ETH Price: $3,192.18 (-4.00%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Renounce Ownersh...237868982025-11-13 1:04:5928 days ago1762995899IN
Aztec: Auction Token Vault
0 ETH0.000001840.07223113
Set Minter237868932025-11-13 1:03:5928 days ago1762995839IN
Aztec: Auction Token Vault
0 ETH0.000003220.06756505

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Method Block
From
To
0x3d602d80239893332025-12-11 12:07:598 mins ago1765454879
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239892822025-12-11 11:57:3518 mins ago1765454255
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239892552025-12-11 11:52:1124 mins ago1765453931
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239892472025-12-11 11:50:3525 mins ago1765453835
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239892432025-12-11 11:49:4726 mins ago1765453787
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239892342025-12-11 11:47:5928 mins ago1765453679
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239892252025-12-11 11:45:5930 mins ago1765453559
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239892152025-12-11 11:43:5932 mins ago1765453439
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891962025-12-11 11:40:1136 mins ago1765453211
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891842025-12-11 11:37:4738 mins ago1765453067
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891842025-12-11 11:37:4738 mins ago1765453067
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891712025-12-11 11:35:1141 mins ago1765452911
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891702025-12-11 11:34:5941 mins ago1765452899
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891572025-12-11 11:32:2344 mins ago1765452743
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891522025-12-11 11:31:2345 mins ago1765452683
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891412025-12-11 11:29:1147 mins ago1765452551
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891402025-12-11 11:28:5947 mins ago1765452539
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891392025-12-11 11:28:4747 mins ago1765452527
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239891272025-12-11 11:26:2350 mins ago1765452383
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239890872025-12-11 11:18:1158 mins ago1765451891
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239890802025-12-11 11:16:351 hr ago1765451795
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239890672025-12-11 11:13:591 hr ago1765451639
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239890582025-12-11 11:12:111 hr ago1765451531
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239890462025-12-11 11:09:471 hr ago1765451387
Aztec: Auction Token Vault
 Contract Creation0 ETH
0x3d602d80239890362025-12-11 11:07:471 hr ago1765451267
Aztec: Auction Token Vault
 Contract Creation0 ETH
View All Internal Transactions
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ATPFactoryNonces

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
Yes with 200 runs

Other Settings:
prague EvmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {Clones} from "@oz/proxy/Clones.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {IATPFactory, ATPFactory} from "./ATPFactory.sol";
import {ILATP, RevokableParams} from "./atps/linear/ILATP.sol";
import {LATP} from "./atps/linear/LATP.sol";
import {IMATP, MilestoneId} from "./atps/milestone/IMATP.sol";
import {MATP} from "./atps/milestone/MATP.sol";
import {INCATP} from "./atps/noclaim/INCATP.sol";
import {NCATP} from "./atps/noclaim/NCATP.sol";
import {Nonces} from "./Nonces.sol";

interface IATPFactoryNonces is IATPFactory {
    function predictLATPAddressWithNonce(
        address _beneficiary,
        uint256 _allocation,
        RevokableParams memory _revokableParams,
        uint256 _nonce
    ) external view returns (address);

    function predictNCATPAddressWithNonce(
        address _beneficiary,
        uint256 _allocation,
        RevokableParams memory _revokableParams,
        uint256 _nonce
    ) external view returns (address);

    function predictMATPAddressWithNonce(
        address _beneficiary,
        uint256 _allocation,
        MilestoneId _milestoneId,
        uint256 _nonce
    ) external view returns (address);
}

contract ATPFactoryNonces is IATPFactoryNonces, ATPFactory, Nonces {
    using SafeERC20 for IERC20;

    constructor(address __owner, IERC20 _token, uint256 _unlockCliffDuration, uint256 _unlockLockDuration)
        ATPFactory(__owner, _token, _unlockCliffDuration, _unlockLockDuration)
    {}

    /**
     * @notice  Predict the address of an LATP
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the LATP
     * @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
     *
     * @return  The address of the LATP
     */
    function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        view
        override(IATPFactory, ATPFactory)
        returns (address)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));

        uint256 nonce = nonces(salt);
        salt = keccak256(abi.encode(salt, nonce));
        return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
    }

    /**
     * @notice  Predict the address of an LATP with a given nonce
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the LATP
     * @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
     * @param _nonce   The nonce to use for the prediction
     *
     * @return  The address of the LATP
     */
    function predictLATPAddressWithNonce(
        address _beneficiary,
        uint256 _allocation,
        RevokableParams memory _revokableParams,
        uint256 _nonce
    ) external view override(IATPFactoryNonces) returns (address) {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
        salt = keccak256(abi.encode(salt, _nonce));
        return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
    }

    /// @inheritdoc IATPFactory
    function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        view
        override(IATPFactory, ATPFactory)
        returns (address)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));

        uint256 nonce = nonces(salt);
        salt = keccak256(abi.encode(salt, nonce));
        return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
    }

    /**
     * @notice  Predict the address of an NCATP with a given nonce
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the NCATP
     * @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the NCATP is revokable
     * @param _nonce   The nonce to use for the prediction
     *
     * @return  The address of the NCATP
     */
    function predictNCATPAddressWithNonce(
        address _beneficiary,
        uint256 _allocation,
        RevokableParams memory _revokableParams,
        uint256 _nonce
    ) external view override(IATPFactoryNonces) returns (address) {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
        salt = keccak256(abi.encode(salt, _nonce));
        return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
    }

    /// @inheritdoc IATPFactory
    function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
        external
        view
        virtual
        override(IATPFactory, ATPFactory)
        returns (address)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));

        uint256 nonce = nonces(salt);
        salt = keccak256(abi.encode(salt, nonce));
        return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
    }

    function predictMATPAddressWithNonce(
        address _beneficiary,
        uint256 _allocation,
        MilestoneId _milestoneId,
        uint256 _nonce
    ) external view override(IATPFactoryNonces) returns (address) {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
        salt = keccak256(abi.encode(salt, _nonce));
        return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
    }

    /**
     * @notice  Create and funds a new LATP
     *          The LATP is created using the `Clones` library and then initialized.
     *          We deploy deterministically using the initialization params as the salt.
     *          When created, the LATP is funded with the `_allocation` amount of tokens.
     *
     *          This setup is done to keep gas costs low.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the LATP
     * @param _revokableParams   The parameters for the accumulation lock, if the LATP is revokable
     *
     * @return  The LATP
     */
    function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        public
        override(IATPFactory, ATPFactory)
        onlyMinter
        returns (ILATP)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));

        uint256 nonce = useNonce(salt);
        salt = keccak256(abi.encode(salt, nonce));

        LATP atp = LATP(Clones.cloneDeterministic(address(LATP_IMPLEMENTATION), salt));
        atp.initialize(_beneficiary, _allocation, _revokableParams);
        TOKEN.safeTransfer(address(atp), _allocation);
        emit ATPCreated(_beneficiary, address(atp), _allocation);
        return ILATP(address(atp));
    }

    /**
     * @notice  Create and funds a new NCATP (Non-Claimable ATP)
     *          The NCATP is created using the `Clones` library and then initialized.
     *          We deploy deterministically using the initialization params as the salt.
     *          When created, the NCATP is funded with the `_allocation` amount of tokens.
     *
     *          This setup is done to keep gas costs low.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the NCATP
     * @param _revokableParams   The parameters for the accumulation lock, if the NCATP is revokable
     *
     * @return  The NCATP
     */
    function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        public
        override(IATPFactory, ATPFactory)
        onlyMinter
        returns (INCATP)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));

        uint256 nonce = useNonce(salt);
        salt = keccak256(abi.encode(salt, nonce));

        NCATP atp = NCATP(Clones.cloneDeterministic(address(NCATP_IMPLEMENTATION), salt));
        atp.initialize(_beneficiary, _allocation, _revokableParams);
        TOKEN.safeTransfer(address(atp), _allocation);
        emit ATPCreated(_beneficiary, address(atp), _allocation);
        return INCATP(address(atp));
    }

    /**
     * @notice  Create and funds a new MATP
     *          The MATP is created using the `Clones` library and then initialized.
     *          We deploy deterministically using the initialization params as the salt.
     *          When created, the MATP is funded with the `_allocation` amount of tokens.
     *
     *          This setup is done to keep gas costs low.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the MATP
     * @param _milestoneId   The milestone ID for the MATP
     *
     * @return  The MATP
     */
    function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
        public
        override(IATPFactory, ATPFactory)
        onlyMinter
        returns (IMATP)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));

        uint256 nonce = useNonce(salt);
        salt = keccak256(abi.encode(salt, nonce));

        MATP atp = MATP(Clones.cloneDeterministic(address(MATP_IMPLEMENTATION), salt));
        atp.initialize(_beneficiary, _allocation, _milestoneId);
        TOKEN.safeTransfer(address(atp), _allocation);
        emit ATPCreated(_beneficiary, address(atp), _allocation);
        return IMATP(address(atp));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    error CloneArgumentsTooLong();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple times will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create opcode, which should never revert.
     */
    function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
        return cloneWithImmutableArgs(implementation, args, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
     * parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneWithImmutableArgs(
        address implementation,
        bytes memory args,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        assembly ("memory-safe") {
            instance := create(value, add(bytecode, 0x20), mload(bytecode))
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
     * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
     * at the same address.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
     * but with a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.deploy(value, salt, bytecode);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.computeAddress(salt, keccak256(bytecode), deployer);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
    }

    /**
     * @dev Get the immutable args attached to a clone.
     *
     * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
     *   function will return an empty array.
     * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
     *   `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
     *   creation.
     * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
     *   function should only be used to check addresses that are known to be clones.
     */
    function fetchCloneArgs(address instance) internal view returns (bytes memory) {
        bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
        assembly ("memory-safe") {
            extcodecopy(instance, add(result, 32), 45, mload(result))
        }
        return result;
    }

    /**
     * @dev Helper that prepares the initcode of the proxy with immutable args.
     *
     * An assembly variant of this function requires copying the `args` array, which can be efficiently done using
     * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
     * abi.encodePacked is more expensive but also more portable and easier to review.
     *
     * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
     * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
     */
    function _cloneCodeWithImmutableArgs(
        address implementation,
        bytes memory args
    ) private pure returns (bytes memory) {
        if (args.length > 24531) revert CloneArgumentsTooLong();
        return
            abi.encodePacked(
                hex"61",
                uint16(args.length + 45),
                hex"3d81600a3d39f3363d3d373d3d3d363d73",
                implementation,
                hex"5af43d82803e903d91602b57fd5bf3",
                args
            );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {Ownable2Step, Ownable} from "@oz/access/Ownable2Step.sol";
import {Clones} from "@oz/proxy/Clones.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {ILATP, RevokableParams} from "./atps/linear/ILATP.sol";
import {IMATP, MilestoneId} from "./atps/milestone/IMATP.sol";
import {LATP} from "./atps/linear/LATP.sol";
import {MATP} from "./atps/milestone/MATP.sol";
import {INCATP} from "./atps/noclaim/INCATP.sol";
import {NCATP} from "./atps/noclaim/NCATP.sol";
import {Registry, IRegistry} from "./Registry.sol";

import {LATPFactory} from "./deployment-factories/LATPFactory.sol";
import {NCATPFactory} from "./deployment-factories/NCATPFactory.sol";
import {MATPFactory} from "./deployment-factories/MATPFactory.sol";

interface IATPFactory {
    event ATPCreated(address indexed beneficiary, address indexed atp, uint256 allocation);
    event MinterSet(address indexed minter, bool isMinter);

    error InvalidInputLength();
    error NotMinter();

    function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        returns (ILATP);

    function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        returns (INCATP);

    function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId) external returns (IMATP);

    function createLATPs(
        address[] memory _beneficiaries,
        uint256[] memory _allocations,
        RevokableParams[] memory _revokableParams
    ) external returns (ILATP[] memory);

    function createNCATPs(
        address[] memory _beneficiaries,
        uint256[] memory _allocations,
        RevokableParams[] memory _revokableParams
    ) external returns (INCATP[] memory);

    function createMATPs(
        address[] memory _beneficiaries,
        uint256[] memory _allocations,
        MilestoneId[] memory _milestoneIds
    ) external returns (IMATP[] memory);

    function recoverTokens(address _token, address _to, uint256 _amount) external;

    function setMinter(address _minter, bool _isMinter) external;

    function getRegistry() external view returns (IRegistry);

    function getToken() external view returns (IERC20);

    function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        view
        returns (address);

    function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        view
        returns (address);

    function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
        external
        view
        returns (address);
}

contract ATPFactory is Ownable2Step, IATPFactory {
    using SafeERC20 for IERC20;

    Registry internal immutable REGISTRY;
    IERC20 internal immutable TOKEN;

    LATP internal immutable LATP_IMPLEMENTATION;
    NCATP internal immutable NCATP_IMPLEMENTATION;
    MATP internal immutable MATP_IMPLEMENTATION;

    mapping(address => bool) public minter;

    modifier onlyMinter() {
        require(minter[msg.sender], NotMinter());
        _;
    }

    constructor(address __owner, IERC20 _token, uint256 _unlockCliffDuration, uint256 _unlockLockDuration)
        Ownable(__owner)
    {
        REGISTRY = new Registry(__owner, _unlockCliffDuration, _unlockLockDuration);
        TOKEN = _token;
        LATP_IMPLEMENTATION = LATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
        NCATP_IMPLEMENTATION = NCATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);
        MATP_IMPLEMENTATION = MATPFactory.deployImplementation(IRegistry(address(REGISTRY)), TOKEN);

        minter[__owner] = true;
        emit MinterSet(__owner, true);
    }

    /**
     * @notice  Recover any token from the contract
     *
     * @dev     The caller must be the `owner`
     *
     * @dev     Does not support Ether as it is not an ERC20,
     *
     * @param _token   The token to rescue
     * @param _to   The address to rescue the tokens to
     * @param _amount   The amount of tokens to rescue
     */
    function recoverTokens(address _token, address _to, uint256 _amount) external override(IATPFactory) onlyOwner {
        IERC20(_token).safeTransfer(_to, _amount);
    }

