ETH Price: $3,232.62 (-3.08%)
 
Transaction Hash
Method
Block
From
To
Migrate161827472022-12-14 11:50:59779 days ago1671018659IN
0x46866D27...3e11e3eF4
0 ETH0.0048279513
Migrate155218442022-09-12 16:25:27872 days ago1662999927IN
0x46866D27...3e11e3eF4
0 ETH0.0236331664.02585652
Migrate153924182022-08-22 20:40:18893 days ago1661200818IN
0x46866D27...3e11e3eF4
0 ETH0.008549422.81673385
Migrate153333052022-08-13 12:02:40902 days ago1660392160IN
0x46866D27...3e11e3eF4
0 ETH0.0037469910
Migrate153021662022-08-08 14:43:47907 days ago1659969827IN
0x46866D27...3e11e3eF4
0 ETH0.0055367815
Migrate152421432022-07-30 6:16:54917 days ago1659161814IN
0x46866D27...3e11e3eF4
0 ETH0.002248196
Migrate151652622022-07-18 7:20:26929 days ago1658128826IN
0x46866D27...3e11e3eF4
0 ETH0.0069201218.46755632
Migrate151163422022-07-10 17:49:39936 days ago1657475379IN
0x46866D27...3e11e3eF4
0 ETH0.003599119.60535354
Migrate149940282022-06-20 2:03:32957 days ago1655690612IN
0x46866D27...3e11e3eF4
0 ETH0.0066861317.84400741
Migrate149934292022-06-19 23:38:25957 days ago1655681905IN
0x46866D27...3e11e3eF4
0 ETH0.0066888117.85115998
Migrate149789802022-06-17 11:37:24959 days ago1655465844IN
0x46866D27...3e11e3eF4
0 ETH0.0091024524.29394514
Migrate149666112022-06-15 8:43:01962 days ago1655282581IN
0x46866D27...3e11e3eF4
0 ETH0.0210743663.34497909
Migrate149518882022-06-12 19:25:30964 days ago1655061930IN
0x46866D27...3e11e3eF4
0 ETH0.0118119832.19585955
Migrate149511142022-06-12 16:21:16964 days ago1655050876IN
0x46866D27...3e11e3eF4
0 ETH0.0121864737.25476228
Migrate149510972022-06-12 16:17:54964 days ago1655050674IN
0x46866D27...3e11e3eF4
0 ETH0.0110355629.89705168
Migrate149441712022-06-11 12:08:49965 days ago1654949329IN
0x46866D27...3e11e3eF4
0 ETH0.0132253235.8294324
Migrate149283082022-06-08 18:55:59968 days ago1654714559IN
0x46866D27...3e11e3eF4
0 ETH0.0285590277.37077043
Migrate148818172022-06-01 0:33:57976 days ago1654043637IN
0x46866D27...3e11e3eF4
0 ETH0.0238234863.58032927
Migrate148786682022-05-31 12:21:44976 days ago1653999704IN
0x46866D27...3e11e3eF4
0 ETH0.0064977717.34045154
Migrate148591862022-05-28 8:13:19980 days ago1653725599IN
0x46866D27...3e11e3eF4
0 ETH0.0062477616.67410007
Migrate148543652022-05-27 13:21:49980 days ago1653657709IN
0x46866D27...3e11e3eF4
0 ETH0.0393096106.49574045
Migrate148450922022-05-26 1:10:39982 days ago1653527439IN
0x46866D27...3e11e3eF4
0 ETH0.0133277135.74100319
Migrate148416002022-05-25 11:22:53982 days ago1653477773IN
0x46866D27...3e11e3eF4
0 ETH0.0056551215.1646045
Migrate148409692022-05-25 9:00:54983 days ago1653469254IN
0x46866D27...3e11e3eF4
0 ETH0.0072446119.14052437
Migrate148312952022-05-23 19:04:24984 days ago1653332664IN
0x46866D27...3e11e3eF4
0 ETH0.0154001240.68768246
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
GeneralizedSwapMigrator

Compiler Version
v0.6.12+commit.27d51765

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion, MIT license
File 1 of 78 : GeneralizedSwapMigrator.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;

import "./interfaces/ISwap.sol";
import "./helper/BaseBoringBatchable.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

/**
 * @title GeneralizedSwapMigrator
 * @notice This contract is responsible for migration liquidity between pools
 * Users can use this contract to remove their liquidity from the old pools and add them to the new
 * ones with a single transaction.
 */
contract GeneralizedSwapMigrator is Ownable, BaseBoringBatchable {
    using SafeERC20 for IERC20;

    struct MigrationData {
        address newPoolAddress;
        IERC20 oldPoolLPTokenAddress;
        IERC20 newPoolLPTokenAddress;
        IERC20[] tokens;
    }

    uint256 private constant MAX_UINT256 = 2**256 - 1;
    mapping(address => MigrationData) public migrationMap;

    event AddMigrationData(address indexed oldPoolAddress, MigrationData mData);
    event Migrate(
        address indexed migrator,
        address indexed oldPoolAddress,
        uint256 oldLPTokenAmount,
        uint256 newLPTokenAmount
    );

    constructor() public Ownable() {}

    /**
     * @notice Add new migration data to the contract
     * @param oldPoolAddress pool address to migrate from
     * @param mData MigrationData struct that contains information of the old and new pools
     * @param overwrite should overwrite existing migration data
     */
    function addMigrationData(
        address oldPoolAddress,
        MigrationData memory mData,
        bool overwrite
    ) external onlyOwner {
        // Check
        if (!overwrite) {
            require(
                address(migrationMap[oldPoolAddress].oldPoolLPTokenAddress) ==
                    address(0),
                "cannot overwrite existing migration data"
            );
        }
        require(
            address(mData.oldPoolLPTokenAddress) != address(0),
            "oldPoolLPTokenAddress == 0"
        );
        require(
            address(mData.newPoolLPTokenAddress) != address(0),
            "newPoolLPTokenAddress == 0"
        );

        for (uint8 i = 0; i < 32; i++) {
            address oldPoolToken;
            try ISwap(oldPoolAddress).getToken(i) returns (IERC20 token) {
                oldPoolToken = address(token);
            } catch {
                require(i > 0, "Failed to get tokens underlying Saddle pool.");
                oldPoolToken = address(0);
            }

            try ISwap(mData.newPoolAddress).getToken(i) returns (IERC20 token) {
                require(
                    oldPoolToken == address(token) &&
                        oldPoolToken == address(mData.tokens[i]),
                    "Failed to match tokens list"
                );
            } catch {
                require(i > 0, "Failed to get tokens underlying Saddle pool.");
                require(
                    oldPoolToken == address(0) && i == mData.tokens.length,
                    "Failed to match tokens list"
                );
                break;
            }
        }

        // Effect
        migrationMap[oldPoolAddress] = mData;

        // Interaction
        // Approve old LP Token to be used for withdraws.
        mData.oldPoolLPTokenAddress.approve(oldPoolAddress, MAX_UINT256);

        // Approve underlying tokens to be used for deposits.
        for (uint256 i = 0; i < mData.tokens.length; i++) {
            mData.tokens[i].safeApprove(mData.newPoolAddress, 0);
            mData.tokens[i].safeApprove(mData.newPoolAddress, MAX_UINT256);
        }

        emit AddMigrationData(oldPoolAddress, mData);
    }

    /**
     * @notice Migrates saddle LP tokens from a pool to another
     * @param oldPoolAddress pool address to migrate from
     * @param amount amount of LP tokens to migrate
     * @param minAmount of new LP tokens to receive
     */
    function migrate(
        address oldPoolAddress,
        uint256 amount,
        uint256 minAmount
    ) external returns (uint256) {
        // Check
        MigrationData memory mData = migrationMap[oldPoolAddress];
        require(
            address(mData.oldPoolLPTokenAddress) != address(0),
            "migration is not available"
        );

        // Interactions
        // Transfer old LP token from the caller
        mData.oldPoolLPTokenAddress.safeTransferFrom(
            msg.sender,
            address(this),
            amount
        );

        // Remove liquidity from the old pool
        uint256[] memory amounts = ISwap(oldPoolAddress).removeLiquidity(
            amount,
            new uint256[](mData.tokens.length),
            MAX_UINT256
        );
        // Add acquired liquidity to the new pool
        uint256 mintedAmount = ISwap(mData.newPoolAddress).addLiquidity(
            amounts,
            minAmount,
            MAX_UINT256
        );

        // Transfer new LP Token to the caller
        mData.newPoolLPTokenAddress.safeTransfer(msg.sender, mintedAmount);

        emit Migrate(msg.sender, oldPoolAddress, amount, mintedAmount);
        return mintedAmount;
    }

    /**
     * @notice Rescues any token that may be sent to this contract accidentally.
     * @param token Amount of old LPToken to migrate
     * @param to Minimum amount of new LPToken to receive
     */
    function rescue(IERC20 token, address to) external onlyOwner {
        token.safeTransfer(to, token.balanceOf(address(this)));
    }
}

File 2 of 78 : AmplificationUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./SwapUtils.sol";

/**
 * @title AmplificationUtils library
 * @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct.
 * This library assumes the struct is fully validated.
 */
library AmplificationUtils {
    using SafeMath for uint256;

    event RampA(
        uint256 oldA,
        uint256 newA,
        uint256 initialTime,
        uint256 futureTime
    );
    event StopRampA(uint256 currentA, uint256 time);

    // Constant values used in ramping A calculations
    uint256 public constant A_PRECISION = 100;
    uint256 public constant MAX_A = 10**6;
    uint256 private constant MAX_A_CHANGE = 2;
    uint256 private constant MIN_RAMP_TIME = 14 days;

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter
     */
    function getA(SwapUtils.Swap storage self) external view returns (uint256) {
        return _getAPrecise(self).div(A_PRECISION);
    }

    /**
     * @notice Return A in its raw precision
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function getAPrecise(SwapUtils.Swap storage self)
        external
        view
        returns (uint256)
    {
        return _getAPrecise(self);
    }

    /**
     * @notice Return A in its raw precision
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function _getAPrecise(SwapUtils.Swap storage self)
        internal
        view
        returns (uint256)
    {
        uint256 t1 = self.futureATime; // time when ramp is finished
        uint256 a1 = self.futureA; // final A value when ramp is finished

        if (block.timestamp < t1) {
            uint256 t0 = self.initialATime; // time when ramp is started
            uint256 a0 = self.initialA; // initial A value when ramp is started
            if (a1 > a0) {
                // a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.add(
                        a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            } else {
                // a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.sub(
                        a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            }
        } else {
            return a1;
        }
    }

    /**
     * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_
     * Checks if the change is too rapid, and commits the new A value only when it falls under
     * the limit range.
     * @param self Swap struct to update
     * @param futureA_ the new A to ramp towards
     * @param futureTime_ timestamp when the new A should be reached
     */
    function rampA(
        SwapUtils.Swap storage self,
        uint256 futureA_,
        uint256 futureTime_
    ) external {
        require(
            block.timestamp >= self.initialATime.add(1 days),
            "Wait 1 day before starting ramp"
        );
        require(
            futureTime_ >= block.timestamp.add(MIN_RAMP_TIME),
            "Insufficient ramp time"
        );
        require(
            futureA_ > 0 && futureA_ < MAX_A,
            "futureA_ must be > 0 and < MAX_A"
        );

        uint256 initialAPrecise = _getAPrecise(self);
        uint256 futureAPrecise = futureA_.mul(A_PRECISION);

        if (futureAPrecise < initialAPrecise) {
            require(
                futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise,
                "futureA_ is too small"
            );
        } else {
            require(
                futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE),
                "futureA_ is too large"
            );
        }

        self.initialA = initialAPrecise;
        self.futureA = futureAPrecise;
        self.initialATime = block.timestamp;
        self.futureATime = futureTime_;

        emit RampA(
            initialAPrecise,
            futureAPrecise,
            block.timestamp,
            futureTime_
        );
    }

    /**
     * @notice Stops ramping A immediately. Once this function is called, rampA()
     * cannot be called for another 24 hours
     * @param self Swap struct to update
     */
    function stopRampA(SwapUtils.Swap storage self) external {
        require(self.futureATime > block.timestamp, "Ramp is already stopped");

        uint256 currentA = _getAPrecise(self);
        self.initialA = currentA;
        self.futureA = currentA;
        self.initialATime = block.timestamp;
        self.futureATime = block.timestamp;

        emit StopRampA(currentA, block.timestamp);
    }
}

File 3 of 78 : SafeERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 4 of 78 : SwapUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./AmplificationUtils.sol";
import "./LPToken.sol";
import "./MathUtils.sol";

/**
 * @title SwapUtils library
 * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
 * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
 * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
 * Admin functions should be protected within contracts using this library.
 */
library SwapUtils {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using MathUtils for uint256;

    /*** EVENTS ***/

    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);

    struct Swap {
        // variables around the ramp management of A,
        // the amplification coefficient * n * (n - 1)
        // see https://www.curve.fi/stableswap-paper.pdf for details
        uint256 initialA;
        uint256 futureA;
        uint256 initialATime;
        uint256 futureATime;
        // fee calculation
        uint256 swapFee;
        uint256 adminFee;
        LPToken lpToken;
        // contract references for all tokens being pooled
        IERC20[] pooledTokens;
        // multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
        // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
        // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
        uint256[] tokenPrecisionMultipliers;
        // the pool balance of each token, in the token's precision
        // the contract's actual token balance might differ
        uint256[] balances;
    }

    // Struct storing variables used in calculations in the
    // calculateWithdrawOneTokenDY function to avoid stack too deep errors
    struct CalculateWithdrawOneTokenDYInfo {
        uint256 d0;
        uint256 d1;
        uint256 newY;
        uint256 feePerToken;
        uint256 preciseA;
    }

    // Struct storing variables used in calculations in the
    // {add,remove}Liquidity functions to avoid stack too deep errors
    struct ManageLiquidityInfo {
        uint256 d0;
        uint256 d1;
        uint256 d2;
        uint256 preciseA;
        LPToken lpToken;
        uint256 totalSupply;
        uint256[] balances;
        uint256[] multipliers;
    }

    // the precision all pools tokens will be converted to
    uint8 public constant POOL_PRECISION_DECIMALS = 18;

    // the denominator used to calculate admin and LP fees. For example, an
    // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
    uint256 private constant FEE_DENOMINATOR = 10**10;

    // Max swap fee is 1% or 100bps of each swap
    uint256 public constant MAX_SWAP_FEE = 10**8;

    // Max adminFee is 100% of the swapFee
    // adminFee does not add additional fee on top of swapFee
    // Instead it takes a certain % of the swapFee. Therefore it has no impact on the
    // users but only on the earnings of LPs
    uint256 public constant MAX_ADMIN_FEE = 10**10;

    // Constant value used as max loop limit
    uint256 private constant MAX_LOOP_LIMIT = 256;

    /*** VIEW & PURE FUNCTIONS ***/

    function _getAPrecise(Swap storage self) internal view returns (uint256) {
        return AmplificationUtils._getAPrecise(self);
    }

    /**
     * @notice Calculate the dy, the amount of selected token that user receives and
     * the fee of withdrawing in one token
     * @param tokenAmount the amount to withdraw in the pool's precision
     * @param tokenIndex which token will be withdrawn
     * @param self Swap struct to read from
     * @return the amount of token user will receive
     */
    function calculateWithdrawOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256) {
        (uint256 availableTokenAmount, ) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            self.lpToken.totalSupply()
        );
        return availableTokenAmount;
    }

    function _calculateWithdrawOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 totalSupply
    ) internal view returns (uint256, uint256) {
        uint256 dy;
        uint256 newY;
        uint256 currentY;

        (dy, newY, currentY) = calculateWithdrawOneTokenDY(
            self,
            tokenIndex,
            tokenAmount,
            totalSupply
        );

        // dy_0 (without fees)
        // dy, dy_0 - dy

        uint256 dySwapFee = currentY
            .sub(newY)
            .div(self.tokenPrecisionMultipliers[tokenIndex])
            .sub(dy);

        return (dy, dySwapFee);
    }

    /**
     * @notice Calculate the dy of withdrawing in one token
     * @param self Swap struct to read from
     * @param tokenIndex which token will be withdrawn
     * @param tokenAmount the amount to withdraw in the pools precision
     * @return the d and the new y after withdrawing one token
     */
    function calculateWithdrawOneTokenDY(
        Swap storage self,
        uint8 tokenIndex,
        uint256 tokenAmount,
        uint256 totalSupply
    )
        internal
        view
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        // Get the current D, then solve the stableswap invariant
        // y_i for D - tokenAmount
        uint256[] memory xp = _xp(self);

        require(tokenIndex < xp.length, "Token index out of range");

        CalculateWithdrawOneTokenDYInfo
            memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
        v.preciseA = _getAPrecise(self);
        v.d0 = getD(xp, v.preciseA);
        v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));

        require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");

        v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);

        uint256[] memory xpReduced = new uint256[](xp.length);

        v.feePerToken = _feePerToken(self.swapFee, xp.length);
        for (uint256 i = 0; i < xp.length; i++) {
            uint256 xpi = xp[i];
            // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
            // else dxExpected = xp[i] - (xp[i] * d1 / d0)
            // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
            xpReduced[i] = xpi.sub(
                (
                    (i == tokenIndex)
                        ? xpi.mul(v.d1).div(v.d0).sub(v.newY)
                        : xpi.sub(xpi.mul(v.d1).div(v.d0))
                ).mul(v.feePerToken).div(FEE_DENOMINATOR)
            );
        }

        uint256 dy = xpReduced[tokenIndex].sub(
            getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
        );
        dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);

        return (dy, v.newY, xp[tokenIndex]);
    }

    /**
     * @notice Calculate the price of a token in the pool with given
     * precision-adjusted balances and a particular D.
     *
     * @dev This is accomplished via solving the invariant iteratively.
     * See the StableSwap paper and Curve.fi implementation for further details.
     *
     * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
     * x_1**2 + b*x_1 = c
     * x_1 = (x_1**2 + c) / (2*x_1 + b)
     *
     * @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
     * @param tokenIndex Index of token we are calculating for.
     * @param xp a precision-adjusted set of pool balances. Array should be
     * the same cardinality as the pool.
     * @param d the stableswap invariant
     * @return the price of the token, in the same precision as in xp
     */
    function getYD(
        uint256 a,
        uint8 tokenIndex,
        uint256[] memory xp,
        uint256 d
    ) internal pure returns (uint256) {
        uint256 numTokens = xp.length;
        require(tokenIndex < numTokens, "Token not found");

        uint256 c = d;
        uint256 s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < numTokens; i++) {
            if (i != tokenIndex) {
                s = s.add(xp[i]);
                c = c.mul(d).div(xp[i].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // c = c * D * D * D * ... overflow!
            }
        }
        c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens));

        uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
     * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
     * as the pool.
     * @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
     * See the StableSwap paper for details
     * @return the invariant, at the precision of the pool
     */
    function getD(uint256[] memory xp, uint256 a)
        internal
        pure
        returns (uint256)
    {
        uint256 numTokens = xp.length;
        uint256 s;
        for (uint256 i = 0; i < numTokens; i++) {
            s = s.add(xp[i]);
        }
        if (s == 0) {
            return 0;
        }

        uint256 prevD;
        uint256 d = s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            uint256 dP = d;
            for (uint256 j = 0; j < numTokens; j++) {
                dP = dP.mul(d).div(xp[j].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // dP = dP * D * D * D * ... overflow!
            }
            prevD = d;
            d = nA
                .mul(s)
                .div(AmplificationUtils.A_PRECISION)
                .add(dP.mul(numTokens))
                .mul(d)
                .div(
                    nA
                        .sub(AmplificationUtils.A_PRECISION)
                        .mul(d)
                        .div(AmplificationUtils.A_PRECISION)
                        .add(numTokens.add(1).mul(dP))
                );
            if (d.within1(prevD)) {
                return d;
            }
        }

        // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
        // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
        // function which does not rely on D.
        revert("D does not converge");
    }

    /**
     * @notice Given a set of balances and precision multipliers, return the
     * precision-adjusted balances.
     *
     * @param balances an array of token balances, in their native precisions.
     * These should generally correspond with pooled tokens.
     *
     * @param precisionMultipliers an array of multipliers, corresponding to
     * the amounts in the balances array. When multiplied together they
     * should yield amounts at the pool's precision.
     *
     * @return an array of amounts "scaled" to the pool's precision
     */
    function _xp(
        uint256[] memory balances,
        uint256[] memory precisionMultipliers
    ) internal pure returns (uint256[] memory) {
        uint256 numTokens = balances.length;
        require(
            numTokens == precisionMultipliers.length,
            "Balances must match multipliers"
        );
        uint256[] memory xp = new uint256[](numTokens);
        for (uint256 i = 0; i < numTokens; i++) {
            xp[i] = balances[i].mul(precisionMultipliers[i]);
        }
        return xp;
    }

    /**
     * @notice Return the precision-adjusted balances of all tokens in the pool
     * @param self Swap struct to read from
     * @return the pool balances "scaled" to the pool's precision, allowing
     * them to be more easily compared.
     */
    function _xp(Swap storage self) internal view returns (uint256[] memory) {
        return _xp(self.balances, self.tokenPrecisionMultipliers);
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @param self Swap struct to read from
     * @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice(Swap storage self)
        external
        view
        returns (uint256)
    {
        uint256 d = getD(_xp(self), _getAPrecise(self));
        LPToken lpToken = self.lpToken;
        uint256 supply = lpToken.totalSupply();
        if (supply > 0) {
            return d.mul(10**uint256(POOL_PRECISION_DECIMALS)).div(supply);
        }
        return 0;
    }

    /**
     * @notice Calculate the new balances of the tokens given the indexes of the token
     * that is swapped from (FROM) and the token that is swapped to (TO).
     * This function is used as a helper function to calculate how much TO token
     * the user should receive on swap.
     *
     * @param preciseA precise form of amplification coefficient
     * @param tokenIndexFrom index of FROM token
     * @param tokenIndexTo index of TO token
     * @param x the new total amount of FROM token
     * @param xp balances of the tokens in the pool
     * @return the amount of TO token that should remain in the pool
     */
    function getY(
        uint256 preciseA,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 x,
        uint256[] memory xp
    ) internal pure returns (uint256) {
        uint256 numTokens = xp.length;
        require(
            tokenIndexFrom != tokenIndexTo,
            "Can't compare token to itself"
        );
        require(
            tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
            "Tokens must be in pool"
        );

        uint256 d = getD(xp, preciseA);
        uint256 c = d;
        uint256 s;
        uint256 nA = numTokens.mul(preciseA);

        uint256 _x;
        for (uint256 i = 0; i < numTokens; i++) {
            if (i == tokenIndexFrom) {
                _x = x;
            } else if (i != tokenIndexTo) {
                _x = xp[i];
            } else {
                continue;
            }
            s = s.add(_x);
            c = c.mul(d).div(_x.mul(numTokens));
            // If we were to protect the division loss we would have to keep the denominator separate
            // and divide at the end. However this leads to overflow with large numTokens or/and D.
            // c = c * D * D * D * ... overflow!
        }
        c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens));
        uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;

        // iterative approximation
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Externally calculates a swap between two tokens.
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            self.balances
        );
    }

    /**
     * @notice Internally calculates a swap between two tokens.
     *
     * @dev The caller is expected to transfer the actual amounts (dx and dy)
     * using the token contracts.
     *
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     * @return dyFee the associated fee
     */
    function _calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256[] memory balances
    ) internal view returns (uint256 dy, uint256 dyFee) {
        uint256[] memory multipliers = self.tokenPrecisionMultipliers;
        uint256[] memory xp = _xp(balances, multipliers);
        require(
            tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
            "Token index out of range"
        );
        uint256 x = dx.mul(multipliers[tokenIndexFrom]).add(xp[tokenIndexFrom]);
        uint256 y = getY(
            _getAPrecise(self),
            tokenIndexFrom,
            tokenIndexTo,
            x,
            xp
        );
        dy = xp[tokenIndexTo].sub(y).sub(1);
        dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
        dy = dy.sub(dyFee).div(multipliers[tokenIndexTo]);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of
     * LP tokens
     *
     * @param amount the amount of LP tokens that would to be burned on
     * withdrawal
     * @return array of amounts of tokens user will receive
     */
    function calculateRemoveLiquidity(Swap storage self, uint256 amount)
        external
        view
        returns (uint256[] memory)
    {
        return
            _calculateRemoveLiquidity(
                self.balances,
                amount,
                self.lpToken.totalSupply()
            );
    }

    function _calculateRemoveLiquidity(
        uint256[] memory balances,
        uint256 amount,
        uint256 totalSupply
    ) internal pure returns (uint256[] memory) {
        require(amount <= totalSupply, "Cannot exceed total supply");

        uint256[] memory amounts = new uint256[](balances.length);

        for (uint256 i = 0; i < balances.length; i++) {
            amounts[i] = balances[i].mul(amount).div(totalSupply);
        }
        return amounts;
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param self Swap struct to read from
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return if deposit was true, total amount of lp token that will be minted and if
     * deposit was false, total amount of lp token that will be burned
     */
    function calculateTokenAmount(
        Swap storage self,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256) {
        uint256 a = _getAPrecise(self);
        uint256[] memory balances = self.balances;
        uint256[] memory multipliers = self.tokenPrecisionMultipliers;

        uint256 d0 = getD(_xp(balances, multipliers), a);
        for (uint256 i = 0; i < balances.length; i++) {
            if (deposit) {
                balances[i] = balances[i].add(amounts[i]);
            } else {
                balances[i] = balances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
        }
        uint256 d1 = getD(_xp(balances, multipliers), a);
        uint256 totalSupply = self.lpToken.totalSupply();

        if (deposit) {
            return d1.sub(d0).mul(totalSupply).div(d0);
        } else {
            return d0.sub(d1).mul(totalSupply).div(d0);
        }
    }

    /**
     * @notice return accumulated amount of admin fees of the token with given index
     * @param self Swap struct to read from
     * @param index Index of the pooled token
     * @return admin balance in the token's precision
     */
    function getAdminBalance(Swap storage self, uint256 index)
        external
        view
        returns (uint256)
    {
        require(index < self.pooledTokens.length, "Token index out of range");
        return
            self.pooledTokens[index].balanceOf(address(this)).sub(
                self.balances[index]
            );
    }

    /**
     * @notice internal helper function to calculate fee per token multiplier used in
     * swap fee calculations
     * @param swapFee swap fee for the tokens
     * @param numTokens number of tokens pooled
     */
    function _feePerToken(uint256 swapFee, uint256 numTokens)
        internal
        pure
        returns (uint256)
    {
        return swapFee.mul(numTokens).div(numTokens.sub(1).mul(4));
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice swap two tokens in the pool
     * @param self Swap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        {
            IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
            require(
                dx <= tokenFrom.balanceOf(msg.sender),
                "Cannot swap more than you own"
            );
            // Transfer tokens first to see if a fee was charged on transfer
            uint256 beforeBalance = tokenFrom.balanceOf(address(this));
            tokenFrom.safeTransferFrom(msg.sender, address(this), dx);

            // Use the actual transferred amount for AMM math
            dx = tokenFrom.balanceOf(address(this)).sub(beforeBalance);
        }

        uint256 dy;
        uint256 dyFee;
        uint256[] memory balances = self.balances;
        (dy, dyFee) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            balances
        );
        require(dy >= minDy, "Swap didn't result in min tokens");

        uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
            self.tokenPrecisionMultipliers[tokenIndexTo]
        );

        self.balances[tokenIndexFrom] = balances[tokenIndexFrom].add(dx);
        self.balances[tokenIndexTo] = balances[tokenIndexTo].sub(dy).sub(
            dyAdminFee
        );

        self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);

        emit TokenSwap(msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo);

        return dy;
    }

    /**
     * @notice Add liquidity to the pool
     * @param self Swap struct to read from and write to
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
     * @return amount of LP token user received
     */
    function addLiquidity(
        Swap storage self,
        uint256[] memory amounts,
        uint256 minToMint
    ) external returns (uint256) {
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(
            amounts.length == pooledTokens.length,
            "Amounts must match pooled tokens"
        );

        // current state
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            _getAPrecise(self),
            self.lpToken,
            0,
            self.balances,
            self.tokenPrecisionMultipliers
        );
        v.totalSupply = v.lpToken.totalSupply();

        if (v.totalSupply != 0) {
            v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
        }

        uint256[] memory newBalances = new uint256[](pooledTokens.length);

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            require(
                v.totalSupply != 0 || amounts[i] > 0,
                "Must supply all tokens in pool"
            );

            // Transfer tokens first to see if a fee was charged on transfer
            if (amounts[i] != 0) {
                uint256 beforeBalance = pooledTokens[i].balanceOf(
                    address(this)
                );
                pooledTokens[i].safeTransferFrom(
                    msg.sender,
                    address(this),
                    amounts[i]
                );

                // Update the amounts[] with actual transfer amount
                amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
                    beforeBalance
                );
            }

            newBalances[i] = v.balances[i].add(amounts[i]);
        }

        // invariant after change
        v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA);
        require(v.d1 > v.d0, "D should increase");

        // updated to reflect fees and calculate the user's LP tokens
        v.d2 = v.d1;
        uint256[] memory fees = new uint256[](pooledTokens.length);

        if (v.totalSupply != 0) {
            uint256 feePerToken = _feePerToken(
                self.swapFee,
                pooledTokens.length
            );
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
                fees[i] = feePerToken
                    .mul(idealBalance.difference(newBalances[i]))
                    .div(FEE_DENOMINATOR);
                self.balances[i] = newBalances[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                newBalances[i] = newBalances[i].sub(fees[i]);
            }
            v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA);
        } else {
            // the initial depositor doesn't pay fees
            self.balances = newBalances;
        }

        uint256 toMint;
        if (v.totalSupply == 0) {
            toMint = v.d1;
        } else {
            toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
        }

        require(toMint >= minToMint, "Couldn't mint min requested");

        // mint the user's LP tokens
        v.lpToken.mint(msg.sender, toMint);

        emit AddLiquidity(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.add(toMint)
        );

        return toMint;
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param self Swap struct to read from and write to
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     * acceptable for this burn. Useful as a front-running mitigation
     * @return amounts of tokens the user received
     */
    function removeLiquidity(
        Swap storage self,
        uint256 amount,
        uint256[] calldata minAmounts
    ) external returns (uint256[] memory) {
        LPToken lpToken = self.lpToken;
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(
            minAmounts.length == pooledTokens.length,
            "minAmounts must match poolTokens"
        );

        uint256[] memory balances = self.balances;
        uint256 totalSupply = lpToken.totalSupply();

        uint256[] memory amounts = _calculateRemoveLiquidity(
            balances,
            amount,
            totalSupply
        );

        for (uint256 i = 0; i < amounts.length; i++) {
            require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]");
            self.balances[i] = balances[i].sub(amounts[i]);
            pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        lpToken.burnFrom(msg.sender, amount);

        emit RemoveLiquidity(msg.sender, amounts, totalSupply.sub(amount));

        return amounts;
    }

    /**
     * @notice Remove liquidity from the pool all in one token.
     * @param self Swap struct to read from and write to
     * @param tokenAmount the amount of the lp tokens to burn
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @return amount chosen token that user received
     */
    function removeLiquidityOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount
    ) external returns (uint256) {
        LPToken lpToken = self.lpToken;
        IERC20[] memory pooledTokens = self.pooledTokens;

        require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(tokenIndex < pooledTokens.length, "Token not found");

        uint256 totalSupply = lpToken.totalSupply();

        (uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            totalSupply
        );

        require(dy >= minAmount, "dy < minAmount");

        self.balances[tokenIndex] = self.balances[tokenIndex].sub(
            dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
        );
        lpToken.burnFrom(msg.sender, tokenAmount);
        pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);

        emit RemoveLiquidityOne(
            msg.sender,
            tokenAmount,
            totalSupply,
            tokenIndex,
            dy
        );

        return dy;
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances.
     *
     * @param self Swap struct to read from and write to
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @return actual amount of LP tokens burned in the withdrawal
     */
    function removeLiquidityImbalance(
        Swap storage self,
        uint256[] memory amounts,
        uint256 maxBurnAmount
    ) public returns (uint256) {
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            _getAPrecise(self),
            self.lpToken,
            0,
            self.balances,
            self.tokenPrecisionMultipliers
        );
        v.totalSupply = v.lpToken.totalSupply();

        IERC20[] memory pooledTokens = self.pooledTokens;

        require(
            amounts.length == pooledTokens.length,
            "Amounts should match pool tokens"
        );

        require(
            maxBurnAmount <= v.lpToken.balanceOf(msg.sender) &&
                maxBurnAmount != 0,
            ">LP.balanceOf"
        );

        uint256 feePerToken = _feePerToken(self.swapFee, pooledTokens.length);
        uint256[] memory fees = new uint256[](pooledTokens.length);
        {
            uint256[] memory balances1 = new uint256[](pooledTokens.length);
            v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                balances1[i] = v.balances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
            v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA);

            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
                uint256 difference = idealBalance.difference(balances1[i]);
                fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
                self.balances[i] = balances1[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                balances1[i] = balances1[i].sub(fees[i]);
            }

            v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA);
        }
        uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
        require(tokenAmount != 0, "Burnt amount cannot be zero");
        tokenAmount = tokenAmount.add(1);

        require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");

        v.lpToken.burnFrom(msg.sender, tokenAmount);

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        emit RemoveLiquidityImbalance(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.sub(tokenAmount)
        );

        return tokenAmount;
    }

    /**
     * @notice withdraw all admin fees to a given address
     * @param self Swap struct to withdraw fees from
     * @param to Address to send the fees to
     */
    function withdrawAdminFees(Swap storage self, address to) external {
        IERC20[] memory pooledTokens = self.pooledTokens;
        for (uint256 i = 0; i < pooledTokens.length; i++) {
            IERC20 token = pooledTokens[i];
            uint256 balance = token.balanceOf(address(this)).sub(
                self.balances[i]
            );
            if (balance != 0) {
                token.safeTransfer(to, balance);
            }
        }
    }

    /**
     * @notice Sets the admin fee
     * @dev adminFee cannot be higher than 100% of the swap fee
     * @param self Swap struct to update
     * @param newAdminFee new admin fee to be applied on future transactions
     */
    function setAdminFee(Swap storage self, uint256 newAdminFee) external {
        require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high");
        self.adminFee = newAdminFee;

        emit NewAdminFee(newAdminFee);
    }

    /**
     * @notice update the swap fee
     * @dev fee cannot be higher than 1% of each swap
     * @param self Swap struct to update
     * @param newSwapFee new swap fee to be applied on future transactions
     */
    function setSwapFee(Swap storage self, uint256 newSwapFee) external {
        require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high");
        self.swapFee = newSwapFee;

        emit NewSwapFee(newSwapFee);
    }
}

File 5 of 78 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 6 of 78 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}

File 7 of 78 : Address.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 8 of 78 : LPToken.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20BurnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "./interfaces/ISwap.sol";

/**
 * @title Liquidity Provider Token
 * @notice This token is an ERC20 detailed token with added capability to be minted by the owner.
 * It is used to represent user's shares when providing liquidity to swap contracts.
 * @dev Only Swap contracts should initialize and own LPToken contracts.
 */
contract LPToken is ERC20BurnableUpgradeable, OwnableUpgradeable {
    using SafeMathUpgradeable for uint256;

    /**
     * @notice Initializes this LPToken contract with the given name and symbol
     * @dev The caller of this function will become the owner. A Swap contract should call this
     * in its initializer function.
     * @param name name of this token
     * @param symbol symbol of this token
     */
    function initialize(string memory name, string memory symbol)
        external
        initializer
        returns (bool)
    {
        __Context_init_unchained();
        __ERC20_init_unchained(name, symbol);
        __Ownable_init_unchained();
        return true;
    }

    /**
     * @notice Mints the given amount of LPToken to the recipient.
     * @dev only owner can call this mint function
     * @param recipient address of account to receive the tokens
     * @param amount amount of tokens to mint
     */
    function mint(address recipient, uint256 amount) external onlyOwner {
        require(amount != 0, "LPToken: cannot mint 0");
        _mint(recipient, amount);
    }

    /**
     * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including
     * minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime.
     * This assumes the owner is set to a Swap contract's address.
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual override(ERC20Upgradeable) {
        super._beforeTokenTransfer(from, to, amount);
        require(to != address(this), "LPToken: cannot send to itself");
    }
}

File 9 of 78 : MathUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";

/**
 * @title MathUtils library
 * @notice A library to be used in conjunction with SafeMath. Contains functions for calculating
 * differences between two uint256.
 */
library MathUtils {
    /**
     * @notice Compares a and b and returns true if the difference between a and b
     *         is less than 1 or equal to each other.
     * @param a uint256 to compare with
     * @param b uint256 to compare with
     * @return True if the difference between a and b is less than 1 or equal,
     *         otherwise return false
     */
    function within1(uint256 a, uint256 b) internal pure returns (bool) {
        return (difference(a, b) <= 1);
    }

    /**
     * @notice Calculates absolute difference between a and b
     * @param a uint256 to compare with
     * @param b uint256 to compare with
     * @return Difference between a and b
     */
    function difference(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a > b) {
            return a - b;
        }
        return b - a;
    }
}

File 10 of 78 : ERC20BurnableUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/ContextUpgradeable.sol";
import "./ERC20Upgradeable.sol";
import "../../proxy/Initializable.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable {
    function __ERC20Burnable_init() internal initializer {
        __Context_init_unchained();
        __ERC20Burnable_init_unchained();
    }

    function __ERC20Burnable_init_unchained() internal initializer {
    }
    using SafeMathUpgradeable for uint256;

    /**
     * @dev Destroys `amount` tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 amount) public virtual {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, deducting from the caller's
     * allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `amount`.
     */
    function burnFrom(address account, uint256 amount) public virtual {
        uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");

        _approve(account, _msgSender(), decreasedAllowance);
        _burn(account, amount);
    }
    uint256[50] private __gap;
}

File 11 of 78 : OwnableUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal initializer {
        __Context_init_unchained();
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal initializer {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
    uint256[49] private __gap;
}

File 12 of 78 : ISwap.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IAllowlist.sol";

interface ISwap {
    // pool data view functions
    function getA() external view returns (uint256);

    function getAllowlist() external view returns (IAllowlist);

    function getToken(uint8 index) external view returns (IERC20);

    function getTokenIndex(address tokenAddress) external view returns (uint8);

    function getTokenBalance(uint8 index) external view returns (uint256);

    function getVirtualPrice() external view returns (uint256);

    function isGuarded() external view returns (bool);

    function swapStorage()
        external
        view
        returns (
            uint256,
            uint256,
            uint256,
            uint256,
            uint256,
            uint256,
            address
        );

    // min return calculation functions
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256);

    function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
        external
        view
        returns (uint256);

    function calculateRemoveLiquidity(uint256 amount)
        external
        view
        returns (uint256[] memory);

    function calculateRemoveLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 availableTokenAmount);

    // state modifying functions
    function initialize(
        IERC20[] memory pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 a,
        uint256 fee,
        uint256 adminFee,
        address lpTokenTargetAddress
    ) external;

    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    ) external returns (uint256);

    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    ) external returns (uint256[] memory);

    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    ) external returns (uint256);
}

File 13 of 78 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal initializer {
        __Context_init_unchained();
    }

    function __Context_init_unchained() internal initializer {
    }
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
    uint256[50] private __gap;
}

File 14 of 78 : ERC20Upgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/ContextUpgradeable.sol";
import "./IERC20Upgradeable.sol";
import "../../math/SafeMathUpgradeable.sol";
import "../../proxy/Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable {
    using SafeMathUpgradeable for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal initializer {
        __Context_init_unchained();
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal virtual {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
    uint256[44] private __gap;
}

File 15 of 78 : Initializable.sol
// SPDX-License-Identifier: MIT

// solhint-disable-next-line compiler-version
pragma solidity >=0.4.24 <0.8.0;

import "../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 */
abstract contract Initializable {

    /**
     * @dev Indicates that the contract has been initialized.
     */
    bool private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializer() {
        require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");

        bool isTopLevelCall = !_initializing;
        if (isTopLevelCall) {
            _initializing = true;
            _initialized = true;
        }

        _;

        if (isTopLevelCall) {
            _initializing = false;
        }
    }

    /// @dev Returns true if and only if the function is running in the constructor
    function _isConstructor() private view returns (bool) {
        return !AddressUpgradeable.isContract(address(this));
    }
}

File 16 of 78 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 17 of 78 : IERC20Upgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 18 of 78 : SafeMathUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMathUpgradeable {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}

File 19 of 78 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/Context.sol";
import "./IERC20.sol";
import "../../math/SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name_, string memory symbol_) public {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal virtual {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}

File 20 of 78 : IAllowlist.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

interface IAllowlist {
    function getPoolAccountLimit(address poolAddress)
        external
        view
        returns (uint256);

    function getPoolCap(address poolAddress) external view returns (uint256);

    function verifyAddress(address account, bytes32[] calldata merkleProof)
        external
        returns (bool);
}

File 21 of 78 : Context.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

File 22 of 78 : Swap.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "./OwnerPausableUpgradeable.sol";
import "./SwapUtils.sol";
import "./AmplificationUtils.sol";

/**
 * @title Swap - A StableSwap implementation in solidity.
 * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
 * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
 * in desired ratios for an exchange of the pool token that represents their share of the pool.
 * Users can burn pool tokens and withdraw their share of token(s).
 *
 * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
 * distributed to the LPs.
 *
 * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
 * stops the ratio of the tokens in the pool from changing.
 * Users can always withdraw their tokens via multi-asset withdraws.
 *
 * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
 * deployment size.
 */
contract Swap is OwnerPausableUpgradeable, ReentrancyGuardUpgradeable {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using SwapUtils for SwapUtils.Swap;
    using AmplificationUtils for SwapUtils.Swap;

    // Struct storing data responsible for automatic market maker functionalities. In order to
    // access this data, this contract uses SwapUtils library. For more details, see SwapUtils.sol
    SwapUtils.Swap public swapStorage;

    // Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool.
    // getTokenIndex function also relies on this mapping to retrieve token index.
    mapping(address => uint8) private tokenIndexes;

    /*** EVENTS ***/

    // events replicated from SwapUtils to make the ABI easier for dumb
    // clients
    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);
    event NewWithdrawFee(uint256 newWithdrawFee);
    event RampA(
        uint256 oldA,
        uint256 newA,
        uint256 initialTime,
        uint256 futureTime
    );
    event StopRampA(uint256 currentA, uint256 time);

    /**
     * @notice Initializes this Swap contract with the given parameters.
     * This will also clone a LPToken contract that represents users'
     * LP positions. The owner of LPToken will be this contract - which means
     * only this contract is allowed to mint/burn tokens.
     *
     * @param _pooledTokens an array of ERC20s this pool will accept
     * @param decimals the decimals to use for each pooled token,
     * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
     * @param lpTokenName the long-form name of the token to be deployed
     * @param lpTokenSymbol the short symbol for the token to be deployed
     * @param _a the amplification coefficient * n * (n - 1). See the
     * StableSwap paper for details
     * @param _fee default swap fee to be initialized with
     * @param _adminFee default adminFee to be initialized with
     * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
     */
    function initialize(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress
    ) public virtual initializer {
        __OwnerPausable_init();
        __ReentrancyGuard_init();
        // Check _pooledTokens and precisions parameter
        require(_pooledTokens.length > 1, "_pooledTokens.length <= 1");
        require(_pooledTokens.length <= 32, "_pooledTokens.length > 32");
        require(
            _pooledTokens.length == decimals.length,
            "_pooledTokens decimals mismatch"
        );

        uint256[] memory precisionMultipliers = new uint256[](decimals.length);

        for (uint8 i = 0; i < _pooledTokens.length; i++) {
            if (i > 0) {
                // Check if index is already used. Check if 0th element is a duplicate.
                require(
                    tokenIndexes[address(_pooledTokens[i])] == 0 &&
                        _pooledTokens[0] != _pooledTokens[i],
                    "Duplicate tokens"
                );
            }
            require(
                address(_pooledTokens[i]) != address(0),
                "The 0 address isn't an ERC-20"
            );
            require(
                decimals[i] <= SwapUtils.POOL_PRECISION_DECIMALS,
                "Token decimals exceeds max"
            );
            precisionMultipliers[i] =
                10 **
                    uint256(SwapUtils.POOL_PRECISION_DECIMALS).sub(
                        uint256(decimals[i])
                    );
            tokenIndexes[address(_pooledTokens[i])] = i;
        }

        // Check _a, _fee, _adminFee, _withdrawFee parameters
        require(_a < AmplificationUtils.MAX_A, "_a exceeds maximum");
        require(_fee < SwapUtils.MAX_SWAP_FEE, "_fee exceeds maximum");
        require(
            _adminFee < SwapUtils.MAX_ADMIN_FEE,
            "_adminFee exceeds maximum"
        );

        // Clone and initialize a LPToken contract
        LPToken lpToken = LPToken(Clones.clone(lpTokenTargetAddress));
        require(
            lpToken.initialize(lpTokenName, lpTokenSymbol),
            "could not init lpToken clone"
        );

        // Initialize swapStorage struct
        swapStorage.lpToken = lpToken;
        swapStorage.pooledTokens = _pooledTokens;
        swapStorage.tokenPrecisionMultipliers = precisionMultipliers;
        swapStorage.balances = new uint256[](_pooledTokens.length);
        swapStorage.initialA = _a.mul(AmplificationUtils.A_PRECISION);
        swapStorage.futureA = _a.mul(AmplificationUtils.A_PRECISION);
        // swapStorage.initialATime = 0;
        // swapStorage.futureATime = 0;
        swapStorage.swapFee = _fee;
        swapStorage.adminFee = _adminFee;
    }

