Source Code
Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 709 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Claim | 24449476 | 28 hrs ago | IN | 0 ETH | 0.00001159 | ||||
| Claim | 24449265 | 29 hrs ago | IN | 0 ETH | 0.0001913 | ||||
| Claim | 24449264 | 29 hrs ago | IN | 0 ETH | 0.00019054 | ||||
| Claim | 24449084 | 29 hrs ago | IN | 0 ETH | 0.00019434 | ||||
| Claim | 24448431 | 32 hrs ago | IN | 0 ETH | 0.00001556 | ||||
| Claim | 24446662 | 38 hrs ago | IN | 0 ETH | 0.00000363 | ||||
| Claim | 24443458 | 2 days ago | IN | 0 ETH | 0.00016965 | ||||
| Claim | 24442504 | 2 days ago | IN | 0 ETH | 0.00010549 | ||||
| Claim | 24441999 | 2 days ago | IN | 0 ETH | 0.0002167 | ||||
| Claim | 24439652 | 2 days ago | IN | 0 ETH | 0.00000456 | ||||
| Claim | 24439639 | 2 days ago | IN | 0 ETH | 0.00000484 | ||||
| Claim | 24439227 | 2 days ago | IN | 0 ETH | 0.00000591 | ||||
| Claim | 24436857 | 2 days ago | IN | 0 ETH | 0.00001107 | ||||
| Claim | 24436191 | 3 days ago | IN | 0 ETH | 0.00018659 | ||||
| Claim | 24436172 | 3 days ago | IN | 0 ETH | 0.00001365 | ||||
| Claim | 24436147 | 3 days ago | IN | 0 ETH | 0.0000146 | ||||
| Claim | 24436123 | 3 days ago | IN | 0 ETH | 0.00001428 | ||||
| Claim | 24436103 | 3 days ago | IN | 0 ETH | 0.00001668 | ||||
| Claim | 24436077 | 3 days ago | IN | 0 ETH | 0.00017444 | ||||
| Claim | 24436050 | 3 days ago | IN | 0 ETH | 0.00017403 | ||||
| Claim | 24436026 | 3 days ago | IN | 0 ETH | 0.00017761 | ||||
| Claim | 24436020 | 3 days ago | IN | 0 ETH | 0.00017387 | ||||
| Claim | 24436016 | 3 days ago | IN | 0 ETH | 0.00017559 | ||||
| Claim | 24436014 | 3 days ago | IN | 0 ETH | 0.00017681 | ||||
| Claim | 24436011 | 3 days ago | IN | 0 ETH | 0.00017569 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
ClickstrNFTV2
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
/**
* @title IClickRegistry
* @notice Interface for the permanent click registry
*/
interface IClickRegistry {
function totalClicks(address user) external view returns (uint256);
function clicksPerSeason(address user, uint256 season) external view returns (uint256);
}
/**
* @title ClickstrNFTV2
* @notice Achievement NFTs for Clickstr milestones - V2 with ClickRegistry integration
* @dev Key change from V1: Now checks ClickRegistry for eligibility instead of game contract.
* This enables cross-season click accumulation for milestone eligibility.
*
* Benefits:
* - 500K clicks across 5 seasons still qualifies for 500K milestone
* - NFT contract doesn't need to know about each game contract
* - Future seasons automatically count toward milestones
*
* Still uses signature-based claiming for flexibility (server can apply
* additional checks like Turnstile verification, time gates, etc.)
*
* Tier Ranges (same as V1):
* 1-99: Personal click milestones (editions)
* 100-199: Streak & epoch achievements (editions)
* 200-499: Global 1/1 milestones
* 500+: Hidden personal achievements (editions)
*/
contract ClickstrNFTV2 is ERC1155, Ownable {
using ECDSA for bytes32;
using MessageHashUtils for bytes32;
using Strings for uint256;
// ============ State ============
/// @notice The click registry (can be updated if registry is migrated)
IClickRegistry public registry;
/// @notice Address authorized to sign claim messages
address public signer;
/// @notice Tracks which tiers each address has claimed
mapping(address => mapping(uint256 => bool)) public claimed;
/// @notice Tracks which global milestone tiers have been claimed (1/1s)
mapping(uint256 => bool) public globalMilestoneClaimed;
/// @notice Who claimed each global milestone
mapping(uint256 => address) public globalMilestoneOwner;
/// @notice Minimum clicks required for each tier (0 = no on-chain check, rely on signature)
mapping(uint256 => uint256) public tierClickRequirement;
/// @notice Base URI for token metadata
string public baseURI;
/// @notice Contract-level metadata URI
string public contractURI;
// ============ Events ============
event MilestoneClaimed(
address indexed user,
uint256 indexed tier,
bool isGlobal,
uint256 userTotalClicks
);
event SignerUpdated(address indexed oldSigner, address indexed newSigner);
event RegistryUpdated(address indexed oldRegistry, address indexed newRegistry);
event BaseURIUpdated(string newBaseURI);
event ContractURIUpdated(string newContractURI);
event TierRequirementUpdated(uint256 indexed tier, uint256 clicksRequired);
// ============ Errors ============
error InvalidSignature();
error AlreadyClaimed();
error GlobalMilestoneAlreadyClaimed();
error InvalidTier();
error ZeroAddress();
error InsufficientClicks();
// ============ Constructor ============
/**
* @notice Deploy the V2 NFT contract
* @param _registry Address of the permanent ClickRegistry
* @param _signer Address that signs claim messages (server wallet)
* @param _baseURI Base URI for token metadata
*/
constructor(
address _registry,
address _signer,
string memory _baseURI
) ERC1155(_baseURI) Ownable(msg.sender) {
if (_registry == address(0)) revert ZeroAddress();
if (_signer == address(0)) revert ZeroAddress();
registry = IClickRegistry(_registry);
signer = _signer;
baseURI = _baseURI;
// Set default click requirements for personal milestones
// These can be updated by owner if needed
_setDefaultTierRequirements();
}
// ============ Internal Setup ============
function _setDefaultTierRequirements() internal {
// Personal click milestones (tiers 1-12)
tierClickRequirement[1] = 1; // First Timer
tierClickRequirement[2] = 100; // Getting Started
tierClickRequirement[3] = 500; // Warming Up
tierClickRequirement[4] = 1_000; // Dedicated
tierClickRequirement[5] = 5_000; // Serious Clicker
tierClickRequirement[6] = 10_000; // Obsessed
tierClickRequirement[7] = 25_000; // No Sleep
tierClickRequirement[8] = 50_000; // Touch Grass
tierClickRequirement[9] = 100_000; // Legend
tierClickRequirement[10] = 250_000; // Ascended
tierClickRequirement[11] = 500_000; // Transcendent
tierClickRequirement[12] = 1_000_000; // Click God
// Streak/epoch tiers (101-105) - no on-chain requirement (server tracks)
// Global 1/1s (200-499) - no on-chain requirement (server determines)
// Hidden achievements (500+) - no on-chain requirement (server determines)
}
// ============ Claiming ============
/**
* @notice Claim an achievement NFT with a server signature
* @param tier The milestone tier to claim (also the token ID)
* @param signature Server signature authorizing this claim
* @dev For personal milestones (1-12), also checks registry for sufficient clicks
*/
function claim(uint256 tier, bytes calldata signature) external {
if (tier == 0) revert InvalidTier();
if (claimed[msg.sender][tier]) revert AlreadyClaimed();
// For global milestones (200-499), check if anyone has claimed
bool isGlobal = tier >= 200 && tier < 500;
if (isGlobal) {
if (globalMilestoneClaimed[tier]) revert GlobalMilestoneAlreadyClaimed();
}
// Check on-chain click requirement if set
uint256 required = tierClickRequirement[tier];
uint256 userClicks = 0;
if (required > 0) {
userClicks = registry.totalClicks(msg.sender);
if (userClicks < required) revert InsufficientClicks();
}
// Verify signature (server can apply additional checks)
bytes32 messageHash = keccak256(
abi.encodePacked(msg.sender, tier, address(this))
);
bytes32 ethSignedHash = messageHash.toEthSignedMessageHash();
if (ethSignedHash.recover(signature) != signer) revert InvalidSignature();
// Mark as claimed
claimed[msg.sender][tier] = true;
// For global milestones, mark globally claimed
if (isGlobal) {
globalMilestoneClaimed[tier] = true;
globalMilestoneOwner[tier] = msg.sender;
}
// Mint NFT
_mint(msg.sender, tier, 1, "");
emit MilestoneClaimed(msg.sender, tier, isGlobal, userClicks);
}
/**
* @notice Claim multiple achievement NFTs in one transaction
* @param tiers Array of milestone tiers to claim
* @param signatures Array of server signatures for each tier
*/
function claimBatch(uint256[] calldata tiers, bytes[] calldata signatures) external {
require(tiers.length == signatures.length, "Array length mismatch");
require(tiers.length <= 20, "Too many claims");
// Get user's total clicks once (gas optimization)
uint256 userClicks = registry.totalClicks(msg.sender);
uint256[] memory amounts = new uint256[](tiers.length);
for (uint256 i = 0; i < tiers.length; i++) {
uint256 tier = tiers[i];
if (tier == 0) revert InvalidTier();
if (claimed[msg.sender][tier]) revert AlreadyClaimed();
bool isGlobal = tier >= 200 && tier < 500;
if (isGlobal && globalMilestoneClaimed[tier]) revert GlobalMilestoneAlreadyClaimed();
// Check click requirement
uint256 required = tierClickRequirement[tier];
if (required > 0 && userClicks < required) revert InsufficientClicks();
// Verify signature
bytes32 messageHash = keccak256(
abi.encodePacked(msg.sender, tier, address(this))