    /**
     * @notice  Set the minter status of an address
     *
     * @dev     The caller must be the `owner`
     *
     * @param _minter The address to set the minter status of
     * @param _isMinter The minter status to set
     */
    function setMinter(address _minter, bool _isMinter) external override(IATPFactory) onlyOwner {
        minter[_minter] = _isMinter;
        emit MinterSet(_minter, _isMinter);
    }

    /**
     * @notice  Create and fund multiple LATPs
     *          Creates the LATPs using the `clones` library, initializes it and funds it.
     *
     * @dev     The caller must be a minter
     *
     * @param _beneficiaries The addresses of the beneficiaries
     * @param _allocations The amounts of tokens to allocate to the LATPs
     * @param _revokableParams The parameters for the accumulation lock and revoke beneficiary,
     *                         provide empty `LockParams` and `address(0)` as `revokeBeneficiary`
     *                         if the LATP are not revokable
     *
     * @return The LATPs
     */
    function createLATPs(
        address[] memory _beneficiaries,
        uint256[] memory _allocations,
        RevokableParams[] memory _revokableParams
    ) external virtual override(IATPFactory) onlyMinter returns (ILATP[] memory) {
        require(
            _beneficiaries.length == _allocations.length && _beneficiaries.length == _revokableParams.length,
            InvalidInputLength()
        );
        ILATP[] memory atps = new ILATP[](_beneficiaries.length);
        for (uint256 i = 0; i < _beneficiaries.length; i++) {
            atps[i] = createLATP(_beneficiaries[i], _allocations[i], _revokableParams[i]);
        }
        return atps;
    }

    /**
     * @notice  Create and fund multiple NCATPs
     *          Creates the NCATPs using the `clones` library, initializes it and funds it.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiaries The addresses of the beneficiaries
     * @param _allocations The amounts of tokens to allocate to the NCATPs
     * @param _revokableParams The parameters for the accumulation lock and revoke beneficiary,
     *                         provide empty `LockParams` and `address(0)` as `revokeBeneficiary`
     *                         if the NCATP are not revokable
     *
     * @return The NCATPs
     */
    function createNCATPs(
        address[] memory _beneficiaries,
        uint256[] memory _allocations,
        RevokableParams[] memory _revokableParams
    ) external virtual override(IATPFactory) onlyMinter returns (INCATP[] memory) {
        require(
            _beneficiaries.length == _allocations.length && _beneficiaries.length == _revokableParams.length,
            InvalidInputLength()
        );
        INCATP[] memory atps = new INCATP[](_beneficiaries.length);
        for (uint256 i = 0; i < _beneficiaries.length; i++) {
            atps[i] = createNCATP(_beneficiaries[i], _allocations[i], _revokableParams[i]);
        }
        return atps;
    }

    /**
     * @notice  Create and fund multiple MATPs
     *          Creates the MATPs using the `clones` library, initializes it and funds it.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiaries The addresses of the beneficiaries
     * @param _allocations The amounts of tokens to allocate to the MATPs
     * @param _milestoneIds The milestone IDs for the MATPs
     *
     * @return The MATPs
     */
    function createMATPs(
        address[] memory _beneficiaries,
        uint256[] memory _allocations,
        MilestoneId[] memory _milestoneIds
    ) external virtual override(IATPFactory) onlyMinter returns (IMATP[] memory) {
        require(
            _beneficiaries.length == _allocations.length && _beneficiaries.length == _milestoneIds.length,
            InvalidInputLength()
        );
        IMATP[] memory atps = new IMATP[](_beneficiaries.length);
        for (uint256 i = 0; i < _beneficiaries.length; i++) {
            atps[i] = createMATP(_beneficiaries[i], _allocations[i], _milestoneIds[i]);
        }
        return atps;
    }

    /**
     * @notice  Get the registry
     *
     * @return  The registry
     */
    function getRegistry() external view override(IATPFactory) returns (IRegistry) {
        return IRegistry(address(REGISTRY));
    }

    /**
     * @notice  Get the token
     *
     * @return  The token
     */
    function getToken() external view override(IATPFactory) returns (IERC20) {
        return TOKEN;
    }

    /**
     * @notice  Predict the address of an LATP
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the LATP
     * @param _revokableParams The parameters for the accumulation lock and revoke beneficiary, if the LATPs are revokable
     *
     * @return  The address of the LATP
     */
    function predictLATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        view
        virtual
        override(IATPFactory)
        returns (address)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
        return Clones.predictDeterministicAddress(address(LATP_IMPLEMENTATION), salt, address(this));
    }

    function predictNCATPAddress(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        view
        virtual
        override(IATPFactory)
        returns (address)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
        return Clones.predictDeterministicAddress(address(NCATP_IMPLEMENTATION), salt, address(this));
    }

    function predictMATPAddress(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
        external
        view
        virtual
        override(IATPFactory)
        returns (address)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
        return Clones.predictDeterministicAddress(address(MATP_IMPLEMENTATION), salt, address(this));
    }

    /**
     * @notice  Create and funds a new LATP
     *          The LATP is created using the `Clones` library and then initialized.
     *          We deploy deterministically using the initialization params as the salt.
     *          When created, the LATP is funded with the `_allocation` amount of tokens.
     *
     *          This setup is done to keep gas costs low.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the LATP
     * @param _revokableParams   The parameters for the accumulation lock, if the LATP is revokable
     *
     * @return  The LATP
     */
    function createLATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        public
        virtual
        override(IATPFactory)
        onlyMinter
        returns (ILATP)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
        LATP atp = LATP(Clones.cloneDeterministic(address(LATP_IMPLEMENTATION), salt));
        atp.initialize(_beneficiary, _allocation, _revokableParams);
        TOKEN.safeTransfer(address(atp), _allocation);
        emit ATPCreated(_beneficiary, address(atp), _allocation);
        return ILATP(address(atp));
    }

    /**
     * @notice  Create and funds a new NCATP (Non-Claimable ATP)
     *          The NCATP is created using the `Clones` library and then initialized.
     *          We deploy deterministically using the initialization params as the salt.
     *          When created, the NCATP is funded with the `_allocation` amount of tokens.
     *
     *          This setup is done to keep gas costs low.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the NCATP
     * @param _revokableParams   The parameters for the accumulation lock, if the NCATP is revokable
     *
     * @return  The NCATP
     */
    function createNCATP(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        public
        virtual
        override(IATPFactory)
        onlyMinter
        returns (INCATP)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _revokableParams));
        NCATP atp = NCATP(Clones.cloneDeterministic(address(NCATP_IMPLEMENTATION), salt));
        atp.initialize(_beneficiary, _allocation, _revokableParams);
        TOKEN.safeTransfer(address(atp), _allocation);
        emit ATPCreated(_beneficiary, address(atp), _allocation);
        return INCATP(address(atp));
    }

    /**
     * @notice  Create and funds a new MATP
     *          The MATP is created using the `Clones` library and then initialized.
     *          We deploy deterministically using the initialization params as the salt.
     *          When created, the MATP is funded with the `_allocation` amount of tokens.
     *
     *          This setup is done to keep gas costs low.
     *
     * @dev     The caller must be a `minter`
     *
     * @param _beneficiary   The address of the beneficiary
     * @param _allocation    The amount of tokens to allocate to the MATP
     * @param _milestoneId   The milestone ID for the MATP
     *
     * @return  The MATP
     */
    function createMATP(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
        public
        virtual
        override(IATPFactory)
        onlyMinter
        returns (IMATP)
    {
        bytes32 salt = keccak256(abi.encode(_beneficiary, _allocation, _milestoneId));
        MATP atp = MATP(Clones.cloneDeterministic(address(MATP_IMPLEMENTATION), salt));
        atp.initialize(_beneficiary, _allocation, _milestoneId);
        TOKEN.safeTransfer(address(atp), _allocation);
        emit ATPCreated(_beneficiary, address(atp), _allocation);
        return IMATP(address(atp));
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {Lock, LockParams} from "./../../libraries/LockLib.sol";
import {IATPCore, IATPPeriphery} from "./../base/IATP.sol";

struct LATPStorage {
    uint32 accumulationStartTime;
    uint32 accumulationCliffDuration;
    uint32 accumulationLockDuration;
    bool isRevokable;
    address revokeBeneficiary;
}

struct RevokableParams {
    address revokeBeneficiary;
    LockParams lockParams;
}

interface ILATPCore is IATPCore {
    error InsufficientStakeable(uint256 stakeable, uint256 allowance);
    error LockParamsMustBeEmpty();

    function initialize(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams) external;

    function getAccumulationLock() external view returns (Lock memory);
    function getRevokableAmount() external view returns (uint256);
    function getStakeableAmount() external view returns (uint256);
}

interface ILATPPeriphery is IATPPeriphery {
    function getStore() external view returns (LATPStorage memory);
    function getRevokeBeneficiary() external view returns (address);
}

interface ILATP is ILATPCore, ILATPPeriphery {}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {ATPType} from "./../base/IATP.sol";
import {ILATP, ILATPPeriphery, IATPPeriphery, LATPStorage} from "./ILATP.sol";
import {LATPCore, IERC20, IRegistry, IBaseStaker} from "./LATPCore.sol";

/**
 * @title   Linear Aztec Token Position
 * @notice  Linear Aztec Token Position with additional helper view functions
 *          This is a helper contract to make it easier to use the LATP contract
 *          Will not include any state mutating extensions, just easier access to the data
 *          I might be kinda strange doing this, but I just find it simpler when looking at the state mutating
 *          functions, as I don't need to skip functions etc.
 *
 *          It is also a neat way to make sure that all of the getters follow a similar pattern, as we like using
 *          different naming conventions for different types of data, e.g., constant vs mutable.
 */
contract LATP is ILATP, LATPCore {
    constructor(IRegistry _registry, IERC20 _token) LATPCore(_registry, _token) {}

    function getToken() external view override(IATPPeriphery) returns (IERC20) {
        return TOKEN;
    }

    function getRegistry() external view override(IATPPeriphery) returns (IRegistry) {
        return REGISTRY;
    }

    function getStaker() external view override(IATPPeriphery) returns (IBaseStaker) {
        return staker;
    }

    function getExecuteAllowedAt() external view override(IATPPeriphery) returns (uint256) {
        return REGISTRY.getExecuteAllowedAt();
    }

    function getClaimed() external view override(IATPPeriphery) returns (uint256) {
        return claimed;
    }

    function getRevoker() external view override(IATPPeriphery) returns (address) {
        return REGISTRY.getRevoker();
    }

    function getIsRevokable() external view override(IATPPeriphery) returns (bool) {
        return store.isRevokable;
    }

    function getAllocation() external view override(IATPPeriphery) returns (uint256) {
        return allocation;
    }

    function getStore() external view override(ILATPPeriphery) returns (LATPStorage memory) {
        return store;
    }

    function getRevokeBeneficiary() external view override(ILATPPeriphery) returns (address) {
        return store.revokeBeneficiary;
    }

    function getType() external pure virtual override(IATPPeriphery) returns (ATPType) {
        return ATPType.Linear;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {MilestoneId} from "./../../Registry.sol";

import {IATPCore, IATPPeriphery} from "./../base/IATP.sol";

interface IMATPCore is IATPCore {
    error RevokedOrFailed();

    function initialize(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId) external;
}

interface IMATPPeriphery is IATPPeriphery {
    function getMilestoneId() external view returns (MilestoneId);
    function getIsRevoked() external view returns (bool);
}

interface IMATP is IMATPCore, IMATPPeriphery {}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {ATPType} from "./../base/IATP.sol";
import {IMATP, IMATPPeriphery, IATPPeriphery} from "./IMATP.sol";
import {MATPCore, MilestoneId, IRegistry, IERC20, IBaseStaker} from "./MATPCore.sol";

contract MATP is IMATP, MATPCore {
    constructor(IRegistry _registry, IERC20 _token) MATPCore(_registry, _token) {}

    function getToken() external view override(IATPPeriphery) returns (IERC20) {
        return TOKEN;
    }

    function getRegistry() external view override(IATPPeriphery) returns (IRegistry) {
        return REGISTRY;
    }

    function getStaker() external view override(IATPPeriphery) returns (IBaseStaker) {
        return staker;
    }

    function getExecuteAllowedAt() external view override(IATPPeriphery) returns (uint256) {
        return REGISTRY.getExecuteAllowedAt();
    }

    function getClaimed() external view override(IATPPeriphery) returns (uint256) {
        return claimed;
    }

    function getRevoker() external view override(IATPPeriphery) returns (address) {
        return REGISTRY.getRevoker();
    }

    function getIsRevokable() external view override(IATPPeriphery) returns (bool) {
        return !isRevoked;
    }

    function getAllocation() external view override(IATPPeriphery) returns (uint256) {
        return allocation;
    }

    function getMilestoneId() external view override(IMATPPeriphery) returns (MilestoneId) {
        return milestoneId;
    }

    function getIsRevoked() external view override(IMATPPeriphery) returns (bool) {
        return isRevoked;
    }

    function getType() external pure override(IATPPeriphery) returns (ATPType) {
        return ATPType.Milestone;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {LockParams} from "./../../libraries/LockLib.sol";
import {IATPPeriphery} from "./../base/IATP.sol";

import {ILATPCore} from "./../linear/ILATP.sol";

struct NCATPStorage {
    uint32 accumulationStartTime;
    uint32 accumulationCliffDuration;
    uint32 accumulationLockDuration;
    bool isRevokable;
    address revokeBeneficiary;
}

struct RevokableParams {
    address revokeBeneficiary;
    LockParams lockParams;
}

interface INCATPCore is ILATPCore {}

interface INCATPPeriphery is IATPPeriphery {
    function getStore() external view returns (NCATPStorage memory);
    function getRevokeBeneficiary() external view returns (address);
}

interface INCATP is INCATPCore, INCATPPeriphery {}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {ATPType, IATPCore} from "./../base/IATP.sol";
import {LATP} from "./../linear/LATP.sol";
import {LATPCore, IERC20, IRegistry} from "./../linear/LATPCore.sol";