    /*** MODIFIERS ***/

    /**
     * @notice Modifier to check deadline against current timestamp
     * @param deadline latest timestamp to accept this transaction
     */
    modifier deadlineCheck(uint256 deadline) {
        require(block.timestamp <= deadline, "Deadline not met");
        _;
    }

    /*** VIEW FUNCTIONS ***/

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @return A parameter
     */
    function getA() external view virtual returns (uint256) {
        return swapStorage.getA();
    }

    /**
     * @notice Return A in its raw precision form
     * @dev See the StableSwap paper for details
     * @return A parameter in its raw precision form
     */
    function getAPrecise() external view virtual returns (uint256) {
        return swapStorage.getAPrecise();
    }

    /**
     * @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range.
     * @param index the index of the token
     * @return address of the token at given index
     */
    function getToken(uint8 index) public view virtual returns (IERC20) {
        require(index < swapStorage.pooledTokens.length, "Out of range");
        return swapStorage.pooledTokens[index];
    }

    /**
     * @notice Return the index of the given token address. Reverts if no matching
     * token is found.
     * @param tokenAddress address of the token
     * @return the index of the given token address
     */
    function getTokenIndex(address tokenAddress)
        public
        view
        virtual
        returns (uint8)
    {
        uint8 index = tokenIndexes[tokenAddress];
        require(
            address(getToken(index)) == tokenAddress,
            "Token does not exist"
        );
        return index;
    }

    /**
     * @notice Return current balance of the pooled token at given index
     * @param index the index of the token
     * @return current balance of the pooled token at given index with token's native precision
     */
    function getTokenBalance(uint8 index)
        external
        view
        virtual
        returns (uint256)
    {
        require(index < swapStorage.pooledTokens.length, "Index out of range");
        return swapStorage.balances[index];
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice() external view virtual returns (uint256) {
        return swapStorage.getVirtualPrice();
    }

    /**
     * @notice Calculate amount of tokens you receive on swap
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell. If the token charges
     * a fee on transfers, use the amount that gets transferred after the fee.
     * @return amount of tokens the user will receive
     */
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view virtual returns (uint256) {
        return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx);
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return token amount the user will receive
     */
    function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
        external
        view
        virtual
        returns (uint256)
    {
        return swapStorage.calculateTokenAmount(amounts, deposit);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of LP tokens
     * @param amount the amount of LP tokens that would be burned on withdrawal
     * @return array of token balances that the user will receive
     */
    function calculateRemoveLiquidity(uint256 amount)
        external
        view
        virtual
        returns (uint256[] memory)
    {
        return swapStorage.calculateRemoveLiquidity(amount);
    }

    /**
     * @notice Calculate the amount of underlying token available to withdraw
     * when withdrawing via only single token
     * @param tokenAmount the amount of LP token to burn
     * @param tokenIndex index of which token will be withdrawn
     * @return availableTokenAmount calculated amount of underlying token
     * available to withdraw
     */
    function calculateRemoveLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view virtual returns (uint256 availableTokenAmount) {
        return swapStorage.calculateWithdrawOneToken(tokenAmount, tokenIndex);
    }

    /**
     * @notice This function reads the accumulated amount of admin fees of the token with given index
     * @param index Index of the pooled token
     * @return admin's token balance in the token's precision
     */
    function getAdminBalance(uint256 index)
        external
        view
        virtual
        returns (uint256)
    {
        return swapStorage.getAdminBalance(index);
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice Swap two tokens using this pool
     * @param tokenIndexFrom the token the user wants to swap from
     * @param tokenIndexTo the token the user wants to swap to
     * @param dx the amount of tokens the user wants to swap from
     * @param minDy the min amount the user would like to receive, or revert.
     * @param deadline latest timestamp to accept this transaction
     */
    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy);
    }

    /**
     * @notice Add liquidity to the pool with the given amounts of tokens
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP token user minted and received
     */
    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.addLiquidity(amounts, minToMint);
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     *        acceptable for this burn. Useful as a front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amounts of tokens user received
     */
    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        deadlineCheck(deadline)
        returns (uint256[] memory)
    {
        return swapStorage.removeLiquidity(amount, minAmounts);
    }

    /**
     * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param tokenAmount the amount of the token you want to receive
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @param deadline latest timestamp to accept this transaction
     * @return amount of chosen token user received
     */
    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            swapStorage.removeLiquidityOneToken(
                tokenAmount,
                tokenIndex,
                minAmount
            );
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP tokens burned
     */
    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount);
    }

    /*** ADMIN FUNCTIONS ***/

    /**
     * @notice Withdraw all admin fees to the contract owner
     */
    function withdrawAdminFees() external onlyOwner {
        swapStorage.withdrawAdminFees(owner());
    }

    /**
     * @notice Update the admin fee. Admin fee takes portion of the swap fee.
     * @param newAdminFee new admin fee to be applied on future transactions
     */
    function setAdminFee(uint256 newAdminFee) external onlyOwner {
        swapStorage.setAdminFee(newAdminFee);
    }

    /**
     * @notice Update the swap fee to be applied on swaps
     * @param newSwapFee new swap fee to be applied on future transactions
     */
    function setSwapFee(uint256 newSwapFee) external onlyOwner {
        swapStorage.setSwapFee(newSwapFee);
    }

    /**
     * @notice Start ramping up or down A parameter towards given futureA and futureTime
     * Checks if the change is too rapid, and commits the new A value only when it falls under
     * the limit range.
     * @param futureA the new A to ramp towards
     * @param futureTime timestamp when the new A should be reached
     */
    function rampA(uint256 futureA, uint256 futureTime) external onlyOwner {
        swapStorage.rampA(futureA, futureTime);
    }

    /**
     * @notice Stop ramping A immediately. Reverts if ramp A is already stopped.
     */
    function stopRampA() external onlyOwner {
        swapStorage.stopRampA();
    }
}

File 23 of 78 : Clones.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `master`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address master) internal returns (address instance) {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, master))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            instance := create(0, ptr, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `master`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `master` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address master, bytes32 salt) internal returns (address instance) {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, master))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            instance := create2(0, ptr, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(address master, bytes32 salt, address deployer) internal pure returns (address predicted) {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, master))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000)
            mstore(add(ptr, 0x38), shl(0x60, deployer))
            mstore(add(ptr, 0x4c), salt)
            mstore(add(ptr, 0x6c), keccak256(ptr, 0x37))
            predicted := keccak256(add(ptr, 0x37), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(address master, bytes32 salt) internal view returns (address predicted) {
        return predictDeterministicAddress(master, salt, address(this));
    }
}

File 24 of 78 : ReentrancyGuardUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal initializer {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal initializer {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
    uint256[49] private __gap;
}

File 25 of 78 : OwnerPausableUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";

/**
 * @title OwnerPausable
 * @notice An ownable contract allows the owner to pause and unpause the
 * contract without a delay.
 * @dev Only methods using the provided modifiers will be paused.
 */
abstract contract OwnerPausableUpgradeable is
    OwnableUpgradeable,
    PausableUpgradeable
{
    function __OwnerPausable_init() internal initializer {
        __Context_init_unchained();
        __Ownable_init_unchained();
        __Pausable_init_unchained();
    }

    /**
     * @notice Pause the contract. Revert if already paused.
     */
    function pause() external onlyOwner {
        PausableUpgradeable._pause();
    }

    /**
     * @notice Unpause the contract. Revert if already unpaused.
     */
    function unpause() external onlyOwner {
        PausableUpgradeable._unpause();
    }
}

File 26 of 78 : PausableUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./ContextUpgradeable.sol";
import "../proxy/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal initializer {
        __Context_init_unchained();
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal initializer {
        _paused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        require(!paused(), "Pausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        require(paused(), "Pausable: not paused");
        _;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
    uint256[49] private __gap;
}

File 27 of 78 : SwapFlashLoan.sol
// SPDX-License-Identifier: MIT WITH AGPL-3.0-only

pragma solidity 0.6.12;

import "./Swap.sol";
import "./interfaces/IFlashLoanReceiver.sol";

/**
 * @title Swap - A StableSwap implementation in solidity.
 * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
 * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
 * in desired ratios for an exchange of the pool token that represents their share of the pool.
 * Users can burn pool tokens and withdraw their share of token(s).
 *
 * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
 * distributed to the LPs.
 *
 * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
 * stops the ratio of the tokens in the pool from changing.
 * Users can always withdraw their tokens via multi-asset withdraws.
 *
 * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
 * deployment size.
 */
contract SwapFlashLoan is Swap {
    // Total fee that is charged on all flashloans in BPS. Borrowers must repay the amount plus the flash loan fee.
    // This fee is split between the protocol and the pool.
    uint256 public flashLoanFeeBPS;
    // Share of the flash loan fee that goes to the protocol in BPS. A portion of each flash loan fee is allocated
    // to the protocol rather than the pool.
    uint256 public protocolFeeShareBPS;
    // Max BPS for limiting flash loan fee settings.
    uint256 public constant MAX_BPS = 10000;

    /*** EVENTS ***/
    event FlashLoan(
        address indexed receiver,
        uint8 tokenIndex,
        uint256 amount,
        uint256 amountFee,
        uint256 protocolFee
    );

    /**
     * @notice Initializes this Swap contract with the given parameters.
     * This will also clone a LPToken contract that represents users'
     * LP positions. The owner of LPToken will be this contract - which means
     * only this contract is allowed to mint/burn tokens.
     *
     * @param _pooledTokens an array of ERC20s this pool will accept
     * @param decimals the decimals to use for each pooled token,
     * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
     * @param lpTokenName the long-form name of the token to be deployed
     * @param lpTokenSymbol the short symbol for the token to be deployed
     * @param _a the amplification coefficient * n * (n - 1). See the
     * StableSwap paper for details
     * @param _fee default swap fee to be initialized with
     * @param _adminFee default adminFee to be initialized with
     * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
     */
    function initialize(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress
    ) public virtual override initializer {
        Swap.initialize(
            _pooledTokens,
            decimals,
            lpTokenName,
            lpTokenSymbol,
            _a,
            _fee,
            _adminFee,
            lpTokenTargetAddress
        );
        flashLoanFeeBPS = 8; // 8 bps
        protocolFeeShareBPS = 0; // 0 bps
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice Borrow the specified token from this pool for this transaction only. This function will call
     * `IFlashLoanReceiver(receiver).executeOperation` and the `receiver` must return the full amount of the token
     * and the associated fee by the end of the callback transaction. If the conditions are not met, this call
     * is reverted.
     * @param receiver the address of the receiver of the token. This address must implement the IFlashLoanReceiver
     * interface and the callback function `executeOperation`.
     * @param token the protocol fee in bps to be applied on the total flash loan fee
     * @param amount the total amount to borrow in this transaction
     * @param params optional data to pass along to the callback function
     */
    function flashLoan(
        address receiver,
        IERC20 token,
        uint256 amount,
        bytes memory params
    ) external nonReentrant {
        uint8 tokenIndex = getTokenIndex(address(token));
        uint256 availableLiquidityBefore = token.balanceOf(address(this));
        uint256 protocolBalanceBefore = availableLiquidityBefore.sub(
            swapStorage.balances[tokenIndex]
        );
        require(
            amount > 0 && availableLiquidityBefore >= amount,
            "invalid amount"
        );

        // Calculate the additional amount of tokens the pool should end up with
        uint256 amountFee = amount.mul(flashLoanFeeBPS).div(10000);
        // Calculate the portion of the fee that will go to the protocol
        uint256 protocolFee = amountFee.mul(protocolFeeShareBPS).div(10000);
        require(amountFee > 0, "amount is small for a flashLoan");

        // Transfer the requested amount of tokens
        token.safeTransfer(receiver, amount);

        // Execute callback function on receiver
        IFlashLoanReceiver(receiver).executeOperation(
            address(this),
            address(token),
            amount,
            amountFee,
            params
        );

        uint256 availableLiquidityAfter = token.balanceOf(address(this));
        require(
            availableLiquidityAfter >= availableLiquidityBefore.add(amountFee),
            "flashLoan fee is not met"
        );

        swapStorage.balances[tokenIndex] = availableLiquidityAfter
            .sub(protocolBalanceBefore)
            .sub(protocolFee);
        emit FlashLoan(receiver, tokenIndex, amount, amountFee, protocolFee);
    }

    /*** ADMIN FUNCTIONS ***/

    /**
     * @notice Updates the flash loan fee parameters. This function can only be called by the owner.
     * @param newFlashLoanFeeBPS the total fee in bps to be applied on future flash loans
     * @param newProtocolFeeShareBPS the protocol fee in bps to be applied on the total flash loan fee
     */
    function setFlashLoanFees(
        uint256 newFlashLoanFeeBPS,
        uint256 newProtocolFeeShareBPS
    ) external onlyOwner {
        require(
            newFlashLoanFeeBPS > 0 &&
                newFlashLoanFeeBPS <= MAX_BPS &&
                newProtocolFeeShareBPS <= MAX_BPS,
            "fees are not in valid range"
        );
        flashLoanFeeBPS = newFlashLoanFeeBPS;
        protocolFeeShareBPS = newProtocolFeeShareBPS;
    }
}

File 28 of 78 : IFlashLoanReceiver.sol
// SPDX-License-Identifier: AGPL-3.0-only

pragma solidity 0.6.12;

/**
 * @title IFlashLoanReceiver interface
 * @notice Interface for the Saddle fee IFlashLoanReceiver. Modified from Aave's IFlashLoanReceiver interface.
 * https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/flashloan/interfaces/IFlashLoanReceiver.sol
 * @author Aave
 * @dev implement this interface to develop a flashloan-compatible flashLoanReceiver contract
 **/
interface IFlashLoanReceiver {
    function executeOperation(
        address pool,
        address token,
        uint256 amount,
        uint256 fee,
        bytes calldata params
    ) external;
}

File 29 of 78 : SwapFlashLoanV1.sol
// SPDX-License-Identifier: MIT WITH AGPL-3.0-only

pragma solidity 0.6.12;

import "./SwapV1.sol";
import "./interfaces/IFlashLoanReceiver.sol";

/**
 * @title Swap - A StableSwap implementation in solidity.
 * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
 * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
 * in desired ratios for an exchange of the pool token that represents their share of the pool.
 * Users can burn pool tokens and withdraw their share of token(s).
 *
 * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
 * distributed to the LPs.
 *
 * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
 * stops the ratio of the tokens in the pool from changing.
 * Users can always withdraw their tokens via multi-asset withdraws.
 *
 * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
 * deployment size.
 */
contract SwapFlashLoanV1 is SwapV1 {
    // Total fee that is charged on all flashloans in BPS. Borrowers must repay the amount plus the flash loan fee.
    // This fee is split between the protocol and the pool.
    uint256 public flashLoanFeeBPS;
    // Share of the flash loan fee that goes to the protocol in BPS. A portion of each flash loan fee is allocated
    // to the protocol rather than the pool.
    uint256 public protocolFeeShareBPS;
    // Max BPS for limiting flash loan fee settings.
    uint256 public constant MAX_BPS = 10000;

    /*** EVENTS ***/
    event FlashLoan(
        address indexed receiver,
        uint8 tokenIndex,
        uint256 amount,
        uint256 amountFee,
        uint256 protocolFee
    );

    /**
     * @notice Initializes this Swap contract with the given parameters.
     * This will also clone a LPToken contract that represents users'
     * LP positions. The owner of LPToken will be this contract - which means
     * only this contract is allowed to mint/burn tokens.
     *
     * @param _pooledTokens an array of ERC20s this pool will accept
     * @param decimals the decimals to use for each pooled token,
     * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
     * @param lpTokenName the long-form name of the token to be deployed
     * @param lpTokenSymbol the short symbol for the token to be deployed
     * @param _a the amplification coefficient * n * (n - 1). See the
     * StableSwap paper for details
     * @param _fee default swap fee to be initialized with
     * @param _adminFee default adminFee to be initialized with
     * @param _withdrawFee default withdrawFee to be initialized with
     * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
     */
    function initialize(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        uint256 _withdrawFee,
        address lpTokenTargetAddress
    ) public virtual override initializer {
        SwapV1.initialize(
            _pooledTokens,
            decimals,
            lpTokenName,
            lpTokenSymbol,
            _a,
            _fee,
            _adminFee,
            _withdrawFee,
            lpTokenTargetAddress
        );
        flashLoanFeeBPS = 8; // 8 bps
        protocolFeeShareBPS = 0; // 0 bps
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice Borrow the specified token from this pool for this transaction only. This function will call
     * `IFlashLoanReceiver(receiver).executeOperation` and the `receiver` must return the full amount of the token
     * and the associated fee by the end of the callback transaction. If the conditions are not met, this call
     * is reverted.
     * @param receiver the address of the receiver of the token. This address must implement the IFlashLoanReceiver
     * interface and the callback function `executeOperation`.
     * @param token the protocol fee in bps to be applied on the total flash loan fee
     * @param amount the total amount to borrow in this transaction
     * @param params optional data to pass along to the callback function
     */
    function flashLoan(
        address receiver,
        IERC20 token,
        uint256 amount,
        bytes memory params
    ) external nonReentrant {
        uint8 tokenIndex = getTokenIndex(address(token));
        uint256 availableLiquidityBefore = token.balanceOf(address(this));
        uint256 protocolBalanceBefore = availableLiquidityBefore.sub(
            swapStorage.balances[tokenIndex]
        );
        require(
            amount > 0 && availableLiquidityBefore >= amount,
            "invalid amount"
        );

        // Calculate the additional amount of tokens the pool should end up with
        uint256 amountFee = amount.mul(flashLoanFeeBPS).div(10000);
        // Calculate the portion of the fee that will go to the protocol
        uint256 protocolFee = amountFee.mul(protocolFeeShareBPS).div(10000);
        require(amountFee > 0, "amount is small for a flashLoan");

        // Transfer the requested amount of tokens
        token.safeTransfer(receiver, amount);

        // Execute callback function on receiver
        IFlashLoanReceiver(receiver).executeOperation(
            address(this),
            address(token),
            amount,
            amountFee,
            params
        );

        uint256 availableLiquidityAfter = token.balanceOf(address(this));
        require(
            availableLiquidityAfter >= availableLiquidityBefore.add(amountFee),
            "flashLoan fee is not met"
        );

        swapStorage.balances[tokenIndex] = availableLiquidityAfter
            .sub(protocolBalanceBefore)
            .sub(protocolFee);
        emit FlashLoan(receiver, tokenIndex, amount, amountFee, protocolFee);
    }

    /*** ADMIN FUNCTIONS ***/

    /**
     * @notice Updates the flash loan fee parameters. This function can only be called by the owner.
     * @param newFlashLoanFeeBPS the total fee in bps to be applied on future flash loans
     * @param newProtocolFeeShareBPS the protocol fee in bps to be applied on the total flash loan fee
     */
    function setFlashLoanFees(
        uint256 newFlashLoanFeeBPS,
        uint256 newProtocolFeeShareBPS
    ) external onlyOwner {
        require(
            newFlashLoanFeeBPS > 0 &&
                newFlashLoanFeeBPS <= MAX_BPS &&
                newProtocolFeeShareBPS <= MAX_BPS,
            "fees are not in valid range"
        );
        flashLoanFeeBPS = newFlashLoanFeeBPS;
        protocolFeeShareBPS = newProtocolFeeShareBPS;
    }
}

File 30 of 78 : SwapV1.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "./OwnerPausableUpgradeable.sol";
import "./SwapUtilsV1.sol";
import "./AmplificationUtilsV1.sol";

/**
 * @title Swap - A StableSwap implementation in solidity.
 * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
 * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
 * in desired ratios for an exchange of the pool token that represents their share of the pool.
 * Users can burn pool tokens and withdraw their share of token(s).
 *
 * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
 * distributed to the LPs.
 *
 * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
 * stops the ratio of the tokens in the pool from changing.
 * Users can always withdraw their tokens via multi-asset withdraws.
 *
 * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
 * deployment size.
 */
contract SwapV1 is OwnerPausableUpgradeable, ReentrancyGuardUpgradeable {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using SwapUtilsV1 for SwapUtilsV1.Swap;
    using AmplificationUtilsV1 for SwapUtilsV1.Swap;

    // Struct storing data responsible for automatic market maker functionalities. In order to
    // access this data, this contract uses SwapUtils library. For more details, see SwapUtilsV1.sol
    SwapUtilsV1.Swap public swapStorage;

    // Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool.
    // getTokenIndex function also relies on this mapping to retrieve token index.
    mapping(address => uint8) private tokenIndexes;

    /*** EVENTS ***/

    // events replicated from SwapUtils to make the ABI easier for dumb
    // clients
    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);
    event NewWithdrawFee(uint256 newWithdrawFee);
    event RampA(
        uint256 oldA,
        uint256 newA,
        uint256 initialTime,
        uint256 futureTime
    );
    event StopRampA(uint256 currentA, uint256 time);

    /**
     * @notice Initializes this Swap contract with the given parameters.
     * This will also clone a LPToken contract that represents users'
     * LP positions. The owner of LPToken will be this contract - which means
     * only this contract is allowed to mint/burn tokens.
     *
     * @param _pooledTokens an array of ERC20s this pool will accept
     * @param decimals the decimals to use for each pooled token,
     * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
     * @param lpTokenName the long-form name of the token to be deployed
     * @param lpTokenSymbol the short symbol for the token to be deployed
     * @param _a the amplification coefficient * n * (n - 1). See the
     * StableSwap paper for details
     * @param _fee default swap fee to be initialized with
     * @param _adminFee default adminFee to be initialized with
     * @param _withdrawFee default withdrawFee to be initialized with
     * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target
     */
    function initialize(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        uint256 _withdrawFee,
        address lpTokenTargetAddress
    ) public virtual initializer {
        __OwnerPausable_init();
        __ReentrancyGuard_init();
        // Check _pooledTokens and precisions parameter
        require(_pooledTokens.length > 1, "_pooledTokens.length <= 1");
        require(_pooledTokens.length <= 32, "_pooledTokens.length > 32");
        require(
            _pooledTokens.length == decimals.length,
            "_pooledTokens decimals mismatch"
        );

        uint256[] memory precisionMultipliers = new uint256[](decimals.length);

        for (uint8 i = 0; i < _pooledTokens.length; i++) {
            if (i > 0) {
                // Check if index is already used. Check if 0th element is a duplicate.
                require(
                    tokenIndexes[address(_pooledTokens[i])] == 0 &&
                        _pooledTokens[0] != _pooledTokens[i],
                    "Duplicate tokens"
                );
            }
            require(
                address(_pooledTokens[i]) != address(0),
                "The 0 address isn't an ERC-20"
            );
            require(
                decimals[i] <= SwapUtilsV1.POOL_PRECISION_DECIMALS,
                "Token decimals exceeds max"
            );
            precisionMultipliers[i] =
                10 **
                    uint256(SwapUtilsV1.POOL_PRECISION_DECIMALS).sub(
                        uint256(decimals[i])
                    );
            tokenIndexes[address(_pooledTokens[i])] = i;
        }

        // Check _a, _fee, _adminFee, _withdrawFee parameters
        require(_a < AmplificationUtilsV1.MAX_A, "_a exceeds maximum");
        require(_fee < SwapUtilsV1.MAX_SWAP_FEE, "_fee exceeds maximum");
        require(
            _adminFee < SwapUtilsV1.MAX_ADMIN_FEE,
            "_adminFee exceeds maximum"
        );
        require(
            _withdrawFee < SwapUtilsV1.MAX_WITHDRAW_FEE,
            "_withdrawFee exceeds maximum"
        );

        // Clone and initialize a LPToken contract
        LPToken lpToken = LPToken(Clones.clone(lpTokenTargetAddress));
        require(
            lpToken.initialize(lpTokenName, lpTokenSymbol),
            "could not init lpToken clone"
        );

        // Initialize swapStorage struct
        swapStorage.lpToken = lpToken;
        swapStorage.pooledTokens = _pooledTokens;
        swapStorage.tokenPrecisionMultipliers = precisionMultipliers;
        swapStorage.balances = new uint256[](_pooledTokens.length);
        swapStorage.initialA = _a.mul(AmplificationUtilsV1.A_PRECISION);
        swapStorage.futureA = _a.mul(AmplificationUtilsV1.A_PRECISION);
        // swapStorage.initialATime = 0;
        // swapStorage.futureATime = 0;
        swapStorage.swapFee = _fee;
        swapStorage.adminFee = _adminFee;
        swapStorage.defaultWithdrawFee = _withdrawFee;
    }

    /*** MODIFIERS ***/

    /**
     * @notice Modifier to check deadline against current timestamp
     * @param deadline latest timestamp to accept this transaction
     */
    modifier deadlineCheck(uint256 deadline) {
        require(block.timestamp <= deadline, "Deadline not met");
        _;
    }

    /*** VIEW FUNCTIONS ***/

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @return A parameter
     */
    function getA() external view virtual returns (uint256) {
        return swapStorage.getA();
    }

    /**
     * @notice Return A in its raw precision form
     * @dev See the StableSwap paper for details
     * @return A parameter in its raw precision form
     */
    function getAPrecise() external view virtual returns (uint256) {
        return swapStorage.getAPrecise();
    }

    /**
     * @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range.
     * @param index the index of the token
     * @return address of the token at given index
     */
    function getToken(uint8 index) public view virtual returns (IERC20) {
        require(index < swapStorage.pooledTokens.length, "Out of range");
        return swapStorage.pooledTokens[index];
    }

    /**
     * @notice Return the index of the given token address. Reverts if no matching
     * token is found.
     * @param tokenAddress address of the token
     * @return the index of the given token address
     */
    function getTokenIndex(address tokenAddress)
        public
        view
        virtual
        returns (uint8)
    {
        uint8 index = tokenIndexes[tokenAddress];
        require(
            address(getToken(index)) == tokenAddress,
            "Token does not exist"
        );
        return index;
    }

    /**
     * @notice Return timestamp of last deposit of given address
     * @return timestamp of the last deposit made by the given address
     */
    function getDepositTimestamp(address user)
        external
        view
        virtual
        returns (uint256)
    {
        return swapStorage.getDepositTimestamp(user);
    }

    /**
     * @notice Return current balance of the pooled token at given index
     * @param index the index of the token
     * @return current balance of the pooled token at given index with token's native precision
     */
    function getTokenBalance(uint8 index)
        external
        view
        virtual
        returns (uint256)
    {
        require(index < swapStorage.pooledTokens.length, "Index out of range");
        return swapStorage.balances[index];
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice() external view virtual returns (uint256) {
        return swapStorage.getVirtualPrice();
    }

    /**
     * @notice Calculate amount of tokens you receive on swap
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell. If the token charges
     * a fee on transfers, use the amount that gets transferred after the fee.
     * @return amount of tokens the user will receive
     */
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view virtual returns (uint256) {
        return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx);
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param account address that is depositing or withdrawing tokens
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return token amount the user will receive
     */
    function calculateTokenAmount(
        address account,
        uint256[] calldata amounts,
        bool deposit
    ) external view virtual returns (uint256) {
        return swapStorage.calculateTokenAmount(account, amounts, deposit);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of LP tokens
     * @param account the address that is withdrawing tokens
     * @param amount the amount of LP tokens that would be burned on withdrawal
     * @return array of token balances that the user will receive
     */
    function calculateRemoveLiquidity(address account, uint256 amount)
        external
        view
        virtual
        returns (uint256[] memory)
    {
        return swapStorage.calculateRemoveLiquidity(account, amount);
    }

    /**
     * @notice Calculate the amount of underlying token available to withdraw
     * when withdrawing via only single token
     * @param account the address that is withdrawing tokens
     * @param tokenAmount the amount of LP token to burn
     * @param tokenIndex index of which token will be withdrawn
     * @return availableTokenAmount calculated amount of underlying token
     * available to withdraw
     */
    function calculateRemoveLiquidityOneToken(
        address account,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view virtual returns (uint256 availableTokenAmount) {
        return
            swapStorage.calculateWithdrawOneToken(
                account,
                tokenAmount,
                tokenIndex
            );
    }

    /**
     * @notice Calculate the fee that is applied when the given user withdraws. The withdraw fee
     * decays linearly over period of 4 weeks. For example, depositing and withdrawing right away
     * will charge you the full amount of withdraw fee. But withdrawing after 4 weeks will charge you
     * no additional fees.
     * @dev returned value should be divided by FEE_DENOMINATOR to convert to correct decimals
     * @param user address you want to calculate withdraw fee of
     * @return current withdraw fee of the user
     */
    function calculateCurrentWithdrawFee(address user)
        external
        view
        virtual
        returns (uint256)
    {
        return swapStorage.calculateCurrentWithdrawFee(user);
    }

    /**
     * @notice This function reads the accumulated amount of admin fees of the token with given index
     * @param index Index of the pooled token
     * @return admin's token balance in the token's precision
     */
    function getAdminBalance(uint256 index)
        external
        view
        virtual
        returns (uint256)
    {
        return swapStorage.getAdminBalance(index);
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice Swap two tokens using this pool
     * @param tokenIndexFrom the token the user wants to swap from
     * @param tokenIndexTo the token the user wants to swap to
     * @param dx the amount of tokens the user wants to swap from
     * @param minDy the min amount the user would like to receive, or revert.
     * @param deadline latest timestamp to accept this transaction
     */
    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy);
    }

    /**
     * @notice Add liquidity to the pool with the given amounts of tokens
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP token user minted and received
     */
    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.addLiquidity(amounts, minToMint);
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     *        acceptable for this burn. Useful as a front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amounts of tokens user received
     */
    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        deadlineCheck(deadline)
        returns (uint256[] memory)
    {
        return swapStorage.removeLiquidity(amount, minAmounts);
    }

    /**
     * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param tokenAmount the amount of the token you want to receive
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @param deadline latest timestamp to accept this transaction
     * @return amount of chosen token user received
     */
    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            swapStorage.removeLiquidityOneToken(
                tokenAmount,
                tokenIndex,
                minAmount
            );
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP tokens burned
     */
    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount);
    }

    /*** ADMIN FUNCTIONS ***/

    /**
     * @notice Updates the user withdraw fee. This function can only be called by
     * the pool token. Should be used to update the withdraw fee on transfer of pool tokens.
     * Transferring your pool token will reset the 4 weeks period. If the recipient is already
     * holding some pool tokens, the withdraw fee will be discounted in respective amounts.
     * @param recipient address of the recipient of pool token
     * @param transferAmount amount of pool token to transfer
     */
    function updateUserWithdrawFee(address recipient, uint256 transferAmount)
        external
    {
        require(
            msg.sender == address(swapStorage.lpToken),
            "Only callable by pool token"
        );
        swapStorage.updateUserWithdrawFee(recipient, transferAmount);
    }

    /**
     * @notice Withdraw all admin fees to the contract owner
     */
    function withdrawAdminFees() external onlyOwner {
        swapStorage.withdrawAdminFees(owner());
    }

    /**
     * @notice Update the admin fee. Admin fee takes portion of the swap fee.
     * @param newAdminFee new admin fee to be applied on future transactions
     */
    function setAdminFee(uint256 newAdminFee) external onlyOwner {
        swapStorage.setAdminFee(newAdminFee);
    }

    /**
     * @notice Update the swap fee to be applied on swaps
     * @param newSwapFee new swap fee to be applied on future transactions
     */
    function setSwapFee(uint256 newSwapFee) external onlyOwner {
        swapStorage.setSwapFee(newSwapFee);
    }

    /**
     * @notice Update the withdraw fee. This fee decays linearly over 4 weeks since
     * user's last deposit.
     * @param newWithdrawFee new withdraw fee to be applied on future deposits
     */
    function setDefaultWithdrawFee(uint256 newWithdrawFee) external onlyOwner {
        swapStorage.setDefaultWithdrawFee(newWithdrawFee);
    }

    /**
     * @notice Start ramping up or down A parameter towards given futureA and futureTime
     * Checks if the change is too rapid, and commits the new A value only when it falls under
     * the limit range.
     * @param futureA the new A to ramp towards
     * @param futureTime timestamp when the new A should be reached
     */
    function rampA(uint256 futureA, uint256 futureTime) external onlyOwner {
        swapStorage.rampA(futureA, futureTime);
    }

    /**
     * @notice Stop ramping A immediately. Reverts if ramp A is already stopped.
     */
    function stopRampA() external onlyOwner {
        swapStorage.stopRampA();
    }
}

File 31 of 78 : SwapUtilsV1.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./AmplificationUtilsV1.sol";
import "./LPToken.sol";
import "./MathUtils.sol";

/**
 * @title SwapUtils library
 * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
 * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
 * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
 * Admin functions should be protected within contracts using this library.
 */
library SwapUtilsV1 {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using MathUtils for uint256;

    /*** EVENTS ***/

    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);
    event NewWithdrawFee(uint256 newWithdrawFee);

    struct Swap {
        // variables around the ramp management of A,
        // the amplification coefficient * n * (n - 1)
        // see https://www.curve.fi/stableswap-paper.pdf for details
        uint256 initialA;
        uint256 futureA;
        uint256 initialATime;
        uint256 futureATime;
        // fee calculation
        uint256 swapFee;
        uint256 adminFee;
        uint256 defaultWithdrawFee;
        LPToken lpToken;
        // contract references for all tokens being pooled
        IERC20[] pooledTokens;
        // multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
        // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
        // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
        uint256[] tokenPrecisionMultipliers;
        // the pool balance of each token, in the token's precision
        // the contract's actual token balance might differ
        uint256[] balances;
        mapping(address => uint256) depositTimestamp;
        mapping(address => uint256) withdrawFeeMultiplier;
    }

    // Struct storing variables used in calculations in the
    // calculateWithdrawOneTokenDY function to avoid stack too deep errors
    struct CalculateWithdrawOneTokenDYInfo {
        uint256 d0;
        uint256 d1;
        uint256 newY;
        uint256 feePerToken;
        uint256 preciseA;
    }

    // Struct storing variables used in calculations in the
    // {add,remove}Liquidity functions to avoid stack too deep errors
    struct ManageLiquidityInfo {
        uint256 d0;
        uint256 d1;
        uint256 d2;
        uint256 preciseA;
        LPToken lpToken;
        uint256 totalSupply;
        uint256[] balances;
        uint256[] multipliers;
    }

    // the precision all pools tokens will be converted to
    uint8 public constant POOL_PRECISION_DECIMALS = 18;

    // the denominator used to calculate admin and LP fees. For example, an
    // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
    uint256 private constant FEE_DENOMINATOR = 10**10;

    // Max swap fee is 1% or 100bps of each swap
    uint256 public constant MAX_SWAP_FEE = 10**8;

    // Max adminFee is 100% of the swapFee
    // adminFee does not add additional fee on top of swapFee
    // Instead it takes a certain % of the swapFee. Therefore it has no impact on the
    // users but only on the earnings of LPs
    uint256 public constant MAX_ADMIN_FEE = 10**10;

    // Max withdrawFee is 1% of the value withdrawn
    // Fee will be redistributed to the LPs in the pool, rewarding
    // long term providers.
    uint256 public constant MAX_WITHDRAW_FEE = 10**8;

    // Constant value used as max loop limit
    uint256 private constant MAX_LOOP_LIMIT = 256;

    // Time that it should take for the withdraw fee to fully decay to 0
    uint256 public constant WITHDRAW_FEE_DECAY_TIME = 4 weeks;

    /*** VIEW & PURE FUNCTIONS ***/

    /**
     * @notice Retrieves the timestamp of last deposit made by the given address
     * @param self Swap struct to read from
     * @return timestamp of last deposit
     */
    function getDepositTimestamp(Swap storage self, address user)
        external
        view
        returns (uint256)
    {
        return self.depositTimestamp[user];
    }

    function _getAPrecise(Swap storage self) internal view returns (uint256) {
        return AmplificationUtilsV1._getAPrecise(self);
    }

    /**
     * @notice Calculate the dy, the amount of selected token that user receives and
     * the fee of withdrawing in one token
     * @param account the address that is withdrawing
     * @param tokenAmount the amount to withdraw in the pool's precision
     * @param tokenIndex which token will be withdrawn
     * @param self Swap struct to read from
     * @return the amount of token user will receive
     */
    function calculateWithdrawOneToken(
        Swap storage self,
        address account,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256) {
        (uint256 availableTokenAmount, ) = _calculateWithdrawOneToken(
            self,
            account,
            tokenAmount,
            tokenIndex,
            self.lpToken.totalSupply()
        );
        return availableTokenAmount;
    }

    function _calculateWithdrawOneToken(
        Swap storage self,
        address account,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 totalSupply
    ) internal view returns (uint256, uint256) {
        uint256 dy;
        uint256 newY;
        uint256 currentY;

        (dy, newY, currentY) = calculateWithdrawOneTokenDY(
            self,
            tokenIndex,
            tokenAmount,
            totalSupply
        );

        // dy_0 (without fees)
        // dy, dy_0 - dy

        uint256 dySwapFee = currentY
            .sub(newY)
            .div(self.tokenPrecisionMultipliers[tokenIndex])
            .sub(dy);

        dy = dy
            .mul(
                FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, account))
            )
            .div(FEE_DENOMINATOR);

        return (dy, dySwapFee);
    }

    /**
     * @notice Calculate the dy of withdrawing in one token
     * @param self Swap struct to read from
     * @param tokenIndex which token will be withdrawn
     * @param tokenAmount the amount to withdraw in the pools precision
     * @return the d and the new y after withdrawing one token
     */
    function calculateWithdrawOneTokenDY(
        Swap storage self,
        uint8 tokenIndex,
        uint256 tokenAmount,
        uint256 totalSupply
    )
        internal
        view
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        // Get the current D, then solve the stableswap invariant
        // y_i for D - tokenAmount
        uint256[] memory xp = _xp(self);

        require(tokenIndex < xp.length, "Token index out of range");

        CalculateWithdrawOneTokenDYInfo
            memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
        v.preciseA = _getAPrecise(self);
        v.d0 = getD(xp, v.preciseA);
        v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));

        require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");

        v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);

        uint256[] memory xpReduced = new uint256[](xp.length);

        v.feePerToken = _feePerToken(self.swapFee, xp.length);
        for (uint256 i = 0; i < xp.length; i++) {
            uint256 xpi = xp[i];
            // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
            // else dxExpected = xp[i] - (xp[i] * d1 / d0)
            // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
            xpReduced[i] = xpi.sub(
                (
                    (i == tokenIndex)
                        ? xpi.mul(v.d1).div(v.d0).sub(v.newY)
                        : xpi.sub(xpi.mul(v.d1).div(v.d0))
                ).mul(v.feePerToken).div(FEE_DENOMINATOR)
            );
        }

        uint256 dy = xpReduced[tokenIndex].sub(
            getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
        );
        dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);

        return (dy, v.newY, xp[tokenIndex]);
    }

    /**
     * @notice Calculate the price of a token in the pool with given
     * precision-adjusted balances and a particular D.
     *
     * @dev This is accomplished via solving the invariant iteratively.
     * See the StableSwap paper and Curve.fi implementation for further details.
     *
     * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
     * x_1**2 + b*x_1 = c
     * x_1 = (x_1**2 + c) / (2*x_1 + b)
     *
     * @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
     * @param tokenIndex Index of token we are calculating for.
     * @param xp a precision-adjusted set of pool balances. Array should be
     * the same cardinality as the pool.
     * @param d the stableswap invariant
     * @return the price of the token, in the same precision as in xp
     */
    function getYD(
        uint256 a,
        uint8 tokenIndex,
        uint256[] memory xp,
        uint256 d
    ) internal pure returns (uint256) {
        uint256 numTokens = xp.length;
        require(tokenIndex < numTokens, "Token not found");

        uint256 c = d;
        uint256 s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < numTokens; i++) {
            if (i != tokenIndex) {
                s = s.add(xp[i]);
                c = c.mul(d).div(xp[i].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // c = c * D * D * D * ... overflow!
            }
        }
        c = c.mul(d).mul(AmplificationUtilsV1.A_PRECISION).div(
            nA.mul(numTokens)
        );

        uint256 b = s.add(d.mul(AmplificationUtilsV1.A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
     * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
     * as the pool.
     * @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
     * See the StableSwap paper for details
     * @return the invariant, at the precision of the pool
     */
    function getD(uint256[] memory xp, uint256 a)
        internal
        pure
        returns (uint256)
    {
        uint256 numTokens = xp.length;
        uint256 s;
        for (uint256 i = 0; i < numTokens; i++) {
            s = s.add(xp[i]);
        }
        if (s == 0) {
            return 0;
        }

        uint256 prevD;
        uint256 d = s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            uint256 dP = d;
            for (uint256 j = 0; j < numTokens; j++) {
                dP = dP.mul(d).div(xp[j].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // dP = dP * D * D * D * ... overflow!
            }
            prevD = d;
            d = nA
                .mul(s)
                .div(AmplificationUtilsV1.A_PRECISION)
                .add(dP.mul(numTokens))
                .mul(d)
                .div(
                    nA
                        .sub(AmplificationUtilsV1.A_PRECISION)
                        .mul(d)
                        .div(AmplificationUtilsV1.A_PRECISION)
                        .add(numTokens.add(1).mul(dP))
                );
            if (d.within1(prevD)) {
                return d;
            }
        }

        // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
        // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
        // function which does not rely on D.
        revert("D does not converge");
    }

    /**
     * @notice Given a set of balances and precision multipliers, return the
     * precision-adjusted balances.
     *
     * @param balances an array of token balances, in their native precisions.
     * These should generally correspond with pooled tokens.
     *
     * @param precisionMultipliers an array of multipliers, corresponding to
     * the amounts in the balances array. When multiplied together they
     * should yield amounts at the pool's precision.
     *
     * @return an array of amounts "scaled" to the pool's precision
     */
    function _xp(
        uint256[] memory balances,
        uint256[] memory precisionMultipliers
    ) internal pure returns (uint256[] memory) {
        uint256 numTokens = balances.length;
        require(
            numTokens == precisionMultipliers.length,
            "Balances must match multipliers"
        );
        uint256[] memory xp = new uint256[](numTokens);
        for (uint256 i = 0; i < numTokens; i++) {
            xp[i] = balances[i].mul(precisionMultipliers[i]);
        }
        return xp;
    }

    /**
     * @notice Return the precision-adjusted balances of all tokens in the pool
     * @param self Swap struct to read from
     * @return the pool balances "scaled" to the pool's precision, allowing
     * them to be more easily compared.
     */
    function _xp(Swap storage self) internal view returns (uint256[] memory) {
        return _xp(self.balances, self.tokenPrecisionMultipliers);
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @param self Swap struct to read from
     * @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice(Swap storage self)
        external
        view
        returns (uint256)
    {
        uint256 d = getD(_xp(self), _getAPrecise(self));
        LPToken lpToken = self.lpToken;
        uint256 supply = lpToken.totalSupply();
        if (supply > 0) {
            return d.mul(10**uint256(POOL_PRECISION_DECIMALS)).div(supply);
        }
        return 0;
    }

    /**
     * @notice Calculate the new balances of the tokens given the indexes of the token
     * that is swapped from (FROM) and the token that is swapped to (TO).
     * This function is used as a helper function to calculate how much TO token
     * the user should receive on swap.
     *
     * @param preciseA precise form of amplification coefficient
     * @param tokenIndexFrom index of FROM token
     * @param tokenIndexTo index of TO token
     * @param x the new total amount of FROM token
     * @param xp balances of the tokens in the pool
     * @return the amount of TO token that should remain in the pool
     */
    function getY(
        uint256 preciseA,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 x,
        uint256[] memory xp
    ) internal pure returns (uint256) {
        uint256 numTokens = xp.length;
        require(
            tokenIndexFrom != tokenIndexTo,
            "Can't compare token to itself"
        );
        require(
            tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
            "Tokens must be in pool"
        );

        uint256 d = getD(xp, preciseA);
        uint256 c = d;
        uint256 s;
        uint256 nA = numTokens.mul(preciseA);

        uint256 _x;
        for (uint256 i = 0; i < numTokens; i++) {
            if (i == tokenIndexFrom) {
                _x = x;
            } else if (i != tokenIndexTo) {
                _x = xp[i];
            } else {
                continue;
            }
            s = s.add(_x);
            c = c.mul(d).div(_x.mul(numTokens));
            // If we were to protect the division loss we would have to keep the denominator separate
            // and divide at the end. However this leads to overflow with large numTokens or/and D.
            // c = c * D * D * D * ... overflow!
        }
        c = c.mul(d).mul(AmplificationUtilsV1.A_PRECISION).div(
            nA.mul(numTokens)
        );
        uint256 b = s.add(d.mul(AmplificationUtilsV1.A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;

        // iterative approximation
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Externally calculates a swap between two tokens.
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            self.balances
        );
    }