);
bytes32 ethSignedHash = messageHash.toEthSignedMessageHash();
if (ethSignedHash.recover(signatures[i]) != signer) revert InvalidSignature();
// Mark as claimed
claimed[msg.sender][tier] = true;
amounts[i] = 1;
if (isGlobal) {
globalMilestoneClaimed[tier] = true;
globalMilestoneOwner[tier] = msg.sender;
}
emit MilestoneClaimed(msg.sender, tier, isGlobal, userClicks);
}
// Batch mint all NFTs
_mintBatch(msg.sender, tiers, amounts, "");
}
// ============ View Functions ============
/**
* @notice Check if a user can claim a specific tier (based on on-chain data)
* @param user Address to check
* @param tier Milestone tier
* @return canClaim_ Whether the user can claim
* @return userClicks_ User's total clicks from registry
* @return required_ Clicks required for this tier
*/
function canClaim(
address user,
uint256 tier
) external view returns (
bool canClaim_,
uint256 userClicks_,
uint256 required_
) {
if (tier == 0) return (false, 0, 0);
if (claimed[user][tier]) return (false, 0, 0);
if (tier >= 200 && tier < 500 && globalMilestoneClaimed[tier]) return (false, 0, 0);
userClicks_ = registry.totalClicks(user);
required_ = tierClickRequirement[tier];
// If no on-chain requirement, assume claimable (needs valid signature)
if (required_ == 0) {
canClaim_ = true;
} else {
canClaim_ = userClicks_ >= required_;
}
}
/**
* @notice Get user's click-based eligibility for all personal milestones
* @param user Address to check
* @return eligible Array of bools for tiers 1-12
* @return totalClicks_ User's lifetime clicks
*/
function getEligibleMilestones(
address user
) external view returns (
bool[12] memory eligible,
uint256 totalClicks_
) {
totalClicks_ = registry.totalClicks(user);
for (uint256 i = 0; i < 12; i++) {
uint256 tier = i + 1;
uint256 required = tierClickRequirement[tier];
// Eligible if: has enough clicks AND hasn't claimed
eligible[i] = totalClicks_ >= required && !claimed[user][tier];
}
}
/**
* @notice Get all tiers claimed by a user
* @param user Address to check
* @param maxTier Maximum tier to check
* @return tiers Array of claimed tier numbers
*/
function getClaimedTiers(
address user,
uint256 maxTier
) external view returns (uint256[] memory tiers) {
uint256 count = 0;
for (uint256 i = 1; i <= maxTier; i++) {
if (claimed[user][i]) count++;
}
tiers = new uint256[](count);
uint256 index = 0;
for (uint256 i = 1; i <= maxTier; i++) {
if (claimed[user][i]) {
tiers[index++] = i;
}
}
}
/**
* @notice Get user stats from registry
* @param user Address to check
* @return totalClicks_ Lifetime clicks across all seasons
*/
function getUserClicks(address user) external view returns (uint256 totalClicks_) {
return registry.totalClicks(user);
}
/**
* @notice Get user's season-specific clicks
* @param user Address to check
* @param season Season number
* @return clicks Clicks for that season
*/
function getUserSeasonClicks(
address user,
uint256 season
) external view returns (uint256 clicks) {
return registry.clicksPerSeason(user, season);
}
// ============ Admin Functions ============
/**
* @notice Update the signer address
* @param _newSigner New signer address
*/
function setSigner(address _newSigner) external onlyOwner {
if (_newSigner == address(0)) revert ZeroAddress();
address oldSigner = signer;
signer = _newSigner;
emit SignerUpdated(oldSigner, _newSigner);
}
/**
* @notice Update the registry address (if registry is migrated)
* @param _newRegistry New registry address
*/
function setRegistry(address _newRegistry) external onlyOwner {
if (_newRegistry == address(0)) revert ZeroAddress();
address oldRegistry = address(registry);
registry = IClickRegistry(_newRegistry);
emit RegistryUpdated(oldRegistry, _newRegistry);
}
/**
* @notice Update the base URI for token metadata
* @param _newBaseURI New base URI
*/
function setBaseURI(string calldata _newBaseURI) external onlyOwner {
baseURI = _newBaseURI;
emit BaseURIUpdated(_newBaseURI);
}
/**
* @notice Update the contract-level metadata URI
* @param _newContractURI New contract URI
*/
function setContractURI(string calldata _newContractURI) external onlyOwner {
contractURI = _newContractURI;
emit ContractURIUpdated(_newContractURI);
}
/**
* @notice Update click requirement for a tier
* @param tier Tier to update
* @param clicksRequired New click requirement (0 = no on-chain check)
*/
function setTierRequirement(uint256 tier, uint256 clicksRequired) external onlyOwner {
tierClickRequirement[tier] = clicksRequired;
emit TierRequirementUpdated(tier, clicksRequired);
}
/**
* @notice Batch update click requirements
* @param tiers Array of tiers
* @param requirements Array of click requirements
*/
function setTierRequirementsBatch(
uint256[] calldata tiers,
uint256[] calldata requirements
) external onlyOwner {
require(tiers.length == requirements.length, "Array length mismatch");
for (uint256 i = 0; i < tiers.length; i++) {
tierClickRequirement[tiers[i]] = requirements[i];
emit TierRequirementUpdated(tiers[i], requirements[i]);
}
}
// ============ Metadata ============
/**
* @notice Get the URI for a given token ID (tier)
* @param tokenId Token ID (same as tier number)
* @return URI string
*/
function uri(uint256 tokenId) public view override returns (string memory) {
return string(abi.encodePacked(baseURI, tokenId.toString()));
}
/**
* @notice Get total supply of a specific tier
* @param tier The tier to check
* @return supply Total minted for this tier (0 or 1 for globals)
*/
function totalSupply(uint256 tier) external view returns (uint256 supply) {
if (tier >= 200 && tier < 500) {
return globalMilestoneClaimed[tier] ? 1 : 0;
}
return 0; // Editions don't track total on-chain
}
/**
* @notice Check if a tier is a 1/1 global milestone
* @param tier The tier to check
* @return isGlobal True if tier is in global range (200-499)
*/
function isGlobalMilestone(uint256 tier) external pure returns (bool) {
return tier >= 200 && tier < 500;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*/
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
using Arrays for uint256[];
using Arrays for address[];
mapping(uint256 id => mapping(address account => uint256)) private _balances;
mapping(address account => mapping(address operator => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
/**
* @dev See {_setURI}.
*/
constructor(string memory uri_) {
_setURI(uri_);
}
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256 /* id */) public view virtual returns (string memory) {
return _uri;
}
/// @inheritdoc IERC1155
function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
return _balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert ERC1155InvalidArrayLength(ids.length, accounts.length);
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
}
return batchBalances;
}
/// @inheritdoc IERC1155
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/// @inheritdoc IERC1155
function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
return _operatorApprovals[account][operator];
}
/// @inheritdoc IERC1155
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeTransferFrom(from, to, id, value, data);
}
/// @inheritdoc IERC1155
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeBatchTransferFrom(from, to, ids, values, data);
}
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
* (or `to`) is the zero address.
*
* Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
* or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
* - `ids` and `values` must have the same length.
*
* NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
*/
function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
if (ids.length != values.length) {
revert ERC1155InvalidArrayLength(ids.length, values.length);
}
address operator = _msgSender();
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids.unsafeMemoryAccess(i);
uint256 value = values.unsafeMemoryAccess(i);
if (from != address(0)) {
uint256 fromBalance = _balances[id][from];
if (fromBalance < value) {
revert ERC1155InsufficientBalance(from, fromBalance, value, id);
}
unchecked {
// Overflow not possible: value <= fromBalance
_balances[id][from] = fromBalance - value;
}
}
if (to != address(0)) {
_balances[id][to] += value;
}
}
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
emit TransferSingle(operator, from, to, id, value);
} else {
emit TransferBatch(operator, from, to, ids, values);
}
}
/**
* @dev Version of {_update} that performs the token acceptance check by calling
* {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
* contains code (eg. is a smart contract at the moment of execution).
*
* IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
* update to the contract state after this function would break the check-effect-interaction pattern. Consider
* overriding {_update} instead.
