More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 107 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Migrate | 16182747 | 779 days ago | IN | 0 ETH | 0.00482795 | ||||
Migrate | 15521844 | 872 days ago | IN | 0 ETH | 0.02363316 | ||||
Migrate | 15392418 | 893 days ago | IN | 0 ETH | 0.0085494 | ||||
Migrate | 15333305 | 902 days ago | IN | 0 ETH | 0.00374699 | ||||
Migrate | 15302166 | 907 days ago | IN | 0 ETH | 0.00553678 | ||||
Migrate | 15242143 | 917 days ago | IN | 0 ETH | 0.00224819 | ||||
Migrate | 15165262 | 929 days ago | IN | 0 ETH | 0.00692012 | ||||
Migrate | 15116342 | 936 days ago | IN | 0 ETH | 0.00359911 | ||||
Migrate | 14994028 | 957 days ago | IN | 0 ETH | 0.00668613 | ||||
Migrate | 14993429 | 957 days ago | IN | 0 ETH | 0.00668881 | ||||
Migrate | 14978980 | 959 days ago | IN | 0 ETH | 0.00910245 | ||||
Migrate | 14966611 | 962 days ago | IN | 0 ETH | 0.02107436 | ||||
Migrate | 14951888 | 964 days ago | IN | 0 ETH | 0.01181198 | ||||
Migrate | 14951114 | 964 days ago | IN | 0 ETH | 0.01218647 | ||||
Migrate | 14951097 | 964 days ago | IN | 0 ETH | 0.01103556 | ||||
Migrate | 14944171 | 965 days ago | IN | 0 ETH | 0.01322532 | ||||
Migrate | 14928308 | 968 days ago | IN | 0 ETH | 0.02855902 | ||||
Migrate | 14881817 | 976 days ago | IN | 0 ETH | 0.02382348 | ||||
Migrate | 14878668 | 976 days ago | IN | 0 ETH | 0.00649777 | ||||
Migrate | 14859186 | 980 days ago | IN | 0 ETH | 0.00624776 | ||||
Migrate | 14854365 | 980 days ago | IN | 0 ETH | 0.0393096 | ||||
Migrate | 14845092 | 982 days ago | IN | 0 ETH | 0.01332771 | ||||
Migrate | 14841600 | 982 days ago | IN | 0 ETH | 0.00565512 | ||||
Migrate | 14840969 | 983 days ago | IN | 0 ETH | 0.00724461 | ||||
Migrate | 14831295 | 984 days ago | IN | 0 ETH | 0.01540012 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
GeneralizedSwapMigrator
Compiler Version
v0.6.12+commit.27d51765
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./interfaces/ISwap.sol"; import "./helper/BaseBoringBatchable.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; /** * @title GeneralizedSwapMigrator * @notice This contract is responsible for migration liquidity between pools * Users can use this contract to remove their liquidity from the old pools and add them to the new * ones with a single transaction. */ contract GeneralizedSwapMigrator is Ownable, BaseBoringBatchable { using SafeERC20 for IERC20; struct MigrationData { address newPoolAddress; IERC20 oldPoolLPTokenAddress; IERC20 newPoolLPTokenAddress; IERC20[] tokens; } uint256 private constant MAX_UINT256 = 2**256 - 1; mapping(address => MigrationData) public migrationMap; event AddMigrationData(address indexed oldPoolAddress, MigrationData mData); event Migrate( address indexed migrator, address indexed oldPoolAddress, uint256 oldLPTokenAmount, uint256 newLPTokenAmount ); constructor() public Ownable() {} /** * @notice Add new migration data to the contract * @param oldPoolAddress pool address to migrate from * @param mData MigrationData struct that contains information of the old and new pools * @param overwrite should overwrite existing migration data */ function addMigrationData( address oldPoolAddress, MigrationData memory mData, bool overwrite ) external onlyOwner { // Check if (!overwrite) { require( address(migrationMap[oldPoolAddress].oldPoolLPTokenAddress) == address(0), "cannot overwrite existing migration data" ); } require( address(mData.oldPoolLPTokenAddress) != address(0), "oldPoolLPTokenAddress == 0" ); require( address(mData.newPoolLPTokenAddress) != address(0), "newPoolLPTokenAddress == 0" ); for (uint8 i = 0; i < 32; i++) { address oldPoolToken; try ISwap(oldPoolAddress).getToken(i) returns (IERC20 token) { oldPoolToken = address(token); } catch { require(i > 0, "Failed to get tokens underlying Saddle pool."); oldPoolToken = address(0); } try ISwap(mData.newPoolAddress).getToken(i) returns (IERC20 token) { require( oldPoolToken == address(token) && oldPoolToken == address(mData.tokens[i]), "Failed to match tokens list" ); } catch { require(i > 0, "Failed to get tokens underlying Saddle pool."); require( oldPoolToken == address(0) && i == mData.tokens.length, "Failed to match tokens list" ); break; } } // Effect migrationMap[oldPoolAddress] = mData; // Interaction // Approve old LP Token to be used for withdraws. mData.oldPoolLPTokenAddress.approve(oldPoolAddress, MAX_UINT256); // Approve underlying tokens to be used for deposits. for (uint256 i = 0; i < mData.tokens.length; i++) { mData.tokens[i].safeApprove(mData.newPoolAddress, 0); mData.tokens[i].safeApprove(mData.newPoolAddress, MAX_UINT256); } emit AddMigrationData(oldPoolAddress, mData); } /** * @notice Migrates saddle LP tokens from a pool to another * @param oldPoolAddress pool address to migrate from * @param amount amount of LP tokens to migrate * @param minAmount of new LP tokens to receive */ function migrate( address oldPoolAddress, uint256 amount, uint256 minAmount ) external returns (uint256) { // Check MigrationData memory mData = migrationMap[oldPoolAddress]; require( address(mData.oldPoolLPTokenAddress) != address(0), "migration is not available" ); // Interactions // Transfer old LP token from the caller mData.oldPoolLPTokenAddress.safeTransferFrom( msg.sender, address(this), amount ); // Remove liquidity from the old pool uint256[] memory amounts = ISwap(oldPoolAddress).removeLiquidity( amount, new uint256[](mData.tokens.length), MAX_UINT256 ); // Add acquired liquidity to the new pool uint256 mintedAmount = ISwap(mData.newPoolAddress).addLiquidity( amounts, minAmount, MAX_UINT256 ); // Transfer new LP Token to the caller mData.newPoolLPTokenAddress.safeTransfer(msg.sender, mintedAmount); emit Migrate(msg.sender, oldPoolAddress, amount, mintedAmount); return mintedAmount; } /** * @notice Rescues any token that may be sent to this contract accidentally. * @param token Amount of old LPToken to migrate * @param to Minimum amount of new LPToken to receive */ function rescue(IERC20 token, address to) external onlyOwner { token.safeTransfer(to, token.balanceOf(address(this))); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "./SwapUtils.sol"; /** * @title AmplificationUtils library * @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct. * This library assumes the struct is fully validated. */ library AmplificationUtils { using SafeMath for uint256; event RampA( uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime ); event StopRampA(uint256 currentA, uint256 time); // Constant values used in ramping A calculations uint256 public constant A_PRECISION = 100; uint256 public constant MAX_A = 10**6; uint256 private constant MAX_A_CHANGE = 2; uint256 private constant MIN_RAMP_TIME = 14 days; /** * @notice Return A, the amplification coefficient * n * (n - 1) * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter */ function getA(SwapUtils.Swap storage self) external view returns (uint256) { return _getAPrecise(self).div(A_PRECISION); } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function getAPrecise(SwapUtils.Swap storage self) external view returns (uint256) { return _getAPrecise(self); } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function _getAPrecise(SwapUtils.Swap storage self) internal view returns (uint256) { uint256 t1 = self.futureATime; // time when ramp is finished uint256 a1 = self.futureA; // final A value when ramp is finished if (block.timestamp < t1) { uint256 t0 = self.initialATime; // time when ramp is started uint256 a0 = self.initialA; // initial A value when ramp is started if (a1 > a0) { // a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0) return a0.add( a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0)) ); } else { // a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0) return a0.sub( a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0)) ); } } else { return a1; } } /** * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_ * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param self Swap struct to update * @param futureA_ the new A to ramp towards * @param futureTime_ timestamp when the new A should be reached */ function rampA( SwapUtils.Swap storage self, uint256 futureA_, uint256 futureTime_ ) external { require( block.timestamp >= self.initialATime.add(1 days), "Wait 1 day before starting ramp" ); require( futureTime_ >= block.timestamp.add(MIN_RAMP_TIME), "Insufficient ramp time" ); require( futureA_ > 0 && futureA_ < MAX_A, "futureA_ must be > 0 and < MAX_A" ); uint256 initialAPrecise = _getAPrecise(self); uint256 futureAPrecise = futureA_.mul(A_PRECISION); if (futureAPrecise < initialAPrecise) { require( futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise, "futureA_ is too small" ); } else { require( futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE), "futureA_ is too large" ); } self.initialA = initialAPrecise; self.futureA = futureAPrecise; self.initialATime = block.timestamp; self.futureATime = futureTime_; emit RampA( initialAPrecise, futureAPrecise, block.timestamp, futureTime_ ); } /** * @notice Stops ramping A immediately. Once this function is called, rampA() * cannot be called for another 24 hours * @param self Swap struct to update */ function stopRampA(SwapUtils.Swap storage self) external { require(self.futureATime > block.timestamp, "Ramp is already stopped"); uint256 currentA = _getAPrecise(self); self.initialA = currentA; self.futureA = currentA; self.initialATime = block.timestamp; self.futureATime = block.timestamp; emit StopRampA(currentA, block.timestamp); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "./AmplificationUtils.sol"; import "./LPToken.sol"; import "./MathUtils.sol"; /** * @title SwapUtils library * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities. * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins. * Admin functions should be protected within contracts using this library. */ library SwapUtils { using SafeERC20 for IERC20; using SafeMath for uint256; using MathUtils for uint256; /*** EVENTS ***/ event TokenSwap( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity( address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply ); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); struct Swap { // variables around the ramp management of A, // the amplification coefficient * n * (n - 1) // see https://www.curve.fi/stableswap-paper.pdf for details uint256 initialA; uint256 futureA; uint256 initialATime; uint256 futureATime; // fee calculation uint256 swapFee; uint256 adminFee; LPToken lpToken; // contract references for all tokens being pooled IERC20[] pooledTokens; // multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10 uint256[] tokenPrecisionMultipliers; // the pool balance of each token, in the token's precision // the contract's actual token balance might differ uint256[] balances; } // Struct storing variables used in calculations in the // calculateWithdrawOneTokenDY function to avoid stack too deep errors struct CalculateWithdrawOneTokenDYInfo { uint256 d0; uint256 d1; uint256 newY; uint256 feePerToken; uint256 preciseA; } // Struct storing variables used in calculations in the // {add,remove}Liquidity functions to avoid stack too deep errors struct ManageLiquidityInfo { uint256 d0; uint256 d1; uint256 d2; uint256 preciseA; LPToken lpToken; uint256 totalSupply; uint256[] balances; uint256[] multipliers; } // the precision all pools tokens will be converted to uint8 public constant POOL_PRECISION_DECIMALS = 18; // the denominator used to calculate admin and LP fees. For example, an // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR) uint256 private constant FEE_DENOMINATOR = 10**10; // Max swap fee is 1% or 100bps of each swap uint256 public constant MAX_SWAP_FEE = 10**8; // Max adminFee is 100% of the swapFee // adminFee does not add additional fee on top of swapFee // Instead it takes a certain % of the swapFee. Therefore it has no impact on the // users but only on the earnings of LPs uint256 public constant MAX_ADMIN_FEE = 10**10; // Constant value used as max loop limit uint256 private constant MAX_LOOP_LIMIT = 256; /*** VIEW & PURE FUNCTIONS ***/ function _getAPrecise(Swap storage self) internal view returns (uint256) { return AmplificationUtils._getAPrecise(self); } /** * @notice Calculate the dy, the amount of selected token that user receives and * the fee of withdrawing in one token * @param tokenAmount the amount to withdraw in the pool's precision * @param tokenIndex which token will be withdrawn * @param self Swap struct to read from * @return the amount of token user will receive */ function calculateWithdrawOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256) { (uint256 availableTokenAmount, ) = _calculateWithdrawOneToken( self, tokenAmount, tokenIndex, self.lpToken.totalSupply() ); return availableTokenAmount; } function _calculateWithdrawOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 totalSupply ) internal view returns (uint256, uint256) { uint256 dy; uint256 newY; uint256 currentY; (dy, newY, currentY) = calculateWithdrawOneTokenDY( self, tokenIndex, tokenAmount, totalSupply ); // dy_0 (without fees) // dy, dy_0 - dy uint256 dySwapFee = currentY .sub(newY) .div(self.tokenPrecisionMultipliers[tokenIndex]) .sub(dy); return (dy, dySwapFee); } /** * @notice Calculate the dy of withdrawing in one token * @param self Swap struct to read from * @param tokenIndex which token will be withdrawn * @param tokenAmount the amount to withdraw in the pools precision * @return the d and the new y after withdrawing one token */ function calculateWithdrawOneTokenDY( Swap storage self, uint8 tokenIndex, uint256 tokenAmount, uint256 totalSupply ) internal view returns ( uint256, uint256, uint256 ) { // Get the current D, then solve the stableswap invariant // y_i for D - tokenAmount uint256[] memory xp = _xp(self); require(tokenIndex < xp.length, "Token index out of range"); CalculateWithdrawOneTokenDYInfo memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0); v.preciseA = _getAPrecise(self); v.d0 = getD(xp, v.preciseA); v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply)); require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available"); v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1); uint256[] memory xpReduced = new uint256[](xp.length); v.feePerToken = _feePerToken(self.swapFee, xp.length); for (uint256 i = 0; i < xp.length; i++) { uint256 xpi = xp[i]; // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY // else dxExpected = xp[i] - (xp[i] * d1 / d0) // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR xpReduced[i] = xpi.sub( ( (i == tokenIndex) ? xpi.mul(v.d1).div(v.d0).sub(v.newY) : xpi.sub(xpi.mul(v.d1).div(v.d0)) ).mul(v.feePerToken).div(FEE_DENOMINATOR) ); } uint256 dy = xpReduced[tokenIndex].sub( getYD(v.preciseA, tokenIndex, xpReduced, v.d1) ); dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]); return (dy, v.newY, xp[tokenIndex]); } /** * @notice Calculate the price of a token in the pool with given * precision-adjusted balances and a particular D. * * @dev This is accomplished via solving the invariant iteratively. * See the StableSwap paper and Curve.fi implementation for further details. * * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) * x_1**2 + b*x_1 = c * x_1 = (x_1**2 + c) / (2*x_1 + b) * * @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details. * @param tokenIndex Index of token we are calculating for. * @param xp a precision-adjusted set of pool balances. Array should be * the same cardinality as the pool. * @param d the stableswap invariant * @return the price of the token, in the same precision as in xp */ function getYD( uint256 a, uint8 tokenIndex, uint256[] memory xp, uint256 d ) internal pure returns (uint256) { uint256 numTokens = xp.length; require(tokenIndex < numTokens, "Token not found"); uint256 c = d; uint256 s; uint256 nA = a.mul(numTokens); for (uint256 i = 0; i < numTokens; i++) { if (i != tokenIndex) { s = s.add(xp[i]); c = c.mul(d).div(xp[i].mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } } c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens)); uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA)); uint256 yPrev; uint256 y = d; for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { yPrev = y; y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d)); if (y.within1(yPrev)) { return y; } } revert("Approximation did not converge"); } /** * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A. * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality * as the pool. * @param a the amplification coefficient * n * (n - 1) in A_PRECISION. * See the StableSwap paper for details * @return the invariant, at the precision of the pool */ function getD(uint256[] memory xp, uint256 a) internal pure returns (uint256) { uint256 numTokens = xp.length; uint256 s; for (uint256 i = 0; i < numTokens; i++) { s = s.add(xp[i]); } if (s == 0) { return 0; } uint256 prevD; uint256 d = s; uint256 nA = a.mul(numTokens); for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { uint256 dP = d; for (uint256 j = 0; j < numTokens; j++) { dP = dP.mul(d).div(xp[j].mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // dP = dP * D * D * D * ... overflow! } prevD = d; d = nA .mul(s) .div(AmplificationUtils.A_PRECISION) .add(dP.mul(numTokens)) .mul(d) .div( nA .sub(AmplificationUtils.A_PRECISION) .mul(d) .div(AmplificationUtils.A_PRECISION) .add(numTokens.add(1).mul(dP)) ); if (d.within1(prevD)) { return d; } } // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()` // function which does not rely on D. revert("D does not converge"); } /** * @notice Given a set of balances and precision multipliers, return the * precision-adjusted balances. * * @param balances an array of token balances, in their native precisions. * These should generally correspond with pooled tokens. * * @param precisionMultipliers an array of multipliers, corresponding to * the amounts in the balances array. When multiplied together they * should yield amounts at the pool's precision. * * @return an array of amounts "scaled" to the pool's precision */ function _xp( uint256[] memory balances, uint256[] memory precisionMultipliers ) internal pure returns (uint256[] memory) { uint256 numTokens = balances.length; require( numTokens == precisionMultipliers.length, "Balances must match multipliers" ); uint256[] memory xp = new uint256[](numTokens); for (uint256 i = 0; i < numTokens; i++) { xp[i] = balances[i].mul(precisionMultipliers[i]); } return xp; } /** * @notice Return the precision-adjusted balances of all tokens in the pool * @param self Swap struct to read from * @return the pool balances "scaled" to the pool's precision, allowing * them to be more easily compared. */ function _xp(Swap storage self) internal view returns (uint256[] memory) { return _xp(self.balances, self.tokenPrecisionMultipliers); } /** * @notice Get the virtual price, to help calculate profit * @param self Swap struct to read from * @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS */ function getVirtualPrice(Swap storage self) external view returns (uint256) { uint256 d = getD(_xp(self), _getAPrecise(self)); LPToken lpToken = self.lpToken; uint256 supply = lpToken.totalSupply(); if (supply > 0) { return d.mul(10**uint256(POOL_PRECISION_DECIMALS)).div(supply); } return 0; } /** * @notice Calculate the new balances of the tokens given the indexes of the token * that is swapped from (FROM) and the token that is swapped to (TO). * This function is used as a helper function to calculate how much TO token * the user should receive on swap. * * @param preciseA precise form of amplification coefficient * @param tokenIndexFrom index of FROM token * @param tokenIndexTo index of TO token * @param x the new total amount of FROM token * @param xp balances of the tokens in the pool * @return the amount of TO token that should remain in the pool */ function getY( uint256 preciseA, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 x, uint256[] memory xp ) internal pure returns (uint256) { uint256 numTokens = xp.length; require( tokenIndexFrom != tokenIndexTo, "Can't compare token to itself" ); require( tokenIndexFrom < numTokens && tokenIndexTo < numTokens, "Tokens must be in pool" ); uint256 d = getD(xp, preciseA); uint256 c = d; uint256 s; uint256 nA = numTokens.mul(preciseA); uint256 _x; for (uint256 i = 0; i < numTokens; i++) { if (i == tokenIndexFrom) { _x = x; } else if (i != tokenIndexTo) { _x = xp[i]; } else { continue; } s = s.add(_x); c = c.mul(d).div(_x.mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens)); uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA)); uint256 yPrev; uint256 y = d; // iterative approximation for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { yPrev = y; y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d)); if (y.within1(yPrev)) { return y; } } revert("Approximation did not converge"); } /** * @notice Externally calculates a swap between two tokens. * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get */ function calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256 dy) { (dy, ) = _calculateSwap( self, tokenIndexFrom, tokenIndexTo, dx, self.balances ); } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get * @return dyFee the associated fee */ function _calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256[] memory balances ) internal view returns (uint256 dy, uint256 dyFee) { uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256[] memory xp = _xp(balances, multipliers); require( tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "Token index out of range" ); uint256 x = dx.mul(multipliers[tokenIndexFrom]).add(xp[tokenIndexFrom]); uint256 y = getY( _getAPrecise(self), tokenIndexFrom, tokenIndexTo, x, xp ); dy = xp[tokenIndexTo].sub(y).sub(1); dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR); dy = dy.sub(dyFee).div(multipliers[tokenIndexTo]); } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of * LP tokens * * @param amount the amount of LP tokens that would to be burned on * withdrawal * @return array of amounts of tokens user will receive */ function calculateRemoveLiquidity(Swap storage self, uint256 amount) external view returns (uint256[] memory) { return _calculateRemoveLiquidity( self.balances, amount, self.lpToken.totalSupply() ); } function _calculateRemoveLiquidity( uint256[] memory balances, uint256 amount, uint256 totalSupply ) internal pure returns (uint256[] memory) { require(amount <= totalSupply, "Cannot exceed total supply"); uint256[] memory amounts = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amounts[i] = balances[i].mul(amount).div(totalSupply); } return amounts; } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param self Swap struct to read from * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return if deposit was true, total amount of lp token that will be minted and if * deposit was false, total amount of lp token that will be burned */ function calculateTokenAmount( Swap storage self, uint256[] calldata amounts, bool deposit ) external view returns (uint256) { uint256 a = _getAPrecise(self); uint256[] memory balances = self.balances; uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256 d0 = getD(_xp(balances, multipliers), a); for (uint256 i = 0; i < balances.length; i++) { if (deposit) { balances[i] = balances[i].add(amounts[i]); } else { balances[i] = balances[i].sub( amounts[i], "Cannot withdraw more than available" ); } } uint256 d1 = getD(_xp(balances, multipliers), a); uint256 totalSupply = self.lpToken.totalSupply(); if (deposit) { return d1.sub(d0).mul(totalSupply).div(d0); } else { return d0.sub(d1).mul(totalSupply).div(d0); } } /** * @notice return accumulated amount of admin fees of the token with given index * @param self Swap struct to read from * @param index Index of the pooled token * @return admin balance in the token's precision */ function getAdminBalance(Swap storage self, uint256 index) external view returns (uint256) { require(index < self.pooledTokens.length, "Token index out of range"); return self.pooledTokens[index].balanceOf(address(this)).sub( self.balances[index] ); } /** * @notice internal helper function to calculate fee per token multiplier used in * swap fee calculations * @param swapFee swap fee for the tokens * @param numTokens number of tokens pooled */ function _feePerToken(uint256 swapFee, uint256 numTokens) internal pure returns (uint256) { return swapFee.mul(numTokens).div(numTokens.sub(1).mul(4)); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) external returns (uint256) { { IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom]; require( dx <= tokenFrom.balanceOf(msg.sender), "Cannot swap more than you own" ); // Transfer tokens first to see if a fee was charged on transfer uint256 beforeBalance = tokenFrom.balanceOf(address(this)); tokenFrom.safeTransferFrom(msg.sender, address(this), dx); // Use the actual transferred amount for AMM math dx = tokenFrom.balanceOf(address(this)).sub(beforeBalance); } uint256 dy; uint256 dyFee; uint256[] memory balances = self.balances; (dy, dyFee) = _calculateSwap( self, tokenIndexFrom, tokenIndexTo, dx, balances ); require(dy >= minDy, "Swap didn't result in min tokens"); uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div( self.tokenPrecisionMultipliers[tokenIndexTo] ); self.balances[tokenIndexFrom] = balances[tokenIndexFrom].add(dx); self.balances[tokenIndexTo] = balances[tokenIndexTo].sub(dy).sub( dyAdminFee ); self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy); emit TokenSwap(msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dy; } /** * @notice Add liquidity to the pool * @param self Swap struct to read from and write to * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored. * @return amount of LP token user received */ function addLiquidity( Swap storage self, uint256[] memory amounts, uint256 minToMint ) external returns (uint256) { IERC20[] memory pooledTokens = self.pooledTokens; require( amounts.length == pooledTokens.length, "Amounts must match pooled tokens" ); // current state ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); if (v.totalSupply != 0) { v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); } uint256[] memory newBalances = new uint256[](pooledTokens.length); for (uint256 i = 0; i < pooledTokens.length; i++) { require( v.totalSupply != 0 || amounts[i] > 0, "Must supply all tokens in pool" ); // Transfer tokens first to see if a fee was charged on transfer if (amounts[i] != 0) { uint256 beforeBalance = pooledTokens[i].balanceOf( address(this) ); pooledTokens[i].safeTransferFrom( msg.sender, address(this), amounts[i] ); // Update the amounts[] with actual transfer amount amounts[i] = pooledTokens[i].balanceOf(address(this)).sub( beforeBalance ); } newBalances[i] = v.balances[i].add(amounts[i]); } // invariant after change v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA); require(v.d1 > v.d0, "D should increase"); // updated to reflect fees and calculate the user's LP tokens v.d2 = v.d1; uint256[] memory fees = new uint256[](pooledTokens.length); if (v.totalSupply != 0) { uint256 feePerToken = _feePerToken( self.swapFee, pooledTokens.length ); for (uint256 i = 0; i < pooledTokens.length; i++) { uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0); fees[i] = feePerToken .mul(idealBalance.difference(newBalances[i])) .div(FEE_DENOMINATOR); self.balances[i] = newBalances[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); newBalances[i] = newBalances[i].sub(fees[i]); } v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA); } else { // the initial depositor doesn't pay fees self.balances = newBalances; } uint256 toMint; if (v.totalSupply == 0) { toMint = v.d1; } else { toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0); } require(toMint >= minToMint, "Couldn't mint min requested"); // mint the user's LP tokens v.lpToken.mint(msg.sender, toMint); emit AddLiquidity( msg.sender, amounts, fees, v.d1, v.totalSupply.add(toMint) ); return toMint; } /** * @notice Burn LP tokens to remove liquidity from the pool. * @dev Liquidity can always be removed, even when the pool is paused. * @param self Swap struct to read from and write to * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @return amounts of tokens the user received */ function removeLiquidity( Swap storage self, uint256 amount, uint256[] calldata minAmounts ) external returns (uint256[] memory) { LPToken lpToken = self.lpToken; IERC20[] memory pooledTokens = self.pooledTokens; require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); require( minAmounts.length == pooledTokens.length, "minAmounts must match poolTokens" ); uint256[] memory balances = self.balances; uint256 totalSupply = lpToken.totalSupply(); uint256[] memory