    /**
     * @notice Internally calculates a swap between two tokens.
     *
     * @dev The caller is expected to transfer the actual amounts (dx and dy)
     * using the token contracts.
     *
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     * @return dyFee the associated fee
     */
    function _calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256[] memory balances
    ) internal view returns (uint256 dy, uint256 dyFee) {
        uint256[] memory multipliers = self.tokenPrecisionMultipliers;
        uint256[] memory xp = _xp(balances, multipliers);
        require(
            tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
            "Token index out of range"
        );
        uint256 x = dx.mul(multipliers[tokenIndexFrom]).add(xp[tokenIndexFrom]);
        uint256 y = getY(
            _getAPrecise(self),
            tokenIndexFrom,
            tokenIndexTo,
            x,
            xp
        );
        dy = xp[tokenIndexTo].sub(y).sub(1);
        dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
        dy = dy.sub(dyFee).div(multipliers[tokenIndexTo]);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of
     * LP tokens
     *
     * @param account the address that is removing liquidity. required for withdraw fee calculation
     * @param amount the amount of LP tokens that would to be burned on
     * withdrawal
     * @return array of amounts of tokens user will receive
     */
    function calculateRemoveLiquidity(
        Swap storage self,
        address account,
        uint256 amount
    ) external view returns (uint256[] memory) {
        return
            _calculateRemoveLiquidity(
                self,
                self.balances,
                account,
                amount,
                self.lpToken.totalSupply()
            );
    }

    function _calculateRemoveLiquidity(
        Swap storage self,
        uint256[] memory balances,
        address account,
        uint256 amount,
        uint256 totalSupply
    ) internal view returns (uint256[] memory) {
        require(amount <= totalSupply, "Cannot exceed total supply");

        uint256 feeAdjustedAmount = amount
            .mul(
                FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, account))
            )
            .div(FEE_DENOMINATOR);

        uint256[] memory amounts = new uint256[](balances.length);

        for (uint256 i = 0; i < balances.length; i++) {
            amounts[i] = balances[i].mul(feeAdjustedAmount).div(totalSupply);
        }
        return amounts;
    }

    /**
     * @notice Calculate the fee that is applied when the given user withdraws.
     * Withdraw fee decays linearly over WITHDRAW_FEE_DECAY_TIME.
     * @param user address you want to calculate withdraw fee of
     * @return current withdraw fee of the user
     */
    function calculateCurrentWithdrawFee(Swap storage self, address user)
        external
        view
        returns (uint256)
    {
        return _calculateCurrentWithdrawFee(self, user);
    }

    function _calculateCurrentWithdrawFee(Swap storage self, address user)
        internal
        view
        returns (uint256)
    {
        uint256 endTime = self.depositTimestamp[user].add(
            WITHDRAW_FEE_DECAY_TIME
        );
        if (endTime > block.timestamp) {
            uint256 timeLeftover = endTime.sub(block.timestamp);
            return
                self
                    .defaultWithdrawFee
                    .mul(self.withdrawFeeMultiplier[user])
                    .mul(timeLeftover)
                    .div(WITHDRAW_FEE_DECAY_TIME)
                    .div(FEE_DENOMINATOR);
        }
        return 0;
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param self Swap struct to read from
     * @param account address of the account depositing or withdrawing tokens
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return if deposit was true, total amount of lp token that will be minted and if
     * deposit was false, total amount of lp token that will be burned
     */
    function calculateTokenAmount(
        Swap storage self,
        address account,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256) {
        uint256 a = _getAPrecise(self);
        uint256[] memory balances = self.balances;
        uint256[] memory multipliers = self.tokenPrecisionMultipliers;

        uint256 d0 = getD(_xp(balances, multipliers), a);
        for (uint256 i = 0; i < balances.length; i++) {
            if (deposit) {
                balances[i] = balances[i].add(amounts[i]);
            } else {
                balances[i] = balances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
        }
        uint256 d1 = getD(_xp(balances, multipliers), a);
        uint256 totalSupply = self.lpToken.totalSupply();

        if (deposit) {
            return d1.sub(d0).mul(totalSupply).div(d0);
        } else {
            return
                d0.sub(d1).mul(totalSupply).div(d0).mul(FEE_DENOMINATOR).div(
                    FEE_DENOMINATOR.sub(
                        _calculateCurrentWithdrawFee(self, account)
                    )
                );
        }
    }

    /**
     * @notice return accumulated amount of admin fees of the token with given index
     * @param self Swap struct to read from
     * @param index Index of the pooled token
     * @return admin balance in the token's precision
     */
    function getAdminBalance(Swap storage self, uint256 index)
        external
        view
        returns (uint256)
    {
        require(index < self.pooledTokens.length, "Token index out of range");
        return
            self.pooledTokens[index].balanceOf(address(this)).sub(
                self.balances[index]
            );
    }

    /**
     * @notice internal helper function to calculate fee per token multiplier used in
     * swap fee calculations
     * @param swapFee swap fee for the tokens
     * @param numTokens number of tokens pooled
     */
    function _feePerToken(uint256 swapFee, uint256 numTokens)
        internal
        pure
        returns (uint256)
    {
        return swapFee.mul(numTokens).div(numTokens.sub(1).mul(4));
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice swap two tokens in the pool
     * @param self Swap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        {
            IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
            require(
                dx <= tokenFrom.balanceOf(msg.sender),
                "Cannot swap more than you own"
            );
            // Transfer tokens first to see if a fee was charged on transfer
            uint256 beforeBalance = tokenFrom.balanceOf(address(this));
            tokenFrom.safeTransferFrom(msg.sender, address(this), dx);

            // Use the actual transferred amount for AMM math
            dx = tokenFrom.balanceOf(address(this)).sub(beforeBalance);
        }

        uint256 dy;
        uint256 dyFee;
        uint256[] memory balances = self.balances;
        (dy, dyFee) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            balances
        );
        require(dy >= minDy, "Swap didn't result in min tokens");

        uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
            self.tokenPrecisionMultipliers[tokenIndexTo]
        );

        self.balances[tokenIndexFrom] = balances[tokenIndexFrom].add(dx);
        self.balances[tokenIndexTo] = balances[tokenIndexTo].sub(dy).sub(
            dyAdminFee
        );

        self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);

        emit TokenSwap(msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo);

        return dy;
    }

    /**
     * @notice Add liquidity to the pool
     * @param self Swap struct to read from and write to
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
     * @return amount of LP token user received
     */
    function addLiquidity(
        Swap storage self,
        uint256[] memory amounts,
        uint256 minToMint
    ) external returns (uint256) {
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(
            amounts.length == pooledTokens.length,
            "Amounts must match pooled tokens"
        );

        // current state
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            _getAPrecise(self),
            self.lpToken,
            0,
            self.balances,
            self.tokenPrecisionMultipliers
        );
        v.totalSupply = v.lpToken.totalSupply();

        if (v.totalSupply != 0) {
            v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
        }

        uint256[] memory newBalances = new uint256[](pooledTokens.length);

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            require(
                v.totalSupply != 0 || amounts[i] > 0,
                "Must supply all tokens in pool"
            );

            // Transfer tokens first to see if a fee was charged on transfer
            if (amounts[i] != 0) {
                uint256 beforeBalance = pooledTokens[i].balanceOf(
                    address(this)
                );
                pooledTokens[i].safeTransferFrom(
                    msg.sender,
                    address(this),
                    amounts[i]
                );

                // Update the amounts[] with actual transfer amount
                amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
                    beforeBalance
                );
            }

            newBalances[i] = v.balances[i].add(amounts[i]);
        }

        // invariant after change
        v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA);
        require(v.d1 > v.d0, "D should increase");

        // updated to reflect fees and calculate the user's LP tokens
        v.d2 = v.d1;
        uint256[] memory fees = new uint256[](pooledTokens.length);

        if (v.totalSupply != 0) {
            uint256 feePerToken = _feePerToken(
                self.swapFee,
                pooledTokens.length
            );
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
                fees[i] = feePerToken
                    .mul(idealBalance.difference(newBalances[i]))
                    .div(FEE_DENOMINATOR);
                self.balances[i] = newBalances[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                newBalances[i] = newBalances[i].sub(fees[i]);
            }
            v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA);
        } else {
            // the initial depositor doesn't pay fees
            self.balances = newBalances;
        }

        uint256 toMint;
        if (v.totalSupply == 0) {
            toMint = v.d1;
        } else {
            toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
        }

        require(toMint >= minToMint, "Couldn't mint min requested");

        // mint the user's LP tokens
        v.lpToken.mint(msg.sender, toMint);

        emit AddLiquidity(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.add(toMint)
        );

        return toMint;
    }

    /**
     * @notice Update the withdraw fee for `user`. If the user is currently
     * not providing liquidity in the pool, sets to default value. If not, recalculate
     * the starting withdraw fee based on the last deposit's time & amount relative
     * to the new deposit.
     *
     * @param self Swap struct to read from and write to
     * @param user address of the user depositing tokens
     * @param toMint amount of pool tokens to be minted
     */
    function updateUserWithdrawFee(
        Swap storage self,
        address user,
        uint256 toMint
    ) public {
        // If token is transferred to address 0 (or burned), don't update the fee.
        if (user == address(0)) {
            return;
        }
        if (self.defaultWithdrawFee == 0) {
            // If current fee is set to 0%, set multiplier to FEE_DENOMINATOR
            self.withdrawFeeMultiplier[user] = FEE_DENOMINATOR;
        } else {
            // Otherwise, calculate appropriate discount based on last deposit amount
            uint256 currentFee = _calculateCurrentWithdrawFee(self, user);
            uint256 currentBalance = self.lpToken.balanceOf(user);

            // ((currentBalance * currentFee) + (toMint * defaultWithdrawFee)) * FEE_DENOMINATOR /
            // ((toMint + currentBalance) * defaultWithdrawFee)
            self.withdrawFeeMultiplier[user] = currentBalance
                .mul(currentFee)
                .add(toMint.mul(self.defaultWithdrawFee))
                .mul(FEE_DENOMINATOR)
                .div(toMint.add(currentBalance).mul(self.defaultWithdrawFee));
        }
        self.depositTimestamp[user] = block.timestamp;
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param self Swap struct to read from and write to
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     * acceptable for this burn. Useful as a front-running mitigation
     * @return amounts of tokens the user received
     */
    function removeLiquidity(
        Swap storage self,
        uint256 amount,
        uint256[] calldata minAmounts
    ) external returns (uint256[] memory) {
        LPToken lpToken = self.lpToken;
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(
            minAmounts.length == pooledTokens.length,
            "minAmounts must match poolTokens"
        );

        uint256[] memory balances = self.balances;
        uint256 totalSupply = lpToken.totalSupply();

        uint256[] memory amounts = _calculateRemoveLiquidity(
            self,
            balances,
            msg.sender,
            amount,
            totalSupply
        );

        for (uint256 i = 0; i < amounts.length; i++) {
            require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]");
            self.balances[i] = balances[i].sub(amounts[i]);
            pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        lpToken.burnFrom(msg.sender, amount);

        emit RemoveLiquidity(msg.sender, amounts, totalSupply.sub(amount));

        return amounts;
    }

    /**
     * @notice Remove liquidity from the pool all in one token.
     * @param self Swap struct to read from and write to
     * @param tokenAmount the amount of the lp tokens to burn
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @return amount chosen token that user received
     */
    function removeLiquidityOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount
    ) external returns (uint256) {
        LPToken lpToken = self.lpToken;
        IERC20[] memory pooledTokens = self.pooledTokens;

        require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(tokenIndex < pooledTokens.length, "Token not found");

        uint256 totalSupply = lpToken.totalSupply();

        (uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken(
            self,
            msg.sender,
            tokenAmount,
            tokenIndex,
            totalSupply
        );

        require(dy >= minAmount, "dy < minAmount");

        self.balances[tokenIndex] = self.balances[tokenIndex].sub(
            dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
        );
        lpToken.burnFrom(msg.sender, tokenAmount);
        pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);

        emit RemoveLiquidityOne(
            msg.sender,
            tokenAmount,
            totalSupply,
            tokenIndex,
            dy
        );

        return dy;
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances.
     *
     * @param self Swap struct to read from and write to
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @return actual amount of LP tokens burned in the withdrawal
     */
    function removeLiquidityImbalance(
        Swap storage self,
        uint256[] memory amounts,
        uint256 maxBurnAmount
    ) public returns (uint256) {
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            _getAPrecise(self),
            self.lpToken,
            0,
            self.balances,
            self.tokenPrecisionMultipliers
        );
        v.totalSupply = v.lpToken.totalSupply();

        IERC20[] memory pooledTokens = self.pooledTokens;

        require(
            amounts.length == pooledTokens.length,
            "Amounts should match pool tokens"
        );

        require(
            maxBurnAmount <= v.lpToken.balanceOf(msg.sender) &&
                maxBurnAmount != 0,
            ">LP.balanceOf"
        );

        uint256 feePerToken = _feePerToken(self.swapFee, pooledTokens.length);
        uint256[] memory fees = new uint256[](pooledTokens.length);
        {
            uint256[] memory balances1 = new uint256[](pooledTokens.length);
            v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                balances1[i] = v.balances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
            v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA);

            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
                uint256 difference = idealBalance.difference(balances1[i]);
                fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
                self.balances[i] = balances1[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                balances1[i] = balances1[i].sub(fees[i]);
            }

            v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA);
        }
        uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
        require(tokenAmount != 0, "Burnt amount cannot be zero");
        tokenAmount = tokenAmount.add(1).mul(FEE_DENOMINATOR).div(
            FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, msg.sender))
        );

        require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");

        v.lpToken.burnFrom(msg.sender, tokenAmount);

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        emit RemoveLiquidityImbalance(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.sub(tokenAmount)
        );

        return tokenAmount;
    }

    /**
     * @notice withdraw all admin fees to a given address
     * @param self Swap struct to withdraw fees from
     * @param to Address to send the fees to
     */
    function withdrawAdminFees(Swap storage self, address to) external {
        IERC20[] memory pooledTokens = self.pooledTokens;
        for (uint256 i = 0; i < pooledTokens.length; i++) {
            IERC20 token = pooledTokens[i];
            uint256 balance = token.balanceOf(address(this)).sub(
                self.balances[i]
            );
            if (balance != 0) {
                token.safeTransfer(to, balance);
            }
        }
    }

    /**
     * @notice Sets the admin fee
     * @dev adminFee cannot be higher than 100% of the swap fee
     * @param self Swap struct to update
     * @param newAdminFee new admin fee to be applied on future transactions
     */
    function setAdminFee(Swap storage self, uint256 newAdminFee) external {
        require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high");
        self.adminFee = newAdminFee;

        emit NewAdminFee(newAdminFee);
    }

    /**
     * @notice update the swap fee
     * @dev fee cannot be higher than 1% of each swap
     * @param self Swap struct to update
     * @param newSwapFee new swap fee to be applied on future transactions
     */
    function setSwapFee(Swap storage self, uint256 newSwapFee) external {
        require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high");
        self.swapFee = newSwapFee;

        emit NewSwapFee(newSwapFee);
    }

    /**
     * @notice update the default withdraw fee. This also affects deposits made in the past as well.
     * @param self Swap struct to update
     * @param newWithdrawFee new withdraw fee to be applied
     */
    function setDefaultWithdrawFee(Swap storage self, uint256 newWithdrawFee)
        external
    {
        require(newWithdrawFee <= MAX_WITHDRAW_FEE, "Fee is too high");
        self.defaultWithdrawFee = newWithdrawFee;

        emit NewWithdrawFee(newWithdrawFee);
    }
}

File 32 of 78 : AmplificationUtilsV1.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./SwapUtilsV1.sol";

/**
 * @title AmplificationUtils library
 * @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct.
 * This library assumes the struct is fully validated.
 */
library AmplificationUtilsV1 {
    using SafeMath for uint256;

    event RampA(
        uint256 oldA,
        uint256 newA,
        uint256 initialTime,
        uint256 futureTime
    );
    event StopRampA(uint256 currentA, uint256 time);

    // Constant values used in ramping A calculations
    uint256 public constant A_PRECISION = 100;
    uint256 public constant MAX_A = 10**6;
    uint256 private constant MAX_A_CHANGE = 2;
    uint256 private constant MIN_RAMP_TIME = 14 days;

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter
     */
    function getA(SwapUtilsV1.Swap storage self)
        external
        view
        returns (uint256)
    {
        return _getAPrecise(self).div(A_PRECISION);
    }

    /**
     * @notice Return A in its raw precision
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function getAPrecise(SwapUtilsV1.Swap storage self)
        external
        view
        returns (uint256)
    {
        return _getAPrecise(self);
    }

    /**
     * @notice Return A in its raw precision
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function _getAPrecise(SwapUtilsV1.Swap storage self)
        internal
        view
        returns (uint256)
    {
        uint256 t1 = self.futureATime; // time when ramp is finished
        uint256 a1 = self.futureA; // final A value when ramp is finished

        if (block.timestamp < t1) {
            uint256 t0 = self.initialATime; // time when ramp is started
            uint256 a0 = self.initialA; // initial A value when ramp is started
            if (a1 > a0) {
                // a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.add(
                        a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            } else {
                // a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.sub(
                        a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            }
        } else {
            return a1;
        }
    }

    /**
     * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_
     * Checks if the change is too rapid, and commits the new A value only when it falls under
     * the limit range.
     * @param self Swap struct to update
     * @param futureA_ the new A to ramp towards
     * @param futureTime_ timestamp when the new A should be reached
     */
    function rampA(
        SwapUtilsV1.Swap storage self,
        uint256 futureA_,
        uint256 futureTime_
    ) external {
        require(
            block.timestamp >= self.initialATime.add(1 days),
            "Wait 1 day before starting ramp"
        );
        require(
            futureTime_ >= block.timestamp.add(MIN_RAMP_TIME),
            "Insufficient ramp time"
        );
        require(
            futureA_ > 0 && futureA_ < MAX_A,
            "futureA_ must be > 0 and < MAX_A"
        );

        uint256 initialAPrecise = _getAPrecise(self);
        uint256 futureAPrecise = futureA_.mul(A_PRECISION);

        if (futureAPrecise < initialAPrecise) {
            require(
                futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise,
                "futureA_ is too small"
            );
        } else {
            require(
                futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE),
                "futureA_ is too large"
            );
        }

        self.initialA = initialAPrecise;
        self.futureA = futureAPrecise;
        self.initialATime = block.timestamp;
        self.futureATime = futureTime_;

        emit RampA(
            initialAPrecise,
            futureAPrecise,
            block.timestamp,
            futureTime_
        );
    }

    /**
     * @notice Stops ramping A immediately. Once this function is called, rampA()
     * cannot be called for another 24 hours
     * @param self Swap struct to update
     */
    function stopRampA(SwapUtilsV1.Swap storage self) external {
        require(self.futureATime > block.timestamp, "Ramp is already stopped");

        uint256 currentA = _getAPrecise(self);
        self.initialA = currentA;
        self.futureA = currentA;
        self.initialATime = block.timestamp;
        self.futureATime = block.timestamp;

        emit StopRampA(currentA, block.timestamp);
    }
}

File 33 of 78 : MetaSwapUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "../LPToken.sol";
import "../interfaces/ISwap.sol";
import "../MathUtils.sol";
import "../SwapUtils.sol";

/**
 * @title MetaSwapUtils library
 * @notice A library to be used within MetaSwap.sol. Contains functions responsible for custody and AMM functionalities.
 *
 * MetaSwap is a modified version of Swap that allows Swap's LP token to be utilized in pooling with other tokens.
 * As an example, if there is a Swap pool consisting of [DAI, USDC, USDT]. Then a MetaSwap pool can be created
 * with [sUSD, BaseSwapLPToken] to allow trades between either the LP token or the underlying tokens and sUSD.
 *
 * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
 * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
 * Admin functions should be protected within contracts using this library.
 */
library MetaSwapUtils {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using MathUtils for uint256;
    using AmplificationUtils for SwapUtils.Swap;

    /*** EVENTS ***/

    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event TokenSwapUnderlying(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);
    event NewWithdrawFee(uint256 newWithdrawFee);

    struct MetaSwap {
        // Meta-Swap related parameters
        ISwap baseSwap;
        uint256 baseVirtualPrice;
        uint256 baseCacheLastUpdated;
        IERC20[] baseTokens;
    }

    // Struct storing variables used in calculations in the
    // calculateWithdrawOneTokenDY function to avoid stack too deep errors
    struct CalculateWithdrawOneTokenDYInfo {
        uint256 d0;
        uint256 d1;
        uint256 newY;
        uint256 feePerToken;
        uint256 preciseA;
        uint256 xpi;
    }

    // Struct storing variables used in calculation in removeLiquidityImbalance function
    // to avoid stack too deep error
    struct ManageLiquidityInfo {
        uint256 d0;
        uint256 d1;
        uint256 d2;
        LPToken lpToken;
        uint256 totalSupply;
        uint256 preciseA;
        uint256 baseVirtualPrice;
        uint256[] tokenPrecisionMultipliers;
        uint256[] newBalances;
    }

    struct SwapUnderlyingInfo {
        uint256 x;
        uint256 dx;
        uint256 dy;
        uint256[] tokenPrecisionMultipliers;
        uint256[] oldBalances;
        IERC20[] baseTokens;
        IERC20 tokenFrom;
        uint8 metaIndexFrom;
        IERC20 tokenTo;
        uint8 metaIndexTo;
        uint256 baseVirtualPrice;
    }

    struct CalculateSwapUnderlyingInfo {
        uint256 baseVirtualPrice;
        ISwap baseSwap;
        uint8 baseLPTokenIndex;
        uint8 baseTokensLength;
        uint8 metaIndexTo;
        uint256 x;
        uint256 dy;
    }

    // the denominator used to calculate admin and LP fees. For example, an
    // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
    uint256 private constant FEE_DENOMINATOR = 10**10;

    // Cache expire time for the stored value of base Swap's virtual price
    uint256 public constant BASE_CACHE_EXPIRE_TIME = 10 minutes;
    uint256 public constant BASE_VIRTUAL_PRICE_PRECISION = 10**18;

    /*** VIEW & PURE FUNCTIONS ***/

    /**
     * @notice Return the stored value of base Swap's virtual price. If
     * value was updated past BASE_CACHE_EXPIRE_TIME, then read it directly
     * from the base Swap contract.
     * @param metaSwapStorage MetaSwap struct to read from
     * @return base Swap's virtual price
     */
    function _getBaseVirtualPrice(MetaSwap storage metaSwapStorage)
        internal
        view
        returns (uint256)
    {
        if (
            block.timestamp >
            metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME
        ) {
            return metaSwapStorage.baseSwap.getVirtualPrice();
        }
        return metaSwapStorage.baseVirtualPrice;
    }

    function _getBaseSwapFee(ISwap baseSwap)
        internal
        view
        returns (uint256 swapFee)
    {
        (, , , , swapFee, , ) = baseSwap.swapStorage();
    }

    /**
     * @notice Calculate how much the user would receive when withdrawing via single token
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct to read from
     * @param tokenAmount the amount to withdraw in the pool's precision
     * @param tokenIndex which token will be withdrawn
     * @return dy the amount of token user will receive
     */
    function calculateWithdrawOneToken(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            _getBaseVirtualPrice(metaSwapStorage),
            self.lpToken.totalSupply()
        );
    }

    function _calculateWithdrawOneToken(
        SwapUtils.Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 baseVirtualPrice,
        uint256 totalSupply
    ) internal view returns (uint256, uint256) {
        uint256 dy;
        uint256 dySwapFee;

        {
            uint256 currentY;
            uint256 newY;

            // Calculate how much to withdraw
            (dy, newY, currentY) = _calculateWithdrawOneTokenDY(
                self,
                tokenIndex,
                tokenAmount,
                baseVirtualPrice,
                totalSupply
            );

            // Calculate the associated swap fee
            dySwapFee = currentY
                .sub(newY)
                .div(self.tokenPrecisionMultipliers[tokenIndex])
                .sub(dy);
        }

        return (dy, dySwapFee);
    }

    /**
     * @notice Calculate the dy of withdrawing in one token
     * @param self Swap struct to read from
     * @param tokenIndex which token will be withdrawn
     * @param tokenAmount the amount to withdraw in the pools precision
     * @param baseVirtualPrice the virtual price of the base swap's LP token
     * @return the dy excluding swap fee, the new y after withdrawing one token, and current y
     */
    function _calculateWithdrawOneTokenDY(
        SwapUtils.Swap storage self,
        uint8 tokenIndex,
        uint256 tokenAmount,
        uint256 baseVirtualPrice,
        uint256 totalSupply
    )
        internal
        view
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        // Get the current D, then solve the stableswap invariant
        // y_i for D - tokenAmount
        uint256[] memory xp = _xp(self, baseVirtualPrice);
        require(tokenIndex < xp.length, "Token index out of range");

        CalculateWithdrawOneTokenDYInfo
            memory v = CalculateWithdrawOneTokenDYInfo(
                0,
                0,
                0,
                0,
                self._getAPrecise(),
                0
            );
        v.d0 = SwapUtils.getD(xp, v.preciseA);
        v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));

        require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");

        v.newY = SwapUtils.getYD(v.preciseA, tokenIndex, xp, v.d1);

        uint256[] memory xpReduced = new uint256[](xp.length);

        v.feePerToken = SwapUtils._feePerToken(self.swapFee, xp.length);
        for (uint256 i = 0; i < xp.length; i++) {
            v.xpi = xp[i];
            // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
            // else dxExpected = xp[i] - (xp[i] * d1 / d0)
            // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
            xpReduced[i] = v.xpi.sub(
                (
                    (i == tokenIndex)
                        ? v.xpi.mul(v.d1).div(v.d0).sub(v.newY)
                        : v.xpi.sub(v.xpi.mul(v.d1).div(v.d0))
                ).mul(v.feePerToken).div(FEE_DENOMINATOR)
            );
        }

        uint256 dy = xpReduced[tokenIndex].sub(
            SwapUtils.getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
        );

        if (tokenIndex == xp.length.sub(1)) {
            dy = dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(baseVirtualPrice);
            v.newY = v.newY.mul(BASE_VIRTUAL_PRICE_PRECISION).div(
                baseVirtualPrice
            );
            xp[tokenIndex] = xp[tokenIndex]
                .mul(BASE_VIRTUAL_PRICE_PRECISION)
                .div(baseVirtualPrice);
        }
        dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);

        return (dy, v.newY, xp[tokenIndex]);
    }

    /**
     * @notice Given a set of balances and precision multipliers, return the
     * precision-adjusted balances. The last element will also get scaled up by
     * the given baseVirtualPrice.
     *
     * @param balances an array of token balances, in their native precisions.
     * These should generally correspond with pooled tokens.
     *
     * @param precisionMultipliers an array of multipliers, corresponding to
     * the amounts in the balances array. When multiplied together they
     * should yield amounts at the pool's precision.
     *
     * @param baseVirtualPrice the base virtual price to scale the balance of the
     * base Swap's LP token.
     *
     * @return an array of amounts "scaled" to the pool's precision
     */
    function _xp(
        uint256[] memory balances,
        uint256[] memory precisionMultipliers,
        uint256 baseVirtualPrice
    ) internal pure returns (uint256[] memory) {
        uint256[] memory xp = SwapUtils._xp(balances, precisionMultipliers);
        uint256 baseLPTokenIndex = balances.length.sub(1);
        xp[baseLPTokenIndex] = xp[baseLPTokenIndex].mul(baseVirtualPrice).div(
            BASE_VIRTUAL_PRICE_PRECISION
        );
        return xp;
    }

    /**
     * @notice Return the precision-adjusted balances of all tokens in the pool
     * @param self Swap struct to read from
     * @return the pool balances "scaled" to the pool's precision, allowing
     * them to be more easily compared.
     */
    function _xp(SwapUtils.Swap storage self, uint256 baseVirtualPrice)
        internal
        view
        returns (uint256[] memory)
    {
        return
            _xp(
                self.balances,
                self.tokenPrecisionMultipliers,
                baseVirtualPrice
            );
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct to read from
     * @return the virtual price, scaled to precision of BASE_VIRTUAL_PRICE_PRECISION
     */
    function getVirtualPrice(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage
    ) external view returns (uint256) {
        uint256 d = SwapUtils.getD(
            _xp(
                self.balances,
                self.tokenPrecisionMultipliers,
                _getBaseVirtualPrice(metaSwapStorage)
            ),
            self._getAPrecise()
        );
        uint256 supply = self.lpToken.totalSupply();
        if (supply != 0) {
            return d.mul(BASE_VIRTUAL_PRICE_PRECISION).div(supply);
        }
        return 0;
    }

    /**
     * @notice Externally calculates a swap between two tokens. The SwapUtils.Swap storage and
     * MetaSwap storage should be from the same MetaSwap contract.
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct from the same contract
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwap(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            _getBaseVirtualPrice(metaSwapStorage)
        );
    }

    /**
     * @notice Internally calculates a swap between two tokens.
     *
     * @dev The caller is expected to transfer the actual amounts (dx and dy)
     * using the token contracts.
     *
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param baseVirtualPrice the virtual price of the base LP token
     * @return dy the number of tokens the user will get and dyFee the associated fee
     */
    function _calculateSwap(
        SwapUtils.Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 baseVirtualPrice
    ) internal view returns (uint256 dy, uint256 dyFee) {
        uint256[] memory xp = _xp(self, baseVirtualPrice);
        require(
            tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
            "Token index out of range"
        );
        uint256 baseLPTokenIndex = xp.length.sub(1);

        uint256 x = dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]);
        if (tokenIndexFrom == baseLPTokenIndex) {
            // When swapping from a base Swap token, scale up dx by its virtual price
            x = x.mul(baseVirtualPrice).div(BASE_VIRTUAL_PRICE_PRECISION);
        }
        x = x.add(xp[tokenIndexFrom]);

        uint256 y = SwapUtils.getY(
            self._getAPrecise(),
            tokenIndexFrom,
            tokenIndexTo,
            x,
            xp
        );
        dy = xp[tokenIndexTo].sub(y).sub(1);

        if (tokenIndexTo == baseLPTokenIndex) {
            // When swapping to a base Swap token, scale down dy by its virtual price
            dy = dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(baseVirtualPrice);
        }

        dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
        dy = dy.sub(dyFee);

        dy = dy.div(self.tokenPrecisionMultipliers[tokenIndexTo]);
    }

    /**
     * @notice Calculates the expected return amount from swapping between
     * the pooled tokens and the underlying tokens of the base Swap pool.
     *
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct from the same contract
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwapUnderlying(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256) {
        CalculateSwapUnderlyingInfo memory v = CalculateSwapUnderlyingInfo(
            _getBaseVirtualPrice(metaSwapStorage),
            metaSwapStorage.baseSwap,
            0,
            uint8(metaSwapStorage.baseTokens.length),
            0,
            0,
            0
        );

        uint256[] memory xp = _xp(self, v.baseVirtualPrice);
        v.baseLPTokenIndex = uint8(xp.length.sub(1));
        {
            uint8 maxRange = v.baseLPTokenIndex + v.baseTokensLength;
            require(
                tokenIndexFrom < maxRange && tokenIndexTo < maxRange,
                "Token index out of range"
            );
        }

        if (tokenIndexFrom < v.baseLPTokenIndex) {
            // tokenFrom is from this pool
            v.x = xp[tokenIndexFrom].add(
                dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom])
            );
        } else {
            // tokenFrom is from the base pool
            tokenIndexFrom = tokenIndexFrom - v.baseLPTokenIndex;
            if (tokenIndexTo < v.baseLPTokenIndex) {
                uint256[] memory baseInputs = new uint256[](v.baseTokensLength);
                baseInputs[tokenIndexFrom] = dx;
                v.x = v
                    .baseSwap
                    .calculateTokenAmount(baseInputs, true)
                    .mul(v.baseVirtualPrice)
                    .div(BASE_VIRTUAL_PRICE_PRECISION);
                // when adding to the base pool,you pay approx 50% of the swap fee
                v.x = v
                    .x
                    .sub(
                        v.x.mul(_getBaseSwapFee(metaSwapStorage.baseSwap)).div(
                            FEE_DENOMINATOR.mul(2)
                        )
                    )
                    .add(xp[v.baseLPTokenIndex]);
            } else {
                // both from and to are from the base pool
                return
                    v.baseSwap.calculateSwap(
                        tokenIndexFrom,
                        tokenIndexTo - v.baseLPTokenIndex,
                        dx
                    );
            }
            tokenIndexFrom = v.baseLPTokenIndex;
        }

        v.metaIndexTo = v.baseLPTokenIndex;
        if (tokenIndexTo < v.baseLPTokenIndex) {
            v.metaIndexTo = tokenIndexTo;
        }

        {
            uint256 y = SwapUtils.getY(
                self._getAPrecise(),
                tokenIndexFrom,
                v.metaIndexTo,
                v.x,
                xp
            );
            v.dy = xp[v.metaIndexTo].sub(y).sub(1);
            uint256 dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR);
            v.dy = v.dy.sub(dyFee);
        }

        if (tokenIndexTo < v.baseLPTokenIndex) {
            // tokenTo is from this pool
            v.dy = v.dy.div(self.tokenPrecisionMultipliers[v.metaIndexTo]);
        } else {
            // tokenTo is from the base pool
            v.dy = v.baseSwap.calculateRemoveLiquidityOneToken(
                v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(v.baseVirtualPrice),
                tokenIndexTo - v.baseLPTokenIndex
            );
        }

        return v.dy;
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct to read from
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return if deposit was true, total amount of lp token that will be minted and if
     * deposit was false, total amount of lp token that will be burned
     */
    function calculateTokenAmount(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256) {
        uint256 a = self._getAPrecise();
        uint256 d0;
        uint256 d1;
        {
            uint256 baseVirtualPrice = _getBaseVirtualPrice(metaSwapStorage);
            uint256[] memory balances1 = self.balances;
            uint256[] memory tokenPrecisionMultipliers = self
                .tokenPrecisionMultipliers;
            uint256 numTokens = balances1.length;
            d0 = SwapUtils.getD(
                _xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice),
                a
            );
            for (uint256 i = 0; i < numTokens; i++) {
                if (deposit) {
                    balances1[i] = balances1[i].add(amounts[i]);
                } else {
                    balances1[i] = balances1[i].sub(
                        amounts[i],
                        "Cannot withdraw more than available"
                    );
                }
            }
            d1 = SwapUtils.getD(
                _xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice),
                a
            );
        }
        uint256 totalSupply = self.lpToken.totalSupply();

        if (deposit) {
            return d1.sub(d0).mul(totalSupply).div(d0);
        } else {
            return d0.sub(d1).mul(totalSupply).div(d0);
        }
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice swap two tokens in the pool
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swap(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        {
            uint256 pooledTokensLength = self.pooledTokens.length;
            require(
                tokenIndexFrom < pooledTokensLength &&
                    tokenIndexTo < pooledTokensLength,
                "Token index is out of range"
            );
        }

        uint256 transferredDx;
        {
            IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
            require(
                dx <= tokenFrom.balanceOf(msg.sender),
                "Cannot swap more than you own"
            );

            {
                // Transfer tokens first to see if a fee was charged on transfer
                uint256 beforeBalance = tokenFrom.balanceOf(address(this));
                tokenFrom.safeTransferFrom(msg.sender, address(this), dx);

                // Use the actual transferred amount for AMM math
                transferredDx = tokenFrom.balanceOf(address(this)).sub(
                    beforeBalance
                );
            }
        }

        (uint256 dy, uint256 dyFee) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            transferredDx,
            _updateBaseVirtualPrice(metaSwapStorage)
        );
        require(dy >= minDy, "Swap didn't result in min tokens");

        uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
            self.tokenPrecisionMultipliers[tokenIndexTo]
        );

        self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add(
            transferredDx
        );
        self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub(
            dyAdminFee
        );

        self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);

        emit TokenSwap(
            msg.sender,
            transferredDx,
            dy,
            tokenIndexFrom,
            tokenIndexTo
        );

        return dy;
    }

    /**
     * @notice Swaps with the underlying tokens of the base Swap pool. For this function,
     * the token indices are flattened out so that underlying tokens are represented
     * in the indices.
     * @dev Since this calls multiple external functions during the execution,
     * it is recommended to protect any function that depends on this with reentrancy guards.
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swapUnderlying(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        SwapUnderlyingInfo memory v = SwapUnderlyingInfo(
            0,
            0,
            0,
            self.tokenPrecisionMultipliers,
            self.balances,
            metaSwapStorage.baseTokens,
            IERC20(address(0)),
            0,
            IERC20(address(0)),
            0,
            _updateBaseVirtualPrice(metaSwapStorage)
        );

        uint8 baseLPTokenIndex = uint8(v.oldBalances.length.sub(1));

        {
            uint8 maxRange = uint8(baseLPTokenIndex + v.baseTokens.length);
            require(
                tokenIndexFrom < maxRange && tokenIndexTo < maxRange,
                "Token index out of range"
            );
        }

        ISwap baseSwap = metaSwapStorage.baseSwap;

        // Find the address of the token swapping from and the index in MetaSwap's token list
        if (tokenIndexFrom < baseLPTokenIndex) {
            v.tokenFrom = self.pooledTokens[tokenIndexFrom];
            v.metaIndexFrom = tokenIndexFrom;
        } else {
            v.tokenFrom = v.baseTokens[tokenIndexFrom - baseLPTokenIndex];
            v.metaIndexFrom = baseLPTokenIndex;
        }

        // Find the address of the token swapping to and the index in MetaSwap's token list
        if (tokenIndexTo < baseLPTokenIndex) {
            v.tokenTo = self.pooledTokens[tokenIndexTo];
            v.metaIndexTo = tokenIndexTo;
        } else {
            v.tokenTo = v.baseTokens[tokenIndexTo - baseLPTokenIndex];
            v.metaIndexTo = baseLPTokenIndex;
        }

        // Check for possible fee on transfer
        v.dx = v.tokenFrom.balanceOf(address(this));
        v.tokenFrom.safeTransferFrom(msg.sender, address(this), dx);
        v.dx = v.tokenFrom.balanceOf(address(this)).sub(v.dx); // update dx in case of fee on transfer

        if (
            tokenIndexFrom < baseLPTokenIndex || tokenIndexTo < baseLPTokenIndex
        ) {
            // Either one of the tokens belongs to the MetaSwap tokens list
            uint256[] memory xp = _xp(
                v.oldBalances,
                v.tokenPrecisionMultipliers,
                v.baseVirtualPrice
            );

            if (tokenIndexFrom < baseLPTokenIndex) {
                // Swapping from a MetaSwap token
                v.x = xp[tokenIndexFrom].add(
                    dx.mul(v.tokenPrecisionMultipliers[tokenIndexFrom])
                );
            } else {
                // Swapping from one of the tokens hosted in the base Swap
                // This case requires adding the underlying token to the base Swap, then
                // using the base LP token to swap to the desired token
                uint256[] memory baseAmounts = new uint256[](
                    v.baseTokens.length
                );
                baseAmounts[tokenIndexFrom - baseLPTokenIndex] = v.dx;

                // Add liquidity to the base Swap contract and receive base LP token
                v.dx = baseSwap.addLiquidity(baseAmounts, 0, block.timestamp);

                // Calculate the value of total amount of baseLPToken we end up with
                v.x = v
                    .dx
                    .mul(v.baseVirtualPrice)
                    .div(BASE_VIRTUAL_PRICE_PRECISION)
                    .add(xp[baseLPTokenIndex]);
            }

            // Calculate how much to withdraw in MetaSwap level and the the associated swap fee
            uint256 dyFee;
            {
                uint256 y = SwapUtils.getY(
                    self._getAPrecise(),
                    v.metaIndexFrom,
                    v.metaIndexTo,
                    v.x,
                    xp
                );
                v.dy = xp[v.metaIndexTo].sub(y).sub(1);
                if (tokenIndexTo >= baseLPTokenIndex) {
                    // When swapping to a base Swap token, scale down dy by its virtual price
                    v.dy = v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(
                        v.baseVirtualPrice
                    );
                }
                dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR);
                v.dy = v.dy.sub(dyFee).div(
                    v.tokenPrecisionMultipliers[v.metaIndexTo]
                );
            }

            // Update the balances array according to the calculated input and output amount
            {
                uint256 dyAdminFee = dyFee.mul(self.adminFee).div(
                    FEE_DENOMINATOR
                );
                dyAdminFee = dyAdminFee.div(
                    v.tokenPrecisionMultipliers[v.metaIndexTo]
                );
                self.balances[v.metaIndexFrom] = v
                    .oldBalances[v.metaIndexFrom]
                    .add(v.dx);
                self.balances[v.metaIndexTo] = v
                    .oldBalances[v.metaIndexTo]
                    .sub(v.dy)
                    .sub(dyAdminFee);
            }

            if (tokenIndexTo >= baseLPTokenIndex) {
                // When swapping to a token that belongs to the base Swap, burn the LP token
                // and withdraw the desired token from the base pool
                uint256 oldBalance = v.tokenTo.balanceOf(address(this));
                baseSwap.removeLiquidityOneToken(
                    v.dy,
                    tokenIndexTo - baseLPTokenIndex,
                    0,
                    block.timestamp
                );
                v.dy = v.tokenTo.balanceOf(address(this)) - oldBalance;
            }

            // Check the amount of token to send meets minDy
            require(v.dy >= minDy, "Swap didn't result in min tokens");
        } else {
            // Both tokens are from the base Swap pool
            // Do a swap through the base Swap
            v.dy = v.tokenTo.balanceOf(address(this));
            baseSwap.swap(
                tokenIndexFrom - baseLPTokenIndex,
                tokenIndexTo - baseLPTokenIndex,
                v.dx,
                minDy,
                block.timestamp
            );
            v.dy = v.tokenTo.balanceOf(address(this)).sub(v.dy);
        }

        // Send the desired token to the caller
        v.tokenTo.safeTransfer(msg.sender, v.dy);

        emit TokenSwapUnderlying(
            msg.sender,
            dx,
            v.dy,
            tokenIndexFrom,
            tokenIndexTo
        );

        return v.dy;
    }

    /**
     * @notice Add liquidity to the pool
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
     * @return amount of LP token user received
     */
    function addLiquidity(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256[] memory amounts,
        uint256 minToMint
    ) external returns (uint256) {
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(
            amounts.length == pooledTokens.length,
            "Amounts must match pooled tokens"
        );

        uint256[] memory fees = new uint256[](pooledTokens.length);

        // current state
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            self.lpToken,
            0,
            self._getAPrecise(),
            _updateBaseVirtualPrice(metaSwapStorage),
            self.tokenPrecisionMultipliers,
            self.balances
        );
        v.totalSupply = v.lpToken.totalSupply();

        if (v.totalSupply != 0) {
            v.d0 = SwapUtils.getD(
                _xp(
                    v.newBalances,
                    v.tokenPrecisionMultipliers,
                    v.baseVirtualPrice
                ),
                v.preciseA
            );
        }

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            require(
                v.totalSupply != 0 || amounts[i] > 0,
                "Must supply all tokens in pool"
            );

            // Transfer tokens first to see if a fee was charged on transfer
            if (amounts[i] != 0) {
                uint256 beforeBalance = pooledTokens[i].balanceOf(
                    address(this)
                );
                pooledTokens[i].safeTransferFrom(
                    msg.sender,
                    address(this),
                    amounts[i]
                );

                // Update the amounts[] with actual transfer amount
                amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
                    beforeBalance
                );
            }

            v.newBalances[i] = v.newBalances[i].add(amounts[i]);
        }

        // invariant after change
        v.d1 = SwapUtils.getD(
            _xp(v.newBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
            v.preciseA
        );
        require(v.d1 > v.d0, "D should increase");

        // updated to reflect fees and calculate the user's LP tokens
        v.d2 = v.d1;
        uint256 toMint;

        if (v.totalSupply != 0) {
            uint256 feePerToken = SwapUtils._feePerToken(
                self.swapFee,
                pooledTokens.length
            );
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
                fees[i] = feePerToken
                    .mul(idealBalance.difference(v.newBalances[i]))
                    .div(FEE_DENOMINATOR);
                self.balances[i] = v.newBalances[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                v.newBalances[i] = v.newBalances[i].sub(fees[i]);
            }
            v.d2 = SwapUtils.getD(
                _xp(
                    v.newBalances,
                    v.tokenPrecisionMultipliers,
                    v.baseVirtualPrice
                ),
                v.preciseA
            );
            toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
        } else {
            // the initial depositor doesn't pay fees
            self.balances = v.newBalances;
            toMint = v.d1;
        }

        require(toMint >= minToMint, "Couldn't mint min requested");

        // mint the user's LP tokens
        self.lpToken.mint(msg.sender, toMint);

        emit AddLiquidity(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.add(toMint)
        );

        return toMint;
    }

    /**
     * @notice Remove liquidity from the pool all in one token.
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param tokenAmount the amount of the lp tokens to burn
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @return amount chosen token that user received
     */
    function removeLiquidityOneToken(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount
    ) external returns (uint256) {
        LPToken lpToken = self.lpToken;
        uint256 totalSupply = lpToken.totalSupply();
        uint256 numTokens = self.pooledTokens.length;
        require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(tokenIndex < numTokens, "Token not found");

        uint256 dyFee;
        uint256 dy;

        (dy, dyFee) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            _updateBaseVirtualPrice(metaSwapStorage),
            totalSupply
        );

        require(dy >= minAmount, "dy < minAmount");

        // Update balances array
        self.balances[tokenIndex] = self.balances[tokenIndex].sub(
            dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
        );

        // Burn the associated LP token from the caller and send the desired token
        lpToken.burnFrom(msg.sender, tokenAmount);
        self.pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);

        emit RemoveLiquidityOne(
            msg.sender,
            tokenAmount,
            totalSupply,
            tokenIndex,
            dy
        );

        return dy;
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances.
     *
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @return actual amount of LP tokens burned in the withdrawal
     */
    function removeLiquidityImbalance(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256[] memory amounts,
        uint256 maxBurnAmount
    ) public returns (uint256) {
        // Using this struct to avoid stack too deep error
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            self.lpToken,
            0,
            self._getAPrecise(),
            _updateBaseVirtualPrice(metaSwapStorage),
            self.tokenPrecisionMultipliers,
            self.balances
        );
        v.totalSupply = v.lpToken.totalSupply();

        require(
            amounts.length == v.newBalances.length,
            "Amounts should match pool tokens"
        );
        require(maxBurnAmount != 0, "Must burn more than 0");

        uint256 feePerToken = SwapUtils._feePerToken(
            self.swapFee,
            v.newBalances.length
        );

