationLockDuration: _revokableParams.lockParams.lockDuration.toUint32(),
revokeBeneficiary: _revokableParams.revokeBeneficiary
});
} else {
// If the LATP is non-revokable, the store will be all 0, so we do not need to set storage
// We will however check that the lock params are empty, to reduce potential for confusion
require(LockLib.isEmpty(_revokableParams.lockParams), LockParamsMustBeEmpty());
}
}
/**
* @notice Upgrade the staker contract to a new version
*
* @param _version The version of the staker to upgrade to
*/
function upgradeStaker(StakerVersion _version) external override(IATPCore) onlyBeneficiary {
address impl = REGISTRY.getStakerImplementation(_version);
UUPSUpgradeable(address(staker)).upgradeToAndCall(impl, "");
require(staker.getATP() == address(this), InvalidUpgrade());
emit StakerUpgraded(_version);
}
/**
* @notice Update the operator of the staker contract
*
* @param _operator The address of the new operator
*/
function updateStakerOperator(address _operator) external override(IATPCore) onlyBeneficiary {
operator = _operator;
emit StakerOperatorUpdated(_operator);
}
/**
* @notice Cancel the accumulation of assets
*
* @return The amount of tokens revoked
*/
function revoke() external override(IATPCore) returns (uint256) {
require(store.isRevokable, NotRevokable());
address revoker = REGISTRY.getRevoker();
require(msg.sender == revoker, NotRevoker(msg.sender, revoker));
Lock memory accumulationLock = getAccumulationLock();
require(!accumulationLock.hasEnded(block.timestamp), LockHasEnded());
uint256 debt = getRevokableAmount();
store.isRevokable = false;
TOKEN.safeTransfer(store.revokeBeneficiary, debt);
emit Revoked(debt);
return debt;
}
/**
* @notice Rescue funds that have been sent to the contract by mistake
* Allows the beneficiary to transfer funds that are not unlock token from the contract.
*
* @param _asset The asset to rescue
* @param _to The address to send the assets to
*/
function rescueFunds(address _asset, address _to) external override(IATPCore) onlyBeneficiary {
require(_asset != address(TOKEN), InvalidAsset(_asset));
IERC20 asset = IERC20(_asset);
uint256 amount = asset.balanceOf(address(this));
asset.safeTransfer(_to, amount);
emit Rescued(_asset, _to, amount);
}
/**
* @notice Authorizes the staker contract for the specified amount.
*
* @param _allowance The amount of tokens to authorize the staker contract for
*/
function approveStaker(uint256 _allowance) external override(IATPCore) onlyBeneficiary {
// slither-disable-start block-timestamp
// As we are not relying on block.timestamp for randomness but merely for when we will toggle
// the EXECUTE_ALLOWED_AT flag, and time will only ever increase, we can safely ignore the warning.
uint256 executeAllowedAt = REGISTRY.getExecuteAllowedAt();
require(block.timestamp >= executeAllowedAt, ExecutionNotAllowedYet(block.timestamp, executeAllowedAt));
// slither-disable-end block-timestamp
uint256 stakeable = getStakeableAmount();
require(stakeable >= _allowance, InsufficientStakeable(stakeable, _allowance));
TOKEN.approve(address(staker), _allowance);
emit ApprovedStaker(_allowance);
}
/**
* @notice Claim the amount of tokens that are available for the owner to claim.
*
* @dev The `caller` must be the `beneficiary`
*
* @return The amount of tokens claimed
*/
function claim() external virtual override(IATPCore) onlyBeneficiary returns (uint256) {
uint256 amount = getClaimable();
require(amount > 0, NoClaimable());
claimed += amount;
TOKEN.safeTransfer(msg.sender, amount);
// @note After the transfer, we need to ensure that the allowance is not too high.
// Namely, if the allowance is larger than the stakeable amount it should be reduced.
uint256 stakeable = getStakeableAmount();
uint256 allowance = TOKEN.allowance(address(this), address(staker));
if (stakeable < allowance) {
TOKEN.approve(address(staker), stakeable);
}
emit Claimed(amount);
return amount;
}
function getOperator() public view override(IATPCore) returns (address) {
return operator;
}
function getBeneficiary() public view override(IATPCore) returns (address) {
return beneficiary;
}
/**
* @notice Compute the amount of tokens that can be claimed.
*
* @return The amount of tokens that can be claimed
*/
function getClaimable() public view override(IATPCore) returns (uint256) {
Lock memory globalLock = getGlobalLock();
uint256 unlocked = globalLock.hasEnded(block.timestamp)
? type(uint256).max
: (globalLock.unlockedAt(block.timestamp) - claimed);
return Math.min(TOKEN.balanceOf(address(this)) - getRevokableAmount(), unlocked);
}
/**
* @notice Get the global unlock schedule lock
*
* @return The global lock
*/
function getGlobalLock() public view override(IATPCore) returns (Lock memory) {
return LockLib.createLock(REGISTRY.getGlobalLockParams(), allocation);
}
/**
* @notice Get the accumulation lock
*
* @return The accumulation lock or empty if not revokable
*/
function getAccumulationLock() public view override(ILATPCore) returns (Lock memory) {
require(store.isRevokable, NotRevokable());
return LockLib.createLock(
LockParams({
startTime: store.accumulationStartTime,
cliffDuration: store.accumulationCliffDuration,
lockDuration: store.accumulationLockDuration
}),
allocation
);
}
/**
* @notice Get the amount of tokens that can be revoked
*
* @return The amount of tokens that can be revoked
*/
function getRevokableAmount() public view override(ILATPCore) returns (uint256) {
if (!store.isRevokable) {
return 0;
}
return allocation - getAccumulationLock().unlockedAt(block.timestamp);
}
/**
* @notice Get the amount of tokens that can be staked
*
* @return The amount of tokens that can be staked
*/
function getStakeableAmount() public view override(ILATPCore) returns (uint256) {
if (!store.isRevokable) {
return type(uint256).max;
}
return TOKEN.balanceOf(address(this)) - getRevokableAmount();
}
/**
* @notice Create a new staker contract with the `ERC1967Proxy`
* the initial implementation used will the be `BaseStaker`
*
* @return The new staker contract
*/
function createStaker() private returns (IBaseStaker) {
address impl = REGISTRY.getStakerImplementation(StakerVersion.wrap(0));
ERC1967Proxy proxy = new ERC1967Proxy(impl, abi.encodeCall(IBaseStaker.initialize, address(this)));
IBaseStaker _staker = IBaseStaker(address(proxy));
emit StakerInitialized(_staker);
return _staker;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ERC1967Proxy} from "@oz/proxy/ERC1967/ERC1967Proxy.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Lock, LockLib} from "./../../libraries/LockLib.sol";
import {IRegistry, StakerVersion, MilestoneId, MilestoneStatus} from "./../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
import {IMATPCore, IATPCore} from "./IMATP.sol";
/**
* @title Milestone Aztec Token Position Core
* @notice The core logic of the Milestone Aztec Token Position
* @dev This contract is abstract and cannot be deployed on its own.
* It is meant to be inherited by the `MATP` contract.
* MUST be deployed using the `ATPFactory` contract.
*/
abstract contract MATPCore is IMATPCore {
using SafeCast for uint256;
using SafeERC20 for IERC20;
using LockLib for Lock;
IERC20 internal immutable TOKEN;
IRegistry internal immutable REGISTRY;
uint256 internal allocation;
// 160 + 96 = 256
address internal beneficiary;
MilestoneId internal milestoneId;
IBaseStaker internal staker;
address internal operator;
uint256 internal claimed = 0;
bool internal isRevoked = false;
/**
* @dev The caller must be the beneficiary, or if the milestone have failed it must be the revoker
*/
modifier onlyBeneficiary() {
address _beneficiary = getBeneficiary();
require(msg.sender == _beneficiary, NotBeneficiary(msg.sender, _beneficiary));
_;
}
/**
* @dev Since we are using the `Clones` library to create the ATP's to use
* we can't use the constructor to initialize the individual ones, but
* we can use it to initialize values that will be shared across all the clones.