amounts = _calculateRemoveLiquidity( balances, amount, totalSupply ); for (uint256 i = 0; i < amounts.length; i++) { require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]"); self.balances[i] = balances[i].sub(amounts[i]); pooledTokens[i].safeTransfer(msg.sender, amounts[i]); } lpToken.burnFrom(msg.sender, amount); emit RemoveLiquidity(msg.sender, amounts, totalSupply.sub(amount)); return amounts; } /** * @notice Remove liquidity from the pool all in one token. * @param self Swap struct to read from and write to * @param tokenAmount the amount of the lp tokens to burn * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @return amount chosen token that user received */ function removeLiquidityOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount ) external returns (uint256) { LPToken lpToken = self.lpToken; IERC20[] memory pooledTokens = self.pooledTokens; require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); require(tokenIndex < pooledTokens.length, "Token not found"); uint256 totalSupply = lpToken.totalSupply(); (uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken( self, tokenAmount, tokenIndex, totalSupply ); require(dy >= minAmount, "dy < minAmount"); self.balances[tokenIndex] = self.balances[tokenIndex].sub( dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR)) ); lpToken.burnFrom(msg.sender, tokenAmount); pooledTokens[tokenIndex].safeTransfer(msg.sender, dy); emit RemoveLiquidityOne( msg.sender, tokenAmount, totalSupply, tokenIndex, dy ); return dy; } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. * * @param self Swap struct to read from and write to * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @return actual amount of LP tokens burned in the withdrawal */ function removeLiquidityImbalance( Swap storage self, uint256[] memory amounts, uint256 maxBurnAmount ) public returns (uint256) { ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); IERC20[] memory pooledTokens = self.pooledTokens; require( amounts.length == pooledTokens.length, "Amounts should match pool tokens" ); require( maxBurnAmount <= v.lpToken.balanceOf(msg.sender) && maxBurnAmount != 0, ">LP.balanceOf" ); uint256 feePerToken = _feePerToken(self.swapFee, pooledTokens.length); uint256[] memory fees = new uint256[](pooledTokens.length); { uint256[] memory balances1 = new uint256[](pooledTokens.length); v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); for (uint256 i = 0; i < pooledTokens.length; i++) { balances1[i] = v.balances[i].sub( amounts[i], "Cannot withdraw more than available" ); } v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA); for (uint256 i = 0; i < pooledTokens.length; i++) { uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0); uint256 difference = idealBalance.difference(balances1[i]); fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR); self.balances[i] = balances1[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); balances1[i] = balances1[i].sub(fees[i]); } v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA); } uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0); require(tokenAmount != 0, "Burnt amount cannot be zero"); tokenAmount = tokenAmount.add(1); require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount"); v.lpToken.burnFrom(msg.sender, tokenAmount); for (uint256 i = 0; i < pooledTokens.length; i++) { pooledTokens[i].safeTransfer(msg.sender, amounts[i]); } emit RemoveLiquidityImbalance( msg.sender, amounts, fees, v.d1, v.totalSupply.sub(tokenAmount) ); return tokenAmount; } /** * @notice withdraw all admin fees to a given address * @param self Swap struct to withdraw fees from * @param to Address to send the fees to */ function withdrawAdminFees(Swap storage self, address to) external { IERC20[] memory pooledTokens = self.pooledTokens; for (uint256 i = 0; i < pooledTokens.length; i++) { IERC20 token = pooledTokens[i]; uint256 balance = token.balanceOf(address(this)).sub( self.balances[i] ); if (balance != 0) { token.safeTransfer(to, balance); } } } /** * @notice Sets the admin fee * @dev adminFee cannot be higher than 100% of the swap fee * @param self Swap struct to update * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(Swap storage self, uint256 newAdminFee) external { require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high"); self.adminFee = newAdminFee; emit NewAdminFee(newAdminFee); } /** * @notice update the swap fee * @dev fee cannot be higher than 1% of each swap * @param self Swap struct to update * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(Swap storage self, uint256 newSwapFee) external { require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high"); self.swapFee = newSwapFee; emit NewSwapFee(newSwapFee); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20BurnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "./interfaces/ISwap.sol"; /** * @title Liquidity Provider Token * @notice This token is an ERC20 detailed token with added capability to be minted by the owner. * It is used to represent user's shares when providing liquidity to swap contracts. * @dev Only Swap contracts should initialize and own LPToken contracts. */ contract LPToken is ERC20BurnableUpgradeable, OwnableUpgradeable { using SafeMathUpgradeable for uint256; /** * @notice Initializes this LPToken contract with the given name and symbol * @dev The caller of this function will become the owner. A Swap contract should call this * in its initializer function. * @param name name of this token * @param symbol symbol of this token */ function initialize(string memory name, string memory symbol) external initializer returns (bool) { __Context_init_unchained(); __ERC20_init_unchained(name, symbol); __Ownable_init_unchained(); return true; } /** * @notice Mints the given amount of LPToken to the recipient. * @dev only owner can call this mint function * @param recipient address of account to receive the tokens * @param amount amount of tokens to mint */ function mint(address recipient, uint256 amount) external onlyOwner { require(amount != 0, "LPToken: cannot mint 0"); _mint(recipient, amount); } /** * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including * minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime. * This assumes the owner is set to a Swap contract's address. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual override(ERC20Upgradeable) { super._beforeTokenTransfer(from, to, amount); require(to != address(this), "LPToken: cannot send to itself"); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; /** * @title MathUtils library * @notice A library to be used in conjunction with SafeMath. Contains functions for calculating * differences between two uint256. */ library MathUtils { /** * @notice Compares a and b and returns true if the difference between a and b * is less than 1 or equal to each other. * @param a uint256 to compare with * @param b uint256 to compare with * @return True if the difference between a and b is less than 1 or equal, * otherwise return false */ function within1(uint256 a, uint256 b) internal pure returns (bool) { return (difference(a, b) <= 1); } /** * @notice Calculates absolute difference between a and b * @param a uint256 to compare with * @param b uint256 to compare with * @return Difference between a and b */ function difference(uint256 a, uint256 b) internal pure returns (uint256) { if (a > b) { return a - b; } return b - a; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/ContextUpgradeable.sol"; import "./ERC20Upgradeable.sol"; import "../../proxy/Initializable.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable { function __ERC20Burnable_init() internal initializer { __Context_init_unchained(); __ERC20Burnable_init_unchained(); } function __ERC20Burnable_init_unchained() internal initializer { } using SafeMathUpgradeable for uint256; /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance"); _approve(account, _msgSender(), decreasedAllowance); _burn(account, amount); } uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "./IAllowlist.sol"; interface ISwap { // pool data view functions function getA() external view returns (uint256); function getAllowlist() external view returns (IAllowlist); function getToken(uint8 index) external view returns (IERC20); function getTokenIndex(address tokenAddress) external view returns (uint8); function getTokenBalance(uint8 index) external view returns (uint256); function getVirtualPrice() external view returns (uint256); function isGuarded() external view returns (bool); function swapStorage() external view returns ( uint256, uint256, uint256, uint256, uint256, uint256, address ); // min return calculation functions function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view returns (uint256); function calculateRemoveLiquidity(uint256 amount) external view returns (uint256[] memory); function calculateRemoveLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 availableTokenAmount); // state modifying functions function initialize( IERC20[] memory pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 a, uint256 fee, uint256 adminFee, address lpTokenTargetAddress ) external; function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external returns (uint256); function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external returns (uint256[] memory); function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external returns (uint256); function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../proxy/Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/ContextUpgradeable.sol"; import "./IERC20Upgradeable.sol"; import "../../math/SafeMathUpgradeable.sol"; import "../../proxy/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable { using SafeMathUpgradeable for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal initializer { __Context_init_unchained(); __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } uint256[44] private __gap; }
// SPDX-License-Identifier: MIT // solhint-disable-next-line compiler-version pragma solidity >=0.4.24 <0.8.0; import "../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { return !AddressUpgradeable.isContract(address(this)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMathUpgradeable { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; interface IAllowlist { function getPoolAccountLimit(address poolAddress) external view returns (uint256); function getPoolCap(address poolAddress) external view returns (uint256); function verifyAddress(address account, bytes32[] calldata merkleProof) external returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; import "./OwnerPausableUpgradeable.sol"; import "./SwapUtils.sol"; import "./AmplificationUtils.sol"; /** * @title Swap - A StableSwap implementation in solidity. * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins) * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens * in desired ratios for an exchange of the pool token that represents their share of the pool. * Users can burn pool tokens and withdraw their share of token(s). * * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets * distributed to the LPs. * * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which * stops the ratio of the tokens in the pool from changing. * Users can always withdraw their tokens via multi-asset withdraws. * * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's * deployment size. */ contract Swap is OwnerPausableUpgradeable, ReentrancyGuardUpgradeable { using SafeERC20 for IERC20; using SafeMath for uint256; using SwapUtils for SwapUtils.Swap; using AmplificationUtils for SwapUtils.Swap; // Struct storing data responsible for automatic market maker functionalities. In order to // access this data, this contract uses SwapUtils library. For more details, see SwapUtils.sol SwapUtils.Swap public swapStorage; // Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool. // getTokenIndex function also relies on this mapping to retrieve token index. mapping(address => uint8) private tokenIndexes; /*** EVENTS ***/ // events replicated from SwapUtils to make the ABI easier for dumb // clients event TokenSwap( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity( address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply ); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); event RampA( uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime ); event StopRampA(uint256 currentA, uint256 time); /** * @notice Initializes this Swap contract with the given parameters. * This will also clone a LPToken contract that represents users' * LP positions. The owner of LPToken will be this contract - which means * only this contract is allowed to mint/burn tokens. * * @param _pooledTokens an array of ERC20s this pool will accept * @param decimals the decimals to use for each pooled token, * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS * @param lpTokenName the long-form name of the token to be deployed * @param lpTokenSymbol the short symbol for the token to be deployed * @param _a the amplification coefficient * n * (n - 1). See the * StableSwap paper for details * @param _fee default swap fee to be initialized with * @param _adminFee default adminFee to be initialized with * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target */ function initialize( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress ) public virtual initializer { __OwnerPausable_init(); __ReentrancyGuard_init(); // Check _pooledTokens and precisions parameter require(_pooledTokens.length > 1, "_pooledTokens.length <= 1"); require(_pooledTokens.length <= 32, "_pooledTokens.length > 32"); require( _pooledTokens.length == decimals.length, "_pooledTokens decimals mismatch" ); uint256[] memory precisionMultipliers = new uint256[](decimals.length); for (uint8 i = 0; i < _pooledTokens.length; i++) { if (i > 0) { // Check if index is already used. Check if 0th element is a duplicate. require( tokenIndexes[address(_pooledTokens[i])] == 0 && _pooledTokens[0] != _pooledTokens[i], "Duplicate tokens" ); } require( address(_pooledTokens[i]) != address(0), "The 0 address isn't an ERC-20" ); require( decimals[i] <= SwapUtils.POOL_PRECISION_DECIMALS, "Token decimals exceeds max" ); precisionMultipliers[i] = 10 ** uint256(SwapUtils.POOL_PRECISION_DECIMALS).sub( uint256(decimals[i]) ); tokenIndexes[address(_pooledTokens[i])] = i; } // Check _a, _fee, _adminFee, _withdrawFee parameters require(_a < AmplificationUtils.MAX_A, "_a exceeds maximum"); require(_fee < SwapUtils.MAX_SWAP_FEE, "_fee exceeds maximum"); require( _adminFee < SwapUtils.MAX_ADMIN_FEE, "_adminFee exceeds maximum" ); // Clone and initialize a LPToken contract LPToken lpToken = LPToken(Clones.clone(lpTokenTargetAddress)); require( lpToken.initialize(lpTokenName, lpTokenSymbol), "could not init lpToken clone" ); // Initialize swapStorage struct swapStorage.lpToken = lpToken; swapStorage.pooledTokens = _pooledTokens; swapStorage.tokenPrecisionMultipliers = precisionMultipliers; swapStorage.balances = new uint256[](_pooledTokens.length); swapStorage.initialA = _a.mul(AmplificationUtils.A_PRECISION); swapStorage.futureA = _a.mul(AmplificationUtils.A_PRECISION); // swapStorage.initialATime = 0; // swapStorage.futureATime = 0; swapStorage.swapFee = _fee; swapStorage.adminFee = _adminFee; } /*** MODIFIERS ***/ /** * @notice Modifier to check deadline against current timestamp * @param deadline latest timestamp to accept this transaction */ modifier deadlineCheck(uint256 deadline) { require(block.timestamp <= deadline, "Deadline not met"); _; } /*** VIEW FUNCTIONS ***/ /** * @notice Return A, the amplification coefficient * n * (n - 1) * @dev See the StableSwap paper for details * @return A parameter */ function getA() external view virtual returns (uint256) { return swapStorage.getA(); } /** * @notice Return A in its raw precision form * @dev See the StableSwap paper for details * @return A parameter in its raw precision form */ function getAPrecise() external view virtual returns (uint256) { return swapStorage.getAPrecise(); } /** * @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range. * @param index the index of the token * @return address of the token at given index */ function getToken(uint8 index) public view virtual returns (IERC20) { require(index < swapStorage.pooledTokens.length, "Out of range"); return swapStorage.pooledTokens[index]; } /** * @notice Return the index of the given token address. Reverts if no matching * token is found. * @param tokenAddress address of the token * @return the index of the given token address */ function getTokenIndex(address tokenAddress) public view virtual returns (uint8) { uint8 index = tokenIndexes[tokenAddress]; require( address(getToken(index)) == tokenAddress, "Token does not exist" ); return index; } /** * @notice Return current balance of the pooled token at given index * @param index the index of the token * @return current balance of the pooled token at given index with token's native precision */ function getTokenBalance(uint8 index) external view virtual returns (uint256) { require(index < swapStorage.pooledTokens.length, "Index out of range"); return swapStorage.balances[index]; } /** * @notice Get the virtual price, to help calculate profit * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS */ function getVirtualPrice() external view virtual returns (uint256) { return swapStorage.getVirtualPrice(); } /** * @notice Calculate amount of tokens you receive on swap * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell. If the token charges * a fee on transfers, use the amount that gets transferred after the fee. * @return amount of tokens the user will receive */ function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view virtual returns (uint256) { return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx); } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return token amount the user will receive */ function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view virtual returns (uint256) { return swapStorage.calculateTokenAmount(amounts, deposit); } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of LP tokens * @param amount the amount of LP tokens that would be burned on withdrawal * @return array of token balances that the user will receive */ function calculateRemoveLiquidity(uint256 amount) external view virtual returns (uint256[] memory) { return swapStorage.calculateRemoveLiquidity(amount); } /** * @notice Calculate the amount of underlying token available to withdraw * when withdrawing via only single token * @param tokenAmount the amount of LP token to burn * @param tokenIndex index of which token will be withdrawn * @return availableTokenAmount calculated amount of underlying token * available to withdraw */ function calculateRemoveLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex ) external view virtual returns (uint256 availableTokenAmount) { return swapStorage.calculateWithdrawOneToken(tokenAmount, tokenIndex); } /** * @notice This function reads the accumulated amount of admin fees of the token with given index * @param index Index of the pooled token * @return admin's token balance in the token's precision */ function getAdminBalance(uint256 index) external view virtual returns (uint256) { return swapStorage.getAdminBalance(index); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice Swap two tokens using this pool * @param tokenIndexFrom the token the user wants to swap from * @param tokenIndexTo the token the user wants to swap to * @param dx the amount of tokens the user wants to swap from * @param minDy the min amount the user would like to receive, or revert. * @param deadline latest timestamp to accept this transaction */ function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy); } /** * @notice Add liquidity to the pool with the given amounts of tokens * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amount of LP token user minted and received */ function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.addLiquidity(amounts, minToMint); } /** * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @dev Liquidity can always be removed, even when the pool is paused. * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amounts of tokens user received */ function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external virtual nonReentrant deadlineCheck(deadline) returns (uint256[] memory) { return swapStorage.removeLiquidity(amount, minAmounts); } /** * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param tokenAmount the amount of the token you want to receive * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @param deadline latest timestamp to accept this transaction * @return amount of chosen token user received */ function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.removeLiquidityOneToken( tokenAmount, tokenIndex, minAmount ); } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @param deadline latest timestamp to accept this transaction * @return amount of LP tokens burned */ function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount); } /*** ADMIN FUNCTIONS ***/ /** * @notice Withdraw all admin fees to the contract owner */ function withdrawAdminFees() external onlyOwner { swapStorage.withdrawAdminFees(owner()); } /** * @notice Update the admin fee. Admin fee takes portion of the swap fee. * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(uint256 newAdminFee) external onlyOwner { swapStorage.setAdminFee(newAdminFee); } /** * @notice Update the swap fee to be applied on swaps * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(uint256 newSwapFee) external onlyOwner { swapStorage.setSwapFee(newSwapFee); } /** * @notice Start ramping up or down A parameter towards given futureA and futureTime * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param futureA the new A to ramp towards * @param futureTime timestamp when the new A should be reached */ function rampA(uint256 futureA, uint256 futureTime) external onlyOwner { swapStorage.rampA(futureA, futureTime); } /** * @notice Stop ramping A immediately. Reverts if ramp A is already stopped. */ function stopRampA() external onlyOwner { swapStorage.stopRampA(); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. * * _Available since v3.4._ */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `master`. * * This function uses the create opcode, which should never revert. */ function clone(address master) internal returns (address instance) { // solhint-disable-next-line no-inline-assembly assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, master)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000) instance := create(0, ptr, 0x37) } require(instance != address(0), "ERC1167: create failed"); } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `master`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `master` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address master, bytes32 salt) internal returns (address instance) { // solhint-disable-next-line no-inline-assembly assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, master)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000) instance := create2(0, ptr, 0x37, salt) } require(instance != address(0), "ERC1167: create2 failed"); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress(address master, bytes32 salt, address deployer) internal pure returns (address predicted) { // solhint-disable-next-line no-inline-assembly assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, master)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000) mstore(add(ptr, 0x38), shl(0x60, deployer)) mstore(add(ptr, 0x4c), salt) mstore(add(ptr, 0x6c), keccak256(ptr, 0x37)) predicted := keccak256(add(ptr, 0x37), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress(address master, bytes32 salt) internal view returns (address predicted) { return predictDeterministicAddress(master, salt, address(this)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../proxy/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; /** * @title OwnerPausable * @notice An ownable contract allows the owner to pause and unpause the * contract without a delay. * @dev Only methods using the provided modifiers will be paused. */ abstract contract OwnerPausableUpgradeable is OwnableUpgradeable, PausableUpgradeable { function __OwnerPausable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); __Pausable_init_unchained(); } /** * @notice Pause the contract. Revert if already paused. */ function pause() external onlyOwner { PausableUpgradeable._pause(); } /** * @notice Unpause the contract. Revert if already unpaused. */ function unpause() external onlyOwner { PausableUpgradeable._unpause(); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./ContextUpgradeable.sol"; import "../proxy/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT WITH AGPL-3.0-only pragma solidity 0.6.12; import "./Swap.sol"; import "./interfaces/IFlashLoanReceiver.sol"; /** * @title Swap - A StableSwap implementation in solidity. * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins) * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens * in desired ratios for an exchange of the pool token that represents their share of the pool. * Users can burn pool tokens and withdraw their share of token(s). * * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets * distributed to the LPs. * * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which * stops the ratio of the tokens in the pool from changing. * Users can always withdraw their tokens via multi-asset withdraws. * * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's * deployment size. */ contract SwapFlashLoan is Swap { // Total fee that is charged on all flashloans in BPS. Borrowers must repay the amount plus the flash loan fee. // This fee is split between the protocol and the pool. uint256 public flashLoanFeeBPS; // Share of the flash loan fee that goes to the protocol in BPS. A portion of each flash loan fee is allocated // to the protocol rather than the pool. uint256 public protocolFeeShareBPS; // Max BPS for limiting flash loan fee settings. uint256 public constant MAX_BPS = 10000; /*** EVENTS ***/ event FlashLoan( address indexed receiver, uint8 tokenIndex, uint256 amount, uint256 amountFee, uint256 protocolFee ); /** * @notice Initializes this Swap contract with the given parameters. * This will also clone a LPToken contract that represents users' * LP positions. The owner of LPToken will be this contract - which means * only this contract is allowed to mint/burn tokens. * * @param _pooledTokens an array of ERC20s this pool will accept * @param decimals the decimals to use for each pooled token, * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS * @param lpTokenName the long-form name of the token to be deployed * @param lpTokenSymbol the short symbol for the token to be deployed * @param _a the amplification coefficient * n * (n - 1). See the * StableSwap paper for details * @param _fee default swap fee to be initialized with * @param _adminFee default adminFee to be initialized with * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target */ function initialize( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress ) public virtual override initializer { Swap.initialize( _pooledTokens, decimals, lpTokenName, lpTokenSymbol, _a, _fee, _adminFee, lpTokenTargetAddress ); flashLoanFeeBPS = 8; // 8 bps protocolFeeShareBPS = 0; // 0 bps } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice Borrow the specified token from this pool for this transaction only. This function will call * `IFlashLoanReceiver(receiver).executeOperation` and the `receiver` must return the full amount of the token * and the associated fee by the end of the callback transaction. If the conditions are not met, this call * is reverted. * @param receiver the address of the receiver of the token. This address must implement the IFlashLoanReceiver * interface and the callback function `executeOperation`. * @param token the protocol fee in bps to be applied on the total flash loan fee * @param amount the total amount to borrow in this transaction * @param params optional data to pass along to the callback function */ function flashLoan( address receiver, IERC20 token, uint256 amount, bytes memory params ) external nonReentrant { uint8 tokenIndex = getTokenIndex(address(token)); uint256 availableLiquidityBefore = token.balanceOf(address(this)); uint256 protocolBalanceBefore = availableLiquidityBefore.sub( swapStorage.balances[tokenIndex] ); require( amount > 0 && availableLiquidityBefore >= amount, "invalid amount" ); // Calculate the additional amount of tokens the pool should end up with uint256 amountFee = amount.mul(flashLoanFeeBPS).div(10000); // Calculate the portion of the fee that will go to the protocol uint256 protocolFee = amountFee.mul(protocolFeeShareBPS).div(10000); require(amountFee > 0, "amount is small for a flashLoan"); // Transfer the requested amount of tokens token.safeTransfer(receiver, amount); // Execute callback function on receiver IFlashLoanReceiver(receiver).executeOperation( address(this), address(token), amount, amountFee, params ); uint256 availableLiquidityAfter = token.balanceOf(address(this)); require( availableLiquidityAfter >= availableLiquidityBefore.add(amountFee), "flashLoan fee is not met" ); swapStorage.balances[tokenIndex] = availableLiquidityAfter .sub(protocolBalanceBefore) .sub(protocolFee); emit FlashLoan(receiver, tokenIndex, amount, amountFee, protocolFee); } /*** ADMIN FUNCTIONS ***/ /** * @notice Updates the flash loan fee parameters. This function can only be called by the owner. * @param newFlashLoanFeeBPS the total fee in bps to be applied on future flash loans * @param newProtocolFeeShareBPS the protocol fee in bps to be applied on the total flash loan fee */ function setFlashLoanFees( uint256 newFlashLoanFeeBPS, uint256 newProtocolFeeShareBPS ) external onlyOwner { require( newFlashLoanFeeBPS > 0 && newFlashLoanFeeBPS <= MAX_BPS && newProtocolFeeShareBPS <= MAX_BPS, "fees are not in valid range" ); flashLoanFeeBPS = newFlashLoanFeeBPS; protocolFeeShareBPS = newProtocolFeeShareBPS; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity 0.6.12; /** * @title IFlashLoanReceiver interface * @notice Interface for the Saddle fee IFlashLoanReceiver. Modified from Aave's IFlashLoanReceiver interface. * https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/flashloan/interfaces/IFlashLoanReceiver.sol * @author Aave * @dev implement this interface to develop a flashloan-compatible flashLoanReceiver contract **/ interface IFlashLoanReceiver { function executeOperation( address pool, address token, uint256 amount, uint256 fee, bytes calldata params ) external; }