        // Calculate how much LPToken should be burned
        uint256[] memory fees = new uint256[](v.newBalances.length);
        {
            uint256[] memory balances1 = new uint256[](v.newBalances.length);

            v.d0 = SwapUtils.getD(
                _xp(
                    v.newBalances,
                    v.tokenPrecisionMultipliers,
                    v.baseVirtualPrice
                ),
                v.preciseA
            );
            for (uint256 i = 0; i < v.newBalances.length; i++) {
                balances1[i] = v.newBalances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
            v.d1 = SwapUtils.getD(
                _xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
                v.preciseA
            );

            for (uint256 i = 0; i < v.newBalances.length; i++) {
                uint256 idealBalance = v.d1.mul(v.newBalances[i]).div(v.d0);
                uint256 difference = idealBalance.difference(balances1[i]);
                fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
                self.balances[i] = balances1[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                balances1[i] = balances1[i].sub(fees[i]);
            }

            v.d2 = SwapUtils.getD(
                _xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
                v.preciseA
            );
        }

        uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
        require(tokenAmount != 0, "Burnt amount cannot be zero");

        // Scale up by withdraw fee
        tokenAmount = tokenAmount.add(1);

        // Check for max burn amount
        require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");

        // Burn the calculated amount of LPToken from the caller and send the desired tokens
        v.lpToken.burnFrom(msg.sender, tokenAmount);
        for (uint256 i = 0; i < v.newBalances.length; i++) {
            self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        emit RemoveLiquidityImbalance(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.sub(tokenAmount)
        );

        return tokenAmount;
    }

    /**
     * @notice Determines if the stored value of base Swap's virtual price is expired.
     * If the last update was past the BASE_CACHE_EXPIRE_TIME, then update the stored value.
     *
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @return base Swap's virtual price
     */
    function _updateBaseVirtualPrice(MetaSwap storage metaSwapStorage)
        internal
        returns (uint256)
    {
        if (
            block.timestamp >
            metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME
        ) {
            // When the cache is expired, update it
            uint256 baseVirtualPrice = ISwap(metaSwapStorage.baseSwap)
                .getVirtualPrice();
            metaSwapStorage.baseVirtualPrice = baseVirtualPrice;
            metaSwapStorage.baseCacheLastUpdated = block.timestamp;
            return baseVirtualPrice;
        } else {
            return metaSwapStorage.baseVirtualPrice;
        }
    }
}

File 34 of 78 : MetaSwapDeposit.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import "../LPToken.sol";
import "../interfaces/ISwap.sol";
import "../interfaces/IMetaSwap.sol";

/**
 * @title MetaSwapDeposit
 * @notice This contract flattens the LP token in a MetaSwap pool for easier user access. MetaSwap must be
 * deployed before this contract can be initialized successfully.
 *
 * For example, suppose there exists a base Swap pool consisting of [DAI, USDC, USDT].
 * Then a MetaSwap pool can be created with [sUSD, BaseSwapLPToken] to allow trades between either
 * the LP token or the underlying tokens and sUSD.
 *
 * MetaSwapDeposit flattens the LP token and remaps them to a single array, allowing users
 * to ignore the dependency on BaseSwapLPToken. Using the above example, MetaSwapDeposit can act
 * as a Swap containing [sUSD, DAI, USDC, USDT] tokens.
 */
contract MetaSwapDeposit is Initializable, ReentrancyGuardUpgradeable {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;

    ISwap public baseSwap;
    IMetaSwap public metaSwap;
    IERC20[] public baseTokens;
    IERC20[] public metaTokens;
    IERC20[] public tokens;
    IERC20 public metaLPToken;

    uint256 constant MAX_UINT256 = 2**256 - 1;

    struct RemoveLiquidityImbalanceInfo {
        ISwap baseSwap;
        IMetaSwap metaSwap;
        IERC20 metaLPToken;
        uint8 baseLPTokenIndex;
        bool withdrawFromBase;
        uint256 leftoverMetaLPTokenAmount;
    }

    /**
     * @notice Sets the address for the base Swap contract, MetaSwap contract, and the
     * MetaSwap LP token contract.
     * @param _baseSwap the address of the base Swap contract
     * @param _metaSwap the address of the MetaSwap contract
     * @param _metaLPToken the address of the MetaSwap LP token contract
     */
    function initialize(
        ISwap _baseSwap,
        IMetaSwap _metaSwap,
        IERC20 _metaLPToken
    ) external initializer {
        __ReentrancyGuard_init();
        // Check and approve base level tokens to be deposited to the base Swap contract
        {
            uint8 i;
            for (; i < 32; i++) {
                try _baseSwap.getToken(i) returns (IERC20 token) {
                    baseTokens.push(token);
                    token.safeApprove(address(_baseSwap), MAX_UINT256);
                    token.safeApprove(address(_metaSwap), MAX_UINT256);
                } catch {
                    break;
                }
            }
            require(i > 1, "baseSwap must have at least 2 tokens");
        }

        // Check and approve meta level tokens to be deposited to the MetaSwap contract
        IERC20 baseLPToken;
        {
            uint8 i;
            for (; i < 32; i++) {
                try _metaSwap.getToken(i) returns (IERC20 token) {
                    baseLPToken = token;
                    metaTokens.push(token);
                    tokens.push(token);
                    token.safeApprove(address(_metaSwap), MAX_UINT256);
                } catch {
                    break;
                }
            }
            require(i > 1, "metaSwap must have at least 2 tokens");
        }

        // Flatten baseTokens and append it to tokens array
        tokens[tokens.length - 1] = baseTokens[0];
        for (uint8 i = 1; i < baseTokens.length; i++) {
            tokens.push(baseTokens[i]);
        }

        // Approve base Swap LP token to be burned by the base Swap contract for withdrawing
        baseLPToken.safeApprove(address(_baseSwap), MAX_UINT256);
        // Approve MetaSwap LP token to be burned by the MetaSwap contract for withdrawing
        _metaLPToken.safeApprove(address(_metaSwap), MAX_UINT256);

        // Initialize storage variables
        baseSwap = _baseSwap;
        metaSwap = _metaSwap;
        metaLPToken = _metaLPToken;
    }

    // Mutative functions

    /**
     * @notice Swap two underlying tokens using the meta pool and the base pool
     * @param tokenIndexFrom the token the user wants to swap from
     * @param tokenIndexTo the token the user wants to swap to
     * @param dx the amount of tokens the user wants to swap from
     * @param minDy the min amount the user would like to receive, or revert.
     * @param deadline latest timestamp to accept this transaction
     */
    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    ) external nonReentrant returns (uint256) {
        tokens[tokenIndexFrom].safeTransferFrom(msg.sender, address(this), dx);
        uint256 tokenToAmount = metaSwap.swapUnderlying(
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            minDy,
            deadline
        );
        tokens[tokenIndexTo].safeTransfer(msg.sender, tokenToAmount);
        return tokenToAmount;
    }

    /**
     * @notice Add liquidity to the pool with the given amounts of tokens
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP token user minted and received
     */
    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    ) external nonReentrant returns (uint256) {
        // Read to memory to save on gas
        IERC20[] memory memBaseTokens = baseTokens;
        IERC20[] memory memMetaTokens = metaTokens;
        uint256 baseLPTokenIndex = memMetaTokens.length - 1;

        require(amounts.length == memBaseTokens.length + baseLPTokenIndex);

        uint256 baseLPTokenAmount;
        {
            // Transfer base tokens from the caller and deposit to the base Swap pool
            uint256[] memory baseAmounts = new uint256[](memBaseTokens.length);
            bool shouldDepositBaseTokens;
            for (uint8 i = 0; i < memBaseTokens.length; i++) {
                IERC20 token = memBaseTokens[i];
                uint256 depositAmount = amounts[baseLPTokenIndex + i];
                if (depositAmount > 0) {
                    token.safeTransferFrom(
                        msg.sender,
                        address(this),
                        depositAmount
                    );
                    baseAmounts[i] = token.balanceOf(address(this)); // account for any fees on transfer
                    // if there are any base Swap level tokens, flag it for deposits
                    shouldDepositBaseTokens = true;
                }
            }
            if (shouldDepositBaseTokens) {
                // Deposit any base Swap level tokens and receive baseLPToken
                baseLPTokenAmount = baseSwap.addLiquidity(
                    baseAmounts,
                    0,
                    deadline
                );
            }
        }

        uint256 metaLPTokenAmount;
        {
            // Transfer remaining meta level tokens from the caller
            uint256[] memory metaAmounts = new uint256[](metaTokens.length);
            for (uint8 i = 0; i < baseLPTokenIndex; i++) {
                IERC20 token = memMetaTokens[i];
                uint256 depositAmount = amounts[i];
                if (depositAmount > 0) {
                    token.safeTransferFrom(
                        msg.sender,
                        address(this),
                        depositAmount
                    );
                    metaAmounts[i] = token.balanceOf(address(this)); // account for any fees on transfer
                }
            }
            // Update the baseLPToken amount that will be deposited
            metaAmounts[baseLPTokenIndex] = baseLPTokenAmount;

            // Deposit the meta level tokens and the baseLPToken
            metaLPTokenAmount = metaSwap.addLiquidity(
                metaAmounts,
                minToMint,
                deadline
            );
        }

        // Transfer the meta lp token to the caller
        metaLPToken.safeTransfer(msg.sender, metaLPTokenAmount);

        return metaLPTokenAmount;
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     *        acceptable for this burn. Useful as a front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amounts of tokens user received
     */
    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    ) external nonReentrant returns (uint256[] memory) {
        IERC20[] memory memBaseTokens = baseTokens;
        IERC20[] memory memMetaTokens = metaTokens;
        uint256[] memory totalRemovedAmounts;

        {
            uint256 numOfAllTokens = memBaseTokens.length +
                memMetaTokens.length -
                1;
            require(minAmounts.length == numOfAllTokens, "out of range");
            totalRemovedAmounts = new uint256[](numOfAllTokens);
        }

        // Transfer meta lp token from the caller to this
        metaLPToken.safeTransferFrom(msg.sender, address(this), amount);

        uint256 baseLPTokenAmount;
        {
            // Remove liquidity from the MetaSwap pool
            uint256[] memory removedAmounts;
            uint256 baseLPTokenIndex = memMetaTokens.length - 1;
            {
                uint256[] memory metaMinAmounts = new uint256[](
                    memMetaTokens.length
                );
                for (uint8 i = 0; i < baseLPTokenIndex; i++) {
                    metaMinAmounts[i] = minAmounts[i];
                }
                removedAmounts = metaSwap.removeLiquidity(
                    amount,
                    metaMinAmounts,
                    deadline
                );
            }

            // Send the meta level tokens to the caller
            for (uint8 i = 0; i < baseLPTokenIndex; i++) {
                totalRemovedAmounts[i] = removedAmounts[i];
                memMetaTokens[i].safeTransfer(msg.sender, removedAmounts[i]);
            }
            baseLPTokenAmount = removedAmounts[baseLPTokenIndex];

            // Remove liquidity from the base Swap pool
            {
                uint256[] memory baseMinAmounts = new uint256[](
                    memBaseTokens.length
                );
                for (uint8 i = 0; i < baseLPTokenIndex; i++) {
                    baseMinAmounts[i] = minAmounts[baseLPTokenIndex + i];
                }
                removedAmounts = baseSwap.removeLiquidity(
                    baseLPTokenAmount,
                    baseMinAmounts,
                    deadline
                );
            }

            // Send the base level tokens to the caller
            for (uint8 i = 0; i < memBaseTokens.length; i++) {
                totalRemovedAmounts[baseLPTokenIndex + i] = removedAmounts[i];
                memBaseTokens[i].safeTransfer(msg.sender, removedAmounts[i]);
            }
        }

        return totalRemovedAmounts;
    }

    /**
     * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param tokenAmount the amount of the token you want to receive
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @param deadline latest timestamp to accept this transaction
     * @return amount of chosen token user received
     */
    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    ) external nonReentrant returns (uint256) {
        uint8 baseLPTokenIndex = uint8(metaTokens.length - 1);
        uint8 baseTokensLength = uint8(baseTokens.length);

        // Transfer metaLPToken from the caller
        metaLPToken.safeTransferFrom(msg.sender, address(this), tokenAmount);

        IERC20 token;
        if (tokenIndex < baseLPTokenIndex) {
            // When the desired token is meta level token, we can just call `removeLiquidityOneToken` directly
            metaSwap.removeLiquidityOneToken(
                tokenAmount,
                tokenIndex,
                minAmount,
                deadline
            );
            token = metaTokens[tokenIndex];
        } else if (tokenIndex < baseLPTokenIndex + baseTokensLength) {
            // When the desired token is a base level token, we need to first withdraw via baseLPToken, then withdraw
            // the desired token from the base Swap contract.
            uint256 removedBaseLPTokenAmount = metaSwap.removeLiquidityOneToken(
                tokenAmount,
                baseLPTokenIndex,
                0,
                deadline
            );

            baseSwap.removeLiquidityOneToken(
                removedBaseLPTokenAmount,
                tokenIndex - baseLPTokenIndex,
                minAmount,
                deadline
            );
            token = baseTokens[tokenIndex - baseLPTokenIndex];
        } else {
            revert("out of range");
        }

        uint256 amountWithdrawn = token.balanceOf(address(this));
        token.safeTransfer(msg.sender, amountWithdrawn);
        return amountWithdrawn;
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP tokens burned
     */
    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    ) external nonReentrant returns (uint256) {
        IERC20[] memory memBaseTokens = baseTokens;
        IERC20[] memory memMetaTokens = metaTokens;
        uint256[] memory metaAmounts = new uint256[](memMetaTokens.length);
        uint256[] memory baseAmounts = new uint256[](memBaseTokens.length);

        require(
            amounts.length == memBaseTokens.length + memMetaTokens.length - 1,
            "out of range"
        );

        RemoveLiquidityImbalanceInfo memory v = RemoveLiquidityImbalanceInfo(
            baseSwap,
            metaSwap,
            metaLPToken,
            uint8(metaAmounts.length - 1),
            false,
            0
        );

        for (uint8 i = 0; i < v.baseLPTokenIndex; i++) {
            metaAmounts[i] = amounts[i];
        }

        for (uint8 i = 0; i < baseAmounts.length; i++) {
            baseAmounts[i] = amounts[v.baseLPTokenIndex + i];
            if (baseAmounts[i] > 0) {
                v.withdrawFromBase = true;
            }
        }

        // Calculate how much base LP token we need to get the desired amount of underlying tokens
        if (v.withdrawFromBase) {
            metaAmounts[v.baseLPTokenIndex] = v
                .baseSwap
                .calculateTokenAmount(baseAmounts, false)
                .mul(10005)
                .div(10000);
        }

        // Transfer MetaSwap LP token from the caller to this contract
        v.metaLPToken.safeTransferFrom(
            msg.sender,
            address(this),
            maxBurnAmount
        );

        // Withdraw the paired meta level tokens and the base LP token from the MetaSwap pool
        uint256 burnedMetaLPTokenAmount = v.metaSwap.removeLiquidityImbalance(
            metaAmounts,
            maxBurnAmount,
            deadline
        );
        v.leftoverMetaLPTokenAmount = maxBurnAmount.sub(
            burnedMetaLPTokenAmount
        );

        // If underlying tokens are desired, withdraw them from the base Swap pool
        if (v.withdrawFromBase) {
            v.baseSwap.removeLiquidityImbalance(
                baseAmounts,
                metaAmounts[v.baseLPTokenIndex],
                deadline
            );

            // Base Swap may require LESS base LP token than the amount we have
            // In that case, deposit it to the MetaSwap pool.
            uint256[] memory leftovers = new uint256[](metaAmounts.length);
            IERC20 baseLPToken = memMetaTokens[v.baseLPTokenIndex];
            uint256 leftoverBaseLPTokenAmount = baseLPToken.balanceOf(
                address(this)
            );
            if (leftoverBaseLPTokenAmount > 0) {
                leftovers[v.baseLPTokenIndex] = leftoverBaseLPTokenAmount;
                v.leftoverMetaLPTokenAmount = v.leftoverMetaLPTokenAmount.add(
                    v.metaSwap.addLiquidity(leftovers, 0, deadline)
                );
            }
        }

        // Transfer all withdrawn tokens to the caller
        for (uint8 i = 0; i < amounts.length; i++) {
            IERC20 token;
            if (i < v.baseLPTokenIndex) {
                token = memMetaTokens[i];
            } else {
                token = memBaseTokens[i - v.baseLPTokenIndex];
            }
            if (amounts[i] > 0) {
                token.safeTransfer(msg.sender, amounts[i]);
            }
        }

        // If there were any extra meta lp token, transfer them back to the caller as well
        if (v.leftoverMetaLPTokenAmount > 0) {
            v.metaLPToken.safeTransfer(msg.sender, v.leftoverMetaLPTokenAmount);
        }

        return maxBurnAmount - v.leftoverMetaLPTokenAmount;
    }

    // VIEW FUNCTIONS

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running. When withdrawing from the base pool in imbalanced
     * fashion, the recommended slippage setting is 0.2% or higher.
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return token amount the user will receive
     */
    function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
        external
        view
        returns (uint256)
    {
        uint256[] memory metaAmounts = new uint256[](metaTokens.length);
        uint256[] memory baseAmounts = new uint256[](baseTokens.length);
        uint256 baseLPTokenIndex = metaAmounts.length - 1;

        for (uint8 i = 0; i < baseLPTokenIndex; i++) {
            metaAmounts[i] = amounts[i];
        }

        for (uint8 i = 0; i < baseAmounts.length; i++) {
            baseAmounts[i] = amounts[baseLPTokenIndex + i];
        }

        uint256 baseLPTokenAmount = baseSwap.calculateTokenAmount(
            baseAmounts,
            deposit
        );
        metaAmounts[baseLPTokenIndex] = baseLPTokenAmount;

        return metaSwap.calculateTokenAmount(metaAmounts, deposit);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of LP tokens
     * @param amount the amount of LP tokens that would be burned on withdrawal
     * @return array of token balances that the user will receive
     */
    function calculateRemoveLiquidity(uint256 amount)
        external
        view
        returns (uint256[] memory)
    {
        uint256[] memory metaAmounts = metaSwap.calculateRemoveLiquidity(
            amount
        );
        uint8 baseLPTokenIndex = uint8(metaAmounts.length - 1);
        uint256[] memory baseAmounts = baseSwap.calculateRemoveLiquidity(
            metaAmounts[baseLPTokenIndex]
        );

        uint256[] memory totalAmounts = new uint256[](
            baseLPTokenIndex + baseAmounts.length
        );
        for (uint8 i = 0; i < baseLPTokenIndex; i++) {
            totalAmounts[i] = metaAmounts[i];
        }
        for (uint8 i = 0; i < baseAmounts.length; i++) {
            totalAmounts[baseLPTokenIndex + i] = baseAmounts[i];
        }

        return totalAmounts;
    }

    /**
     * @notice Calculate the amount of underlying token available to withdraw
     * when withdrawing via only single token
     * @param tokenAmount the amount of LP token to burn
     * @param tokenIndex index of which token will be withdrawn
     * @return availableTokenAmount calculated amount of underlying token
     * available to withdraw
     */
    function calculateRemoveLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256) {
        uint8 baseLPTokenIndex = uint8(metaTokens.length - 1);

        if (tokenIndex < baseLPTokenIndex) {
            return
                metaSwap.calculateRemoveLiquidityOneToken(
                    tokenAmount,
                    tokenIndex
                );
        } else {
            uint256 baseLPTokenAmount = metaSwap
                .calculateRemoveLiquidityOneToken(
                    tokenAmount,
                    baseLPTokenIndex
                );
            return
                baseSwap.calculateRemoveLiquidityOneToken(
                    baseLPTokenAmount,
                    tokenIndex - baseLPTokenIndex
                );
        }
    }

    /**
     * @notice Returns the address of the pooled token at given index. Reverts if tokenIndex is out of range.
     * This is a flattened representation of the pooled tokens.
     * @param index the index of the token
     * @return address of the token at given index
     */
    function getToken(uint8 index) external view returns (IERC20) {
        require(index < tokens.length, "index out of range");
        return tokens[index];
    }

    /**
     * @notice Calculate amount of tokens you receive on swap
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell. If the token charges
     * a fee on transfers, use the amount that gets transferred after the fee.
     * @return amount of tokens the user will receive
     */
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256) {
        return
            metaSwap.calculateSwapUnderlying(tokenIndexFrom, tokenIndexTo, dx);
    }
}

File 35 of 78 : IMetaSwap.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./ISwap.sol";

interface IMetaSwap {
    // pool data view functions
    function getA() external view returns (uint256);

    function getToken(uint8 index) external view returns (IERC20);

    function getTokenIndex(address tokenAddress) external view returns (uint8);

    function getTokenBalance(uint8 index) external view returns (uint256);

    function getVirtualPrice() external view returns (uint256);

    function isGuarded() external view returns (bool);

    // min return calculation functions
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256);

    function calculateSwapUnderlying(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256);

    function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
        external
        view
        returns (uint256);

    function calculateRemoveLiquidity(uint256 amount)
        external
        view
        returns (uint256[] memory);

    function calculateRemoveLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 availableTokenAmount);

    // state modifying functions
    function initialize(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress
    ) external;

    function initializeMetaSwap(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress,
        ISwap baseSwap
    ) external;

    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    ) external returns (uint256);

    function swapUnderlying(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    ) external returns (uint256);

    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    ) external returns (uint256[] memory);

    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    ) external returns (uint256);
}

File 36 of 78 : SwapDeployer.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "./interfaces/ISwap.sol";
import "./interfaces/IMetaSwap.sol";

contract SwapDeployer is Ownable {
    event NewSwapPool(
        address indexed deployer,
        address swapAddress,
        IERC20[] pooledTokens
    );
    event NewClone(address indexed target, address cloneAddress);

    constructor() public Ownable() {}

    function clone(address target) external returns (address) {
        address newClone = _clone(target);
        emit NewClone(target, newClone);

        return newClone;
    }

    function _clone(address target) internal returns (address) {
        return Clones.clone(target);
    }

    function deploy(
        address swapAddress,
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress
    ) external returns (address) {
        address swapClone = _clone(swapAddress);
        ISwap(swapClone).initialize(
            _pooledTokens,
            decimals,
            lpTokenName,
            lpTokenSymbol,
            _a,
            _fee,
            _adminFee,
            lpTokenTargetAddress
        );
        Ownable(swapClone).transferOwnership(owner());
        emit NewSwapPool(msg.sender, swapClone, _pooledTokens);
        return swapClone;
    }

    function deployMetaSwap(
        address metaSwapAddress,
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress,
        ISwap baseSwap
    ) external returns (address) {
        address metaSwapClone = _clone(metaSwapAddress);
        IMetaSwap(metaSwapClone).initializeMetaSwap(
            _pooledTokens,
            decimals,
            lpTokenName,
            lpTokenSymbol,
            _a,
            _fee,
            _adminFee,
            lpTokenTargetAddress,
            baseSwap
        );
        Ownable(metaSwapClone).transferOwnership(owner());
        emit NewSwapPool(msg.sender, metaSwapClone, _pooledTokens);
        return metaSwapClone;
    }
}

File 37 of 78 : Ownable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

File 38 of 78 : SynthSwapper.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "synthetix/contracts/interfaces/ISynthetix.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
import "../interfaces/ISwap.sol";

/**
 * @title SynthSwapper
 * @notice Replacement of Virtual Synths in favor of gas savings. Allows swapping synths via the Synthetix protocol
 * or Saddle's pools. The `Bridge.sol` contract will deploy minimal clones of this contract upon initiating
 * any cross-asset swaps.
 */
contract SynthSwapper is Initializable {
    using SafeERC20 for IERC20;

    address payable owner;
    // SYNTHETIX points to `ProxyERC20` (0xC011a73ee8576Fb46F5E1c5751cA3B9Fe0af2a6F).
    // This contract is a proxy of `Synthetix` and is used to exchange synths.
    ISynthetix public constant SYNTHETIX =
        ISynthetix(0xC011a73ee8576Fb46F5E1c5751cA3B9Fe0af2a6F);
    // "SADDLE" in bytes32 form
    bytes32 public constant TRACKING =
        0x534144444c450000000000000000000000000000000000000000000000000000;

    /**
     * @notice Initializes the contract when deploying this directly. This prevents
     * others from calling initialize() on the target contract and setting themself as the owner.
     */
    constructor() public {
        initialize();
    }

    /**
     * @notice This modifier checks if the caller is the owner
     */
    modifier onlyOwner() {
        require(msg.sender == owner, "is not owner");
        _;
    }

    /**
     * @notice Sets the `owner` as the caller of this function
     */
    function initialize() public initializer {
        require(owner == address(0), "owner already set");
        owner = msg.sender;
    }

    /**
     * @notice Swaps the synth to another synth via the Synthetix protocol.
     * @param sourceKey currency key of the source synth
     * @param synthAmount amount of the synth to swap
     * @param destKey currency key of the destination synth
     * @return amount of the destination synth received
     */
    function swapSynth(
        bytes32 sourceKey,
        uint256 synthAmount,
        bytes32 destKey
    ) external onlyOwner returns (uint256) {
        return
            SYNTHETIX.exchangeWithTracking(
                sourceKey,
                synthAmount,
                destKey,
                msg.sender,
                TRACKING
            );
    }

    /**
     * @notice Approves the given `tokenFrom` and swaps it to another token via the given `swap` pool.
     * @param swap the address of a pool to swap through
     * @param tokenFrom the address of the stored synth
     * @param tokenFromIndex the index of the token to swap from
     * @param tokenToIndex the token the user wants to swap to
     * @param tokenFromAmount the amount of the token to swap
     * @param minAmount the min amount the user would like to receive, or revert.
     * @param deadline latest timestamp to accept this transaction
     * @param recipient the address of the recipient
     */
    function swapSynthToToken(
        ISwap swap,
        IERC20 tokenFrom,
        uint8 tokenFromIndex,
        uint8 tokenToIndex,
        uint256 tokenFromAmount,
        uint256 minAmount,
        uint256 deadline,
        address recipient
    ) external onlyOwner returns (IERC20, uint256) {
        tokenFrom.approve(address(swap), tokenFromAmount);
        swap.swap(
            tokenFromIndex,
            tokenToIndex,
            tokenFromAmount,
            minAmount,
            deadline
        );
        IERC20 tokenTo = swap.getToken(tokenToIndex);
        uint256 balance = tokenTo.balanceOf(address(this));
        tokenTo.safeTransfer(recipient, balance);
        return (tokenTo, balance);
    }

    /**
     * @notice Withdraws the given amount of `token` to the `recipient`.
     * @param token the address of the token to withdraw
     * @param recipient the address of the account to receive the token
     * @param withdrawAmount the amount of the token to withdraw
     * @param shouldDestroy whether this contract should be destroyed after this call
     */
    function withdraw(
        IERC20 token,
        address recipient,
        uint256 withdrawAmount,
        bool shouldDestroy
    ) external onlyOwner {
        token.safeTransfer(recipient, withdrawAmount);
        if (shouldDestroy) {
            _destroy();
        }
    }

    /**
     * @notice Destroys this contract. Only owner can call this function.
     */
    function destroy() external onlyOwner {
        _destroy();
    }

    function _destroy() internal {
        selfdestruct(msg.sender);
    }
}

File 39 of 78 : ISynthetix.sol
pragma solidity >=0.4.24;

import "./ISynth.sol";
import "./IVirtualSynth.sol";

// https://docs.synthetix.io/contracts/source/interfaces/isynthetix
interface ISynthetix {
    // Views
    function anySynthOrSNXRateIsInvalid() external view returns (bool anyRateInvalid);

    function availableCurrencyKeys() external view returns (bytes32[] memory);

    function availableSynthCount() external view returns (uint);

    function availableSynths(uint index) external view returns (ISynth);

    function collateral(address account) external view returns (uint);

    function collateralisationRatio(address issuer) external view returns (uint);

    function debtBalanceOf(address issuer, bytes32 currencyKey) external view returns (uint);

    function isWaitingPeriod(bytes32 currencyKey) external view returns (bool);

    function maxIssuableSynths(address issuer) external view returns (uint maxIssuable);

    function remainingIssuableSynths(address issuer)
        external
        view
        returns (
            uint maxIssuable,
            uint alreadyIssued,
            uint totalSystemDebt
        );

    function synths(bytes32 currencyKey) external view returns (ISynth);

    function synthsByAddress(address synthAddress) external view returns (bytes32);

    function totalIssuedSynths(bytes32 currencyKey) external view returns (uint);

    function totalIssuedSynthsExcludeEtherCollateral(bytes32 currencyKey) external view returns (uint);

    function transferableSynthetix(address account) external view returns (uint transferable);

    // Mutative Functions
    function burnSynths(uint amount) external;

    function burnSynthsOnBehalf(address burnForAddress, uint amount) external;

    function burnSynthsToTarget() external;

    function burnSynthsToTargetOnBehalf(address burnForAddress) external;

    function exchange(
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey
    ) external returns (uint amountReceived);

    function exchangeOnBehalf(
        address exchangeForAddress,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey
    ) external returns (uint amountReceived);

    function exchangeWithTracking(
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        address originator,
        bytes32 trackingCode
    ) external returns (uint amountReceived);

    function exchangeOnBehalfWithTracking(
        address exchangeForAddress,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        address originator,
        bytes32 trackingCode
    ) external returns (uint amountReceived);

    function exchangeWithVirtual(
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        bytes32 trackingCode
    ) external returns (uint amountReceived, IVirtualSynth vSynth);

    function issueMaxSynths() external;

    function issueMaxSynthsOnBehalf(address issueForAddress) external;

    function issueSynths(uint amount) external;

    function issueSynthsOnBehalf(address issueForAddress, uint amount) external;

    function mint() external returns (bool);

    function settle(bytes32 currencyKey)
        external
        returns (
            uint reclaimed,
            uint refunded,
            uint numEntries
        );

    // Liquidations
    function liquidateDelinquentAccount(address account, uint susdAmount) external returns (bool);

    // Restricted Functions

    function mintSecondary(address account, uint amount) external;

    function mintSecondaryRewards(uint amount) external;

    function burnSecondary(address account, uint amount) external;
}

File 40 of 78 : ISynth.sol
pragma solidity >=0.4.24;

// https://docs.synthetix.io/contracts/source/interfaces/isynth
interface ISynth {
    // Views
    function currencyKey() external view returns (bytes32);

    function transferableSynths(address account) external view returns (uint);

    // Mutative functions
    function transferAndSettle(address to, uint value) external returns (bool);

    function transferFromAndSettle(
        address from,
        address to,
        uint value
    ) external returns (bool);

    // Restricted: used internally to Synthetix
    function burn(address account, uint amount) external;

    function issue(address account, uint amount) external;
}

File 41 of 78 : IVirtualSynth.sol
pragma solidity >=0.4.24;

import "./ISynth.sol";

interface IVirtualSynth {
    // Views
    function balanceOfUnderlying(address account) external view returns (uint);

    function rate() external view returns (uint);

    function readyToSettle() external view returns (bool);

    function secsLeftInWaitingPeriod() external view returns (uint);

    function settled() external view returns (bool);

    function synth() external view returns (ISynth);

    // Mutative functions
    function settle(address account) external;
}

File 42 of 78 : LPTokenV1.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20BurnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "./interfaces/ISwapV1.sol";

/**
 * @title Liquidity Provider Token
 * @notice This token is an ERC20 detailed token with added capability to be minted by the owner.
 * It is used to represent user's shares when providing liquidity to swap contracts.
 * @dev Only Swap contracts should initialize and own LPToken contracts.
 */
contract LPTokenV1 is ERC20BurnableUpgradeable, OwnableUpgradeable {
    using SafeMathUpgradeable for uint256;

    /**
     * @notice Initializes this LPToken contract with the given name and symbol
     * @dev The caller of this function will become the owner. A Swap contract should call this
     * in its initializer function.
     * @param name name of this token
     * @param symbol symbol of this token
     */
    function initialize(string memory name, string memory symbol)
        external
        initializer
        returns (bool)
    {
        __Context_init_unchained();
        __ERC20_init_unchained(name, symbol);
        __Ownable_init_unchained();
        return true;
    }

    /**
     * @notice Mints the given amount of LPToken to the recipient.
     * @dev only owner can call this mint function
     * @param recipient address of account to receive the tokens
     * @param amount amount of tokens to mint
     */
    function mint(address recipient, uint256 amount) external onlyOwner {
        require(amount != 0, "LPToken: cannot mint 0");
        _mint(recipient, amount);
    }

    /**
     * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including
     * minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime.
     * This assumes the owner is set to a Swap contract's address.
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual override(ERC20Upgradeable) {
        super._beforeTokenTransfer(from, to, amount);
        require(to != address(this), "LPToken: cannot send to itself");
        ISwapV1(owner()).updateUserWithdrawFee(to, amount);
    }
}

File 43 of 78 : ISwapV1.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IAllowlist.sol";

interface ISwapV1 {
    // pool data view functions
    function getA() external view returns (uint256);

    function getAllowlist() external view returns (IAllowlist);

    function getToken(uint8 index) external view returns (IERC20);

    function getTokenIndex(address tokenAddress) external view returns (uint8);

    function getTokenBalance(uint8 index) external view returns (uint256);

    function getVirtualPrice() external view returns (uint256);

    function isGuarded() external view returns (bool);

    // min return calculation functions
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256);

    function calculateTokenAmount(
        address account,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256);

    function calculateRemoveLiquidity(address account, uint256 amount)
        external
        view
        returns (uint256[] memory);

    function calculateRemoveLiquidityOneToken(
        address account,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 availableTokenAmount);

    // state modifying functions
    function initialize(
        IERC20[] memory pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 a,
        uint256 fee,
        uint256 adminFee,
        uint256 withdrawFee,
        address lpTokenTargetAddress
    ) external;

    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    ) external returns (uint256);

    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    ) external returns (uint256[] memory);

    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    ) external returns (uint256);

    // withdraw fee update function
    function updateUserWithdrawFee(address recipient, uint256 transferAmount)
        external;
}

File 44 of 78 : SwapDeployerV1.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "./interfaces/ISwapV1.sol";

contract SwapDeployerV1 is Ownable {
    event NewSwapPool(
        address indexed deployer,
        address swapAddress,
        IERC20[] pooledTokens
    );

    constructor() public Ownable() {}

    function deploy(
        address swapAddress,
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        uint256 _withdrawFee,
        address lpTokenTargetAddress
    ) external returns (address) {
        address swapClone = Clones.clone(swapAddress);
        ISwapV1(swapClone).initialize(
            _pooledTokens,
            decimals,
            lpTokenName,
            lpTokenSymbol,
            _a,
            _fee,
            _adminFee,
            _withdrawFee,
            lpTokenTargetAddress
        );
        Ownable(swapClone).transferOwnership(owner());
        emit NewSwapPool(msg.sender, swapClone, _pooledTokens);
        return swapClone;
    }
}

File 45 of 78 : Bridge.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "synthetix/contracts/interfaces/IAddressResolver.sol";
import "synthetix/contracts/interfaces/IExchanger.sol";
import "synthetix/contracts/interfaces/IExchangeRates.sol";
import "../interfaces/ISwap.sol";
import "./SynthSwapper.sol";

contract Proxy {
    address public target;
}

contract Target {
    address public proxy;
}

/**
 * @title Bridge
 * @notice This contract is responsible for cross-asset swaps using the Synthetix protocol as the bridging exchange.
 * There are three types of supported cross-asset swaps, tokenToSynth, synthToToken, and tokenToToken.
 *
 * 1) tokenToSynth
 * Swaps a supported token in a saddle pool to any synthetic asset (e.g. tBTC -> sAAVE).
 *
 * 2) synthToToken
 * Swaps any synthetic asset to a suported token in a saddle pool (e.g. sDEFI -> USDC).
 *
 * 3) tokenToToken
 * Swaps a supported token in a saddle pool to one in another pool (e.g. renBTC -> DAI).
 *
 * Due to the settlement periods of synthetic assets, the users must wait until the trades can be completed.
 * Users will receive an ERC721 token that represents pending cross-asset swap. Once the waiting period is over,
 * the trades can be settled and completed by calling the `completeToSynth` or the `completeToToken` function.
 * In the cases of pending `synthToToken` or `tokenToToken` swaps, the owners of the pending swaps can also choose
 * to withdraw the bridging synthetic assets instead of completing the swap.
 */
contract Bridge is ERC721 {
    using SafeMath for uint256;
    using SafeERC20 for IERC20;

    event SynthIndex(
        address indexed swap,
        uint8 synthIndex,
        bytes32 currencyKey,
        address synthAddress
    );
    event TokenToSynth(
        address indexed requester,
        uint256 indexed itemId,
        ISwap swapPool,
        uint8 tokenFromIndex,
        uint256 tokenFromInAmount,
        bytes32 synthToKey
    );
    event SynthToToken(
        address indexed requester,
        uint256 indexed itemId,
        ISwap swapPool,
        bytes32 synthFromKey,
        uint256 synthFromInAmount,
        uint8 tokenToIndex
    );
    event TokenToToken(
        address indexed requester,
        uint256 indexed itemId,
        ISwap[2] swapPools,
        uint8 tokenFromIndex,
        uint256 tokenFromAmount,
        uint8 tokenToIndex
    );
    event Settle(
        address indexed requester,
        uint256 indexed itemId,
        IERC20 settleFrom,
        uint256 settleFromAmount,
        IERC20 settleTo,
        uint256 settleToAmount,
        bool isFinal
    );
    event Withdraw(
        address indexed requester,
        uint256 indexed itemId,
        IERC20 synth,
        uint256 synthAmount,
        bool isFinal
    );

    // The addresses for all Synthetix contracts can be found in the below URL.
    // https://docs.synthetix.io/addresses/#mainnet-contracts
    //
    // Since the Synthetix protocol is upgradable, we must use the proxy pairs of each contract such that
    // the composability is not broken after the protocol upgrade.
    //
    // SYNTHETIX_RESOLVER points to `ReadProxyAddressResolver` (0x4E3b31eB0E5CB73641EE1E65E7dCEFe520bA3ef2).
    // This contract is a read proxy of `AddressResolver` which is responsible for storing the addresses of the contracts
    // used by the Synthetix protocol.
    IAddressResolver public constant SYNTHETIX_RESOLVER =
        IAddressResolver(0x4E3b31eB0E5CB73641EE1E65E7dCEFe520bA3ef2);

    // EXCHANGER points to `Exchanger`. There is no proxy pair for this contract so we need to update this variable
    // when the protocol is upgraded. This contract is used to settle synths held by SynthSwapper.
    IExchanger public exchanger;

    // CONSTANTS

    // Available types of cross-asset swaps
    enum PendingSwapType {
        Null,
        TokenToSynth,
        SynthToToken,
        TokenToToken
    }

    uint256 public constant MAX_UINT256 = 2**256 - 1;
    uint8 public constant MAX_UINT8 = 2**8 - 1;
    bytes32 public constant EXCHANGE_RATES_NAME = "ExchangeRates";
    bytes32 public constant EXCHANGER_NAME = "Exchanger";
    address public immutable SYNTH_SWAPPER_MASTER;

    // MAPPINGS FOR STORING PENDING SETTLEMENTS
    // The below two mappings never share the same key.
    mapping(uint256 => PendingToSynthSwap) public pendingToSynthSwaps;
    mapping(uint256 => PendingToTokenSwap) public pendingToTokenSwaps;
    uint256 public pendingSwapsLength;
    mapping(uint256 => PendingSwapType) private pendingSwapType;

    // MAPPINGS FOR STORING SYNTH INFO
    mapping(address => SwapContractInfo) private swapContracts;

    // Structs holding information about pending settlements
    struct PendingToSynthSwap {
        SynthSwapper swapper;
        bytes32 synthKey;
    }

    struct PendingToTokenSwap {
        SynthSwapper swapper;
        bytes32 synthKey;
        ISwap swap;
        uint8 tokenToIndex;
    }

    struct SwapContractInfo {
        // index of the supported synth + 1
        uint8 synthIndexPlusOne;
        // address of the supported synth
        address synthAddress;
        // bytes32 key of the supported synth
        bytes32 synthKey;
        // array of tokens supported by the contract
        IERC20[] tokens;
    }

    /**
     * @notice Deploys this contract and initializes the master version of the SynthSwapper contract. The address to
     * the Synthetix protocol's Exchanger contract is also set on deployment.
     */
    constructor(address synthSwapperAddress)
        public
        ERC721("Saddle Cross-Asset Swap", "SaddleSynthSwap")
    {
        SYNTH_SWAPPER_MASTER = synthSwapperAddress;
        updateExchangerCache();
    }

    /**
     * @notice Returns the address of the proxy contract targeting the synthetic asset with the given `synthKey`.
     * @param synthKey the currency key of the synth
     * @return address of the proxy contract
     */
    function getProxyAddressFromTargetSynthKey(bytes32 synthKey)
        public
        view
        returns (IERC20)
    {
        return IERC20(Target(SYNTHETIX_RESOLVER.getSynth(synthKey)).proxy());
    }

    /**
     * @notice Returns various information of a pending swap represented by the given `itemId`. Information includes
     * the type of the pending swap, the number of seconds left until it can be settled, the address and the balance
     * of the synth this swap currently holds, and the address of the destination token.
     * @param itemId ID of the pending swap
     * @return swapType the type of the pending virtual swap,
     * secsLeft number of seconds left until this swap can be settled,
     * synth address of the synth this swap uses,
     * synthBalance amount of the synth this swap holds,
     * tokenTo the address of the destination token
     */
    function getPendingSwapInfo(uint256 itemId)
        external
        view
        returns (
            PendingSwapType swapType,
            uint256 secsLeft,
            address synth,
            uint256 synthBalance,
            address tokenTo
        )
    {
        swapType = pendingSwapType[itemId];
        require(swapType != PendingSwapType.Null, "invalid itemId");

        SynthSwapper synthSwapper;
        bytes32 synthKey;

        if (swapType == PendingSwapType.TokenToSynth) {
            synthSwapper = pendingToSynthSwaps[itemId].swapper;
            synthKey = pendingToSynthSwaps[itemId].synthKey;
            synth = address(getProxyAddressFromTargetSynthKey(synthKey));
            tokenTo = synth;
        } else {
            PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
                itemId
            ];
            synthSwapper = pendingToTokenSwap.swapper;
            synthKey = pendingToTokenSwap.synthKey;
            synth = address(getProxyAddressFromTargetSynthKey(synthKey));
            tokenTo = address(
                swapContracts[address(pendingToTokenSwap.swap)].tokens[
                    pendingToTokenSwap.tokenToIndex
                ]
            );
        }

        secsLeft = exchanger.maxSecsLeftInWaitingPeriod(
            address(synthSwapper),
            synthKey
        );
        synthBalance = IERC20(synth).balanceOf(address(synthSwapper));
    }

    // Settles the synth only.
    function _settle(address synthOwner, bytes32 synthKey) internal {
        // Settle synth
        exchanger.settle(synthOwner, synthKey);
    }

    /**
     * @notice Settles and withdraws the synthetic asset without swapping it to a token in a Saddle pool. Only the owner
     * of the ERC721 token of `itemId` can call this function. Reverts if the given `itemId` does not represent a
     * `synthToToken` or a `tokenToToken` swap.
     * @param itemId ID of the pending swap
     * @param amount the amount of the synth to withdraw
     */
    function withdraw(uint256 itemId, uint256 amount) external {
        address nftOwner = ownerOf(itemId);
        require(nftOwner == msg.sender, "not owner");
        require(
            pendingSwapType[itemId] > PendingSwapType.TokenToSynth,
            "invalid itemId"
        );
        PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
            itemId
        ];
        _settle(
            address(pendingToTokenSwap.swapper),
            pendingToTokenSwap.synthKey
        );

        IERC20 synth = getProxyAddressFromTargetSynthKey(
            pendingToTokenSwap.synthKey
        );
        bool shouldDestroy;

        if (amount >= synth.balanceOf(address(pendingToTokenSwap.swapper))) {
            _burn(itemId);
            delete pendingToTokenSwaps[itemId];
            delete pendingSwapType[itemId];
            shouldDestroy = true;
        }

        pendingToTokenSwap.swapper.withdraw(
            synth,
            nftOwner,
            amount,
            shouldDestroy
        );
        emit Withdraw(msg.sender, itemId, synth, amount, shouldDestroy);
    }

    /**
     * @notice Completes the pending `tokenToSynth` swap by settling and withdrawing the synthetic asset.
     * Reverts if the given `itemId` does not represent a `tokenToSynth` swap.
     * @param itemId ERC721 token ID representing a pending `tokenToSynth` swap
     */
    function completeToSynth(uint256 itemId) external {
        address nftOwner = ownerOf(itemId);
        require(nftOwner == msg.sender, "not owner");
        require(
            pendingSwapType[itemId] == PendingSwapType.TokenToSynth,
            "invalid itemId"
        );

        PendingToSynthSwap memory pendingToSynthSwap = pendingToSynthSwaps[
            itemId
        ];
        _settle(
            address(pendingToSynthSwap.swapper),
            pendingToSynthSwap.synthKey
        );

        IERC20 synth = getProxyAddressFromTargetSynthKey(
            pendingToSynthSwap.synthKey
        );