*
* @param _registry The registry
* @param _token The token
*/
constructor(IRegistry _registry, IERC20 _token) {
require(address(_registry) != address(0), InvalidRegistry(address(_registry)));
require(address(_token) != address(0), InvalidTokenAddress(address(_token)));
TOKEN = _token;
REGISTRY = _registry;
staker = IBaseStaker(address(0xdead));
}
/**
* @notice Initialize the Aztec Token Position
* Creates a `Staker`, sets the `beneficiary` and `allocation`
* If the ATP is revokable, it will set the `accumulation` lock as well
*
* @dev If run twice, the `staker` will already be set and this will revert
* with the `AlreadyInitialized` error
*
* @dev When done by the `ATPFactory` this will happen in the same transaction as ATP creation
*
* @param _beneficiary The address of the beneficiary
* @param _allocation The amount of tokens to allocate to the ATP
* @param _milestoneId The milestone id
*/
function initialize(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
external
override(IMATPCore)
{
require(address(staker) == address(0), AlreadyInitialized());
require(_beneficiary != address(0), InvalidBeneficiary(address(0)));
require(_allocation > 0, AllocationMustBeGreaterThanZero());
require(
REGISTRY.getMilestoneStatus(_milestoneId) == MilestoneStatus.Pending,
IRegistry.InvalidMilestoneStatus(_milestoneId)
);
beneficiary = _beneficiary;
milestoneId = _milestoneId;
allocation = _allocation;
staker = createStaker();
}
/**
* @notice Upgrade the staker contract to a new version
*
* @param _version The version of the staker to upgrade to
*/
function upgradeStaker(StakerVersion _version) external override(IATPCore) onlyBeneficiary {
address impl = REGISTRY.getStakerImplementation(_version);
UUPSUpgradeable(address(staker)).upgradeToAndCall(impl, "");
require(staker.getATP() == address(this), InvalidUpgrade());
emit StakerUpgraded(_version);
}
/**
* @notice Cancel the accumulation of assets
*
* @return The amount of tokens revoked
*/
function revoke() external override(IATPCore) returns (uint256) {
require(!isRevoked, NotRevokable());
require(REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Pending, NotRevokable());
address revoker = REGISTRY.getRevoker();
require(msg.sender == revoker, NotRevoker(msg.sender, revoker));
isRevoked = true;
emit Revoked(allocation);
return allocation;
}
/**
* @notice Rescue funds that have been sent to the contract by mistake
* Allows the beneficiary to transfer funds that are not unlock token from the contract.
*
* @param _asset The asset to rescue
* @param _to The address to send the assets to
*/
function rescueFunds(address _asset, address _to) external override(IATPCore) {
require(_asset != address(TOKEN), InvalidAsset(_asset));
require(msg.sender == beneficiary, NotBeneficiary(msg.sender, beneficiary));
IERC20 asset = IERC20(_asset);
uint256 amount = asset.balanceOf(address(this));
asset.safeTransfer(_to, amount);
emit Rescued(_asset, _to, amount);
}
/**
* @notice Authorizes the staker contract for the specified amount.
*
* @param _allowance The amount of tokens to authorize the staker contract for
*/
function approveStaker(uint256 _allowance) external override(IATPCore) onlyBeneficiary {
// slither-disable-start block-timestamp
// As we are not relying on block.timestamp for randomness but merely for when we will toggle
// the EXECUTE_ALLOWED_AT flag, and time will only ever increase, we can safely ignore the warning.
uint256 executeAllowedAt = REGISTRY.getExecuteAllowedAt();
require(block.timestamp >= executeAllowedAt, ExecutionNotAllowedYet(block.timestamp, executeAllowedAt));
// slither-disable-end block-timestamp
TOKEN.approve(address(staker), _allowance);
emit ApprovedStaker(_allowance);
}
/**
* @notice Claim the amount of tokens that are available for the owner to claim.
*
* @dev The `caller` must be the `beneficiary`
*
* @return The amount of tokens claimed
*/
function claim() external override(IATPCore) onlyBeneficiary returns (uint256) {
uint256 amount = getClaimable();
require(amount > 0, NoClaimable());
claimed += amount;
TOKEN.safeTransfer(msg.sender, amount);
emit Claimed(amount);
return amount;
}
/**
* @notice Update the operator of the staker contract
*
* @param _operator The address of the new operator
*/
function updateStakerOperator(address _operator) public override(IATPCore) onlyBeneficiary {
require(!isRevoked && REGISTRY.getMilestoneStatus(milestoneId) != MilestoneStatus.Failed, RevokedOrFailed());
operator = _operator;
emit StakerOperatorUpdated(_operator);
}
/**
* @notice Compute the amount of tokens that can be claimed.
*
* @return The amount of tokens that can be claimed
*/
function getClaimable() public view override(IATPCore) returns (uint256) {
MilestoneStatus status = REGISTRY.getMilestoneStatus(milestoneId);
if (isRevoked || status == MilestoneStatus.Failed) {
// When revoked or milestone failed, the lock is ignored as it is the revoker
// claiming, and it should be able to bypass these
return TOKEN.balanceOf(address(this));
}
if (status != MilestoneStatus.Succeeded) {
return 0;
}
Lock memory globalLock = getGlobalLock();
uint256 unlocked = globalLock.hasEnded(block.timestamp)
? type(uint256).max
: (globalLock.unlockedAt(block.timestamp) - claimed);
return Math.min(TOKEN.balanceOf(address(this)), unlocked);
}
/**
* @notice Get the global unlock schedule lock
*
* @return The global lock
*/
function getGlobalLock() public view override(IATPCore) returns (Lock memory) {
return LockLib.createLock(REGISTRY.getGlobalLockParams(), allocation);
}
/**
* @notice Get the beneficiary of the ATP
* If the milestone has failed or ATP was revoked, the beneficiary is the revoker
*
* @return The beneficiary
*/
function getBeneficiary() public view override(IATPCore) returns (address) {
if (isRevoked || REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Failed) {
return REGISTRY.getRevoker();
}
return beneficiary;
}
/**
* @notice Get the operator of the staker contract
* If the milestone has failed or ATP was revoked, the operator is the revoker operator
*
* @return The operator
*/
function getOperator() public view override(IATPCore) returns (address) {
if (isRevoked || REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Failed) {
return REGISTRY.getRevokerOperator();
}
return operator;
}
/**
* @notice Create a new staker contract with the `ERC1967Proxy`
* the initial implementation used will the be `BaseStaker`
*
* @return The new staker contract
*/
function createStaker() private returns (IBaseStaker) {
address impl = REGISTRY.getStakerImplementation(StakerVersion.wrap(0));
ERC1967Proxy proxy = new ERC1967Proxy(impl, abi.encodeCall(IBaseStaker.initialize, address(this)));
IBaseStaker _staker = IBaseStaker(address(proxy));
emit StakerInitialized(_staker);
return _staker;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.22;
import {IERC1822Proxiable} from "../../interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
/**
* @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC-1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;
import {ERC1967Utils} from "@oz/proxy/ERC1967/ERC1967Utils.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IATPCore} from "../atps/base/IATP.sol";
interface IBaseStaker {
function initialize(address _atp) external;
function getATP() external view returns (address);
function getOperator() external view returns (address);
function getImplementation() external view returns (address);
}
contract BaseStaker is IBaseStaker, UUPSUpgradeable {
address internal atp;
error AlreadyInitialized();
error ZeroATP();
error NotATP(address caller, address atp);
error NotOperator(address caller, address operator);
error UnSupportedOperation();
modifier onlyOperator() {
address operator = getOperator();
require(msg.sender == operator, NotOperator(msg.sender, operator));
_;
}
modifier onlyATP() {
require(msg.sender == address(atp), NotATP(msg.sender, address(atp)));
_;
}
constructor() {
atp = address(0xdead);
}
function initialize(address _atp) external virtual override(IBaseStaker) {
require(address(_atp) != address(0), ZeroATP());
require(address(atp) == address(0), AlreadyInitialized());
atp = _atp;
}
function getImplementation() external view virtual override(IBaseStaker) returns (address) {
return ERC1967Utils.getImplementation();
}
function getATP() public view virtual override(IBaseStaker) returns (address) {
return atp;
}
function getOperator() public view virtual override(IBaseStaker) returns (address) {
return IATPCore(atp).getOperator();
}
function _authorizeUpgrade(address _newImplementation) internal virtual override(UUPSUpgradeable) onlyATP {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Proxy.sol)
pragma solidity ^0.8.22;
import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";
/**
* @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
* implementation address that can be changed. This address is stored in storage in the location specified by
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
* implementation behind the proxy.