/**
 * @title   Non Claimable Linear Aztec Position
 * @notice  An override of the LATP contract to make it non-claimable.
 */
contract NCATP is LATP {
    uint256 public immutable CREATED_AT_TIMESTAMP;

    constructor(IRegistry _registry, IERC20 _token) LATP(_registry, _token) {
        CREATED_AT_TIMESTAMP = block.timestamp;
    }

    function claim() external override(IATPCore, LATPCore) onlyBeneficiary returns (uint256) {
        revert NoClaimable();
    }

    function getType() external pure override(LATP) returns (ATPType) {
        return ATPType.NonClaim;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

/**
 * @title Track hash Nonces
 * @dev See OpenZeppelin's Nonces.sol
 */
abstract contract Nonces {
    mapping(bytes32 hash => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for a hash.
     */
    function nonces(bytes32 _hash) public view virtual returns (uint256) {
        return _nonces[_hash];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function useNonce(bytes32 _hash) internal virtual returns (uint256) {
        // For each hash, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[_hash]++;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
            // if no address was created, and returndata is not empty, bubble revert
            if and(iszero(addr), not(iszero(returndatasize()))) {
                let p := mload(0x40)
                returndatacopy(p, 0, returndatasize())
                revert(p, returndatasize())
            }
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}

File 14 of 42 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {Ownable2Step, Ownable} from "@oz/access/Ownable2Step.sol";
import {UUPSUpgradeable, ERC1967Utils} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {LockParams} from "./libraries/LockLib.sol";
import {BaseStaker} from "./staker/BaseStaker.sol";

type MilestoneId is uint96;

type StakerVersion is uint256;

enum MilestoneStatus {
    Pending,
    Failed,
    Succeeded
}

interface IRegistry {
    event UpdatedRevoker(address revoker);
    event UpdatedRevokerOperator(address revokerOperator);
    event UpdatedExecuteAllowedAt(uint256 executeAllowedAt);
    event UpdatedUnlockStartTime(uint256 unlockStartTime);
    event StakerRegistered(StakerVersion version, address implementation);
    event MilestoneAdded(MilestoneId milestoneId);
    event MilestoneStatusUpdated(MilestoneId milestoneId, MilestoneStatus status);

    error InvalidExecuteAllowedAt(uint256 newExecuteAllowedAt, uint256 currentExecuteAllowedAt);
    error InvalidUnlockStartTime(uint256 newUnlockStartTime, uint256 currentUnlockStartTime);
    error InvalidUnlockDuration();
    error InvalidUnlockCliffDuration();
    error InvalidStakerImplementation(address implementation);

    error UnRegisteredStaker(StakerVersion version);
    error InvalidMilestoneId(MilestoneId milestoneId);
    error InvalidMilestoneStatus(MilestoneId milestoneId);

    function setRevoker(address _revoker) external;
    function setRevokerOperator(address _revokerOperator) external;
    function setExecuteAllowedAt(uint256 _executeAllowedAt) external;
    function setUnlockStartTime(uint256 _unlockStartTime) external;
    function registerStakerImplementation(address _implementation) external;
    function addMilestone() external returns (MilestoneId);
    function setMilestoneStatus(MilestoneId _milestoneId, MilestoneStatus _status) external;

    function getRevoker() external view returns (address);
    function getRevokerOperator() external view returns (address);
    function getExecuteAllowedAt() external view returns (uint256);
    function getUnlockStartTime() external view returns (uint256);
    function getGlobalLockParams() external view returns (LockParams memory);
    function getStakerImplementation(StakerVersion _version) external view returns (address);
    function getNextStakerVersion() external view returns (StakerVersion);
    function getMilestoneStatus(MilestoneId _milestoneId) external view returns (MilestoneStatus);
    function getNextMilestoneId() external view returns (MilestoneId);
}

contract Registry is Ownable2Step, IRegistry {
    uint256 internal immutable UNLOCK_CLIFF_DURATION;
    uint256 internal immutable UNLOCK_LOCK_DURATION;

    // @note An initial value set to be the unix timestamp of 1st of January 2027
    uint256 internal unlockStartTime = 1798761600;
    uint256 internal executeAllowedAt = 1798761600;
    address internal revoker;
    address internal revokerOperator;

    StakerVersion internal nextStakerVersion;
    mapping(StakerVersion version => address implementation) internal stakerImplementations;

    MilestoneId internal nextMilestoneId;
    mapping(MilestoneId milestoneId => MilestoneStatus status) internal milestones;

    constructor(address __owner, uint256 _unlockCliffDuration, uint256 _unlockLockDuration) Ownable(__owner) {
        require(_unlockLockDuration > 0, InvalidUnlockDuration());
        require(_unlockLockDuration >= _unlockCliffDuration, InvalidUnlockCliffDuration());

        UNLOCK_CLIFF_DURATION = _unlockCliffDuration;
        UNLOCK_LOCK_DURATION = _unlockLockDuration;

        // @note Register the base staker implementation
        stakerImplementations[StakerVersion.wrap(0)] = address(new BaseStaker());
        nextStakerVersion = StakerVersion.wrap(1);
    }

    /**
     * @notice  Add a new milestone
     *
     * @dev Only callable by the owner
     *
     * @return  The milestone id
     */
    function addMilestone() external override(IRegistry) onlyOwner returns (MilestoneId) {
        MilestoneId milestoneId = nextMilestoneId;
        nextMilestoneId = MilestoneId.wrap(MilestoneId.unwrap(nextMilestoneId) + 1);
        milestones[milestoneId] = MilestoneStatus.Pending; // To be explicit

        emit MilestoneAdded(milestoneId);
        return milestoneId;
    }

    function setMilestoneStatus(MilestoneId _milestoneId, MilestoneStatus _status)
        external
        override(IRegistry)
        onlyOwner
    {
        require(getMilestoneStatus(_milestoneId) == MilestoneStatus.Pending, InvalidMilestoneStatus(_milestoneId));
        require(_status != MilestoneStatus.Pending, InvalidMilestoneStatus(_milestoneId));
        milestones[_milestoneId] = _status;

        emit MilestoneStatusUpdated(_milestoneId, _status);
    }

    /**
     * @notice  Register a new staker implementation
     *
     * @dev Only callable by the owner
     *
     * @param _implementation   The address of the staker implementation
     */
    function registerStakerImplementation(address _implementation) external override(IRegistry) onlyOwner {
        require(
            UUPSUpgradeable(_implementation).proxiableUUID() == ERC1967Utils.IMPLEMENTATION_SLOT,
            InvalidStakerImplementation(_implementation)
        );

        StakerVersion version = nextStakerVersion;
        nextStakerVersion = StakerVersion.wrap(StakerVersion.unwrap(nextStakerVersion) + 1);
        stakerImplementations[version] = _implementation;

        emit StakerRegistered(version, _implementation);
    }

    /**
     * @notice  Set the revoker address
     *
     * @dev Only callable by the owner
     *
     * @param _revoker   The address of the revoker
     */
    function setRevoker(address _revoker) external override(IRegistry) onlyOwner {
        revoker = _revoker;
        emit UpdatedRevoker(_revoker);
    }

    function setRevokerOperator(address _revokerOperator) external override(IRegistry) onlyOwner {
        revokerOperator = _revokerOperator;
        emit UpdatedRevokerOperator(_revokerOperator);
    }

    /**
     * @notice  Set the execute allowed at timestamp
     *          Can only be decreased to avoid unintentional updates and give some guarantees to LATP beneficiaries
     *
     * @dev Only callable by the owner
     *
     * @param _executeAllowedAt   The timestamp of when the execute is allowed
     */
    function setExecuteAllowedAt(uint256 _executeAllowedAt) external override(IRegistry) onlyOwner {
        require(_executeAllowedAt < executeAllowedAt, InvalidExecuteAllowedAt(_executeAllowedAt, executeAllowedAt));
        executeAllowedAt = _executeAllowedAt;
        emit UpdatedExecuteAllowedAt(_executeAllowedAt);
    }

    /**
     * @notice  Set the unlock start time
     *          Can only be decreased to avoid unintentional updates and give some guarantees to LATP beneficiaries
     *
     * @dev Only callable by the owner
     *
     * @param _unlockStartTime   The timestamp of when the unlock starts
     */
    function setUnlockStartTime(uint256 _unlockStartTime) external override(IRegistry) onlyOwner {
        require(_unlockStartTime < unlockStartTime, InvalidUnlockStartTime(_unlockStartTime, unlockStartTime));
        unlockStartTime = _unlockStartTime;
        emit UpdatedUnlockStartTime(_unlockStartTime);
    }

    /**
     * @notice  Get the revoker address
     *
     * @return  The address of the revoker
     */
    function getRevoker() external view override(IRegistry) returns (address) {
        return revoker;
    }

    function getRevokerOperator() external view override(IRegistry) returns (address) {
        return revokerOperator;
    }

    /**
     * @notice  Get the execute allowed at timestamp
     *
     * @return  The timestamp of when the execute is allowed
     */
    function getExecuteAllowedAt() external view override(IRegistry) returns (uint256) {
        return executeAllowedAt;
    }

    /**
     * @notice  Get the unlock start time
     *
     * @return  The timestamp of when the unlock starts
     */
    function getUnlockStartTime() external view override(IRegistry) returns (uint256) {
        return unlockStartTime;
    }

    /**
     * @notice  Get the lock params for the global unlocking schedule
     *
     * @return  The global lock params
     */
    function getGlobalLockParams() external view override(IRegistry) returns (LockParams memory) {
        return LockParams({
            startTime: unlockStartTime, cliffDuration: UNLOCK_CLIFF_DURATION, lockDuration: UNLOCK_LOCK_DURATION
        });
    }

    /**
     * @notice  Get the implementation for a given staker version
     *
     * @param   _version   The version of the staker
     *
     * @return  The implementation for the given staker version
     */
    function getStakerImplementation(StakerVersion _version) external view override(IRegistry) returns (address) {
        require(StakerVersion.unwrap(_version) < StakerVersion.unwrap(nextStakerVersion), UnRegisteredStaker(_version));
        return stakerImplementations[_version];
    }

    /**
     * @notice  Get the next staker version
     *
     * @return  The next staker version
     */
    function getNextStakerVersion() external view override(IRegistry) returns (StakerVersion) {
        return nextStakerVersion;
    }

    function getNextMilestoneId() external view override(IRegistry) returns (MilestoneId) {
        return nextMilestoneId;
    }

    function getMilestoneStatus(MilestoneId _milestoneId) public view override(IRegistry) returns (MilestoneStatus) {
        require(
            MilestoneId.unwrap(_milestoneId) < MilestoneId.unwrap(nextMilestoneId), InvalidMilestoneId(_milestoneId)
        );
        return milestones[_milestoneId];
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {IRegistry} from "../Registry.sol";
import {LATP} from "../atps/linear/LATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";

library LATPFactory {
    /**
     * @notice Deploy the LATP implementation
     * @param _registry The registry
     * @param _token The token
     * @return The LATP implementation
     */
    function deployImplementation(IRegistry _registry, IERC20 _token) external returns (LATP) {
        return new LATP(_registry, _token);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {IRegistry} from "../Registry.sol";
import {NCATP} from "../atps/noclaim/NCATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";

library NCATPFactory {
    /**
     * @notice Deploy the NCATP implementation
     * @param _registry The registry
     * @param _token The token
     * @return The NCATP implementation
     */
    function deployImplementation(IRegistry _registry, IERC20 _token) external returns (NCATP) {
        return new NCATP(_registry, _token);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {IRegistry} from "../Registry.sol";
import {MATP} from "../atps/milestone/MATP.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";

library MATPFactory {
    /**
     * @notice Deploy the MATP implementation
     * @param _registry The registry
     * @param _token The token
     * @return The MATP implementation
     */
    function deployImplementation(IRegistry _registry, IERC20 _token) external returns (MATP) {
        return new MATP(_registry, _token);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

/**
 * @notice  The parameters for a lock
 *          The parameters used to derive the actual lock.
 *
 * @param   startTime The timestamp that the lock starts at (0 before this value)
 * @param   cliffDuration Time until the cliff is reached
 * @param   lockDuration Time until the lock is fully unlocked
 */
struct LockParams {
    uint256 startTime;
    uint256 cliffDuration;
    uint256 lockDuration;
}

/**
 * @notice  The lock struct
 * @param   startTime The timestamp that the lock starts at (0 before this value)
 * @param   cliff The timestamp of the cliff of the lock (0 before this value, >= startTime)
 * @param   endTime The timestamp that the lock ends at, >= cliff
 * @param   allocation The amount of tokens that are locked
 */
struct Lock {
    uint256 startTime;
    uint256 cliff;
    uint256 endTime;
    uint256 allocation;
}

/**
 * @title   LockLib
 * @notice  Library for handling "locks" on assets
 *          A lock is in this case, a curve defining the amount available at any given timestamp.
 *          The particular lock is a linear curve with a cliff.
 */
library LockLib {
    error LockDurationMustBeGTZero();
    error LockDurationMustBeGECliffDuration(uint256 lockDuration, uint256 cliffDuration);

    /**
     * @notice  Check if the lock has ended
     *
     * @param _lock   The lock
     * @param _timestamp   The timestamp to check
     *
     * @return  True if the lock has ended
     */
    function hasEnded(Lock memory _lock, uint256 _timestamp) internal pure returns (bool) {
        return _timestamp >= _lock.endTime;
    }