// SPDX-License-Identifier: MIT WITH AGPL-3.0-only pragma solidity 0.6.12; import "./SwapV1.sol"; import "./interfaces/IFlashLoanReceiver.sol"; /** * @title Swap - A StableSwap implementation in solidity. * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins) * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens * in desired ratios for an exchange of the pool token that represents their share of the pool. * Users can burn pool tokens and withdraw their share of token(s). * * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets * distributed to the LPs. * * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which * stops the ratio of the tokens in the pool from changing. * Users can always withdraw their tokens via multi-asset withdraws. * * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's * deployment size. */ contract SwapFlashLoanV1 is SwapV1 { // Total fee that is charged on all flashloans in BPS. Borrowers must repay the amount plus the flash loan fee. // This fee is split between the protocol and the pool. uint256 public flashLoanFeeBPS; // Share of the flash loan fee that goes to the protocol in BPS. A portion of each flash loan fee is allocated // to the protocol rather than the pool. uint256 public protocolFeeShareBPS; // Max BPS for limiting flash loan fee settings. uint256 public constant MAX_BPS = 10000; /*** EVENTS ***/ event FlashLoan( address indexed receiver, uint8 tokenIndex, uint256 amount, uint256 amountFee, uint256 protocolFee ); /** * @notice Initializes this Swap contract with the given parameters. * This will also clone a LPToken contract that represents users' * LP positions. The owner of LPToken will be this contract - which means * only this contract is allowed to mint/burn tokens. * * @param _pooledTokens an array of ERC20s this pool will accept * @param decimals the decimals to use for each pooled token, * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS * @param lpTokenName the long-form name of the token to be deployed * @param lpTokenSymbol the short symbol for the token to be deployed * @param _a the amplification coefficient * n * (n - 1). See the * StableSwap paper for details * @param _fee default swap fee to be initialized with * @param _adminFee default adminFee to be initialized with * @param _withdrawFee default withdrawFee to be initialized with * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target */ function initialize( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, uint256 _withdrawFee, address lpTokenTargetAddress ) public virtual override initializer { SwapV1.initialize( _pooledTokens, decimals, lpTokenName, lpTokenSymbol, _a, _fee, _adminFee, _withdrawFee, lpTokenTargetAddress ); flashLoanFeeBPS = 8; // 8 bps protocolFeeShareBPS = 0; // 0 bps } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice Borrow the specified token from this pool for this transaction only. This function will call * `IFlashLoanReceiver(receiver).executeOperation` and the `receiver` must return the full amount of the token * and the associated fee by the end of the callback transaction. If the conditions are not met, this call * is reverted. * @param receiver the address of the receiver of the token. This address must implement the IFlashLoanReceiver * interface and the callback function `executeOperation`. * @param token the protocol fee in bps to be applied on the total flash loan fee * @param amount the total amount to borrow in this transaction * @param params optional data to pass along to the callback function */ function flashLoan( address receiver, IERC20 token, uint256 amount, bytes memory params ) external nonReentrant { uint8 tokenIndex = getTokenIndex(address(token)); uint256 availableLiquidityBefore = token.balanceOf(address(this)); uint256 protocolBalanceBefore = availableLiquidityBefore.sub( swapStorage.balances[tokenIndex] ); require( amount > 0 && availableLiquidityBefore >= amount, "invalid amount" ); // Calculate the additional amount of tokens the pool should end up with uint256 amountFee = amount.mul(flashLoanFeeBPS).div(10000); // Calculate the portion of the fee that will go to the protocol uint256 protocolFee = amountFee.mul(protocolFeeShareBPS).div(10000); require(amountFee > 0, "amount is small for a flashLoan"); // Transfer the requested amount of tokens token.safeTransfer(receiver, amount); // Execute callback function on receiver IFlashLoanReceiver(receiver).executeOperation( address(this), address(token), amount, amountFee, params ); uint256 availableLiquidityAfter = token.balanceOf(address(this)); require( availableLiquidityAfter >= availableLiquidityBefore.add(amountFee), "flashLoan fee is not met" ); swapStorage.balances[tokenIndex] = availableLiquidityAfter .sub(protocolBalanceBefore) .sub(protocolFee); emit FlashLoan(receiver, tokenIndex, amount, amountFee, protocolFee); } /*** ADMIN FUNCTIONS ***/ /** * @notice Updates the flash loan fee parameters. This function can only be called by the owner. * @param newFlashLoanFeeBPS the total fee in bps to be applied on future flash loans * @param newProtocolFeeShareBPS the protocol fee in bps to be applied on the total flash loan fee */ function setFlashLoanFees( uint256 newFlashLoanFeeBPS, uint256 newProtocolFeeShareBPS ) external onlyOwner { require( newFlashLoanFeeBPS > 0 && newFlashLoanFeeBPS <= MAX_BPS && newProtocolFeeShareBPS <= MAX_BPS, "fees are not in valid range" ); flashLoanFeeBPS = newFlashLoanFeeBPS; protocolFeeShareBPS = newProtocolFeeShareBPS; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; import "./OwnerPausableUpgradeable.sol"; import "./SwapUtilsV1.sol"; import "./AmplificationUtilsV1.sol"; /** * @title Swap - A StableSwap implementation in solidity. * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins) * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens * in desired ratios for an exchange of the pool token that represents their share of the pool. * Users can burn pool tokens and withdraw their share of token(s). * * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets * distributed to the LPs. * * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which * stops the ratio of the tokens in the pool from changing. * Users can always withdraw their tokens via multi-asset withdraws. * * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's * deployment size. */ contract SwapV1 is OwnerPausableUpgradeable, ReentrancyGuardUpgradeable { using SafeERC20 for IERC20; using SafeMath for uint256; using SwapUtilsV1 for SwapUtilsV1.Swap; using AmplificationUtilsV1 for SwapUtilsV1.Swap; // Struct storing data responsible for automatic market maker functionalities. In order to // access this data, this contract uses SwapUtils library. For more details, see SwapUtilsV1.sol SwapUtilsV1.Swap public swapStorage; // Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool. // getTokenIndex function also relies on this mapping to retrieve token index. mapping(address => uint8) private tokenIndexes; /*** EVENTS ***/ // events replicated from SwapUtils to make the ABI easier for dumb // clients event TokenSwap( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity( address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply ); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); event RampA( uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime ); event StopRampA(uint256 currentA, uint256 time); /** * @notice Initializes this Swap contract with the given parameters. * This will also clone a LPToken contract that represents users' * LP positions. The owner of LPToken will be this contract - which means * only this contract is allowed to mint/burn tokens. * * @param _pooledTokens an array of ERC20s this pool will accept * @param decimals the decimals to use for each pooled token, * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS * @param lpTokenName the long-form name of the token to be deployed * @param lpTokenSymbol the short symbol for the token to be deployed * @param _a the amplification coefficient * n * (n - 1). See the * StableSwap paper for details * @param _fee default swap fee to be initialized with * @param _adminFee default adminFee to be initialized with * @param _withdrawFee default withdrawFee to be initialized with * @param lpTokenTargetAddress the address of an existing LPToken contract to use as a target */ function initialize( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, uint256 _withdrawFee, address lpTokenTargetAddress ) public virtual initializer { __OwnerPausable_init(); __ReentrancyGuard_init(); // Check _pooledTokens and precisions parameter require(_pooledTokens.length > 1, "_pooledTokens.length <= 1"); require(_pooledTokens.length <= 32, "_pooledTokens.length > 32"); require( _pooledTokens.length == decimals.length, "_pooledTokens decimals mismatch" ); uint256[] memory precisionMultipliers = new uint256[](decimals.length); for (uint8 i = 0; i < _pooledTokens.length; i++) { if (i > 0) { // Check if index is already used. Check if 0th element is a duplicate. require( tokenIndexes[address(_pooledTokens[i])] == 0 && _pooledTokens[0] != _pooledTokens[i], "Duplicate tokens" ); } require( address(_pooledTokens[i]) != address(0), "The 0 address isn't an ERC-20" ); require( decimals[i] <= SwapUtilsV1.POOL_PRECISION_DECIMALS, "Token decimals exceeds max" ); precisionMultipliers[i] = 10 ** uint256(SwapUtilsV1.POOL_PRECISION_DECIMALS).sub( uint256(decimals[i]) ); tokenIndexes[address(_pooledTokens[i])] = i; } // Check _a, _fee, _adminFee, _withdrawFee parameters require(_a < AmplificationUtilsV1.MAX_A, "_a exceeds maximum"); require(_fee < SwapUtilsV1.MAX_SWAP_FEE, "_fee exceeds maximum"); require( _adminFee < SwapUtilsV1.MAX_ADMIN_FEE, "_adminFee exceeds maximum" ); require( _withdrawFee < SwapUtilsV1.MAX_WITHDRAW_FEE, "_withdrawFee exceeds maximum" ); // Clone and initialize a LPToken contract LPToken lpToken = LPToken(Clones.clone(lpTokenTargetAddress)); require( lpToken.initialize(lpTokenName, lpTokenSymbol), "could not init lpToken clone" ); // Initialize swapStorage struct swapStorage.lpToken = lpToken; swapStorage.pooledTokens = _pooledTokens; swapStorage.tokenPrecisionMultipliers = precisionMultipliers; swapStorage.balances = new uint256[](_pooledTokens.length); swapStorage.initialA = _a.mul(AmplificationUtilsV1.A_PRECISION); swapStorage.futureA = _a.mul(AmplificationUtilsV1.A_PRECISION); // swapStorage.initialATime = 0; // swapStorage.futureATime = 0; swapStorage.swapFee = _fee; swapStorage.adminFee = _adminFee; swapStorage.defaultWithdrawFee = _withdrawFee; } /*** MODIFIERS ***/ /** * @notice Modifier to check deadline against current timestamp * @param deadline latest timestamp to accept this transaction */ modifier deadlineCheck(uint256 deadline) { require(block.timestamp <= deadline, "Deadline not met"); _; } /*** VIEW FUNCTIONS ***/ /** * @notice Return A, the amplification coefficient * n * (n - 1) * @dev See the StableSwap paper for details * @return A parameter */ function getA() external view virtual returns (uint256) { return swapStorage.getA(); } /** * @notice Return A in its raw precision form * @dev See the StableSwap paper for details * @return A parameter in its raw precision form */ function getAPrecise() external view virtual returns (uint256) { return swapStorage.getAPrecise(); } /** * @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range. * @param index the index of the token * @return address of the token at given index */ function getToken(uint8 index) public view virtual returns (IERC20) { require(index < swapStorage.pooledTokens.length, "Out of range"); return swapStorage.pooledTokens[index]; } /** * @notice Return the index of the given token address. Reverts if no matching * token is found. * @param tokenAddress address of the token * @return the index of the given token address */ function getTokenIndex(address tokenAddress) public view virtual returns (uint8) { uint8 index = tokenIndexes[tokenAddress]; require( address(getToken(index)) == tokenAddress, "Token does not exist" ); return index; } /** * @notice Return timestamp of last deposit of given address * @return timestamp of the last deposit made by the given address */ function getDepositTimestamp(address user) external view virtual returns (uint256) { return swapStorage.getDepositTimestamp(user); } /** * @notice Return current balance of the pooled token at given index * @param index the index of the token * @return current balance of the pooled token at given index with token's native precision */ function getTokenBalance(uint8 index) external view virtual returns (uint256) { require(index < swapStorage.pooledTokens.length, "Index out of range"); return swapStorage.balances[index]; } /** * @notice Get the virtual price, to help calculate profit * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS */ function getVirtualPrice() external view virtual returns (uint256) { return swapStorage.getVirtualPrice(); } /** * @notice Calculate amount of tokens you receive on swap * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell. If the token charges * a fee on transfers, use the amount that gets transferred after the fee. * @return amount of tokens the user will receive */ function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view virtual returns (uint256) { return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx); } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param account address that is depositing or withdrawing tokens * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return token amount the user will receive */ function calculateTokenAmount( address account, uint256[] calldata amounts, bool deposit ) external view virtual returns (uint256) { return swapStorage.calculateTokenAmount(account, amounts, deposit); } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of LP tokens * @param account the address that is withdrawing tokens * @param amount the amount of LP tokens that would be burned on withdrawal * @return array of token balances that the user will receive */ function calculateRemoveLiquidity(address account, uint256 amount) external view virtual returns (uint256[] memory) { return swapStorage.calculateRemoveLiquidity(account, amount); } /** * @notice Calculate the amount of underlying token available to withdraw * when withdrawing via only single token * @param account the address that is withdrawing tokens * @param tokenAmount the amount of LP token to burn * @param tokenIndex index of which token will be withdrawn * @return availableTokenAmount calculated amount of underlying token * available to withdraw */ function calculateRemoveLiquidityOneToken( address account, uint256 tokenAmount, uint8 tokenIndex ) external view virtual returns (uint256 availableTokenAmount) { return swapStorage.calculateWithdrawOneToken( account, tokenAmount, tokenIndex ); } /** * @notice Calculate the fee that is applied when the given user withdraws. The withdraw fee * decays linearly over period of 4 weeks. For example, depositing and withdrawing right away * will charge you the full amount of withdraw fee. But withdrawing after 4 weeks will charge you * no additional fees. * @dev returned value should be divided by FEE_DENOMINATOR to convert to correct decimals * @param user address you want to calculate withdraw fee of * @return current withdraw fee of the user */ function calculateCurrentWithdrawFee(address user) external view virtual returns (uint256) { return swapStorage.calculateCurrentWithdrawFee(user); } /** * @notice This function reads the accumulated amount of admin fees of the token with given index * @param index Index of the pooled token * @return admin's token balance in the token's precision */ function getAdminBalance(uint256 index) external view virtual returns (uint256) { return swapStorage.getAdminBalance(index); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice Swap two tokens using this pool * @param tokenIndexFrom the token the user wants to swap from * @param tokenIndexTo the token the user wants to swap to * @param dx the amount of tokens the user wants to swap from * @param minDy the min amount the user would like to receive, or revert. * @param deadline latest timestamp to accept this transaction */ function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy); } /** * @notice Add liquidity to the pool with the given amounts of tokens * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amount of LP token user minted and received */ function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.addLiquidity(amounts, minToMint); } /** * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @dev Liquidity can always be removed, even when the pool is paused. * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amounts of tokens user received */ function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external virtual nonReentrant deadlineCheck(deadline) returns (uint256[] memory) { return swapStorage.removeLiquidity(amount, minAmounts); } /** * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param tokenAmount the amount of the token you want to receive * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @param deadline latest timestamp to accept this transaction * @return amount of chosen token user received */ function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.removeLiquidityOneToken( tokenAmount, tokenIndex, minAmount ); } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @param deadline latest timestamp to accept this transaction * @return amount of LP tokens burned */ function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount); } /*** ADMIN FUNCTIONS ***/ /** * @notice Updates the user withdraw fee. This function can only be called by * the pool token. Should be used to update the withdraw fee on transfer of pool tokens. * Transferring your pool token will reset the 4 weeks period. If the recipient is already * holding some pool tokens, the withdraw fee will be discounted in respective amounts. * @param recipient address of the recipient of pool token * @param transferAmount amount of pool token to transfer */ function updateUserWithdrawFee(address recipient, uint256 transferAmount) external { require( msg.sender == address(swapStorage.lpToken), "Only callable by pool token" ); swapStorage.updateUserWithdrawFee(recipient, transferAmount); } /** * @notice Withdraw all admin fees to the contract owner */ function withdrawAdminFees() external onlyOwner { swapStorage.withdrawAdminFees(owner()); } /** * @notice Update the admin fee. Admin fee takes portion of the swap fee. * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(uint256 newAdminFee) external onlyOwner { swapStorage.setAdminFee(newAdminFee); } /** * @notice Update the swap fee to be applied on swaps * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(uint256 newSwapFee) external onlyOwner { swapStorage.setSwapFee(newSwapFee); } /** * @notice Update the withdraw fee. This fee decays linearly over 4 weeks since * user's last deposit. * @param newWithdrawFee new withdraw fee to be applied on future deposits */ function setDefaultWithdrawFee(uint256 newWithdrawFee) external onlyOwner { swapStorage.setDefaultWithdrawFee(newWithdrawFee); } /** * @notice Start ramping up or down A parameter towards given futureA and futureTime * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param futureA the new A to ramp towards * @param futureTime timestamp when the new A should be reached */ function rampA(uint256 futureA, uint256 futureTime) external onlyOwner { swapStorage.rampA(futureA, futureTime); } /** * @notice Stop ramping A immediately. Reverts if ramp A is already stopped. */ function stopRampA() external onlyOwner { swapStorage.stopRampA(); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "./AmplificationUtilsV1.sol"; import "./LPToken.sol"; import "./MathUtils.sol"; /** * @title SwapUtils library * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities. * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins. * Admin functions should be protected within contracts using this library. */ library SwapUtilsV1 { using SafeERC20 for IERC20; using SafeMath for uint256; using MathUtils for uint256; /*** EVENTS ***/ event TokenSwap( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity( address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply ); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); struct Swap { // variables around the ramp management of A, // the amplification coefficient * n * (n - 1) // see https://www.curve.fi/stableswap-paper.pdf for details uint256 initialA; uint256 futureA; uint256 initialATime; uint256 futureATime; // fee calculation uint256 swapFee; uint256 adminFee; uint256 defaultWithdrawFee; LPToken lpToken; // contract references for all tokens being pooled IERC20[] pooledTokens; // multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10 uint256[] tokenPrecisionMultipliers; // the pool balance of each token, in the token's precision // the contract's actual token balance might differ uint256[] balances; mapping(address => uint256) depositTimestamp; mapping(address => uint256) withdrawFeeMultiplier; } // Struct storing variables used in calculations in the // calculateWithdrawOneTokenDY function to avoid stack too deep errors struct CalculateWithdrawOneTokenDYInfo { uint256 d0; uint256 d1; uint256 newY; uint256 feePerToken; uint256 preciseA; } // Struct storing variables used in calculations in the // {add,remove}Liquidity functions to avoid stack too deep errors struct ManageLiquidityInfo { uint256 d0; uint256 d1; uint256 d2; uint256 preciseA; LPToken lpToken; uint256 totalSupply; uint256[] balances; uint256[] multipliers; } // the precision all pools tokens will be converted to uint8 public constant POOL_PRECISION_DECIMALS = 18; // the denominator used to calculate admin and LP fees. For example, an // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR) uint256 private constant FEE_DENOMINATOR = 10**10; // Max swap fee is 1% or 100bps of each swap uint256 public constant MAX_SWAP_FEE = 10**8; // Max adminFee is 100% of the swapFee // adminFee does not add additional fee on top of swapFee // Instead it takes a certain % of the swapFee. Therefore it has no impact on the // users but only on the earnings of LPs uint256 public constant MAX_ADMIN_FEE = 10**10; // Max withdrawFee is 1% of the value withdrawn // Fee will be redistributed to the LPs in the pool, rewarding // long term providers. uint256 public constant MAX_WITHDRAW_FEE = 10**8; // Constant value used as max loop limit uint256 private constant MAX_LOOP_LIMIT = 256; // Time that it should take for the withdraw fee to fully decay to 0 uint256 public constant WITHDRAW_FEE_DECAY_TIME = 4 weeks; /*** VIEW & PURE FUNCTIONS ***/ /** * @notice Retrieves the timestamp of last deposit made by the given address * @param self Swap struct to read from * @return timestamp of last deposit */ function getDepositTimestamp(Swap storage self, address user) external view returns (uint256) { return self.depositTimestamp[user]; } function _getAPrecise(Swap storage self) internal view returns (uint256) { return AmplificationUtilsV1._getAPrecise(self); } /** * @notice Calculate the dy, the amount of selected token that user receives and * the fee of withdrawing in one token * @param account the address that is withdrawing * @param tokenAmount the amount to withdraw in the pool's precision * @param tokenIndex which token will be withdrawn * @param self Swap struct to read from * @return the amount of token user will receive */ function calculateWithdrawOneToken( Swap storage self, address account, uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256) { (uint256 availableTokenAmount, ) = _calculateWithdrawOneToken( self, account, tokenAmount, tokenIndex, self.lpToken.totalSupply() ); return availableTokenAmount; } function _calculateWithdrawOneToken( Swap storage self, address account, uint256 tokenAmount, uint8 tokenIndex, uint256 totalSupply ) internal view returns (uint256, uint256) { uint256 dy; uint256 newY; uint256 currentY; (dy, newY, currentY) = calculateWithdrawOneTokenDY( self, tokenIndex, tokenAmount, totalSupply ); // dy_0 (without fees) // dy, dy_0 - dy uint256 dySwapFee = currentY .sub(newY) .div(self.tokenPrecisionMultipliers[tokenIndex]) .sub(dy); dy = dy .mul( FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, account)) ) .div(FEE_DENOMINATOR); return (dy, dySwapFee); } /** * @notice Calculate the dy of withdrawing in one token * @param self Swap struct to read from * @param tokenIndex which token will be withdrawn * @param tokenAmount the amount to withdraw in the pools precision * @return the d and the new y after withdrawing one token */ function calculateWithdrawOneTokenDY( Swap storage self, uint8 tokenIndex, uint256 tokenAmount, uint256 totalSupply ) internal view returns ( uint256, uint256, uint256 ) { // Get the current D, then solve the stableswap invariant // y_i for D - tokenAmount uint256[] memory xp = _xp(self); require(tokenIndex < xp.length, "Token index out of range"); CalculateWithdrawOneTokenDYInfo memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0); v.preciseA = _getAPrecise(self); v.d0 = getD(xp, v.preciseA); v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply)); require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available"); v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1); uint256[] memory xpReduced = new uint256[](xp.length); v.feePerToken = _feePerToken(self.swapFee, xp.length); for (uint256 i = 0; i < xp.length; i++) { uint256 xpi = xp[i]; // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY // else dxExpected = xp[i] - (xp[i] * d1 / d0) // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR xpReduced[i] = xpi.sub( ( (i == tokenIndex) ? xpi.mul(v.d1).div(v.d0).sub(v.newY) : xpi.sub(xpi.mul(v.d1).div(v.d0)) ).mul(v.feePerToken).div(FEE_DENOMINATOR) ); } uint256 dy = xpReduced[tokenIndex].sub( getYD(v.preciseA, tokenIndex, xpReduced, v.d1) ); dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]); return (dy, v.newY, xp[tokenIndex]); } /** * @notice Calculate the price of a token in the pool with given * precision-adjusted balances and a particular D. * * @dev This is accomplished via solving the invariant iteratively. * See the StableSwap paper and Curve.fi implementation for further details. * * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) * x_1**2 + b*x_1 = c * x_1 = (x_1**2 + c) / (2*x_1 + b) * * @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details. * @param tokenIndex Index of token we are calculating for. * @param xp a precision-adjusted set of pool balances. Array should be * the same cardinality as the pool. * @param d the stableswap invariant * @return the price of the token, in the same precision