*/
contract ERC1967Proxy is Proxy {
/**
* @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
*
* If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
* encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
*
* Requirements:
*
* - If `data` is empty, `msg.value` must be zero.
*/
constructor(address implementation, bytes memory _data) payable {
ERC1967Utils.upgradeToAndCall(implementation, _data);
}
/**
* @dev Returns the current implementation address.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
*/
function _implementation() internal view virtual override returns (address) {
return ERC1967Utils.getImplementation();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822Proxiable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)
pragma solidity ^0.8.22;
import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";
/**
* @dev This library provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
*/
library ERC1967Utils {
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev The `implementation` of the proxy is invalid.
*/
error ERC1967InvalidImplementation(address implementation);
/**
* @dev The `admin` of the proxy is invalid.
*/
error ERC1967InvalidAdmin(address admin);
/**
* @dev The `beacon` of the proxy is invalid.
*/
error ERC1967InvalidBeacon(address beacon);
/**
* @dev An upgrade function sees `msg.value > 0` that may be lost.
*/
error ERC1967NonPayable();
/**
* @dev Returns the current implementation address.
*/
function getImplementation() internal view returns (address) {
return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
if (newImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(newImplementation);
}
StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Performs implementation upgrade with additional setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-Upgraded} event.
*/
function upgradeToAndCall(address newImplementation, bytes memory data) internal {
_setImplementation(newImplementation);
emit IERC1967.Upgraded(newImplementation);
if (data.length > 0) {
Address.functionDelegateCall(newImplementation, data);
} else {
_checkNonPayable();
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function getAdmin() internal view returns (address) {
return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
if (newAdmin == address(0)) {
revert ERC1967InvalidAdmin(address(0));
}
StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {IERC1967-AdminChanged} event.
*/
function changeAdmin(address newAdmin) internal {
emit IERC1967.AdminChanged(getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function getBeacon() internal view returns (address) {
return StorageSlot.getAddressSlot(BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the ERC-1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
if (newBeacon.code.length == 0) {
revert ERC1967InvalidBeacon(newBeacon);
}
StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
address beaconImplementation = IBeacon(newBeacon).implementation();
if (beaconImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(beaconImplementation);
}
}
/**
* @dev Change the beacon and trigger a setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-BeaconUpgraded} event.
*
* CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
* it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
* efficiency.
*/
function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
_setBeacon(newBeacon);
emit IERC1967.BeaconUpgraded(newBeacon);
if (data.length > 0) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
} else {
_checkNonPayable();
}
}
/**
* @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
* if an upgrade doesn't perform an initialization call.
*/
function _checkNonPayable() private {
if (msg.value > 0) {
revert ERC1967NonPayable();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
pragma solidity ^0.8.20;
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal virtual {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback
* function and {_fallback} should delegate.
*/
function _implementation() internal view virtual returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _fallback() internal virtual {
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback() external payable virtual {
_fallback();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.20;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeacon {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {UpgradeableBeacon} will check that this address is a contract.
*/
function implementation() external view returns (address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*/
interface IERC1967 {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, bytes memory returndata) = recipient.call{value: amount}("");
if (!success) {
_revert(returndata);
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}{
"remappings": [
"src/=src/",
"test/=test/",
"@aztec/=lib/l1-contracts/src/",
"@aztec-test/=lib/l1-contracts/test/",
"@openzeppelin/=lib/openzeppelin-contracts/",
"@oz/=lib/openzeppelin-contracts/contracts/",
"forge-std/=lib/forge-std/src/",
"@atp/=lib/teegeeee/src/",
"@atp-mock/=lib/teegeeee/src/test/mocks/",
"@zkpassport/=lib/circuits/src/solidity/src/",
"@splits/=lib/splits-contracts-monorepo/packages/splits-v2/src/",
"@predicate/=lib/predicate-contracts/src/",
"@teegeeee/=lib/teegeeee/src/",
"@twap-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/src/",
"@twap-auction-test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/",
"@launcher/=lib/liquidity-launcher/src/",
"@v4c/=lib/liquidity-launcher/lib/v4-core/src/",
"@v4p/=lib/liquidity-launcher/lib/v4-periphery/src/",
"@aztec-blob-lib/=lib/l1-contracts/src/core/libraries/rollup/",
"@ensdomains/=lib/liquidity-launcher/lib/v4-core/node_modules/@ensdomains/",
"@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
"@openzeppelin-upgrades-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"@openzeppelin-upgrades/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/",
"@openzeppelin-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
"@solady/=lib/liquidity-launcher/lib/solady/",
"@test/=lib/l1-contracts/test/",
"@uniswap/v4-core/=lib/liquidity-launcher/lib/v4-core/",
"@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"@zkpassport-test/=lib/l1-contracts/lib/circuits/src/solidity/test/",
"btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
"circuits/=lib/circuits/src/",
"continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
"ds-test/=lib/predicate-contracts/lib/forge-std/lib/ds-test/src/",
"eigenlayer-contracts/=lib/predicate-contracts/lib/eigenlayer-contracts/",
"eigenlayer-middleware/=lib/predicate-contracts/lib/eigenlayer-middleware/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-gas-snapshot/=lib/liquidity-launcher/lib/continuous-clearing-auction/lib/forge-gas-snapshot/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"hardhat/=lib/liquidity-launcher/lib/v4-core/node_modules/hardhat/",
"kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
"l1-contracts/=lib/l1-contracts/src/",
"lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
"liquidity-launcher/=lib/liquidity-launcher/",
"merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
"openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
"openzeppelin-contracts-upgradeable-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"openzeppelin-contracts-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/predicate-contracts/lib/openzeppelin-foundry-upgrades/src/",
"openzeppelin-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
"openzeppelin/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/",
"optimism/=lib/liquidity-launcher/lib/optimism/",
"permit2/=lib/liquidity-launcher/lib/permit2/",
"predicate-contracts/=lib/predicate-contracts/src/",
"safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
"solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
"solady/=lib/liquidity-launcher/lib/solady/src/",
"solmate/=lib/predicate-contracts/lib/solmate/src/",