    /**
     * @notice  Get the unlocked value of the lock at a given timestamp
     *
     * @param _lock   The lock
     * @param _timestamp   The timestamp to get the value at
     *
     * @return  The unlocked value at the given timestamp
     */
    function unlockedAt(Lock memory _lock, uint256 _timestamp) internal pure returns (uint256) {
        if (_timestamp < _lock.cliff) {
            return 0;
        }

        if (_timestamp >= _lock.endTime) {
            return _lock.allocation;
        }

        return (_lock.allocation * (_timestamp - _lock.startTime)) / (_lock.endTime - _lock.startTime);
    }

    /**
     * @notice  Create a lock
     *
     * @dev     The caller should make sure that `_allocation` is not zero
     *
     * @param _params   The lock params
     * @param _allocation   The allocation of the lock
     *
     * @return  The lock
     */
    function createLock(LockParams memory _params, uint256 _allocation) internal pure returns (Lock memory) {
        LockLib.assertValid(_params);
        return Lock({
            startTime: _params.startTime,
            cliff: _params.startTime + _params.cliffDuration,
            endTime: _params.startTime + _params.lockDuration,
            allocation: _allocation
        });
    }

    /**
     * @notice  Assert that the lock params are valid
     *
     * @param _params   The lock params
     */
    function assertValid(LockParams memory _params) internal pure {
        require(_params.lockDuration > 0, LockDurationMustBeGTZero());
        require(
            _params.lockDuration >= _params.cliffDuration,
            LockDurationMustBeGECliffDuration(_params.lockDuration, _params.cliffDuration)
        );
    }

    /**
     * @notice  Check if the lock params are empty
     *
     * @param _params   The lock params
     *
     * @return  True if the lock params are empty
     */
    function isEmpty(LockParams memory _params) internal pure returns (bool) {
        return _params.startTime == 0 && _params.cliffDuration == 0 && _params.lockDuration == 0;
    }

    /**
     * @notice  Get an empty lock params
     *
     * @return  An empty lock params
     */
    function empty() internal pure returns (LockParams memory) {
        return LockParams({startTime: 0, cliffDuration: 0, lockDuration: 0});
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {Lock} from "../../libraries/LockLib.sol";
import {IRegistry, StakerVersion} from "../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";

enum ATPType {
    Linear,
    Milestone,
    NonClaim
}

interface IATPCore {
    event StakerInitialized(IBaseStaker staker);
    event StakerUpgraded(StakerVersion version);
    event StakerOperatorUpdated(address operator);
    event Claimed(uint256 amount);
    event ApprovedStaker(uint256 allowance);
    event Rescued(address asset, address to, uint256 amount);
    event Revoked(uint256 amount);

    error AlreadyInitialized();
    error InvalidBeneficiary(address beneficiary);
    error NotBeneficiary(address caller, address beneficiary);
    error LockHasEnded();
    error InvalidTokenAddress(address token);
    error InvalidRegistry(address registry);
    error AllocationMustBeGreaterThanZero();
    error InvalidAsset(address asset);
    error ExecutionNotAllowedYet(uint256 timestamp, uint256 executeAllowedAt);
    error NotRevokable();
    error NotRevoker(address caller, address revoker);
    error NoClaimable();
    error LockDurationMustBeGTZero(string variant);
    error InvalidUpgrade();

    function upgradeStaker(StakerVersion _version) external;
    function approveStaker(uint256 _allowance) external;
    function updateStakerOperator(address _operator) external;
    function claim() external returns (uint256);
    function rescueFunds(address _asset, address _to) external;
    function revoke() external returns (uint256);
    function getClaimable() external view returns (uint256);
    function getGlobalLock() external view returns (Lock memory);
    function getBeneficiary() external view returns (address);
    function getOperator() external view returns (address);
}

interface IATPPeriphery {
    function getToken() external view returns (IERC20);
    function getRegistry() external view returns (IRegistry);
    function getExecuteAllowedAt() external view returns (uint256);

    function getClaimed() external view returns (uint256);
    function getRevoker() external view returns (address);
    function getIsRevokable() external view returns (bool);
    function getAllocation() external view returns (uint256);

    function getType() external view returns (ATPType);
    function getStaker() external view returns (IBaseStaker);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {ERC1967Proxy} from "@oz/proxy/ERC1967/ERC1967Proxy.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {LockParams, Lock, LockLib} from "./../../libraries/LockLib.sol";
import {IRegistry, StakerVersion} from "./../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
import {ILATPCore, IATPCore, LATPStorage, RevokableParams} from "./ILATP.sol";

/**
 * @title   Linear Aztec Token Position Core
 * @notice  The core logic of the Linear Aztec Token Position
 * @dev     This contract is abstract and cannot be deployed on its own.
 *          It is meant to be inherited by the `LATP` contract.
 *          MUST be deployed using the `ATPFactory` contract.
 */
abstract contract LATPCore is ILATPCore {
    using SafeCast for uint256;
    using SafeERC20 for IERC20;
    using LockLib for Lock;

    IERC20 internal immutable TOKEN;
    IRegistry internal immutable REGISTRY;

    uint256 internal allocation;
    address internal beneficiary;
    IBaseStaker internal staker;
    address internal operator;

    uint256 internal claimed = 0;

    LATPStorage internal store;

    /**
     * @dev     The caller must be the beneficiary
     */
    modifier onlyBeneficiary() {
        require(msg.sender == beneficiary, NotBeneficiary(msg.sender, beneficiary));
        _;
    }

    /**
     * @dev     Since we are using the `Clones` library to create the LATP's to use
     *          we can't use the constructor to initialize the individual ones, but
     *          we can use it to initialize values that will be shared across all the clones.
     *
     * @param _registry   The registry
     * @param _token             The token
     */
    constructor(IRegistry _registry, IERC20 _token) {
        require(address(_registry) != address(0), InvalidRegistry(address(_registry)));
        require(address(_token) != address(0), InvalidTokenAddress(address(_token)));

        TOKEN = _token;
        REGISTRY = _registry;

        staker = IBaseStaker(address(0xdead));
    }

    /**
     * @notice  Initialize the Aztec Token Position
     *          Creates a `Staker`, sets the `beneficiary` and `allocation`
     *          If the LATP is revokable, it will set the `accumulation` lock as well
     *
     * @dev     If run twice, the `staker` will already be set and this will revert
     *          with the `AlreadyInitialized` error
     *
     * @dev     When done by the `ATPFactory` this will happen in the same transaction as LATP creation
     *
     * @param _beneficiary              The address of the beneficiary
     * @param _allocation               The amount of tokens to allocate to the LATP
     * @param _revokableParams          The parameters for the accumulation lock and revoke beneficiary, if the LATP is revokable
     */
    function initialize(address _beneficiary, uint256 _allocation, RevokableParams memory _revokableParams)
        external
        override(ILATPCore)
    {
        require(address(staker) == address(0), AlreadyInitialized());
        require(_beneficiary != address(0), InvalidBeneficiary(address(0)));
        require(_allocation > 0, AllocationMustBeGreaterThanZero());

        beneficiary = _beneficiary;
        allocation = _allocation;

        staker = createStaker();

        if (_revokableParams.revokeBeneficiary != address(0)) {
            LockLib.assertValid(_revokableParams.lockParams);

            store = LATPStorage({
                isRevokable: true,
                accumulationStartTime: _revokableParams.lockParams.startTime.toUint32(),
                accumulationCliffDuration: _revokableParams.lockParams.cliffDuration.toUint32(),
                accumulationLockDuration: _revokableParams.lockParams.lockDuration.toUint32(),
                revokeBeneficiary: _revokableParams.revokeBeneficiary
            });
        } else {
            // If the LATP is non-revokable, the store will be all 0, so we do not need to set storage
            // We will however check that the lock params are empty, to reduce potential for confusion
            require(LockLib.isEmpty(_revokableParams.lockParams), LockParamsMustBeEmpty());
        }
    }

    /**
     * @notice  Upgrade the staker contract to a new version
     *
     * @param _version The version of the staker to upgrade to
     */
    function upgradeStaker(StakerVersion _version) external override(IATPCore) onlyBeneficiary {
        address impl = REGISTRY.getStakerImplementation(_version);
        UUPSUpgradeable(address(staker)).upgradeToAndCall(impl, "");

        require(staker.getATP() == address(this), InvalidUpgrade());

        emit StakerUpgraded(_version);
    }

    /**
     * @notice  Update the operator of the staker contract
     *
     * @param _operator The address of the new operator
     */
    function updateStakerOperator(address _operator) external override(IATPCore) onlyBeneficiary {
        operator = _operator;
        emit StakerOperatorUpdated(_operator);
    }

    /**
     * @notice  Cancel the accumulation of assets
     *
     * @return  The amount of tokens revoked
     */
    function revoke() external override(IATPCore) returns (uint256) {
        require(store.isRevokable, NotRevokable());

        address revoker = REGISTRY.getRevoker();
        require(msg.sender == revoker, NotRevoker(msg.sender, revoker));

        Lock memory accumulationLock = getAccumulationLock();
        require(!accumulationLock.hasEnded(block.timestamp), LockHasEnded());

        uint256 debt = getRevokableAmount();

        store.isRevokable = false;

        TOKEN.safeTransfer(store.revokeBeneficiary, debt);

        emit Revoked(debt);
        return debt;
    }

    /**
     * @notice  Rescue funds that have been sent to the contract by mistake
     *          Allows the beneficiary to transfer funds that are not unlock token from the contract.
     *
     * @param _asset  The asset to rescue
     * @param _to     The address to send the assets to
     */
    function rescueFunds(address _asset, address _to) external override(IATPCore) onlyBeneficiary {
        require(_asset != address(TOKEN), InvalidAsset(_asset));
        IERC20 asset = IERC20(_asset);
        uint256 amount = asset.balanceOf(address(this));
        asset.safeTransfer(_to, amount);

        emit Rescued(_asset, _to, amount);
    }

    /**
     * @notice  Authorizes the staker contract for the specified amount.
     *
     * @param _allowance The amount of tokens to authorize the staker contract for
     */
    function approveStaker(uint256 _allowance) external override(IATPCore) onlyBeneficiary {
        // slither-disable-start block-timestamp
        // As we are not relying on block.timestamp for randomness but merely for when we will toggle
        // the EXECUTE_ALLOWED_AT flag, and time will only ever increase, we can safely ignore the warning.
        uint256 executeAllowedAt = REGISTRY.getExecuteAllowedAt();
        require(block.timestamp >= executeAllowedAt, ExecutionNotAllowedYet(block.timestamp, executeAllowedAt));
        // slither-disable-end block-timestamp

        uint256 stakeable = getStakeableAmount();
        require(stakeable >= _allowance, InsufficientStakeable(stakeable, _allowance));

        TOKEN.approve(address(staker), _allowance);

        emit ApprovedStaker(_allowance);
    }

    /**
     * @notice  Claim the amount of tokens that are available for the owner to claim.
     *
     * @dev     The `caller` must be the `beneficiary`
     *
     * @return  The amount of tokens claimed
     */
    function claim() external virtual override(IATPCore) onlyBeneficiary returns (uint256) {
        uint256 amount = getClaimable();
        require(amount > 0, NoClaimable());

        claimed += amount;

        TOKEN.safeTransfer(msg.sender, amount);

        // @note After the transfer, we need to ensure that the allowance is not too high.
        // Namely, if the allowance is larger than the stakeable amount it should be reduced.
        uint256 stakeable = getStakeableAmount();
        uint256 allowance = TOKEN.allowance(address(this), address(staker));
        if (stakeable < allowance) {
            TOKEN.approve(address(staker), stakeable);
        }

        emit Claimed(amount);
        return amount;
    }

    function getOperator() public view override(IATPCore) returns (address) {
        return operator;
    }

    function getBeneficiary() public view override(IATPCore) returns (address) {
        return beneficiary;
    }

    /**
     * @notice Compute the amount of tokens that can be claimed.
     *
     * @return  The amount of tokens that can be claimed
     */
    function getClaimable() public view override(IATPCore) returns (uint256) {
        Lock memory globalLock = getGlobalLock();
        uint256 unlocked = globalLock.hasEnded(block.timestamp)
            ? type(uint256).max
            : (globalLock.unlockedAt(block.timestamp) - claimed);

        return Math.min(TOKEN.balanceOf(address(this)) - getRevokableAmount(), unlocked);
    }

    /**
     * @notice  Get the global unlock schedule lock
     *
     * @return  The global lock
     */
    function getGlobalLock() public view override(IATPCore) returns (Lock memory) {
        return LockLib.createLock(REGISTRY.getGlobalLockParams(), allocation);
    }

    /**
     * @notice  Get the accumulation lock
     *
     * @return  The accumulation lock or empty if not revokable
     */
    function getAccumulationLock() public view override(ILATPCore) returns (Lock memory) {
        require(store.isRevokable, NotRevokable());
        return LockLib.createLock(
            LockParams({
                startTime: store.accumulationStartTime,
                cliffDuration: store.accumulationCliffDuration,
                lockDuration: store.accumulationLockDuration
            }),
            allocation
        );
    }

    /**
     * @notice  Get the amount of tokens that can be revoked
     *
     * @return  The amount of tokens that can be revoked
     */
    function getRevokableAmount() public view override(ILATPCore) returns (uint256) {
        if (!store.isRevokable) {
            return 0;
        }
        return allocation - getAccumulationLock().unlockedAt(block.timestamp);
    }

    /**
     * @notice  Get the amount of tokens that can be staked
     *
     * @return  The amount of tokens that can be staked
     */
    function getStakeableAmount() public view override(ILATPCore) returns (uint256) {
        if (!store.isRevokable) {
            return type(uint256).max;
        }
        return TOKEN.balanceOf(address(this)) - getRevokableAmount();
    }