*/
function _updateWithAcceptanceCheck(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal virtual {
_update(from, to, ids, values);
if (to != address(0)) {
address operator = _msgSender();
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
} else {
ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
}
}
}
/**
* @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
* - `ids` and `values` must have the same length.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the values in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev Destroys a `value` amount of tokens of type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
*/
function _burn(address from, uint256 id, uint256 value) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
* - `ids` and `values` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC1155InvalidOperator(address(0));
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Creates an array in memory with only one value for each of the elements provided.
*/
function _asSingletonArrays(
uint256 element1,
uint256 element2
) private pure returns (uint256[] memory array1, uint256[] memory array2) {
assembly ("memory-safe") {
// Load the free memory pointer
array1 := mload(0x40)
// Set array length to 1
mstore(array1, 1)
// Store the single element at the next word after the length (where content starts)
mstore(add(array1, 0x20), element1)
// Repeat for next array locating it right after the first array
array2 := add(array1, 0x40)
mstore(array2, 1)
mstore(add(array2, 0x20), element2)
// Update the free memory pointer by pointing after the second array
mstore(0x40, add(array2, 0x40))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity >=0.6.2;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC1155/IERC1155.sol)
pragma solidity >=0.6.2;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[ERC].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {IERC1155Receiver-onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {IERC1155Receiver-onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity >=0.6.2;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC-1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC-1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC1155/utils/ERC1155Utils.sol)
pragma solidity ^0.8.20;
import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";
/**
* @dev Library that provide common ERC-1155 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
*
* _Available since v5.1._
*/
library ERC1155Utils {
/**
* @dev Performs an acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155Received}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC1155Received(
address operator,
address from,
address to,
uint256 id,
uint256 value,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
// Tokens rejected
revert IERC1155Errors.ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert IERC1155Errors.ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(reason, 0x20), mload(reason))
}
}
}
}
}
/**
* @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155BatchReceived}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC1155BatchReceived(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
// Tokens rejected
revert IERC1155Errors.ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert IERC1155Errors.ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(reason, 0x20), mload(reason))
}
}
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytesSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getStringSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(string[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}{
"optimizer": {
"enabled": true,
"runs": 200
},
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_registry","type":"address"},{"internalType":"address","name":"_signer","type":"address"},{"internalType":"string","name":"_baseURI","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"GlobalMilestoneAlreadyClaimed","type":"error"},{"inputs":[],"name":"InsufficientClicks","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidTier","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"newBaseURI","type":"string"}],"name":"BaseURIUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"newContractURI","type":"string"}],"name":"ContractURIUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"tier","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isGlobal","type":"bool"},{"indexed":false,"internalType":"uint256","name":"userTotalClicks","type":"uint256"}],"name":"MilestoneClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldRegistry","type":"address"},{"indexed":true,"internalType":"address","name":"newRegistry","type":"address"}],"name":"RegistryUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tier","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"clicksRequired","type":"uint256"}],"name":"TierRequirementUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"tier","type":"uint256"}],"name":"canClaim","outputs":[{"internalType":"bool","name":"canClaim_","type":"bool"},{"internalType":"uint256","name":"userClicks_","type":"uint256"},{"internalType":"uint256","name":"required_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tier","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tiers","type":"uint256[]"},{"internalType":"bytes[]","name":"signatures","type":"bytes[]"}],"name":"claimBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"claimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"maxTier","type":"uint256"}],"name":"getClaimedTiers","outputs":[{"internalType":"uint256[]","name":"tiers","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getEligibleMilestones","outputs":[{"internalType":"bool[12]","name":"eligible","type":"bool[12]"},{"internalType":"uint256","name":"totalClicks_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserClicks","outputs":[{"internalType":"uint256","name":"totalClicks_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"season","type":"uint256"}],"name":"getUserSeasonClicks","outputs":[{"internalType":"uint256","name":"clicks","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"globalMilestoneClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"globalMilestoneOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tier","type":"uint256"}],"name":"isGlobalMilestone","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"registry","outputs":[{"internalType":"contract IClickRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_newContractURI","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newRegistry","type":"address"}],"name":"setRegistry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newSigner","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tier","type":"uint256"},{"internalType":"uint256","name":"clicksRequired","type":"uint256"}],"name":"setTierRequirement","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tiers","type":"uint256[]"},{"internalType":"uint256[]","name":"requirements","type":"uint256[]"}],"name":"setTierRequirementsBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tierClickRequirement","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tier","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"supply","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]Contract Creation Code
60806040523480156200001157600080fd5b506040516200335b3803806200335b83398101604081905262000034916200037a565b33816200004181620002e3565b506001600160a01b0381166200007157604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b6200007c81620002f5565b506001600160a01b038316620000a55760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b038216620000cd5760405163d92e233d60e01b815260040160405180910390fd5b600480546001600160a01b038086166001600160a01b0319928316179092556005805492851692909116919091179055600a6200010b828262000503565b50620002da600960205260017f92e85d02570a8092d09a6e3a57665bc3815a2699a4074001bf1ccabf660f5a365560647f6cde3cea4b3a3fb2488b2808bae7556f4a405e50f65e1794383bc026131b13c3556101f47fc575c31fea594a6eb97c8e9d3f9caee4c16218c6ef37e923234c0fe9014a61e7556103e87f8dc18c4ccfd75f5c815b63770fa542fd953e8fef7e0e44bbdd4913470ce7e9cb556113887f74b05292d1d4b2b48b65261b07099d24244bcb069f138d9a6bfdcf776becac4c556127107fbb6daa0c283751197dfdc76590680f9005e97d6f23870deb1164ab60b28b9f5f556161a87fae6299332bcd708cd60e3a8defa55de28078a50a4cf2b3de3a546253240ff9e15561c3507fc7694af312c4f286114180fd0ba6a52461fcee8a381636770b19a343af92538a55620186a07f87e8a52529e8ece4ef759037313542a6429ff494a9fab9027fb79db90124eba6556203d0907f502e20e4e219e0c509d693958f17384c185f07a810a5d31c46c2be981e979c25556207a1207f0d9cf2cd531699eed8dd34e40ff2884a14a698c4898184fba85194e6f6772d2455600c600052620f42407fc7b54da85b38015141aec405fe9a03fa9e057971f48e8d0d8fc78485848a231055565b505050620005cf565b6002620002f1828262000503565b5050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b80516001600160a01b03811681146200035f57600080fd5b919050565b634e487b7160e01b600052604160045260246000fd5b6000806000606084860312156200039057600080fd5b6200039b8462000347565b92506020620003ac81860162000347565b60408601519093506001600160401b0380821115620003ca57600080fd5b818701915087601f830112620003df57600080fd5b815181811115620003f457620003f462000364565b604051601f8201601f19908116603f011681019083821181831017156200041f576200041f62000364565b816040528281528a868487010