"splits-contracts-monorepo/=lib/splits-contracts-monorepo/",
"teegeeee/=lib/teegeeee/src/",
"utils/=lib/predicate-contracts/lib/utils/",
"v4-core/=lib/liquidity-launcher/lib/v4-core/src/",
"v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"zkpassport-packages/=lib/zkpassport-packages/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false,
"libraries": {
"lib/teegeeee/src/ATPFactoryNonces.sol": {
"LATPFactory": "0xd95b04129d57e301453815b17f6e6b2a69512e78",
"MATPFactory": "0x90d06b1c29f3284508efa6fa3d116d166629e7d2",
"NCATPFactory": "0x39e9a0aeaac3a6b46dc0ce235807dc0f64555594"
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"__owner","type":"address"},{"internalType":"contract IERC20","name":"_token","type":"address"},{"internalType":"uint256","name":"_unlockCliffDuration","type":"uint256"},{"internalType":"uint256","name":"_unlockLockDuration","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidInputLength","type":"error"},{"inputs":[],"name":"NotMinter","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"beneficiary","type":"address"},{"indexed":true,"internalType":"address","name":"atp","type":"address"},{"indexed":false,"internalType":"uint256","name":"allocation","type":"uint256"}],"name":"ATPCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"minter","type":"address"},{"indexed":false,"internalType":"bool","name":"isMinter","type":"bool"}],"name":"MinterSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"createLATP","outputs":[{"internalType":"contract ILATP","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_beneficiaries","type":"address[]"},{"internalType":"uint256[]","name":"_allocations","type":"uint256[]"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams[]","name":"_revokableParams","type":"tuple[]"}],"name":"createLATPs","outputs":[{"internalType":"contract ILATP[]","name":"","type":"address[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"internalType":"MilestoneId","name":"_milestoneId","type":"uint96"}],"name":"createMATP","outputs":[{"internalType":"contract IMATP","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_beneficiaries","type":"address[]"},{"internalType":"uint256[]","name":"_allocations","type":"uint256[]"},{"internalType":"MilestoneId[]","name":"_milestoneIds","type":"uint96[]"}],"name":"createMATPs","outputs":[{"internalType":"contract IMATP[]","name":"","type":"address[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"createNCATP","outputs":[{"internalType":"contract INCATP","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_beneficiaries","type":"address[]"},{"internalType":"uint256[]","name":"_allocations","type":"uint256[]"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams[]","name":"_revokableParams","type":"tuple[]"}],"name":"createNCATPs","outputs":[{"internalType":"contract INCATP[]","name":"","type":"address[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getRegistry","outputs":[{"internalType":"contract IRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"minter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_hash","type":"bytes32"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"predictLATPAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"},{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"predictLATPAddressWithNonce","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"internalType":"MilestoneId","name":"_milestoneId","type":"uint96"}],"name":"predictMATPAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"internalType":"MilestoneId","name":"_milestoneId","type":"uint96"},{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"predictMATPAddressWithNonce","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"predictNCATPAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"},{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"predictNCATPAddressWithNonce","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"recoverTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_minter","type":"address"},{"internalType":"bool","name":"_isMinter","type":"bool"}],"name":"setMinter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
610120604052348015610010575f5ffd5b5060405161329138038061329183398101604081905261002f91610370565b83838383836001600160a01b03811661006157604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61006a816102e4565b5083828260405161007a9061034f565b6001600160a01b03909316835260208301919091526040820152606001604051809103905ff0801580156100b0573d5f5f3e3d5ffd5b506001600160a01b03908116608081905290841660a0819052604051639e6d95eb60e01b81526004810192909252602482015273d95b04129d57e301453815b17f6e6b2a69512e7890639e6d95eb90604401602060405180830381865af415801561011d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061014191906103b5565b6001600160a01b031660c05260805160a051604051639e6d95eb60e01b81527339e9a0aeaac3a6b46dc0ce235807dc0f6455559492639e6d95eb9261019d926004016001600160a01b0392831681529116602082015260400190565b602060405180830381865af41580156101b8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101dc91906103b5565b6001600160a01b031660e05260805160a051604051639e6d95eb60e01b81527390d06b1c29f3284508efa6fa3d116d166629e7d292639e6d95eb92610238926004016001600160a01b0392831681529116602082015260400190565b602060405180830381865af4158015610253573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027791906103b5565b6001600160a01b039081166101005284165f81815260026020908152604091829020805460ff1916600190811790915591519182527f583b0aa0e528532caf4b907c11d7a8158a122fe2a6fb80cd9b09776ebea8d92d910160405180910390a250505050505050506103d7565b600180546001600160a01b03191690556102fd81610300565b50565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6115fb80611c9683390190565b6001600160a01b03811681146102fd575f5ffd5b5f5f5f5f60808587031215610383575f5ffd5b845161038e8161035c565b602086015190945061039f8161035c565b6040860151606090960151949790965092505050565b5f602082840312156103c5575f5ffd5b81516103d08161035c565b9392505050565b60805160a05160c05160e051610100516118516104455f395f8181610421015281816106570152610b7401525f81816106f601528181610c6c0152610da801525f81816105ae01528181610ac60152610bf001525f818161017e01526104b301525f61022f01526118515ff3fe608060405234801561000f575f5ffd5b5060043610610148575f3560e01c806379ba5097116100bf578063b57d21a011610079578063b57d21a014610301578063cf456ae714610314578063e30c397814610327578063ebfc3de214610338578063ee681f791461034b578063f2fde38b1461035e575f5ffd5b806379ba5097146102835780637e0ef6851461028b5780638126e4211461029e5780638da5cb5b146102b1578063949f8216146102c15780639e317f12146102d4575f5ffd5b8063505a372c11610110578063505a372c146101fa5780635ab18e2e1461020d5780635ab1bd531461022d5780635f3e849f146102535780636671c14f14610268578063715018a61461027b575f5ffd5b80630f28edeb1461014c57806321df0da71461017c5780633dd08c38146101a25780634d53d426146101d45780634e57ec12146101e7575b5f5ffd5b61015f61015a36600461120b565b610371565b6040516001600160a01b0390911681526020015b60405180910390f35b7f000000000000000000000000000000000000000000000000000000000000000061015f565b6101c46101b0366004611244565b60026020525f908152604090205460ff1681565b6040519015158152602001610173565b61015f6101e2366004611351565b610535565b61015f6101f536600461120b565b6105de565b61015f610208366004611351565b61067d565b61022061021b366004611470565b61071c565b604051610173919061155e565b7f000000000000000000000000000000000000000000000000000000000000000061015f565b6102666102613660046115a9565b61085f565b005b610220610276366004611470565b610880565b6102666109ba565b6102666109cd565b61015f610299366004611351565b610a16565b61015f6102ac3660046115e3565b610b1e565b5f546001600160a01b031661015f565b61015f6102cf366004611624565b610b9a565b6102f36102e2366004611666565b5f9081526003602052604090205490565b604051908152602001610173565b61015f61030f366004611624565b610c16565b61026661032236600461167d565b610c92565b6001546001600160a01b031661015f565b61015f610346366004611351565b610cf8565b6102206103593660046116b6565b610dcd565b61026661036c366004611244565b610f07565b335f9081526002602052604081205460ff166103a057604051633e34a41b60e21b815260040160405180910390fd5b5f8484846040516020