    /**
     * @notice  Create a new staker contract with the `ERC1967Proxy`
     *          the initial implementation used will the be `BaseStaker`
     *
     * @return  The new staker contract
     */
    function createStaker() private returns (IBaseStaker) {
        address impl = REGISTRY.getStakerImplementation(StakerVersion.wrap(0));
        ERC1967Proxy proxy = new ERC1967Proxy(impl, abi.encodeCall(IBaseStaker.initialize, address(this)));
        IBaseStaker _staker = IBaseStaker(address(proxy));
        emit StakerInitialized(_staker);
        return _staker;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {ERC1967Proxy} from "@oz/proxy/ERC1967/ERC1967Proxy.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Lock, LockLib} from "./../../libraries/LockLib.sol";
import {IRegistry, StakerVersion, MilestoneId, MilestoneStatus} from "./../../Registry.sol";
import {IBaseStaker} from "./../../staker/BaseStaker.sol";
import {IMATPCore, IATPCore} from "./IMATP.sol";

/**
 * @title   Milestone Aztec Token Position Core
 * @notice  The core logic of the Milestone Aztec Token Position
 * @dev     This contract is abstract and cannot be deployed on its own.
 *          It is meant to be inherited by the `MATP` contract.
 *          MUST be deployed using the `ATPFactory` contract.
 */
abstract contract MATPCore is IMATPCore {
    using SafeCast for uint256;
    using SafeERC20 for IERC20;
    using LockLib for Lock;

    IERC20 internal immutable TOKEN;
    IRegistry internal immutable REGISTRY;

    uint256 internal allocation;

    // 160 + 96 = 256
    address internal beneficiary;
    MilestoneId internal milestoneId;

    IBaseStaker internal staker;
    address internal operator;

    uint256 internal claimed = 0;
    bool internal isRevoked = false;

    /**
     * @dev     The caller must be the beneficiary, or if the milestone have failed it must be the revoker
     */
    modifier onlyBeneficiary() {
        address _beneficiary = getBeneficiary();
        require(msg.sender == _beneficiary, NotBeneficiary(msg.sender, _beneficiary));
        _;
    }

    /**
     * @dev     Since we are using the `Clones` library to create the ATP's to use
     *          we can't use the constructor to initialize the individual ones, but
     *          we can use it to initialize values that will be shared across all the clones.
     *
     * @param _registry   The registry
     * @param _token      The token
     */
    constructor(IRegistry _registry, IERC20 _token) {
        require(address(_registry) != address(0), InvalidRegistry(address(_registry)));
        require(address(_token) != address(0), InvalidTokenAddress(address(_token)));

        TOKEN = _token;
        REGISTRY = _registry;

        staker = IBaseStaker(address(0xdead));
    }

    /**
     * @notice  Initialize the Aztec Token Position
     *          Creates a `Staker`, sets the `beneficiary` and `allocation`
     *          If the ATP is revokable, it will set the `accumulation` lock as well
     *
     * @dev     If run twice, the `staker` will already be set and this will revert
     *          with the `AlreadyInitialized` error
     *
     * @dev     When done by the `ATPFactory` this will happen in the same transaction as ATP creation
     *
     * @param _beneficiary              The address of the beneficiary
     * @param _allocation               The amount of tokens to allocate to the ATP
     * @param _milestoneId              The milestone id
     */
    function initialize(address _beneficiary, uint256 _allocation, MilestoneId _milestoneId)
        external
        override(IMATPCore)
    {
        require(address(staker) == address(0), AlreadyInitialized());
        require(_beneficiary != address(0), InvalidBeneficiary(address(0)));
        require(_allocation > 0, AllocationMustBeGreaterThanZero());

        require(
            REGISTRY.getMilestoneStatus(_milestoneId) == MilestoneStatus.Pending,
            IRegistry.InvalidMilestoneStatus(_milestoneId)
        );

        beneficiary = _beneficiary;
        milestoneId = _milestoneId;
        allocation = _allocation;
        staker = createStaker();
    }

    /**
     * @notice  Upgrade the staker contract to a new version
     *
     * @param _version The version of the staker to upgrade to
     */
    function upgradeStaker(StakerVersion _version) external override(IATPCore) onlyBeneficiary {
        address impl = REGISTRY.getStakerImplementation(_version);
        UUPSUpgradeable(address(staker)).upgradeToAndCall(impl, "");

        require(staker.getATP() == address(this), InvalidUpgrade());

        emit StakerUpgraded(_version);
    }

    /**
     * @notice  Cancel the accumulation of assets
     *
     * @return  The amount of tokens revoked
     */
    function revoke() external override(IATPCore) returns (uint256) {
        require(!isRevoked, NotRevokable());
        require(REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Pending, NotRevokable());
        address revoker = REGISTRY.getRevoker();
        require(msg.sender == revoker, NotRevoker(msg.sender, revoker));

        isRevoked = true;

        emit Revoked(allocation);

        return allocation;
    }

    /**
     * @notice  Rescue funds that have been sent to the contract by mistake
     *          Allows the beneficiary to transfer funds that are not unlock token from the contract.
     *
     * @param _asset  The asset to rescue
     * @param _to     The address to send the assets to
     */
    function rescueFunds(address _asset, address _to) external override(IATPCore) {
        require(_asset != address(TOKEN), InvalidAsset(_asset));
        require(msg.sender == beneficiary, NotBeneficiary(msg.sender, beneficiary));
        IERC20 asset = IERC20(_asset);
        uint256 amount = asset.balanceOf(address(this));
        asset.safeTransfer(_to, amount);

        emit Rescued(_asset, _to, amount);
    }

    /**
     * @notice  Authorizes the staker contract for the specified amount.
     *
     * @param _allowance The amount of tokens to authorize the staker contract for
     */
    function approveStaker(uint256 _allowance) external override(IATPCore) onlyBeneficiary {
        // slither-disable-start block-timestamp
        // As we are not relying on block.timestamp for randomness but merely for when we will toggle
        // the EXECUTE_ALLOWED_AT flag, and time will only ever increase, we can safely ignore the warning.
        uint256 executeAllowedAt = REGISTRY.getExecuteAllowedAt();
        require(block.timestamp >= executeAllowedAt, ExecutionNotAllowedYet(block.timestamp, executeAllowedAt));
        // slither-disable-end block-timestamp

        TOKEN.approve(address(staker), _allowance);

        emit ApprovedStaker(_allowance);
    }

    /**
     * @notice  Claim the amount of tokens that are available for the owner to claim.
     *
     * @dev     The `caller` must be the `beneficiary`
     *
     * @return  The amount of tokens claimed
     */
    function claim() external override(IATPCore) onlyBeneficiary returns (uint256) {
        uint256 amount = getClaimable();
        require(amount > 0, NoClaimable());

        claimed += amount;

        TOKEN.safeTransfer(msg.sender, amount);

        emit Claimed(amount);
        return amount;
    }

    /**
     * @notice  Update the operator of the staker contract
     *
     * @param _operator The address of the new operator
     */
    function updateStakerOperator(address _operator) public override(IATPCore) onlyBeneficiary {
        require(!isRevoked && REGISTRY.getMilestoneStatus(milestoneId) != MilestoneStatus.Failed, RevokedOrFailed());

        operator = _operator;
        emit StakerOperatorUpdated(_operator);
    }

    /**
     * @notice Compute the amount of tokens that can be claimed.
     *
     * @return  The amount of tokens that can be claimed
     */
    function getClaimable() public view override(IATPCore) returns (uint256) {
        MilestoneStatus status = REGISTRY.getMilestoneStatus(milestoneId);
        if (isRevoked || status == MilestoneStatus.Failed) {
            // When revoked or milestone failed, the lock is ignored as it is the revoker
            // claiming, and it should be able to bypass these
            return TOKEN.balanceOf(address(this));
        }
        if (status != MilestoneStatus.Succeeded) {
            return 0;
        }

        Lock memory globalLock = getGlobalLock();
        uint256 unlocked = globalLock.hasEnded(block.timestamp)
            ? type(uint256).max
            : (globalLock.unlockedAt(block.timestamp) - claimed);

        return Math.min(TOKEN.balanceOf(address(this)), unlocked);
    }

    /**
     * @notice  Get the global unlock schedule lock
     *
     * @return  The global lock
     */
    function getGlobalLock() public view override(IATPCore) returns (Lock memory) {
        return LockLib.createLock(REGISTRY.getGlobalLockParams(), allocation);
    }

    /**
     * @notice  Get the beneficiary of the ATP
     *          If the milestone has failed or ATP was revoked, the beneficiary is the revoker
     *
     * @return  The beneficiary
     */
    function getBeneficiary() public view override(IATPCore) returns (address) {
        if (isRevoked || REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Failed) {
            return REGISTRY.getRevoker();
        }
        return beneficiary;
    }

    /**
     * @notice  Get the operator of the staker contract
     *          If the milestone has failed or ATP was revoked, the operator is the revoker operator
     *
     * @return  The operator
     */
    function getOperator() public view override(IATPCore) returns (address) {
        if (isRevoked || REGISTRY.getMilestoneStatus(milestoneId) == MilestoneStatus.Failed) {
            return REGISTRY.getRevokerOperator();
        }
        return operator;
    }

    /**
     * @notice  Create a new staker contract with the `ERC1967Proxy`
     *          the initial implementation used will the be `BaseStaker`
     *
     * @return  The new staker contract
     */
    function createStaker() private returns (IBaseStaker) {
        address impl = REGISTRY.getStakerImplementation(StakerVersion.wrap(0));
        ERC1967Proxy proxy = new ERC1967Proxy(impl, abi.encodeCall(IBaseStaker.initialize, address(this)));
        IBaseStaker _staker = IBaseStaker(address(proxy));
        emit StakerInitialized(_staker);
        return _staker;
    }
}

File 25 of 42 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 26 of 42 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.22;

import {IERC1822Proxiable} from "../../interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    /**
     * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC-1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.27;

import {ERC1967Utils} from "@oz/proxy/ERC1967/ERC1967Utils.sol";
import {UUPSUpgradeable} from "@oz/proxy/utils/UUPSUpgradeable.sol";
import {IATPCore} from "../atps/base/IATP.sol";

interface IBaseStaker {
    function initialize(address _atp) external;

    function getATP() external view returns (address);
    function getOperator() external view returns (address);
    function getImplementation() external view returns (address);
}

contract BaseStaker is IBaseStaker, UUPSUpgradeable {
    address internal atp;

    error AlreadyInitialized();
    error ZeroATP();
    error NotATP(address caller, address atp);
    error NotOperator(address caller, address operator);
    error UnSupportedOperation();

    modifier onlyOperator() {
        address operator = getOperator();
        require(msg.sender == operator, NotOperator(msg.sender, operator));
        _;
    }

    modifier onlyATP() {
        require(msg.sender == address(atp), NotATP(msg.sender, address(atp)));
        _;
    }

    constructor() {
        atp = address(0xdead);
    }

    function initialize(address _atp) external virtual override(IBaseStaker) {
        require(address(_atp) != address(0), ZeroATP());
        require(address(atp) == address(0), AlreadyInitialized());

        atp = _atp;
    }

    function getImplementation() external view virtual override(IBaseStaker) returns (address) {
        return ERC1967Utils.getImplementation();
    }

    function getATP() public view virtual override(IBaseStaker) returns (address) {
        return atp;
    }

    function getOperator() public view virtual override(IBaseStaker) returns (address) {
        return IATPCore(atp).getOperator();
    }

    function _authorizeUpgrade(address _newImplementation) internal virtual override(UUPSUpgradeable) onlyATP {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Proxy.sol)

pragma solidity ^0.8.22;

import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";

/**
 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
 * implementation address that can be changed. This address is stored in storage in the location specified by
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
 * implementation behind the proxy.
 */
contract ERC1967Proxy is Proxy {
    /**
     * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
     *
     * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
     * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address implementation, bytes memory _data) payable {
        ERC1967Utils.upgradeToAndCall(implementation, _data);
    }

    /**
     * @dev Returns the current implementation address.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
     */
    function _implementation() internal view virtual override returns (address) {
        return ERC1967Utils.getImplementation();
    }
}

File 31 of 42 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 32 of 42 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 35 of 42 : draft-IERC1822.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.22;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