        // Burn the corresponding ERC721 token and delete storage for gas
        _burn(itemId);
        delete pendingToTokenSwaps[itemId];
        delete pendingSwapType[itemId];

        // After settlement, withdraw the synth and send it to the recipient
        uint256 synthBalance = synth.balanceOf(
            address(pendingToSynthSwap.swapper)
        );
        pendingToSynthSwap.swapper.withdraw(
            synth,
            nftOwner,
            synthBalance,
            true
        );

        emit Settle(
            msg.sender,
            itemId,
            synth,
            synthBalance,
            synth,
            synthBalance,
            true
        );
    }

    /**
     * @notice Calculates the expected amount of the token to receive on calling `completeToToken()` with
     * the given `swapAmount`.
     * @param itemId ERC721 token ID representing a pending `SynthToToken` or `TokenToToken` swap
     * @param swapAmount the amount of bridging synth to swap from
     * @return expected amount of the token the user will receive
     */
    function calcCompleteToToken(uint256 itemId, uint256 swapAmount)
        external
        view
        returns (uint256)
    {
        require(
            pendingSwapType[itemId] > PendingSwapType.TokenToSynth,
            "invalid itemId"
        );

        PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
            itemId
        ];
        return
            pendingToTokenSwap.swap.calculateSwap(
                getSynthIndex(pendingToTokenSwap.swap),
                pendingToTokenSwap.tokenToIndex,
                swapAmount
            );
    }

    /**
     * @notice Completes the pending `SynthToToken` or `TokenToToken` swap by settling the bridging synth and swapping
     * it to the desired token. Only the owners of the pending swaps can call this function.
     * @param itemId ERC721 token ID representing a pending `SynthToToken` or `TokenToToken` swap
     * @param swapAmount the amount of bridging synth to swap from
     * @param minAmount the minimum amount of the token to receive - reverts if this amount is not reached
     * @param deadline the timestamp representing the deadline for this transaction - reverts if deadline is not met
     */
    function completeToToken(
        uint256 itemId,
        uint256 swapAmount,
        uint256 minAmount,
        uint256 deadline
    ) external {
        require(swapAmount != 0, "amount must be greater than 0");
        address nftOwner = ownerOf(itemId);
        require(msg.sender == nftOwner, "must own itemId");
        require(
            pendingSwapType[itemId] > PendingSwapType.TokenToSynth,
            "invalid itemId"
        );

        PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[
            itemId
        ];

        _settle(
            address(pendingToTokenSwap.swapper),
            pendingToTokenSwap.synthKey
        );
        IERC20 synth = getProxyAddressFromTargetSynthKey(
            pendingToTokenSwap.synthKey
        );
        bool shouldDestroyClone;

        if (
            swapAmount >= synth.balanceOf(address(pendingToTokenSwap.swapper))
        ) {
            _burn(itemId);
            delete pendingToTokenSwaps[itemId];
            delete pendingSwapType[itemId];
            shouldDestroyClone = true;
        }

        // Try swapping the synth to the desired token via the stored swap pool contract
        // If the external call succeeds, send the token to the owner of token with itemId.
        (IERC20 tokenTo, uint256 amountOut) = pendingToTokenSwap
            .swapper
            .swapSynthToToken(
                pendingToTokenSwap.swap,
                synth,
                getSynthIndex(pendingToTokenSwap.swap),
                pendingToTokenSwap.tokenToIndex,
                swapAmount,
                minAmount,
                deadline,
                nftOwner
            );

        if (shouldDestroyClone) {
            pendingToTokenSwap.swapper.destroy();
        }

        emit Settle(
            msg.sender,
            itemId,
            synth,
            swapAmount,
            tokenTo,
            amountOut,
            shouldDestroyClone
        );
    }

    // Add the given pending synth settlement struct to the list
    function _addToPendingSynthSwapList(
        PendingToSynthSwap memory pendingToSynthSwap
    ) internal returns (uint256) {
        require(
            pendingSwapsLength < MAX_UINT256,
            "pendingSwapsLength reached max size"
        );
        pendingToSynthSwaps[pendingSwapsLength] = pendingToSynthSwap;
        return pendingSwapsLength++;
    }

    // Add the given pending synth to token settlement struct to the list
    function _addToPendingSynthToTokenSwapList(
        PendingToTokenSwap memory pendingToTokenSwap
    ) internal returns (uint256) {
        require(
            pendingSwapsLength < MAX_UINT256,
            "pendingSwapsLength reached max size"
        );
        pendingToTokenSwaps[pendingSwapsLength] = pendingToTokenSwap;
        return pendingSwapsLength++;
    }

    /**
     * @notice Calculates the expected amount of the desired synthetic asset the caller will receive after completing
     * a `TokenToSynth` swap with the given parameters. This calculation does not consider the settlement periods.
     * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
     * @param tokenFromIndex the index of the token to swap from
     * @param synthOutKey the currency key of the desired synthetic asset
     * @param tokenInAmount the amount of the token to swap form
     * @return the expected amount of the desired synth
     */
    function calcTokenToSynth(
        ISwap swap,
        uint8 tokenFromIndex,
        bytes32 synthOutKey,
        uint256 tokenInAmount
    ) external view returns (uint256) {
        uint8 mediumSynthIndex = getSynthIndex(swap);
        uint256 expectedMediumSynthAmount = swap.calculateSwap(
            tokenFromIndex,
            mediumSynthIndex,
            tokenInAmount
        );
        bytes32 mediumSynthKey = getSynthKey(swap);

        IExchangeRates exchangeRates = IExchangeRates(
            SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME)
        );
        return
            exchangeRates.effectiveValue(
                mediumSynthKey,
                expectedMediumSynthAmount,
                synthOutKey
            );
    }

    /**
     * @notice Initiates a cross-asset swap from a token supported in the `swap` pool to any synthetic asset.
     * The caller will receive an ERC721 token representing their ownership of the pending cross-asset swap.
     * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
     * @param tokenFromIndex the index of the token to swap from
     * @param synthOutKey the currency key of the desired synthetic asset
     * @param tokenInAmount the amount of the token to swap form
     * @param minAmount the amount of the token to swap form
     * @return ID of the ERC721 token sent to the caller
     */
    function tokenToSynth(
        ISwap swap,
        uint8 tokenFromIndex,
        bytes32 synthOutKey,
        uint256 tokenInAmount,
        uint256 minAmount
    ) external returns (uint256) {
        require(tokenInAmount != 0, "amount must be greater than 0");
        // Create a SynthSwapper clone
        SynthSwapper synthSwapper = SynthSwapper(
            Clones.clone(SYNTH_SWAPPER_MASTER)
        );
        synthSwapper.initialize();

        // Add the synthswapper to the pending settlement list
        uint256 itemId = _addToPendingSynthSwapList(
            PendingToSynthSwap(synthSwapper, synthOutKey)
        );
        pendingSwapType[itemId] = PendingSwapType.TokenToSynth;

        // Mint an ERC721 token that represents ownership of the pending synth settlement to msg.sender
        _mint(msg.sender, itemId);

        // Transfer token from msg.sender
        IERC20 tokenFrom = swapContracts[address(swap)].tokens[tokenFromIndex]; // revert when token not found in swap pool
        tokenFrom.safeTransferFrom(msg.sender, address(this), tokenInAmount);
        tokenInAmount = tokenFrom.balanceOf(address(this));

        // Swap the synth to the medium synth
        uint256 mediumSynthAmount = swap.swap(
            tokenFromIndex,
            getSynthIndex(swap),
            tokenInAmount,
            0,
            block.timestamp
        );

        // Swap synths via Synthetix network
        IERC20(getSynthAddress(swap)).safeTransfer(
            address(synthSwapper),
            mediumSynthAmount
        );
        require(
            synthSwapper.swapSynth(
                getSynthKey(swap),
                mediumSynthAmount,
                synthOutKey
            ) >= minAmount,
            "minAmount not reached"
        );

        // Emit TokenToSynth event with relevant data
        emit TokenToSynth(
            msg.sender,
            itemId,
            swap,
            tokenFromIndex,
            tokenInAmount,
            synthOutKey
        );

        return (itemId);
    }

    /**
     * @notice Calculates the expected amount of the desired token the caller will receive after completing
     * a `SynthToToken` swap with the given parameters. This calculation does not consider the settlement periods or
     * any potential changes of the `swap` pool composition.
     * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
     * @param synthInKey the currency key of the synth to swap from
     * @param tokenToIndex the index of the token to swap to
     * @param synthInAmount the amount of the synth to swap form
     * @return the expected amount of the bridging synth and the expected amount of the desired token
     */
    function calcSynthToToken(
        ISwap swap,
        bytes32 synthInKey,
        uint8 tokenToIndex,
        uint256 synthInAmount
    ) external view returns (uint256, uint256) {
        IExchangeRates exchangeRates = IExchangeRates(
            SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME)
        );

        uint8 mediumSynthIndex = getSynthIndex(swap);
        bytes32 mediumSynthKey = getSynthKey(swap);
        require(synthInKey != mediumSynthKey, "use normal swap");

        uint256 expectedMediumSynthAmount = exchangeRates.effectiveValue(
            synthInKey,
            synthInAmount,
            mediumSynthKey
        );

        return (
            expectedMediumSynthAmount,
            swap.calculateSwap(
                mediumSynthIndex,
                tokenToIndex,
                expectedMediumSynthAmount
            )
        );
    }

    /**
     * @notice Initiates a cross-asset swap from a synthetic asset to a supported token. The caller will receive
     * an ERC721 token representing their ownership of the pending cross-asset swap.
     * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth
     * @param synthInKey the currency key of the synth to swap from
     * @param tokenToIndex the index of the token to swap to
     * @param synthInAmount the amount of the synth to swap form
     * @param minMediumSynthAmount the minimum amount of the bridging synth at pre-settlement stage
     * @return the ID of the ERC721 token sent to the caller
     */
    function synthToToken(
        ISwap swap,
        bytes32 synthInKey,
        uint8 tokenToIndex,
        uint256 synthInAmount,
        uint256 minMediumSynthAmount
    ) external returns (uint256) {
        require(synthInAmount != 0, "amount must be greater than 0");
        bytes32 mediumSynthKey = getSynthKey(swap);
        require(
            synthInKey != mediumSynthKey,
            "synth is supported via normal swap"
        );

        // Create a SynthSwapper clone
        SynthSwapper synthSwapper = SynthSwapper(
            Clones.clone(SYNTH_SWAPPER_MASTER)
        );
        synthSwapper.initialize();

        // Add the synthswapper to the pending synth to token settlement list
        uint256 itemId = _addToPendingSynthToTokenSwapList(
            PendingToTokenSwap(synthSwapper, mediumSynthKey, swap, tokenToIndex)
        );
        pendingSwapType[itemId] = PendingSwapType.SynthToToken;

        // Mint an ERC721 token that represents ownership of the pending synth to token settlement to msg.sender
        _mint(msg.sender, itemId);

        // Receive synth from the user and swap it to another synth
        IERC20 synthFrom = getProxyAddressFromTargetSynthKey(synthInKey);
        synthFrom.safeTransferFrom(msg.sender, address(this), synthInAmount);
        synthFrom.safeTransfer(address(synthSwapper), synthInAmount);
        require(
            synthSwapper.swapSynth(synthInKey, synthInAmount, mediumSynthKey) >=
                minMediumSynthAmount,
            "minMediumSynthAmount not reached"
        );

        // Emit SynthToToken event with relevant data
        emit SynthToToken(
            msg.sender,
            itemId,
            swap,
            synthInKey,
            synthInAmount,
            tokenToIndex
        );

        return (itemId);
    }

    /**
     * @notice Calculates the expected amount of the desired token the caller will receive after completing
     * a `TokenToToken` swap with the given parameters. This calculation does not consider the settlement periods or
     * any potential changes of the pool compositions.
     * @param swaps the addresses of the two Saddle pools used to do the cross-asset swap
     * @param tokenFromIndex the index of the token in the first `swaps` pool to swap from
     * @param tokenToIndex the index of the token in the second `swaps` pool to swap to
     * @param tokenFromAmount the amount of the token to swap from
     * @return the expected amount of bridging synth at pre-settlement stage and the expected amount of the desired
     * token
     */
    function calcTokenToToken(
        ISwap[2] calldata swaps,
        uint8 tokenFromIndex,
        uint8 tokenToIndex,
        uint256 tokenFromAmount
    ) external view returns (uint256, uint256) {
        IExchangeRates exchangeRates = IExchangeRates(
            SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME)
        );

        uint256 firstSynthAmount = swaps[0].calculateSwap(
            tokenFromIndex,
            getSynthIndex(swaps[0]),
            tokenFromAmount
        );

        uint256 mediumSynthAmount = exchangeRates.effectiveValue(
            getSynthKey(swaps[0]),
            firstSynthAmount,
            getSynthKey(swaps[1])
        );

        return (
            mediumSynthAmount,
            swaps[1].calculateSwap(
                getSynthIndex(swaps[1]),
                tokenToIndex,
                mediumSynthAmount
            )
        );
    }

    /**
     * @notice Initiates a cross-asset swap from a token in one Saddle pool to one in another. The caller will receive
     * an ERC721 token representing their ownership of the pending cross-asset swap.
     * @param swaps the addresses of the two Saddle pools used to do the cross-asset swap
     * @param tokenFromIndex the index of the token in the first `swaps` pool to swap from
     * @param tokenToIndex the index of the token in the second `swaps` pool to swap to
     * @param tokenFromAmount the amount of the token to swap from
     * @param minMediumSynthAmount the minimum amount of the bridging synth at pre-settlement stage
     * @return the ID of the ERC721 token sent to the caller
     */
    function tokenToToken(
        ISwap[2] calldata swaps,
        uint8 tokenFromIndex,
        uint8 tokenToIndex,
        uint256 tokenFromAmount,
        uint256 minMediumSynthAmount
    ) external returns (uint256) {
        // Create a SynthSwapper clone
        require(tokenFromAmount != 0, "amount must be greater than 0");
        SynthSwapper synthSwapper = SynthSwapper(
            Clones.clone(SYNTH_SWAPPER_MASTER)
        );
        synthSwapper.initialize();
        bytes32 mediumSynthKey = getSynthKey(swaps[1]);

        // Add the synthswapper to the pending synth to token settlement list
        uint256 itemId = _addToPendingSynthToTokenSwapList(
            PendingToTokenSwap(
                synthSwapper,
                mediumSynthKey,
                swaps[1],
                tokenToIndex
            )
        );
        pendingSwapType[itemId] = PendingSwapType.TokenToToken;

        // Mint an ERC721 token that represents ownership of the pending swap to msg.sender
        _mint(msg.sender, itemId);

        // Receive token from the user
        ISwap swap = swaps[0];
        {
            IERC20 tokenFrom = swapContracts[address(swap)].tokens[
                tokenFromIndex
            ];
            tokenFrom.safeTransferFrom(
                msg.sender,
                address(this),
                tokenFromAmount
            );
        }

        uint256 firstSynthAmount = swap.swap(
            tokenFromIndex,
            getSynthIndex(swap),
            tokenFromAmount,
            0,
            block.timestamp
        );

        // Swap the synth to another synth
        IERC20(getSynthAddress(swap)).safeTransfer(
            address(synthSwapper),
            firstSynthAmount
        );
        require(
            synthSwapper.swapSynth(
                getSynthKey(swap),
                firstSynthAmount,
                mediumSynthKey
            ) >= minMediumSynthAmount,
            "minMediumSynthAmount not reached"
        );

        // Emit TokenToToken event with relevant data
        emit TokenToToken(
            msg.sender,
            itemId,
            swaps,
            tokenFromIndex,
            tokenFromAmount,
            tokenToIndex
        );

        return (itemId);
    }

    /**
     * @notice Registers the index and the address of the supported synth from the given `swap` pool. The matching currency key must
     * be supplied for a successful registration.
     * @param swap the address of the pool that contains the synth
     * @param synthIndex the index of the supported synth in the given `swap` pool
     * @param currencyKey the currency key of the synth in bytes32 form
     */
    function setSynthIndex(
        ISwap swap,
        uint8 synthIndex,
        bytes32 currencyKey
    ) external {
        require(synthIndex < MAX_UINT8, "index is too large");
        SwapContractInfo storage swapContractInfo = swapContracts[
            address(swap)
        ];
        // Check if the pool has already been added
        require(swapContractInfo.synthIndexPlusOne == 0, "Pool already added");
        // Ensure the synth with the same currency key exists at the given `synthIndex`
        IERC20 synth = swap.getToken(synthIndex);
        require(
            ISynth(Proxy(address(synth)).target()).currencyKey() == currencyKey,
            "currencyKey does not match"
        );
        swapContractInfo.synthIndexPlusOne = synthIndex + 1;
        swapContractInfo.synthAddress = address(synth);
        swapContractInfo.synthKey = currencyKey;
        swapContractInfo.tokens = new IERC20[](0);

        for (uint8 i = 0; i < MAX_UINT8; i++) {
            IERC20 token;
            if (i == synthIndex) {
                token = synth;
            } else {
                try swap.getToken(i) returns (IERC20 token_) {
                    token = token_;
                } catch {
                    break;
                }
            }
            swapContractInfo.tokens.push(token);
            token.safeApprove(address(swap), MAX_UINT256);
        }

        emit SynthIndex(address(swap), synthIndex, currencyKey, address(synth));
    }

    /**
     * @notice Returns the index of the supported synth in the given `swap` pool. Reverts if the `swap` pool
     * is not registered.
     * @param swap the address of the pool that contains the synth
     * @return the index of the supported synth
     */
    function getSynthIndex(ISwap swap) public view returns (uint8) {
        uint8 synthIndexPlusOne = swapContracts[address(swap)]
            .synthIndexPlusOne;
        require(synthIndexPlusOne > 0, "synth index not found for given pool");
        return synthIndexPlusOne - 1;
    }

    /**
     * @notice Returns the address of the supported synth in the given `swap` pool. Reverts if the `swap` pool
     * is not registered.
     * @param swap the address of the pool that contains the synth
     * @return the address of the supported synth
     */
    function getSynthAddress(ISwap swap) public view returns (address) {
        address synthAddress = swapContracts[address(swap)].synthAddress;
        require(
            synthAddress != address(0),
            "synth addr not found for given pool"
        );
        return synthAddress;
    }

    /**
     * @notice Returns the currency key of the supported synth in the given `swap` pool. Reverts if the `swap` pool
     * is not registered.
     * @param swap the address of the pool that contains the synth
     * @return the currency key of the supported synth
     */
    function getSynthKey(ISwap swap) public view returns (bytes32) {
        bytes32 synthKey = swapContracts[address(swap)].synthKey;
        require(synthKey != 0x0, "synth key not found for given pool");
        return synthKey;
    }

    /**
     * @notice Updates the stored address of the `EXCHANGER` contract. When the Synthetix team upgrades their protocol,
     * a new Exchanger contract is deployed. This function manually updates the stored address.
     */
    function updateExchangerCache() public {
        exchanger = IExchanger(SYNTHETIX_RESOLVER.getAddress(EXCHANGER_NAME));
    }
}

File 46 of 78 : ERC721.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/Context.sol";
import "./IERC721.sol";
import "./IERC721Metadata.sol";
import "./IERC721Enumerable.sol";
import "./IERC721Receiver.sol";
import "../../introspection/ERC165.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
import "../../utils/EnumerableSet.sol";
import "../../utils/EnumerableMap.sol";
import "../../utils/Strings.sol";

/**
 * @title ERC721 Non-Fungible Token Standard basic implementation
 * @dev see https://eips.ethereum.org/EIPS/eip-721
 */
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Enumerable {
    using SafeMath for uint256;
    using Address for address;
    using EnumerableSet for EnumerableSet.UintSet;
    using EnumerableMap for EnumerableMap.UintToAddressMap;
    using Strings for uint256;

    // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
    // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector`
    bytes4 private constant _ERC721_RECEIVED = 0x150b7a02;

    // Mapping from holder address to their (enumerable) set of owned tokens
    mapping (address => EnumerableSet.UintSet) private _holderTokens;

    // Enumerable mapping from token ids to their owners
    EnumerableMap.UintToAddressMap private _tokenOwners;

    // Mapping from token ID to approved address
    mapping (uint256 => address) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping (address => mapping (address => bool)) private _operatorApprovals;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Optional mapping for token URIs
    mapping (uint256 => string) private _tokenURIs;

    // Base URI
    string private _baseURI;

    /*
     *     bytes4(keccak256('balanceOf(address)')) == 0x70a08231
     *     bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e
     *     bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3
     *     bytes4(keccak256('getApproved(uint256)')) == 0x081812fc
     *     bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465
     *     bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5
     *     bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd
     *     bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e
     *     bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde
     *
     *     => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^
     *        0xa22cb465 ^ 0xe985e9c5 ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd
     */
    bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd;

    /*
     *     bytes4(keccak256('name()')) == 0x06fdde03
     *     bytes4(keccak256('symbol()')) == 0x95d89b41
     *     bytes4(keccak256('tokenURI(uint256)')) == 0xc87b56dd
     *
     *     => 0x06fdde03 ^ 0x95d89b41 ^ 0xc87b56dd == 0x5b5e139f
     */
    bytes4 private constant _INTERFACE_ID_ERC721_METADATA = 0x5b5e139f;

    /*
     *     bytes4(keccak256('totalSupply()')) == 0x18160ddd
     *     bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59
     *     bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7
     *
     *     => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63
     */
    bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor (string memory name_, string memory symbol_) public {
        _name = name_;
        _symbol = symbol_;

        // register the supported interfaces to conform to ERC721 via ERC165
        _registerInterface(_INTERFACE_ID_ERC721);
        _registerInterface(_INTERFACE_ID_ERC721_METADATA);
        _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        require(owner != address(0), "ERC721: balance query for the zero address");
        return _holderTokens[owner].length();
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        return _tokenOwners.get(tokenId, "ERC721: owner query for nonexistent token");
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token");

        string memory _tokenURI = _tokenURIs[tokenId];
        string memory base = baseURI();

        // If there is no base URI, return the token URI.
        if (bytes(base).length == 0) {
            return _tokenURI;
        }
        // If both are set, concatenate the baseURI and tokenURI (via abi.encodePacked).
        if (bytes(_tokenURI).length > 0) {
            return string(abi.encodePacked(base, _tokenURI));
        }
        // If there is a baseURI but no tokenURI, concatenate the tokenID to the baseURI.
        return string(abi.encodePacked(base, tokenId.toString()));
    }

    /**
    * @dev Returns the base URI set via {_setBaseURI}. This will be
    * automatically added as a prefix in {tokenURI} to each token's URI, or
    * to the token ID if no specific URI is set for that token ID.
    */
    function baseURI() public view virtual returns (string memory) {
        return _baseURI;
    }

    /**
     * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) {
        return _holderTokens[owner].at(index);
    }

    /**
     * @dev See {IERC721Enumerable-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        // _tokenOwners are indexed by tokenIds, so .length() returns the number of tokenIds
        return _tokenOwners.length();
    }

    /**
     * @dev See {IERC721Enumerable-tokenByIndex}.
     */
    function tokenByIndex(uint256 index) public view virtual override returns (uint256) {
        (uint256 tokenId, ) = _tokenOwners.at(index);
        return tokenId;
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual override {
        address owner = ERC721.ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(_msgSender() == owner || ERC721.isApprovedForAll(owner, _msgSender()),
            "ERC721: approve caller is not owner nor approved for all"
        );

        _approve(to, tokenId);
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        require(_exists(tokenId), "ERC721: approved query for nonexistent token");

        return _tokenApprovals[tokenId];
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        require(operator != _msgSender(), "ERC721: approve to caller");

        _operatorApprovals[_msgSender()][operator] = approved;
        emit ApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual override {
        //solhint-disable-next-line max-line-length
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");

        _transfer(from, to, tokenId);
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
        _safeTransfer(from, to, tokenId, _data);
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * `_data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory _data) internal virtual {
        _transfer(from, to, tokenId);
        require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted (`_mint`),
     * and stop existing when they are burned (`_burn`).
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return _tokenOwners.contains(tokenId);
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `tokenId`.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
        require(_exists(tokenId), "ERC721: operator query for nonexistent token");
        address owner = ERC721.ownerOf(tokenId);
        return (spender == owner || getApproved(tokenId) == spender || ERC721.isApprovedForAll(owner, spender));
    }

    /**
     * @dev Safely mints `tokenId` and transfers it to `to`.
     *
     * Requirements:
     d*
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal virtual {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual {
        _mint(to, tokenId);
        require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal virtual {
        require(to != address(0), "ERC721: mint to the zero address");
        require(!_exists(tokenId), "ERC721: token already minted");

        _beforeTokenTransfer(address(0), to, tokenId);

        _holderTokens[to].add(tokenId);

        _tokenOwners.set(tokenId, to);

        emit Transfer(address(0), to, tokenId);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal virtual {
        address owner = ERC721.ownerOf(tokenId); // internal owner

        _beforeTokenTransfer(owner, address(0), tokenId);

        // Clear approvals
        _approve(address(0), tokenId);

        // Clear metadata (if any)
        if (bytes(_tokenURIs[tokenId]).length != 0) {
            delete _tokenURIs[tokenId];
        }

        _holderTokens[owner].remove(tokenId);

        _tokenOwners.remove(tokenId);

        emit Transfer(owner, address(0), tokenId);
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal virtual {
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); // internal owner
        require(to != address(0), "ERC721: transfer to the zero address");

        _beforeTokenTransfer(from, to, tokenId);

        // Clear approvals from the previous owner
        _approve(address(0), tokenId);

        _holderTokens[from].remove(tokenId);
        _holderTokens[to].add(tokenId);

        _tokenOwners.set(tokenId, to);

        emit Transfer(from, to, tokenId);
    }

    /**
     * @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
        require(_exists(tokenId), "ERC721Metadata: URI set of nonexistent token");
        _tokenURIs[tokenId] = _tokenURI;
    }

    /**
     * @dev Internal function to set the base URI for all token IDs. It is
     * automatically added as a prefix to the value returned in {tokenURI},
     * or to the token ID if {tokenURI} is empty.
     */
    function _setBaseURI(string memory baseURI_) internal virtual {
        _baseURI = baseURI_;
    }

    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
     * The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param _data bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
        private returns (bool)
    {
        if (!to.isContract()) {
            return true;
        }
        bytes memory returndata = to.functionCall(abi.encodeWithSelector(
            IERC721Receiver(to).onERC721Received.selector,
            _msgSender(),
            from,
            tokenId,
            _data
        ), "ERC721: transfer to non ERC721Receiver implementer");
        bytes4 retval = abi.decode(returndata, (bytes4));
        return (retval == _ERC721_RECEIVED);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * Emits an {Approval} event.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _tokenApprovals[tokenId] = to;
        emit Approval(ERC721.ownerOf(tokenId), to, tokenId); // internal owner
    }

    /**
     * @dev Hook that is called before any token transfer. This includes minting
     * and burning.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, ``from``'s `tokenId` will be burned.
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 tokenId) internal virtual { }
}

File 47 of 78 : IAddressResolver.sol
pragma solidity >=0.4.24;

// https://docs.synthetix.io/contracts/source/interfaces/iaddressresolver
interface IAddressResolver {
    function getAddress(bytes32 name) external view returns (address);

    function getSynth(bytes32 key) external view returns (address);

    function requireAndGetAddress(bytes32 name, string calldata reason) external view returns (address);
}

File 48 of 78 : IExchanger.sol
pragma solidity >=0.4.24;

import "./IVirtualSynth.sol";

// https://docs.synthetix.io/contracts/source/interfaces/iexchanger
interface IExchanger {
    // Views
    function calculateAmountAfterSettlement(
        address from,
        bytes32 currencyKey,
        uint amount,
        uint refunded
    ) external view returns (uint amountAfterSettlement);

    function isSynthRateInvalid(bytes32 currencyKey) external view returns (bool);

    function maxSecsLeftInWaitingPeriod(address account, bytes32 currencyKey) external view returns (uint);

    function settlementOwing(address account, bytes32 currencyKey)
        external
        view
        returns (
            uint reclaimAmount,
            uint rebateAmount,
            uint numEntries
        );

    function hasWaitingPeriodOrSettlementOwing(address account, bytes32 currencyKey) external view returns (bool);

    function feeRateForExchange(bytes32 sourceCurrencyKey, bytes32 destinationCurrencyKey)
        external
        view
        returns (uint exchangeFeeRate);

    function getAmountsForExchange(
        uint sourceAmount,
        bytes32 sourceCurrencyKey,
        bytes32 destinationCurrencyKey
    )
        external
        view
        returns (
            uint amountReceived,
            uint fee,
            uint exchangeFeeRate
        );

    function priceDeviationThresholdFactor() external view returns (uint);

    function waitingPeriodSecs() external view returns (uint);

    // Mutative functions
    function exchange(
        address from,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        address destinationAddress
    ) external returns (uint amountReceived);

    function exchangeOnBehalf(
        address exchangeForAddress,
        address from,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey
    ) external returns (uint amountReceived);

    function exchangeWithTracking(
        address from,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        address destinationAddress,
        address originator,
        bytes32 trackingCode
    ) external returns (uint amountReceived);

    function exchangeOnBehalfWithTracking(
        address exchangeForAddress,
        address from,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        address originator,
        bytes32 trackingCode
    ) external returns (uint amountReceived);

    function exchangeWithVirtual(
        address from,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        address destinationAddress,
        bytes32 trackingCode
    ) external returns (uint amountReceived, IVirtualSynth vSynth);

    function settle(address from, bytes32 currencyKey)
        external
        returns (
            uint reclaimed,
            uint refunded,
            uint numEntries
        );

    function setLastExchangeRateForSynth(bytes32 currencyKey, uint rate) external;

    function suspendSynthWithInvalidRate(bytes32 currencyKey) external;
}

File 49 of 78 : IExchangeRates.sol
pragma solidity >=0.4.24;

// https://docs.synthetix.io/contracts/source/interfaces/iexchangerates
interface IExchangeRates {
    // Structs
    struct RateAndUpdatedTime {
        uint216 rate;
        uint40 time;
    }

    struct InversePricing {
        uint entryPoint;
        uint upperLimit;
        uint lowerLimit;
        bool frozenAtUpperLimit;
        bool frozenAtLowerLimit;
    }

    // Views
    function aggregators(bytes32 currencyKey) external view returns (address);

    function aggregatorWarningFlags() external view returns (address);

    function anyRateIsInvalid(bytes32[] calldata currencyKeys) external view returns (bool);

    function canFreezeRate(bytes32 currencyKey) external view returns (bool);

    function currentRoundForRate(bytes32 currencyKey) external view returns (uint);

    function currenciesUsingAggregator(address aggregator) external view returns (bytes32[] memory);

    function effectiveValue(
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey
    ) external view returns (uint value);

    function effectiveValueAndRates(
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey
    )
        external
        view
        returns (
            uint value,
            uint sourceRate,
            uint destinationRate
        );

    function effectiveValueAtRound(
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        uint roundIdForSrc,
        uint roundIdForDest
    ) external view returns (uint value);

    function getCurrentRoundId(bytes32 currencyKey) external view returns (uint);

    function getLastRoundIdBeforeElapsedSecs(
        bytes32 currencyKey,
        uint startingRoundId,
        uint startingTimestamp,
        uint timediff
    ) external view returns (uint);

    function inversePricing(bytes32 currencyKey)
        external
        view
        returns (
            uint entryPoint,
            uint upperLimit,
            uint lowerLimit,
            bool frozenAtUpperLimit,
            bool frozenAtLowerLimit
        );

    function lastRateUpdateTimes(bytes32 currencyKey) external view returns (uint256);

    function oracle() external view returns (address);

    function rateAndTimestampAtRound(bytes32 currencyKey, uint roundId) external view returns (uint rate, uint time);

    function rateAndUpdatedTime(bytes32 currencyKey) external view returns (uint rate, uint time);

    function rateAndInvalid(bytes32 currencyKey) external view returns (uint rate, bool isInvalid);

    function rateForCurrency(bytes32 currencyKey) external view returns (uint);

    function rateIsFlagged(bytes32 currencyKey) external view returns (bool);

    function rateIsFrozen(bytes32 currencyKey) external view returns (bool);

    function rateIsInvalid(bytes32 currencyKey) external view returns (bool);

    function rateIsStale(bytes32 currencyKey) external view returns (bool);

    function rateStalePeriod() external view returns (uint);

    function ratesAndUpdatedTimeForCurrencyLastNRounds(bytes32 currencyKey, uint numRounds)
        external
        view
        returns (uint[] memory rates, uint[] memory times);

    function ratesAndInvalidForCurrencies(bytes32[] calldata currencyKeys)
        external
        view
        returns (uint[] memory rates, bool anyRateInvalid);

    function ratesForCurrencies(bytes32[] calldata currencyKeys) external view returns (uint[] memory);

    // Mutative functions
    function freezeRate(bytes32 currencyKey) external;
}

File 50 of 78 : IERC721.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

import "../../introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    /**
      * @dev Safely transfers `tokenId` token from `from` to `to`.
      *
      * Requirements:
      *
      * - `from` cannot be the zero address.
      * - `to` cannot be the zero address.
      * - `tokenId` token must exist and be owned by `from`.
      * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
      * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
      *
      * Emits a {Transfer} event.
      */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
}

File 51 of 78 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

import "./IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {

    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 52 of 78 : IERC721Enumerable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

import "./IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {

    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

File 53 of 78 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
     */
    function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4);
}

File 54 of 78 : ERC165.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts may inherit from this and call {_registerInterface} to declare
 * their support of an interface.
 */
abstract contract ERC165 is IERC165 {
    /*
     * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7
     */
    bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;

    /**
     * @dev Mapping of interface ids to whether or not it's supported.
     */
    mapping(bytes4 => bool) private _supportedInterfaces;

    constructor () internal {
        // Derived contracts need only register support for their own interfaces,
        // we register support for ERC165 itself here
        _registerInterface(_INTERFACE_ID_ERC165);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     *
     * Time complexity O(1), guaranteed to always use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return _supportedInterfaces[interfaceId];
    }

    /**
     * @dev Registers the contract as an implementer of the interface defined by
     * `interfaceId`. Support of the actual ERC165 interface is automatic and
     * registering its interface id is not required.
     *
     * See {IERC165-supportsInterface}.
     *
     * Requirements:
     *
     * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`).
     */
    function _registerInterface(bytes4 interfaceId) internal virtual {
        require(interfaceId != 0xffffffff, "ERC165: invalid interface id");
        _supportedInterfaces[interfaceId] = true;
    }
}

File 55 of 78 : EnumerableSet.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;

        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping (bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) { // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
            // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.

            bytes32 lastvalue = set._values[lastIndex];

            // Move the last value to the index where the value to delete is
            set._values[toDeleteIndex] = lastvalue;
            // Update the index for the moved value
            set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        require(set._values.length > index, "EnumerableSet: index out of bounds");
        return set._values[index];
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }


    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }
}

File 56 of 78 : EnumerableMap.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Library for managing an enumerable variant of Solidity's
 * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
 * type.
 *
 * Maps have the following properties:
 *
 * - Entries are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Entries are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableMap for EnumerableMap.UintToAddressMap;
 *
 *     // Declare a set state variable
 *     EnumerableMap.UintToAddressMap private myMap;
 * }
 * ```
 *
 * As of v3.0.0, only maps of type `uint256 -> address` (`UintToAddressMap`) are
 * supported.
 */
library EnumerableMap {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Map type with
    // bytes32 keys and values.
    // The Map implementation uses private functions, and user-facing
    // implementations (such as Uint256ToAddressMap) are just wrappers around
    // the underlying Map.
    // This means that we can only create new EnumerableMaps for types that fit
    // in bytes32.

    struct MapEntry {
        bytes32 _key;
        bytes32 _value;
    }

    struct Map {
        // Storage of map keys and values
        MapEntry[] _entries;

        // Position of the entry defined by a key in the `entries` array, plus 1
        // because index 0 means a key is not in the map.
        mapping (bytes32 => uint256) _indexes;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function _set(Map storage map, bytes32 key, bytes32 value) private returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        if (keyIndex == 0) { // Equivalent to !contains(map, key)
            map._entries.push(MapEntry({ _key: key, _value: value }));
            // The entry is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            map._indexes[key] = map._entries.length;
            return true;
        } else {
            map._entries[keyIndex - 1]._value = value;
            return false;
        }
    }

    /**
     * @dev Removes a key-value pair from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function _remove(Map storage map, bytes32 key) private returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        if (keyIndex != 0) { // Equivalent to contains(map, key)
            // To delete a key-value pair from the _entries array in O(1), we swap the entry to delete with the last one
            // in the array, and then remove the last entry (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = keyIndex - 1;
            uint256 lastIndex = map._entries.length - 1;

            // When the entry to delete is the last one, the swap operation is unnecessary. However, since this occurs
            // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.

            MapEntry storage lastEntry = map._entries[lastIndex];

            // Move the last entry to the index where the entry to delete is
            map._entries[toDeleteIndex] = lastEntry;
            // Update the index for the moved entry
            map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based

            // Delete the slot where the moved entry was stored
            map._entries.pop();

            // Delete the index for the deleted slot
            delete map._indexes[key];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function _contains(Map storage map, bytes32 key) private view returns (bool) {
        return map._indexes[key] != 0;
    }

    /**
     * @dev Returns the number of key-value pairs in the map. O(1).
     */
    function _length(Map storage map) private view returns (uint256) {
        return map._entries.length;
    }

   /**
    * @dev Returns the key-value pair stored at position `index` in the map. O(1).
    *
    * Note that there are no guarantees on the ordering of entries inside the
    * array, and it may change when more entries are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function _at(Map storage map, uint256 index) private view returns (bytes32, bytes32) {
        require(map._entries.length > index, "EnumerableMap: index out of bounds");

        MapEntry storage entry = map._entries[index];
        return (entry._key, entry._value);
    }

    /**
     * @dev Tries to returns the value associated with `key`.  O(1).
     * Does not revert if `key` is not in the map.
     */
    function _tryGet(Map storage map, bytes32 key) private view returns (bool, bytes32) {
        uint256 keyIndex = map._indexes[key];
        if (keyIndex == 0) return (false, 0); // Equivalent to contains(map, key)
        return (true, map._entries[keyIndex - 1]._value); // All indexes are 1-based
    }

    /**
     * @dev Returns the value associated with `key`.  O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function _get(Map storage map, bytes32 key) private view returns (bytes32) {
        uint256 keyIndex = map._indexes[key];
        require(keyIndex != 0, "EnumerableMap: nonexistent key"); // Equivalent to contains(map, key)
        return map._entries[keyIndex - 1]._value; // All indexes are 1-based
    }

    /**
     * @dev Same as {_get}, with a custom error message when `key` is not in the map.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {_tryGet}.
     */
    function _get(Map storage map, bytes32 key, string memory errorMessage) private view returns (bytes32) {
        uint256 keyIndex = map._indexes[key];
        require(keyIndex != 0, errorMessage); // Equivalent to contains(map, key)
        return map._entries[keyIndex - 1]._value; // All indexes are 1-based
    }

    // UintToAddressMap

    struct UintToAddressMap {
        Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) {
        return _set(map._inner, bytes32(key), bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) {
        return _remove(map._inner, bytes32(key));
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) {
        return _contains(map._inner, bytes32(key));
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(UintToAddressMap storage map) internal view returns (uint256) {
        return _length(map._inner);
    }

   /**
    * @dev Returns the element stored at position `index` in the set. O(1).
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) {
        (bytes32 key, bytes32 value) = _at(map._inner, index);
        return (uint256(key), address(uint160(uint256(value))));
    }

    /**
     * @dev Tries to returns the value associated with `key`.  O(1).
     * Does not revert if `key` is not in the map.
     *
     * _Available since v3.4._
     */
    function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) {
        (bool success, bytes32 value) = _tryGet(map._inner, bytes32(key));
        return (success, address(uint160(uint256(value))));
    }

    /**
     * @dev Returns the value associated with `key`.  O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(UintToAddressMap storage map, uint256 key) internal view returns (address) {
        return address(uint160(uint256(_get(map._inner, bytes32(key)))));
    }

    /**
     * @dev Same as {get}, with a custom error message when `key` is not in the map.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryGet}.
     */
    function get(UintToAddressMap storage map, uint256 key, string memory errorMessage) internal view returns (address) {
        return address(uint160(uint256(_get(map._inner, bytes32(key), errorMessage))));
    }
}

File 57 of 78 : Strings.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev String operations.
 */
library Strings {
    /**
     * @dev Converts a `uint256` to its ASCII `string` representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        // Inspired by OraclizeAPI's implementation - MIT licence
        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol

        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        uint256 index = digits - 1;
        temp = value;
        while (temp != 0) {
            buffer[index--] = bytes1(uint8(48 + temp % 10));
            temp /= 10;
        }
        return string(buffer);
    }
}

File 58 of 78 : IERC165.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 59 of 78 : SwapMigrator.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;

import "./interfaces/ISwap.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

/**
 * @title SwapMigrator
 * @notice This contract is responsible for migrating old USD pool liquidity to the new ones.
 * Users can use this contract to remove their liquidity from the old pools and add them to the new
 * ones with a single transaction.
 */
contract SwapMigrator {
    using SafeERC20 for IERC20;

    struct MigrationData {
        address oldPoolAddress;
        IERC20 oldPoolLPTokenAddress;
        address newPoolAddress;
        IERC20 newPoolLPTokenAddress;
        IERC20[] underlyingTokens;
    }

    MigrationData public usdPoolMigrationData;
    address public owner;

    uint256 private constant MAX_UINT256 = 2**256 - 1;

    /**
     * @notice Sets the storage variables and approves tokens to be used by the old and new swap contracts
     * @param usdData_ MigrationData struct with information about old and new USD pools
     * @param owner_ owner that is allowed to call the `rescue()` function
     */
    constructor(MigrationData memory usdData_, address owner_) public {
        // Approve old USD LP Token to be used by the old USD pool
        usdData_.oldPoolLPTokenAddress.approve(
            usdData_.oldPoolAddress,
            MAX_UINT256
        );

        // Approve USD tokens to be used by the new USD pool
        for (uint256 i = 0; i < usdData_.underlyingTokens.length; i++) {
            usdData_.underlyingTokens[i].safeApprove(
                usdData_.newPoolAddress,
                MAX_UINT256
            );
        }

        // Set storage variables
        usdPoolMigrationData = usdData_;
        owner = owner_;
    }

    /**
     * @notice Migrates old USD pool's LPToken to the new pool
     * @param amount Amount of old LPToken to migrate
     * @param minAmount Minimum amount of new LPToken to receive
     */
    function migrateUSDPool(uint256 amount, uint256 minAmount)
        external
        returns (uint256)
    {
        // Transfer old LP token from the caller
        usdPoolMigrationData.oldPoolLPTokenAddress.safeTransferFrom(
            msg.sender,
            address(this),
            amount
        );

        // Remove liquidity from the old pool and add them to the new pool
        uint256[] memory amounts = ISwap(usdPoolMigrationData.oldPoolAddress)
            .removeLiquidity(
                amount,
                new uint256[](usdPoolMigrationData.underlyingTokens.length),
                MAX_UINT256
            );
        uint256 mintedAmount = ISwap(usdPoolMigrationData.newPoolAddress)
            .addLiquidity(amounts, minAmount, MAX_UINT256);

        // Transfer new LP Token to the caller
        usdPoolMigrationData.newPoolLPTokenAddress.safeTransfer(
            msg.sender,
            mintedAmount
        );
        return mintedAmount;
    }

    /**
     * @notice Rescues any token that may be sent to this contract accidentally.
     * @param token Amount of old LPToken to migrate
     * @param to Minimum amount of new LPToken to receive
     */
    function rescue(IERC20 token, address to) external {
        require(msg.sender == owner, "is not owner");
        token.safeTransfer(to, token.balanceOf(address(this)));
    }
}

File 60 of 78 : StakeableTokenWrapper.sol
// SPDX-License-Identifier: MIT

// Generalized and adapted from https://github.com/k06a/Unipool 🙇

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

/**
 * @title StakeableTokenWrapper
 * @notice A wrapper for an ERC-20 that can be staked and withdrawn.
 * @dev In this contract, staked tokens don't do anything- instead other
 * contracts can inherit from this one to add functionality.
 */
contract StakeableTokenWrapper {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;

    uint256 public totalSupply;
    IERC20 public stakedToken;
    mapping(address => uint256) private _balances;

    event Staked(address indexed user, uint256 amount);
    event Withdrawn(address indexed user, uint256 amount);

    /**
     * @notice Creates a new StakeableTokenWrapper with given `_stakedToken` address
     * @param _stakedToken address of a token that will be used to stake
     */
    constructor(IERC20 _stakedToken) public {
        stakedToken = _stakedToken;
    }

    /**
     * @notice Read how much `account` has staked in this contract
     * @param account address of an account
     * @return amount of total staked ERC20(this.stakedToken) by `account`
     */
    function balanceOf(address account) external view returns (uint256) {
        return _balances[account];
    }

    /**
     * @notice Stakes given `amount` in this contract
     * @param amount amount of ERC20(this.stakedToken) to stake
     */
    function stake(uint256 amount) external {
        require(amount != 0, "amount == 0");
        totalSupply = totalSupply.add(amount);
        _balances[msg.sender] = _balances[msg.sender].add(amount);
        stakedToken.safeTransferFrom(msg.sender, address(this), amount);
        emit Staked(msg.sender, amount);
    }

    /**
     * @notice Withdraws given `amount` from this contract
     * @param amount amount of ERC20(this.stakedToken) to withdraw
     */
    function withdraw(uint256 amount) external {
        totalSupply = totalSupply.sub(amount);
        _balances[msg.sender] = _balances[msg.sender].sub(amount);
        stakedToken.safeTransfer(msg.sender, amount);
        emit Withdrawn(msg.sender, amount);
    }
}

File 61 of 78 : FlashLoanBorrowerExample.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "../interfaces/IFlashLoanReceiver.sol";
import "../interfaces/ISwapFlashLoan.sol";
import "hardhat/console.sol";

contract FlashLoanBorrowerExample is IFlashLoanReceiver {
    using SafeMath for uint256;

    // Typical executeOperation function should do the 3 following actions
    // 1. Check if the flashLoan was successful
    // 2. Do actions with the borrowed tokens
    // 3. Repay the debt to the `pool`
    function executeOperation(
        address pool,
        address token,
        uint256 amount,
        uint256 fee,
        bytes calldata params
    ) external override {
        // 1. Check if the flashLoan was valid
        require(
            IERC20(token).balanceOf(address(this)) >= amount,
            "flashloan is broken?"
        );

        // 2. Do actions with the borrowed token
        bytes32 paramsHash = keccak256(params);
        if (paramsHash == keccak256(bytes("dontRepayDebt"))) {
            return;
        } else if (paramsHash == keccak256(bytes("reentrancy_addLiquidity"))) {
            ISwapFlashLoan(pool).addLiquidity(
                new uint256[](0),
                0,
                block.timestamp
            );
        } else if (paramsHash == keccak256(bytes("reentrancy_swap"))) {
            ISwapFlashLoan(pool).swap(1, 0, 1e6, 0, now);
        } else if (
            paramsHash == keccak256(bytes("reentrancy_removeLiquidity"))
        ) {
            ISwapFlashLoan(pool).removeLiquidity(1e18, new uint256[](0), now);
        } else if (
            paramsHash == keccak256(bytes("reentrancy_removeLiquidityOneToken"))
        ) {
            ISwapFlashLoan(pool).removeLiquidityOneToken(1e18, 0, 1e18, now);
        }

        // 3. Payback debt
        uint256 totalDebt = amount.add(fee);
        IERC20(token).transfer(pool, totalDebt);
    }

    function flashLoan(
        ISwapFlashLoan swap,
        IERC20 token,
        uint256 amount,
        bytes memory params
    ) external {
        swap.flashLoan(address(this), token, amount, params);
    }
}

File 62 of 78 : ISwapFlashLoan.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "./ISwap.sol";

interface ISwapFlashLoan is ISwap {
    function flashLoan(
        address receiver,
        IERC20 token,
        uint256 amount,
        bytes memory params
    ) external;
}

File 63 of 78 : console.sol
// SPDX-License-Identifier: MIT
pragma solidity >= 0.4.22 <0.9.0;

library console {
	address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67);

	function _sendLogPayload(bytes memory payload) private view {
		uint256 payloadLength = payload.length;
		address consoleAddress = CONSOLE_ADDRESS;
		assembly {
			let payloadStart := add(payload, 32)
			let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0)
		}
	}

	function log() internal view {
		_sendLogPayload(abi.encodeWithSignature("log()"));
	}

	function logInt(int p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(int)", p0));
	}

	function logUint(uint p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint)", p0));
	}

	function logString(string memory p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string)", p0));
	}

	function logBool(bool p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
	}

	function logAddress(address p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address)", p0));
	}

	function logBytes(bytes memory p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes)", p0));
	}

	function logBytes1(bytes1 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0));
	}

	function logBytes2(bytes2 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0));
	}

	function logBytes3(bytes3 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0));
	}

	function logBytes4(bytes4 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0));
	}

	function logBytes5(bytes5 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0));
	}

	function logBytes6(bytes6 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0));
	}

	function logBytes7(bytes7 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0));
	}

	function logBytes8(bytes8 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0));
	}

	function logBytes9(bytes9 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0));
	}

	function logBytes10(bytes10 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0));
	}

	function logBytes11(bytes11 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0));
	}

	function logBytes12(bytes12 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0));
	}

	function logBytes13(bytes13 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0));
	}

	function logBytes14(bytes14 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0));
	}

	function logBytes15(bytes15 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0));
	}

	function logBytes16(bytes16 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0));
	}

	function logBytes17(bytes17 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0));
	}

	function logBytes18(bytes18 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0));
	}

	function logBytes19(bytes19 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0));
	}

	function logBytes20(bytes20 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0));
	}

	function logBytes21(bytes21 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0));
	}

	function logBytes22(bytes22 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0));
	}

	function logBytes23(bytes23 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0));
	}

	function logBytes24(bytes24 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0));
	}

	function logBytes25(bytes25 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0));
	}

	function logBytes26(bytes26 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0));
	}

	function logBytes27(bytes27 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0));
	}

	function logBytes28(bytes28 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0));
	}

	function logBytes29(bytes29 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0));
	}

	function logBytes30(bytes30 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0));
	}

	function logBytes31(bytes31 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0));
	}

	function logBytes32(bytes32 p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0));
	}

	function log(uint p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint)", p0));
	}

	function log(string memory p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string)", p0));
	}

	function log(bool p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
	}

	function log(address p0) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address)", p0));
	}

	function log(uint p0, uint p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1));
	}

	function log(uint p0, string memory p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1));
	}

	function log(uint p0, bool p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1));
	}

	function log(uint p0, address p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1));
	}

	function log(string memory p0, uint p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1));
	}

	function log(string memory p0, string memory p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
	}

	function log(string memory p0, bool p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1));
	}

	function log(string memory p0, address p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1));
	}

	function log(bool p0, uint p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1));
	}

	function log(bool p0, string memory p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1));
	}

	function log(bool p0, bool p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1));
	}

	function log(bool p0, address p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1));
	}

	function log(address p0, uint p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1));
	}

	function log(address p0, string memory p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1));
	}

	function log(address p0, bool p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1));
	}

	function log(address p0, address p1) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1));
	}

	function log(uint p0, uint p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2));
	}

	function log(uint p0, uint p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2));
	}

	function log(uint p0, uint p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2));
	}

	function log(uint p0, uint p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2));
	}

	function log(uint p0, string memory p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2));
	}

	function log(uint p0, string memory p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2));
	}

	function log(uint p0, string memory p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2));
	}

	function log(uint p0, string memory p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2));
	}

	function log(uint p0, bool p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2));
	}

	function log(uint p0, bool p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2));
	}

	function log(uint p0, bool p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2));
	}

	function log(uint p0, bool p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2));
	}

	function log(uint p0, address p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2));
	}

	function log(uint p0, address p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2));
	}

	function log(uint p0, address p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2));
	}

	function log(uint p0, address p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2));
	}

	function log(string memory p0, uint p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2));
	}

	function log(string memory p0, uint p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2));
	}

	function log(string memory p0, uint p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2));
	}

	function log(string memory p0, uint p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2));
	}

	function log(string memory p0, string memory p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2));
	}

	function log(string memory p0, string memory p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2));
	}

	function log(string memory p0, string memory p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2));
	}

	function log(string memory p0, string memory p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2));
	}

	function log(string memory p0, bool p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2));
	}

	function log(string memory p0, bool p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2));
	}

	function log(string memory p0, bool p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2));
	}

	function log(string memory p0, bool p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2));
	}

	function log(string memory p0, address p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2));
	}

	function log(string memory p0, address p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2));
	}

	function log(string memory p0, address p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2));
	}

	function log(string memory p0, address p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2));
	}

	function log(bool p0, uint p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2));
	}

	function log(bool p0, uint p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2));
	}

	function log(bool p0, uint p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2));
	}

	function log(bool p0, uint p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2));
	}

	function log(bool p0, string memory p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2));
	}

	function log(bool p0, string memory p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2));
	}

	function log(bool p0, string memory p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2));
	}

	function log(bool p0, string memory p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2));
	}

	function log(bool p0, bool p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2));
	}

	function log(bool p0, bool p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2));
	}

	function log(bool p0, bool p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2));
	}

	function log(bool p0, bool p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2));
	}

	function log(bool p0, address p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2));
	}

	function log(bool p0, address p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2));
	}

	function log(bool p0, address p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2));
	}

	function log(bool p0, address p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2));
	}

	function log(address p0, uint p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2));
	}

	function log(address p0, uint p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2));
	}

	function log(address p0, uint p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2));
	}

	function log(address p0, uint p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2));
	}

	function log(address p0, string memory p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2));
	}

	function log(address p0, string memory p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2));
	}

	function log(address p0, string memory p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2));
	}

	function log(address p0, string memory p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2));
	}

	function log(address p0, bool p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2));
	}

	function log(address p0, bool p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2));
	}

	function log(address p0, bool p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2));
	}

	function log(address p0, bool p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2));
	}

	function log(address p0, address p1, uint p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2));
	}

	function log(address p0, address p1, string memory p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2));
	}

	function log(address p0, address p1, bool p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2));
	}

	function log(address p0, address p1, address p2) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2));
	}

	function log(uint p0, uint p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, uint p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, string memory p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, bool p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3));
	}

	function log(uint p0, address p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, uint p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, string memory p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, bool p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3));
	}

	function log(string memory p0, address p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, uint p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, string memory p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, bool p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3));
	}

	function log(bool p0, address p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3));
	}

	function log(address p0, uint p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3));
	}

	function log(address p0, string memory p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3));
	}

	function log(address p0, bool p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, uint p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, uint p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, uint p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, uint p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, string memory p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, string memory p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, string memory p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, string memory p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, bool p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, bool p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, bool p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, bool p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, address p2, uint p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, address p2, string memory p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, address p2, bool p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3));
	}

	function log(address p0, address p1, address p2, address p3) internal view {
		_sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3));
	}

}

File 64 of 78 : TestSwapReturnValues.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "../../interfaces/ISwap.sol";
import "hardhat/console.sol";

contract TestSwapReturnValues {
    using SafeMath for uint256;

    ISwap public swap;
    IERC20 public lpToken;
    uint8 public n;

    uint256 public constant MAX_INT = 2**256 - 1;

    constructor(
        ISwap swapContract,
        IERC20 lpTokenContract,
        uint8 numOfTokens
    ) public {
        swap = swapContract;
        lpToken = lpTokenContract;
        n = numOfTokens;

        // Pre-approve tokens
        for (uint8 i; i < n; i++) {
            swap.getToken(i).approve(address(swap), MAX_INT);
        }
        lpToken.approve(address(swap), MAX_INT);
    }

    function test_swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) public {
        uint256 balanceBefore = swap.getToken(tokenIndexTo).balanceOf(
            address(this)
        );
        uint256 returnValue = swap.swap(
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            minDy,
            block.timestamp
        );
        uint256 balanceAfter = swap.getToken(tokenIndexTo).balanceOf(
            address(this)
        );

        console.log(
            "swap: Expected %s, got %s",
            balanceAfter.sub(balanceBefore),
            returnValue
        );

        require(
            returnValue == balanceAfter.sub(balanceBefore),
            "swap()'s return value does not match received amount"
        );
    }

    function test_addLiquidity(uint256[] calldata amounts, uint256 minToMint)
        public
    {
        uint256 balanceBefore = lpToken.balanceOf(address(this));
        uint256 returnValue = swap.addLiquidity(amounts, minToMint, MAX_INT);
        uint256 balanceAfter = lpToken.balanceOf(address(this));

        console.log(
            "addLiquidity: Expected %s, got %s",
            balanceAfter.sub(balanceBefore),
            returnValue
        );

        require(
            returnValue == balanceAfter.sub(balanceBefore),
            "addLiquidity()'s return value does not match minted amount"
        );
    }

    function test_removeLiquidity(uint256 amount, uint256[] memory minAmounts)
        public
    {
        uint256[] memory balanceBefore = new uint256[](n);
        uint256[] memory balanceAfter = new uint256[](n);

        for (uint8 i = 0; i < n; i++) {
            balanceBefore[i] = swap.getToken(i).balanceOf(address(this));
        }

        uint256[] memory returnValue = swap.removeLiquidity(
            amount,
            minAmounts,
            MAX_INT
        );

        for (uint8 i = 0; i < n; i++) {
            balanceAfter[i] = swap.getToken(i).balanceOf(address(this));
            console.log(
                "removeLiquidity: Expected %s, got %s",
                balanceAfter[i].sub(balanceBefore[i]),
                returnValue[i]
            );
            require(
                balanceAfter[i].sub(balanceBefore[i]) == returnValue[i],
                "removeLiquidity()'s return value does not match received amounts of tokens"
            );
        }
    }

    function test_removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount
    ) public {
        uint256 balanceBefore = lpToken.balanceOf(address(this));
        uint256 returnValue = swap.removeLiquidityImbalance(
            amounts,
            maxBurnAmount,
            MAX_INT
        );
        uint256 balanceAfter = lpToken.balanceOf(address(this));

        console.log(
            "removeLiquidityImbalance: Expected %s, got %s",
            balanceBefore.sub(balanceAfter),
            returnValue
        );

        require(
            returnValue == balanceBefore.sub(balanceAfter),
            "removeLiquidityImbalance()'s return value does not match burned lpToken amount"
        );
    }

    function test_removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount
    ) public {
        uint256 balanceBefore = swap.getToken(tokenIndex).balanceOf(
            address(this)
        );
        uint256 returnValue = swap.removeLiquidityOneToken(
            tokenAmount,
            tokenIndex,
            minAmount,
            MAX_INT
        );
        uint256 balanceAfter = swap.getToken(tokenIndex).balanceOf(
            address(this)
        );

        console.log(
            "removeLiquidityOneToken: Expected %s, got %s",
            balanceAfter.sub(balanceBefore),
            returnValue
        );

        require(
            returnValue == balanceAfter.sub(balanceBefore),
            "removeLiquidityOneToken()'s return value does not match received token amount"
        );
    }
}

File 65 of 78 : SwapUtilsGuarded.sol
// SPDX-License-Identifier: MIT

// https://etherscan.io/address/0x2b7a5a5923eca5c00c6572cf3e8e08384f563f93#code

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./LPTokenGuarded.sol";
import "../MathUtils.sol";

/**
 * @title SwapUtils library
 * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
 * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
 * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
 * Admin functions should be protected within contracts using this library.
 */
library SwapUtilsGuarded {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using MathUtils for uint256;

    /*** EVENTS ***/

    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);
    event NewWithdrawFee(uint256 newWithdrawFee);
    event RampA(
        uint256 oldA,
        uint256 newA,
        uint256 initialTime,
        uint256 futureTime
    );
    event StopRampA(uint256 currentA, uint256 time);

    struct Swap {
        // variables around the ramp management of A,
        // the amplification coefficient * n * (n - 1)
        // see https://www.curve.fi/stableswap-paper.pdf for details
        uint256 initialA;
        uint256 futureA;
        uint256 initialATime;
        uint256 futureATime;
        // fee calculation
        uint256 swapFee;
        uint256 adminFee;
        uint256 defaultWithdrawFee;
        LPTokenGuarded lpToken;
        // contract references for all tokens being pooled
        IERC20[] pooledTokens;
        // multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
        // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
        // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
        uint256[] tokenPrecisionMultipliers;
        // the pool balance of each token, in the token's precision
        // the contract's actual token balance might differ
        uint256[] balances;
        mapping(address => uint256) depositTimestamp;
        mapping(address => uint256) withdrawFeeMultiplier;
    }

    // Struct storing variables used in calculations in the
    // calculateWithdrawOneTokenDY function to avoid stack too deep errors
    struct CalculateWithdrawOneTokenDYInfo {
        uint256 d0;
        uint256 d1;
        uint256 newY;
        uint256 feePerToken;
        uint256 preciseA;
    }

    // Struct storing variables used in calculation in addLiquidity function
    // to avoid stack too deep error
    struct AddLiquidityInfo {
        uint256 d0;
        uint256 d1;
        uint256 d2;
        uint256 preciseA;
    }

    // Struct storing variables used in calculation in removeLiquidityImbalance function
    // to avoid stack too deep error
    struct RemoveLiquidityImbalanceInfo {
        uint256 d0;
        uint256 d1;
        uint256 d2;
        uint256 preciseA;
    }

    // the precision all pools tokens will be converted to
    uint8 public constant POOL_PRECISION_DECIMALS = 18;

    // the denominator used to calculate admin and LP fees. For example, an
    // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
    uint256 private constant FEE_DENOMINATOR = 10**10;

    // Max swap fee is 1% or 100bps of each swap
    uint256 public constant MAX_SWAP_FEE = 10**8;

    // Max adminFee is 100% of the swapFee
    // adminFee does not add additional fee on top of swapFee
    // Instead it takes a certain % of the swapFee. Therefore it has no impact on the
    // users but only on the earnings of LPs
    uint256 public constant MAX_ADMIN_FEE = 10**10;

    // Max withdrawFee is 1% of the value withdrawn
    // Fee will be redistributed to the LPs in the pool, rewarding
    // long term providers.
    uint256 public constant MAX_WITHDRAW_FEE = 10**8;

    // Constant value used as max loop limit
    uint256 private constant MAX_LOOP_LIMIT = 256;

    // Constant values used in ramping A calculations
    uint256 public constant A_PRECISION = 100;
    uint256 public constant MAX_A = 10**6;
    uint256 private constant MAX_A_CHANGE = 2;
    uint256 private constant MIN_RAMP_TIME = 14 days;

    /*** VIEW & PURE FUNCTIONS ***/

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter
     */
    function getA(Swap storage self) external view returns (uint256) {
        return _getA(self);
    }

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter
     */
    function _getA(Swap storage self) internal view returns (uint256) {
        return _getAPrecise(self).div(A_PRECISION);
    }

    /**
     * @notice Return A in its raw precision
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function getAPrecise(Swap storage self) external view returns (uint256) {
        return _getAPrecise(self);
    }

    /**
     * @notice Calculates and returns A based on the ramp settings
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function _getAPrecise(Swap storage self) internal view returns (uint256) {
        uint256 t1 = self.futureATime; // time when ramp is finished
        uint256 a1 = self.futureA; // final A value when ramp is finished

        if (block.timestamp < t1) {
            uint256 t0 = self.initialATime; // time when ramp is started
            uint256 a0 = self.initialA; // initial A value when ramp is started
            if (a1 > a0) {
                // a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.add(
                        a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            } else {
                // a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.sub(
                        a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            }
        } else {
            return a1;
        }
    }

    /**
     * @notice Retrieves the timestamp of last deposit made by the given address
     * @param self Swap struct to read from
     * @return timestamp of last deposit
     */
    function getDepositTimestamp(Swap storage self, address user)
        external
        view
        returns (uint256)
    {
        return self.depositTimestamp[user];
    }

    /**
     * @notice Calculate the dy, the amount of selected token that user receives and
     * the fee of withdrawing in one token
     * @param account the address that is withdrawing
     * @param tokenAmount the amount to withdraw in the pool's precision
     * @param tokenIndex which token will be withdrawn
     * @param self Swap struct to read from
     * @return the amount of token user will receive and the associated swap fee
     */
    function calculateWithdrawOneToken(
        Swap storage self,
        address account,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) public view returns (uint256, uint256) {
        uint256 dy;
        uint256 newY;

        (dy, newY) = calculateWithdrawOneTokenDY(self, tokenIndex, tokenAmount);

        // dy_0 (without fees)
        // dy, dy_0 - dy

        uint256 dySwapFee = _xp(self)[tokenIndex]
            .sub(newY)
            .div(self.tokenPrecisionMultipliers[tokenIndex])
            .sub(dy);

        dy = dy
            .mul(
                FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account))
            )
            .div(FEE_DENOMINATOR);

        return (dy, dySwapFee);
    }

    /**
     * @notice Calculate the dy of withdrawing in one token
     * @param self Swap struct to read from
     * @param tokenIndex which token will be withdrawn
     * @param tokenAmount the amount to withdraw in the pools precision
     * @return the d and the new y after withdrawing one token
     */
    function calculateWithdrawOneTokenDY(
        Swap storage self,
        uint8 tokenIndex,
        uint256 tokenAmount
    ) internal view returns (uint256, uint256) {
        require(
            tokenIndex < self.pooledTokens.length,
            "Token index out of range"
        );

        // Get the current D, then solve the stableswap invariant
        // y_i for D - tokenAmount
        uint256[] memory xp = _xp(self);
        CalculateWithdrawOneTokenDYInfo
            memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
        v.preciseA = _getAPrecise(self);
        v.d0 = getD(xp, v.preciseA);
        v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(self.lpToken.totalSupply()));

        require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");

        v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);

        uint256[] memory xpReduced = new uint256[](xp.length);

        v.feePerToken = _feePerToken(self);
        for (uint256 i = 0; i < self.pooledTokens.length; i++) {
            uint256 xpi = xp[i];
            // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
            // else dxExpected = xp[i] - (xp[i] * d1 / d0)
            // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
            xpReduced[i] = xpi.sub(
                (
                    (i == tokenIndex)
                        ? xpi.mul(v.d1).div(v.d0).sub(v.newY)
                        : xpi.sub(xpi.mul(v.d1).div(v.d0))
                ).mul(v.feePerToken).div(FEE_DENOMINATOR)
            );
        }

        uint256 dy = xpReduced[tokenIndex].sub(
            getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
        );
        dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);

        return (dy, v.newY);
    }

    /**
     * @notice Calculate the price of a token in the pool with given
     * precision-adjusted balances and a particular D.
     *
     * @dev This is accomplished via solving the invariant iteratively.
     * See the StableSwap paper and Curve.fi implementation for further details.
     *
     * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
     * x_1**2 + b*x_1 = c
     * x_1 = (x_1**2 + c) / (2*x_1 + b)
     *
     * @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
     * @param tokenIndex Index of token we are calculating for.
     * @param xp a precision-adjusted set of pool balances. Array should be
     * the same cardinality as the pool.
     * @param d the stableswap invariant
     * @return the price of the token, in the same precision as in xp
     */
    function getYD(
        uint256 a,
        uint8 tokenIndex,
        uint256[] memory xp,
        uint256 d
    ) internal pure returns (uint256) {
        uint256 numTokens = xp.length;
        require(tokenIndex < numTokens, "Token not found");

        uint256 c = d;
        uint256 s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < numTokens; i++) {
            if (i != tokenIndex) {
                s = s.add(xp[i]);
                c = c.mul(d).div(xp[i].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // c = c * D * D * D * ... overflow!
            }
        }
        c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens));

        uint256 b = s.add(d.mul(A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
     * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
     * as the pool.
     * @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
     * See the StableSwap paper for details
     * @return the invariant, at the precision of the pool
     */
    function getD(uint256[] memory xp, uint256 a)
        internal
        pure
        returns (uint256)
    {
        uint256 numTokens = xp.length;
        uint256 s;
        for (uint256 i = 0; i < numTokens; i++) {
            s = s.add(xp[i]);
        }
        if (s == 0) {
            return 0;
        }

        uint256 prevD;
        uint256 d = s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            uint256 dP = d;
            for (uint256 j = 0; j < numTokens; j++) {
                dP = dP.mul(d).div(xp[j].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // dP = dP * D * D * D * ... overflow!
            }
            prevD = d;
            d = nA.mul(s).div(A_PRECISION).add(dP.mul(numTokens)).mul(d).div(
                nA.sub(A_PRECISION).mul(d).div(A_PRECISION).add(
                    numTokens.add(1).mul(dP)
                )
            );
            if (d.within1(prevD)) {
                return d;
            }
        }

        // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
        // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
        // function which does not rely on D.
        revert("D does not converge");
    }

    /**
     * @notice Get D, the StableSwap invariant, based on self Swap struct
     * @param self Swap struct to read from
     * @return The invariant, at the precision of the pool
     */
    function getD(Swap storage self) internal view returns (uint256) {
        return getD(_xp(self), _getAPrecise(self));
    }

    /**
     * @notice Given a set of balances and precision multipliers, return the
     * precision-adjusted balances.
     *
     * @param balances an array of token balances, in their native precisions.
     * These should generally correspond with pooled tokens.
     *
     * @param precisionMultipliers an array of multipliers, corresponding to
     * the amounts in the balances array. When multiplied together they
     * should yield amounts at the pool's precision.
     *
     * @return an array of amounts "scaled" to the pool's precision
     */
    function _xp(
        uint256[] memory balances,
        uint256[] memory precisionMultipliers
    ) internal pure returns (uint256[] memory) {
        uint256 numTokens = balances.length;
        require(
            numTokens == precisionMultipliers.length,
            "Balances must match multipliers"
        );
        uint256[] memory xp = new uint256[](numTokens);
        for (uint256 i = 0; i < numTokens; i++) {
            xp[i] = balances[i].mul(precisionMultipliers[i]);
        }
        return xp;
    }

    /**
     * @notice Return the precision-adjusted balances of all tokens in the pool
     * @param self Swap struct to read from
     * @param balances array of balances to scale
     * @return balances array "scaled" to the pool's precision, allowing
     * them to be more easily compared.
     */
    function _xp(Swap storage self, uint256[] memory balances)
        internal
        view
        returns (uint256[] memory)
    {
        return _xp(balances, self.tokenPrecisionMultipliers);
    }

    /**
     * @notice Return the precision-adjusted balances of all tokens in the pool
     * @param self Swap struct to read from
     * @return the pool balances "scaled" to the pool's precision, allowing
     * them to be more easily compared.
     */
    function _xp(Swap storage self) internal view returns (uint256[] memory) {
        return _xp(self.balances, self.tokenPrecisionMultipliers);
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @param self Swap struct to read from
     * @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice(Swap storage self)
        external
        view
        returns (uint256)
    {
        uint256 d = getD(_xp(self), _getAPrecise(self));
        uint256 supply = self.lpToken.totalSupply();
        if (supply > 0) {
            return
                d.mul(10**uint256(ERC20(self.lpToken).decimals())).div(supply);
        }
        return 0;
    }

    /**
     * @notice Calculate the new balances of the tokens given the indexes of the token
     * that is swapped from (FROM) and the token that is swapped to (TO).
     * This function is used as a helper function to calculate how much TO token
     * the user should receive on swap.
     *
     * @param self Swap struct to read from
     * @param tokenIndexFrom index of FROM token
     * @param tokenIndexTo index of TO token
     * @param x the new total amount of FROM token
     * @param xp balances of the tokens in the pool
     * @return the amount of TO token that should remain in the pool
     */
    function getY(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 x,
        uint256[] memory xp
    ) internal view returns (uint256) {
        uint256 numTokens = self.pooledTokens.length;
        require(
            tokenIndexFrom != tokenIndexTo,
            "Can't compare token to itself"
        );
        require(
            tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
            "Tokens must be in pool"
        );

        uint256 a = _getAPrecise(self);
        uint256 d = getD(xp, a);
        uint256 c = d;
        uint256 s;
        uint256 nA = numTokens.mul(a);

        uint256 _x;
        for (uint256 i = 0; i < numTokens; i++) {
            if (i == tokenIndexFrom) {
                _x = x;
            } else if (i != tokenIndexTo) {
                _x = xp[i];
            } else {
                continue;
            }
            s = s.add(_x);
            c = c.mul(d).div(_x.mul(numTokens));
            // If we were to protect the division loss we would have to keep the denominator separate
            // and divide at the end. However this leads to overflow with large numTokens or/and D.
            // c = c * D * D * D * ... overflow!
        }
        c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens));
        uint256 b = s.add(d.mul(A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;

        // iterative approximation
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Externally calculates a swap between two tokens.
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx);
    }

    /**
     * @notice Internally calculates a swap between two tokens.
     *
     * @dev The caller is expected to transfer the actual amounts (dx and dy)
     * using the token contracts.
     *
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     * @return dyFee the associated fee
     */
    function _calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) internal view returns (uint256 dy, uint256 dyFee) {
        uint256[] memory xp = _xp(self);
        require(
            tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
            "Token index out of range"
        );
        uint256 x = dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]).add(
            xp[tokenIndexFrom]
        );
        uint256 y = getY(self, tokenIndexFrom, tokenIndexTo, x, xp);
        dy = xp[tokenIndexTo].sub(y).sub(1);
        dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
        dy = dy.sub(dyFee).div(self.tokenPrecisionMultipliers[tokenIndexTo]);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of
     * LP tokens
     *
     * @param account the address that is removing liquidity. required for withdraw fee calculation
     * @param amount the amount of LP tokens that would to be burned on
     * withdrawal
     * @return array of amounts of tokens user will receive
     */
    function calculateRemoveLiquidity(
        Swap storage self,
        address account,
        uint256 amount
    ) external view returns (uint256[] memory) {
        return _calculateRemoveLiquidity(self, account, amount);
    }

    function _calculateRemoveLiquidity(
        Swap storage self,
        address account,
        uint256 amount
    ) internal view returns (uint256[] memory) {
        uint256 totalSupply = self.lpToken.totalSupply();
        require(amount <= totalSupply, "Cannot exceed total supply");

        uint256 feeAdjustedAmount = amount
            .mul(
                FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account))
            )
            .div(FEE_DENOMINATOR);

        uint256[] memory amounts = new uint256[](self.pooledTokens.length);

        for (uint256 i = 0; i < self.pooledTokens.length; i++) {
            amounts[i] = self.balances[i].mul(feeAdjustedAmount).div(
                totalSupply
            );
        }
        return amounts;
    }

    /**
     * @notice Calculate the fee that is applied when the given user withdraws.
     * Withdraw fee decays linearly over 4 weeks.
     * @param user address you want to calculate withdraw fee of
     * @return current withdraw fee of the user
     */
    function calculateCurrentWithdrawFee(Swap storage self, address user)
        public
        view
        returns (uint256)
    {
        uint256 endTime = self.depositTimestamp[user].add(4 weeks);
        if (endTime > block.timestamp) {
            uint256 timeLeftover = endTime.sub(block.timestamp);
            return
                self
                    .defaultWithdrawFee
                    .mul(self.withdrawFeeMultiplier[user])
                    .mul(timeLeftover)
                    .div(4 weeks)
                    .div(FEE_DENOMINATOR);
        }
        return 0;
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param self Swap struct to read from
     * @param account address of the account depositing or withdrawing tokens
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return if deposit was true, total amount of lp token that will be minted and if
     * deposit was false, total amount of lp token that will be burned
     */
    function calculateTokenAmount(
        Swap storage self,
        address account,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256) {
        uint256 numTokens = self.pooledTokens.length;
        uint256 a = _getAPrecise(self);
        uint256 d0 = getD(_xp(self, self.balances), a);
        uint256[] memory balances1 = self.balances;