016103b693929190611793565b6040516020818303038152906040528051906020012090505f6103ec825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f6104467f000000000000000000000000000000000000000000000000000000000000000084610f77565b6040516302fcdb3d60e61b81529091506001600160a01b0382169063bf36cf4090610479908a908a908a90600401611793565b5f604051808303815f87803b158015610490575f5ffd5b505af11580156104a2573d5f5f3e3d5ffd5b506104dc9250506001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001690508288610f83565b806001600160a01b0316876001600160a01b03167fae7dba32b6368fe6ee51906b83422dd0a0955cf2aeeb91e9b5960ab0fa455f078860405161052191815260200190565b60405180910390a3925050505b9392505050565b5f5f84848460405160200161054c939291906117c2565b6040516020818303038152906040528051906020012090505f61057a825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f00000000000000000000000000000000000000000000000000000000000000008330610fd5565b9695505050505050565b5f5f8484846040516020016105f593929190611793565b6040516020818303038152906040528051906020012090505f610623825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f00000000000000000000000000000000000000000000000000000000000000008330610fd5565b5f5f848484604051602001610694939291906117c2565b6040516020818303038152906040528051906020012090505f6106c2825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f00000000000000000000000000000000000000000000000000000000000000008330610fd5565b335f9081526002602052604090205460609060ff1661074e57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610760575081518451145b61077d57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156107975761079761125d565b6040519080825280602002602001820160405280156107c0578160200160208202803683370190505b5090505f5b8551811015610856576108248682815181106107e3576107e3611807565b60200260200101518683815181106107fd576107fd611807565b602002602001015186848151811061081757610817611807565b6020026020010151610cf8565b82828151811061083657610836611807565b6001600160a01b03909216602092830291909101909101526001016107c5565b50949350505050565b61086761103a565b61087b6001600160a01b0384168383610f83565b505050565b335f9081526002602052604090205460609060ff166108b257604051633e34a41b60e21b815260040160405180910390fd5b825184511480156108c4575081518451145b6108e157604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156108fb576108fb61125d565b604051908082528060200260200182016040528015610924578160200160208202803683370190505b5090505f5b85518110156108565761098886828151811061094757610947611807565b602002602001015186838151811061096157610961611807565b602002602001015186848151811061097b5761097b611807565b6020026020010151610a16565b82828151811061099a5761099a611807565b6001600160a01b0390921660209283029190910190910152600101610929565b6109c261103a565b6109cb5f611066565b565b60015433906001600160a01b03168114610a0a5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610a1381611066565b50565b335f9081526002602052604081205460ff16610a4557604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610a5b939291906117c2565b6040516020818303038152906040528051906020012090505f610a91825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f000000000000000000000000000000000000000000000000000000000000000084610f77565b604051633698b7e960e21b81529091506001600160a01b0382169063da62dfa490610479908a908a908a906004016117c2565b5f5f858585604051602001610b3593929190611793565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f00000000000000000000000000000000000000000000000000000000000000008230610fd5565b5f5f858585604051602001610bb1939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f00000000000000000000000000000000000000000000000000000000000000008230610fd5565b5f5f858585604051602001610c2d939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f00000000000000000000000000000000000000000000000000000000000000008230610fd5565b610c9a61103a565b6001600160a01b0382165f81815260026020908152604091829020805460ff191685151590811790915591519182527f583b0aa0e528532caf4b907c11d7a8158a122fe2a6fb80cd9b09776ebea8d92d910160405180910390a25050565b335f9081526002602052604081205460ff16610d2757604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610d3d939291906117c2565b6040516020818303038152906040528051906020012090505f610d73825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f000000000000000000000000000000000000000000000000000000000000000084610f77565b335f9081526002602052604090205460609060ff16610dff57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610e11575081518451145b610e2e57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b03811115610e4857610e4861125d565b604051908082528060200260200182016040528015610e71578160200160208202803683370190505b5090505f5b855181101561085657610ed5868281518110610e9457610e94611807565b6020026020010151868381518110610eae57610eae611807565b6020026020010151868481518110610ec857610ec8611807565b6020026020010151610371565b828281518110610ee757610ee7611807565b6001600160a01b0390921660209283029190910190910152600101610e76565b610f0f61103a565b600180546001600160a01b0383166001600160a01b03199091168117909155610f3f5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f61052e83835f61107f565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b17905261087b908490611114565b60405160388101919091526f5af43d82803e903d91602b57fd5bf3ff60248201526014810192909252733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b031690565b5f546001600160a01b031633146109cb5760405163118cdaa760e01b8152336004820152602401610a01565b600180546001600160a01b0319169055610a1381611186565b5f814710156110aa5760405163cf47918160e01b815247600482015260248101839052604401610a01565b763d602d80600a3d3981f3363d3d373d3d3d363d730000008460601b60e81c175f526e5af43d82803e903d91602b57fd5bf38460781b17602052826037600984f590506001600160a01b03811661052e5760405163b06ebf3d60e01b815260040160405180910390fd5b5f5f60205f8451602086015f885af180611133576040513d5f823e3d81fd5b50505f513d9150811561114a578060011415611157565b6001600160a01b0384163b155b1561118057604051635274afe760e01b81526001600160a01b0385166004820152602401610a01565b50505050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160a01b03811681146111eb575f5ffd5b919050565b80356bffffffffffffffffffffffff811681146111eb575f5ffd5b5f5f5f6060848603121561121d575f5ffd5b611226846111d5565b92506020840135915061123b604085016111f0565b90509250925092565b5f60208284031215611254575f5ffd5b61052e826111d5565b634e487b7160e01b5f52604160045260245ffd5b604051606081016001600160401b03811182821017156112935761129361125d565b60405290565b604051601f8201601f191681016001600160401b03811182821017156112c1576112c161125d565b604052919050565b5f81830360808112156112da575f5ffd5b604080519081016001600160401b03811182821017156112fc576112fc61125d565b60405291508161130b846111d5565b81526060601f198301121561131e575f5ffd5b611326611271565b6020858101358252604080870135828401526060909601359582019590955293019290925292915050565b5f5f5f60c08486031215611363575f5ffd5b61136c846111d5565b92506020840135915061123b85604086016112c9565b5f6001600160401b0382111561139a5761139a61125d565b5060051b60200190565b5f82601f8301126113b3575f5ffd5b81356113c66113c182611382565b611299565b8082825260208201915060208360051b8601019250858311156113e7575f5ffd5b602085015b8381101561140b576113fd816111d5565b8352602092830192016113ec565b5095945050505050565b5f82601f830112611424575f5ffd5b81356114326113c182611382565b8082825260208201915060208360051b860101925085831115611453575f5ffd5b602085015b8381101561140b578035835260209283019201611458565b5f5f5f60608486031215611482575f5ffd5b83356001600160401b03811115611497575f5ffd5b6114a3868287016113a4565b93505060208401356001600160401b038111156114be575f5ffd5b6114ca86828701611415565b92505060408401356001600160401b038111156114e5575f5ffd5b8401601f810186136114f5575f5ffd5b80356115036113c182611382565b8082825260208201915060208360071b850101925088831115611524575f5ffd5b6020840193505b828410156115505761153d89856112c9565b825260208201915060808401935061152b565b809450505050509250925092565b602080825282518282018190525f918401906040840190835b8181101561159e5783516001600160a01b0316835260209384019390920191600101611577565b509095945050505050565b5f5f5f606084860312156115bb575f5ffd5b6115c4846111d5565b92506115d2602085016111d5565