111156200043857600080fd5b600093505b828410156200045c57848401860151818501870152928501926200043d565b60008684830101528096505050505050509250925092565b600181811c908216806200048957607f821691505b602082108103620004aa57634e487b7160e01b600052602260045260246000fd5b50919050565b601f821115620004fe57600081815260208120601f850160051c81016020861015620004d95750805b601f850160051c820191505b81811015620004fa57828155600101620004e5565b5050505b505050565b81516001600160401b038111156200051f576200051f62000364565b620005378162000530845462000474565b84620004b0565b602080601f8311600181146200056f5760008415620005565750858301515b600019600386901b1c1916600185901b178555620004fa565b600085815260208120601f198616915b82811015620005a0578886015182559484019460019091019084016200057f565b5085821015620005bf5787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b612d7c80620005df6000396000f3fe608060405234801561001057600080fd5b50600436106102055760003560e01c8063715018a61161011a5780639aa3d312116100ad578063c2da90dd1161007c578063c2da90dd146104e9578063e8a3d485146104fc578063e985e9c514610504578063f242432a14610517578063f2fde38b1461052a57600080fd5b80639aa3d3121461049d578063a22cb465146104b0578063a91ee0dc146104c3578063bd85b039146104d657600080fd5b8063938e3d7b116100e9578063938e3d7b14610426578063943d58d61461043957806396c69d291461045a57806398da0b611461046d57600080fd5b8063715018a6146103da5780637b103999146103e25780638241ea7a146103f55780638da5cb5b1461041557600080fd5b80634dd6c8de1161019d5780635a79e1621161016c5780635a79e162146103705780636489fb8814610383578063695bb854146103965780636c0360eb146103bf5780636c19e783146103c757600080fd5b80634dd6c8de146102ec5780634e1273f41461031a5780634fb9f9bd1461033a57806355f804b31461035d57600080fd5b80632524a044116101d95780632524a0441461029e57806327e26827146102b15780632eb2c2d6146102c457806338926b6d146102d957600080fd5b8062fdd58e1461020a57806301ffc9a7146102305780630e89341c14610253578063238ac93314610273575b600080fd5b61021d6102183660046122f0565b61053d565b6040519081526020015b60405180910390f35b61024361023e366004612330565b610565565b6040519015158152602001610227565b61026661026136600461234d565b6105b5565b60405161022791906123b6565b600554610286906001600160a01b031681565b6040516001600160a01b039091168152602001610227565b6102436102ac36600461234d565b6105e9565b61021d6102bf3660046122f0565b6105ff565b6102d76102d236600461250c565b610681565b005b6102d76102e73660046125fd565b6106ed565b6102436102fa3660046122f0565b600660209081526000928352604080842090915290825290205460ff1681565b61032d610328366004612648565b6109fe565b6040516102279190612742565b61024361034836600461234d565b60076020526000908152604090205460ff1681565b6102d761036b366004612755565b610ad2565b6102d761037e3660046127da565b610b25565b61021d610391366004612845565b610c4a565b6102866103a436600461234d565b6008602052600090815260409020546001600160a01b031681565b610266610cbe565b6102d76103d5366004612845565b610d4c565b6102d7610dcd565b600454610286906001600160a01b031681565b61021d61040336600461234d565b60096020526000908152604090205481565b6003546001600160a01b0316610286565b6102d7610434366004612755565b610de1565b61044c610447366004612845565b610e28565b604051610227929190612860565b61032d6104683660046122f0565b610f3c565b61048061047b3660046122f0565b611059565b604080519315158452602084019290925290820152606001610227565b6102d76104ab36600461289c565b611190565b6102d76104be3660046128be565b6111e9565b6102d76104d1366004612845565b6111f8565b61021d6104e436600461234d565b611279565b6102d76104f73660046127da565b6112c3565b61026661175c565b6102436105123660046128fa565b611769565b6102d761052536600461292d565b611797565b6102d7610538366004612845565b6117f6565b6000818152602081815260408083206001600160a01b03861684529091529020545b92915050565b60006001600160e01b03198216636cdb3d1360e11b148061059657506001600160e01b031982166303a24d0760e21b145b8061055f57506301ffc9a760e01b6001600160e01b031983161461055f565b6060600a6105c283611834565b6040516020016105d39291906129cb565b6040516020818303038152906040529050919050565b600060c8821015801561055f5750506101f41190565b6004805460405163059907f160e11b81526001600160a01b03858116938201939093526024810184905260009290911690630b320fe290604401602060405180830381865afa158015610656573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061067a9190612a52565b9392505050565b336001600160a01b03861681148015906106a257506106a08682611769565b155b156106d85760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b6106e586868686866118c6565b505050505050565b8260000361070e5760405163e142361760e01b815260040160405180910390fd5b33600090815260066020908152604080832086845290915290205460ff161561074a57604051630c8d9eab60e31b815260040160405180910390fd5b600060c8841015801561075e57506101f484105b905080156107965760008481526007602052604090205460ff161561079657604051633f8be50760e11b815260040160405180910390fd5b60008481526009602052604081205490811561083c5760048054604051630f125e7360e21b815233928101929092526001600160a01b031690633c4979cc90602401602060405180830381865afa1580156107f5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108199190612a52565b90508181101561083c5760405163061c389d60e51b815260040160405180910390fd5b6040516bffffffffffffffffffffffff1933606090811b821660208401526034830189905230901b16605482015260009060680160405160208183030381529060405280519060200120905060006108c1827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b600554604080516020601f8b018190048102820181019092528981529293506001600160a01b0390911691610913918a908a908190840183828082843760009201919091525086939250506119269050565b6001600160a01b03161461093a57604051638baa579f60e01b815260040160405180910390fd5b3360009081526006602090815260408083208b84529091529020805460ff191660011790558415610999576000888152600760209081526040808320805460ff191660011790556008909152902080546001600160a01b031916331790555b6109b53389600160405180602001604052806000815250611950565b60408051861515815260208101859052899133917fc32312b71961c67255799846ec37157be7d3f2cea3c4af396365e8b1e051b0e1910160405180910390a35050505050505050565b60608151835114610a2f5781518351604051635b05999160e01b8152600481019290925260248201526044016106cf565b600083516001600160401b03811115610a4a57610a4a6123c9565b604051908082528060200260200182016040528015610a73578160200160208202803683370190505b50905060005b8451811015610aca57602080820286010151610a9d9060208084028701015161053d565b828281518110610aaf57610aaf612a6b565b6020908102919091010152610ac381612a97565b9050610a79565b509392505050565b610ada6119ad565b600a610ae7828483612afb565b507f6741b2fc379fad678116fe3d4d4b9a1a184ab53ba36b86ad0fa66340b1ab41ad8282604051610b19929190612bba565b60405180910390a15050565b610b2d6119ad565b828114610b745760405162461bcd60e51b8152602060048201526015602482015274082e4e4c2f240d8cadccee8d040dad2e6dac2e8c6d605b1b60448201526064016106cf565b60005b83811015610c4357828282818110610b9157610b91612a6b565b9050602002013560096000878785818110610bae57610bae612a6b565b90506020020135815260200190815260200160002081905550848482818110610bd957610bd9612a6b565b905060200201357fc580c4b3152534a3eb709d40db23fa003ba1d284f16b8c65c2255a3262d50f63848484818110610c1357610c13612a6b565b90506020020135604051610c2991815260200190565b60405180910390a280610c3b81612a97565b915050610b77565b5050505050565b60048054604051630f125e7360e21b81526001600160a01b038481169382019390935260009290911690633c4979cc90602401602060405180830381865afa158015610c9a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061055f9190612a52565b600a8054610ccb90612991565b80601f0160208091040260200160405190810160405280929190818152602001828054610cf790612991565b8015610d445780601f10610d1957610100808354040283529160200191610d44565b820191906000526020600020905b815481529060010190602001808311610d2757829003601f168201915b505050505081565b610d546119ad565b6001600160a01b038116610d7b5760405163d92e233d60e01b815260040160405180910390fd5b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb90600090a35050565b610dd56119ad565b610ddf60006119da565b565b610de96119ad565b600b610df6828483612afb565b507f905d981207a7d0b6c62cc46ab0be2a076d0298e4a86d0ab79882dbd01ac373788282604051610b19929190612bba565b610e306122b5565b60048054604051630f125e7360e21b81526001600160a01b038581169382019390935260009290911690633c4979cc90602401602060405180830381865afa158015610e80573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ea49190612a52565b905060005b600c811015610f36576000610ebf826001612be9565b600081815260096020526040902054909150808410801590610f0557506001600160a01b038616600090815260066020908152604080832085845290915290205460ff16155b8584600c8110610f1757610f17612a6b565b9115156020909202015250819050610f2e81612a97565b915050610ea9565b50915091565b6060600060015b838111610f96576001600160a01b038516600090815260066020908152604080832084845290915290205460ff1615610f845781610f8081612a97565b9250505b80610f8e81612a97565b915050610f43565b50806001600160401b03811115610faf57610faf6123c9565b604051908082528060200260200182016040528015610fd8578160200160208202803683370190505b509150600060015b848111611050576001600160a01b038616600090815260066020908152604080832084845290915290205460ff161561103e5780848361101f81612a97565b94508151811061103157611031612a6b565b6020026020010181815250505b8061104881612a97565b915050610fe0565b50505092915050565b60008060008360000361107457506000915081905080611189565b6001600160a01b038516600090815260066020908152604080832087845290915290205460ff16156110ae57506000915081905080611189565b60c884101580156110c057506101f484105b80156110da575060008481526007602052604090205460ff165b156110ed57506000915081905080611189565b60048054604051630f125e7360e21b81526001600160a01b0388