as in xp */ function getYD( uint256 a, uint8 tokenIndex, uint256[] memory xp, uint256 d ) internal pure returns (uint256) { uint256 numTokens = xp.length; require(tokenIndex < numTokens, "Token not found"); uint256 c = d; uint256 s; uint256 nA = a.mul(numTokens); for (uint256 i = 0; i < numTokens; i++) { if (i != tokenIndex) { s = s.add(xp[i]); c = c.mul(d).div(xp[i].mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } } c = c.mul(d).mul(AmplificationUtilsV1.A_PRECISION).div( nA.mul(numTokens) ); uint256 b = s.add(d.mul(AmplificationUtilsV1.A_PRECISION).div(nA)); uint256 yPrev; uint256 y = d; for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { yPrev = y; y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d)); if (y.within1(yPrev)) { return y; } } revert("Approximation did not converge"); } /** * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A. * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality * as the pool. * @param a the amplification coefficient * n * (n - 1) in A_PRECISION. * See the StableSwap paper for details * @return the invariant, at the precision of the pool */ function getD(uint256[] memory xp, uint256 a) internal pure returns (uint256) { uint256 numTokens = xp.length; uint256 s; for (uint256 i = 0; i < numTokens; i++) { s = s.add(xp[i]); } if (s == 0) { return 0; } uint256 prevD; uint256 d = s; uint256 nA = a.mul(numTokens); for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { uint256 dP = d; for (uint256 j = 0; j < numTokens; j++) { dP = dP.mul(d).div(xp[j].mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // dP = dP * D * D * D * ... overflow! } prevD = d; d = nA .mul(s) .div(AmplificationUtilsV1.A_PRECISION) .add(dP.mul(numTokens)) .mul(d) .div( nA .sub(AmplificationUtilsV1.A_PRECISION) .mul(d) .div(AmplificationUtilsV1.A_PRECISION) .add(numTokens.add(1).mul(dP)) ); if (d.within1(prevD)) { return d; } } // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()` // function which does not rely on D. revert("D does not converge"); } /** * @notice Given a set of balances and precision multipliers, return the * precision-adjusted balances. * * @param balances an array of token balances, in their native precisions. * These should generally correspond with pooled tokens. * * @param precisionMultipliers an array of multipliers, corresponding to * the amounts in the balances array. When multiplied together they * should yield amounts at the pool's precision. * * @return an array of amounts "scaled" to the pool's precision */ function _xp( uint256[] memory balances, uint256[] memory precisionMultipliers ) internal pure returns (uint256[] memory) { uint256 numTokens = balances.length; require( numTokens == precisionMultipliers.length, "Balances must match multipliers" ); uint256[] memory xp = new uint256[](numTokens); for (uint256 i = 0; i < numTokens; i++) { xp[i] = balances[i].mul(precisionMultipliers[i]); } return xp; } /** * @notice Return the precision-adjusted balances of all tokens in the pool * @param self Swap struct to read from * @return the pool balances "scaled" to the pool's precision, allowing * them to be more easily compared. */ function _xp(Swap storage self) internal view returns (uint256[] memory) { return _xp(self.balances, self.tokenPrecisionMultipliers); } /** * @notice Get the virtual price, to help calculate profit * @param self Swap struct to read from * @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS */ function getVirtualPrice(Swap storage self) external view returns (uint256) { uint256 d = getD(_xp(self), _getAPrecise(self)); LPToken lpToken = self.lpToken; uint256 supply = lpToken.totalSupply(); if (supply > 0) { return d.mul(10**uint256(POOL_PRECISION_DECIMALS)).div(supply); } return 0; } /** * @notice Calculate the new balances of the tokens given the indexes of the token * that is swapped from (FROM) and the token that is swapped to (TO). * This function is used as a helper function to calculate how much TO token * the user should receive on swap. * * @param preciseA precise form of amplification coefficient * @param tokenIndexFrom index of FROM token * @param tokenIndexTo index of TO token * @param x the new total amount of FROM token * @param xp balances of the tokens in the pool * @return the amount of TO token that should remain in the pool */ function getY( uint256 preciseA, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 x, uint256[] memory xp ) internal pure returns (uint256) { uint256 numTokens = xp.length; require( tokenIndexFrom != tokenIndexTo, "Can't compare token to itself" ); require( tokenIndexFrom < numTokens && tokenIndexTo < numTokens, "Tokens must be in pool" ); uint256 d = getD(xp, preciseA); uint256 c = d; uint256 s; uint256 nA = numTokens.mul(preciseA); uint256 _x; for (uint256 i = 0; i < numTokens; i++) { if (i == tokenIndexFrom) { _x = x; } else if (i != tokenIndexTo) { _x = xp[i]; } else { continue; } s = s.add(_x); c = c.mul(d).div(_x.mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } c = c.mul(d).mul(AmplificationUtilsV1.A_PRECISION).div( nA.mul(numTokens) ); uint256 b = s.add(d.mul(AmplificationUtilsV1.A_PRECISION).div(nA)); uint256 yPrev; uint256 y = d; // iterative approximation for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { yPrev = y; y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d)); if (y.within1(yPrev)) { return y; } } revert("Approximation did not converge"); } /** * @notice Externally calculates a swap between two tokens. * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get */ function calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256 dy) { (dy, ) = _calculateSwap( self, tokenIndexFrom, tokenIndexTo, dx, self.balances ); } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get * @return dyFee the associated fee */ function _calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256[] memory balances ) internal view returns (uint256 dy, uint256 dyFee) { uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256[] memory xp = _xp(balances, multipliers); require( tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "Token index out of range" ); uint256 x = dx.mul(multipliers[tokenIndexFrom]).add(xp[tokenIndexFrom]); uint256 y = getY( _getAPrecise(self), tokenIndexFrom, tokenIndexTo, x, xp ); dy = xp[tokenIndexTo].sub(y).sub(1); dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR); dy = dy.sub(dyFee).div(multipliers[tokenIndexTo]); } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of * LP tokens * * @param account the address that is removing liquidity. required for withdraw fee calculation * @param amount the amount of LP tokens that would to be burned on * withdrawal * @return array of amounts of tokens user will receive */ function calculateRemoveLiquidity( Swap storage self, address account, uint256 amount ) external view returns (uint256[] memory) { return _calculateRemoveLiquidity( self, self.balances, account, amount, self.lpToken.totalSupply() ); } function _calculateRemoveLiquidity( Swap storage self, uint256[] memory balances, address account, uint256 amount, uint256 totalSupply ) internal view returns (uint256[] memory) { require(amount <= totalSupply, "Cannot exceed total supply"); uint256 feeAdjustedAmount = amount .mul( FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, account)) ) .div(FEE_DENOMINATOR); uint256[] memory amounts = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amounts[i] = balances[i].mul(feeAdjustedAmount).div(totalSupply); } return amounts; } /** * @notice Calculate the fee that is applied when the given user withdraws. * Withdraw fee decays linearly over WITHDRAW_FEE_DECAY_TIME. * @param user address you want to calculate withdraw fee of * @return current withdraw fee of the user */ function calculateCurrentWithdrawFee(Swap storage self, address user) external view returns (uint256) { return _calculateCurrentWithdrawFee(self, user); } function _calculateCurrentWithdrawFee(Swap storage self, address user) internal view returns (uint256) { uint256 endTime = self.depositTimestamp[user].add( WITHDRAW_FEE_DECAY_TIME ); if (endTime > block.timestamp) { uint256 timeLeftover = endTime.sub(block.timestamp); return self .defaultWithdrawFee .mul(self.withdrawFeeMultiplier[user]) .mul(timeLeftover) .div(WITHDRAW_FEE_DECAY_TIME) .div(FEE_DENOMINATOR); } return 0; } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param self Swap struct to read from * @param account address of the account depositing or withdrawing tokens * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return if deposit was true, total amount of lp token that will be minted and if * deposit was false, total amount of lp token that will be burned */ function calculateTokenAmount( Swap storage self, address account, uint256[] calldata amounts, bool deposit ) external view returns (uint256) { uint256 a = _getAPrecise(self); uint256[] memory balances = self.balances; uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256 d0 = getD(_xp(balances, multipliers), a); for (uint256 i = 0; i < balances.length; i++) { if (deposit) { balances[i] = balances[i].add(amounts[i]); } else { balances[i] = balances[i].sub( amounts[i], "Cannot withdraw more than available" ); } } uint256 d1 = getD(_xp(balances, multipliers), a); uint256 totalSupply = self.lpToken.totalSupply(); if (deposit) { return d1.sub(d0).mul(totalSupply).div(d0); } else { return d0.sub(d1).mul(totalSupply).div(d0).mul(FEE_DENOMINATOR).div( FEE_DENOMINATOR.sub( _calculateCurrentWithdrawFee(self, account) ) ); } } /** * @notice return accumulated amount of admin fees of the token with given index * @param self Swap struct to read from * @param index Index of the pooled token * @return admin balance in the token's precision */ function getAdminBalance(Swap storage self, uint256 index) external view returns (uint256) { require(index < self.pooledTokens.length, "Token index out of range"); return self.pooledTokens[index].balanceOf(address(this)).sub( self.balances[index] ); } /** * @notice internal helper function to calculate fee per token multiplier used in * swap fee calculations * @param swapFee swap fee for the tokens * @param numTokens number of tokens pooled */ function _feePerToken(uint256 swapFee, uint256 numTokens) internal pure returns (uint256) { return swapFee.mul(numTokens).div(numTokens.sub(1).mul(4)); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) external returns (uint256) { { IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom]; require( dx <= tokenFrom.balanceOf(msg.sender), "Cannot swap more than you own" ); // Transfer tokens first to see if a fee was charged on transfer uint256 beforeBalance = tokenFrom.balanceOf(address(this)); tokenFrom.safeTransferFrom(msg.sender, address(this), dx); // Use the actual transferred amount for AMM math dx = tokenFrom.balanceOf(address(this)).sub(beforeBalance); } uint256 dy; uint256 dyFee; uint256[] memory balances = self.balances; (dy, dyFee) = _calculateSwap( self, tokenIndexFrom, tokenIndexTo, dx, balances ); require(dy >= minDy, "Swap didn't result in min tokens"); uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div( self.tokenPrecisionMultipliers[tokenIndexTo] ); self.balances[tokenIndexFrom] = balances[tokenIndexFrom].add(dx); self.balances[tokenIndexTo] = balances[tokenIndexTo].sub(dy).sub( dyAdminFee ); self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy); emit TokenSwap(msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dy; } /** * @notice Add liquidity to the pool * @param self Swap struct to read from and write to * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored. * @return amount of LP token user received */ function addLiquidity( Swap storage self, uint256[] memory amounts, uint256 minToMint ) external returns (uint256) { IERC20[] memory pooledTokens = self.pooledTokens; require( amounts.length == pooledTokens.length, "Amounts must match pooled tokens" ); // current state ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); if (v.totalSupply != 0) { v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); } uint256[] memory newBalances = new uint256[](pooledTokens.length); for (uint256 i = 0; i < pooledTokens.length; i++) { require( v.totalSupply != 0 || amounts[i] > 0, "Must supply all tokens in pool" ); // Transfer tokens first to see if a fee was charged on transfer if (amounts[i] != 0) { uint256 beforeBalance = pooledTokens[i].balanceOf( address(this) ); pooledTokens[i].safeTransferFrom( msg.sender, address(this), amounts[i] ); // Update the amounts[] with actual transfer amount amounts[i] = pooledTokens[i].balanceOf(address(this)).sub( beforeBalance ); } newBalances[i] = v.balances[i].add(amounts[i]); } // invariant after change v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA); require(v.d1 > v.d0, "D should increase"); // updated to reflect fees and calculate the user's LP tokens v.d2 = v.d1; uint256[] memory fees = new uint256[](pooledTokens.length); if (v.totalSupply != 0) { uint256 feePerToken = _feePerToken( self.swapFee, pooledTokens.length ); for (uint256 i = 0; i < pooledTokens.length; i++) { uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0); fees[i] = feePerToken .mul(idealBalance.difference(newBalances[i])) .div(FEE_DENOMINATOR); self.balances[i] = newBalances[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); newBalances[i] = newBalances[i].sub(fees[i]); } v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA); } else { // the initial depositor doesn't pay fees self.balances = newBalances; } uint256 toMint; if (v.totalSupply == 0) { toMint = v.d1; } else { toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0); } require(toMint >= minToMint, "Couldn't mint min requested"); // mint the user's LP tokens v.lpToken.mint(msg.sender, toMint); emit AddLiquidity( msg.sender, amounts, fees, v.d1, v.totalSupply.add(toMint) ); return toMint; } /** * @notice Update the withdraw fee for `user`. If the user is currently * not providing liquidity in the pool, sets to default value. If not, recalculate * the starting withdraw fee based on the last deposit's time & amount relative * to the new deposit. * * @param self Swap struct to read from and write to * @param user address of the user depositing tokens * @param toMint amount of pool tokens to be minted */ function updateUserWithdrawFee( Swap storage self, address user, uint256 toMint ) public { // If token is transferred to address 0 (or burned), don't update the fee. if (user == address(0)) { return; } if (self.defaultWithdrawFee == 0) { // If current fee is set to 0%, set multiplier to FEE_DENOMINATOR self.withdrawFeeMultiplier[user] = FEE_DENOMINATOR; } else { // Otherwise, calculate appropriate discount based on last deposit amount uint256 currentFee = _calculateCurrentWithdrawFee(self, user); uint256 currentBalance = self.lpToken.balanceOf(user); // ((currentBalance * currentFee) + (toMint * defaultWithdrawFee)) * FEE_DENOMINATOR / // ((toMint + currentBalance) * defaultWithdrawFee) self.withdrawFeeMultiplier[user] = currentBalance .mul(currentFee) .add(toMint.mul(self.defaultWithdrawFee)) .mul(FEE_DENOMINATOR) .div(toMint.add(currentBalance).mul(self.defaultWithdrawFee)); } self.depositTimestamp[user] = block.timestamp; } /** * @notice Burn LP tokens to remove liquidity from the pool. * @dev Liquidity can always be removed, even when the pool is paused. * @param self Swap struct to read from and write to * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @return amounts of tokens the user received */ function removeLiquidity( Swap storage self, uint256 amount, uint256[] calldata minAmounts ) external returns (uint256[] memory) { LPToken lpToken = self.lpToken; IERC20[] memory pooledTokens = self.pooledTokens; require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); require( minAmounts.length == pooledTokens.length, "minAmounts must match poolTokens" ); uint256[] memory balances = self.balances; uint256 totalSupply = lpToken.totalSupply(); uint256[] memory amounts = _calculateRemoveLiquidity( self, balances, msg.sender, amount, totalSupply ); for (uint256 i = 0; i < amounts.length; i++) { require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]"); self.balances[i] = balances[i].sub(amounts[i]); pooledTokens[i].safeTransfer(msg.sender, amounts[i]); } lpToken.burnFrom(msg.sender, amount); emit RemoveLiquidity(msg.sender, amounts, totalSupply.sub(amount)); return amounts; } /** * @notice Remove liquidity from the pool all in one token. * @param self Swap struct to read from and write to * @param tokenAmount the amount of the lp tokens to burn * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @return amount chosen token that user received */ function removeLiquidityOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount ) external returns (uint256) { LPToken lpToken = self.lpToken; IERC20[] memory pooledTokens = self.pooledTokens; require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); require(tokenIndex < pooledTokens.length, "Token not found"); uint256 totalSupply = lpToken.totalSupply(); (uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken( self, msg.sender, tokenAmount, tokenIndex, totalSupply ); require(dy >= minAmount, "dy < minAmount"); self.balances[tokenIndex] = self.balances[tokenIndex].sub( dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR)) ); lpToken.burnFrom(msg.sender, tokenAmount); pooledTokens[tokenIndex].safeTransfer(msg.sender, dy); emit RemoveLiquidityOne( msg.sender, tokenAmount, totalSupply, tokenIndex, dy ); return dy; } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. * * @param self Swap struct to read from and write to * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @return actual amount of LP tokens burned in the withdrawal */ function removeLiquidityImbalance( Swap storage self, uint256[] memory amounts, uint256 maxBurnAmount ) public returns (uint256) { ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); IERC20[] memory pooledTokens = self.pooledTokens; require( amounts.length == pooledTokens.length, "Amounts should match pool tokens" ); require( maxBurnAmount <= v.lpToken.balanceOf(msg.sender) && maxBurnAmount != 0, ">LP.balanceOf" ); uint256 feePerToken = _feePerToken(self.swapFee, pooledTokens.length); uint256[] memory fees = new uint256[](pooledTokens.length); { uint256[] memory balances1 = new uint256[](pooledTokens.length); v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); for (uint256 i = 0; i < pooledTokens.length; i++) { balances1[i] = v.balances[i].sub( amounts[i], "Cannot withdraw more than available" ); } v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA); for (uint256 i = 0; i < pooledTokens.length; i++) { uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0); uint256 difference = idealBalance.difference(balances1[i]); fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR); self.balances[i] = balances1[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); balances1[i] = balances1[i].sub(fees[i]); } v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA); } uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0); require(tokenAmount != 0, "Burnt amount cannot be zero"); tokenAmount = tokenAmount.add(1).mul(FEE_DENOMINATOR).div( FEE_DENOMINATOR.sub(_calculateCurrentWithdrawFee(self, msg.sender)) ); require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount"); v.lpToken.burnFrom(msg.sender, tokenAmount); for (uint256 i = 0; i < pooledTokens.length; i++) { pooledTokens[i].safeTransfer(msg.sender, amounts[i]); } emit RemoveLiquidityImbalance( msg.sender, amounts, fees, v.d1, v.totalSupply.sub(tokenAmount) ); return tokenAmount; } /** * @notice withdraw all admin fees to a given address * @param self Swap struct to withdraw fees from * @param to Address to send the fees to */ function withdrawAdminFees(Swap storage self, address to) external { IERC20[] memory pooledTokens = self.pooledTokens; for (uint256 i = 0; i < pooledTokens.length; i++) { IERC20 token = pooledTokens[i]; uint256 balance = token.balanceOf(address(this)).sub( self.balances[i] ); if (balance != 0) { token.safeTransfer(to, balance); } } } /** * @notice Sets the admin fee * @dev adminFee cannot be higher than 100% of the swap fee * @param self Swap struct to update * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(Swap storage self, uint256 newAdminFee) external { require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high"); self.adminFee = newAdminFee; emit NewAdminFee(newAdminFee); } /** * @notice update the swap fee * @dev fee cannot be higher than 1% of each swap * @param self Swap struct to update * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(Swap storage self, uint256 newSwapFee) external { require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high"); self.swapFee = newSwapFee; emit NewSwapFee(newSwapFee); } /** * @notice update the default withdraw fee. This also affects deposits made in the past as well. * @param self Swap struct to update * @param newWithdrawFee new withdraw fee to be applied */ function setDefaultWithdrawFee(Swap storage self, uint256 newWithdrawFee) external { require(newWithdrawFee <= MAX_WITHDRAW_FEE, "Fee is too high"); self.defaultWithdrawFee = newWithdrawFee; emit NewWithdrawFee(newWithdrawFee); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "./SwapUtilsV1.sol"; /** * @title AmplificationUtils library * @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct. * This library assumes the struct is fully validated. */ library AmplificationUtilsV1 { using SafeMath for uint256; event RampA( uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime ); event StopRampA(uint256 currentA, uint256 time); // Constant values used in ramping A calculations uint256 public constant A_PRECISION = 100; uint256 public constant MAX_A = 10**6; uint256 private constant MAX_A_CHANGE = 2; uint256 private constant MIN_RAMP_TIME = 14 days; /** * @notice Return A, the amplification coefficient * n * (n - 1) * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter */ function getA(SwapUtilsV1.Swap storage self) external view returns (uint256) { return _getAPrecise(self).div(A_PRECISION); } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function getAPrecise(SwapUtilsV1.Swap storage self) external view returns (uint256) { return _getAPrecise(self); } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function _getAPrecise(SwapUtilsV1.Swap storage self) internal view returns (uint256) { uint256 t1 = self.futureATime; // time when ramp is finished uint256 a1 = self.futureA; // final A value when ramp is finished if (block.timestamp < t1) { uint256 t0 = self.initialATime; // time when ramp is started uint256 a0 = self.initialA; // initial A value when ramp is started if (a1 > a0) { // a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0) return a0.add( a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0)) ); } else { // a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0) return a0.sub( a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0)) ); } } else { return a1; } } /** * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_ * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param self Swap struct to update * @param futureA_ the new A to ramp towards * @param futureTime_ timestamp when the new A should be reached */ function rampA( SwapUtilsV1.Swap storage self, uint256 futureA_, uint256 futureTime_ ) external { require( block.timestamp >= self.initialATime.add(1 days), "Wait 1 day before starting ramp" ); require( futureTime_ >= block.timestamp.add(MIN_RAMP_TIME), "Insufficient ramp time" ); require( futureA_ > 0 && futureA_ < MAX_A, "futureA_ must be > 0 and < MAX_A" ); uint256 initialAPrecise = _getAPrecise(self); uint256 futureAPrecise = futureA_.mul(A_PRECISION); if (futureAPrecise < initialAPrecise) { require( futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise, "futureA_ is too small" ); } else { require( futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE), "futureA_ is too large" ); } self.initialA = initialAPrecise; self.futureA = futureAPrecise; self.initialATime = block.timestamp; self.futureATime = futureTime_; emit RampA( initialAPrecise, futureAPrecise, block.timestamp, futureTime_ ); } /** * @notice Stops ramping A immediately. Once this function is called, rampA() * cannot be called for another 24 hours * @param self Swap struct to update */ function stopRampA(SwapUtilsV1.Swap storage self) external { require(self.futureATime > block.timestamp, "Ramp is already stopped"); uint256 currentA = _getAPrecise(self); self.initialA = currentA; self.futureA = currentA; self.initialATime = block.timestamp; self.futureATime = block.timestamp; emit StopRampA(currentA, block.timestamp); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "../LPToken.sol"; import "../interfaces/ISwap.sol"; import "../MathUtils.sol"; import "../SwapUtils.sol"; /** * @title MetaSwapUtils library * @notice A library to be used within MetaSwap.sol. Contains functions responsible for custody and AMM functionalities. * * MetaSwap is a modified version of Swap that allows Swap's LP token to be utilized in pooling with other tokens. * As an example, if there is a Swap pool consisting of [DAI, USDC, USDT]. Then a MetaSwap pool can be created * with [sUSD, BaseSwapLPToken] to allow trades between either the LP token or the underlying tokens and sUSD. * * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins. * Admin functions should be protected within contracts using this library. */ library MetaSwapUtils { using SafeERC20 for IERC20; using SafeMath for uint256; using MathUtils for uint256; using AmplificationUtils for SwapUtils.Swap; /*** EVENTS ***/ event TokenSwap( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event TokenSwapUnderlying( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); struct MetaSwap { // Meta-Swap related parameters ISwap baseSwap; uint256 baseVirtualPrice; uint256 baseCacheLastUpdated; IERC20[] baseTokens; } // Struct storing variables used in calculations in the // calculateWithdrawOneTokenDY function to avoid stack too deep errors struct CalculateWithdrawOneTokenDYInfo { uint256 d0; uint256 d1; uint256 newY; uint256 feePerToken; uint256 preciseA; uint256 xpi; } // Struct storing variables used in calculation in removeLiquidityImbalance function // to avoid stack too deep error struct ManageLiquidityInfo { uint256 d0; uint256 d1; uint256 d2; LPToken lpToken; uint256 totalSupply; uint256 preciseA; uint256 baseVirtualPrice; uint256[] tokenPrecisionMultipliers; uint256[] newBalances; } struct SwapUnderlyingInfo { uint256 x; uint256 dx; uint256 dy; uint256[] tokenPrecisionMultipliers; uint256[] oldBalances; IERC20[] baseTokens; IERC20 tokenFrom; uint8 metaIndexFrom; IERC20 tokenTo; uint8 metaIndexTo; uint256 baseVirtualPrice; } struct CalculateSwapUnderlyingInfo { uint256 baseVirtualPrice; ISwap baseSwap; uint8 baseLPTokenIndex; uint8 baseTokensLength; uint8 metaIndexTo; uint256 x; uint256 dy; } // the denominator used to calculate admin and LP fees. For example, an // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR) uint256 private constant FEE_DENOMINATOR = 10**10; // Cache expire time for the stored value of base Swap's virtual price uint256 public constant BASE_CACHE_EXPIRE_TIME = 10 minutes; uint256 public constant BASE_VIRTUAL_PRICE_PRECISION = 10**18; /*** VIEW & PURE FUNCTIONS ***/ /** * @notice Return the stored value of base Swap's virtual price. If * value was updated past BASE_CACHE_EXPIRE_TIME, then read it directly * from the base Swap contract. * @param metaSwapStorage MetaSwap struct to read from * @return base Swap's virtual price */ function _getBaseVirtualPrice(MetaSwap storage metaSwapStorage) internal view returns (uint256) { if ( block.timestamp > metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME ) { return metaSwapStorage.baseSwap.getVirtualPrice(); } return metaSwapStorage.baseVirtualPrice; } function _getBaseSwapFee(ISwap baseSwap) internal view returns (uint256 swapFee) { (, , , , swapFee, , ) = baseSwap.swapStorage(); } /** * @notice Calculate how much the user would receive when withdrawing via single token * @param self Swap struct to read from * @param metaSwapStorage MetaSwap struct to read from * @param tokenAmount the amount to withdraw in the pool's precision * @param tokenIndex which token will be withdrawn * @return dy the amount of token user will receive */ function calculateWithdrawOneToken( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 dy) { (dy, ) = _calculateWithdrawOneToken( self, tokenAmount, tokenIndex, _getBaseVirtualPrice(metaSwapStorage), self.lpToken.totalSupply() ); } function _calculateWithdrawOneToken( SwapUtils.Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 baseVirtualPrice, uint256 totalSupply ) internal view returns (uint256, uint256) { uint256 dy; uint256 dySwapFee; { uint256 currentY; uint256 newY; // Calculate how much to withdraw (dy, newY, currentY) = _calculateWithdrawOneTokenDY( self, tokenIndex, tokenAmount, baseVirtualPrice, totalSupply ); // Calculate the associated swap fee dySwapFee = currentY .sub(newY) .div(self.tokenPrecisionMultipliers[tokenIndex]) .sub(dy); } return (dy, dySwapFee); } /** * @notice Calculate the dy of withdrawing in one token * @param self Swap struct to read from * @param tokenIndex which token will be withdrawn * @param tokenAmount the amount to withdraw in the pools precision * @param baseVirtualPrice the virtual price of the base swap's LP token * @return the dy excluding swap fee, the new y after withdrawing one token, and current y */ function _calculateWithdrawOneTokenDY( SwapUtils.Swap storage self, uint8 tokenIndex, uint256 tokenAmount, uint256 baseVirtualPrice, uint256 totalSupply ) internal view returns ( uint256, uint256, uint256 ) { // Get the current D, then solve the stableswap invariant // y_i for D - tokenAmount uint256[] memory xp = _xp(self, baseVirtualPrice); require(tokenIndex < xp.length, "Token index out of range"); CalculateWithdrawOneTokenDYInfo memory v = CalculateWithdrawOneTokenDYInfo( 0, 0, 0, 0, self._getAPrecise(), 0 ); v.d0 = SwapUtils.getD(xp, v.preciseA); v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply)); require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available"); v.newY = SwapUtils.getYD(v.preciseA, tokenIndex, xp, v.d1); uint256[] memory xpReduced = new uint256[](xp.length); v.feePerToken = SwapUtils._feePerToken(self.swapFee, xp.length); for (uint256 i = 0; i < xp.length; i++) { v.xpi = xp[i]; // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY // else dxExpected = xp[i] - (xp[i] * d1 / d0) // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR xpReduced[i] = v.xpi.sub( ( (i == tokenIndex) ? v.xpi.mul(v.d1).div(v.d0).sub(v.newY) : v.xpi.sub(v.xpi.mul(v.d1).div(v.d0)) ).mul(v.feePerToken).div(FEE_DENOMINATOR) ); } uint256 dy = xpReduced[tokenIndex].sub( SwapUtils.getYD(v.preciseA, tokenIndex, xpReduced, v.d1) ); if (tokenIndex == xp.length.sub(1)) { dy = dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(baseVirtualPrice); v.newY = v.newY.mul(BASE_VIRTUAL_PRICE_PRECISION).div( baseVirtualPrice ); xp[tokenIndex] = xp[tokenIndex] .mul(BASE_VIRTUAL_PRICE_PRECISION) .div(baseVirtualPrice); } dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]); return (dy, v.newY, xp[tokenIndex]); } /** * @notice Given a set of balances and precision multipliers, return the * precision-adjusted balances. The last element will also get scaled up by * the given baseVirtualPrice. * * @param balances an array of token balances, in their native precisions. * These should generally correspond with pooled tokens. * * @param precisionMultipliers an array of multipliers, corresponding to * the amounts in the balances array. When multiplied together they * should yield amounts at the pool's precision. * * @param baseVirtualPrice the base virtual price to scale the balance of the * base Swap's LP token. * * @return an array of amounts "scaled" to the pool's precision */ function _xp( uint256[] memory balances, uint256[] memory precisionMultipliers, uint256 baseVirtualPrice ) internal pure returns (uint256[] memory) { uint256[] memory xp = SwapUtils._xp(balances, precisionMultipliers); uint256 baseLPTokenIndex = balances.length.sub(1); xp[baseLPTokenIndex] = xp[baseLPTokenIndex].mul(baseVirtualPrice).div( BASE_VIRTUAL_PRICE_PRECISION ); return xp; } /** * @notice Return the precision-adjusted balances of all tokens in the pool * @param self Swap struct to read from * @return the pool balances "scaled" to the pool's precision, allowing * them to be more easily compared. */ function _xp(SwapUtils.Swap storage self, uint256 baseVirtualPrice) internal view returns (uint256[] memory) { return _xp( self.balances, self.tokenPrecisionMultipliers, baseVirtualPrice ); } /** * @notice Get the virtual price, to help calculate profit * @param self Swap struct to read from * @param metaSwapStorage MetaSwap struct to read from * @return the virtual price, scaled to precision of BASE_VIRTUAL_PRICE_PRECISION */ function getVirtualPrice( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage ) external view returns (uint256) { uint256 d = SwapUtils.getD( _xp( self.balances, self.tokenPrecisionMultipliers, _getBaseVirtualPrice(metaSwapStorage) ), self._getAPrecise() ); uint256 supply = self.lpToken.totalSupply(); if (supply != 0) { return d.mul(BASE_VIRTUAL_PRICE_PRECISION).div(supply); } return 0; } /** * @notice Externally calculates a swap between two tokens. The SwapUtils.Swap storage and * MetaSwap storage should be from the same MetaSwap contract. * @param self Swap struct to read from * @param metaSwapStorage MetaSwap struct from the same contract * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get */ function calculateSwap( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256 dy) { (dy, ) = _calculateSwap( self, tokenIndexFrom, tokenIndexTo, dx, _getBaseVirtualPrice(metaSwapStorage) ); } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param baseVirtualPrice the virtual price of the base LP token * @return dy the number of tokens the user will get and dyFee the associated fee */ function _calculateSwap( SwapUtils.Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 baseVirtualPrice ) internal view returns (uint256 dy, uint256 dyFee) { uint256[] memory xp = _xp(self, baseVirtualPrice); require( tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "Token index out of range" ); uint256 baseLPTokenIndex = xp.length.sub(1); uint256 x = dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]); if (tokenIndexFrom == baseLPTokenIndex) { // When swapping from a base Swap token, scale up dx by its virtual price x = x.mul(baseVirtualPrice).div(BASE_VIRTUAL_PRICE_PRECISION); } x = x.add(xp[tokenIndexFrom]); uint256 y = SwapUtils.getY( self._getAPrecise(), tokenIndexFrom, tokenIndexTo, x, xp ); dy = xp[tokenIndexTo].sub(y).sub(1); if (tokenIndexTo == baseLPTokenIndex) { // When swapping to a base Swap token, scale down dy by its virtual price dy = dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(baseVirtualPrice); } dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR); dy = dy.sub(dyFee); dy = dy.div(self.tokenPrecisionMultipliers[tokenIndexTo]); } /** * @notice Calculates the expected return amount from swapping between * the pooled tokens and the underlying tokens of the base Swap pool. * * @param self Swap struct to read from * @param metaSwapStorage MetaSwap struct from the same contract * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get */ function calculateSwapUnderlying( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256) { CalculateSwapUnderlyingInfo memory v = CalculateSwapUnderlyingInfo( _getBaseVirtualPrice(metaSwapStorage), metaSwapStorage.baseSwap, 0, uint8(metaSwapStorage.baseTokens.length), 0, 0, 0 ); uint256[] memory xp = _xp(self, v.baseVirtualPrice); v.baseLPTokenIndex = uint8(xp.length.sub(1)); { uint8 maxRange = v.baseLPTokenIndex + v.baseTokensLength; require( tokenIndexFrom < maxRange && tokenIndexTo < maxRange, "Token index out of range" ); } if (tokenIndexFrom < v.baseLPTokenIndex) { // tokenFrom is from this pool v.x = xp[tokenIndexFrom].add( dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]) ); } else { // tokenFrom is from the base pool tokenIndexFrom = tokenIndexFrom - v.baseLPTokenIndex; if (tokenIndexTo < v.baseLPTokenIndex) { uint256[] memory baseInputs = new uint256[](v.baseTokensLength); baseInputs[tokenIndexFrom] = dx; v.x = v .baseSwap .calculateTokenAmount(baseInputs, true) .mul(v.baseVirtualPrice) .div(BASE_VIRTUAL_PRICE_PRECISION); // when adding to the base pool,you pay approx 50% of the swap fee v.x = v .x .sub( v.x.mul(_getBaseSwapFee(metaSwapStorage.baseSwap)).div( FEE_DENOMINATOR.mul(2) ) ) .add(xp[v.baseLPTokenIndex]); } else { // both from and to are from the base pool return v.baseSwap.calculateSwap( tokenIndexFrom, tokenIndexTo - v.baseLPTokenIndex, dx ); } tokenIndexFrom = v.baseLPTokenIndex; } v.metaIndexTo = v.baseLPTokenIndex; if (tokenIndexTo < v.baseLPTokenIndex) { v.metaIndexTo = tokenIndexTo; } { uint256 y = SwapUtils.getY( self._getAPrecise(), tokenIndexFrom, v.metaIndexTo, v.x, xp ); v.dy = xp[v.metaIndexTo].sub(y).sub(1); uint256 dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR); v.dy = v.dy.sub(dyFee); } if (tokenIndexTo < v.baseLPTokenIndex) { // tokenTo is from this pool v.dy = v.dy.div(self.tokenPrecisionMultipliers[v.metaIndexTo]); } else { // tokenTo is from the base pool v.dy = v.baseSwap.calculateRemoveLiquidityOneToken( v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(v.baseVirtualPrice), tokenIndexTo - v.baseLPTokenIndex ); } return v.dy; } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param self Swap struct to read from * @param metaSwapStorage MetaSwap struct to read from * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return if deposit was true, total amount of lp token that will be minted and if * deposit was false, total amount of lp token that will be burned */ function calculateTokenAmount( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint256[] calldata amounts, bool deposit ) external view returns (uint256) { uint256 a = self._getAPrecise(); uint256 d0; uint256 d1; { uint256 baseVirtualPrice = _getBaseVirtualPrice(metaSwapStorage); uint256[] memory balances1 = self.balances; uint256[] memory tokenPrecisionMultipliers = self .tokenPrecisionMultipliers; uint256 numTokens = balances1.length; d0 = SwapUtils.getD( _xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice), a ); for (uint256 i = 0; i < numTokens; i++) { if (deposit) { balances1[i] = balances1[i].add(amounts[i]); } else { balances1[i] = balances1[i].sub( amounts[i], "Cannot withdraw more than available" ); } } d1 = SwapUtils.getD( _xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice), a ); } uint256 totalSupply = self.lpToken.totalSupply(); if (deposit) { return d1.sub(d0).mul(totalSupply).div(d0); } else { return d0.sub(d1).mul(totalSupply).div(d0); } } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param metaSwapStorage MetaSwap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swap( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) external returns (uint256) { { uint256 pooledTokensLength = self.pooledTokens.length; require( tokenIndexFrom < pooledTokensLength && tokenIndexTo < pooledTokensLength, "Token index is out of range" ); } uint256 transferredDx; { IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom]; require( dx <= tokenFrom.balanceOf(msg.sender), "Cannot swap more than you own" ); { // Transfer tokens first to see if a fee was charged on transfer uint256 beforeBalance = tokenFrom.balanceOf(address(this)); tokenFrom.safeTransferFrom(msg.sender, address(this), dx); // Use the actual transferred amount for AMM math transferredDx = tokenFrom.balanceOf(address(this)).sub( beforeBalance ); } } (uint256 dy, uint256 dyFee) = _calculateSwap( self, tokenIndexFrom, tokenIndexTo, transferredDx, _updateBaseVirtualPrice(metaSwapStorage) ); require(dy >= minDy, "Swap didn't result in min tokens"); uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div( self.tokenPrecisionMultipliers[tokenIndexTo] ); self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add( transferredDx ); self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub( dyAdminFee ); self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy); emit TokenSwap( msg.sender, transferredDx, dy, tokenIndexFrom, tokenIndexTo ); return dy; } /** * @notice Swaps with the underlying tokens of the base Swap pool. For this function, * the token indices are flattened out so that underlying tokens are represented * in the indices. * @dev Since this calls multiple external functions during the execution, * it is recommended to protect any function that depends on this with reentrancy guards. * @param self Swap struct to read from and write to * @param metaSwapStorage MetaSwap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swapUnderlying( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) external returns (uint256) { SwapUnderlyingInfo memory v = SwapUnderlyingInfo( 0, 0, 0, self.tokenPrecisionMultipliers, self.balances, metaSwapStorage.baseTokens, IERC20(address(0)), 0, IERC20(address(0)), 0, _updateBaseVirtualPrice(metaSwapStorage) ); uint8 baseLPTokenIndex = uint8(v.oldBalances.length.sub(1)); { uint8 maxRange = uint8(baseLPTokenIndex + v.baseTokens.length); require( tokenIndexFrom < maxRange && tokenIndexTo < maxRange, "Token index out of range" ); } ISwap baseSwap = metaSwapStorage.baseSwap; // Find the address of the token swapping from and the index in MetaSwap's token list if (tokenIndexFrom < baseLPTokenIndex) { v.tokenFrom = self.pooledTokens[tokenIndexFrom]; v.metaIndexFrom = tokenIndexFrom; } else { v.tokenFrom = v.baseTokens[tokenIndexFrom - baseLPTokenIndex]; v.metaIndexFrom = baseLPTokenIndex; } // Find the address of the token swapping to and the index in MetaSwap's token list if (tokenIndexTo < baseLPTokenIndex) { v.tokenTo = self.pooledTokens[tokenIndexTo]; v.metaIndexTo = tokenIndexTo; } else { v.tokenTo = v.baseTokens[tokenIndexTo - baseLPTokenIndex]; v.metaIndexTo = baseLPTokenIndex; } // Check for possible fee on transfer v.dx = v.tokenFrom.balanceOf(address(this)); v.tokenFrom.safeTransferFrom(msg.sender, address(this), dx); v.dx = v.tokenFrom.balanceOf(address(this)).sub(v.dx); // update dx in case of fee on transfer if ( tokenIndexFrom < baseLPTokenIndex || tokenIndexTo < baseLPTokenIndex ) { // Either one of the tokens belongs to the MetaSwap tokens list uint256[] memory xp = _xp( v.oldBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice ); if (tokenIndexFrom < baseLPTokenIndex) { // Swapping from a MetaSwap token v.x = xp[tokenIndexFrom].add( dx.mul(v.tokenPrecisionMultipliers[tokenIndexFrom]) ); } else { // Swapping from one of the tokens hosted in the base Swap // This case requires adding the underlying token to the base Swap, then // using the base LP token to swap to the desired token uint256[] memory baseAmounts = new uint256[]( v.baseTokens.length ); baseAmounts[tokenIndexFrom - baseLPTokenIndex] = v.dx; // Add liquidity to the base Swap contract and receive base LP token v.dx = baseSwap.addLiquidity(baseAmounts, 0, block.timestamp); // Calculate the value of total amount of baseLPToken we end up with v.x = v .dx .mul(v.baseVirtualPrice) .div(BASE_VIRTUAL_PRICE_PRECISION) .add(xp[baseLPTokenIndex]); } // Calculate how much to withdraw in MetaSwap level and the the associated swap fee uint256 dyFee; { uint256 y = SwapUtils.getY( self._getAPrecise(), v.metaIndexFrom, v.metaIndexTo, v.x, xp ); v.dy = xp[v.metaIndexTo].sub(y).sub(1); if (tokenIndexTo >= baseLPTokenIndex) { // When swapping to a base Swap token, scale down dy by its virtual price v.dy = v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div( v.baseVirtualPrice ); } dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR); v.dy = v.dy.sub(dyFee).div( v.tokenPrecisionMultipliers[v.metaIndexTo] ); } // Update the balances array according to the calculated input and output amount { uint256 dyAdminFee = dyFee.mul(self.adminFee).div( FEE_DENOMINATOR ); dyAdminFee = dyAdminFee.div( v.tokenPrecisionMultipliers[v.metaIndexTo] ); self.balances[v.metaIndexFrom] = v .oldBalances[v.metaIndexFrom] .add(v.dx); self.balances[v.metaIndexTo] = v .oldBalances[v.metaIndexTo] .sub(v.dy) .sub(dyAdminFee); } if (tokenIndexTo >= baseLPTokenIndex) { // When swapping to a token that belongs to the base Swap, burn the LP token // and withdraw the desired token from the base pool uint256 oldBalance = v.tokenTo.balanceOf(address(this)); baseSwap.removeLiquidityOneToken( v.dy, tokenIndexTo - baseLPTokenIndex, 0, block.timestamp ); v.dy = v.tokenTo.balanceOf(address(this)) - oldBalance; } // Check the amount of token to send meets minDy require(v.dy >= minDy, "Swap didn't result in min tokens"); } else { // Both tokens are from the base Swap pool // Do a swap through the base Swap v.dy = v.tokenTo.balanceOf(address(this)); baseSwap.swap( tokenIndexFrom - baseLPTokenIndex, tokenIndexTo - baseLPTokenIndex, v.dx, minDy, block.timestamp ); v.dy = v.tokenTo.balanceOf(address(this)).sub(v.dy); } // Send the desired token to the caller v.tokenTo.safeTransfer(msg.sender, v.dy); emit TokenSwapUnderlying( msg.sender, dx, v.dy, tokenIndexFrom, tokenIndexTo ); return v.dy; } /** * @notice Add liquidity to the pool * @param self Swap struct to read from and write to * @param metaSwapStorage MetaSwap struct to read from and write to * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored. * @return amount of LP token user received */ function addLiquidity( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint256[] memory amounts, uint256 minToMint ) external returns (uint256) { IERC20[] memory pooledTokens = self.pooledTokens; require( amounts.length == pooledTokens.length, "Amounts must match pooled tokens" ); uint256[] memory fees = new uint256[](pooledTokens.length); // current state ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, self.lpToken, 0, self._getAPrecise(), _updateBaseVirtualPrice(metaSwapStorage), self.tokenPrecisionMultipliers, self.balances ); v.totalSupply = v.lpToken.totalSupply(); if (v.totalSupply != 0) { v.d0 = SwapUtils.getD( _xp( v.newBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice ), v.preciseA ); } for (uint256 i = 0; i < pooledTokens.length; i++) { require( v.totalSupply != 0 || amounts[i] > 0, "Must supply all tokens in pool" ); // Transfer tokens first to see if a fee was charged on transfer if (amounts[i] != 0) { uint256 beforeBalance = pooledTokens[i].balanceOf( address(this) ); pooledTokens[i].safeTransferFrom( msg.sender, address(this), amounts[i] ); // Update the amounts[] with actual transfer amount amounts[i] = pooledTokens[i].balanceOf(address(this)).sub( beforeBalance ); } v.newBalances[i] = v.newBalances[i].add(amounts[i]); } // invariant after change v.d1 = SwapUtils.getD( _xp(v.newBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice), v.preciseA ); require(v.d1 > v.d0, "D should increase"); // updated to reflect fees and calculate the user's LP tokens v.d2 = v.d1; uint256 toMint; if (v.totalSupply != 0) { uint256 feePerToken = SwapUtils._feePerToken( self.swapFee, pooledTokens.length ); for (uint256 i = 0; i < pooledTokens.length; i++) { uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0); fees[i] = feePerToken .mul(idealBalance.difference(v.newBalances[i])) .div(FEE_DENOMINATOR); self.balances[i] = v.newBalances[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); v.newBalances[i] = v.newBalances[i].sub(fees[i]); } v.d2 = SwapUtils.getD( _xp( v.newBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice ), v.preciseA ); toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0); } else { // the initial depositor doesn't pay fees self.balances = v.newBalances; toMint = v.d1; } require(toMint >= minToMint, "Couldn't mint min requested"); // mint the user's LP tokens self.lpToken.mint(msg.sender, toMint); emit AddLiquidity( msg.sender, amounts, fees, v.d1, v.totalSupply.add(toMint) ); return toMint; } /** * @notice Remove liquidity from the pool all in one token. * @param self Swap struct to read from and write to * @param metaSwapStorage MetaSwap struct to read from and write to * @param tokenAmount the amount of the lp tokens to burn * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @return amount chosen token that user received */ function removeLiquidityOneToken( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount ) external returns (uint256) { LPToken lpToken = self.lpToken; uint256 totalSupply = lpToken.totalSupply(); uint256 numTokens = self.pooledTokens.length; require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); require(tokenIndex < numTokens, "Token not found"); uint256 dyFee; uint256 dy; (dy, dyFee) = _calculateWithdrawOneToken( self, tokenAmount, tokenIndex, _updateBaseVirtualPrice(metaSwapStorage), totalSupply ); require(dy >= minAmount, "dy < minAmount"); // Update balances array self.balances[tokenIndex] = self.balances[tokenIndex].sub( dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR)) ); // Burn the associated LP token from the caller and send the desired token lpToken.burnFrom(msg.sender, tokenAmount); self.pooledTokens[tokenIndex].safeTransfer(msg.sender, dy); emit RemoveLiquidityOne( msg.sender, tokenAmount, totalSupply, tokenIndex, dy ); return dy; } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. * * @param self Swap struct to read from and write to * @param metaSwapStorage MetaSwap struct to read from and write to * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @return actual amount of LP tokens burned in the withdrawal */ function removeLiquidityImbalance( SwapUtils.Swap storage self, MetaSwap storage metaSwapStorage, uint256[] memory amounts, uint256 maxBurnAmount ) public returns (uint256) { // Using this struct to avoid stack too deep error ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, self.lpToken, 0, self._getAPrecise(), _updateBaseVirtualPrice(metaSwapStorage), self.tokenPrecisionMultipliers, self.balances ); v.totalSupply = v.lpToken.totalSupply(); require( amounts.length == v.newBalances.length, "Amounts should match pool tokens" ); require(maxBurnAmount != 0, "Must burn more than 0"); uint256 feePerToken = SwapUtils._feePerToken( self.swapFee, v.newBalances.length ); // Calculate how much LPToken should be burned uint256[] memory fees = new uint256[](v.newBalances.length); { uint256[] memory balances1 = new uint256[](v.newBalances.length); v.d0 = SwapUtils.getD( _xp( v.newBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice ), v.preciseA ); for (uint256 i = 0; i < v.newBalances.length; i++) { balances1[i] = v.newBalances[i].sub( amounts[i], "Cannot withdraw more than available" ); } v.d1 = SwapUtils.getD( _xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice), v.preciseA ); for (uint256 i = 0; i < v.newBalances.length; i++) { uint256 idealBalance = v.d1.mul(v.newBalances[i]).div(v.d0); uint256 difference = idealBalance.difference(balances1[i]); fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR); self.balances[i] = balances1[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); balances1[i] = balances1[i].sub(fees[i]); } v.d2 = SwapUtils.getD( _xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice), v.preciseA ); } uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0); require(tokenAmount != 0, "Burnt amount cannot be zero"); // Scale up by withdraw fee tokenAmount = tokenAmount.add(1); // Check for max burn amount require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount"); // Burn the calculated amount of LPToken from the caller and send the desired tokens v.lpToken.burnFrom(msg.sender, tokenAmount); for (uint256 i = 0; i < v.newBalances.length; i++) { self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]); } emit RemoveLiquidityImbalance( msg.sender, amounts, fees, v.d1, v.totalSupply.sub(tokenAmount) ); return tokenAmount; } /** * @notice Determines if the stored value of base Swap's virtual price is expired. * If the last update was past the BASE_CACHE_EXPIRE_TIME, then update the stored value. * * @param metaSwapStorage MetaSwap struct to read from and write to * @return base Swap's virtual price */ function _updateBaseVirtualPrice(MetaSwap storage metaSwapStorage) internal returns (uint256) { if ( block.timestamp > metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME ) { // When the cache is expired, update it uint256 baseVirtualPrice = ISwap(metaSwapStorage.baseSwap) .getVirtualPrice(); metaSwapStorage.baseVirtualPrice = baseVirtualPrice; metaSwapStorage.baseCacheLastUpdated = block.timestamp; return baseVirtualPrice; } else { return metaSwapStorage.baseVirtualPrice; } } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; import "../LPToken.sol"; import "../interfaces/ISwap.sol"; import "../interfaces/IMetaSwap.sol"; /** * @title MetaSwapDeposit * @notice This contract flattens the LP token in a MetaSwap pool for easier user access. MetaSwap must be * deployed before this contract can be initialized successfully. * * For example, suppose there exists a base Swap pool consisting of [DAI, USDC, USDT]. * Then a MetaSwap pool can be created with [sUSD, BaseSwapLPToken] to allow trades between either * the LP token or the underlying tokens and sUSD. * * MetaSwapDeposit flattens the LP token and remaps them to a single array, allowing users * to ignore the dependency on BaseSwapLPToken. Using the above example, MetaSwapDeposit can act * as a Swap containing [sUSD, DAI, USDC, USDT] tokens. */ contract MetaSwapDeposit is Initializable, ReentrancyGuardUpgradeable { using SafeERC20 for IERC20; using SafeMath for uint256; ISwap public baseSwap; IMetaSwap public metaSwap; IERC20[] public baseTokens; IERC20[] public metaTokens; IERC20[] public tokens; IERC20 public metaLPToken; uint256 constant MAX_UINT256 = 2**256 - 1; struct RemoveLiquidityImbalanceInfo { ISwap baseSwap; IMetaSwap metaSwap; IERC20 metaLPToken; uint8 baseLPTokenIndex; bool withdrawFromBase; uint256 leftoverMetaLPTokenAmount; } /** * @notice Sets the address for the base Swap contract, MetaSwap contract, and the * MetaSwap LP token contract. * @param _baseSwap the address of the base Swap contract * @param _metaSwap the address of the MetaSwap contract * @param _metaLPToken the address of the MetaSwap LP token contract */ function initialize( ISwap _baseSwap, IMetaSwap _metaSwap, IERC20 _metaLPToken ) external initializer { __ReentrancyGuard_init(); // Check and approve base level tokens to be deposited to the base Swap contract { uint8 i; for (; i < 32; i++) { try _baseSwap.getToken(i) returns (IERC20 token) { baseTokens.push(token); token.safeApprove(address(_baseSwap), MAX_UINT256); token.safeApprove(address(_metaSwap), MAX_UINT256); } catch { break; } } require(i > 1, "baseSwap must have at least 2 tokens"); } // Check and approve meta level tokens to be deposited to the MetaSwap contract IERC20 baseLPToken; { uint8 i; for (; i < 32; i++) { try _metaSwap.getToken(i) returns (IERC20 token) { baseLPToken = token; metaTokens.push(token); tokens.push(token); token.safeApprove(address(_metaSwap), MAX_UINT256); } catch { break; } } require(i > 1, "metaSwap must have at least 2 tokens"); } // Flatten baseTokens and append it to tokens array tokens[tokens.length - 1] = baseTokens[0]; for (uint8 i = 1; i < baseTokens.length; i++) { tokens.push(baseTokens[i]); } // Approve base Swap LP token to be burned by the base Swap contract for withdrawing baseLPToken.safeApprove(address(_baseSwap), MAX_UINT256); // Approve MetaSwap LP token to be burned by the MetaSwap contract for withdrawing _metaLPToken.safeApprove(address(_metaSwap), MAX_UINT256); // Initialize storage variables baseSwap = _baseSwap; metaSwap = _metaSwap; metaLPToken = _metaLPToken; } // Mutative functions /** * @notice Swap two underlying tokens using the meta pool and the base pool * @param tokenIndexFrom the token the user wants to swap from * @param tokenIndexTo the token the user wants to swap to * @param dx the amount of tokens the user wants to swap from * @param minDy the min amount the user would like to receive, or revert. * @param deadline latest timestamp to accept this transaction */ function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external nonReentrant returns (uint256) { tokens[tokenIndexFrom].safeTransferFrom(msg.sender, address(this), dx); uint256 tokenToAmount = metaSwap.swapUnderlying( tokenIndexFrom, tokenIndexTo, dx, minDy, deadline ); tokens[tokenIndexTo].safeTransfer(msg.sender, tokenToAmount); return tokenToAmount; } /** * @notice Add liquidity to the pool with the given amounts of tokens * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amount of LP token user minted and received */ function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external nonReentrant returns (uint256) { // Read to memory to save on gas IERC20[] memory memBaseTokens = baseTokens; IERC20[] memory memMetaTokens = metaTokens; uint256 baseLPTokenIndex = memMetaTokens.length - 1; require(amounts.length == memBaseTokens.length + baseLPTokenIndex); uint256 baseLPTokenAmount; { // Transfer base tokens from the caller and deposit to the base Swap pool uint256[] memory baseAmounts = new uint256[](memBaseTokens.length); bool shouldDepositBaseTokens; for (uint8 i = 0; i < memBaseTokens.length; i++) { IERC20 token = memBaseTokens[i]; uint256 depositAmount = amounts[baseLPTokenIndex + i]; if (depositAmount > 0) { token.safeTransferFrom( msg.sender, address(this), depositAmount ); baseAmounts[i] = token.balanceOf(address(this)); // account for any fees on transfer // if there are any base Swap level tokens, flag it for deposits shouldDepositBaseTokens = true; } } if (shouldDepositBaseTokens) { // Deposit any base Swap level tokens and receive baseLPToken baseLPTokenAmount = baseSwap.addLiquidity( baseAmounts, 0, deadline ); } } uint256 metaLPTokenAmount; { // Transfer remaining meta level tokens from the caller uint256[] memory metaAmounts = new uint256[](metaTokens.length); for (uint8 i = 0; i < baseLPTokenIndex; i++) { IERC20 token = memMetaTokens[i]; uint256 depositAmount = amounts[i]; if (depositAmount > 0) { token.safeTransferFrom( msg.sender, address(this), depositAmount ); metaAmounts[i] = token.balanceOf(address(this)); // account for any fees on transfer } } // Update the baseLPToken amount that will be deposited metaAmounts[baseLPTokenIndex] = baseLPTokenAmount; // Deposit the meta level tokens and the baseLPToken metaLPTokenAmount = metaSwap.addLiquidity( metaAmounts, minToMint, deadline ); } // Transfer the meta lp token to the caller metaLPToken.safeTransfer(msg.sender, metaLPTokenAmount); return metaLPTokenAmount; } /** * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @dev Liquidity can always be removed, even when the pool is paused. * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amounts of tokens user received */ function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external nonReentrant returns (uint256[] memory) { IERC20[] memory memBaseTokens = baseTokens; IERC20[] memory memMetaTokens = metaTokens; uint256[] memory totalRemovedAmounts; { uint256 numOfAllTokens = memBaseTokens.length + memMetaTokens.length - 1; require(minAmounts.length == numOfAllTokens, "out of range"); totalRemovedAmounts = new uint256[](numOfAllTokens); } // Transfer meta lp token from the caller to this metaLPToken.safeTransferFrom(msg.sender, address(this), amount); uint256 baseLPTokenAmount; { // Remove liquidity from the MetaSwap pool uint256[] memory removedAmounts; uint256 baseLPTokenIndex = memMetaTokens.length - 1; { uint256[] memory metaMinAmounts = new uint256[]( memMetaTokens.length ); for (uint8 i = 0; i < baseLPTokenIndex; i++) { metaMinAmounts[i] = minAmounts[i]; } removedAmounts = metaSwap.removeLiquidity( amount, metaMinAmounts, deadline ); } // Send the meta level tokens to the caller for (uint8 i = 0; i < baseLPTokenIndex; i++) { totalRemovedAmounts[i] = removedAmounts[i]; memMetaTokens[i].safeTransfer(msg.sender, removedAmounts[i]); } baseLPTokenAmount = removedAmounts[baseLPTokenIndex]; // Remove liquidity from the base Swap pool { uint256[] memory baseMinAmounts = new uint256[]( memBaseTokens.length ); for (uint8 i = 0; i < baseLPTokenIndex; i++) { baseMinAmounts[i] = minAmounts[baseLPTokenIndex + i]; } removedAmounts = baseSwap.removeLiquidity( baseLPTokenAmount, baseMinAmounts, deadline ); } // Send the base level tokens to the caller for (uint8 i = 0; i < memBaseTokens.length; i++) { totalRemovedAmounts[baseLPTokenIndex + i] = removedAmounts[i]; memBaseTokens[i].safeTransfer(msg.sender, removedAmounts[i]); } } return totalRemovedAmounts; } /** * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param tokenAmount the amount of the token you want to receive * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @param deadline latest timestamp to accept this transaction * @return amount of chosen token user received */ function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external nonReentrant returns (uint256) { uint8 baseLPTokenIndex = uint8(metaTokens.length - 1); uint8 baseTokensLength = uint8(baseTokens.length); // Transfer metaLPToken from the caller metaLPToken.safeTransferFrom(msg.sender, address(this), tokenAmount); IERC20 token; if (tokenIndex < baseLPTokenIndex) { // When the desired token is meta level token, we can just call `removeLiquidityOneToken` directly metaSwap.removeLiquidityOneToken( tokenAmount, tokenIndex, minAmount, deadline ); token = metaTokens[tokenIndex]; } else if (tokenIndex < baseLPTokenIndex + baseTokensLength) { // When the desired token is a base level token, we need to first withdraw via baseLPToken, then withdraw // the desired token from the base Swap contract. uint256 removedBaseLPTokenAmount = metaSwap.removeLiquidityOneToken( tokenAmount, baseLPTokenIndex, 0, deadline ); baseSwap.removeLiquidityOneToken( removedBaseLPTokenAmount, tokenIndex - baseLPTokenIndex, minAmount, deadline ); token = baseTokens[tokenIndex - baseLPTokenIndex]; } else { revert("out of range"); } uint256 amountWithdrawn = token.balanceOf(address(this)); token.safeTransfer(msg.sender, amountWithdrawn); return amountWithdrawn; } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @param deadline latest timestamp to accept this transaction * @return amount of LP tokens burned */ function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external nonReentrant returns (uint256) { IERC20[] memory memBaseTokens = baseTokens; IERC20[] memory memMetaTokens = metaTokens; uint256[] memory metaAmounts = new uint256[](memMetaTokens.length); uint256[] memory baseAmounts = new uint256[](memBaseTokens.length); require( amounts.length == memBaseTokens.length + memMetaTokens.length - 1, "out of range" ); RemoveLiquidityImbalanceInfo memory v = RemoveLiquidityImbalanceInfo( baseSwap, metaSwap, metaLPToken, uint8(metaAmounts.length - 1), false, 0 ); for (uint8 i = 0; i < v.baseLPTokenIndex; i++) { metaAmounts[i] = amounts[i]; } for (uint8 i = 0; i < baseAmounts.length; i++) { baseAmounts[i] = amounts[v.baseLPTokenIndex + i]; if (baseAmounts[i] > 0) { v.withdrawFromBase = true; } } // Calculate how much base LP token we need to get the desired amount of underlying tokens if (v.withdrawFromBase) { metaAmounts[v.baseLPTokenIndex] = v .baseSwap .calculateTokenAmount(baseAmounts, false) .mul(10005) .div(10000); } // Transfer MetaSwap LP token from the caller to this contract v.metaLPToken.safeTransferFrom( msg.sender, address(this), maxBurnAmount ); // Withdraw the paired meta level tokens and the base LP token from the MetaSwap pool uint256 burnedMetaLPTokenAmount = v.metaSwap.removeLiquidityImbalance( metaAmounts, maxBurnAmount, deadline ); v.leftoverMetaLPTokenAmount = maxBurnAmount.sub( burnedMetaLPTokenAmount ); // If underlying tokens are desired, withdraw them from the base Swap pool if (v.withdrawFromBase) { v.baseSwap.removeLiquidityImbalance( baseAmounts, metaAmounts[v.baseLPTokenIndex], deadline ); // Base Swap may require LESS base LP token than the amount we have // In that case, deposit it to the MetaSwap pool. uint256[] memory leftovers = new uint256[](metaAmounts.length); IERC20 baseLPToken = memMetaTokens[v.baseLPTokenIndex]; uint256 leftoverBaseLPTokenAmount = baseLPToken.balanceOf( address(this) ); if (leftoverBaseLPTokenAmount > 0) { leftovers[v.baseLPTokenIndex] = leftoverBaseLPTokenAmount; v.leftoverMetaLPTokenAmount = v.leftoverMetaLPTokenAmount.add( v.metaSwap.addLiquidity(leftovers, 0, deadline) ); } } // Transfer all withdrawn tokens to the caller for (uint8 i = 0; i < amounts.length; i++) { IERC20 token; if (i < v.baseLPTokenIndex) { token = memMetaTokens[i]; } else { token = memBaseTokens[i - v.baseLPTokenIndex]; } if (amounts[i] > 0) { token.safeTransfer(msg.sender, amounts[i]); } } // If there were any extra meta lp token, transfer them back to the caller as well if (v.leftoverMetaLPTokenAmount > 0) { v.metaLPToken.safeTransfer(msg.sender, v.leftoverMetaLPTokenAmount); } return maxBurnAmount - v.leftoverMetaLPTokenAmount; } // VIEW FUNCTIONS /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running. When withdrawing from the base pool in imbalanced * fashion, the recommended slippage setting is 0.2% or higher. * * @dev This shouldn't be used outside frontends for user estimates. * * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return token amount the user will receive */ function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view returns (uint256) { uint256[] memory metaAmounts = new uint256[](metaTokens.length); uint256[] memory baseAmounts = new uint256[](baseTokens.length); uint256 baseLPTokenIndex = metaAmounts.length - 1; for (uint8 i = 0; i < baseLPTokenIndex; i++) { metaAmounts[i] = amounts[i]; } for (uint8 i = 0; i < baseAmounts.length; i++) { baseAmounts[i] = amounts[baseLPTokenIndex + i]; } uint256 baseLPTokenAmount = baseSwap.calculateTokenAmount( baseAmounts, deposit ); metaAmounts[baseLPTokenIndex] = baseLPTokenAmount; return metaSwap.calculateTokenAmount(metaAmounts, deposit); } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of LP tokens * @param amount the amount of LP tokens that would be burned on withdrawal * @return array of token balances that the user will receive */ function calculateRemoveLiquidity(uint256 amount) external view returns (uint256[] memory) { uint256[] memory metaAmounts = metaSwap.calculateRemoveLiquidity( amount ); uint8 baseLPTokenIndex = uint8(metaAmounts.length - 1); uint256[] memory baseAmounts = baseSwap.calculateRemoveLiquidity( metaAmounts[baseLPTokenIndex] ); uint256[] memory totalAmounts = new uint256[]( baseLPTokenIndex + baseAmounts.length ); for (uint8 i = 0; i < baseLPTokenIndex; i++) { totalAmounts[i] = metaAmounts[i]; } for (uint8 i = 0; i < baseAmounts.length; i++) { totalAmounts[baseLPTokenIndex + i] = baseAmounts[i]; } return totalAmounts; } /** * @notice Calculate the amount of underlying token available to withdraw * when withdrawing via only single token * @param tokenAmount the amount of LP token to burn * @param tokenIndex index of which token will be withdrawn * @return availableTokenAmount calculated amount of underlying token * available to withdraw */ function calculateRemoveLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256) { uint8 baseLPTokenIndex = uint8(metaTokens.length - 1); if (tokenIndex < baseLPTokenIndex) { return metaSwap.calculateRemoveLiquidityOneToken( tokenAmount, tokenIndex ); } else { uint256 baseLPTokenAmount = metaSwap .calculateRemoveLiquidityOneToken( tokenAmount, baseLPTokenIndex ); return baseSwap.calculateRemoveLiquidityOneToken( baseLPTokenAmount, tokenIndex - baseLPTokenIndex ); } } /** * @notice Returns the address of the pooled token at given index. Reverts if tokenIndex is out of range. * This is a flattened representation of the pooled tokens. * @param index the index of the token * @return address of the token at given index */ function getToken(uint8 index) external view returns (IERC20) { require(index < tokens.length, "index out of range"); return tokens[index]; } /** * @notice Calculate amount of tokens you receive on swap * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell. If the token charges * a fee on transfers, use the amount that gets transferred after the fee. * @return amount of tokens the user will receive */ function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256) { return metaSwap.calculateSwapUnderlying(tokenIndexFrom, tokenIndexTo, dx); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "./ISwap.sol"; interface IMetaSwap { // pool data view functions function getA() external view returns (uint256); function getToken(uint8 index) external view returns (IERC20); function getTokenIndex(address tokenAddress) external view returns (uint8); function getTokenBalance(uint8 index) external view returns (uint256); function getVirtualPrice() external view returns (uint256); function isGuarded() external view returns (bool); // min return calculation functions function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateSwapUnderlying( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view returns (uint256); function calculateRemoveLiquidity(uint256 amount) external view returns (uint256[] memory); function calculateRemoveLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 availableTokenAmount); // state modifying functions function initialize( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress ) external; function initializeMetaSwap( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress, ISwap baseSwap ) external; function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function swapUnderlying( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external returns (uint256); function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external returns (uint256[] memory); function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external returns (uint256); function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; import "./interfaces/ISwap.sol"; import "./interfaces/IMetaSwap.sol"; contract SwapDeployer is Ownable { event NewSwapPool( address indexed deployer, address swapAddress, IERC20[] pooledTokens ); event NewClone(address indexed target, address cloneAddress); constructor() public Ownable() {} function clone(address target) external returns (address) { address newClone = _clone(target); emit NewClone(target, newClone); return newClone; } function _clone(address target) internal returns (address) { return Clones.clone(target); } function deploy( address swapAddress, IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress ) external returns (address) { address swapClone = _clone(swapAddress); ISwap(swapClone).initialize( _pooledTokens, decimals, lpTokenName, lpTokenSymbol, _a, _fee, _adminFee, lpTokenTargetAddress ); Ownable(swapClone).transferOwnership(owner()); emit NewSwapPool(msg.sender, swapClone, _pooledTokens); return swapClone; } function deployMetaSwap( address metaSwapAddress, IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress, ISwap baseSwap ) external returns (address) { address metaSwapClone = _clone(metaSwapAddress); IMetaSwap(metaSwapClone).initializeMetaSwap( _pooledTokens, decimals, lpTokenName, lpTokenSymbol, _a, _fee, _adminFee, lpTokenTargetAddress, baseSwap ); Ownable(metaSwapClone).transferOwnership(owner()); emit NewSwapPool(msg.sender, metaSwapClone, _pooledTokens); return metaSwapClone; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "synthetix/contracts/interfaces/ISynthetix.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol"; import "../interfaces/ISwap.sol"; /** * @title SynthSwapper * @notice Replacement of Virtual Synths in favor of gas savings. Allows swapping synths via the Synthetix protocol * or Saddle's pools. The `Bridge.sol` contract will deploy minimal clones of this contract upon initiating * any cross-asset swaps. */ contract SynthSwapper is Initializable { using SafeERC20 for IERC20; address payable owner; // SYNTHETIX points to `ProxyERC20` (0xC011a73ee8576Fb46F5E1c5751cA3B9Fe0af2a6F). // This contract is a proxy of `Synthetix` and is used to exchange synths. ISynthetix public constant SYNTHETIX = ISynthetix(0xC011a73ee8576Fb46F5E1c5751cA3B9Fe0af2a6F); // "SADDLE" in bytes32 form bytes32 public constant TRACKING = 0x534144444c450000000000000000000000000000000000000000000000000000; /** * @notice Initializes the contract when deploying this directly. This prevents * others from calling initialize() on the target contract and setting themself as the owner. */ constructor() public { initialize(); } /** * @notice This modifier checks if the caller is the owner */ modifier onlyOwner() { require(msg.sender == owner, "is not owner"); _; } /** * @notice Sets the `owner` as the caller of this function */ function initialize() public initializer { require(owner == address(0), "owner already set"); owner = msg.sender; } /** * @notice Swaps the synth to another synth via the Synthetix protocol. * @param sourceKey currency key of the source synth * @param synthAmount amount of the synth to swap * @param destKey currency key of the destination synth * @return amount of the destination synth received */ function swapSynth( bytes32 sourceKey, uint256 synthAmount, bytes32 destKey ) external onlyOwner returns (uint256) { return SYNTHETIX.exchangeWithTracking( sourceKey, synthAmount, destKey, msg.sender, TRACKING ); } /** * @notice Approves the given `tokenFrom` and swaps it to another token via the given `swap` pool. * @param swap the address of a pool to swap through * @param tokenFrom the address of the stored synth * @param tokenFromIndex the index of the token to swap from * @param tokenToIndex the token the user wants to swap to * @param tokenFromAmount the amount of the token to swap * @param minAmount the min amount the user would like to receive, or revert. * @param deadline latest timestamp to accept this transaction * @param recipient the address of the recipient */ function swapSynthToToken( ISwap swap, IERC20 tokenFrom, uint8 tokenFromIndex, uint8 tokenToIndex, uint256 tokenFromAmount, uint256 minAmount, uint256 deadline, address recipient ) external onlyOwner returns (IERC20, uint256) { tokenFrom.approve(address(swap), tokenFromAmount); swap.swap( tokenFromIndex, tokenToIndex, tokenFromAmount, minAmount, deadline ); IERC20 tokenTo = swap.getToken(tokenToIndex); uint256 balance = tokenTo.balanceOf(address(this)); tokenTo.safeTransfer(recipient, balance); return (tokenTo, balance); } /** * @notice Withdraws the given amount of `token` to the `recipient`. * @param token the address of the token to withdraw * @param recipient the address of the account to receive the token * @param withdrawAmount the amount of the token to withdraw * @param shouldDestroy whether this contract should be destroyed after this call */ function withdraw( IERC20 token, address recipient, uint256 withdrawAmount, bool shouldDestroy ) external onlyOwner { token.safeTransfer(recipient, withdrawAmount); if (shouldDestroy) { _destroy(); } } /** * @notice Destroys this contract. Only owner can call this function. */ function destroy() external onlyOwner { _destroy(); } function _destroy() internal { selfdestruct(msg.sender); } }
pragma solidity >=0.4.24; import "./ISynth.sol"; import "./IVirtualSynth.sol"; // https://docs.synthetix.io/contracts/source/interfaces/isynthetix interface ISynthetix { // Views function anySynthOrSNXRateIsInvalid() external view returns (bool anyRateInvalid); function availableCurrencyKeys() external view returns (bytes32[] memory); function availableSynthCount() external view returns (uint); function availableSynths(uint index) external view returns (ISynth); function collateral(address account) external view returns (uint); function collateralisationRatio(address issuer) external view returns (uint); function debtBalanceOf(address issuer, bytes32 currencyKey) external view returns (uint); function isWaitingPeriod(bytes32 currencyKey) external view returns (bool); function maxIssuableSynths(address issuer) external view returns (uint maxIssuable); function remainingIssuableSynths(address issuer) external view returns ( uint maxIssuable, uint alreadyIssued, uint totalSystemDebt ); function synths(bytes32 currencyKey) external view returns (ISynth); function synthsByAddress(address synthAddress) external view returns (bytes32); function totalIssuedSynths(bytes32 currencyKey) external view returns (uint); function totalIssuedSynthsExcludeEtherCollateral(bytes32 currencyKey) external view returns (uint); function transferableSynthetix(address account) external view returns (uint transferable); // Mutative Functions function burnSynths(uint amount) external; function burnSynthsOnBehalf(address burnForAddress, uint amount) external; function burnSynthsToTarget() external; function burnSynthsToTargetOnBehalf(address burnForAddress) external; function exchange( bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey ) external returns (uint amountReceived); function exchangeOnBehalf( address exchangeForAddress, bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey ) external returns (uint amountReceived); function exchangeWithTracking( bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, address originator, bytes32 trackingCode ) external returns (uint amountReceived); function exchangeOnBehalfWithTracking( address exchangeForAddress, bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, address originator, bytes32 trackingCode ) external returns (uint amountReceived); function exchangeWithVirtual( bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, bytes32 trackingCode ) external returns (uint amountReceived, IVirtualSynth vSynth); function issueMaxSynths() external; function issueMaxSynthsOnBehalf(address issueForAddress) external; function issueSynths(uint amount) external; function issueSynthsOnBehalf(address issueForAddress, uint amount) external; function mint() external returns (bool); function settle(bytes32 currencyKey) external returns ( uint reclaimed, uint refunded, uint numEntries ); // Liquidations function liquidateDelinquentAccount(address account, uint susdAmount) external returns (bool); // Restricted Functions function mintSecondary(address account, uint amount) external; function mintSecondaryRewards(uint amount) external; function burnSecondary(address account, uint amount) external; }
pragma solidity >=0.4.24; // https://docs.synthetix.io/contracts/source/interfaces/isynth interface ISynth { // Views function currencyKey() external view returns (bytes32); function transferableSynths(address account) external view returns (uint); // Mutative functions function transferAndSettle(address to, uint value) external returns (bool); function transferFromAndSettle( address from, address to, uint value ) external returns (bool); // Restricted: used internally to Synthetix function burn(address account, uint amount) external; function issue(address account, uint amount) external; }
pragma solidity >=0.4.24; import "./ISynth.sol"; interface IVirtualSynth { // Views function balanceOfUnderlying(address account) external view returns (uint); function rate() external view returns (uint); function readyToSettle() external view returns (bool); function secsLeftInWaitingPeriod() external view returns (uint); function settled() external view returns (bool); function synth() external view returns (ISynth); // Mutative functions function settle(address account) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20BurnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "./interfaces/ISwapV1.sol"; /** * @title Liquidity Provider Token * @notice This token is an ERC20 detailed token with added capability to be minted by the owner. * It is used to represent user's shares when providing liquidity to swap contracts. * @dev Only Swap contracts should initialize and own LPToken contracts. */ contract LPTokenV1 is ERC20BurnableUpgradeable, OwnableUpgradeable { using SafeMathUpgradeable for uint256; /** * @notice Initializes this LPToken contract with the given name and symbol * @dev The caller of this function will become the owner. A Swap contract should call this * in its initializer function. * @param name name of this token * @param symbol symbol of this token */ function initialize(string memory name, string memory symbol) external initializer returns (bool) { __Context_init_unchained(); __ERC20_init_unchained(name, symbol); __Ownable_init_unchained(); return true; } /** * @notice Mints the given amount of LPToken to the recipient. * @dev only owner can call this mint function * @param recipient address of account to receive the tokens * @param amount amount of tokens to mint */ function mint(address recipient, uint256 amount) external onlyOwner { require(amount != 0, "LPToken: cannot mint 0"); _mint(recipient, amount); } /** * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including * minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime. * This assumes the owner is set to a Swap contract's address. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual override(ERC20Upgradeable) { super._beforeTokenTransfer(from, to, amount); require(to != address(this), "LPToken: cannot send to itself"); ISwapV1(owner()).updateUserWithdrawFee(to, amount); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "./IAllowlist.sol"; interface ISwapV1 { // pool data view functions function getA() external view returns (uint256); function getAllowlist() external view returns (IAllowlist); function getToken(uint8 index) external view returns (IERC20); function getTokenIndex(address tokenAddress) external view returns (uint8); function getTokenBalance(uint8 index) external view returns (uint256); function getVirtualPrice() external view returns (uint256); function isGuarded() external view returns (bool); // min return calculation functions function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateTokenAmount( address account, uint256[] calldata amounts, bool deposit ) external view returns (uint256); function calculateRemoveLiquidity(address account, uint256 amount) external view returns (uint256[] memory); function calculateRemoveLiquidityOneToken( address account, uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 availableTokenAmount); // state modifying functions function initialize( IERC20[] memory pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 a, uint256 fee, uint256 adminFee, uint256 withdrawFee, address lpTokenTargetAddress ) external; function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external returns (uint256); function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external returns (uint256[] memory); function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external returns (uint256); function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external returns (uint256); // withdraw fee update function function updateUserWithdrawFee(address recipient, uint256 transferAmount) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; import "./interfaces/ISwapV1.sol"; contract SwapDeployerV1 is Ownable { event NewSwapPool( address indexed deployer, address swapAddress, IERC20[] pooledTokens ); constructor() public Ownable() {} function deploy( address swapAddress, IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, uint256 _withdrawFee, address lpTokenTargetAddress ) external returns (address) { address swapClone = Clones.clone(swapAddress); ISwapV1(swapClone).initialize( _pooledTokens, decimals, lpTokenName, lpTokenSymbol, _a, _fee, _adminFee, _withdrawFee, lpTokenTargetAddress ); Ownable(swapClone).transferOwnership(owner()); emit NewSwapPool(msg.sender, swapClone, _pooledTokens); return swapClone; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/token/ERC721/ERC721.