b929592945050506040919091013590565b5f5f5f5f608085870312156115f6575f5ffd5b6115ff856111d5565b935060208501359250611614604086016111f0565b9396929550929360600135925050565b5f5f5f5f60e08587031215611637575f5ffd5b611640856111d5565b93506020850135925061165686604087016112c9565b9396929550929360c00135925050565b5f60208284031215611676575f5ffd5b5035919050565b5f5f6040838503121561168e575f5ffd5b611697836111d5565b9150602083013580151581146116ab575f5ffd5b809150509250929050565b5f5f5f606084860312156116c8575f5ffd5b83356001600160401b038111156116dd575f5ffd5b6116e9868287016113a4565b93505060208401356001600160401b03811115611704575f5ffd5b61171086828701611415565b92505060408401356001600160401b0381111561172b575f5ffd5b8401601f8101861361173b575f5ffd5b80356117496113c182611382565b8082825260208201915060208360051b85010192508883111561176a575f5ffd5b6020840193505b8284101561155057611782846111f0565b825260209384019390910190611771565b6001600160a01b0393909316835260208301919091526bffffffffffffffffffffffff16604082015260600190565b6001600160a01b03938416815260208082019390935281519093166040808501919091529082015180516060850152918201516080840152015160a082015260c00190565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122031494ca4a7c88b5cf3ead5c65765ba68900183ed0d71a8d0344e6249201f771d64736f6c634300081e003360c0604052636b36ec80600255636b36ec8060035534801561001f575f5ffd5b506040516115fb3803806115fb83398101604081905261003e916101b3565b826001600160a01b03811661006c57604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100758161013b565b505f81116100965760405163f13638ef60e01b815260040160405180910390fd5b818110156100b75760405163c7b7bb2560e01b815260040160405180910390fd5b608082905260a08190526040516100cd906101a6565b604051809103905ff0801580156100e6573d5f5f3e3d5ffd5b505f805260076020527f6d5257204ebe7d88fd91ae87941cb2dd9d8062b64ae5a2bd2d28ec40b9fbf6df80546001600160a01b0319166001600160a01b039290921691909117905550506001600655506101f2565b600180546001600160a01b031916905561015481610157565b50565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b61089980610d6283390190565b5f5f5f606084860312156101c5575f5ffd5b83516001600160a01b03811681146101db575f5ffd5b602085015160409095015190969495509392505050565b60805160a051610b4f6102135f395f6105cc01525f6105a60152610b4f5ff3fe608060405234801561000f575f5ffd5b5060043610610132575f3560e01c806395e09694116100b4578063acc2d0f611610079578063acc2d0f61461025e578063d792782414610271578063d99a2b7f14610282578063e30c3978146102a2578063f2fde38b146102b3578063f9ca8131146102c6575f5ffd5b806395e09694146101f55780639601ddde146102065780639b74026c14610230578063a18918ac14610238578063ac0058ac1461024b575f5ffd5b8063715018a6116100fa578063715018a6146101ba57806377c10228146101c257806379ba5097146101ca5780638da5cb5b146101d25780639083dd9d146101e2575f5ffd5b806319436726146101365780632c78655e14610160578063435370ae1461018057806367abaea21461019557806371369218146101a7575b5f5ffd5b6005546001600160a01b03165b6040516001600160a01b0390911681526020015b60405180910390f35b6101686102d9565b6040516001600160601b039091168152602001610157565b61019361018e3660046109c2565b61036c565b005b6002545b604051908152602001610157565b6101436101b53660046109fa565b610478565b6101936104bc565b600654610199565b6101936104cf565b5f546001600160a01b0316610143565b6101936101f0366004610a11565b610513565b6008546001600160601b0316610168565b61020e610570565b6040805182518152602080840151908201529181015190820152606001610157565b600354610199565b6101936102463660046109fa565b6105f3565b610193610259366004610a11565b610660565b61019361026c3660046109fa565b610787565b6004546001600160a01b0316610143565b610295610290366004610a3e565b6107f4565b6040516101579190610a8b565b6001546001600160a01b0316610143565b6101936102c1366004610a11565b610852565b6101936102d4366004610a11565b6108c2565b5f6102e2610918565b6008546001600160601b03166102f9816001610ab3565b600880546001600160601b039283166bffffffffffffffffffffffff1990911617905581165f81815260096020908152604091829020805460ff1916905590519182527f051bd2ed5105ee6330ed5d88da9652b0a627e0759b205a6109971f8f2f2da8a6910160405180910390a1905090565b610374610918565b5f61037e836107f4565b600281111561038f5761038f610a57565b1482906103c05760405163079271f960e51b81526001600160601b0390911660048201526024015b60405180910390fd5b505f8160028111156103d4576103d4610a57565b141582906104015760405163079271f960e51b81526001600160601b0390911660048201526024016103b7565b506001600160601b0382165f908152600960205260409020805482919060ff1916600183600281111561043657610436610a57565b02179055507f6c86956accfb4d18e99d126e315dbd3d3d0cdcf786ac669bbf1d6cfe1d30b2f1828260405161046c929190610ad2565b60405180910390a15050565b5f600654821082906104a057604051631e2cccb960e21b81526004016103b791815260200190565b50505f908152600760205260409020546001600160a01b031690565b6104c4610918565b6104cd5f610944565b565b60015433906001600160a01b031681146105075760405163118cdaa760e01b81526001600160a01b03821660048201526024016103b7565b61051081610944565b50565b61051b610918565b600480546001600160a01b0319166001600160a01b0383169081179091556040519081527f15e991732a2855e2f19715a198e4b59d30cf0c437ba3c4f12ed119124402490e906020015b60405180910390a150565b61059160405180606001604052805f81526020015f81526020015f81525090565b604051806060016040528060025481526020017f000000000000000000000000000000000000000000000000000000000000000081526020017f0000000000000000000000000000000000000000000000000000000000000000815250905090565b6105fb610918565b6003548190808210610629576040516329a1c10360e21b8152600481019290925260248201526044016103b7565b505060038190556040518181527f6c8a759a7c7ab68173702a4ac68dcad931eda85d6b72d569a55586fc8401bee090602001610565565b610668610918565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5f1b816001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106c7573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106eb9190610aef565b14819061071757604051635c8c965560e01b81526001600160a01b0390911660048201526024016103b7565b50600654610726816001610b06565b6006555f8181526007602090815260409182902080546001600160a01b0319166001600160a01b0386169081179091558251848152918201527fd17ccd075bd7ad17a1052f3d1a3041d19cda2534a8abca0513a5cb1b190088e7910161046c565b61078f610918565b60025481908082106107bd57604051638599e58b60e01b8152600481019290925260248201526044016103b7565b505060028190556040518181527f6459ecb2d9094d7a79722a51b55be0eec5c8b4f9c02890aa1dfb94f59dd5f55190602001610565565b6008545f9082906001600160601b03908116908216106108335760405163e64d218d60e01b81526001600160601b0390911660048201526024016103b7565b50506001600160601b03165f9081526009602052604090205460ff1690565b61085a610918565b600180546001600160a01b0383166001600160a01b0319909116811790915561088a5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6108ca610918565b600580546001600160a01b0319166001600160a01b0383169081179091556040519081527f5c7066da5f0384f3b22c58c34b3d9db732bcc8bcb3d40fb31e47bb2c5c16864e90602001610565565b5f546001600160a01b031633146104cd5760405163118cdaa760e01b81523360048201526024016103b7565b600180546001600160a01b0319169055610510815f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160601b03811681146109bd575f5ffd5b919050565b5f5f604083850312156109d3575f5ffd5b6109dc836109a7565b91506020830135600381106109ef575f5ffd5b809150509250929050565b5f60208284031215610a0a575f5ffd5b5035919050565b5f60208284031215610a21575f5ffd5b81356001600160a01b0381168114610a37575f5ffd5b9392505050565b5f60208284031215610a4e575f5ffd5b610a37826109a7565b634e487b7160e01b5f52602160045260245ffd5b60038110610a8757634e487b7160e01b5f52602160045260245ffd5b9052565b60208101610a998284610a6b565b92915050565b634e487b7160e01b5f52601160045260245ffd5b6001600160601b038181168382160190811115610a9957610a99610a9f565b6001600160601b038316815260408101610a376020830184610a6b565b5f60208284031215610aff575f5ffd5b5051919050565b80820180821115610a9957610a99610a9f56fea26469706673582212206edfcf2a864234ba34178d5a3ff4c1106dfe5da29b63dfd6c5c1a964c446c7d964736f6c634300081e003360a0604052306080523480156012575f5ffd5b505f80546001600160a01b03191661dead17905560805161084d61004c5f395f81816102b3015281816102dc015261045f015261084d5ff3fe60806040526004361061006e575f3560e01c8063ad3cb1cc1161004c578063ad3cb1cc146100da578063af43ecb614610117578063c4d66de814610133