811693820193909352911690633c4979cc90602401602060405180830381865afa158015611139573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061115d9190612a52565b6000858152600960205260408120549193509091508190036111825760019250611189565b8082101592505b9250925092565b6111986119ad565b600082815260096020526040908190208290555182907fc580c4b3152534a3eb709d40db23fa003ba1d284f16b8c65c2255a3262d50f63906111dd9084815260200190565b60405180910390a25050565b6111f4338383611a2c565b5050565b6112006119ad565b6001600160a01b0381166112275760405163d92e233d60e01b815260040160405180910390fd5b600480546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f482b97c53e48ffa324a976e2738053e9aff6eee04d8aac63b10e19411d869b8290600090a35050565b600060c8821015801561128d57506101f482105b156112bb5760008281526007602052604090205460ff166112af5760006112b2565b60015b60ff1692915050565b506000919050565b82811461130a5760405162461bcd60e51b8152602060048201526015602482015274082e4e4c2f240d8cadccee8d040dad2e6dac2e8c6d605b1b60448201526064016106cf565b601483111561134d5760405162461bcd60e51b815260206004820152600f60248201526e546f6f206d616e7920636c61696d7360881b60448201526064016106cf565b60048054604051630f125e7360e21b815233928101929092526000916001600160a01b0390911690633c4979cc90602401602060405180830381865afa15801561139b573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113bf9190612a52565b90506000846001600160401b038111156113db576113db6123c9565b604051908082528060200260200182016040528015611404578160200160208202803683370190505b50905060005b8581101561170e57600087878381811061142657611426612a6b565b905060200201359050806000036114505760405163e142361760e01b815260040160405180910390fd5b33600090815260066020908152604080832084845290915290205460ff161561148c57604051630c8d9eab60e31b815260040160405180910390fd5b600060c882101580156114a057506101f482105b90508080156114bd575060008281526007602052604090205460ff165b156114db57604051633f8be50760e11b815260040160405180910390fd5b60008281526009602052604090205480158015906114f857508086105b156115165760405163061c389d60e51b815260040160405180910390fd5b6040516bffffffffffffffffffffffff1933606090811b821660208401526034830186905230901b166054820152600090606801604051602081830303815290604052805190602001209050600061159b827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b6005549091506001600160a01b031661160e8b8b898181106115bf576115bf612a6b565b90506020028101906115d19190612bfc565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525086939250506119269050565b6001600160a01b03161461163557604051638baa579f60e01b815260040160405180910390fd5b3360009081526006602090815260408083208884529091529020805460ff19166001908117909155875188908890811061167157611671612a6b565b60200260200101818152505083156116b7576000858152600760209081526040808320805460ff191660011790556008909152902080546001600160a01b031916331790555b604080518515158152602081018a9052869133917fc32312b71961c67255799846ec37157be7d3f2cea3c4af396365e8b1e051b0e1910160405180910390a35050505050808061170690612a97565b91505061140a565b506106e533878780806020026020016040519081016040528093929190818152602001838360200280828437600092018290525060408051602081019091529081528793509150611ac29050565b600b8054610ccb90612991565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205460ff1690565b336001600160a01b03861681148015906117b857506117b68682611769565b155b156117e95760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044016106cf565b6106e58686868686611b00565b6117fe6119ad565b6001600160a01b03811661182857604051631e4fbdf760e01b8152600060048201526024016106cf565b611831816119da565b50565b6060600061184183611b8e565b60010190506000816001600160401b03811115611860576118606123c9565b6040519080825280601f01601f19166020018201604052801561188a576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461189457509392505050565b6001600160a01b0384166118f057604051632bfa23e760e11b8152600060048201526024016106cf565b6001600160a01b03851661191957604051626a0d4560e21b8152600060048201526024016106cf565b610c438585858585611c66565b6000806000806119368686611cb9565b9250925092506119468282611d03565b5090949350505050565b6001600160a01b03841661197a57604051632bfa23e760e11b8152600060048201526024016106cf565b604080516001808252602082018690528183019081526060820185905260808201909252906106e5600087848487611c66565b6003546001600160a01b03163314610ddf5760405163118cdaa760e01b81523360048201526024016106cf565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6001600160a01b038216611a555760405162ced3e160e81b8152600060048201526024016106cf565b6001600160a01b03838116600081815260016020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b038416611aec57604051632bfa23e760e11b8152600060048201526024016106cf565b611afa600085858585611c66565b50505050565b6001600160a01b038416611b2a57604051632bfa23e760e11b8152600060048201526024016106cf565b6001600160a01b038516611b5357604051626a0d4560e21b8152600060048201526024016106cf565b60408051600180825260208201869052818301908152606082018590526080820190925290611b858787848487611c66565b50505050505050565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310611bcd5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611bf9576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310611c1757662386f26fc10000830492506010015b6305f5e1008310611c2f576305f5e100830492506008015b6127108310611c4357612710830492506004015b60648310611c55576064830492506002015b600a831061055f5760010192915050565b611c7285858585611dbc565b6001600160a01b03841615610c435782513390600103611cab5760208481015190840151611ca4838989858589611fd9565b50506106e5565b6106e58187878787876120fd565b60008060008351604103611cf35760208401516040850151606086015160001a611ce5888285856121e6565b955095509550505050611189565b5050815160009150600290611189565b6000826003811115611d1757611d17612c42565b03611d20575050565b6001826003811115611d3457611d34612c42565b03611d525760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115611d6657611d66612c42565b03611d875760405163fce698f760e01b8152600481018290526024016106cf565b6003826003811115611d9b57611d9b612c42565b036111f4576040516335e2f38360e21b8152600481018290526024016106cf565b8051825114611deb5781518151604051635b05999160e01b8152600481019290925260248201526044016106cf565b3360005b8351811015611efa576020818102858101820151908501909101516001600160a01b03881615611ea2576000828152602081815260408083206001600160a01b038c16845290915290205481811015611e7b576040516303dee4c560e01b81526001600160a01b038a1660048201526024810182905260448101839052606481018490526084016106cf565b6000838152602081815260408083206001600160a01b038d16845290915290209082900390555b6001600160a01b03871615611ee7576000828152602081815260408083206001600160a01b038b16845290915281208054839290611ee1908490612be9565b90915550505b505080611ef390612a97565b9050611def565b508251600103611f7b5760208301516000906020840151909150856001600160a01b0316876001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f628585604051611f6c929190918252602082015260400190565b60405180910390a45050610c43565b836001600160a01b0316856001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8686604051611fca929190612c58565b60405180910390a45050505050565b6001600160a01b0384163b156106e55760405163f23a6e6160e01b81526001600160a01b0385169063f23a6e619061201d9089908990889088908890600401612c86565b6020604051808303816000875af1925050508015612058575060408051601f3d908101601f1916820190925261205591810190612ccb565b60015b6120c1573d808015612086576040519150601f19603f3d011682016040523d82523d6000602084013e61208b565b606091505b5080516000036120b957604051632bfa23e760e11b81526001600160a01b03861660048201526024016106cf565b805160208201fd5b6001600160e01b0319811663f23a6e6160e01b14611b8557604051632bfa23e760e11b81526001600160a01b03861660048201526024016106cf565b6001600160a01b0384163b156106e55760405163bc197c8160e01b81526001600160a01b0385169063bc197c81906121419089908990889088908890600401612ce8565b6020604051808303816000875af192505050801561217c575060408051601f3d908101601f1916820190925261217991810190612ccb565b60015b6121aa573d808015612086576040519150601f19603f3d011682016040523d82523d6000602084013e61208b565b6001600160e01b0319811663bc197c8160e01b14611b8557604051632bfa23e760e11b81526001600160a01b03861660048201526024016106cf565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561222157506000915060039050826122ab565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612275573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166122a1575060009250600191508290506122ab565b9250600091508190505b9450945094915050565b604051806101800160405280600c906020820280368337509192915050565b80356001600160a01b03811681146122eb57600080fd5b919050565b6000806040838503121561230357600080fd5b61230c836122d4565b946020939093013593505050565b6001600160e01b03198116811461183157600080fd5b60006020828403121561234257600080fd5b813561067a8161231a565b60006020828403121561235f57600080fd5b5035919050565b60005b83811015612381578181015183820152602001612369565b50506000910152565b600081518084526123a2816020860160208601612366565b601f01601f19169290920160200192915050565b60208152600061067a602083018461238a565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b0381118282101715612407576124076123c9565b604052919050565b60006001600160401b03821115612428576124286123c9565b5060051b60200190565b600082601f83011261244357600080fd5b813560206124586124538361240f565b6123df565b82815260059290921b8401810191818101908684111561247757600080fd5b8286015b84811015612492578035835291830191830161247b565b509695505050505050565b600082601f8301126124ae57600080fd5b81356001600160401b038111156124c7576124c76123c9565b6124da601