File 40 of 42 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

Settings
{
  "remappings": [
    "src/=src/",
    "test/=test/",
    "@aztec/=lib/l1-contracts/src/",
    "@aztec-test/=lib/l1-contracts/test/",
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@oz/=lib/openzeppelin-contracts/contracts/",
    "forge-std/=lib/forge-std/src/",
    "@atp/=lib/teegeeee/src/",
    "@atp-mock/=lib/teegeeee/src/test/mocks/",
    "@zkpassport/=lib/circuits/src/solidity/src/",
    "@splits/=lib/splits-contracts-monorepo/packages/splits-v2/src/",
    "@predicate/=lib/predicate-contracts/src/",
    "@teegeeee/=lib/teegeeee/src/",
    "@twap-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/src/",
    "@twap-auction-test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/",
    "@launcher/=lib/liquidity-launcher/src/",
    "@v4c/=lib/liquidity-launcher/lib/v4-core/src/",
    "@v4p/=lib/liquidity-launcher/lib/v4-periphery/src/",
    "@aztec-blob-lib/=lib/l1-contracts/src/core/libraries/rollup/",
    "@ensdomains/=lib/liquidity-launcher/lib/v4-core/node_modules/@ensdomains/",
    "@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
    "@openzeppelin-upgrades-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
    "@openzeppelin-upgrades/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/",
    "@openzeppelin-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
    "@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
    "@solady/=lib/liquidity-launcher/lib/solady/",
    "@test/=lib/l1-contracts/test/",
    "@uniswap/v4-core/=lib/liquidity-launcher/lib/v4-core/",
    "@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
    "@zkpassport-test/=lib/l1-contracts/lib/circuits/src/solidity/test/",
    "btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
    "circuits/=lib/circuits/src/",
    "continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
    "ds-test/=lib/predicate-contracts/lib/forge-std/lib/ds-test/src/",
    "eigenlayer-contracts/=lib/predicate-contracts/lib/eigenlayer-contracts/",
    "eigenlayer-middleware/=lib/predicate-contracts/lib/eigenlayer-middleware/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-gas-snapshot/=lib/liquidity-launcher/lib/continuous-clearing-auction/lib/forge-gas-snapshot/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "hardhat/=lib/liquidity-launcher/lib/v4-core/node_modules/hardhat/",
    "kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
    "l1-contracts/=lib/l1-contracts/src/",
    "lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
    "liquidity-launcher/=lib/liquidity-launcher/",
    "merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
    "openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
    "openzeppelin-contracts-upgradeable-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
    "openzeppelin-contracts-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
    "openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin-foundry-upgrades/=lib/predicate-contracts/lib/openzeppelin-foundry-upgrades/src/",
    "openzeppelin-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/",
    "optimism/=lib/liquidity-launcher/lib/optimism/",
    "permit2/=lib/liquidity-launcher/lib/permit2/",
    "predicate-contracts/=lib/predicate-contracts/src/",
    "safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
    "solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
    "solady/=lib/liquidity-launcher/lib/solady/src/",
    "solmate/=lib/predicate-contracts/lib/solmate/src/",
    "splits-contracts-monorepo/=lib/splits-contracts-monorepo/",
    "teegeeee/=lib/teegeeee/src/",
    "utils/=lib/predicate-contracts/lib/utils/",
    "v4-core/=lib/liquidity-launcher/lib/v4-core/src/",
    "v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
    "zkpassport-packages/=lib/zkpassport-packages/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": false,
  "libraries": {
    "lib/teegeeee/src/ATPFactoryNonces.sol": {
      "LATPFactory": "0xd95b04129d57e301453815b17f6e6b2a69512e78",
      "MATPFactory": "0x90d06b1c29f3284508efa6fa3d116d166629e7d2",
      "NCATPFactory": "0x39e9a0aeaac3a6b46dc0ce235807dc0f64555594"
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"__owner","type":"address"},{"internalType":"contract IERC20","name":"_token","type":"address"},{"internalType":"uint256","name":"_unlockCliffDuration","type":"uint256"},{"internalType":"uint256","name":"_unlockLockDuration","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidInputLength","type":"error"},{"inputs":[],"name":"NotMinter","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"beneficiary","type":"address"},{"indexed":true,"internalType":"address","name":"atp","type":"address"},{"indexed":false,"internalType":"uint256","name":"allocation","type":"uint256"}],"name":"ATPCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"minter","type":"address"},{"indexed":false,"internalType":"bool","name":"isMinter","type":"bool"}],"name":"MinterSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"createLATP","outputs":[{"internalType":"contract ILATP","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_beneficiaries","type":"address[]"},{"internalType":"uint256[]","name":"_allocations","type":"uint256[]"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams[]","name":"_revokableParams","type":"tuple[]"}],"name":"createLATPs","outputs":[{"internalType":"contract ILATP[]","name":"","type":"address[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"internalType":"MilestoneId","name":"_milestoneId","type":"uint96"}],"name":"createMATP","outputs":[{"internalType":"contract IMATP","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_beneficiaries","type":"address[]"},{"internalType":"uint256[]","name":"_allocations","type":"uint256[]"},{"internalType":"MilestoneId[]","name":"_milestoneIds","type":"uint96[]"}],"name":"createMATPs","outputs":[{"internalType":"contract IMATP[]","name":"","type":"address[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"createNCATP","outputs":[{"internalType":"contract INCATP","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_beneficiaries","type":"address[]"},{"internalType":"uint256[]","name":"_allocations","type":"uint256[]"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams[]","name":"_revokableParams","type":"tuple[]"}],"name":"createNCATPs","outputs":[{"internalType":"contract INCATP[]","name":"","type":"address[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getRegistry","outputs":[{"internalType":"contract IRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"minter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_hash","type":"bytes32"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"predictLATPAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"},{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"predictLATPAddressWithNonce","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"internalType":"MilestoneId","name":"_milestoneId","type":"uint96"}],"name":"predictMATPAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"internalType":"MilestoneId","name":"_milestoneId","type":"uint96"},{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"predictMATPAddressWithNonce","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"}],"name":"predictNCATPAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"uint256","name":"_allocation","type":"uint256"},{"components":[{"internalType":"address","name":"revokeBeneficiary","type":"address"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"cliffDuration","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"}],"internalType":"struct LockParams","name":"lockParams","type":"tuple"}],"internalType":"struct RevokableParams","name":"_revokableParams","type":"tuple"},{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"predictNCATPAddressWithNonce","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"recoverTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_minter","type":"address"},{"internalType":"bool","name":"_isMinter","type":"bool"}],"name":"setMinter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