578063e7f43c6814610152575f5ffd5b80634f1ef2861461007257806352d1902d14610087578063aaf10f42146100ae575b5f5ffd5b610085610080366004610699565b610166565b005b348015610092575f5ffd5b5061009b610185565b6040519081526020015b60405180910390f35b3480156100b9575f5ffd5b506100c26101a0565b6040516001600160a01b0390911681526020016100a5565b3480156100e5575f5ffd5b5061010a604051806040016040528060058152602001640352e302e360dc1b81525081565b6040516100a5919061075f565b348015610122575f5ffd5b505f546001600160a01b03166100c2565b34801561013e575f5ffd5b5061008561014d366004610794565b6101c4565b34801561015d575f5ffd5b506100c2610234565b61016e6102a8565b6101778261034e565b6101818282610398565b5050565b5f61018e610454565b505f5160206107f85f395f51905f5290565b5f6101bf5f5160206107f85f395f51905f52546001600160a01b031690565b905090565b6001600160a01b0381166101eb57604051632a68e88960e21b815260040160405180910390fd5b5f546001600160a01b0316156102135760405162dc149f60e41b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b5f5f5f9054906101000a90046001600160a01b03166001600160a01b031663e7f43c686040518163ffffffff1660e01b8152600401602060405180830381865afa158015610284573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101bf91906107af565b306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016148061032e57507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166103225f5160206107f85f395f51905f52546001600160a01b031690565b6001600160a01b031614155b1561034c5760405163703e46dd60e11b815260040160405180910390fd5b565b5f5433906001600160a01b03168181146103935760405163f5f64b6760e01b81526001600160a01b039283166004820152911660248201526044015b60405180910390fd5b505050565b816001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156103f2575060408051601f3d908101601f191682019092526103ef918101906107ca565b60015b61041a57604051634c9c8ce360e01b81526001600160a01b038316600482015260240161038a565b5f5160206107f85f395f51905f52811461044a57604051632a87526960e21b81526004810182905260240161038a565b610393838361049d565b306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161461034c5760405163703e46dd60e11b815260040160405180910390fd5b6104a6826104f2565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a28051156104ea576103938282610555565b6101816105c7565b806001600160a01b03163b5f0361052757604051634c9c8ce360e01b81526001600160a01b038216600482015260240161038a565b5f5160206107f85f395f51905f5280546001600160a01b0319166001600160a01b0392909216919091179055565b60605f5f846001600160a01b03168460405161057191906107e1565b5f60405180830381855af49150503d805f81146105a9576040519150601f19603f3d011682016040523d82523d5f602084013e6105ae565b606091505b50915091506105be8583836105e6565b95945050505050565b341561034c5760405163b398979f60e01b815260040160405180910390fd5b6060826105fb576105f682610645565b61063e565b815115801561061257506001600160a01b0384163b155b1561063b57604051639996b31560e01b81526001600160a01b038516600482015260240161038a565b50805b9392505050565b8051156106555780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b50565b6001600160a01b038116811461066e575f5ffd5b634e487b7160e01b5f52604160045260245ffd5b5f5f604083850312156106aa575f5ffd5b82356106b581610671565b9150602083013567ffffffffffffffff8111156106d0575f5ffd5b8301601f810185136106e0575f5ffd5b803567ffffffffffffffff8111156106fa576106fa610685565b604051601f8201601f19908116603f0116810167ffffffffffffffff8111828210171561072957610729610685565b604052818152828201602001871015610740575f5ffd5b816020840160208301375f602083830101528093505050509250929050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f602082840312156107a4575f5ffd5b813561063e81610671565b5f602082840312156107bf575f5ffd5b815161063e81610671565b5f602082840312156107da575f5ffd5b5051919050565b5f82518060208501845e5f92019182525091905056fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbca26469706673582212208168d8d27aa002f7c7a2530a16817880993b2ff28d06bf78a66e6290e82d67c464736f6c634300081e003300000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d20000000000000000000000000000000000000000000000000000000001e133800000000000000000000000000000000000000000000000000000000001e13380
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610148575f3560e01c806379ba5097116100bf578063b57d21a011610079578063b57d21a014610301578063cf456ae714610314578063e30c397814610327578063ebfc3de214610338578063ee681f791461034b578063f2fde38b1461035e575f5ffd5b806379ba5097146102835780637e0ef6851461028b5780638126e4211461029e5780638da5cb5b146102b1578063949f8216146102c15780639e317f12146102d4575f5ffd5b8063505a372c11610110578063505a372c146101fa5780635ab18e2e1461020d5780635ab1bd531461022d5780635f3e849f146102535780636671c14f14610268578063715018a61461027b575f5ffd5b80630f28edeb1461014c57806321df0da71461017c5780633dd08c38146101a25780634d53d426146101d45780634e57ec12146101e7575b5f5ffd5b61015f61015a36600461120b565b610371565b6040516001600160a01b0390911681526020015b60405180910390f35b7f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d261015f565b6101c46101b0366004611244565b60026020525f908152604090205460ff1681565b6040519015158152602001610173565b61015f6101e2366004611351565b610535565b61015f6101f536600461120b565b6105de565b61015f610208366004611351565b61067d565b61022061021b366004611470565b61071c565b604051610173919061155e565b7f00000000000000000000000063841bad6b35b6419e15ca9bbbbdf446d4dc3dde61015f565b6102666102613660046115a9565b61085f565b005b610220610276366004611470565b610880565b6102666109ba565b6102666109cd565b61015f610299366004611351565b610a16565b61015f6102ac3660046115e3565b610b1e565b5f546001600160a01b031661015f565b61015f6102cf366004611624565b610b9a565b6102f36102e2366004611666565b5f9081526003602052604090205490565b604051908152602001610173565b61015f61030f366004611624565b610c16565b61026661032236600461167d565b610c92565b6001546001600160a01b031661015f565b61015f610346366004611351565b610cf8565b6102206103593660046116b6565b610dcd565b61026661036c366004611244565b610f07565b335f9081526002602052604081205460ff166103a057604051633e34a41b60e21b815260040160405180910390fd5b5f8484846040516020016103b693929190611793565b6040516020818303038152906040528051906020012090505f6103ec825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f6104467f000000000000000000000000aa1d98a82402c33908e9a77bc30b9c192f619c0384610f77565b6040516302fcdb3d60e61b81529091506001600160a01b0382169063bf36cf4090610479908a908a908a90600401611793565b5f604051808303815f87803b158015610490575f5ffd5b505af11580156104a2573d5f5f3e3d5ffd5b506104dc9250506001600160a01b037f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d21690508288610f83565b806001600160a01b0316876001600160a01b03167fae7dba32b6368fe6ee51906b83422dd0a0955cf2aeeb91e9b5960ab0fa455f078860405161052191815260200190565b60405180910390a3925050505b9392505050565b5f5f84848460405160200161054c939291906117c2565b6040516020818303038152906040528051906020012090505f61057a825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f0000000000000000000000006baa3ecc28fefb4b999d4dedbd080ca30d9267e98330610fd5565b9695505050505050565b5f5f8484846040516020016105f593929190611793565b6040516020818303038152906040528051906020012090505f610623825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f000000000000000000000000aa1d98a82402c33908e9a77bc30b9c192f619c038330610fd5565b5f5f848484604051602001610694939291906117c2565b6040516020818303038152906040528051906020012090505f6106c2825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f000000000000000000000000c4a8530aeb89da98cd11178930b39c2aa272874e8330610fd5565b335f9081526002602052604090205460609060ff1661074e57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610760575081518451145b61077d57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156107975761079761125d565b6040519080825280602002602001820160405280156107c0578160200160208202803683370190505b5090505f5b8551811015610856576108248682815181106107e3576107e3611807565b60200260200101518683815181106107fd576107fd611807565b602002602001015186848151811061081757610817611807565b6020026020010151610cf8565b82828151811061083657610836611807565b6001600160a01b03909216602092830291909101909101526001016107c5565b50949350505050565b61086761103a565b61087b6001600160a01b0384168383610f83565b505050565b335f9081526002602052604090205460