f8201601f19166020016123df565b8181528460208386010111156124ef57600080fd5b816020850160208301376000918101602001919091529392505050565b600080600080600060a0868803121561252457600080fd5b61252d866122d4565b945061253b602087016122d4565b935060408601356001600160401b038082111561255757600080fd5b61256389838a01612432565b9450606088013591508082111561257957600080fd5b61258589838a01612432565b9350608088013591508082111561259b57600080fd5b506125a88882890161249d565b9150509295509295909350565b60008083601f8401126125c757600080fd5b5081356001600160401b038111156125de57600080fd5b6020830191508360208285010111156125f657600080fd5b9250929050565b60008060006040848603121561261257600080fd5b8335925060208401356001600160401b0381111561262f57600080fd5b61263b868287016125b5565b9497909650939450505050565b6000806040838503121561265b57600080fd5b82356001600160401b038082111561267257600080fd5b818501915085601f83011261268657600080fd5b813560206126966124538361240f565b82815260059290921b840181019181810190898411156126b557600080fd5b948201945b838610156126da576126cb866122d4565b825294820194908201906126ba565b965050860135925050808211156126f057600080fd5b506126fd85828601612432565b9150509250929050565b600081518084526020808501945080840160005b838110156127375781518752958201959082019060010161271b565b509495945050505050565b60208152600061067a6020830184612707565b6000806020838503121561276857600080fd5b82356001600160401b0381111561277e57600080fd5b61278a858286016125b5565b90969095509350505050565b60008083601f8401126127a857600080fd5b5081356001600160401b038111156127bf57600080fd5b6020830191508360208260051b85010111156125f657600080fd5b600080600080604085870312156127f057600080fd5b84356001600160401b038082111561280757600080fd5b61281388838901612796565b9096509450602087013591508082111561282c57600080fd5b5061283987828801612796565b95989497509550505050565b60006020828403121561285757600080fd5b61067a826122d4565b6101a08101818460005b600c81101561288b578151151583526020928301929091019060010161286a565b505050826101808301529392505050565b600080604083850312156128af57600080fd5b50508035926020909101359150565b600080604083850312156128d157600080fd5b6128da836122d4565b9150602083013580151581146128ef57600080fd5b809150509250929050565b6000806040838503121561290d57600080fd5b612916836122d4565b9150612924602084016122d4565b90509250929050565b600080600080600060a0868803121561294557600080fd5b61294e866122d4565b945061295c602087016122d4565b9350604086013592506060860135915060808601356001600160401b0381111561298557600080fd5b6125a88882890161249d565b600181811c908216806129a557607f821691505b6020821081036129c557634e487b7160e01b600052602260045260246000fd5b50919050565b60008084546129d981612991565b600182811680156129f15760018114612a0657612a35565b60ff1984168752821515830287019450612a35565b8860005260208060002060005b85811015612a2c5781548a820152908401908201612a13565b50505082870194505b505050508351612a49818360208801612366565b01949350505050565b600060208284031215612a6457600080fd5b5051919050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201612aa957612aa9612a81565b5060010190565b601f821115612af657600081815260208120601f850160051c81016020861015612ad75750805b601f850160051c820191505b818110156106e557828155600101612ae3565b505050565b6001600160401b03831115612b1257612b126123c9565b612b2683612b208354612991565b83612ab0565b6000601f841160018114612b5a5760008515612b425750838201355b600019600387901b1c1916600186901b178355610c43565b600083815260209020601f19861690835b82811015612b8b5786850135825560209485019460019092019101612b6b565b5086821015612ba85760001960f88860031b161c19848701351681555b505060018560011b0183555050505050565b60208152816020820152818360408301376000818301604090810191909152601f909201601f19160101919050565b8082018082111561055f5761055f612a81565b6000808335601e19843603018112612c1357600080fd5b8301803591506001600160401b03821115612c2d57600080fd5b6020019150368190038213156125f657600080fd5b634e487b7160e01b600052602160045260246000fd5b604081526000612c6b6040830185612707565b8281036020840152612c7d8185612707565b95945050505050565b6001600160a01b03868116825285166020820152604081018490526060810183905260a060808201819052600090612cc09083018461238a565b979650505050505050565b600060208284031215612cdd57600080fd5b815161067a8161231a565b6001600160a01b0386811682528516602082015260a060408201819052600090612d1490830186612707565b8281036060840152612d268186612707565b90508281036080840152612d3a818561238a565b9897505050505050505056fea26469706673582212208a99b70ee5550ff9780bcb313215c60ff0dfb50cf76ea5209edb2daaa9c7b70164736f6c63430008140033000000000000000000000000da47fbc8dcbeef8069859416e0fdc2ac62bdd576000000000000000000000000f55e4fac663ad8db80284620f97d95391ab002ef00000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000036697066733a2f2f516d50376a6f56674a676f57337536544643706d784242574c64725a53767069696f454e504852526244337439532f00000000000000000000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102055760003560e01c8063715018a61161011a5780639aa3d312116100ad578063c2da90dd1161007c578063c2da90dd146104e9578063e8a3d485146104fc578063e985e9c514610504578063f242432a14610517578063f2fde38b1461052a57600080fd5b80639aa3d3121461049d578063a22cb465146104b0578063a91ee0dc146104c3578063bd85b039146104d657600080fd5b8063938e3d7b116100e9578063938e3d7b14610426578063943d58d61461043957806396c69d291461045a57806398da0b611461046d57600080fd5b8063715018a6146103da5780637b103999146103e25780638241ea7a146103f55780638da5cb5b1461041557600080fd5b80634dd6c8de1161019d5780635a79e1621161016c5780635a79e162146103705780636489fb8814610383578063695bb854146103965780636c0360eb146103bf5780636c19e783146103c757600080fd5b80634dd6c8de146102ec5780634e1273f41461031a5780634fb9f9bd1461033a57806355f804b31461035d57600080fd5b80632524a044116101d95780632524a0441461029e57806327e26827146102b15780632eb2c2d6146102c457806338926b6d146102d957600080fd5b8062fdd58e1461020a57806301ffc9a7146102305780630e89341c14610253578063238ac93314610273575b600080fd5b61021d6102183660046122f0565b61053d565b6040519081526020015b60405180910390f35b61024361023e366004612330565b610565565b6040519015158152602001610227565b61026661026136600461234d565b6105b5565b60405161022791906123b6565b600554610286906001600160a01b031681565b6040516001600160a01b039091168152602001610227565b6102436102ac36600461234d565b6105e9565b61021d6102bf3660046122f0565b6105ff565b6102d76102d236600461250c565b610681565b005b6102d76102e73660046125fd565b6106ed565b6102436102fa3660046122f0565b600660209081526000928352604080842090915290825290205460ff1681565b61032d610328366004612648565b6109fe565b6040516102279190612742565b61024361034836600461234d565b60076020526000908152604090205460ff1681565b6102d761036b366004612755565b610ad2565b6102d761037e3660046127da565b610b25565b61021d610391366004612845565b610c4a565b6102866103a436600461234d565b6008602052600090815260409020546001600160a01b031681565b610266610cbe565b6102d76103d5366004612845565b610d4c565b6102d7610dcd565b600454610286906001600160a01b031681565b61021d61040336600461234d565b60096020526000908152604090205481565b6003546001600160a01b0316610286565b6102d7610434366004612755565b610de1565b61044c610447366004612845565b610e28565b604051610227929190612860565b61032d6104683660046122f0565b610f3c565b61048061047b3660046122f0565b611059565b604080519315158452602084019290925290820152606001610227565b6102d76104ab36600461289c565b611190565b6102d76104be3660046128be565b6111e9565b6102d76104d1366004612845565b6111f8565b61021d6104e436600461234d565b611279565b6102d76104f73660046127da565b6112c3565b61026661175c565b6102436105123660046128fa565b611769565b6102d761052536600461292d565b611797565b6102d7610538366004612845565b6117f6565b6000818152602081815260408083206001600160a01b03861684529091529020545b92915050565b60006001600160e01b03198216636cdb3d1360e11b148061059657506001600160e01b031982166303a24d0760e21b145b8061055f57506301ffc9a760e01b6001600160e01b031983161461055f565b6060600a6105c283611834565b6040516020016105d39291906129cb565b6040516020818303038152906040529050919050565b600060c8821015801561055f5750506101f41190565b6004805460405163059907f160e11b81526001600160a01b03858116938201939093526024810184905260009290911690630b320fe290604401602060405180830381865afa158015610656573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061067a9190612a52565b9392505050565b336001600160a01b03861681148015906106a257506106a08682611769565b155b156106d85760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b6106e586868686866118c6565b505050505050565b8260000361070e5760405163e142361760e01b815260040160405180910390fd5b33600090815260066020908152604080832086845290915290205460ff161561074a57604051630c8d9eab60e31b815260040160405180910390fd5b600060c8841015801561075e57506101f484105b905080156107965760008481526007602052604090205460ff161561079657604051633f8be50760e11b815260040160405180910390fd5b60008481526009602052604081205490811561083c5760048054604051630f125e7360e21b815233928101929092526001600160a01b031690633c4979cc90602401602060405180830381865afa1580156107f5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108199190612a52565b90508181101561083c5760405163061c389d60e51b815260040160405180910390fd5b6040516bffffffffffffffffffffffff1933606090811b821660208401526034830189905230901b16605482015260009060680160405160208183030381529060405280519060200120905060006108c1827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b600554604080516020601f8b018190048102820181019092528981529293506001600160a01b0390911691610913918a908a908190840183828082843760009201919091525086939250506119269050565b6001600160a01b03161461093a57604051638baa579f60e01b815260040160