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; import "synthetix/contracts/interfaces/IAddressResolver.sol"; import "synthetix/contracts/interfaces/IExchanger.sol"; import "synthetix/contracts/interfaces/IExchangeRates.sol"; import "../interfaces/ISwap.sol"; import "./SynthSwapper.sol"; contract Proxy { address public target; } contract Target { address public proxy; } /** * @title Bridge * @notice This contract is responsible for cross-asset swaps using the Synthetix protocol as the bridging exchange. * There are three types of supported cross-asset swaps, tokenToSynth, synthToToken, and tokenToToken. * * 1) tokenToSynth * Swaps a supported token in a saddle pool to any synthetic asset (e.g. tBTC -> sAAVE). * * 2) synthToToken * Swaps any synthetic asset to a suported token in a saddle pool (e.g. sDEFI -> USDC). * * 3) tokenToToken * Swaps a supported token in a saddle pool to one in another pool (e.g. renBTC -> DAI). * * Due to the settlement periods of synthetic assets, the users must wait until the trades can be completed. * Users will receive an ERC721 token that represents pending cross-asset swap. Once the waiting period is over, * the trades can be settled and completed by calling the `completeToSynth` or the `completeToToken` function. * In the cases of pending `synthToToken` or `tokenToToken` swaps, the owners of the pending swaps can also choose * to withdraw the bridging synthetic assets instead of completing the swap. */ contract Bridge is ERC721 { using SafeMath for uint256; using SafeERC20 for IERC20; event SynthIndex( address indexed swap, uint8 synthIndex, bytes32 currencyKey, address synthAddress ); event TokenToSynth( address indexed requester, uint256 indexed itemId, ISwap swapPool, uint8 tokenFromIndex, uint256 tokenFromInAmount, bytes32 synthToKey ); event SynthToToken( address indexed requester, uint256 indexed itemId, ISwap swapPool, bytes32 synthFromKey, uint256 synthFromInAmount, uint8 tokenToIndex ); event TokenToToken( address indexed requester, uint256 indexed itemId, ISwap[2] swapPools, uint8 tokenFromIndex, uint256 tokenFromAmount, uint8 tokenToIndex ); event Settle( address indexed requester, uint256 indexed itemId, IERC20 settleFrom, uint256 settleFromAmount, IERC20 settleTo, uint256 settleToAmount, bool isFinal ); event Withdraw( address indexed requester, uint256 indexed itemId, IERC20 synth, uint256 synthAmount, bool isFinal ); // The addresses for all Synthetix contracts can be found in the below URL. // https://docs.synthetix.io/addresses/#mainnet-contracts // // Since the Synthetix protocol is upgradable, we must use the proxy pairs of each contract such that // the composability is not broken after the protocol upgrade. // // SYNTHETIX_RESOLVER points to `ReadProxyAddressResolver` (0x4E3b31eB0E5CB73641EE1E65E7dCEFe520bA3ef2). // This contract is a read proxy of `AddressResolver` which is responsible for storing the addresses of the contracts // used by the Synthetix protocol. IAddressResolver public constant SYNTHETIX_RESOLVER = IAddressResolver(0x4E3b31eB0E5CB73641EE1E65E7dCEFe520bA3ef2); // EXCHANGER points to `Exchanger`. There is no proxy pair for this contract so we need to update this variable // when the protocol is upgraded. This contract is used to settle synths held by SynthSwapper. IExchanger public exchanger; // CONSTANTS // Available types of cross-asset swaps enum PendingSwapType { Null, TokenToSynth, SynthToToken, TokenToToken } uint256 public constant MAX_UINT256 = 2**256 - 1; uint8 public constant MAX_UINT8 = 2**8 - 1; bytes32 public constant EXCHANGE_RATES_NAME = "ExchangeRates"; bytes32 public constant EXCHANGER_NAME = "Exchanger"; address public immutable SYNTH_SWAPPER_MASTER; // MAPPINGS FOR STORING PENDING SETTLEMENTS // The below two mappings never share the same key. mapping(uint256 => PendingToSynthSwap) public pendingToSynthSwaps; mapping(uint256 => PendingToTokenSwap) public pendingToTokenSwaps; uint256 public pendingSwapsLength; mapping(uint256 => PendingSwapType) private pendingSwapType; // MAPPINGS FOR STORING SYNTH INFO mapping(address => SwapContractInfo) private swapContracts; // Structs holding information about pending settlements struct PendingToSynthSwap { SynthSwapper swapper; bytes32 synthKey; } struct PendingToTokenSwap { SynthSwapper swapper; bytes32 synthKey; ISwap swap; uint8 tokenToIndex; } struct SwapContractInfo { // index of the supported synth + 1 uint8 synthIndexPlusOne; // address of the supported synth address synthAddress; // bytes32 key of the supported synth bytes32 synthKey; // array of tokens supported by the contract IERC20[] tokens; } /** * @notice Deploys this contract and initializes the master version of the SynthSwapper contract. The address to * the Synthetix protocol's Exchanger contract is also set on deployment. */ constructor(address synthSwapperAddress) public ERC721("Saddle Cross-Asset Swap", "SaddleSynthSwap") { SYNTH_SWAPPER_MASTER = synthSwapperAddress; updateExchangerCache(); } /** * @notice Returns the address of the proxy contract targeting the synthetic asset with the given `synthKey`. * @param synthKey the currency key of the synth * @return address of the proxy contract */ function getProxyAddressFromTargetSynthKey(bytes32 synthKey) public view returns (IERC20) { return IERC20(Target(SYNTHETIX_RESOLVER.getSynth(synthKey)).proxy()); } /** * @notice Returns various information of a pending swap represented by the given `itemId`. Information includes * the type of the pending swap, the number of seconds left until it can be settled, the address and the balance * of the synth this swap currently holds, and the address of the destination token. * @param itemId ID of the pending swap * @return swapType the type of the pending virtual swap, * secsLeft number of seconds left until this swap can be settled, * synth address of the synth this swap uses, * synthBalance amount of the synth this swap holds, * tokenTo the address of the destination token */ function getPendingSwapInfo(uint256 itemId) external view returns ( PendingSwapType swapType, uint256 secsLeft, address synth, uint256 synthBalance, address tokenTo ) { swapType = pendingSwapType[itemId]; require(swapType != PendingSwapType.Null, "invalid itemId"); SynthSwapper synthSwapper; bytes32 synthKey; if (swapType == PendingSwapType.TokenToSynth) { synthSwapper = pendingToSynthSwaps[itemId].swapper; synthKey = pendingToSynthSwaps[itemId].synthKey; synth = address(getProxyAddressFromTargetSynthKey(synthKey)); tokenTo = synth; } else { PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[ itemId ]; synthSwapper = pendingToTokenSwap.swapper; synthKey = pendingToTokenSwap.synthKey; synth = address(getProxyAddressFromTargetSynthKey(synthKey)); tokenTo = address( swapContracts[address(pendingToTokenSwap.swap)].tokens[ pendingToTokenSwap.tokenToIndex ] ); } secsLeft = exchanger.maxSecsLeftInWaitingPeriod( address(synthSwapper), synthKey ); synthBalance = IERC20(synth).balanceOf(address(synthSwapper)); } // Settles the synth only. function _settle(address synthOwner, bytes32 synthKey) internal { // Settle synth exchanger.settle(synthOwner, synthKey); } /** * @notice Settles and withdraws the synthetic asset without swapping it to a token in a Saddle pool. Only the owner * of the ERC721 token of `itemId` can call this function. Reverts if the given `itemId` does not represent a * `synthToToken` or a `tokenToToken` swap. * @param itemId ID of the pending swap * @param amount the amount of the synth to withdraw */ function withdraw(uint256 itemId, uint256 amount) external { address nftOwner = ownerOf(itemId); require(nftOwner == msg.sender, "not owner"); require( pendingSwapType[itemId] > PendingSwapType.TokenToSynth, "invalid itemId" ); PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[ itemId ]; _settle( address(pendingToTokenSwap.swapper), pendingToTokenSwap.synthKey ); IERC20 synth = getProxyAddressFromTargetSynthKey( pendingToTokenSwap.synthKey ); bool shouldDestroy; if (amount >= synth.balanceOf(address(pendingToTokenSwap.swapper))) { _burn(itemId); delete pendingToTokenSwaps[itemId]; delete pendingSwapType[itemId]; shouldDestroy = true; } pendingToTokenSwap.swapper.withdraw( synth, nftOwner, amount, shouldDestroy ); emit Withdraw(msg.sender, itemId, synth, amount, shouldDestroy); } /** * @notice Completes the pending `tokenToSynth` swap by settling and withdrawing the synthetic asset. * Reverts if the given `itemId` does not represent a `tokenToSynth` swap. * @param itemId ERC721 token ID representing a pending `tokenToSynth` swap */ function completeToSynth(uint256 itemId) external { address nftOwner = ownerOf(itemId); require(nftOwner == msg.sender, "not owner"); require( pendingSwapType[itemId] == PendingSwapType.TokenToSynth, "invalid itemId" ); PendingToSynthSwap memory pendingToSynthSwap = pendingToSynthSwaps[ itemId ]; _settle( address(pendingToSynthSwap.swapper), pendingToSynthSwap.synthKey ); IERC20 synth = getProxyAddressFromTargetSynthKey( pendingToSynthSwap.synthKey ); // Burn the corresponding ERC721 token and delete storage for gas _burn(itemId); delete pendingToTokenSwaps[itemId]; delete pendingSwapType[itemId]; // After settlement, withdraw the synth and send it to the recipient uint256 synthBalance = synth.balanceOf( address(pendingToSynthSwap.swapper) ); pendingToSynthSwap.swapper.withdraw( synth, nftOwner, synthBalance, true ); emit Settle( msg.sender, itemId, synth, synthBalance, synth, synthBalance, true ); } /** * @notice Calculates the expected amount of the token to receive on calling `completeToToken()` with * the given `swapAmount`. * @param itemId ERC721 token ID representing a pending `SynthToToken` or `TokenToToken` swap * @param swapAmount the amount of bridging synth to swap from * @return expected amount of the token the user will receive */ function calcCompleteToToken(uint256 itemId, uint256 swapAmount) external view returns (uint256) { require( pendingSwapType[itemId] > PendingSwapType.TokenToSynth, "invalid itemId" ); PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[ itemId ]; return pendingToTokenSwap.swap.calculateSwap( getSynthIndex(pendingToTokenSwap.swap), pendingToTokenSwap.tokenToIndex, swapAmount ); } /** * @notice Completes the pending `SynthToToken` or `TokenToToken` swap by settling the bridging synth and swapping * it to the desired token. Only the owners of the pending swaps can call this function. * @param itemId ERC721 token ID representing a pending `SynthToToken` or `TokenToToken` swap * @param swapAmount the amount of bridging synth to swap from * @param minAmount the minimum amount of the token to receive - reverts if this amount is not reached * @param deadline the timestamp representing the deadline for this transaction - reverts if deadline is not met */ function completeToToken( uint256 itemId, uint256 swapAmount, uint256 minAmount, uint256 deadline ) external { require(swapAmount != 0, "amount must be greater than 0"); address nftOwner = ownerOf(itemId); require(msg.sender == nftOwner, "must own itemId"); require( pendingSwapType[itemId] > PendingSwapType.TokenToSynth, "invalid itemId" ); PendingToTokenSwap memory pendingToTokenSwap = pendingToTokenSwaps[ itemId ]; _settle( address(pendingToTokenSwap.swapper), pendingToTokenSwap.synthKey ); IERC20 synth = getProxyAddressFromTargetSynthKey( pendingToTokenSwap.synthKey ); bool shouldDestroyClone; if ( swapAmount >= synth.balanceOf(address(pendingToTokenSwap.swapper)) ) { _burn(itemId); delete pendingToTokenSwaps[itemId]; delete pendingSwapType[itemId]; shouldDestroyClone = true; } // Try swapping the synth to the desired token via the stored swap pool contract // If the external call succeeds, send the token to the owner of token with itemId. (IERC20 tokenTo, uint256 amountOut) = pendingToTokenSwap .swapper .swapSynthToToken( pendingToTokenSwap.swap, synth, getSynthIndex(pendingToTokenSwap.swap), pendingToTokenSwap.tokenToIndex, swapAmount, minAmount, deadline, nftOwner ); if (shouldDestroyClone) { pendingToTokenSwap.swapper.destroy(); } emit Settle( msg.sender, itemId, synth, swapAmount, tokenTo, amountOut, shouldDestroyClone ); } // Add the given pending synth settlement struct to the list function _addToPendingSynthSwapList( PendingToSynthSwap memory pendingToSynthSwap ) internal returns (uint256) { require( pendingSwapsLength < MAX_UINT256, "pendingSwapsLength reached max size" ); pendingToSynthSwaps[pendingSwapsLength] = pendingToSynthSwap; return pendingSwapsLength++; } // Add the given pending synth to token settlement struct to the list function _addToPendingSynthToTokenSwapList( PendingToTokenSwap memory pendingToTokenSwap ) internal returns (uint256) { require( pendingSwapsLength < MAX_UINT256, "pendingSwapsLength reached max size" ); pendingToTokenSwaps[pendingSwapsLength] = pendingToTokenSwap; return pendingSwapsLength++; } /** * @notice Calculates the expected amount of the desired synthetic asset the caller will receive after completing * a `TokenToSynth` swap with the given parameters. This calculation does not consider the settlement periods. * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth * @param tokenFromIndex the index of the token to swap from * @param synthOutKey the currency key of the desired synthetic asset * @param tokenInAmount the amount of the token to swap form * @return the expected amount of the desired synth */ function calcTokenToSynth( ISwap swap, uint8 tokenFromIndex, bytes32 synthOutKey, uint256 tokenInAmount ) external view returns (uint256) { uint8 mediumSynthIndex = getSynthIndex(swap); uint256 expectedMediumSynthAmount = swap.calculateSwap( tokenFromIndex, mediumSynthIndex, tokenInAmount ); bytes32 mediumSynthKey = getSynthKey(swap); IExchangeRates exchangeRates = IExchangeRates( SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME) ); return exchangeRates.effectiveValue( mediumSynthKey, expectedMediumSynthAmount, synthOutKey ); } /** * @notice Initiates a cross-asset swap from a token supported in the `swap` pool to any synthetic asset. * The caller will receive an ERC721 token representing their ownership of the pending cross-asset swap. * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth * @param tokenFromIndex the index of the token to swap from * @param synthOutKey the currency key of the desired synthetic asset * @param tokenInAmount the amount of the token to swap form * @param minAmount the amount of the token to swap form * @return ID of the ERC721 token sent to the caller */ function tokenToSynth( ISwap swap, uint8 tokenFromIndex, bytes32 synthOutKey, uint256 tokenInAmount, uint256 minAmount ) external returns (uint256) { require(tokenInAmount != 0, "amount must be greater than 0"); // Create a SynthSwapper clone SynthSwapper synthSwapper = SynthSwapper( Clones.clone(SYNTH_SWAPPER_MASTER) ); synthSwapper.initialize(); // Add the synthswapper to the pending settlement list uint256 itemId = _addToPendingSynthSwapList( PendingToSynthSwap(synthSwapper, synthOutKey) ); pendingSwapType[itemId] = PendingSwapType.TokenToSynth; // Mint an ERC721 token that represents ownership of the pending synth settlement to msg.sender _mint(msg.sender, itemId); // Transfer token from msg.sender IERC20 tokenFrom = swapContracts[address(swap)].tokens[tokenFromIndex]; // revert when token not found in swap pool tokenFrom.safeTransferFrom(msg.sender, address(this), tokenInAmount); tokenInAmount = tokenFrom.balanceOf(address(this)); // Swap the synth to the medium synth uint256 mediumSynthAmount = swap.swap( tokenFromIndex, getSynthIndex(swap), tokenInAmount, 0, block.timestamp ); // Swap synths via Synthetix network IERC20(getSynthAddress(swap)).safeTransfer( address(synthSwapper), mediumSynthAmount ); require( synthSwapper.swapSynth( getSynthKey(swap), mediumSynthAmount, synthOutKey ) >= minAmount, "minAmount not reached" ); // Emit TokenToSynth event with relevant data emit TokenToSynth( msg.sender, itemId, swap, tokenFromIndex, tokenInAmount, synthOutKey ); return (itemId); } /** * @notice Calculates the expected amount of the desired token the caller will receive after completing * a `SynthToToken` swap with the given parameters. This calculation does not consider the settlement periods or * any potential changes of the `swap` pool composition. * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth * @param synthInKey the currency key of the synth to swap from * @param tokenToIndex the index of the token to swap to * @param synthInAmount the amount of the synth to swap form * @return the expected amount of the bridging synth and the expected amount of the desired token */ function calcSynthToToken( ISwap swap, bytes32 synthInKey, uint8 tokenToIndex, uint256 synthInAmount ) external view returns (uint256, uint256) { IExchangeRates exchangeRates = IExchangeRates( SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME) ); uint8 mediumSynthIndex = getSynthIndex(swap); bytes32 mediumSynthKey = getSynthKey(swap); require(synthInKey != mediumSynthKey, "use normal swap"); uint256 expectedMediumSynthAmount = exchangeRates.effectiveValue( synthInKey, synthInAmount, mediumSynthKey ); return ( expectedMediumSynthAmount, swap.calculateSwap( mediumSynthIndex, tokenToIndex, expectedMediumSynthAmount ) ); } /** * @notice Initiates a cross-asset swap from a synthetic asset to a supported token. The caller will receive * an ERC721 token representing their ownership of the pending cross-asset swap. * @param swap the address of a Saddle pool to use to swap the given token to a bridging synth * @param synthInKey the currency key of the synth to swap from * @param tokenToIndex the index of the token to swap to * @param synthInAmount the amount of the synth to swap form * @param minMediumSynthAmount the minimum amount of the bridging synth at pre-settlement stage * @return the ID of the ERC721 token sent to the caller */ function synthToToken( ISwap swap, bytes32 synthInKey, uint8 tokenToIndex, uint256 synthInAmount, uint256 minMediumSynthAmount ) external returns (uint256) { require(synthInAmount != 0, "amount must be greater than 0"); bytes32 mediumSynthKey = getSynthKey(swap); require( synthInKey != mediumSynthKey, "synth is supported via normal swap" ); // Create a SynthSwapper clone SynthSwapper synthSwapper = SynthSwapper( Clones.clone(SYNTH_SWAPPER_MASTER) ); synthSwapper.initialize(); // Add the synthswapper to the pending synth to token settlement list uint256 itemId = _addToPendingSynthToTokenSwapList( PendingToTokenSwap(synthSwapper, mediumSynthKey, swap, tokenToIndex) ); pendingSwapType[itemId] = PendingSwapType.SynthToToken; // Mint an ERC721 token that represents ownership of the pending synth to token settlement to msg.sender _mint(msg.sender, itemId); // Receive synth from the user and swap it to another synth IERC20 synthFrom = getProxyAddressFromTargetSynthKey(synthInKey); synthFrom.safeTransferFrom(msg.sender, address(this), synthInAmount); synthFrom.safeTransfer(address(synthSwapper), synthInAmount); require( synthSwapper.swapSynth(synthInKey, synthInAmount, mediumSynthKey) >= minMediumSynthAmount, "minMediumSynthAmount not reached" ); // Emit SynthToToken event with relevant data emit SynthToToken( msg.sender, itemId, swap, synthInKey, synthInAmount, tokenToIndex ); return (itemId); } /** * @notice Calculates the expected amount of the desired token the caller will receive after completing * a `TokenToToken` swap with the given parameters. This calculation does not consider the settlement periods or * any potential changes of the pool compositions. * @param swaps the addresses of the two Saddle pools used to do the cross-asset swap * @param tokenFromIndex the index of the token in the first `swaps` pool to swap from * @param tokenToIndex the index of the token in the second `swaps` pool to swap to * @param tokenFromAmount the amount of the token to swap from * @return the expected amount of bridging synth at pre-settlement stage and the expected amount of the desired * token */ function calcTokenToToken( ISwap[2] calldata swaps, uint8 tokenFromIndex, uint8 tokenToIndex, uint256 tokenFromAmount ) external view returns (uint256, uint256) { IExchangeRates exchangeRates = IExchangeRates( SYNTHETIX_RESOLVER.getAddress(EXCHANGE_RATES_NAME) ); uint256 firstSynthAmount = swaps[0].calculateSwap( tokenFromIndex, getSynthIndex(swaps[0]), tokenFromAmount ); uint256 mediumSynthAmount = exchangeRates.effectiveValue( getSynthKey(swaps[0]), firstSynthAmount, getSynthKey(swaps[1]) ); return ( mediumSynthAmount, swaps[1].calculateSwap( getSynthIndex(swaps[1]), tokenToIndex, mediumSynthAmount ) ); } /** * @notice Initiates a cross-asset swap from a token in one Saddle pool to one in another. The caller will receive * an ERC721 token representing their ownership of the pending cross-asset swap. * @param swaps the addresses of the two Saddle pools used to do the cross-asset swap * @param tokenFromIndex the index of the token in the first `swaps` pool to swap from * @param tokenToIndex the index of the token in the second `swaps` pool to swap to * @param tokenFromAmount the amount of the token to swap from * @param minMediumSynthAmount the minimum amount of the bridging synth at pre-settlement stage * @return the ID of the ERC721 token sent to the caller */ function tokenToToken( ISwap[2] calldata swaps, uint8 tokenFromIndex, uint8 tokenToIndex, uint256 tokenFromAmount, uint256 minMediumSynthAmount ) external returns (uint256) { // Create a SynthSwapper clone require(tokenFromAmount != 0, "amount must be greater than 0"); SynthSwapper synthSwapper = SynthSwapper( Clones.clone(SYNTH_SWAPPER_MASTER) ); synthSwapper.initialize(); bytes32 mediumSynthKey = getSynthKey(swaps[1]); // Add the synthswapper to the pending synth to token settlement list uint256 itemId = _addToPendingSynthToTokenSwapList( PendingToTokenSwap( synthSwapper, mediumSynthKey, swaps[1], tokenToIndex ) ); pendingSwapType[itemId] = PendingSwapType.TokenToToken; // Mint an ERC721 token that represents ownership of the pending swap to msg.sender _mint(msg.sender, itemId); // Receive token from the user ISwap swap = swaps[0]; { IERC20 tokenFrom = swapContracts[address(swap)].tokens[ tokenFromIndex ]; tokenFrom.safeTransferFrom( msg.sender, address(this), tokenFromAmount ); } uint256 firstSynthAmount = swap.swap( tokenFromIndex, getSynthIndex(swap), tokenFromAmount, 0, block.timestamp ); // Swap the synth to another synth IERC20(getSynthAddress(swap)).safeTransfer( address(synthSwapper), firstSynthAmount ); require( synthSwapper.swapSynth( getSynthKey(swap), firstSynthAmount, mediumSynthKey ) >= minMediumSynthAmount, "minMediumSynthAmount not reached" ); // Emit TokenToToken event with relevant data emit TokenToToken( msg.sender, itemId, swaps, tokenFromIndex, tokenFromAmount, tokenToIndex ); return (itemId); } /** * @notice Registers the index and the address of the supported synth from the given `swap` pool. The matching currency key must * be supplied for a successful registration. * @param swap the address of the pool that contains the synth * @param synthIndex the index of the supported synth in the given `swap` pool * @param currencyKey the currency key of the synth in bytes32 form */ function setSynthIndex( ISwap swap, uint8 synthIndex, bytes32 currencyKey ) external { require(synthIndex < MAX_UINT8, "index is too large"); SwapContractInfo storage swapContractInfo = swapContracts[ address(swap) ]; // Check if the pool has already been added require(swapContractInfo.synthIndexPlusOne == 0, "Pool already added"); // Ensure the synth with the same currency key exists at the given `synthIndex` IERC20 synth = swap.getToken(synthIndex); require( ISynth(Proxy(address(synth)).target()).currencyKey() == currencyKey, "currencyKey does not match" ); swapContractInfo.synthIndexPlusOne = synthIndex + 1; swapContractInfo.synthAddress = address(synth); swapContractInfo.synthKey = currencyKey; swapContractInfo.tokens = new IERC20[](0); for (uint8 i = 0; i < MAX_UINT8; i++) { IERC20 token; if (i == synthIndex) { token = synth; } else { try swap.getToken(i) returns (IERC20 token_) { token = token_; } catch { break; } } swapContractInfo.tokens.push(token); token.safeApprove(address(swap), MAX_UINT256); } emit SynthIndex(address(swap), synthIndex, currencyKey, address(synth)); } /** * @notice Returns the index of the supported synth in the given `swap` pool. Reverts if the `swap` pool * is not registered. * @param swap the address of the pool that contains the synth * @return the index of the supported synth */ function getSynthIndex(ISwap swap) public view returns (uint8) { uint8 synthIndexPlusOne = swapContracts[address(swap)] .synthIndexPlusOne; require(synthIndexPlusOne > 0, "synth index not found for given pool"); return synthIndexPlusOne - 1; } /** * @notice Returns the address of the supported synth in the given `swap` pool. Reverts if the `swap` pool * is not registered. * @param swap the address of the pool that contains the synth * @return the address of the supported synth */ function getSynthAddress(ISwap swap) public view returns (address) { address synthAddress = swapContracts[address(swap)].synthAddress; require( synthAddress != address(0), "synth addr not found for given pool" ); return synthAddress; } /** * @notice Returns the currency key of the supported synth in the given `swap` pool. Reverts if the `swap` pool * is not registered. * @param swap the address of the pool that contains the synth * @return the currency key of the supported synth */ function getSynthKey(ISwap swap) public view returns (bytes32) { bytes32 synthKey = swapContracts[address(swap)].synthKey; require(synthKey != 0x0, "synth key not found for given pool"); return synthKey; } /** * @notice Updates the stored address of the `EXCHANGER` contract. When the Synthetix team upgrades their protocol, * a new Exchanger contract is deployed. This function manually updates the stored address. */ function updateExchangerCache() public { exchanger = IExchanger(SYNTHETIX_RESOLVER.getAddress(EXCHANGER_NAME)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/Context.sol"; import "./IERC721.sol"; import "./IERC721Metadata.sol"; import "./IERC721Enumerable.sol"; import "./IERC721Receiver.sol"; import "../../introspection/ERC165.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; import "../../utils/EnumerableSet.sol"; import "../../utils/EnumerableMap.sol"; import "../../utils/Strings.sol"; /** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Enumerable { using SafeMath for uint256; using Address for address; using EnumerableSet for EnumerableSet.UintSet; using EnumerableMap for EnumerableMap.UintToAddressMap; using Strings for uint256; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from holder address to their (enumerable) set of owned tokens mapping (address => EnumerableSet.UintSet) private _holderTokens; // Enumerable mapping from token ids to their owners EnumerableMap.UintToAddressMap private _tokenOwners; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; // Token name string private _name; // Token symbol string private _symbol; // Optional mapping for token URIs mapping (uint256 => string) private _tokenURIs; // Base URI string private _baseURI; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c5 ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; /* * bytes4(keccak256('name()')) == 0x06fdde03 * bytes4(keccak256('symbol()')) == 0x95d89b41 * bytes4(keccak256('tokenURI(uint256)')) == 0xc87b56dd * * => 0x06fdde03 ^ 0x95d89b41 ^ 0xc87b56dd == 0x5b5e139f */ bytes4 private constant _INTERFACE_ID_ERC721_METADATA = 0x5b5e139f; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); _registerInterface(_INTERFACE_ID_ERC721_METADATA); _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _holderTokens[owner].length(); } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return _tokenOwners.get(tokenId, "ERC721: owner query for nonexistent token"); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token"); string memory _tokenURI = _tokenURIs[tokenId]; string memory base = baseURI(); // If there is no base URI, return the token URI. if (bytes(base).length == 0) { return _tokenURI; } // If both are set, concatenate the baseURI and tokenURI (via abi.encodePacked). if (bytes(_tokenURI).length > 0) { return string(abi.encodePacked(base, _tokenURI)); } // If there is a baseURI but no tokenURI, concatenate the tokenID to the baseURI. return string(abi.encodePacked(base, tokenId.toString())); } /** * @dev Returns the base URI set via {_setBaseURI}. This will be * automatically added as a prefix in {tokenURI} to each token's URI, or * to the token ID if no specific URI is set for that token ID. */ function baseURI() public view virtual returns (string memory) { return _baseURI; } /** * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}. */ function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) { return _holderTokens[owner].at(index); } /** * @dev See {IERC721Enumerable-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { // _tokenOwners are indexed by tokenIds, so .length() returns the number of tokenIds return _tokenOwners.length(); } /** * @dev See {IERC721Enumerable-tokenByIndex}. */ function tokenByIndex(uint256 index) public view virtual override returns (uint256) { (uint256 tokenId, ) = _tokenOwners.at(index); return tokenId; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || ERC721.isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { require(operator != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][operator] = approved; emit ApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransfer(from, to, tokenId, _data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `_data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory _data) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _tokenOwners.contains(tokenId); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ERC721.ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || ERC721.isApprovedForAll(owner, spender)); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: d* * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId); _holderTokens[to].add(tokenId); _tokenOwners.set(tokenId, to); emit Transfer(address(0), to, tokenId); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); // internal owner _beforeTokenTransfer(owner, address(0), tokenId); // Clear approvals _approve(address(0), tokenId); // Clear metadata (if any) if (bytes(_tokenURIs[tokenId]).length != 0) { delete _tokenURIs[tokenId]; } _holderTokens[owner].remove(tokenId); _tokenOwners.remove(tokenId); emit Transfer(owner, address(0), tokenId); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); // internal owner require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId); // Clear approvals from the previous owner _approve(address(0), tokenId); _holderTokens[from].remove(tokenId); _holderTokens[to].add(tokenId); _tokenOwners.set(tokenId, to); emit Transfer(from, to, tokenId); } /** * @dev Sets `_tokenURI` as the tokenURI of `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual { require(_exists(tokenId), "ERC721Metadata: URI set of nonexistent token"); _tokenURIs[tokenId] = _tokenURI; } /** * @dev Internal function to set the base URI for all token IDs. It is * automatically added as a prefix to the value returned in {tokenURI}, * or to the token ID if {tokenURI} is empty. */ function _setBaseURI(string memory baseURI_) internal virtual { _baseURI = baseURI_; } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) private returns (bool) { if (!to.isContract()) { return true; } bytes memory returndata = to.functionCall(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data ), "ERC721: transfer to non ERC721Receiver implementer"); bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } /** * @dev Approve `to` to operate on `tokenId` * * Emits an {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); // internal owner } /** * @dev Hook that is called before any token transfer. This includes minting * and burning. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, ``from``'s `tokenId` will be burned. * - `from` cannot be the zero address. * - `to` cannot be the zero address. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 tokenId) internal virtual { } }