610120604052348015610010575f5ffd5b5060405161329138038061329183398101604081905261002f91610370565b83838383836001600160a01b03811661006157604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61006a816102e4565b5083828260405161007a9061034f565b6001600160a01b03909316835260208301919091526040820152606001604051809103905ff0801580156100b0573d5f5f3e3d5ffd5b506001600160a01b03908116608081905290841660a0819052604051639e6d95eb60e01b81526004810192909252602482015273d95b04129d57e301453815b17f6e6b2a69512e7890639e6d95eb90604401602060405180830381865af415801561011d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061014191906103b5565b6001600160a01b031660c05260805160a051604051639e6d95eb60e01b81527339e9a0aeaac3a6b46dc0ce235807dc0f6455559492639e6d95eb9261019d926004016001600160a01b0392831681529116602082015260400190565b602060405180830381865af41580156101b8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101dc91906103b5565b6001600160a01b031660e05260805160a051604051639e6d95eb60e01b81527390d06b1c29f3284508efa6fa3d116d166629e7d292639e6d95eb92610238926004016001600160a01b0392831681529116602082015260400190565b602060405180830381865af4158015610253573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027791906103b5565b6001600160a01b039081166101005284165f81815260026020908152604091829020805460ff1916600190811790915591519182527f583b0aa0e528532caf4b907c11d7a8158a122fe2a6fb80cd9b09776ebea8d92d910160405180910390a250505050505050506103d7565b600180546001600160a01b03191690556102fd81610300565b50565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6115fb80611c9683390190565b6001600160a01b03811681146102fd575f5ffd5b5f5f5f5f60808587031215610383575f5ffd5b845161038e8161035c565b602086015190945061039f8161035c565b6040860151606090960151949790965092505050565b5f602082840312156103c5575f5ffd5b81516103d08161035c565b9392505050565b60805160a05160c05160e051610100516118516104455f395f8181610421015281816106570152610b7401525f81816106f601528181610c6c0152610da801525f81816105ae01528181610ac60152610bf001525f818161017e01526104b301525f61022f01526118515ff3fe608060405234801561000f575f5ffd5b5060043610610148575f3560e01c806379ba5097116100bf578063b57d21a011610079578063b57d21a014610301578063cf456ae714610314578063e30c397814610327578063ebfc3de214610338578063ee681f791461034b578063f2fde38b1461035e575f5ffd5b806379ba5097146102835780637e0ef6851461028b5780638126e4211461029e5780638da5cb5b146102b1578063949f8216146102c15780639e317f12146102d4575f5ffd5b8063505a372c11610110578063505a372c146101fa5780635ab18e2e1461020d5780635ab1bd531461022d5780635f3e849f146102535780636671c14f14610268578063715018a61461027b575f5ffd5b80630f28edeb1461014c57806321df0da71461017c5780633dd08c38146101a25780634d53d426146101d45780634e57ec12146101e7575b5f5ffd5b61015f61015a36600461120b565b610371565b6040516001600160a01b0390911681526020015b60405180910390f35b7f000000000000000000000000000000000000000000000000000000000000000061015f565b6101c46101b0366004611244565b60026020525f908152604090205460ff1681565b6040519015158152602001610173565b61015f6101e2366004611351565b610535565b61015f6101f536600461120b565b6105de565b61015f610208366004611351565b61067d565b61022061021b366004611470565b61071c565b604051610173919061155e565b7f000000000000000000000000000000000000000000000000000000000000000061015f565b6102666102613660046115a9565b61085f565b005b610220610276366004611470565b610880565b6102666109ba565b6102666109cd565b61015f610299366004611351565b610a16565b61015f6102ac3660046115e3565b610b1e565b5f546001600160a01b031661015f565b61015f6102cf366004611624565b610b9a565b6102f36102e2366004611666565b5f9081526003602052604090205490565b604051908152602001610173565b61015f61030f366004611624565b610c16565b61026661032236600461167d565b610c92565b6001546001600160a01b031661015f565b61015f610346366004611351565b610cf8565b6102206103593660046116b6565b610dcd565b61026661036c366004611244565b610f07565b335f9081526002602052604081205460ff166103a057604051633e34a41b60e21b815260040160405180910390fd5b5f8484846040516020016103b693929190611793565b6040516020818303038152906040528051906020012090505f6103ec825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f6104467f000000000000000000000000000000000000000000000000000000000000000084610f77565b6040516302fcdb3d60e61b81529091506001600160a01b0382169063bf36cf4090610479908a908a908a90600401611793565b5f604051808303815f87803b158015610490575f5ffd5b505af11580156104a2573d5f5f3e3d5ffd5b506104dc9250506001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001690508288610f83565b806001600160a01b0316876001600160a01b03167fae7dba32b6368fe6ee51906b83422dd0a0955cf2aeeb91e9b5960ab0fa455f078860405161052191815260200190565b60405180910390a3925050505b9392505050565b5f5f84848460405160200161054c939291906117c2565b6040516020818303038152906040528051906020012090505f61057a825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f00000000000000000000000000000000000000000000000000000000000000008330610fd5565b9695505050505050565b5f5f8484846040516020016105f593929190611793565b6040516020818303038152906040528051906020012090505f610623825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f00000000000000000000000000000000000000000000000000000000000000008330610fd5565b5f5f848484604051602001610694939291906117c2565b6040516020818303038152906040528051906020012090505f6106c2825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f00000000000000000000000000000000000000000000000000000000000000008330610fd5565b335f9081526002602052604090205460609060ff1661074e57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610760575081518451145b61077d57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156107975761079761125d565b6040519080825280602002602001820160405280156107c0578160200160208202803683370190505b5090505f5b8551811015610856576108248682815181106107e3576107e3611807565b60200260200101518683815181106107fd576107fd611807565b602002602001015186848151811061081757610817611807565b6020026020010151610cf8565b82828151811061083657610836611807565b6001600160a01b03909216602092830291909101909101526001016107c5565b50949350505050565b61086761103a565b61087b6001600160a01b0384168383610f83565b505050565b335f9081526002602052604090205460609060ff166108b257604051633e34a41b60e21b815260040160405180910390fd5b825184511480156108c4575081518451145b6108e157604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156108fb576108fb61125d565b604051908082528060200260200182016040528015610924578160200160208202803683370190505b5090505f5b85518110156108565761098886828151811061094757610947611807565b602002602001015186838151811061096157610961611807565b602002602001015186848151811061097b5761097b611807565b6020026020010151610a16565b82828151811061099a5761099a611807565b6001600160a01b0390921660209283029190910190910152600101610929565b6109c261103a565b6109cb5f611066565b565b60015433906001600160a01b03168114610a0a5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610a1381611066565b50565b335f9081526002602052604081205460ff16610a4557604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610a5b939291906117c2565b6040516020818303038152906040528051906020012090505f610a91825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f000000000000000000000000000000000000000000000000000000000000000084610f77565b604051633698b7e960e21b81529091506001600160a01b0382169063da62dfa490610479908a908a908a906004016117c2565b5f5f858585604051602001610b3593929190611793565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f00000000000000000000000000000000000000000000000000000000000000008230610fd5565b5f5f858585604051602001610bb1939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f00000000000000000000000000000000000000000000000000000000000000008230610fd5565b5f5f858585604051602001610c2d939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f00000000000000000000000000000000000000000000000000000000000000008230610fd5565b610c9a61103a565b6001600160a01b0382165f81815260026020908152604091829020805460ff191685151590811790915591519182527f583b0aa0e528532caf4b907c11d7a8158a122fe2a6fb80cd9b09776ebea8d92d910160405180910390a25050565b335f9081526002602052604081205460ff16610d2757604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610d3d939291906117c2565b6040516020818303038152906040528051906020012090505f610d73825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f000000000000000000000000000000000000000000000000000000000000000084610f77565b335f9081526002602052604090205460609060ff16610dff57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610e11575081518451145b610e2e57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b03811115610e4857610e4861125d565b604051908082528060200260200182016040528015610e71578160200160208202803683370190505b5090505f5b855181101561085657610ed5868281518110610e9457610e94611807565b6020026020010151868381518110610eae57610eae611807565b6020026020010151868481518110610ec857610ec8611807565b6020026020010151610371565b828281518110610ee757610ee7611807565b6001600160a01b0390921660209283029190910190910152600101610e76565b610f0f61103a565b600180546001600160a01b0383166001600160a01b03199091168117909155610f3f5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f61052e83835f61107f565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b17905261087b908490611114565b60405160388101919091526f5af43d82803e903d91602b57fd5bf3ff60248201526014810192909252733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b031690565b5f546001600160a01b031633146109cb5760405163118cdaa760e01b8152336004820152602401610a01565b600180546001600160a01b0319169055610a1381611186565b5f814710156110aa5760405163cf47918160e01b815247600482015260248101839052604401610a01565b763d602d80600a3d3981f3363d3d373d3d3d363d730000008460601b60e81c175f526e5af43d82803e903d91602b57fd5bf38460781b17602052826037600984f590506001600160a01b03811661052e5760405163b06ebf3d60e01b815260040160405180910390fd5b5f5f60205f8451602086015f885af180611133576040513d5f823e3d81fd5b50505f513d9150811561114a578060011415611157565b6001600160a01b0384163b155b1561118057604051635274afe760e01b81526001600160a01b0385166004820152602401610a01565b50505050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160a01b03811681146111eb575f5ffd5b919050565b80356bffffffffffffffffffffffff811681146111eb575f5ffd5b5f5f5f6060848603121561121d575f5ffd5b611226846111d5565b92506020840135915061123b604085016111f0565b90509250925092565b5f60208284031215611254575f5ffd5b61052e826111d5565b634e487b7160e01b5f52604160045260245ffd5b604051606081016001600160401b03811182821017156112935761129361125d565b60405290565b604051601f8201601f191681016001600160401b03811182821017156112c1576112c161125d565b604052919050565b5f81830360808112156112da575f5ffd5b604080519081016001600160401b03811182821017156112fc576112fc61125d565b60405291508161130b846111d5565b81526060601f198301121561131e575f5ffd5b611326611271565b6020858101358252604080870135828401526060909601359582019590955293019290925292915050565b5f5f5f60c08486031215611363575f5ffd5b61136c846111d5565b92506020840135915061123b85604086016112c9565b5f6001600160401b0382111561139a5761139a61125d565b5060051b60200190565b5f82601f8301126113b3575f5ffd5b81356113c66113c182611382565b611299565b8082825260208201915060208360051b8601019250858311156113e7575f5ffd5b602085015b8381101561140b576113fd816111d5565b8352602092830192016113ec565b5095945050505050565b5f82601f830112611424575f5ffd5b81356114326113c182611382565b8082825260208201915060208360051b860101925085831115611453575f5ffd5b602085015b8381101561140b578035835260209283019201611458565b5f5f5f60608486031215611482575f5ffd5b83356001600160401b03811115611497575f5ffd5b6114a3868287016113a4565b93505060208401356001600160401b038111156114be575f5ffd5b6114ca86828701611415565b92505060408401356001600160401b038111156114e5575f5ffd5b8401601f810186136114f5575f5ffd5b80356115036113c182611382565b8082825260208201915060208360071b850101925088831115611524575f5ffd5b6020840193505b828410156115505761153d89856112c9565b825260208201915060808401935061152b565b809450505050509250925092565b602080825282518282018190525f918401906040840190835b8181101561159e5783516001600160a01b0316835260209384019390920191600101611577565b509095945050505050565b5f5f5f606084860312156115bb575f5ffd5b6115c4846111d5565b92506115d2602085016111d5565b929592945050506040919091013590565b5f5f5f5f608085870312156115f6575f5ffd5b6115ff856111d5565b935060208501359250611614604086016111f0565b9396929550929360600135925050565b5f5f5f5f60e08587031215611637575f5ffd5b611640856111d5565b93506020850135925061165686604087016112c9565b9396929550929360c00135925050565b5f60208284031215611676575f5ffd5b5035919050565b5f5f6040838503121561168e575f5ffd5b611697836111d5565b9150602083013580151581146116ab575f5ffd5b809150509250929050565b5f5f5f606084860312156116c8575f5ffd5b83356001600160401b038111156116dd575f5ffd5b6116e9868287016113a4565b93505060208401356001600160401b03811115611704575f5ffd5b61171086828701611415565b92505060408401356001600160401b0381111561172b575f5ffd5b8401601f8101861361173b575f5ffd5b80356117496113c182611382565b8082825260208201915060208360051b85010192508883111561176a575f5ffd5b6020840193505b8284101561155057611782846111f0565b825260209384019390910190611771565b6001600160a01b0393909316835260208301919091526bffffffffffffffffffffffff16604082015260600190565b6001600160a01b03938416815260208082019390935281519093166040808501919091529082015180516060850152918201516080840152015160a082015260c00190565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122031494ca4a7c88b5cf3ead5c65765ba68900183ed0d71a8d0344e6249201f771d64736f6c634300081e003360c0604052636b36ec80600255636b36ec8060035534801561001f575f5ffd5b506040516115fb3803806115fb83398101604081905261003e916101b3565b826001600160a01b03811661006c57604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100758161013b565b505f81116100965760405163f13638ef60e01b815260040160405180910390fd5b818110156100b75760405163c7b7bb2560e01b815260040160405180910390fd5b608082905260a08190526040516100cd906101a6565b604051809103905ff0801580156100e6573d5f5f3e3d5ffd5b505f805260076020527f6d5257204ebe7d88fd91ae87941cb2dd9d8062b64ae5a2bd2d28ec40b9fbf6df80546001600160a01b0319166001600160a01b039290921691909117905550506001600655506101f2565b600180546001600160a01b031916905561015481610157565b50565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b61089980610d6283390190565b5f5f5f606084860312156101c5575f5ffd5b83516001600160a01b03811681146101db575f5ffd5b602085015160409095015190969495509392505050565b60805160a051610b4f6102135f395f6105cc01525f6105a60152610b4f5ff3fe608060405234801561000f575f5ffd5b5060043610610132575f3560e01c806395e09694116100b4578063acc2d0f611610079578063acc2d0f61461025e578063d792782414610271578063d99a2b7f14610282578063e30c3978146102a2578063f2fde38b146102b3578063f9ca8131146102c6575f5ffd5b806395e09694146101f55780639601ddde146102065780639b74026c14610230578063a18918ac14610238578063ac0058ac1461024b575f5ffd5b8063715018a6116100fa578063715018a6146101ba57806377c10228146101c257806379ba5097146101ca5780638da5cb5b146101d25780639083dd9d146101e2575f5ffd5b806319436726146101365780632c78655e14610160578063435370ae1461018057806367abaea21461019557806371369218146101a7575b5f5ffd5b6005546001600160a01b03165b6040516001600160a01b0390911681526020015b60405180910390f35b6101686102d9565b6040516001600160601b039091168152602001610157565b61019361018e3660046109c2565b61036c565b005b6002545b604051908152602001610157565b6101436101b53660046109fa565b610478565b6101936104bc565b600654610199565b6101936104cf565b5f546001600160a01b0316610143565b6101936101f0366004610a11565b610513565b6008546001600160601b0316610168565b61020e610570565b6040805182518152602080840151908201529181015190820152606001610157565b600354610199565b6101936102463660046109fa565b6105f3565b610193610259366004610a11565b610660565b61019361026c3660046109fa565b610787565b6004546001600160a01b0316610143565b610295610290366004610a3e565b6107f4565b6040516101579190610a8b565b6001546001600160a01b0316610143565b6101936102c1366004610a11565b610852565b6101936102d4366004610a11565b6108c2565b5f6102e2610918565b6008546001600160601b03166102f9816001610ab3565b600880546001600160601b039283166bffffffffffffffffffffffff1990911617905581165f81815260096020908152604091829020805460ff1916905590519182527f051bd2ed5105ee6330ed5d88da9652b0a627e0759b205a6109971f8f2f2da8a6910160405180910390a1905090565b610374610918565b5f61037e836107f4565b600281111561038f5761038f610a57565b1482906103c05760405163079271f960e51b81526001600160601b0390911660048201526024015b60405180910390fd5b505f8160028111156103d4576103d4610a57565b141582906104015760405163079271f960e51b81526001600160601b0390911660048201526024016103b7565b506001600160601b0382165f908152600960205260409020805482919060ff1916600183600281111561043657610436610a57565b02179055507f6c86956accfb4d18e99d126e315dbd3d3d0cdcf786ac669bbf1d6cfe1d30b2f1828260405161046c929190610ad2565b60405180910390a15050565b5f600654821082906104a057604051631e2cccb960e21b81526004016103b791815260200190565b50505f908152600760205260409020546001600160a01b031690565b6104c4610918565b6104cd5f610944565b565b60015433906001600160a01b031681146105075760405163118cdaa760e01b81526001600160a01b03821660048201526024016103b7565b61051081610944565b50565b61051b610918565b600480546001600160a01b0319166001600160a01b0383169081179091556040519081527f15e991732a2855e2f19715a198e4b59d30cf0c437ba3c4f12ed119124402490e906020015b60405180910390a150565b61059160405180606001604052805f81526020015f81526020015f81525090565b604051806060016040528060025481526020017f000000000000000000000000000000000000000000000000000000000000000081526020017f0000000000000000000000000000000000000000000000000000000000000000815250905090565b6105fb610918565b6003548190808210610629576040516329a1c10360e21b8152600481019290925260248201526044016103b7565b505060038190556040518181527f6c8a759a7c7ab68173702a4ac68dcad931eda85d6b72d569a55586fc8401bee090602001610565565b610668610918565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5f1b816001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106c7573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106eb9190610aef565b14819061071757604051635c8c965560e01b81526001600160a01b0390911660048201526024016103b7565b50600654610726816001610b06565b6006555f8181526007602090815260409182902080546001600160a01b0319166001600160a01b0386169081179091558251848152918201527fd17ccd075bd7ad17a1052f3d1a3041d19cda2534a8abca0513a5cb1b190088e7910161046c565b61078f610918565b60025481908082106107bd57604051638599e58b60e01b8152600481019290925260248201526044016103b7565b505060028190556040518181527f6459ecb2d9094d7a79722a51b55be0eec5c8b4f9c02890aa1dfb94f59dd5f55190602001610565565b6008545f9082906001600160601b03908116908216106108335760405163e64d218d60e01b81526001600160601b0390911660048201526024016103b7565b50506001600160601b03165f9081526009602052604090205460ff1690565b61085a610918565b600180546001600160a01b0383166001600160a01b0319909116811790915561088a5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6108ca610918565b600580546001600160a01b0319166001600160a01b0383169081179091556040519081527f5c7066da5f0384f3b22c58c34b3d9db732bcc8bcb3d40fb31e47bb2c5c16864e90602001610565565b5f546001600160a01b031633146104cd5760405163118cdaa760e01b81523360048201526024016103b7565b600180546001600160a01b0319169055610510815f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160601b03811681146109bd575f5ffd5b919050565b5f5f604083850312156109d3575f5ffd5b6109dc836109a7565b91506020830135600381106109ef575f5ffd5b809150509250929050565b5f60208284031215610a0a575f5ffd5b5035919050565b5f60208284031215610a21575f5ffd5b81356001600160a01b0381168114610a37575f5ffd5b9392505050565b5f60208284031215610a4e575f5ffd5b610a37826109a7565b634e487b7160e01b5f52602160045260245ffd5b60038110610a8757634e487b7160e01b5f52602160045260245ffd5b9052565b60208101610a998284610a6b565b92915050565b634e487b7160e01b5f52601160045260245ffd5b6001600160601b038181168382160190811115610a9957610a99610a9f565b6001600160601b038316815260408101610a376020830184610a6b565b5f60208284031215610aff575f5ffd5b5051919050565b80820180821115610a9957610a99610a9f56fea26469706673582212206edfcf2a864234ba34178d5a3ff4c1106dfe5da29b63dfd6c5c1a964c446c7d964736f6c634300081e003360a0604052306080523480156012575f5ffd5b505f80546001600160a01b03191661dead17905560805161084d61004c5f395f81816102b3015281816102dc015261045f015261084d5ff3fe60806040526004361061006e575f3560e01c8063ad3cb1cc1161004c578063ad3cb1cc146100da578063af43ecb614610117578063c4d66de814610133578063e7f43c6814610152575f5ffd5b80634f1ef2861461007257806352d1902d14610087578063aaf10f42146100ae575b5f5ffd5b610085610080366004610699565b610166565b005b348015610092575f5ffd5b5061009b610185565b6040519081526020015b60405180910390f35b3480156100b9575f5ffd5b506100c26101a0565b6040516001600160a01b0390911681526020016100a5565b3480156100e5575f5ffd5b5061010a604051806040016040528060058152602001640352e302e360dc1b81525081565b6040516100a5919061075f565b348015610122575f5ffd5b505f546001600160a01b03166100c2565b34801561013e575f5ffd5b5061008561014d366004610794565b6101c4565b34801561015d575f5ffd5b506100c2610234565b61016e6102a8565b6101778261034e565b6101818282610398565b5050565b5f61018e610454565b505f5160206107f85f395f51905f5290565b5f6101bf5f5160206107f85f395f51905f52546001600160a01b031690565b905090565b6001600160a01b0381166101eb57604051632a68e88960e21b815260040160405180910390fd5b5f546001600160a01b0316156102135760405162dc149f60e41b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b5f5f5f9054906101000a90046001600160a01b03166001600160a01b031663e7f43c686040518163ffffffff1660e01b8152600401602060405180830381865afa158015610284573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101bf91906107af565b306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016148061032e57507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166103225f5160206107f85f395f51905f52546001600160a01b031690565b6001600160a01b031614155b1561034c5760405163703e46dd60e11b815260040160405180910390fd5b565b5f5433906001600160a01b03168181146103935760405163f5f64b6760e01b81526001600160a01b039283166004820152911660248201526044015b60405180910390fd5b505050565b816001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156103f2575060408051601f3d908101601f191682019092526103ef918101906107ca565b60015b61041a57604051634c9c8ce360e01b81526001600160a01b038316600482015260240161038a565b5f5160206107f85f395f51905f52811461044a57604051632a87526960e21b81526004810182905260240161038a565b610393838361049d565b306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161461034c5760405163703e46dd60e11b815260040160405180910390fd5b6104a6826104f2565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a28051156104ea576103938282610555565b6101816105c7565b806001600160a01b03163b5f0361052757604051634c9c8ce360e01b81526001600160a01b038216600482015260240161038a565b5f5160206107f85f395f51905f5280546001600160a01b0319166001600160a01b0392909216919091179055565b60605f5f846001600160a01b03168460405161057191906107e1565b5f60405180830381855af49150503d805f81146105a9576040519150601f19603f3d011682016040523d82523d5f602084013e6105ae565b606091505b50915091506105be8583836105e6565b95945050505050565b341561034c5760405163b398979f60e01b815260040160405180910390fd5b6060826105fb576105f682610645565b61063e565b815115801561061257506001600160a01b0384163b155b1561063b57604051639996b31560e01b81526001600160a01b038516600482015260240161038a565b50805b9392505050565b8051156106555780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b50565b6001600160a01b038116811461066e575f5ffd5b634e487b7160e01b5f52604160045260245ffd5b5f5f604083850312156106aa575f5ffd5b82356106b581610671565b9150602083013567ffffffffffffffff8111156106d0575f5ffd5b8301601f810185136106e0575f5ffd5b803567ffffffffffffffff8111156106fa576106fa610685565b604051601f8201601f19908116603f0116810167ffffffffffffffff8111828210171561072957610729610685565b604052818152828201602001871015610740575f5ffd5b816020840160208301375f602083830101528093505050509250929050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f602082840312156107a4575f5ffd5b813561063e81610671565b5f602082840312156107bf575f5ffd5b815161063e81610671565b5f602082840312156107da575f5ffd5b5051919050565b5f82518060208501845e5f92019182525091905056fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbca26469706673582212208168d8d27aa002f7c7a2530a16817880993b2ff28d06bf78a66e6290e82d67c464736f6c634300081e003300000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d20000000000000000000000000000000000000000000000000000000001e133800000000000000000000000000000000000000000000000000000000001e13380