405180910390fd5b3360009081526006602090815260408083208b84529091529020805460ff191660011790558415610999576000888152600760209081526040808320805460ff191660011790556008909152902080546001600160a01b031916331790555b6109b53389600160405180602001604052806000815250611950565b60408051861515815260208101859052899133917fc32312b71961c67255799846ec37157be7d3f2cea3c4af396365e8b1e051b0e1910160405180910390a35050505050505050565b60608151835114610a2f5781518351604051635b05999160e01b8152600481019290925260248201526044016106cf565b600083516001600160401b03811115610a4a57610a4a6123c9565b604051908082528060200260200182016040528015610a73578160200160208202803683370190505b50905060005b8451811015610aca57602080820286010151610a9d9060208084028701015161053d565b828281518110610aaf57610aaf612a6b565b6020908102919091010152610ac381612a97565b9050610a79565b509392505050565b610ada6119ad565b600a610ae7828483612afb565b507f6741b2fc379fad678116fe3d4d4b9a1a184ab53ba36b86ad0fa66340b1ab41ad8282604051610b19929190612bba565b60405180910390a15050565b610b2d6119ad565b828114610b745760405162461bcd60e51b8152602060048201526015602482015274082e4e4c2f240d8cadccee8d040dad2e6dac2e8c6d605b1b60448201526064016106cf565b60005b83811015610c4357828282818110610b9157610b91612a6b565b9050602002013560096000878785818110610bae57610bae612a6b565b90506020020135815260200190815260200160002081905550848482818110610bd957610bd9612a6b565b905060200201357fc580c4b3152534a3eb709d40db23fa003ba1d284f16b8c65c2255a3262d50f63848484818110610c1357610c13612a6b565b90506020020135604051610c2991815260200190565b60405180910390a280610c3b81612a97565b915050610b77565b5050505050565b60048054604051630f125e7360e21b81526001600160a01b038481169382019390935260009290911690633c4979cc90602401602060405180830381865afa158015610c9a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061055f9190612a52565b600a8054610ccb90612991565b80601f0160208091040260200160405190810160405280929190818152602001828054610cf790612991565b8015610d445780601f10610d1957610100808354040283529160200191610d44565b820191906000526020600020905b815481529060010190602001808311610d2757829003601f168201915b505050505081565b610d546119ad565b6001600160a01b038116610d7b5760405163d92e233d60e01b815260040160405180910390fd5b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb90600090a35050565b610dd56119ad565b610ddf60006119da565b565b610de96119ad565b600b610df6828483612afb565b507f905d981207a7d0b6c62cc46ab0be2a076d0298e4a86d0ab79882dbd01ac373788282604051610b19929190612bba565b610e306122b5565b60048054604051630f125e7360e21b81526001600160a01b038581169382019390935260009290911690633c4979cc90602401602060405180830381865afa158015610e80573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ea49190612a52565b905060005b600c811015610f36576000610ebf826001612be9565b600081815260096020526040902054909150808410801590610f0557506001600160a01b038616600090815260066020908152604080832085845290915290205460ff16155b8584600c8110610f1757610f17612a6b565b9115156020909202015250819050610f2e81612a97565b915050610ea9565b50915091565b6060600060015b838111610f96576001600160a01b038516600090815260066020908152604080832084845290915290205460ff1615610f845781610f8081612a97565b9250505b80610f8e81612a97565b915050610f43565b50806001600160401b03811115610faf57610faf6123c9565b604051908082528060200260200182016040528015610fd8578160200160208202803683370190505b509150600060015b848111611050576001600160a01b038616600090815260066020908152604080832084845290915290205460ff161561103e5780848361101f81612a97565b94508151811061103157611031612a6b565b6020026020010181815250505b8061104881612a97565b915050610fe0565b50505092915050565b60008060008360000361107457506000915081905080611189565b6001600160a01b038516600090815260066020908152604080832087845290915290205460ff16156110ae57506000915081905080611189565b60c884101580156110c057506101f484105b80156110da575060008481526007602052604090205460ff165b156110ed57506000915081905080611189565b60048054604051630f125e7360e21b81526001600160a01b0388811693820193909352911690633c4979cc90602401602060405180830381865afa158015611139573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061115d9190612a52565b6000858152600960205260408120549193509091508190036111825760019250611189565b8082101592505b9250925092565b6111986119ad565b600082815260096020526040908190208290555182907fc580c4b3152534a3eb709d40db23fa003ba1d284f16b8c65c2255a3262d50f63906111dd9084815260200190565b60405180910390a25050565b6111f4338383611a2c565b5050565b6112006119ad565b6001600160a01b0381166112275760405163d92e233d60e01b815260040160405180910390fd5b600480546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f482b97c53e48ffa324a976e2738053e9aff6eee04d8aac63b10e19411d869b8290600090a35050565b600060c8821015801561128d57506101f482105b156112bb5760008281526007602052604090205460ff166112af5760006112b2565b60015b60ff1692915050565b506000919050565b82811461130a5760405162461bcd60e51b8152602060048201526015602482015274082e4e4c2f240d8cadccee8d040dad2e6dac2e8c6d605b1b60448201526064016106cf565b601483111561134d5760405162461bcd60e51b815260206004820152600f60248201526e546f6f206d616e7920636c61696d7360881b60448201526064016106cf565b60048054604051630f125e7360e21b815233928101929092526000916001600160a01b0390911690633c4979cc90602401602060405180830381865afa15801561139b573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113bf9190612a52565b90506000846001600160401b038111156113db576113db6123c9565b604051908082528060200260200182016040528015611404578160200160208202803683370190505b50905060005b8581101561170e57600087878381811061142657611426612a6b565b905060200201359050806000036114505760405163e142361760e01b815260040160405180910390fd5b33600090815260066020908152604080832084845290915290205460ff161561148c57604051630c8d9eab60e31b815260040160405180910390fd5b600060c882101580156114a057506101f482105b90508080156114bd575060008281526007602052604090205460ff165b156114db57604051633f8be50760e11b815260040160405180910390fd5b60008281526009602052604090205480158015906114f857508086105b156115165760405163061c389d60e51b815260040160405180910390fd5b6040516bffffffffffffffffffffffff1933606090811b821660208401526034830186905230901b166054820152600090606801604051602081830303815290604052805190602001209050600061159b827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b6005549091506001600160a01b031661160e8b8b898181106115bf576115bf612a6b565b90506020028101906115d19190612bfc565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525086939250506119269050565b6001600160a01b03161461163557604051638baa579f60e01b815260040160405180910390fd5b3360009081526006602090815260408083208884529091529020805460ff19166001908117909155875188908890811061167157611671612a6b565b60200260200101818152505083156116b7576000858152600760209081526040808320805460ff191660011790556008909152902080546001600160a01b031916331790555b604080518515158152602081018a9052869133917fc32312b71961c67255799846ec37157be7d3f2cea3c4af396365e8b1e051b0e1910160405180910390a35050505050808061170690612a97565b91505061140a565b506106e533878780806020026020016040519081016040528093929190818152602001838360200280828437600092018290525060408051602081019091529081528793509150611ac29050565b600b8054610ccb90612991565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205460ff1690565b336001600160a01b03861681148015906117b857506117b68682611769565b155b156117e95760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044016106cf565b6106e58686868686611b00565b6117fe6119ad565b6001600160a01b03811661182857604051631e4fbdf760e01b8152600060048201526024016106cf565b611831816119da565b50565b6060600061184183611b8e565b60010190506000816001600160401b03811115611860576118606123c9565b6040519080825280601f01601f19166020018201604052801561188a576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461189457509392505050565b6001600160a01b0384166118f057604051632bfa23e760e11b8152600060048201526024016106cf565b6001600160a01b03851661191957604051626a0d4560e21b8152600060048201526024016106cf565b610c438585858585611c66565b6000806000806119368686611cb9565b9250925092506119468282611d03565b5090949350505050565b6001600160a01b03841661197a57604051632bfa23e760e11b8152600060048201526024016106cf565b604080516001808252602082018690528183019081526060820185905260808201909252906106e5600087848487611c66565b6003546001600160a01b03163314610ddf5760405163118cdaa760e01b81523360048201526024016106cf565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6001600160a01b038216611a555760405162ced3e160e81b8152600060048201526024016106cf565b6001600160a01b03838116600081815260016020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b038416611aec57604051632bfa23e760e11b8152600060048201526024016106cf565b611afa600085858585611c66565b50505050565b6001600160a01b038416611b2a57604051632bfa23e760e11b8152600060048201526024016106cf565b6001600160a01b038516611b5357604051626a0d4560e21b8152600060048201526024016106cf565b60408051600180825260208201869052818301908152606082018590526080820190925290611b858787848487611c66565b50505050505050565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310611bcd5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611bf9576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310611c1757662386f26fc10000830492506010015b6305f5e1008310611c2f576305f5e100830492506008015b6127108310611c4357612710830492506004015b60648310611c55576064830492506002015b600a831061055f5760010192915050565b611c7285858585611dbc565b6001600160a01b03841615610c435782513390600103611cab5760208481015190840151611ca4838989858589611fd9565b50506106e5565b6106e58187878787876120fd565b60