609060ff166108b257604051633e34a41b60e21b815260040160405180910390fd5b825184511480156108c4575081518451145b6108e157604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156108fb576108fb61125d565b604051908082528060200260200182016040528015610924578160200160208202803683370190505b5090505f5b85518110156108565761098886828151811061094757610947611807565b602002602001015186838151811061096157610961611807565b602002602001015186848151811061097b5761097b611807565b6020026020010151610a16565b82828151811061099a5761099a611807565b6001600160a01b0390921660209283029190910190910152600101610929565b6109c261103a565b6109cb5f611066565b565b60015433906001600160a01b03168114610a0a5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610a1381611066565b50565b335f9081526002602052604081205460ff16610a4557604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610a5b939291906117c2565b6040516020818303038152906040528051906020012090505f610a91825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f0000000000000000000000006baa3ecc28fefb4b999d4dedbd080ca30d9267e984610f77565b604051633698b7e960e21b81529091506001600160a01b0382169063da62dfa490610479908a908a908a906004016117c2565b5f5f858585604051602001610b3593929190611793565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f000000000000000000000000aa1d98a82402c33908e9a77bc30b9c192f619c038230610fd5565b5f5f858585604051602001610bb1939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f0000000000000000000000006baa3ecc28fefb4b999d4dedbd080ca30d9267e98230610fd5565b5f5f858585604051602001610c2d939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f000000000000000000000000c4a8530aeb89da98cd11178930b39c2aa272874e8230610fd5565b610c9a61103a565b6001600160a01b0382165f81815260026020908152604091829020805460ff191685151590811790915591519182527f583b0aa0e528532caf4b907c11d7a8158a122fe2a6fb80cd9b09776ebea8d92d910160405180910390a25050565b335f9081526002602052604081205460ff16610d2757604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610d3d939291906117c2565b6040516020818303038152906040528051906020012090505f610d73825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f000000000000000000000000c4a8530aeb89da98cd11178930b39c2aa272874e84610f77565b335f9081526002602052604090205460609060ff16610dff57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610e11575081518451145b610e2e57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b03811115610e4857610e4861125d565b604051908082528060200260200182016040528015610e71578160200160208202803683370190505b5090505f5b855181101561085657610ed5868281518110610e9457610e94611807565b6020026020010151868381518110610eae57610eae611807565b6020026020010151868481518110610ec857610ec8611807565b6020026020010151610371565b828281518110610ee757610ee7611807565b6001600160a01b0390921660209283029190910190910152600101610e76565b610f0f61103a565b600180546001600160a01b0383166001600160a01b03199091168117909155610f3f5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f61052e83835f61107f565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b17905261087b908490611114565b60405160388101919091526f5af43d82803e903d91602b57fd5bf3ff60248201526014810192909252733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b031690565b5f546001600160a01b031633146109cb5760405163118cdaa760e01b8152336004820152602401610a01565b600180546001600160a01b0319169055610a1381611186565b5f814710156110aa5760405163cf47918160e01b815247600482015260248101839052604401610a01565b763d602d80600a3d3981f3363d3d373d3d3d363d730000008460601b60e81c175f526e5af43d82803e903d91602b57fd5bf38460781b17602052826037600984f590506001600160a01b03811661052e5760405163b06ebf3d60e01b815260040160405180910390fd5b5f5f60205f8451602086015f885af180611133576040513d5f823e3d81fd5b50505f513d9150811561114a578060011415611157565b6001600160a01b0384163b155b1561118057604051635274afe760e01b81526001600160a01b0385166004820152602401610a01565b50505050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160a01b03811681146111eb575f5ffd5b919050565b80356bffffffffffffffffffffffff811681146111eb575f5ffd5b5f5f5f6060848603121561121d575f5ffd5b611226846111d5565b92506020840135915061123b604085016111f0565b90509250925092565b5f60208284031215611254575f5ffd5b61052e826111d5565b634e487b7160e01b5f52604160045260245ffd5b604051606081016001600160401b03811182821017156112935761129361125d565b60405290565b604051601f8201601f191681016001600160401b03811182821017156112c1576112c161125d565b604052919050565b5f81830360808112156112da575f5ffd5b604080519081016001600160401b03811182821017156112fc576112fc61125d565b60405291508161130b846111d5565b81526060601f198301121561131e575f5ffd5b611326611271565b6020858101358252604080870135828401526060909601359582019590955293019290925292915050565b5f5f5f60c08486031215611363575f5ffd5b61136c846111d5565b92506020840135915061123b85604086016112c9565b5f6001600160401b0382111561139a5761139a61125d565b5060051b60200190565b5f82601f8301126113b3575f5ffd5b81356113c66113c182611382565b611299565b8082825260208201915060208360051b8601019250858311156113e7575f5ffd5b602085015b8381101561140b576113fd816111d5565b8352602092830192016113ec565b5095945050505050565b5f82601f830112611424575f5ffd5b81356114326113c182611382565b8082825260208201915060208360051b860101925085831115611453575f5ffd5b602085015b8381101561140b578035835260209283019201611458565b5f5f5f60608486031215611482575f5ffd5b83356001600160401b03811115611497575f5ffd5b6114a3868287016113a4565b93505060208401356001600160401b038111156114be575f5ffd5b6114ca86828701611415565b92505060408401356001600160401b038111156114e5575f5ffd5b8401601f810186136114f5575f5ffd5b80356115036113c182611382565b8082825260208201915060208360071b850101925088831115611524575f5ffd5b6020840193505b828410156115505761153d89856112c9565b825260208201915060808401935061152b565b809450505050509250925092565b602080825282518282018190525f918401906040840190835b8181101561159e5783516001600160a01b0316835260209384019390920191600101611577565b509095945050505050565b5f5f5f606084860312156115bb575f5ffd5b6115c4846111d5565b92506115d2602085016111d5565b929592945050506040919091013590565b5f5f5f5f608085870312156115f6575f5ffd5b6115ff856111d5565b935060208501359250611614604086016111f0565b9396929550929360600135925050565b5f5f5f5f60e08587031215611637575f5ffd5b611640856111d5565b93506020850135925061165686604087016112c9565b9396929550929360c00135925050565b5f60208284031215611676575f5ffd5b5035919050565b5f5f6040838503121561168e575f5ffd5b611697836111d5565b9150602083013580151581146116ab575f5ffd5b809150509250929050565b5f5f5f606084860312156116c8575f5ffd5b83356001600160401b038111156116dd575f5ffd5b6116e9868287016113a4565b93505060208401356001600160401b03811115611704575f5ffd5b61171086828701611415565b92505060408401356001600160401b0381111561172b575f5ffd5b8401601f8101861361173b575f5ffd5b80356117496113c182611382565b8082825260208201915060208360051b85010192508883111561176a575f5ffd5b6020840193505b8284101561155057611782846111f0565b825260209384019390910190611771565b6001600160a01b0393909316835260208301919091526bffffffffffffffffffffffff16604082015260600190565b6001600160a01b03938416815260208082019390935281519093166040808501919091529082015180516060850152918201516080840152015160a082015260c00190565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122031494ca4a7c88b5cf3ead5c65765ba68900183ed0d71a8d0344e6249201f771d64736f6c634300081e0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d20000000000000000000000000000000000000000000000000000000001e133800000000000000000000000000000000000000000000000000000000001e13380
-----Decoded View---------------
Arg [0] : __owner (address): 0x85e51a78FE8FE21d881894206A9adbf54e3Df8c3
Arg [1] : _token (address): 0xA27EC0006e59f245217Ff08CD52A7E8b169E62D2
Arg [2] : _unlockCliffDuration (uint256): 31536000
Arg [3] : _unlockLockDuration (uint256): 31536000
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 00000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3
Arg [1] : 000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2
Arg [2] : 0000000000000000000000000000000000000000000000000000000001e13380
Arg [3] : 0000000000000000000000000000000000000000000000000000000001e13380
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.