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610148575f3560e01c806379ba5097116100bf578063b57d21a011610079578063b57d21a014610301578063cf456ae714610314578063e30c397814610327578063ebfc3de214610338578063ee681f791461034b578063f2fde38b1461035e575f5ffd5b806379ba5097146102835780637e0ef6851461028b5780638126e4211461029e5780638da5cb5b146102b1578063949f8216146102c15780639e317f12146102d4575f5ffd5b8063505a372c11610110578063505a372c146101fa5780635ab18e2e1461020d5780635ab1bd531461022d5780635f3e849f146102535780636671c14f14610268578063715018a61461027b575f5ffd5b80630f28edeb1461014c57806321df0da71461017c5780633dd08c38146101a25780634d53d426146101d45780634e57ec12146101e7575b5f5ffd5b61015f61015a36600461120b565b610371565b6040516001600160a01b0390911681526020015b60405180910390f35b7f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d261015f565b6101c46101b0366004611244565b60026020525f908152604090205460ff1681565b6040519015158152602001610173565b61015f6101e2366004611351565b610535565b61015f6101f536600461120b565b6105de565b61015f610208366004611351565b61067d565b61022061021b366004611470565b61071c565b604051610173919061155e565b7f00000000000000000000000063841bad6b35b6419e15ca9bbbbdf446d4dc3dde61015f565b6102666102613660046115a9565b61085f565b005b610220610276366004611470565b610880565b6102666109ba565b6102666109cd565b61015f610299366004611351565b610a16565b61015f6102ac3660046115e3565b610b1e565b5f546001600160a01b031661015f565b61015f6102cf366004611624565b610b9a565b6102f36102e2366004611666565b5f9081526003602052604090205490565b604051908152602001610173565b61015f61030f366004611624565b610c16565b61026661032236600461167d565b610c92565b6001546001600160a01b031661015f565b61015f610346366004611351565b610cf8565b6102206103593660046116b6565b610dcd565b61026661036c366004611244565b610f07565b335f9081526002602052604081205460ff166103a057604051633e34a41b60e21b815260040160405180910390fd5b5f8484846040516020016103b693929190611793565b6040516020818303038152906040528051906020012090505f6103ec825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f6104467f000000000000000000000000aa1d98a82402c33908e9a77bc30b9c192f619c0384610f77565b6040516302fcdb3d60e61b81529091506001600160a01b0382169063bf36cf4090610479908a908a908a90600401611793565b5f604051808303815f87803b158015610490575f5ffd5b505af11580156104a2573d5f5f3e3d5ffd5b506104dc9250506001600160a01b037f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d21690508288610f83565b806001600160a01b0316876001600160a01b03167fae7dba32b6368fe6ee51906b83422dd0a0955cf2aeeb91e9b5960ab0fa455f078860405161052191815260200190565b60405180910390a3925050505b9392505050565b5f5f84848460405160200161054c939291906117c2565b6040516020818303038152906040528051906020012090505f61057a825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f0000000000000000000000006baa3ecc28fefb4b999d4dedbd080ca30d9267e98330610fd5565b9695505050505050565b5f5f8484846040516020016105f593929190611793565b6040516020818303038152906040528051906020012090505f610623825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f000000000000000000000000aa1d98a82402c33908e9a77bc30b9c192f619c038330610fd5565b5f5f848484604051602001610694939291906117c2565b6040516020818303038152906040528051906020012090505f6106c2825f9081526003602052604090205490565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091506105d47f000000000000000000000000c4a8530aeb89da98cd11178930b39c2aa272874e8330610fd5565b335f9081526002602052604090205460609060ff1661074e57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610760575081518451145b61077d57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156107975761079761125d565b6040519080825280602002602001820160405280156107c0578160200160208202803683370190505b5090505f5b8551811015610856576108248682815181106107e3576107e3611807565b60200260200101518683815181106107fd576107fd611807565b602002602001015186848151811061081757610817611807565b6020026020010151610cf8565b82828151811061083657610836611807565b6001600160a01b03909216602092830291909101909101526001016107c5565b50949350505050565b61086761103a565b61087b6001600160a01b0384168383610f83565b505050565b335f9081526002602052604090205460609060ff166108b257604051633e34a41b60e21b815260040160405180910390fd5b825184511480156108c4575081518451145b6108e157604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b038111156108fb576108fb61125d565b604051908082528060200260200182016040528015610924578160200160208202803683370190505b5090505f5b85518110156108565761098886828151811061094757610947611807565b602002602001015186838151811061096157610961611807565b602002602001015186848151811061097b5761097b611807565b6020026020010151610a16565b82828151811061099a5761099a611807565b6001600160a01b0390921660209283029190910190910152600101610929565b6109c261103a565b6109cb5f611066565b565b60015433906001600160a01b03168114610a0a5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610a1381611066565b50565b335f9081526002602052604081205460ff16610a4557604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610a5b939291906117c2565b6040516020818303038152906040528051906020012090505f610a91825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f0000000000000000000000006baa3ecc28fefb4b999d4dedbd080ca30d9267e984610f77565b604051633698b7e960e21b81529091506001600160a01b0382169063da62dfa490610479908a908a908a906004016117c2565b5f5f858585604051602001610b3593929190611793565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f000000000000000000000000aa1d98a82402c33908e9a77bc30b9c192f619c038230610fd5565b5f5f858585604051602001610bb1939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f0000000000000000000000006baa3ecc28fefb4b999d4dedbd080ca30d9267e98230610fd5565b5f5f858585604051602001610c2d939291906117c2565b60408051808303601f190181528282528051602091820120818401528282018690528151808403830181526060909301909152815191012090506105d47f000000000000000000000000c4a8530aeb89da98cd11178930b39c2aa272874e8230610fd5565b610c9a61103a565b6001600160a01b0382165f81815260026020908152604091829020805460ff191685151590811790915591519182527f583b0aa0e528532caf4b907c11d7a8158a122fe2a6fb80cd9b09776ebea8d92d910160405180910390a25050565b335f9081526002602052604081205460ff16610d2757604051633e34a41b60e21b815260040160405180910390fd5b5f848484604051602001610d3d939291906117c2565b6040516020818303038152906040528051906020012090505f610d73825f90815260036020526040902080546001810190915590565b60408051602081018590529081018290529091506060016040516020818303038152906040528051906020012091505f610aeb7f000000000000000000000000c4a8530aeb89da98cd11178930b39c2aa272874e84610f77565b335f9081526002602052604090205460609060ff16610dff57604051633e34a41b60e21b815260040160405180910390fd5b82518451148015610e11575081518451145b610e2e57604051637db491eb60e01b815260040160405180910390fd5b5f84516001600160401b03811115610e4857610e4861125d565b604051908082528060200260200182016040528015610e71578160200160208202803683370190505b5090505f5b855181101561085657610ed5868281518110610e9457610e94611807565b6020026020010151868381518110610eae57610eae611807565b6020026020010151868481518110610ec857610ec8611807565b6020026020010151610371565b828281518110610ee757610ee7611807565b6001600160a01b0390921660209283029190910190910152600101610e76565b610f0f61103a565b600180546001600160a01b0383166001600160a01b03199091168117909155610f3f5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f61052e83835f61107f565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b17905261087b908490611114565b60405160388101919091526f5af43d82803e903d91602b57fd5bf3ff60248201526014810192909252733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b031690565b5f546001600160a01b031633146109cb5760405163118cdaa760e01b8152336004820152602401610a01565b600180546001600160a01b0319169055610a1381611186565b5f814710156110aa5760405163cf47918160e01b815247600482015260248101839052604401610a01565b763d602d80600a3d3981f3363d3d373d3d3d363d730000008460601b60e81c175f526e5af43d82803e903d91602b57fd5bf38460781b17602052826037600984f590506001600160a01b03811661052e5760405163b06ebf3d60e01b815260040160405180910390fd5b5f5f60205f8451602086015f885af180611133576040513d5f823e3d81fd5b50505f513d9150811561114a578060011415611157565b6001600160a01b0384163b155b1561118057604051635274afe760e01b81526001600160a01b0385166004820152602401610a01565b50505050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160a01b03811681146111eb575f5ffd5b919050565b80356bffffffffffffffffffffffff811681146111eb575f5ffd5b5f5f5f6060848603121561121d575f5ffd5b611226846111d5565b92506020840135915061123b604085016111f0565b90509250925092565b5f60208284031215611254575f5ffd5b61052e826111d5565b634e487b7160e01b5f52604160045260245ffd5b604051606081016001600160401b03811182821017156112935761129361125d565b60405290565b604051601f8201601f191681016001600160401b03811182821017156112c1576112c161125d565b604052919050565b5f81830360808112156112da575f5ffd5b604080519081016001600160401b03811182821017156112fc576112fc61125d565b60405291508161130b846111d5565b81526060601f198301121561131e575f5ffd5b611326611271565b6020858101358252604080870135828401526060909601359582019590955293019290925292915050565b5f5f5f60c08486031215611363575f5ffd5b61136c846111d5565b92506020840135915061123b85604086016112c9565b5f6001600160401b0382111561139a5761139a61125d565b5060051b60200190565b5f82601f8301126113b3575f5ffd5b81356113c66113c182611382565b611299565b8082825260208201915060208360051b8601019250858311156113e7575f5ffd5b602085015b8381101561140b576113fd816111d5565b8352602092830192016113ec565b5095945050505050565b5f82601f830112611424575f5ffd5b81356114326113c182611382565b8082825260208201915060208360051b860101925085831115611453575f5ffd5b602085015b8381101561140b578035835260209283019201611458565b5f5f5f60608486031215611482575f5ffd5b83356001600160401b03811115611497575f5ffd5b6114a3868287016113a4565b93505060208401356001600160401b038111156114be575f5ffd5b6114ca86828701611415565b92505060408401356001600160401b038111156114e5575f5ffd5b8401601f810186136114f5575f5ffd5b80356115036113c182611382565b8082825260208201915060208360071b850101925088831115611524575f5ffd5b6020840193505b828410156115505761153d89856112c9565b825260208201915060808401935061152b565b809450505050509250925092565b602080825282518282018190525f918401906040840190835b8181101561159e5783516001600160a01b0316835260209384019390920191600101611577565b509095945050505050565b5f5f5f606084860312156115bb575f5ffd5b6115c4846111d5565b92506115d2602085016111d5565b929592945050506040919091013590565b5f5f5f5f608085870312156115f6575f5ffd5b6115ff856111d5565b935060208501359250611614604086016111f0565b9396929550929360600135925050565b5f5f5f5f60e08587031215611637575f5ffd5b611640856111d5565b93506020850135925061165686604087016112c9565b9396929550929360c00135925050565b5f60208284031215611676575f5ffd5b5035919050565b5f5f6040838503121561168e575f5ffd5b611697836111d5565b9150602083013580151581146116ab575f5ffd5b809150509250929050565b5f5f5f606084860312156116c8575f5ffd5b83356001600160401b038111156116dd575f5ffd5b6116e9868287016113a4565b93505060208401356001600160401b03811115611704575f5ffd5b61171086828701611415565b92505060408401356001600160401b0381111561172b575f5ffd5b8401601f8101861361173b575f5ffd5b80356117496113c182611382565b8082825260208201915060208360051b85010192508883111561176a575f5ffd5b6020840193505b8284101561155057611782846111f0565b825260209384019390910190611771565b6001600160a01b0393909316835260208301919091526bffffffffffffffffffffffff16604082015260600190565b6001600160a01b03938416815260208082019390935281519093166040808501919091529082015180516060850152918201516080840152015160a082015260c00190565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122031494ca4a7c88b5cf3ead5c65765ba68900183ed0d71a8d0344e6249201f771d64736f6c634300081e0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d20000000000000000000000000000000000000000000000000000000001e133800000000000000000000000000000000000000000000000000000000001e13380

-----Decoded View---------------
Arg [0] : __owner (address): 0x85e51a78FE8FE21d881894206A9adbf54e3Df8c3
Arg [1] : _token (address): 0xA27EC0006e59f245217Ff08CD52A7E8b169E62D2
Arg [2] : _unlockCliffDuration (uint256): 31536000
Arg [3] : _unlockLockDuration (uint256): 31536000

-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 00000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3
Arg [1] : 000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2
Arg [2] : 0000000000000000000000000000000000000000000000000000000001e13380
Arg [3] : 0000000000000000000000000000000000000000000000000000000001e13380


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.