        for (uint256 i = 0; i < numTokens; i++) {
            if (deposit) {
                balances1[i] = balances1[i].add(amounts[i]);
            } else {
                balances1[i] = balances1[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
        }
        uint256 d1 = getD(_xp(self, balances1), a);
        uint256 totalSupply = self.lpToken.totalSupply();

        if (deposit) {
            return d1.sub(d0).mul(totalSupply).div(d0);
        } else {
            return
                d0.sub(d1).mul(totalSupply).div(d0).mul(FEE_DENOMINATOR).div(
                    FEE_DENOMINATOR.sub(
                        calculateCurrentWithdrawFee(self, account)
                    )
                );
        }
    }

    /**
     * @notice return accumulated amount of admin fees of the token with given index
     * @param self Swap struct to read from
     * @param index Index of the pooled token
     * @return admin balance in the token's precision
     */
    function getAdminBalance(Swap storage self, uint256 index)
        external
        view
        returns (uint256)
    {
        require(index < self.pooledTokens.length, "Token index out of range");
        return
            self.pooledTokens[index].balanceOf(address(this)).sub(
                self.balances[index]
            );
    }

    /**
     * @notice internal helper function to calculate fee per token multiplier used in
     * swap fee calculations
     * @param self Swap struct to read from
     */
    function _feePerToken(Swap storage self) internal view returns (uint256) {
        return
            self.swapFee.mul(self.pooledTokens.length).div(
                self.pooledTokens.length.sub(1).mul(4)
            );
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice swap two tokens in the pool
     * @param self Swap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        require(
            dx <= self.pooledTokens[tokenIndexFrom].balanceOf(msg.sender),
            "Cannot swap more than you own"
        );

        // Transfer tokens first to see if a fee was charged on transfer
        uint256 beforeBalance = self.pooledTokens[tokenIndexFrom].balanceOf(
            address(this)
        );
        self.pooledTokens[tokenIndexFrom].safeTransferFrom(
            msg.sender,
            address(this),
            dx
        );

        // Use the actual transferred amount for AMM math
        uint256 transferredDx = self
            .pooledTokens[tokenIndexFrom]
            .balanceOf(address(this))
            .sub(beforeBalance);

        (uint256 dy, uint256 dyFee) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            transferredDx
        );
        require(dy >= minDy, "Swap didn't result in min tokens");

        uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
            self.tokenPrecisionMultipliers[tokenIndexTo]
        );

        self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add(
            transferredDx
        );
        self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub(
            dyAdminFee
        );

        self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);

        emit TokenSwap(
            msg.sender,
            transferredDx,
            dy,
            tokenIndexFrom,
            tokenIndexTo
        );

        return dy;
    }

    /**
     * @notice Add liquidity to the pool
     * @param self Swap struct to read from and write to
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * @param merkleProof bytes32 array that will be used to prove the existence of the caller's address in the list of
     * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
     * @return amount of LP token user received
     */
    function addLiquidity(
        Swap storage self,
        uint256[] memory amounts,
        uint256 minToMint,
        bytes32[] calldata merkleProof
    ) external returns (uint256) {
        require(
            amounts.length == self.pooledTokens.length,
            "Amounts must match pooled tokens"
        );

        uint256[] memory fees = new uint256[](self.pooledTokens.length);

        // current state
        AddLiquidityInfo memory v = AddLiquidityInfo(0, 0, 0, 0);

        if (self.lpToken.totalSupply() != 0) {
            v.d0 = getD(self);
        }
        uint256[] memory newBalances = self.balances;

        for (uint256 i = 0; i < self.pooledTokens.length; i++) {
            require(
                self.lpToken.totalSupply() != 0 || amounts[i] > 0,
                "Must supply all tokens in pool"
            );

            // Transfer tokens first to see if a fee was charged on transfer
            if (amounts[i] != 0) {
                uint256 beforeBalance = self.pooledTokens[i].balanceOf(
                    address(this)
                );
                self.pooledTokens[i].safeTransferFrom(
                    msg.sender,
                    address(this),
                    amounts[i]
                );

                // Update the amounts[] with actual transfer amount
                amounts[i] = self.pooledTokens[i].balanceOf(address(this)).sub(
                    beforeBalance
                );
            }

            newBalances[i] = self.balances[i].add(amounts[i]);
        }

        // invariant after change
        v.preciseA = _getAPrecise(self);
        v.d1 = getD(_xp(self, newBalances), v.preciseA);
        require(v.d1 > v.d0, "D should increase");

        // updated to reflect fees and calculate the user's LP tokens
        v.d2 = v.d1;
        if (self.lpToken.totalSupply() != 0) {
            uint256 feePerToken = _feePerToken(self);
            for (uint256 i = 0; i < self.pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
                fees[i] = feePerToken
                    .mul(idealBalance.difference(newBalances[i]))
                    .div(FEE_DENOMINATOR);
                self.balances[i] = newBalances[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                newBalances[i] = newBalances[i].sub(fees[i]);
            }
            v.d2 = getD(_xp(self, newBalances), v.preciseA);
        } else {
            // the initial depositor doesn't pay fees
            self.balances = newBalances;
        }

        uint256 toMint;
        if (self.lpToken.totalSupply() == 0) {
            toMint = v.d1;
        } else {
            toMint = v.d2.sub(v.d0).mul(self.lpToken.totalSupply()).div(v.d0);
        }

        require(toMint >= minToMint, "Couldn't mint min requested");

        // mint the user's LP tokens
        self.lpToken.mint(msg.sender, toMint, merkleProof);

        emit AddLiquidity(
            msg.sender,
            amounts,
            fees,
            v.d1,
            self.lpToken.totalSupply()
        );

        return toMint;
    }

    /**
     * @notice Update the withdraw fee for `user`. If the user is currently
     * not providing liquidity in the pool, sets to default value. If not, recalculate
     * the starting withdraw fee based on the last deposit's time & amount relative
     * to the new deposit.
     *
     * @param self Swap struct to read from and write to
     * @param user address of the user depositing tokens
     * @param toMint amount of pool tokens to be minted
     */
    function updateUserWithdrawFee(
        Swap storage self,
        address user,
        uint256 toMint
    ) external {
        _updateUserWithdrawFee(self, user, toMint);
    }

    function _updateUserWithdrawFee(
        Swap storage self,
        address user,
        uint256 toMint
    ) internal {
        // If token is transferred to address 0 (or burned), don't update the fee.
        if (user == address(0)) {
            return;
        }
        if (self.defaultWithdrawFee == 0) {
            // If current fee is set to 0%, set multiplier to FEE_DENOMINATOR
            self.withdrawFeeMultiplier[user] = FEE_DENOMINATOR;
        } else {
            // Otherwise, calculate appropriate discount based on last deposit amount
            uint256 currentFee = calculateCurrentWithdrawFee(self, user);
            uint256 currentBalance = self.lpToken.balanceOf(user);

            // ((currentBalance * currentFee) + (toMint * defaultWithdrawFee)) * FEE_DENOMINATOR /
            // ((toMint + currentBalance) * defaultWithdrawFee)
            self.withdrawFeeMultiplier[user] = currentBalance
                .mul(currentFee)
                .add(toMint.mul(self.defaultWithdrawFee))
                .mul(FEE_DENOMINATOR)
                .div(toMint.add(currentBalance).mul(self.defaultWithdrawFee));
        }
        self.depositTimestamp[user] = block.timestamp;
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param self Swap struct to read from and write to
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     * acceptable for this burn. Useful as a front-running mitigation
     * @return amounts of tokens the user received
     */
    function removeLiquidity(
        Swap storage self,
        uint256 amount,
        uint256[] calldata minAmounts
    ) external returns (uint256[] memory) {
        require(amount <= self.lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(
            minAmounts.length == self.pooledTokens.length,
            "minAmounts must match poolTokens"
        );

        uint256[] memory amounts = _calculateRemoveLiquidity(
            self,
            msg.sender,
            amount
        );

        for (uint256 i = 0; i < amounts.length; i++) {
            require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]");
            self.balances[i] = self.balances[i].sub(amounts[i]);
            self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        self.lpToken.burnFrom(msg.sender, amount);

        emit RemoveLiquidity(msg.sender, amounts, self.lpToken.totalSupply());

        return amounts;
    }

    /**
     * @notice Remove liquidity from the pool all in one token.
     * @param self Swap struct to read from and write to
     * @param tokenAmount the amount of the lp tokens to burn
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @return amount chosen token that user received
     */
    function removeLiquidityOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount
    ) external returns (uint256) {
        uint256 totalSupply = self.lpToken.totalSupply();
        uint256 numTokens = self.pooledTokens.length;
        require(
            tokenAmount <= self.lpToken.balanceOf(msg.sender),
            ">LP.balanceOf"
        );
        require(tokenIndex < numTokens, "Token not found");

        uint256 dyFee;
        uint256 dy;

        (dy, dyFee) = calculateWithdrawOneToken(
            self,
            msg.sender,
            tokenAmount,
            tokenIndex
        );

        require(dy >= minAmount, "dy < minAmount");

        self.balances[tokenIndex] = self.balances[tokenIndex].sub(
            dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
        );
        self.lpToken.burnFrom(msg.sender, tokenAmount);
        self.pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);

        emit RemoveLiquidityOne(
            msg.sender,
            tokenAmount,
            totalSupply,
            tokenIndex,
            dy
        );

        return dy;
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances.
     *
     * @param self Swap struct to read from and write to
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @return actual amount of LP tokens burned in the withdrawal
     */
    function removeLiquidityImbalance(
        Swap storage self,
        uint256[] memory amounts,
        uint256 maxBurnAmount
    ) public returns (uint256) {
        require(
            amounts.length == self.pooledTokens.length,
            "Amounts should match pool tokens"
        );
        require(
            maxBurnAmount <= self.lpToken.balanceOf(msg.sender) &&
                maxBurnAmount != 0,
            ">LP.balanceOf"
        );

        RemoveLiquidityImbalanceInfo memory v = RemoveLiquidityImbalanceInfo(
            0,
            0,
            0,
            0
        );

        uint256 tokenSupply = self.lpToken.totalSupply();
        uint256 feePerToken = _feePerToken(self);

        uint256[] memory balances1 = self.balances;

        v.preciseA = _getAPrecise(self);
        v.d0 = getD(_xp(self), v.preciseA);
        for (uint256 i = 0; i < self.pooledTokens.length; i++) {
            balances1[i] = balances1[i].sub(
                amounts[i],
                "Cannot withdraw more than available"
            );
        }
        v.d1 = getD(_xp(self, balances1), v.preciseA);
        uint256[] memory fees = new uint256[](self.pooledTokens.length);

        for (uint256 i = 0; i < self.pooledTokens.length; i++) {
            uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
            uint256 difference = idealBalance.difference(balances1[i]);
            fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
            self.balances[i] = balances1[i].sub(
                fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
            );
            balances1[i] = balances1[i].sub(fees[i]);
        }

        v.d2 = getD(_xp(self, balances1), v.preciseA);

        uint256 tokenAmount = v.d0.sub(v.d2).mul(tokenSupply).div(v.d0);
        require(tokenAmount != 0, "Burnt amount cannot be zero");
        tokenAmount = tokenAmount.add(1).mul(FEE_DENOMINATOR).div(
            FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, msg.sender))
        );

        require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");

        self.lpToken.burnFrom(msg.sender, tokenAmount);

        for (uint256 i = 0; i < self.pooledTokens.length; i++) {
            self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        emit RemoveLiquidityImbalance(
            msg.sender,
            amounts,
            fees,
            v.d1,
            tokenSupply.sub(tokenAmount)
        );

        return tokenAmount;
    }

    /**
     * @notice withdraw all admin fees to a given address
     * @param self Swap struct to withdraw fees from
     * @param to Address to send the fees to
     */
    function withdrawAdminFees(Swap storage self, address to) external {
        for (uint256 i = 0; i < self.pooledTokens.length; i++) {
            IERC20 token = self.pooledTokens[i];
            uint256 balance = token.balanceOf(address(this)).sub(
                self.balances[i]
            );
            if (balance != 0) {
                token.safeTransfer(to, balance);
            }
        }
    }

    /**
     * @notice Sets the admin fee
     * @dev adminFee cannot be higher than 100% of the swap fee
     * @param self Swap struct to update
     * @param newAdminFee new admin fee to be applied on future transactions
     */
    function setAdminFee(Swap storage self, uint256 newAdminFee) external {
        require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high");
        self.adminFee = newAdminFee;

        emit NewAdminFee(newAdminFee);
    }

    /**
     * @notice update the swap fee
     * @dev fee cannot be higher than 1% of each swap
     * @param self Swap struct to update
     * @param newSwapFee new swap fee to be applied on future transactions
     */
    function setSwapFee(Swap storage self, uint256 newSwapFee) external {
        require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high");
        self.swapFee = newSwapFee;

        emit NewSwapFee(newSwapFee);
    }

    /**
     * @notice update the default withdraw fee. This also affects deposits made in the past as well.
     * @param self Swap struct to update
     * @param newWithdrawFee new withdraw fee to be applied
     */
    function setDefaultWithdrawFee(Swap storage self, uint256 newWithdrawFee)
        external
    {
        require(newWithdrawFee <= MAX_WITHDRAW_FEE, "Fee is too high");
        self.defaultWithdrawFee = newWithdrawFee;

        emit NewWithdrawFee(newWithdrawFee);
    }

    /**
     * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_
     * Checks if the change is too rapid, and commits the new A value only when it falls under
     * the limit range.
     * @param self Swap struct to update
     * @param futureA_ the new A to ramp towards
     * @param futureTime_ timestamp when the new A should be reached
     */
    function rampA(
        Swap storage self,
        uint256 futureA_,
        uint256 futureTime_
    ) external {
        require(
            block.timestamp >= self.initialATime.add(1 days),
            "Wait 1 day before starting ramp"
        );
        require(
            futureTime_ >= block.timestamp.add(MIN_RAMP_TIME),
            "Insufficient ramp time"
        );
        require(
            futureA_ > 0 && futureA_ < MAX_A,
            "futureA_ must be > 0 and < MAX_A"
        );

        uint256 initialAPrecise = _getAPrecise(self);
        uint256 futureAPrecise = futureA_.mul(A_PRECISION);

        if (futureAPrecise < initialAPrecise) {
            require(
                futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise,
                "futureA_ is too small"
            );
        } else {
            require(
                futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE),
                "futureA_ is too large"
            );
        }

        self.initialA = initialAPrecise;
        self.futureA = futureAPrecise;
        self.initialATime = block.timestamp;
        self.futureATime = futureTime_;

        emit RampA(
            initialAPrecise,
            futureAPrecise,
            block.timestamp,
            futureTime_
        );
    }

    /**
     * @notice Stops ramping A immediately. Once this function is called, rampA()
     * cannot be called for another 24 hours
     * @param self Swap struct to update
     */
    function stopRampA(Swap storage self) external {
        require(self.futureATime > block.timestamp, "Ramp is already stopped");
        uint256 currentA = _getAPrecise(self);

        self.initialA = currentA;
        self.futureA = currentA;
        self.initialATime = block.timestamp;
        self.futureATime = block.timestamp;

        emit StopRampA(currentA, block.timestamp);
    }
}

File 66 of 78 : LPTokenGuarded.sol
// SPDX-License-Identifier: MIT

// https://etherscan.io/address/0xC28DF698475dEC994BE00C9C9D8658A548e6304F#code

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "../interfaces/ISwapGuarded.sol";

/**
 * @title Liquidity Provider Token
 * @notice This token is an ERC20 detailed token with added capability to be minted by the owner.
 * It is used to represent user's shares when providing liquidity to swap contracts.
 */
contract LPTokenGuarded is ERC20Burnable, Ownable {
    using SafeMath for uint256;

    // Address of the swap contract that owns this LP token. When a user adds liquidity to the swap contract,
    // they receive a proportionate amount of this LPToken.
    ISwapGuarded public swap;

    // Maps user account to total number of LPToken minted by them. Used to limit minting during guarded release phase
    mapping(address => uint256) public mintedAmounts;

    /**
     * @notice Deploys LPToken contract with given name, symbol, and decimals
     * @dev the caller of this constructor will become the owner of this contract
     * @param name_ name of this token
     * @param symbol_ symbol of this token
     * @param decimals_ number of decimals this token will be based on
     */
    constructor(
        string memory name_,
        string memory symbol_,
        uint8 decimals_
    ) public ERC20(name_, symbol_) {
        _setupDecimals(decimals_);
        swap = ISwapGuarded(_msgSender());
    }

    /**
     * @notice Mints the given amount of LPToken to the recipient. During the guarded release phase, the total supply
     * and the maximum number of the tokens that a single account can mint are limited.
     * @dev only owner can call this mint function
     * @param recipient address of account to receive the tokens
     * @param amount amount of tokens to mint
     * @param merkleProof the bytes32 array data that is used to prove recipient's address exists in the merkle tree
     * stored in the allowlist contract. If the pool is not guarded, this parameter is ignored.
     */
    function mint(
        address recipient,
        uint256 amount,
        bytes32[] calldata merkleProof
    ) external onlyOwner {
        require(amount != 0, "amount == 0");

        // If the pool is in the guarded launch phase, the following checks are done to restrict deposits.
        //   1. Check if the given merkleProof corresponds to the recipient's address in the merkle tree stored in the
        //      allowlist contract. If the account has been already verified, merkleProof is ignored.
        //   2. Limit the total number of this LPToken minted to recipient as defined by the allowlist contract.
        //   3. Limit the total supply of this LPToken as defined by the allowlist contract.
        if (swap.isGuarded()) {
            IAllowlist allowlist = swap.getAllowlist();
            require(
                allowlist.verifyAddress(recipient, merkleProof),
                "Invalid merkle proof"
            );
            uint256 totalMinted = mintedAmounts[recipient].add(amount);
            require(
                totalMinted <= allowlist.getPoolAccountLimit(address(swap)),
                "account deposit limit"
            );
            require(
                totalSupply().add(amount) <=
                    allowlist.getPoolCap(address(swap)),
                "pool total supply limit"
            );
            mintedAmounts[recipient] = totalMinted;
        }
        _mint(recipient, amount);
    }

    /**
     * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including
     * minting and burning. This ensures that swap.updateUserWithdrawFees are called everytime.
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal override(ERC20) {
        super._beforeTokenTransfer(from, to, amount);
        swap.updateUserWithdrawFee(to, amount);
    }
}

File 67 of 78 : ERC20Burnable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/Context.sol";
import "./ERC20.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    using SafeMath for uint256;

    /**
     * @dev Destroys `amount` tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 amount) public virtual {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, deducting from the caller's
     * allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `amount`.
     */
    function burnFrom(address account, uint256 amount) public virtual {
        uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");

        _approve(account, _msgSender(), decreasedAllowance);
        _burn(account, amount);
    }
}

File 68 of 78 : ISwapGuarded.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IAllowlist.sol";

interface ISwapGuarded {
    // pool data view functions
    function getA() external view returns (uint256);

    function getAllowlist() external view returns (IAllowlist);

    function getToken(uint8 index) external view returns (IERC20);

    function getTokenIndex(address tokenAddress) external view returns (uint8);

    function getTokenBalance(uint8 index) external view returns (uint256);

    function getVirtualPrice() external view returns (uint256);

    function isGuarded() external view returns (bool);

    // min return calculation functions
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256);

    function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
        external
        view
        returns (uint256);

    function calculateRemoveLiquidity(uint256 amount)
        external
        view
        returns (uint256[] memory);

    function calculateRemoveLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 availableTokenAmount);

    // state modifying functions
    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    ) external returns (uint256);

    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline,
        bytes32[] calldata merkleProof
    ) external returns (uint256);

    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    ) external returns (uint256[] memory);

    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    ) external returns (uint256);

    // withdraw fee update function
    function updateUserWithdrawFee(address recipient, uint256 transferAmount)
        external;
}

File 69 of 78 : Allowlist.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/cryptography/MerkleProof.sol";
import "../interfaces/IAllowlist.sol";

/**
 * @title Allowlist
 * @notice This contract is a registry holding information about how much each swap contract should
 * contain upto. Swap.sol will rely on this contract to determine whether the pool cap is reached and
 * also whether a user's deposit limit is reached.
 */
contract Allowlist is Ownable, IAllowlist {
    using SafeMath for uint256;

    // Represents the root node of merkle tree containing a list of eligible addresses
    bytes32 public merkleRoot;
    // Maps pool address -> maximum total supply
    mapping(address => uint256) private poolCaps;
    // Maps pool address -> maximum amount of pool token mintable per account
    mapping(address => uint256) private accountLimits;
    // Maps account address -> boolean value indicating whether it has been checked and verified against the merkle tree
    mapping(address => bool) private verified;

    event PoolCap(address indexed poolAddress, uint256 poolCap);
    event PoolAccountLimit(address indexed poolAddress, uint256 accountLimit);
    event NewMerkleRoot(bytes32 merkleRoot);

    /**
     * @notice Creates this contract and sets the PoolCap of 0x0 with uint256(0x54dd1e) for
     * crude checking whether an address holds this contract.
     * @param merkleRoot_ bytes32 that represent a merkle root node. This is generated off chain with the list of
     * qualifying addresses.
     */
    constructor(bytes32 merkleRoot_) public {
        merkleRoot = merkleRoot_;

        // This value will be used as a way of crude checking whether an address holds this Allowlist contract
        // Value 0x54dd1e has no inherent meaning other than it is arbitrary value that checks for
        // user error.
        poolCaps[address(0x0)] = uint256(0x54dd1e);
        emit PoolCap(address(0x0), uint256(0x54dd1e));
        emit NewMerkleRoot(merkleRoot_);
    }

    /**
     * @notice Returns the max mintable amount of the lp token per account in given pool address.
     * @param poolAddress address of the pool
     * @return max mintable amount of the lp token per account
     */
    function getPoolAccountLimit(address poolAddress)
        external
        view
        override
        returns (uint256)
    {
        return accountLimits[poolAddress];
    }

    /**
     * @notice Returns the maximum total supply of the pool token for the given pool address.
     * @param poolAddress address of the pool
     */
    function getPoolCap(address poolAddress)
        external
        view
        override
        returns (uint256)
    {
        return poolCaps[poolAddress];
    }

    /**
     * @notice Returns true if the given account's existence has been verified against any of the past or
     * the present merkle tree. Note that if it has been verified in the past, this function will return true
     * even if the current merkle tree does not contain the account.
     * @param account the address to check if it has been verified
     * @return a boolean value representing whether the account has been verified in the past or the present merkle tree
     */
    function isAccountVerified(address account) external view returns (bool) {
        return verified[account];
    }

    /**
     * @notice Checks the existence of keccak256(account) as a node in the merkle tree inferred by the merkle root node
     * stored in this contract. Pools should use this function to check if the given address qualifies for depositing.
     * If the given account has already been verified with the correct merkleProof, this function will return true when
     * merkleProof is empty. The verified status will be overwritten if the previously verified user calls this function
     * with an incorrect merkleProof.
     * @param account address to confirm its existence in the merkle tree
     * @param merkleProof data that is used to prove the existence of given parameters. This is generated
     * during the creation of the merkle tree. Users should retrieve this data off-chain.
     * @return a boolean value that corresponds to whether the address with the proof has been verified in the past
     * or if they exist in the current merkle tree.
     */
    function verifyAddress(address account, bytes32[] calldata merkleProof)
        external
        override
        returns (bool)
    {
        if (merkleProof.length != 0) {
            // Verify the account exists in the merkle tree via the MerkleProof library
            bytes32 node = keccak256(abi.encodePacked(account));
            if (MerkleProof.verify(merkleProof, merkleRoot, node)) {
                verified[account] = true;
                return true;
            }
        }
        return verified[account];
    }

    // ADMIN FUNCTIONS

    /**
     * @notice Sets the account limit of allowed deposit amounts for the given pool
     * @param poolAddress address of the pool
     * @param accountLimit the max number of the pool token a single user can mint
     */
    function setPoolAccountLimit(address poolAddress, uint256 accountLimit)
        external
        onlyOwner
    {
        require(poolAddress != address(0x0), "0x0 is not a pool address");
        accountLimits[poolAddress] = accountLimit;
        emit PoolAccountLimit(poolAddress, accountLimit);
    }

    /**
     * @notice Sets the max total supply of LPToken for the given pool address
     * @param poolAddress address of the pool
     * @param poolCap the max total supply of the pool token
     */
    function setPoolCap(address poolAddress, uint256 poolCap)
        external
        onlyOwner
    {
        require(poolAddress != address(0x0), "0x0 is not a pool address");
        poolCaps[poolAddress] = poolCap;
        emit PoolCap(poolAddress, poolCap);
    }

    /**
     * @notice Updates the merkle root that is stored in this contract. This can only be called by
     * the owner. If more addresses are added to the list, a new merkle tree and a merkle root node should be generated,
     * and merkleRoot should be updated accordingly.
     * @param merkleRoot_ a new merkle root node that contains a list of deposit allowed addresses
     */
    function updateMerkleRoot(bytes32 merkleRoot_) external onlyOwner {
        merkleRoot = merkleRoot_;
        emit NewMerkleRoot(merkleRoot_);
    }
}

File 70 of 78 : MerkleProof.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev These functions deal with verification of Merkle trees (hash trees),
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        bytes32 computedHash = leaf;

        for (uint256 i = 0; i < proof.length; i++) {
            bytes32 proofElement = proof[i];

            if (computedHash <= proofElement) {
                // Hash(current computed hash + current element of the proof)
                computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
            } else {
                // Hash(current element of the proof + current computed hash)
                computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
            }
        }

        // Check if the computed hash (root) is equal to the provided root
        return computedHash == root;
    }
}

File 71 of 78 : SwapGuarded.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "./OwnerPausable.sol";
import "./SwapUtilsGuarded.sol";
import "../MathUtils.sol";
import "./Allowlist.sol";

/**
 * @title Swap - A StableSwap implementation in solidity.
 * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
 * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
 * in desired ratios for an exchange of the pool token that represents their share of the pool.
 * Users can burn pool tokens and withdraw their share of token(s).
 *
 * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
 * distributed to the LPs.
 *
 * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
 * stops the ratio of the tokens in the pool from changing.
 * Users can always withdraw their tokens via multi-asset withdraws.
 *
 * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's
 * deployment size.
 */
contract SwapGuarded is OwnerPausable, ReentrancyGuard {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using MathUtils for uint256;
    using SwapUtilsGuarded for SwapUtilsGuarded.Swap;

    // Struct storing data responsible for automatic market maker functionalities. In order to
    // access this data, this contract uses SwapUtils library. For more details, see SwapUtilsGuarded.sol
    SwapUtilsGuarded.Swap public swapStorage;

    // Address to allowlist contract that holds information about maximum totaly supply of lp tokens
    // and maximum mintable amount per user address. As this is immutable, this will become a constant
    // after initialization.
    IAllowlist private immutable allowlist;

    // Boolean value that notates whether this pool is guarded or not. When isGuarded is true,
    // addLiquidity function will be restricted by limits defined in allowlist contract.
    bool private guarded = true;

    // Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool.
    // getTokenIndex function also relies on this mapping to retrieve token index.
    mapping(address => uint8) private tokenIndexes;

    /*** EVENTS ***/

    // events replicated from SwapUtils to make the ABI easier for dumb
    // clients
    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);
    event NewWithdrawFee(uint256 newWithdrawFee);
    event RampA(
        uint256 oldA,
        uint256 newA,
        uint256 initialTime,
        uint256 futureTime
    );
    event StopRampA(uint256 currentA, uint256 time);

    /**
     * @notice Deploys this Swap contract with given parameters as default
     * values. This will also deploy a LPToken that represents users
     * LP position. The owner of LPToken will be this contract - which means
     * only this contract is allowed to mint new tokens.
     *
     * @param _pooledTokens an array of ERC20s this pool will accept
     * @param decimals the decimals to use for each pooled token,
     * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
     * @param lpTokenName the long-form name of the token to be deployed
     * @param lpTokenSymbol the short symbol for the token to be deployed
     * @param _a the amplification coefficient * n * (n - 1). See the
     * StableSwap paper for details
     * @param _fee default swap fee to be initialized with
     * @param _adminFee default adminFee to be initialized with
     * @param _withdrawFee default withdrawFee to be initialized with
     * @param _allowlist address of allowlist contract for guarded launch
     */
    constructor(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        uint256 _withdrawFee,
        IAllowlist _allowlist
    ) public OwnerPausable() ReentrancyGuard() {
        // Check _pooledTokens and precisions parameter
        require(_pooledTokens.length > 1, "_pooledTokens.length <= 1");
        require(_pooledTokens.length <= 32, "_pooledTokens.length > 32");
        require(
            _pooledTokens.length == decimals.length,
            "_pooledTokens decimals mismatch"
        );

        uint256[] memory precisionMultipliers = new uint256[](decimals.length);

        for (uint8 i = 0; i < _pooledTokens.length; i++) {
            if (i > 0) {
                // Check if index is already used. Check if 0th element is a duplicate.
                require(
                    tokenIndexes[address(_pooledTokens[i])] == 0 &&
                        _pooledTokens[0] != _pooledTokens[i],
                    "Duplicate tokens"
                );
            }
            require(
                address(_pooledTokens[i]) != address(0),
                "The 0 address isn't an ERC-20"
            );
            require(
                decimals[i] <= SwapUtilsGuarded.POOL_PRECISION_DECIMALS,
                "Token decimals exceeds max"
            );
            precisionMultipliers[i] =
                10 **
                    uint256(SwapUtilsGuarded.POOL_PRECISION_DECIMALS).sub(
                        uint256(decimals[i])
                    );
            tokenIndexes[address(_pooledTokens[i])] = i;
        }

        // Check _a, _fee, _adminFee, _withdrawFee, _allowlist parameters
        require(_a < SwapUtilsGuarded.MAX_A, "_a exceeds maximum");
        require(_fee < SwapUtilsGuarded.MAX_SWAP_FEE, "_fee exceeds maximum");
        require(
            _adminFee < SwapUtilsGuarded.MAX_ADMIN_FEE,
            "_adminFee exceeds maximum"
        );
        require(
            _withdrawFee < SwapUtilsGuarded.MAX_WITHDRAW_FEE,
            "_withdrawFee exceeds maximum"
        );
        require(
            _allowlist.getPoolCap(address(0x0)) == uint256(0x54dd1e),
            "Allowlist check failed"
        );

        // Initialize swapStorage struct
        swapStorage.lpToken = new LPTokenGuarded(
            lpTokenName,
            lpTokenSymbol,
            SwapUtilsGuarded.POOL_PRECISION_DECIMALS
        );
        swapStorage.pooledTokens = _pooledTokens;
        swapStorage.tokenPrecisionMultipliers = precisionMultipliers;
        swapStorage.balances = new uint256[](_pooledTokens.length);
        swapStorage.initialA = _a.mul(SwapUtilsGuarded.A_PRECISION);
        swapStorage.futureA = _a.mul(SwapUtilsGuarded.A_PRECISION);
        swapStorage.initialATime = 0;
        swapStorage.futureATime = 0;
        swapStorage.swapFee = _fee;
        swapStorage.adminFee = _adminFee;
        swapStorage.defaultWithdrawFee = _withdrawFee;

        // Initialize variables related to guarding the initial deposits
        allowlist = _allowlist;
        guarded = true;
    }

    /*** MODIFIERS ***/

    /**
     * @notice Modifier to check deadline against current timestamp
     * @param deadline latest timestamp to accept this transaction
     */
    modifier deadlineCheck(uint256 deadline) {
        require(block.timestamp <= deadline, "Deadline not met");
        _;
    }

    /*** VIEW FUNCTIONS ***/

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @return A parameter
     */
    function getA() external view returns (uint256) {
        return swapStorage.getA();
    }

    /**
     * @notice Return A in its raw precision form
     * @dev See the StableSwap paper for details
     * @return A parameter in its raw precision form
     */
    function getAPrecise() external view returns (uint256) {
        return swapStorage.getAPrecise();
    }

    /**
     * @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range.
     * @param index the index of the token
     * @return address of the token at given index
     */
    function getToken(uint8 index) public view returns (IERC20) {
        require(index < swapStorage.pooledTokens.length, "Out of range");
        return swapStorage.pooledTokens[index];
    }

    /**
     * @notice Return the index of the given token address. Reverts if no matching
     * token is found.
     * @param tokenAddress address of the token
     * @return the index of the given token address
     */
    function getTokenIndex(address tokenAddress) external view returns (uint8) {
        uint8 index = tokenIndexes[tokenAddress];
        require(
            address(getToken(index)) == tokenAddress,
            "Token does not exist"
        );
        return index;
    }

    /**
     * @notice Reads and returns the address of the allowlist that is set during deployment of this contract
     * @return the address of the allowlist contract casted to the IAllowlist interface
     */
    function getAllowlist() external view returns (IAllowlist) {
        return allowlist;
    }

    /**
     * @notice Return timestamp of last deposit of given address
     * @return timestamp of the last deposit made by the given address
     */
    function getDepositTimestamp(address user) external view returns (uint256) {
        return swapStorage.getDepositTimestamp(user);
    }

    /**
     * @notice Return current balance of the pooled token at given index
     * @param index the index of the token
     * @return current balance of the pooled token at given index with token's native precision
     */
    function getTokenBalance(uint8 index) external view returns (uint256) {
        require(index < swapStorage.pooledTokens.length, "Index out of range");
        return swapStorage.balances[index];
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice() external view returns (uint256) {
        return swapStorage.getVirtualPrice();
    }

    /**
     * @notice Calculate amount of tokens you receive on swap
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell. If the token charges
     * a fee on transfers, use the amount that gets transferred after the fee.
     * @return amount of tokens the user will receive
     */
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256) {
        return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx);
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param account address that is depositing or withdrawing tokens
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return token amount the user will receive
     */
    function calculateTokenAmount(
        address account,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256) {
        return swapStorage.calculateTokenAmount(account, amounts, deposit);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of LP tokens
     * @param account the address that is withdrawing tokens
     * @param amount the amount of LP tokens that would be burned on withdrawal
     * @return array of token balances that the user will receive
     */
    function calculateRemoveLiquidity(address account, uint256 amount)
        external
        view
        returns (uint256[] memory)
    {
        return swapStorage.calculateRemoveLiquidity(account, amount);
    }

    /**
     * @notice Calculate the amount of underlying token available to withdraw
     * when withdrawing via only single token
     * @param account the address that is withdrawing tokens
     * @param tokenAmount the amount of LP token to burn
     * @param tokenIndex index of which token will be withdrawn
     * @return availableTokenAmount calculated amount of underlying token
     * available to withdraw
     */
    function calculateRemoveLiquidityOneToken(
        address account,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 availableTokenAmount) {
        (availableTokenAmount, ) = swapStorage.calculateWithdrawOneToken(
            account,
            tokenAmount,
            tokenIndex
        );
    }

    /**
     * @notice Calculate the fee that is applied when the given user withdraws. The withdraw fee
     * decays linearly over period of 4 weeks. For example, depositing and withdrawing right away
     * will charge you the full amount of withdraw fee. But withdrawing after 4 weeks will charge you
     * no additional fees.
     * @dev returned value should be divided by FEE_DENOMINATOR to convert to correct decimals
     * @param user address you want to calculate withdraw fee of
     * @return current withdraw fee of the user
     */
    function calculateCurrentWithdrawFee(address user)
        external
        view
        returns (uint256)
    {
        return swapStorage.calculateCurrentWithdrawFee(user);
    }

    /**
     * @notice This function reads the accumulated amount of admin fees of the token with given index
     * @param index Index of the pooled token
     * @return admin's token balance in the token's precision
     */
    function getAdminBalance(uint256 index) external view returns (uint256) {
        return swapStorage.getAdminBalance(index);
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice Swap two tokens using this pool
     * @param tokenIndexFrom the token the user wants to swap from
     * @param tokenIndexTo the token the user wants to swap to
     * @param dx the amount of tokens the user wants to swap from
     * @param minDy the min amount the user would like to receive, or revert.
     * @param deadline latest timestamp to accept this transaction
     */
    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    )
        external
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy);
    }

    /**
     * @notice Add liquidity to the pool with given amounts during guarded launch phase. Only users
     * with valid address and proof can successfully call this function. When this function is called
     * after the guarded release phase is over, the merkleProof is ignored.
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @param merkleProof data generated when constructing the allowlist merkle tree. Users can
     * get this data off chain. Even if the address is in the allowlist, users must include
     * a valid proof for this call to succeed. If the pool is no longer in the guarded release phase,
     * this parameter is ignored.
     * @return amount of LP token user minted and received
     */
    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline,
        bytes32[] calldata merkleProof
    )
        external
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.addLiquidity(amounts, minToMint, merkleProof);
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     *        acceptable for this burn. Useful as a front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amounts of tokens user received
     */
    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    ) external nonReentrant deadlineCheck(deadline) returns (uint256[] memory) {
        return swapStorage.removeLiquidity(amount, minAmounts);
    }

    /**
     * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param tokenAmount the amount of the token you want to receive
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @param deadline latest timestamp to accept this transaction
     * @return amount of chosen token user received
     */
    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    )
        external
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            swapStorage.removeLiquidityOneToken(
                tokenAmount,
                tokenIndex,
                minAmount
            );
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP tokens burned
     */
    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    )
        external
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount);
    }

    /*** ADMIN FUNCTIONS ***/

    /**
     * @notice Updates the user withdraw fee. This function can only be called by
     * the pool token. Should be used to update the withdraw fee on transfer of pool tokens.
     * Transferring your pool token will reset the 4 weeks period. If the recipient is already
     * holding some pool tokens, the withdraw fee will be discounted in respective amounts.
     * @param recipient address of the recipient of pool token
     * @param transferAmount amount of pool token to transfer
     */
    function updateUserWithdrawFee(address recipient, uint256 transferAmount)
        external
    {
        require(
            msg.sender == address(swapStorage.lpToken),
            "Only callable by pool token"
        );
        swapStorage.updateUserWithdrawFee(recipient, transferAmount);
    }

    /**
     * @notice Withdraw all admin fees to the contract owner
     */
    function withdrawAdminFees() external onlyOwner {
        swapStorage.withdrawAdminFees(owner());
    }

    /**
     * @notice Update the admin fee. Admin fee takes portion of the swap fee.
     * @param newAdminFee new admin fee to be applied on future transactions
     */
    function setAdminFee(uint256 newAdminFee) external onlyOwner {
        swapStorage.setAdminFee(newAdminFee);
    }

    /**
     * @notice Update the swap fee to be applied on swaps
     * @param newSwapFee new swap fee to be applied on future transactions
     */
    function setSwapFee(uint256 newSwapFee) external onlyOwner {
        swapStorage.setSwapFee(newSwapFee);
    }

    /**
     * @notice Update the withdraw fee. This fee decays linearly over 4 weeks since
     * user's last deposit.
     * @param newWithdrawFee new withdraw fee to be applied on future deposits
     */
    function setDefaultWithdrawFee(uint256 newWithdrawFee) external onlyOwner {
        swapStorage.setDefaultWithdrawFee(newWithdrawFee);
    }

    /**
     * @notice Start ramping up or down A parameter towards given futureA and futureTime
     * Checks if the change is too rapid, and commits the new A value only when it falls under
     * the limit range.
     * @param futureA the new A to ramp towards
     * @param futureTime timestamp when the new A should be reached
     */
    function rampA(uint256 futureA, uint256 futureTime) external onlyOwner {
        swapStorage.rampA(futureA, futureTime);
    }

    /**
     * @notice Stop ramping A immediately. Reverts if ramp A is already stopped.
     */
    function stopRampA() external onlyOwner {
        swapStorage.stopRampA();
    }

    /**
     * @notice Disables the guarded launch phase, removing any limits on deposit amounts and addresses
     */
    function disableGuard() external onlyOwner {
        guarded = false;
    }

    /**
     * @notice Reads and returns current guarded status of the pool
     * @return guarded_ boolean value indicating whether the deposits should be guarded
     */
    function isGuarded() external view returns (bool) {
        return guarded;
    }
}

File 72 of 78 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor () internal {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 73 of 78 : OwnerPausable.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";

/**
 * @title OwnerPausable
 * @notice An ownable contract allows the owner to pause and unpause the
 * contract without a delay.
 * @dev Only methods using the provided modifiers will be paused.
 */
contract OwnerPausable is Ownable, Pausable {
    /**
     * @notice Pause the contract. Revert if already paused.
     */
    function pause() external onlyOwner {
        Pausable._pause();
    }

    /**
     * @notice Unpause the contract. Revert if already unpaused.
     */
    function unpause() external onlyOwner {
        Pausable._unpause();
    }
}

File 74 of 78 : Pausable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor () internal {
        _paused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        require(!paused(), "Pausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        require(paused(), "Pausable: not paused");
        _;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 75 of 78 : GenericERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

/**
 * @title Generic ERC20 token
 * @notice This contract simulates a generic ERC20 token that is mintable and burnable.
 */
contract GenericERC20 is ERC20, Ownable {
    /**
     * @notice Deploy this contract with given name, symbol, and decimals
     * @dev the caller of this constructor will become the owner of this contract
     * @param name_ name of this token
     * @param symbol_ symbol of this token
     * @param decimals_ number of decimals this token will be based on
     */
    constructor(
        string memory name_,
        string memory symbol_,
        uint8 decimals_
    ) public ERC20(name_, symbol_) {
        _setupDecimals(decimals_);
    }

    /**
     * @notice Mints given amount of tokens to recipient
     * @dev only owner can call this mint function
     * @param recipient address of account to receive the tokens
     * @param amount amount of tokens to mint
     */
    function mint(address recipient, uint256 amount) external onlyOwner {
        require(amount != 0, "amount == 0");
        _mint(recipient, amount);
    }
}

File 76 of 78 : BaseBoringBatchable.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;

// solhint-disable avoid-low-level-calls
// solhint-disable no-inline-assembly

// Audit on 5-Jan-2021 by Keno and BoringCrypto
// WARNING!!!
// Combining BoringBatchable with msg.value can cause double spending issues
// https://www.paradigm.xyz/2021/08/two-rights-might-make-a-wrong/

contract BaseBoringBatchable {
    /// @dev Helper function to extract a useful revert message from a failed call.
    /// If the returned data is malformed or not correctly abi encoded then this call can fail itself.
    function _getRevertMsg(bytes memory _returnData)
        internal
        pure
        returns (string memory)
    {
        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
        if (_returnData.length < 68) return "Transaction reverted silently";

        assembly {
            // Slice the sighash.
            _returnData := add(_returnData, 0x04)
        }
        return abi.decode(_returnData, (string)); // All that remains is the revert string
    }

    /// @notice Allows batched call to self (this contract).
    /// @param calls An array of inputs for each call.
    /// @param revertOnFail If True then reverts after a failed call and stops doing further calls.
    // F1: External is ok here because this is the batch function, adding it to a batch makes no sense
    // F2: Calls in the batch may be payable, delegatecall operates in the same context, so each call in the batch has access to msg.value
    // C3: The length of the loop is fully under user control, so can't be exploited
    // C7: Delegatecall is only used on the same contract, so it's safe
    function batch(bytes[] calldata calls, bool revertOnFail) external payable {
        for (uint256 i = 0; i < calls.length; i++) {
            (bool success, bytes memory result) = address(this).delegatecall(
                calls[i]
            );
            if (!success && revertOnFail) {
                revert(_getRevertMsg(result));
            }
        }
    }
}

File 77 of 78 : MetaSwap.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "../Swap.sol";
import "./MetaSwapUtils.sol";

/**
 * @title MetaSwap - A StableSwap implementation in solidity.
 * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins)
 * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens
 * in desired ratios for an exchange of the pool token that represents their share of the pool.
 * Users can burn pool tokens and withdraw their share of token(s).
 *
 * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets
 * distributed to the LPs.
 *
 * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which
 * stops the ratio of the tokens in the pool from changing.
 * Users can always withdraw their tokens via multi-asset withdraws.
 *
 * MetaSwap is a modified version of Swap that allows Swap's LP token to be utilized in pooling with other tokens.
 * As an example, if there is a Swap pool consisting of [DAI, USDC, USDT], then a MetaSwap pool can be created
 * with [sUSD, BaseSwapLPToken] to allow trades between either the LP token or the underlying tokens and sUSD.
 * Note that when interacting with MetaSwap, users cannot deposit or withdraw via underlying tokens. In that case,
 * `MetaSwapDeposit.sol` can be additionally deployed to allow interacting with unwrapped representations of the tokens.
 *
 * @dev Most of the logic is stored as a library `MetaSwapUtils` for the sake of reducing contract's
 * deployment size.
 */
contract MetaSwap is Swap {
    using MetaSwapUtils for SwapUtils.Swap;

    MetaSwapUtils.MetaSwap public metaSwapStorage;

    uint256 constant MAX_UINT256 = 2**256 - 1;

    /*** EVENTS ***/

    // events replicated from SwapUtils to make the ABI easier for dumb
    // clients
    event TokenSwapUnderlying(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );

    /**
     * @notice Get the virtual price, to help calculate profit
     * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice()
        external
        view
        virtual
        override
        returns (uint256)
    {
        return MetaSwapUtils.getVirtualPrice(swapStorage, metaSwapStorage);