008060008351604103611cf35760208401516040850151606086015160001a611ce5888285856121e6565b955095509550505050611189565b5050815160009150600290611189565b6000826003811115611d1757611d17612c42565b03611d20575050565b6001826003811115611d3457611d34612c42565b03611d525760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115611d6657611d66612c42565b03611d875760405163fce698f760e01b8152600481018290526024016106cf565b6003826003811115611d9b57611d9b612c42565b036111f4576040516335e2f38360e21b8152600481018290526024016106cf565b8051825114611deb5781518151604051635b05999160e01b8152600481019290925260248201526044016106cf565b3360005b8351811015611efa576020818102858101820151908501909101516001600160a01b03881615611ea2576000828152602081815260408083206001600160a01b038c16845290915290205481811015611e7b576040516303dee4c560e01b81526001600160a01b038a1660048201526024810182905260448101839052606481018490526084016106cf565b6000838152602081815260408083206001600160a01b038d16845290915290209082900390555b6001600160a01b03871615611ee7576000828152602081815260408083206001600160a01b038b16845290915281208054839290611ee1908490612be9565b90915550505b505080611ef390612a97565b9050611def565b508251600103611f7b5760208301516000906020840151909150856001600160a01b0316876001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f628585604051611f6c929190918252602082015260400190565b60405180910390a45050610c43565b836001600160a01b0316856001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8686604051611fca929190612c58565b60405180910390a45050505050565b6001600160a01b0384163b156106e55760405163f23a6e6160e01b81526001600160a01b0385169063f23a6e619061201d9089908990889088908890600401612c86565b6020604051808303816000875af1925050508015612058575060408051601f3d908101601f1916820190925261205591810190612ccb565b60015b6120c1573d808015612086576040519150601f19603f3d011682016040523d82523d6000602084013e61208b565b606091505b5080516000036120b957604051632bfa23e760e11b81526001600160a01b03861660048201526024016106cf565b805160208201fd5b6001600160e01b0319811663f23a6e6160e01b14611b8557604051632bfa23e760e11b81526001600160a01b03861660048201526024016106cf565b6001600160a01b0384163b156106e55760405163bc197c8160e01b81526001600160a01b0385169063bc197c81906121419089908990889088908890600401612ce8565b6020604051808303816000875af192505050801561217c575060408051601f3d908101601f1916820190925261217991810190612ccb565b60015b6121aa573d808015612086576040519150601f19603f3d011682016040523d82523d6000602084013e61208b565b6001600160e01b0319811663bc197c8160e01b14611b8557604051632bfa23e760e11b81526001600160a01b03861660048201526024016106cf565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561222157506000915060039050826122ab565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612275573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166122a1575060009250600191508290506122ab565b9250600091508190505b9450945094915050565b604051806101800160405280600c906020820280368337509192915050565b80356001600160a01b03811681146122eb57600080fd5b919050565b6000806040838503121561230357600080fd5b61230c836122d4565b946020939093013593505050565b6001600160e01b03198116811461183157600080fd5b60006020828403121561234257600080fd5b813561067a8161231a565b60006020828403121561235f57600080fd5b5035919050565b60005b83811015612381578181015183820152602001612369565b50506000910152565b600081518084526123a2816020860160208601612366565b601f01601f19169290920160200192915050565b60208152600061067a602083018461238a565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b0381118282101715612407576124076123c9565b604052919050565b60006001600160401b03821115612428576124286123c9565b5060051b60200190565b600082601f83011261244357600080fd5b813560206124586124538361240f565b6123df565b82815260059290921b8401810191818101908684111561247757600080fd5b8286015b84811015612492578035835291830191830161247b565b509695505050505050565b600082601f8301126124ae57600080fd5b81356001600160401b038111156124c7576124c76123c9565b6124da601f8201601f19166020016123df565b8181528460208386010111156124ef57600080fd5b816020850160208301376000918101602001919091529392505050565b600080600080600060a0868803121561252457600080fd5b61252d866122d4565b945061253b602087016122d4565b935060408601356001600160401b038082111561255757600080fd5b61256389838a01612432565b9450606088013591508082111561257957600080fd5b61258589838a01612432565b9350608088013591508082111561259b57600080fd5b506125a88882890161249d565b9150509295509295909350565b60008083601f8401126125c757600080fd5b5081356001600160401b038111156125de57600080fd5b6020830191508360208285010111156125f657600080fd5b9250929050565b60008060006040848603121561261257600080fd5b8335925060208401356001600160401b0381111561262f57600080fd5b61263b868287016125b5565b9497909650939450505050565b6000806040838503121561265b57600080fd5b82356001600160401b038082111561267257600080fd5b818501915085601f83011261268657600080fd5b813560206126966124538361240f565b82815260059290921b840181019181810190898411156126b557600080fd5b948201945b838610156126da576126cb866122d4565b825294820194908201906126ba565b965050860135925050808211156126f057600080fd5b506126fd85828601612432565b9150509250929050565b600081518084526020808501945080840160005b838110156127375781518752958201959082019060010161271b565b509495945050505050565b60208152600061067a6020830184612707565b6000806020838503121561276857600080fd5b82356001600160401b0381111561277e57600080fd5b61278a858286016125b5565b90969095509350505050565b60008083601f8401126127a857600080fd5b5081356001600160401b038111156127bf57600080fd5b6020830191508360208260051b85010111156125f657600080fd5b600080600080604085870312156127f057600080fd5b84356001600160401b038082111561280757600080fd5b61281388838901612796565b9096509450602087013591508082111561282c57600080fd5b5061283987828801612796565b95989497509550505050565b60006020828403121561285757600080fd5b61067a826122d4565b6101a08101818460005b600c81101561288b578151151583526020928301929091019060010161286a565b505050826101808301529392505050565b600080604083850312156128af57600080fd5b50508035926020909101359150565b600080604083850312156128d157600080fd5b6128da836122d4565b9150602083013580151581146128ef57600080fd5b809150509250929050565b6000806040838503121561290d57600080fd5b612916836122d4565b9150612924602084016122d4565b90509250929050565b600080600080600060a0868803121561294557600080fd5b61294e866122d4565b945061295c602087016122d4565b9350604086013592506060860135915060808601356001600160401b0381111561298557600080fd5b6125a88882890161249d565b600181811c908216806129a557607f821691505b6020821081036129c557634e487b7160e01b600052602260045260246000fd5b50919050565b60008084546129d981612991565b600182811680156129f15760018114612a0657612a35565b60ff1984168752821515830287019450612a35565b8860005260208060002060005b85811015612a2c5781548a820152908401908201612a13565b50505082870194505b505050508351612a49818360208801612366565b01949350505050565b600060208284031215612a6457600080fd5b5051919050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201612aa957612aa9612a81565b5060010190565b601f821115612af657600081815260208120601f850160051c81016020861015612ad75750805b601f850160051c820191505b818110156106e557828155600101612ae3565b505050565b6001600160401b03831115612b1257612b126123c9565b612b2683612b208354612991565b83612ab0565b6000601f841160018114612b5a5760008515612b425750838201355b600019600387901b1c1916600186901b178355610c43565b600083815260209020601f19861690835b82811015612b8b5786850135825560209485019460019092019101612b6b565b5086821015612ba85760001960f88860031b161c19848701351681555b505060018560011b0183555050505050565b60208152816020820152818360408301376000818301604090810191909152601f909201601f19160101919050565b8082018082111561055f5761055f612a81565b6000808335601e19843603018112612c1357600080fd5b8301803591506001600160401b03821115612c2d57600080fd5b6020019150368190038213156125f657600080fd5b634e487b7160e01b600052602160045260246000fd5b604081526000612c6b6040830185612707565b8281036020840152612c7d8185612707565b95945050505050565b6001600160a01b03868116825285166020820152604081018490526060810183905260a060808201819052600090612cc09083018461238a565b979650505050505050565b600060208284031215612cdd57600080fd5b815161067a8161231a565b6001600160a01b0386811682528516602082015260a060408201819052600090612d1490830186612707565b8281036060840152612d268186612707565b90508281036080840152612d3a818561238a565b9897505050505050505056fea26469706673582212208a99b70ee5550ff9780bcb313215c60ff0dfb50cf76ea5209edb2daaa9c7b70164736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000da47fbc8dcbeef8069859416e0fdc2ac62bdd576000000000000000000000000f55e4fac663ad8db80284620f97d95391ab002ef00000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000036697066733a2f2f516d50376a6f56674a676f57337536544643706d784242574c64725a53767069696f454e504852526244337439532f00000000000000000000
-----Decoded View---------------
Arg [0] : _registry (address): 0xDA47fbc8DcBeef8069859416e0fdC2Ac62bDd576
Arg [1] : _signer (address): 0xf55E4fac663ad8db80284620F97D95391ab002EF
Arg [2] : _baseURI (string): ipfs://QmP7joVgJgoW3u6TFCpmxBBWLdrZSvpiioENPHRRbD3t9S/
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000da47fbc8dcbeef8069859416e0fdc2ac62bdd576
Arg [1] : 000000000000000000000000f55e4fac663ad8db80284620f97d95391ab002ef
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000036
Arg [4] : 697066733a2f2f516d50376a6f56674a676f57337536544643706d784242574c
Arg [5] : 64725a53767069696f454e504852526244337439532f00000000000000000000
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.