    }

    /**
     * @notice Calculate amount of tokens you receive on swap
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell. If the token charges
     * a fee on transfers, use the amount that gets transferred after the fee.
     * @return amount of tokens the user will receive
     */
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view virtual override returns (uint256) {
        return
            MetaSwapUtils.calculateSwap(
                swapStorage,
                metaSwapStorage,
                tokenIndexFrom,
                tokenIndexTo,
                dx
            );
    }

    /**
     * @notice Calculate amount of tokens you receive on swap. For this function,
     * the token indices are flattened out so that underlying tokens are represented.
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell. If the token charges
     * a fee on transfers, use the amount that gets transferred after the fee.
     * @return amount of tokens the user will receive
     */
    function calculateSwapUnderlying(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view virtual returns (uint256) {
        return
            MetaSwapUtils.calculateSwapUnderlying(
                swapStorage,
                metaSwapStorage,
                tokenIndexFrom,
                tokenIndexTo,
                dx
            );
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return token amount the user will receive
     */
    function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
        external
        view
        virtual
        override
        returns (uint256)
    {
        return
            MetaSwapUtils.calculateTokenAmount(
                swapStorage,
                metaSwapStorage,
                amounts,
                deposit
            );
    }

    /**
     * @notice Calculate the amount of underlying token available to withdraw
     * when withdrawing via only single token
     * @param tokenAmount the amount of LP token to burn
     * @param tokenIndex index of which token will be withdrawn
     * @return availableTokenAmount calculated amount of underlying token
     * available to withdraw
     */
    function calculateRemoveLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view virtual override returns (uint256) {
        return
            MetaSwapUtils.calculateWithdrawOneToken(
                swapStorage,
                metaSwapStorage,
                tokenAmount,
                tokenIndex
            );
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice This overrides Swap's initialize function to prevent initializing
     * without the address of the base Swap contract.
     *
     * @param _pooledTokens an array of ERC20s this pool will accept
     * @param decimals the decimals to use for each pooled token,
     * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
     * @param lpTokenName the long-form name of the token to be deployed
     * @param lpTokenSymbol the short symbol for the token to be deployed
     * @param _a the amplification coefficient * n * (n - 1). See the
     * StableSwap paper for details
     * @param _fee default swap fee to be initialized with
     * @param _adminFee default adminFee to be initialized with
     */
    function initialize(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress
    ) public virtual override initializer {
        revert("use initializeMetaSwap() instead");
    }

    /**
     * @notice Initializes this MetaSwap contract with the given parameters.
     * MetaSwap uses an existing Swap pool to expand the available liquidity.
     * _pooledTokens array should contain the base Swap pool's LP token as
     * the last element. For example, if there is a Swap pool consisting of
     * [DAI, USDC, USDT]. Then a MetaSwap pool can be created with [sUSD, BaseSwapLPToken]
     * as _pooledTokens.
     *
     * This will also deploy the LPToken that represents users'
     * LP position. The owner of LPToken will be this contract - which means
     * only this contract is allowed to mint new tokens.
     *
     * @param _pooledTokens an array of ERC20s this pool will accept. The last
     * element must be an existing Swap pool's LP token's address.
     * @param decimals the decimals to use for each pooled token,
     * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS
     * @param lpTokenName the long-form name of the token to be deployed
     * @param lpTokenSymbol the short symbol for the token to be deployed
     * @param _a the amplification coefficient * n * (n - 1). See the
     * StableSwap paper for details
     * @param _fee default swap fee to be initialized with
     * @param _adminFee default adminFee to be initialized with
     */
    function initializeMetaSwap(
        IERC20[] memory _pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 _a,
        uint256 _fee,
        uint256 _adminFee,
        address lpTokenTargetAddress,
        ISwap baseSwap
    ) external virtual initializer {
        Swap.initialize(
            _pooledTokens,
            decimals,
            lpTokenName,
            lpTokenSymbol,
            _a,
            _fee,
            _adminFee,
            lpTokenTargetAddress
        );

        // MetaSwap initializer
        metaSwapStorage.baseSwap = baseSwap;
        metaSwapStorage.baseVirtualPrice = baseSwap.getVirtualPrice();
        metaSwapStorage.baseCacheLastUpdated = block.timestamp;

        // Read all tokens that belong to baseSwap
        {
            uint8 i;
            for (; i < 32; i++) {
                try baseSwap.getToken(i) returns (IERC20 token) {
                    metaSwapStorage.baseTokens.push(token);
                    token.safeApprove(address(baseSwap), MAX_UINT256);
                } catch {
                    break;
                }
            }
            require(i > 1, "baseSwap must pool at least 2 tokens");
        }

        // Check the last element of _pooledTokens is owned by baseSwap
        IERC20 baseLPToken = _pooledTokens[_pooledTokens.length - 1];
        require(
            LPToken(address(baseLPToken)).owner() == address(baseSwap),
            "baseLPToken is not owned by baseSwap"
        );

        // Pre-approve the baseLPToken to be used by baseSwap
        baseLPToken.safeApprove(address(baseSwap), MAX_UINT256);
    }

    /**
     * @notice Swap two tokens using this pool
     * @param tokenIndexFrom the token the user wants to swap from
     * @param tokenIndexTo the token the user wants to swap to
     * @param dx the amount of tokens the user wants to swap from
     * @param minDy the min amount the user would like to receive, or revert.
     * @param deadline latest timestamp to accept this transaction
     */
    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    )
        external
        virtual
        override
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            MetaSwapUtils.swap(
                swapStorage,
                metaSwapStorage,
                tokenIndexFrom,
                tokenIndexTo,
                dx,
                minDy
            );
    }

    /**
     * @notice Swap two tokens using this pool and the base pool.
     * @param tokenIndexFrom the token the user wants to swap from
     * @param tokenIndexTo the token the user wants to swap to
     * @param dx the amount of tokens the user wants to swap from
     * @param minDy the min amount the user would like to receive, or revert.
     * @param deadline latest timestamp to accept this transaction
     */
    function swapUnderlying(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    )
        external
        virtual
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            MetaSwapUtils.swapUnderlying(
                swapStorage,
                metaSwapStorage,
                tokenIndexFrom,
                tokenIndexTo,
                dx,
                minDy
            );
    }

    /**
     * @notice Add liquidity to the pool with the given amounts of tokens
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP token user minted and received
     */
    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    )
        external
        virtual
        override
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            MetaSwapUtils.addLiquidity(
                swapStorage,
                metaSwapStorage,
                amounts,
                minToMint
            );
    }

    /**
     * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param tokenAmount the amount of the token you want to receive
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @param deadline latest timestamp to accept this transaction
     * @return amount of chosen token user received
     */
    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    )
        external
        virtual
        override
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            MetaSwapUtils.removeLiquidityOneToken(
                swapStorage,
                metaSwapStorage,
                tokenAmount,
                tokenIndex,
                minAmount
            );
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances. Withdraw fee that decays linearly
     * over period of 4 weeks since last deposit will apply.
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @param deadline latest timestamp to accept this transaction
     * @return amount of LP tokens burned
     */
    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    )
        external
        virtual
        override
        nonReentrant
        whenNotPaused
        deadlineCheck(deadline)
        returns (uint256)
    {
        return
            MetaSwapUtils.removeLiquidityImbalance(
                swapStorage,
                metaSwapStorage,
                amounts,
                maxBurnAmount
            );
    }
}

File 78 of 78 : TestMathUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "../../MathUtils.sol";

contract TestMathUtils {
    using MathUtils for uint256;

    function difference(uint256 a, uint256 b) public pure returns (uint256) {
        return a.difference(b);
    }

    function within1(uint256 a, uint256 b) public pure returns (bool) {
        return a.within1(b);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldPoolAddress","type":"address"},{"components":[{"internalType":"address","name":"newPoolAddress","type":"address"},{"internalType":"contract IERC20","name":"oldPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20","name":"newPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"indexed":false,"internalType":"struct GeneralizedSwapMigrator.MigrationData","name":"mData","type":"tuple"}],"name":"AddMigrationData","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"migrator","type":"address"},{"indexed":true,"internalType":"address","name":"oldPoolAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldLPTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newLPTokenAmount","type":"uint256"}],"name":"Migrate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"address","name":"oldPoolAddress","type":"address"},{"components":[{"internalType":"address","name":"newPoolAddress","type":"address"},{"internalType":"contract IERC20","name":"oldPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20","name":"newPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"internalType":"struct GeneralizedSwapMigrator.MigrationData","name":"mData","type":"tuple"},{"internalType":"bool","name":"overwrite","type":"bool"}],"name":"addMigrationData","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"calls","type":"bytes[]"},{"internalType":"bool","name":"revertOnFail","type":"bool"}],"name":"batch","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"oldPoolAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minAmount","type":"uint256"}],"name":"migrate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"migrationMap","outputs":[{"internalType":"address","name":"newPoolAddress","type":"address"},{"internalType":"contract IERC20","name":"oldPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20","name":"newPoolLPTokenAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"rescue","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b50600061001b61006a565b600080546001600160a01b0319166001600160a01b0383169081178255604051929350917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908290a35061006e565b3390565b611c3b8061007d6000396000f3fe60806040526004361061007b5760003560e01c8063d2423b511161004e578063d2423b5114610102578063e36ad77e14610115578063f2fde38b14610144578063fc22d0e5146101645761007b565b80634fdf5d1d146100805780636f731330146100a2578063715018a6146100c25780638da5cb5b146100d7575b600080fd5b34801561008c57600080fd5b506100a061009b366004611484565b610191565b005b3480156100ae57600080fd5b506100a06100bd366004611241565b61026e565b3480156100ce57600080fd5b506100a06107a4565b3480156100e357600080fd5b506100ec610845565b6040516100f991906115d3565b60405180910390f35b6100a061011036600461133c565b610854565b34801561012157600080fd5b50610135610130366004611225565b610917565b6040516100f993929190611625565b34801561015057600080fd5b506100a061015f366004611225565b610948565b34801561017057600080fd5b5061018461017f366004611308565b610a20565b6040516100f99190611ab4565b610199610d21565b6001600160a01b03166101aa610845565b6001600160a01b0316146101d95760405162461bcd60e51b81526004016101d09061189b565b60405180910390fd5b61026a81836001600160a01b03166370a08231306040518263ffffffff1660e01b815260040161020991906115d3565b60206040518083038186803b15801561022157600080fd5b505afa158015610235573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102599190611548565b6001600160a01b0385169190610d25565b5050565b610276610d21565b6001600160a01b0316610287610845565b6001600160a01b0316146102ad5760405162461bcd60e51b81526004016101d09061189b565b806102ee576001600160a01b038381166000908152600160208190526040909120015416156102ee5760405162461bcd60e51b81526004016101d09061183e565b60208201516001600160a01b03166103185760405162461bcd60e51b81526004016101d0906118d0565b60408201516001600160a01b03166103425760405162461bcd60e51b81526004016101d0906117d0565b60005b60208160ff16101561057c576040517f82b866000000000000000000000000000000000000000000000000000000000081526000906001600160a01b038616906382b8660090610399908590600401611af4565b60206040518083038186803b1580156103b157600080fd5b505afa9250505080156103e1575060408051601f3d908101601f191682019092526103de91810190611468565b60015b6104105760008260ff16116104085760405162461bcd60e51b81526004016101d090611716565b506000610413565b90505b83516040517f82b866000000000000000000000000000000000000000000000000000000000081526001600160a01b03909116906382b866009061045b908590600401611af4565b60206040518083038186803b15801561047357600080fd5b505afa9250505080156104a3575060408051601f3d908101601f191682019092526104a091810190611468565b60015b61050a5760008260ff16116104ca5760405162461bcd60e51b81526004016101d090611716565b6001600160a01b0381161580156104e857508360600151518260ff16145b6105045760405162461bcd60e51b81526004016101d090611807565b5061057c565b806001600160a01b0316826001600160a01b0316148015610556575084606001518360ff168151811061053957fe5b60200260200101516001600160a01b0316826001600160a01b0316145b6105725760405162461bcd60e51b81526004016101d090611807565b5050600101610345565b506001600160a01b03808416600090815260016020818152604092839020865181549086167fffffffffffffffffffffffff000000000000000000000000000000000000000091821617825582880151938201805494871694821694909417909355928601516002840180549190951692169190911790925560608401518051859361060f9260038501929101906110b8565b50505060208201516040517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b039091169063095ea7b39061067f9086907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90600401611648565b602060405180830381600087803b15801561069957600080fd5b505af11580156106ad573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d1919061144c565b5060005b82606001515181101561075d5761071c83600001516000856060015184815181106106fc57fe5b60200260200101516001600160a01b0316610dad9092919063ffffffff16565b61075583600001517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff856060015184815181106106fc57fe5b6001016106d5565b50826001600160a01b03167f3a4863f22c4536b6b3a7e8989396b0b2f9c10de870d877ec333df6cfec568d30836040516107979190611a2f565b60405180910390a2505050565b6107ac610d21565b6001600160a01b03166107bd610845565b6001600160a01b0316146107e35760405162461bcd60e51b81526004016101d09061189b565b600080546040516001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055565b6000546001600160a01b031690565b60005b8281101561091157600060603086868581811061087057fe5b90506020028101906108829190611b02565b6040516108909291906115a7565b600060405180830381855af49150503d80600081146108cb576040519150601f19603f3d011682016040523d82523d6000602084013e6108d0565b606091505b5091509150811580156108e05750835b15610907576108ee81610e89565b60405162461bcd60e51b81526004016101d09190611686565b5050600101610857565b50505050565b60016020819052600091825260409091208054918101546002909101546001600160a01b0392831692918216911683565b610950610d21565b6001600160a01b0316610961610845565b6001600160a01b0316146109875760405162461bcd60e51b81526004016101d09061189b565b6001600160a01b0381166109ad5760405162461bcd60e51b81526004016101d0906116b9565b600080546040516001600160a01b03808516939216917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b6000610a2a611135565b6001600160a01b0380861660009081526001602081815260409283902083516080810185528154861681529281015485168383015260028101549094168284015260038401805484518184028101840190955280855292949360608601939092830182828015610ac357602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610aa5575b5050509190925250505060208101519091506001600160a01b0316610afa5760405162461bcd60e51b81526004016101d0906119f8565b6020810151610b14906001600160a01b0316333087610ef1565b6060856001600160a01b03166331cd52b08684606001515167ffffffffffffffff81118015610b4257600080fd5b50604051908082528060200260200182016040528015610b6c578160200160208202803683370190505b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610bac93929190611abd565b600060405180830381600087803b158015610bc657600080fd5b505af1158015610bda573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610c0291908101906113bc565b9050600082600001516001600160a01b0316634d49e87d83877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610c5a93929190611661565b602060405180830381600087803b158015610c7457600080fd5b505af1158015610c88573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cac9190611548565b6040840151909150610cc8906001600160a01b03163383610d25565b866001600160a01b0316336001600160a01b03167fd616b8856fa5febbdb06f07dd8d624380d02864619f3b796002f43bc36a4d1bc8884604051610d0d929190611ae6565b60405180910390a3925050505b9392505050565b3390565b610da88363a9059cbb60e01b8484604051602401610d44929190611648565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152610f12565b505050565b801580610e4e57506040517fdd62ed3e0000000000000000000000000000000000000000000000000000000081526001600160a01b0384169063dd62ed3e90610dfc90309086906004016115e7565b60206040518083038186803b158015610e1457600080fd5b505afa158015610e28573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e4c9190611548565b155b610e6a5760405162461bcd60e51b81526004016101d09061199b565b610da88363095ea7b360e01b8484604051602401610d44929190611648565b6060604482511015610ecf575060408051808201909152601d81527f5472616e73616374696f6e2072657665727465642073696c656e746c790000006020820152610eec565b60048201915081806020019051810190610ee991906114bc565b90505b919050565b610911846323b872dd60e01b858585604051602401610d4493929190611601565b6060610f67826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316610fa19092919063ffffffff16565b805190915015610da85780806020019051810190610f85919061144c565b610da85760405162461bcd60e51b81526004016101d09061193e565b6060610fb08484600085610fb8565b949350505050565b606082471015610fda5760405162461bcd60e51b81526004016101d090611773565b610fe385611079565b610fff5760405162461bcd60e51b81526004016101d090611907565b60006060866001600160a01b0316858760405161101c91906115b7565b60006040518083038185875af1925050503d8060008114611059576040519150601f19603f3d011682016040523d82523d6000602084013e61105e565b606091505b509150915061106e82828661107f565b979650505050505050565b3b151590565b6060831561108e575081610d1a565b82511561109e5782518084602001fd5b8160405162461bcd60e51b81526004016101d09190611686565b828054828255906000526020600020908101928215611125579160200282015b8281111561112557825182547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b039091161782556020909201916001909101906110d8565b5061113192915061115b565b5090565b604080516080810182526000808252602082018190529181019190915260608082015290565b5b808211156111315780547fffffffffffffffffffffffff000000000000000000000000000000000000000016815560010161115c565b803561119d81611bdf565b92915050565b600082601f8301126111b3578081fd5b81356111c66111c182611b93565b611b6c565b8181529150602080830190848101818402860182018710156111e757600080fd5b60005b8481101561120f5781356111fd81611bdf565b845292820192908201906001016111ea565b505050505092915050565b803561119d81611bf7565b600060208284031215611236578081fd5b8135610d1a81611bdf565b600080600060608486031215611255578182fd5b833561126081611bdf565b9250602084013567ffffffffffffffff8082111561127c578384fd5b908501906080828803121561128f578384fd5b6112996080611b6c565b6112a38884611192565b81526112b28860208501611192565b60208201526112c48860408501611192565b60408201526060830135828111156112da578586fd5b6112e6898286016111a3565b6060830152508094505050506112ff856040860161121a565b90509250925092565b60008060006060848603121561131c578283fd5b833561132781611bdf565b95602085013595506040909401359392505050565b600080600060408486031215611350578283fd5b833567ffffffffffffffff80821115611367578485fd5b818601915086601f83011261137a578485fd5b813581811115611388578586fd5b876020808302850101111561139b578586fd5b602092830195509350508401356113b181611bf7565b809150509250925092565b600060208083850312156113ce578182fd5b825167ffffffffffffffff8111156113e4578283fd5b8301601f810185136113f4578283fd5b80516114026111c182611b93565b818152838101908385018584028501860189101561141e578687fd5b8694505b83851015611440578051835260019490940193918501918501611422565b50979650505050505050565b60006020828403121561145d578081fd5b8151610d1a81611bf7565b600060208284031215611479578081fd5b8151610d1a81611bdf565b60008060408385031215611496578182fd5b82356114a181611bdf565b915060208301356114b181611bdf565b809150509250929050565b6000602082840312156114cd578081fd5b815167ffffffffffffffff808211156114e4578283fd5b818401915084601f8301126114f7578283fd5b815181811115611505578384fd5b6115186020601f19601f84011601611b6c565b915080825285602082850101111561152e578384fd5b61153f816020840160208601611bb3565b50949350505050565b600060208284031215611559578081fd5b5051919050565b6000815180845260208085019450808401835b8381101561158f57815187529582019590820190600101611573565b509495945050505050565b6001600160a01b03169052565b6000828483379101908152919050565b600082516115c9818460208701611bb3565b9190910192915050565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b6001600160a01b039384168152919092166020820152604081019190915260600190565b6001600160a01b0393841681529183166020830152909116604082015260600190565b6001600160a01b03929092168252602082015260400190565b6000606082526116746060830186611560565b60208301949094525060400152919050565b60006020825282518060208401526116a5816040850160208701611bb3565b601f01601f19169190910160400192915050565b60208082526026908201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160408201527f6464726573730000000000000000000000000000000000000000000000000000606082015260800190565b6020808252602c908201527f4661696c656420746f2067657420746f6b656e7320756e6465726c79696e672060408201527f536164646c6520706f6f6c2e0000000000000000000000000000000000000000606082015260800190565b60208082526026908201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60408201527f722063616c6c0000000000000000000000000000000000000000000000000000606082015260800190565b6020808252601a908201527f6e6577506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601b908201527f4661696c656420746f206d6174636820746f6b656e73206c6973740000000000604082015260600190565b60208082526028908201527f63616e6e6f74206f7665727772697465206578697374696e67206d696772617460408201527f696f6e2064617461000000000000000000000000000000000000000000000000606082015260800190565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b6020808252601a908201527f6f6c64506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601d908201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604082015260600190565b6020808252602a908201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60408201527f6f74207375636365656400000000000000000000000000000000000000000000606082015260800190565b60208082526036908201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60408201527f20746f206e6f6e2d7a65726f20616c6c6f77616e636500000000000000000000606082015260800190565b6020808252601a908201527f6d6967726174696f6e206973206e6f7420617661696c61626c65000000000000604082015260600190565b6000602080835260a083016001600160a01b038086511683860152808387015116604086015280604087015116606086015250606085015160808086015281815180845260c08701915084830193508592505b80831015611aa957611a9582855161159a565b928401926001929092019190840190611a82565b509695505050505050565b90815260200190565b600084825260606020830152611ad66060830185611560565b9050826040830152949350505050565b918252602082015260400190565b60ff91909116815260200190565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112611b36578283fd5b83018035915067ffffffffffffffff821115611b50578283fd5b602001915036819003821315611b6557600080fd5b9250929050565b60405181810167ffffffffffffffff81118282101715611b8b57600080fd5b604052919050565b600067ffffffffffffffff821115611ba9578081fd5b5060209081020190565b60005b83811015611bce578181015183820152602001611bb6565b838111156109115750506000910152565b6001600160a01b0381168114611bf457600080fd5b50565b8015158114611bf457600080fdfea2646970667358221220e04c9d6453b449fd3b81fcd0a5e8e0cda21cbb0d4f093ce8a1c67de4b844424e64736f6c634300060c0033

Deployed Bytecode

0x60806040526004361061007b5760003560e01c8063d2423b511161004e578063d2423b5114610102578063e36ad77e14610115578063f2fde38b14610144578063fc22d0e5146101645761007b565b80634fdf5d1d146100805780636f731330146100a2578063715018a6146100c25780638da5cb5b146100d7575b600080fd5b34801561008c57600080fd5b506100a061009b366004611484565b610191565b005b3480156100ae57600080fd5b506100a06100bd366004611241565b61026e565b3480156100ce57600080fd5b506100a06107a4565b3480156100e357600080fd5b506100ec610845565b6040516100f991906115d3565b60405180910390f35b6100a061011036600461133c565b610854565b34801561012157600080fd5b50610135610130366004611225565b610917565b6040516100f993929190611625565b34801561015057600080fd5b506100a061015f366004611225565b610948565b34801561017057600080fd5b5061018461017f366004611308565b610a20565b6040516100f99190611ab4565b610199610d21565b6001600160a01b03166101aa610845565b6001600160a01b0316146101d95760405162461bcd60e51b81526004016101d09061189b565b60405180910390fd5b61026a81836001600160a01b03166370a08231306040518263ffffffff1660e01b815260040161020991906115d3565b60206040518083038186803b15801561022157600080fd5b505afa158015610235573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102599190611548565b6001600160a01b0385169190610d25565b5050565b610276610d21565b6001600160a01b0316610287610845565b6001600160a01b0316146102ad5760405162461bcd60e51b81526004016101d09061189b565b806102ee576001600160a01b038381166000908152600160208190526040909120015416156102ee5760405162461bcd60e51b81526004016101d09061183e565b60208201516001600160a01b03166103185760405162461bcd60e51b81526004016101d0906118d0565b60408201516001600160a01b03166103425760405162461bcd60e51b81526004016101d0906117d0565b60005b60208160ff16101561057c576040517f82b866000000000000000000000000000000000000000000000000000000000081526000906001600160a01b038616906382b8660090610399908590600401611af4565b60206040518083038186803b1580156103b157600080fd5b505afa9250505080156103e1575060408051601f3d908101601f191682019092526103de91810190611468565b60015b6104105760008260ff16116104085760405162461bcd60e51b81526004016101d090611716565b506000610413565b90505b83516040517f82b866000000000000000000000000000000000000000000000000000000000081526001600160a01b03909116906382b866009061045b908590600401611af4565b60206040518083038186803b15801561047357600080fd5b505afa9250505080156104a3575060408051601f3d908101601f191682019092526104a091810190611468565b60015b61050a5760008260ff16116104ca5760405162461bcd60e51b81526004016101d090611716565b6001600160a01b0381161580156104e857508360600151518260ff16145b6105045760405162461bcd60e51b81526004016101d090611807565b5061057c565b806001600160a01b0316826001600160a01b0316148015610556575084606001518360ff168151811061053957fe5b60200260200101516001600160a01b0316826001600160a01b0316145b6105725760405162461bcd60e51b81526004016101d090611807565b5050600101610345565b506001600160a01b03808416600090815260016020818152604092839020865181549086167fffffffffffffffffffffffff000000000000000000000000000000000000000091821617825582880151938201805494871694821694909417909355928601516002840180549190951692169190911790925560608401518051859361060f9260038501929101906110b8565b50505060208201516040517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b039091169063095ea7b39061067f9086907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90600401611648565b602060405180830381600087803b15801561069957600080fd5b505af11580156106ad573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d1919061144c565b5060005b82606001515181101561075d5761071c83600001516000856060015184815181106106fc57fe5b60200260200101516001600160a01b0316610dad9092919063ffffffff16565b61075583600001517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff856060015184815181106106fc57fe5b6001016106d5565b50826001600160a01b03167f3a4863f22c4536b6b3a7e8989396b0b2f9c10de870d877ec333df6cfec568d30836040516107979190611a2f565b60405180910390a2505050565b6107ac610d21565b6001600160a01b03166107bd610845565b6001600160a01b0316146107e35760405162461bcd60e51b81526004016101d09061189b565b600080546040516001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055565b6000546001600160a01b031690565b60005b8281101561091157600060603086868581811061087057fe5b90506020028101906108829190611b02565b6040516108909291906115a7565b600060405180830381855af49150503d80600081146108cb576040519150601f19603f3d011682016040523d82523d6000602084013e6108d0565b606091505b5091509150811580156108e05750835b15610907576108ee81610e89565b60405162461bcd60e51b81526004016101d09190611686565b5050600101610857565b50505050565b60016020819052600091825260409091208054918101546002909101546001600160a01b0392831692918216911683565b610950610d21565b6001600160a01b0316610961610845565b6001600160a01b0316146109875760405162461bcd60e51b81526004016101d09061189b565b6001600160a01b0381166109ad5760405162461bcd60e51b81526004016101d0906116b9565b600080546040516001600160a01b03808516939216917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b6000610a2a611135565b6001600160a01b0380861660009081526001602081815260409283902083516080810185528154861681529281015485168383015260028101549094168284015260038401805484518184028101840190955280855292949360608601939092830182828015610ac357602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610aa5575b5050509190925250505060208101519091506001600160a01b0316610afa5760405162461bcd60e51b81526004016101d0906119f8565b6020810151610b14906001600160a01b0316333087610ef1565b6060856001600160a01b03166331cd52b08684606001515167ffffffffffffffff81118015610b4257600080fd5b50604051908082528060200260200182016040528015610b6c578160200160208202803683370190505b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610bac93929190611abd565b600060405180830381600087803b158015610bc657600080fd5b505af1158015610bda573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610c0291908101906113bc565b9050600082600001516001600160a01b0316634d49e87d83877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610c5a93929190611661565b602060405180830381600087803b158015610c7457600080fd5b505af1158015610c88573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cac9190611548565b6040840151909150610cc8906001600160a01b03163383610d25565b866001600160a01b0316336001600160a01b03167fd616b8856fa5febbdb06f07dd8d624380d02864619f3b796002f43bc36a4d1bc8884604051610d0d929190611ae6565b60405180910390a3925050505b9392505050565b3390565b610da88363a9059cbb60e01b8484604051602401610d44929190611648565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152610f12565b505050565b801580610e4e57506040517fdd62ed3e0000000000000000000000000000000000000000000000000000000081526001600160a01b0384169063dd62ed3e90610dfc90309086906004016115e7565b60206040518083038186803b158015610e1457600080fd5b505afa158015610e28573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e4c9190611548565b155b610e6a5760405162461bcd60e51b81526004016101d09061199b565b610da88363095ea7b360e01b8484604051602401610d44929190611648565b6060604482511015610ecf575060408051808201909152601d81527f5472616e73616374696f6e2072657665727465642073696c656e746c790000006020820152610eec565b60048201915081806020019051810190610ee991906114bc565b90505b919050565b610911846323b872dd60e01b858585604051602401610d4493929190611601565b6060610f67826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316610fa19092919063ffffffff16565b805190915015610da85780806020019051810190610f85919061144c565b610da85760405162461bcd60e51b81526004016101d09061193e565b6060610fb08484600085610fb8565b949350505050565b606082471015610fda5760405162461bcd60e51b81526004016101d090611773565b610fe385611079565b610fff5760405162461bcd60e51b81526004016101d090611907565b60006060866001600160a01b0316858760405161101c91906115b7565b60006040518083038185875af1925050503d8060008114611059576040519150601f19603f3d011682016040523d82523d6000602084013e61105e565b606091505b509150915061106e82828661107f565b979650505050505050565b3b151590565b6060831561108e575081610d1a565b82511561109e5782518084602001fd5b8160405162461bcd60e51b81526004016101d09190611686565b828054828255906000526020600020908101928215611125579160200282015b8281111561112557825182547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b039091161782556020909201916001909101906110d8565b5061113192915061115b565b5090565b604080516080810182526000808252602082018190529181019190915260608082015290565b5b808211156111315780547fffffffffffffffffffffffff000000000000000000000000000000000000000016815560010161115c565b803561119d81611bdf565b92915050565b600082601f8301126111b3578081fd5b81356111c66111c182611b93565b611b6c565b8181529150602080830190848101818402860182018710156111e757600080fd5b60005b8481101561120f5781356111fd81611bdf565b845292820192908201906001016111ea565b505050505092915050565b803561119d81611bf7565b600060208284031215611236578081fd5b8135610d1a81611bdf565b600080600060608486031215611255578182fd5b833561126081611bdf565b9250602084013567ffffffffffffffff8082111561127c578384fd5b908501906080828803121561128f578384fd5b6112996080611b6c565b6112a38884611192565b81526112b28860208501611192565b60208201526112c48860408501611192565b60408201526060830135828111156112da578586fd5b6112e6898286016111a3565b6060830152508094505050506112ff856040860161121a565b90509250925092565b60008060006060848603121561131c578283fd5b833561132781611bdf565b95602085013595506040909401359392505050565b600080600060408486031215611350578283fd5b833567ffffffffffffffff80821115611367578485fd5b818601915086601f83011261137a578485fd5b813581811115611388578586fd5b876020808302850101111561139b578586fd5b602092830195509350508401356113b181611bf7565b809150509250925092565b600060208083850312156113ce578182fd5b825167ffffffffffffffff8111156113e4578283fd5b8301601f810185136113f4578283fd5b80516114026111c182611b93565b818152838101908385018584028501860189101561141e578687fd5b8694505b83851015611440578051835260019490940193918501918501611422565b50979650505050505050565b60006020828403121561145d578081fd5b8151610d1a81611bf7565b600060208284031215611479578081fd5b8151610d1a81611bdf565b60008060408385031215611496578182fd5b82356114a181611bdf565b915060208301356114b181611bdf565b809150509250929050565b6000602082840312156114cd578081fd5b815167ffffffffffffffff808211156114e4578283fd5b818401915084601f8301126114f7578283fd5b815181811115611505578384fd5b6115186020601f19601f84011601611b6c565b915080825285602082850101111561152e578384fd5b61153f816020840160208601611bb3565b50949350505050565b600060208284031215611559578081fd5b5051919050565b6000815180845260208085019450808401835b8381101561158f57815187529582019590820190600101611573565b509495945050505050565b6001600160a01b03169052565b6000828483379101908152919050565b600082516115c9818460208701611bb3565b9190910192915050565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b6001600160a01b039384168152919092166020820152604081019190915260600190565b6001600160a01b0393841681529183166020830152909116604082015260600190565b6001600160a01b03929092168252602082015260400190565b6000606082526116746060830186611560565b60208301949094525060400152919050565b60006020825282518060208401526116a5816040850160208701611bb3565b601f01601f19169190910160400192915050565b60208082526026908201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160408201527f6464726573730000000000000000000000000000000000000000000000000000606082015260800190565b6020808252602c908201527f4661696c656420746f2067657420746f6b656e7320756e6465726c79696e672060408201527f536164646c6520706f6f6c2e0000000000000000000000000000000000000000606082015260800190565b60208082526026908201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60408201527f722063616c6c0000000000000000000000000000000000000000000000000000606082015260800190565b6020808252601a908201527f6e6577506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601b908201527f4661696c656420746f206d6174636820746f6b656e73206c6973740000000000604082015260600190565b60208082526028908201527f63616e6e6f74206f7665727772697465206578697374696e67206d696772617460408201527f696f6e2064617461000000000000000000000000000000000000000000000000606082015260800190565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b6020808252601a908201527f6f6c64506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601d908201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604082015260600190565b6020808252602a908201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60408201527f6f74207375636365656400000000000000000000000000000000000000000000606082015260800190565b60208082526036908201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60408201527f20746f206e6f6e2d7a65726f20616c6c6f77616e636500000000000000000000606082015260800190565b6020808252601a908201527f6d6967726174696f6e206973206e6f7420617661696c61626c65000000000000604082015260600190565b6000602080835260a083016001600160a01b038086511683860152808387015116604086015280604087015116606086015250606085015160808086015281815180845260c08701915084830193508592505b80831015611aa957611a9582855161159a565b928401926001929092019190840190611a82565b509695505050505050565b90815260200190565b600084825260606020830152611ad66060830185611560565b9050826040830152949350505050565b918252602082015260400190565b60ff91909116815260200190565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112611b36578283fd5b83018035915067ffffffffffffffff821115611b50578283fd5b602001915036819003821315611b6557600080fd5b9250929050565b60405181810167ffffffffffffffff81118282101715611b8b57600080fd5b604052919050565b600067ffffffffffffffff821115611ba9578081fd5b5060209081020190565b60005b83811015611bce578181015183820152602001611bb6565b838111156109115750506000910152565b6001600160a01b0381168114611bf457600080fd5b50565b8015158114611bf457600080fdfea2646970667358221220e04c9d6453b449fd3b81fcd0a5e8e0cda21cbb0d4f093ce8a1c67de4b844424e64736f6c634300060c0033

Deployed Bytecode Sourcemap

537:4971:34:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5374:132;;;;;;;;;;-1:-1:-1;5374:132:34;;;;;:::i;:::-;;:::i;:::-;;1496:2198;;;;;;;;;;-1:-1:-1;1496:2198:34;;;;;:::i;:::-;;:::i;1717:145:10:-;;;;;;;;;;;;;:::i;1085:85::-;;;;;;;;;;;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;1736:368:56;;;;;;:::i;:::-;;:::i;863:53:34:-;;;;;;;;;;-1:-1:-1;863:53:34;;;;;:::i;:::-;;:::i;:::-;;;;;;;;;:::i;2011:240:10:-;;;;;;;;;;-1:-1:-1;2011:240:10;;;;;:::i;:::-;;:::i;3942:1218:34:-;;;;;;;;;;-1:-1:-1;3942:1218:34;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;5374:132::-;1308:12:10;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;;;;;;;;;5445:54:34::1;5464:2;5468:5;-1:-1:-1::0;;;;;5468:15:34::1;;5492:4;5468:30;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;-1:-1:-1::0;;;;;5445:18:34;::::1;::::0;:54;:18:::1;:54::i;:::-;5374:132:::0;;:::o;1496:2198::-;1308:12:10;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;1671:9:34::1;1666:233;;-1:-1:-1::0;;;;;1729:28:34;;::::1;1812:1;1729:28:::0;;;:12:::1;:28;::::0;;;;;;;:50:::1;::::0;::::1;1721:93:::0;1696:192:::1;;;;-1:-1:-1::0;;;1696:192:34::1;;;;;;;:::i;:::-;1937:27;::::0;::::1;::::0;-1:-1:-1;;;;;1929:50:34::1;1908:123;;;;-1:-1:-1::0;;;1908:123:34::1;;;;;;;:::i;:::-;2070:27;::::0;::::1;::::0;-1:-1:-1;;;;;2062:50:34::1;2041:123;;;;-1:-1:-1::0;;;2041:123:34::1;;;;;;;:::i;:::-;2180:7;2175:962;2197:2;2193:1;:6;;;2175:962;;;2258:33;::::0;;;;2220:20:::1;::::0;-1:-1:-1;;;;;2258:30:34;::::1;::::0;::::1;::::0;:33:::1;::::0;2289:1;;2258:33:::1;;;:::i;:::-;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;-1:-1:-1::0;2258:33:34::1;::::0;;::::1;;::::0;;::::1;-1:-1:-1::0;;2258:33:34::1;::::0;::::1;::::0;;;::::1;::::0;;::::1;::::0;::::1;:::i;:::-;;;2254:268;;2414:1;2410;:5;;;2402:62;;;;-1:-1:-1::0;;;2402:62:34::1;;;;;;;:::i;:::-;-1:-1:-1::0;2505:1:34::1;2254:268;;;2356:5:::0;-1:-1:-1;2254:268:34::1;2546:20:::0;;2540:39:::1;::::0;;;;-1:-1:-1;;;;;2540:36:34;;::::1;::::0;::::1;::::0;:39:::1;::::0;2577:1;;2540:39:::1;;;:::i;:::-;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;-1:-1:-1::0;2540:39:34::1;::::0;;::::1;;::::0;;::::1;-1:-1:-1::0;;2540:39:34::1;::::0;::::1;::::0;;;::::1;::::0;;::::1;::::0;::::1;:::i;:::-;;;2536:591;;2869:1;2865;:5;;;2857:62;;;;-1:-1:-1::0;;;2857:62:34::1;;;;;;;:::i;:::-;-1:-1:-1::0;;;;;2966:26:34;::::1;::::0;:54;::::1;;;;3001:5;:12;;;:19;2996:1;:24;;;2966:54;2937:152;;;;-1:-1:-1::0;;;2937:152:34::1;;;;;;;:::i;:::-;3107:5;;;2536:591;2674:5;-1:-1:-1::0;;;;;2650:30:34::1;:12;-1:-1:-1::0;;;;;2650:30:34::1;;:98;;;;;2732:5;:12;;;2745:1;2732:15;;;;;;;;;;;;;;;;-1:-1:-1::0;;;;;2708:40:34::1;:12;-1:-1:-1::0;;;;;2708:40:34::1;;2650:98;2621:196;;;;-1:-1:-1::0;;;2621:196:34::1;;;;;;;:::i;:::-;2580:252;-1:-1:-1::0;2201:3:34::1;;2175:962;;;-1:-1:-1::0;;;;;;3165:28:34;;::::1;;::::0;;;:12:::1;:28;::::0;;;;;;;;:36;;;;;;::::1;::::0;;;::::1;;::::0;;;;::::1;::::0;;;::::1;::::0;;;;::::1;::::0;;::::1;::::0;;;::::1;::::0;;;;;::::1;::::0;::::1;::::0;::::1;::::0;;;;;::::1;::::0;::::1;::::0;;;::::1;::::0;;;::::1;::::0;::::1;::::0;;;3196:5;;3165:36:::1;::::0;::::1;::::0;::::1;::::0;;::::1;::::0;::::1;:::i;:::-;-1:-1:-1::0;;;3293:27:34::1;::::0;::::1;::::0;:64:::1;::::0;;;;-1:-1:-1;;;;;3293:35:34;;::::1;::::0;::::1;::::0;:64:::1;::::0;3329:14;;847:10:::1;::::0;3293:64:::1;;;:::i;:::-;;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;3435:9;3430:203;3454:5;:12;;;:19;3450:1;:23;3430:203;;;3494:52;3522:5;:20;;;3544:1;3494:5;:12;;;3507:1;3494:15;;;;;;;;;;;;;;-1:-1:-1::0;;;;;3494:27:34::1;;;:52;;;;;:::i;:::-;3560:62;3588:5;:20;;;847:10;3560:5;:12;;;3573:1;3560:15;;;;;;;:62;3475:3;;3430:203;;;;3665:14;-1:-1:-1::0;;;;;3648:39:34::1;;3681:5;3648:39;;;;;;:::i;:::-;;;;;;;;1496:2198:::0;;;:::o;1717:145:10:-;1308:12;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;1823:1:::1;1807:6:::0;;1786:40:::1;::::0;-1:-1:-1;;;;;1807:6:10;;::::1;::::0;1786:40:::1;::::0;1823:1;;1786:40:::1;1853:1;1836:19:::0;;;::::1;::::0;;1717:145::o;1085:85::-;1131:7;1157:6;-1:-1:-1;;;;;1157:6:10;1085:85;:::o;1736:368:56:-;1826:9;1821:277;1841:16;;;1821:277;;;1879:12;1893:19;1924:4;1960:5;;1966:1;1960:8;;;;;;;;;;;;;;;;;;:::i;:::-;1916:66;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1878:104;;;;2001:7;2000:8;:24;;;;;2012:12;2000:24;1996:92;;;2051:21;2065:6;2051:13;:21::i;:::-;2044:29;;-1:-1:-1;;;2044:29:56;;;;;;;;:::i;1996:92::-;-1:-1:-1;;1859:3:56;;1821:277;;;;1736:368;;;:::o;863:53:34:-;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;;;;863:53:34;;;;;;;;;;:::o;2011:240:10:-;1308:12;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;-1:-1:-1;;;;;2099:22:10;::::1;2091:73;;;;-1:-1:-1::0;;;2091:73:10::1;;;;;;;:::i;:::-;2200:6;::::0;;2179:38:::1;::::0;-1:-1:-1;;;;;2179:38:10;;::::1;::::0;2200:6;::::1;::::0;2179:38:::1;::::0;::::1;2227:6;:17:::0;;;::::1;-1:-1:-1::0;;;;;2227:17:10;;;::::1;::::0;;;::::1;::::0;;2011:240::o;3942:1218:34:-;4066:7;4102:26;;:::i;:::-;-1:-1:-1;;;;;4131:28:34;;;;;;;:12;:28;;;;;;;;;4102:57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;4131:28;4102:57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;;;;4102:57:34;;;;;;;;;;;;;;;;-1:-1:-1;;;4102:57:34;;;;-1:-1:-1;;;4198:27:34;;;;4102:57;;-1:-1:-1;;;;;;4190:50:34;4169:123;;;;-1:-1:-1;;;4169:123:34;;;;;;;:::i;:::-;4376:27;;;;:125;;-1:-1:-1;;;;;4376:44:34;4434:10;4466:4;4485:6;4376:44;:125::i;:::-;4558:24;4591:14;-1:-1:-1;;;;;4585:37:34;;4636:6;4670:5;:12;;;:19;4656:34;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;4656:34:34;;847:10;4585:140;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;4585:140:34;;;;;;;;;;;;:::i;:::-;4558:167;;4785:20;4814:5;:20;;;-1:-1:-1;;;;;4808:40:34;;4862:7;4883:9;847:10;4808:119;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;4985:27;;;;4785:142;;-1:-1:-1;4985:66:34;;-1:-1:-1;;;;;4985:40:34;5026:10;4785:142;4985:40;:66::i;:::-;5087:14;-1:-1:-1;;;;;5067:57:34;5075:10;-1:-1:-1;;;;;5067:57:34;;5103:6;5111:12;5067:57;;;;;;;:::i;:::-;;;;;;;;5141:12;-1:-1:-1;;;3942:1218:34;;;;;;:::o;598:104:26:-;685:10;598:104;:::o;704:175:19:-;786:86;806:5;836:23;;;861:2;865:5;813:58;;;;;;;;;:::i;:::-;;;;-1:-1:-1;;813:58:19;;;;;;;;;;;;;;;;;;;;;;;;;;;786:19;:86::i;:::-;704:175;;;:::o;1348:613::-;1713:10;;;1712:62;;-1:-1:-1;1729:39:19;;;;;-1:-1:-1;;;;;1729:15:19;;;;;:39;;1753:4;;1760:7;;1729:39;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;:44;1712:62;1704:150;;;;-1:-1:-1;;;1704:150:19;;;;;;;:::i;:::-;1864:90;1884:5;1914:22;;;1938:7;1947:5;1891:62;;;;;;;;;:::i;600:515:56:-;696:13;861:2;840:11;:18;:23;836:67;;;-1:-1:-1;865:38:56;;;;;;;;;;;;;;;;;;;836:67;1003:4;990:11;986:22;971:37;;1045:11;1034:33;;;;;;;;;;;;:::i;:::-;1027:40;;600:515;;;;:::o;885:203:19:-;985:96;1005:5;1035:27;;;1064:4;1070:2;1074:5;1012:68;;;;;;;;;;:::i;2967:751::-;3386:23;3412:69;3440:4;3412:69;;;;;;;;;;;;;;;;;3420:5;-1:-1:-1;;;;;3412:27:19;;;:69;;;;;:::i;:::-;3495:17;;3386:95;;-1:-1:-1;3495:21:19;3491:221;;3635:10;3624:30;;;;;;;;;;;;:::i;:::-;3616:85;;;;-1:-1:-1;;;3616:85:19;;;;;;;:::i;3581:193:25:-;3684:12;3715:52;3737:6;3745:4;3751:1;3754:12;3715:21;:52::i;:::-;3708:59;3581:193;-1:-1:-1;;;;3581:193:25:o;4608:523::-;4735:12;4792:5;4767:21;:30;;4759:81;;;;-1:-1:-1;;;4759:81:25;;;;;;;:::i;:::-;4858:18;4869:6;4858:10;:18::i;:::-;4850:60;;;;-1:-1:-1;;;4850:60:25;;;;;;;:::i;:::-;4981:12;4995:23;5022:6;-1:-1:-1;;;;;5022:11:25;5042:5;5050:4;5022:33;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;4980:75;;;;5072:52;5090:7;5099:10;5111:12;5072:17;:52::i;:::-;5065:59;4608:523;-1:-1:-1;;;;;;;4608:523:25:o;726:413::-;1086:20;1124:8;;;726:413::o;7091:725::-;7206:12;7234:7;7230:580;;;-1:-1:-1;7264:10:25;7257:17;;7230:580;7375:17;;:21;7371:429;;7633:10;7627:17;7693:15;7680:10;7676:2;7672:19;7665:44;7582:145;7772:12;7765:20;;-1:-1:-1;;;7765:20:25;;;;;;;;:::i;-1:-1:-1:-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;5:130;72:20;;97:33;72:20;97:33;:::i;:::-;57:78;;;;:::o;555:752::-;;687:3;680:4;672:6;668:17;664:27;654:2;;-1:-1;;695:12;654:2;742:6;729:20;764:95;779:79;851:6;779:79;:::i;:::-;764:95;:::i;:::-;887:21;;;755:104;-1:-1;931:4;944:14;;;;919:17;;;1033;;;1024:27;;;;1021:36;-1:-1;1018:2;;;1070:1;;1060:12;1018:2;1095:1;1080:221;1105:6;1102:1;1099:13;1080:221;;;2424:6;2411:20;2436:48;2478:5;2436:48;:::i;:::-;1173:65;;1252:14;;;;1280;;;;1127:1;1120:9;1080:221;;;1084:14;;;;;647:660;;;;:::o;2063:124::-;2127:20;;2152:30;2127:20;2152:30;:::i;4419:241::-;;4523:2;4511:9;4502:7;4498:23;4494:32;4491:2;;;-1:-1;;4529:12;4491:2;85:6;72:20;97:33;124:5;97:33;:::i;4667:633::-;;;;4833:2;4821:9;4812:7;4808:23;4804:32;4801:2;;;-1:-1;;4839:12;4801:2;85:6;72:20;97:33;124:5;97:33;:::i;:::-;4891:63;-1:-1;5019:2;5004:18;;4991:32;5043:18;5032:30;;;5029:2;;;-1:-1;;5065:12;5029:2;5147:22;;;;3291:4;3270:19;;;3266:30;3263:2;;;-1:-1;;3299:12;3263:2;3327:20;3291:4;3327:20;:::i;:::-;3439:49;3484:3;3460:22;3439:49;:::i;:::-;3421:16;3414:75;3600:64;3660:3;5019:2;3640:9;3636:22;3600:64;:::i;:::-;5019:2;3586:5;3582:16;3575:90;3776:64;3836:3;3743:2;3816:9;3812:22;3776:64;:::i;:::-;3743:2;3762:5;3758:16;3751:90;4833:2;3921:9;3917:18;3904:32;5043:18;3948:6;3945:30;3942:2;;;-1:-1;;3978:12;3942:2;4023:89;4108:3;4099:6;4088:9;4084:22;4023:89;:::i;:::-;4833:2;4009:5;4005:16;3998:115;;5085:94;;;;;;5234:50;5276:7;3743:2;5256:9;5252:22;5234:50;:::i;:::-;5224:60;;4795:505;;;;;:::o;5307:491::-;;;;5445:2;5433:9;5424:7;5420:23;5416:32;5413:2;;;-1:-1;;5451:12;5413:2;85:6;72:20;97:33;124:5;97:33;:::i;:::-;5503:63;5603:2;5642:22;;4208:20;;-1:-1;5711:2;5750:22;;;4208:20;;5407:391;-1:-1;;;5407:391::o;5805:538::-;;;;5969:2;5957:9;5948:7;5944:23;5940:32;5937:2;;;-1:-1;;5975:12;5937:2;6033:17;6020:31;6071:18;;6063:6;6060:30;6057:2;;;-1:-1;;6093:12;6057:2;6205:6;6194:9;6190:22;;;299:3;292:4;284:6;280:17;276:27;266:2;;-1:-1;;307:12;266:2;350:6;337:20;6071:18;369:6;366:30;363:2;;;-1:-1;;399:12;363:2;494:3;443:4;;478:6;474:17;435:6;460:32;;457:41;454:2;;;-1:-1;;501:12;454:2;443:4;431:17;;;;-1:-1;6113:109;-1:-1;;6295:22;;2127:20;2152:30;2127:20;2152:30;:::i;:::-;6267:60;;;;5931:412;;;;;:::o;6350:392::-;;6490:2;;6478:9;6469:7;6465:23;6461:32;6458:2;;;-1:-1;;6496:12;6458:2;6547:17;6541:24;6585:18;6577:6;6574:30;6571:2;;;-1:-1;;6607:12;6571:2;6694:22;;1454:4;1442:17;;1438:27;-1:-1;1428:2;;-1:-1;;1469:12;1428:2;1509:6;1503:13;1531:80;1546:64;1603:6;1546:64;:::i;1531:80::-;1639:21;;;1696:14;;;;1671:17;;;1785;;;1776:27;;;;1773:36;-1:-1;1770:2;;;-1:-1;;1812:12;1770:2;-1:-1;1838:10;;1832:217;1857:6;1854:1;1851:13;1832:217;;;4356:13;;1925:61;;1879:1;1872:9;;;;;2000:14;;;;2028;;1832:217;;;-1:-1;6627:99;6452:290;-1:-1;;;;;;;6452:290::o;6749:257::-;;6861:2;6849:9;6840:7;6836:23;6832:32;6829:2;;;-1:-1;;6867:12;6829:2;2275:6;2269:13;2287:30;2311:5;2287:30;:::i;7013:293::-;;7143:2;7131:9;7122:7;7118:23;7114:32;7111:2;;;-1:-1;;7149:12;7111:2;2595:6;2589:13;2607:48;2649:5;2607:48;:::i;7313:396::-;;;7449:2;7437:9;7428:7;7424:23;7420:32;7417:2;;;-1:-1;;7455:12;7417:2;2424:6;2411:20;2436:48;2478:5;2436:48;:::i;:::-;7507:78;-1:-1;7622:2;7661:22;;72:20;97:33;72:20;97:33;:::i;:::-;7630:63;;;;7411:298;;;;;:::o;7716:362::-;;7841:2;7829:9;7820:7;7816:23;7812:32;7809:2;;;-1:-1;;7847:12;7809:2;7898:17;7892:24;7936:18;;7928:6;7925:30;7922:2;;;-1:-1;;7958:12;7922:2;8045:6;8034:9;8030:22;;;2781:3;2774:4;2766:6;2762:17;2758:27;2748:2;;-1:-1;;2789:12;2748:2;2829:6;2823:13;7936:18;29466:6;29463:30;29460:2;;;-1:-1;;29496:12;29460:2;2851:65;7841:2;-1:-1;;2774:4;29554:6;29550:17;29546:33;29627:15;2851:65;:::i;:::-;2842:74;;2936:6;2929:5;2922:21;3040:3;7841:2;3031:6;2964;3022:16;;3019:25;3016:2;;;-1:-1;;3047:12;3016:2;3067:39;3099:6;7841:2;2998:5;2994:16;7841:2;2964:6;2960:17;3067:39;:::i;:::-;-1:-1;7978:84;7803:275;-1:-1;;;;7803:275::o;8085:263::-;;8200:2;8188:9;8179:7;8175:23;8171:32;8168:2;;;-1:-1;;8206:12;8168:2;-1:-1;4356:13;;8162:186;-1:-1;8162:186::o;9802:690::-;;9995:5;30108:12;30916:6;30911:3;30904:19;30953:4;;30948:3;30944:14;10007:93;;30953:4;10171:5;29789:14;-1:-1;10210:260;10235:6;10232:1;10229:13;10210:260;;;10296:13;;17405:37;;8721:14;;;;30654;;;;10257:1;10250:9;10210:260;;;-1:-1;10476:10;;9926:566;-1:-1;;;;;9926:566::o;11204:146::-;-1:-1;;;;;31849:54;11280:65;;11274:76::o;17688:291::-;;32452:6;32447:3;32442;32429:30;32490:16;;32483:27;;;32490:16;17832:147;-1:-1;17832:147::o;17986:271::-;;11001:5;30108:12;11112:52;11157:6;11152:3;11145:4;11138:5;11134:16;11112:52;:::i;:::-;11176:16;;;;;18120:137;-1:-1;;18120:137::o;18264:222::-;-1:-1;;;;;31849:54;;;;8810:37;;18391:2;18376:18;;18362:124::o;18493:333::-;-1:-1;;;;;31849:54;;;8810:37;;31849:54;;18812:2;18797:18;;8810:37;18648:2;18633:18;;18619:207::o;18833:444::-;-1:-1;;;;;31849:54;;;8810:37;;31849:54;;;;19180:2;19165:18;;8810:37;19263:2;19248:18;;17405:37;;;;19016:2;19001:18;;18987:290::o;19284:504::-;-1:-1;;;;;31849:54;;;8810:37;;31849:54;;;19676:2;19661:18;;11280:65;31849:54;;;19774:2;19759:18;;11280:65;19497:2;19482:18;;19468:320::o;19795:333::-;-1:-1;;;;;31849:54;;;;8810:37;;20114:2;20099:18;;17405:37;19950:2;19935:18;;19921:207::o;20135:592::-;;20368:2;20389:17;20382:47;20443:108;20368:2;20357:9;20353:18;20537:6;20443:108;:::i;:::-;20630:2;20615:18;;17405:37;;;;-1:-1;20713:2;20698:18;17405:37;20435:116;20339:388;-1:-1;20339:388::o;20734:310::-;;20881:2;20902:17;20895:47;11665:5;30108:12;30916:6;20881:2;20870:9;20866:18;30904:19;11759:52;11804:6;30944:14;20870:9;30944:14;20881:2;11785:5;11781:16;11759:52;:::i;:::-;32889:2;32869:14;-1:-1;;32865:28;11823:39;;;;30944:14;11823:39;;20852:192;-1:-1;;20852:192::o;21051:416::-;21251:2;21265:47;;;12099:2;21236:18;;;30904:19;12135:34;30944:14;;;12115:55;12204:8;12190:12;;;12183:30;12232:12;;;21222:245::o;21474:416::-;21674:2;21688:47;;;12483:2;21659:18;;;30904:19;12519:34;30944:14;;;12499:55;12588:14;12574:12;;;12567:36;12622:12;;;21645:245::o;21897:416::-;22097:2;22111:47;;;12873:2;22082:18;;;30904:19;12909:34;30944:14;;;12889:55;12978:8;12964:12;;;12957:30;13006:12;;;22068:245::o;22320:416::-;22520:2;22534:47;;;13257:2;22505:18;;;30904:19;13293:28;30944:14;;;13273:49;13341:12;;;22491:245::o;22743:416::-;22943:2;22957:47;;;13592:2;22928:18;;;30904:19;13628:29;30944:14;;;13608:50;13677:12;;;22914:245::o;23166:416::-;23366:2;23380:47;;;13928:2;23351:18;;;30904:19;13964:34;30944:14;;;13944:55;14033:10;14019:12;;;14012:32;14063:12;;;23337:245::o;23589:416::-;23789:2;23803:47;;;23774:18;;;30904:19;14350:34;30944:14;;;14330:55;14404:12;;;23760:245::o;24012:416::-;24212:2;24226:47;;;14655:2;24197:18;;;30904:19;14691:28;30944:14;;;14671:49;14739:12;;;24183:245::o;24435:416::-;24635:2;24649:47;;;14990:2;24620:18;;;30904:19;15026:31;30944:14;;;15006:52;15077:12;;;24606:245::o;24858:416::-;25058:2;25072:47;;;15328:2;25043:18;;;30904:19;15364:34;30944:14;;;15344:55;15433:12;15419;;;15412:34;15465:12;;;25029:245::o;25281:416::-;25481:2;25495:47;;;15716:2;25466:18;;;30904:19;15752:34;30944:14;;;15732:55;15821:24;15807:12;;;15800:46;15865:12;;;25452:245::o;25704:416::-;25904:2;25918:47;;;16116:2;25889:18;;;30904:19;16152:28;30944:14;;;16132:49;16200:12;;;25875:245::o;26127:394::-;;26316:2;;26337:17;26330:47;16479:14;26305:9;16479:14;-1:-1;;;;;31860:42;16570:16;16564:23;31849:54;26316:2;26305:9;26301:18;8810:37;31860:42;26316:2;16745:5;16741:16;16735:23;31849:54;16827:14;26305:9;16827:14;11280:65;31860:42;16827:14;16931:5;16927:16;16921:23;31849:54;17013:14;26305:9;17013:14;11280:65;;17013:14;17102:5;17098:16;17092:23;16488:4;;26305:9;17135:14;17128:38;17181:118;9231:5;30108:12;30916:6;30911:3;30904:19;30944:14;26305:9;30944:14;9243:83;;26316:2;9412:5;29789:14;9424:21;;-1:-1;9457:10;;9451:290;9476:6;9473:1;9470:13;9451:290;;;8458:61;8515:3;9543:6;9537:13;8458:61;:::i;:::-;30654:14;;;;9498:1;9491:9;;;;;8539:14;;;;9451:290;;;-1:-1;26383:128;26287:234;-1:-1;;;;;;26287:234::o;26528:222::-;17405:37;;;26655:2;26640:18;;26626:124::o;26757:592::-;;17435:5;17412:3;17405:37;26990:2;27108;27097:9;27093:18;27086:48;27148:108;26990:2;26979:9;26975:18;27242:6;27148:108;:::i;:::-;27140:116;;17435:5;27335:2;27324:9;27320:18;17405:37;26961:388;;;;;;:::o;27356:333::-;17405:37;;;27675:2;27660:18;;17405:37;27511:2;27496:18;;27482:207::o;27696:214::-;32065:4;32054:16;;;;17641:35;;27819:2;27804:18;;27790:120::o;27917:506::-;;;28052:11;28039:25;28103:48;28127:8;28111:14;28107:29;28103:48;28083:18;28079:73;28069:2;;-1:-1;;28156:12;28069:2;28183:33;;28237:18;;;-1:-1;28275:18;28264:30;;28261:2;;;-1:-1;;28297:12;28261:2;28142:4;28325:13;;-1:-1;28111:14;28357:38;;;28347:49;;28344:2;;;28409:1;;28399:12;28344:2;28007:416;;;;;:::o;28430:256::-;28492:2;28486:9;28518:17;;;28593:18;28578:34;;28614:22;;;28575:62;28572:2;;;28650:1;;28640:12;28572:2;28492;28659:22;28470:216;;-1:-1;28470:216::o;28693:319::-;;28867:18;28859:6;28856:30;28853:2;;;-1:-1;;28889:12;28853:2;-1:-1;28934:4;28922:17;;;28987:15;;28790:222::o;32525:268::-;32590:1;32597:101;32611:6;32608:1;32605:13;32597:101;;;32678:11;;;32672:18;32659:11;;;32652:39;32633:2;32626:10;32597:101;;;32713:6;32710:1;32707:13;32704:2;;;-1:-1;;32590:1;32760:16;;32753:27;32574:219::o;32906:117::-;-1:-1;;;;;32993:5;31849:54;32968:5;32965:35;32955:2;;33014:1;;33004:12;32955:2;32949:74;:::o;33030:111::-;33111:5;31648:13;31641:21;33089:5;33086:32;33076:2;;33132:1;;33122:12

Swarm Source

ipfs://e04c9d6453b449fd3b81fcd0a5e8e0cda21cbb0d4f093ce8a1c67de4b844424e

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.