pragma solidity >=0.4.24; // https://docs.synthetix.io/contracts/source/interfaces/iaddressresolver interface IAddressResolver { function getAddress(bytes32 name) external view returns (address); function getSynth(bytes32 key) external view returns (address); function requireAndGetAddress(bytes32 name, string calldata reason) external view returns (address); }
pragma solidity >=0.4.24; import "./IVirtualSynth.sol"; // https://docs.synthetix.io/contracts/source/interfaces/iexchanger interface IExchanger { // Views function calculateAmountAfterSettlement( address from, bytes32 currencyKey, uint amount, uint refunded ) external view returns (uint amountAfterSettlement); function isSynthRateInvalid(bytes32 currencyKey) external view returns (bool); function maxSecsLeftInWaitingPeriod(address account, bytes32 currencyKey) external view returns (uint); function settlementOwing(address account, bytes32 currencyKey) external view returns ( uint reclaimAmount, uint rebateAmount, uint numEntries ); function hasWaitingPeriodOrSettlementOwing(address account, bytes32 currencyKey) external view returns (bool); function feeRateForExchange(bytes32 sourceCurrencyKey, bytes32 destinationCurrencyKey) external view returns (uint exchangeFeeRate); function getAmountsForExchange( uint sourceAmount, bytes32 sourceCurrencyKey, bytes32 destinationCurrencyKey ) external view returns ( uint amountReceived, uint fee, uint exchangeFeeRate ); function priceDeviationThresholdFactor() external view returns (uint); function waitingPeriodSecs() external view returns (uint); // Mutative functions function exchange( address from, bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, address destinationAddress ) external returns (uint amountReceived); function exchangeOnBehalf( address exchangeForAddress, address from, bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey ) external returns (uint amountReceived); function exchangeWithTracking( address from, bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, address destinationAddress, address originator, bytes32 trackingCode ) external returns (uint amountReceived); function exchangeOnBehalfWithTracking( address exchangeForAddress, address from, bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, address originator, bytes32 trackingCode ) external returns (uint amountReceived); function exchangeWithVirtual( address from, bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, address destinationAddress, bytes32 trackingCode ) external returns (uint amountReceived, IVirtualSynth vSynth); function settle(address from, bytes32 currencyKey) external returns ( uint reclaimed, uint refunded, uint numEntries ); function setLastExchangeRateForSynth(bytes32 currencyKey, uint rate) external; function suspendSynthWithInvalidRate(bytes32 currencyKey) external; }
pragma solidity >=0.4.24; // https://docs.synthetix.io/contracts/source/interfaces/iexchangerates interface IExchangeRates { // Structs struct RateAndUpdatedTime { uint216 rate; uint40 time; } struct InversePricing { uint entryPoint; uint upperLimit; uint lowerLimit; bool frozenAtUpperLimit; bool frozenAtLowerLimit; } // Views function aggregators(bytes32 currencyKey) external view returns (address); function aggregatorWarningFlags() external view returns (address); function anyRateIsInvalid(bytes32[] calldata currencyKeys) external view returns (bool); function canFreezeRate(bytes32 currencyKey) external view returns (bool); function currentRoundForRate(bytes32 currencyKey) external view returns (uint); function currenciesUsingAggregator(address aggregator) external view returns (bytes32[] memory); function effectiveValue( bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey ) external view returns (uint value); function effectiveValueAndRates( bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey ) external view returns ( uint value, uint sourceRate, uint destinationRate ); function effectiveValueAtRound( bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey, uint roundIdForSrc, uint roundIdForDest ) external view returns (uint value); function getCurrentRoundId(bytes32 currencyKey) external view returns (uint); function getLastRoundIdBeforeElapsedSecs( bytes32 currencyKey, uint startingRoundId, uint startingTimestamp, uint timediff ) external view returns (uint); function inversePricing(bytes32 currencyKey) external view returns ( uint entryPoint, uint upperLimit, uint lowerLimit, bool frozenAtUpperLimit, bool frozenAtLowerLimit ); function lastRateUpdateTimes(bytes32 currencyKey) external view returns (uint256); function oracle() external view returns (address); function rateAndTimestampAtRound(bytes32 currencyKey, uint roundId) external view returns (uint rate, uint time); function rateAndUpdatedTime(bytes32 currencyKey) external view returns (uint rate, uint time); function rateAndInvalid(bytes32 currencyKey) external view returns (uint rate, bool isInvalid); function rateForCurrency(bytes32 currencyKey) external view returns (uint); function rateIsFlagged(bytes32 currencyKey) external view returns (bool); function rateIsFrozen(bytes32 currencyKey) external view returns (bool); function rateIsInvalid(bytes32 currencyKey) external view returns (bool); function rateIsStale(bytes32 currencyKey) external view returns (bool); function rateStalePeriod() external view returns (uint); function ratesAndUpdatedTimeForCurrencyLastNRounds(bytes32 currencyKey, uint numRounds) external view returns (uint[] memory rates, uint[] memory times); function ratesAndInvalidForCurrencies(bytes32[] calldata currencyKeys) external view returns (uint[] memory rates, bool anyRateInvalid); function ratesForCurrencies(bytes32[] calldata currencyKeys) external view returns (uint[] memory); // Mutative functions function freezeRate(bytes32 currencyKey) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; import "../../introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; import "./IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; import "./IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`. */ function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts may inherit from this and call {_registerInterface} to declare * their support of an interface. */ abstract contract ERC165 is IERC165 { /* * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7 */ bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /** * @dev Mapping of interface ids to whether or not it's supported. */ mapping(bytes4 => bool) private _supportedInterfaces; constructor () internal { // Derived contracts need only register support for their own interfaces, // we register support for ERC165 itself here _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev See {IERC165-supportsInterface}. * * Time complexity O(1), guaranteed to always use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev Registers the contract as an implementer of the interface defined by * `interfaceId`. Support of the actual ERC165 interface is automatic and * registering its interface id is not required. * * See {IERC165-supportsInterface}. * * Requirements: * * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`). */ function _registerInterface(bytes4 interfaceId) internal virtual { require(interfaceId != 0xffffffff, "ERC165: invalid interface id"); _supportedInterfaces[interfaceId] = true; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Library for managing an enumerable variant of Solidity's * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`] * type. * * Maps have the following properties: * * - Entries are added, removed, and checked for existence in constant time * (O(1)). * - Entries are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableMap for EnumerableMap.UintToAddressMap; * * // Declare a set state variable * EnumerableMap.UintToAddressMap private myMap; * } * ``` * * As of v3.0.0, only maps of type `uint256 -> address` (`UintToAddressMap`) are * supported. */ library EnumerableMap { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Map type with // bytes32 keys and values. // The Map implementation uses private functions, and user-facing // implementations (such as Uint256ToAddressMap) are just wrappers around // the underlying Map. // This means that we can only create new EnumerableMaps for types that fit // in bytes32. struct MapEntry { bytes32 _key; bytes32 _value; } struct Map { // Storage of map keys and values MapEntry[] _entries; // Position of the entry defined by a key in the `entries` array, plus 1 // because index 0 means a key is not in the map. mapping (bytes32 => uint256) _indexes; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function _set(Map storage map, bytes32 key, bytes32 value) private returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; if (keyIndex == 0) { // Equivalent to !contains(map, key) map._entries.push(MapEntry({ _key: key, _value: value })); // The entry is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value map._indexes[key] = map._entries.length; return true; } else { map._entries[keyIndex - 1]._value = value; return false; } } /** * @dev Removes a key-value pair from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function _remove(Map storage map, bytes32 key) private returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; if (keyIndex != 0) { // Equivalent to contains(map, key) // To delete a key-value pair from the _entries array in O(1), we swap the entry to delete with the last one // in the array, and then remove the last entry (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = keyIndex - 1; uint256 lastIndex = map._entries.length - 1; // When the entry to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. MapEntry storage lastEntry = map._entries[lastIndex]; // Move the last entry to the index where the entry to delete is map._entries[toDeleteIndex] = lastEntry; // Update the index for the moved entry map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved entry was stored map._entries.pop(); // Delete the index for the deleted slot delete map._indexes[key]; return true; } else { return false; } } /** * @dev Returns true if the key is in the map. O(1). */ function _contains(Map storage map, bytes32 key) private view returns (bool) { return map._indexes[key] != 0; } /** * @dev Returns the number of key-value pairs in the map. O(1). */ function _length(Map storage map) private view returns (uint256) { return map._entries.length; } /** * @dev Returns the key-value pair stored at position `index` in the map. O(1). * * Note that there are no guarantees on the ordering of entries inside the * array, and it may change when more entries are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Map storage map, uint256 index) private view returns (bytes32, bytes32) { require(map._entries.length > index, "EnumerableMap: index out of bounds"); MapEntry storage entry = map._entries[index]; return (entry._key, entry._value); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function _tryGet(Map storage map, bytes32 key) private view returns (bool, bytes32) { uint256 keyIndex = map._indexes[key]; if (keyIndex == 0) return (false, 0); // Equivalent to contains(map, key) return (true, map._entries[keyIndex - 1]._value); // All indexes are 1-based } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function _get(Map storage map, bytes32 key) private view returns (bytes32) { uint256 keyIndex = map._indexes[key]; require(keyIndex != 0, "EnumerableMap: nonexistent key"); // Equivalent to contains(map, key) return map._entries[keyIndex - 1]._value; // All indexes are 1-based } /** * @dev Same as {_get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {_tryGet}. */ function _get(Map storage map, bytes32 key, string memory errorMessage) private view returns (bytes32) { uint256 keyIndex = map._indexes[key]; require(keyIndex != 0, errorMessage); // Equivalent to contains(map, key) return map._entries[keyIndex - 1]._value; // All indexes are 1-based } // UintToAddressMap struct UintToAddressMap { Map _inner; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) { return _set(map._inner, bytes32(key), bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) { return _remove(map._inner, bytes32(key)); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) { return _contains(map._inner, bytes32(key)); } /** * @dev Returns the number of elements in the map. O(1). */ function length(UintToAddressMap storage map) internal view returns (uint256) { return _length(map._inner); } /** * @dev Returns the element stored at position `index` in the set. O(1). * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) { (bytes32 key, bytes32 value) = _at(map._inner, index); return (uint256(key), address(uint160(uint256(value)))); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. * * _Available since v3.4._ */ function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) { (bool success, bytes32 value) = _tryGet(map._inner, bytes32(key)); return (success, address(uint160(uint256(value)))); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(UintToAddressMap storage map, uint256 key) internal view returns (address) { return address(uint160(uint256(_get(map._inner, bytes32(key))))); } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get(UintToAddressMap storage map, uint256 key, string memory errorMessage) internal view returns (address) { return address(uint160(uint256(_get(map._inner, bytes32(key), errorMessage)))); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev String operations. */ library Strings { /** * @dev Converts a `uint256` to its ASCII `string` representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); uint256 index = digits - 1; temp = value; while (temp != 0) { buffer[index--] = bytes1(uint8(48 + temp % 10)); temp /= 10; } return string(buffer); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./interfaces/ISwap.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; /** * @title SwapMigrator * @notice This contract is responsible for migrating old USD pool liquidity to the new ones. * Users can use this contract to remove their liquidity from the old pools and add them to the new * ones with a single transaction. */ contract SwapMigrator { using SafeERC20 for IERC20; struct MigrationData { address oldPoolAddress; IERC20 oldPoolLPTokenAddress; address newPoolAddress; IERC20 newPoolLPTokenAddress; IERC20[] underlyingTokens; } MigrationData public usdPoolMigrationData; address public owner; uint256 private constant MAX_UINT256 = 2**256 - 1; /** * @notice Sets the storage variables and approves tokens to be used by the old and new swap contracts * @param usdData_ MigrationData struct with information about old and new USD pools * @param owner_ owner that is allowed to call the `rescue()` function */ constructor(MigrationData memory usdData_, address owner_) public { // Approve old USD LP Token to be used by the old USD pool usdData_.oldPoolLPTokenAddress.approve( usdData_.oldPoolAddress, MAX_UINT256 ); // Approve USD tokens to be used by the new USD pool for (uint256 i = 0; i < usdData_.underlyingTokens.length; i++) { usdData_.underlyingTokens[i].safeApprove( usdData_.newPoolAddress, MAX_UINT256 ); } // Set storage variables usdPoolMigrationData = usdData_; owner = owner_; } /** * @notice Migrates old USD pool's LPToken to the new pool * @param amount Amount of old LPToken to migrate * @param minAmount Minimum amount of new LPToken to receive */ function migrateUSDPool(uint256 amount, uint256 minAmount) external returns (uint256) { // Transfer old LP token from the caller usdPoolMigrationData.oldPoolLPTokenAddress.safeTransferFrom( msg.sender, address(this), amount ); // Remove liquidity from the old pool and add them to the new pool uint256[] memory amounts = ISwap(usdPoolMigrationData.oldPoolAddress) .removeLiquidity( amount, new uint256[](usdPoolMigrationData.underlyingTokens.length), MAX_UINT256 ); uint256 mintedAmount = ISwap(usdPoolMigrationData.newPoolAddress) .addLiquidity(amounts, minAmount, MAX_UINT256); // Transfer new LP Token to the caller usdPoolMigrationData.newPoolLPTokenAddress.safeTransfer( msg.sender, mintedAmount ); return mintedAmount; } /** * @notice Rescues any token that may be sent to this contract accidentally. * @param token Amount of old LPToken to migrate * @param to Minimum amount of new LPToken to receive */ function rescue(IERC20 token, address to) external { require(msg.sender == owner, "is not owner"); token.safeTransfer(to, token.balanceOf(address(this))); } }
// SPDX-License-Identifier: MIT // Generalized and adapted from https://github.com/k06a/Unipool 🙇 pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; /** * @title StakeableTokenWrapper * @notice A wrapper for an ERC-20 that can be staked and withdrawn. * @dev In this contract, staked tokens don't do anything- instead other * contracts can inherit from this one to add functionality. */ contract StakeableTokenWrapper { using SafeERC20 for IERC20; using SafeMath for uint256; uint256 public totalSupply; IERC20 public stakedToken; mapping(address => uint256) private _balances; event Staked(address indexed user, uint256 amount); event Withdrawn(address indexed user, uint256 amount); /** * @notice Creates a new StakeableTokenWrapper with given `_stakedToken` address * @param _stakedToken address of a token that will be used to stake */ constructor(IERC20 _stakedToken) public { stakedToken = _stakedToken; } /** * @notice Read how much `account` has staked in this contract * @param account address of an account * @return amount of total staked ERC20(this.stakedToken) by `account` */ function balanceOf(address account) external view returns (uint256) { return _balances[account]; } /** * @notice Stakes given `amount` in this contract * @param amount amount of ERC20(this.stakedToken) to stake */ function stake(uint256 amount) external { require(amount != 0, "amount == 0"); totalSupply = totalSupply.add(amount); _balances[msg.sender] = _balances[msg.sender].add(amount); stakedToken.safeTransferFrom(msg.sender, address(this), amount); emit Staked(msg.sender, amount); } /** * @notice Withdraws given `amount` from this contract * @param amount amount of ERC20(this.stakedToken) to withdraw */ function withdraw(uint256 amount) external { totalSupply = totalSupply.sub(amount); _balances[msg.sender] = _balances[msg.sender].sub(amount); stakedToken.safeTransfer(msg.sender, amount); emit Withdrawn(msg.sender, amount); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "../interfaces/IFlashLoanReceiver.sol"; import "../interfaces/ISwapFlashLoan.sol"; import "hardhat/console.sol"; contract FlashLoanBorrowerExample is IFlashLoanReceiver { using SafeMath for uint256; // Typical executeOperation function should do the 3 following actions // 1. Check if the flashLoan was successful // 2. Do actions with the borrowed tokens // 3. Repay the debt to the `pool` function executeOperation( address pool, address token, uint256 amount, uint256 fee, bytes calldata params ) external override { // 1. Check if the flashLoan was valid require( IERC20(token).balanceOf(address(this)) >= amount, "flashloan is broken?" ); // 2. Do actions with the borrowed token bytes32 paramsHash = keccak256(params); if (paramsHash == keccak256(bytes("dontRepayDebt"))) { return; } else if (paramsHash == keccak256(bytes("reentrancy_addLiquidity"))) { ISwapFlashLoan(pool).addLiquidity( new uint256[](0), 0, block.timestamp ); } else if (paramsHash == keccak256(bytes("reentrancy_swap"))) { ISwapFlashLoan(pool).swap(1, 0, 1e6, 0, now); } else if ( paramsHash == keccak256(bytes("reentrancy_removeLiquidity")) ) { ISwapFlashLoan(pool).removeLiquidity(1e18, new uint256[](0), now); } else if ( paramsHash == keccak256(bytes("reentrancy_removeLiquidityOneToken")) ) { ISwapFlashLoan(pool).removeLiquidityOneToken(1e18, 0, 1e18, now); } // 3. Payback debt uint256 totalDebt = amount.add(fee); IERC20(token).transfer(pool, totalDebt); } function flashLoan( ISwapFlashLoan swap, IERC20 token, uint256 amount, bytes memory params ) external { swap.flashLoan(address(this), token, amount, params); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "./ISwap.sol"; interface ISwapFlashLoan is ISwap { function flashLoan( address receiver, IERC20 token, uint256 amount, bytes memory params ) external; }
// SPDX-License-Identifier: MIT pragma solidity >= 0.4.22 <0.9.0; library console { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _sendLogPayload(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal view { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(int)", p0)); } function logUint(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function logString(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function log(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1)); } function log(uint p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1)); } function log(uint p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1)); } function log(uint p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1)); } function log(string memory p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1)); } function log(string memory p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1)); } function log(bool p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1)); } function log(address p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2)); } function log(uint p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2)); } function log(uint p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2)); } function log(uint p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2)); } function log(uint p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2)); } function log(uint p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2)); } function log(uint p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2)); } function log(uint p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2)); } function log(uint p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2)); } function log(uint p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2)); } function log(uint p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2)); } function log(uint p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2)); } function log(uint p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2)); } function log(uint p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2)); } function log(uint p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2)); } function log(uint p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2)); } function log(string memory p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2)); } function log(string memory p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2)); } function log(string memory p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2)); } function log(string memory p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2)); } function log(bool p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2)); } function log(bool p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2)); } function log(bool p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2)); } function log(address p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2)); } function log(address p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2)); } function log(address p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "../../interfaces/ISwap.sol"; import "hardhat/console.sol"; contract TestSwapReturnValues { using SafeMath for uint256; ISwap public swap; IERC20 public lpToken; uint8 public n; uint256 public constant MAX_INT = 2**256 - 1; constructor( ISwap swapContract, IERC20 lpTokenContract, uint8 numOfTokens ) public { swap = swapContract; lpToken = lpTokenContract; n = numOfTokens; // Pre-approve tokens for (uint8 i; i < n; i++) { swap.getToken(i).approve(address(swap), MAX_INT); } lpToken.approve(address(swap), MAX_INT); } function test_swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) public { uint256 balanceBefore = swap.getToken(tokenIndexTo).balanceOf( address(this) ); uint256 returnValue = swap.swap( tokenIndexFrom, tokenIndexTo, dx, minDy, block.timestamp ); uint256 balanceAfter = swap.getToken(tokenIndexTo).balanceOf( address(this) ); console.log( "swap: Expected %s, got %s", balanceAfter.sub(balanceBefore), returnValue ); require( returnValue == balanceAfter.sub(balanceBefore), "swap()'s return value does not match received amount" ); } function test_addLiquidity(uint256[] calldata amounts, uint256 minToMint) public { uint256 balanceBefore = lpToken.balanceOf(address(this)); uint256 returnValue = swap.addLiquidity(amounts, minToMint, MAX_INT); uint256 balanceAfter = lpToken.balanceOf(address(this)); console.log( "addLiquidity: Expected %s, got %s", balanceAfter.sub(balanceBefore), returnValue ); require( returnValue == balanceAfter.sub(balanceBefore), "addLiquidity()'s return value does not match minted amount" ); } function test_removeLiquidity(uint256 amount, uint256[] memory minAmounts) public { uint256[] memory balanceBefore = new uint256[](n); uint256[] memory balanceAfter = new uint256[](n); for (uint8 i = 0; i < n; i++) { balanceBefore[i] = swap.getToken(i).balanceOf(address(this)); } uint256[] memory returnValue = swap.removeLiquidity( amount, minAmounts, MAX_INT ); for (uint8 i = 0; i < n; i++) { balanceAfter[i] = swap.getToken(i).balanceOf(address(this)); console.log( "removeLiquidity: Expected %s, got %s", balanceAfter[i].sub(balanceBefore[i]), returnValue[i] ); require( balanceAfter[i].sub(balanceBefore[i]) == returnValue[i], "removeLiquidity()'s return value does not match received amounts of tokens" ); } } function test_removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount ) public { uint256 balanceBefore = lpToken.balanceOf(address(this)); uint256 returnValue = swap.removeLiquidityImbalance( amounts, maxBurnAmount, MAX_INT ); uint256 balanceAfter = lpToken.balanceOf(address(this)); console.log( "removeLiquidityImbalance: Expected %s, got %s", balanceBefore.sub(balanceAfter), returnValue ); require( returnValue == balanceBefore.sub(balanceAfter), "removeLiquidityImbalance()'s return value does not match burned lpToken amount" ); } function test_removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount ) public { uint256 balanceBefore = swap.getToken(tokenIndex).balanceOf( address(this) ); uint256 returnValue = swap.removeLiquidityOneToken( tokenAmount, tokenIndex, minAmount, MAX_INT ); uint256 balanceAfter = swap.getToken(tokenIndex).balanceOf( address(this) ); console.log( "removeLiquidityOneToken: Expected %s, got %s", balanceAfter.sub(balanceBefore), returnValue ); require( returnValue == balanceAfter.sub(balanceBefore), "removeLiquidityOneToken()'s return value does not match received token amount" ); } }
// SPDX-License-Identifier: MIT // https://etherscan.io/address/0x2b7a5a5923eca5c00c6572cf3e8e08384f563f93#code pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "./LPTokenGuarded.sol"; import "../MathUtils.sol"; /** * @title SwapUtils library * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities. * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins. * Admin functions should be protected within contracts using this library. */ library SwapUtilsGuarded { using SafeERC20 for IERC20; using SafeMath for uint256; using MathUtils for uint256; /*** EVENTS ***/ event TokenSwap( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity( address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply ); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); event RampA( uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime ); event StopRampA(uint256 currentA, uint256 time); struct Swap { // variables around the ramp management of A, // the amplification coefficient * n * (n - 1) // see https://www.curve.fi/stableswap-paper.pdf for details uint256 initialA; uint256 futureA; uint256 initialATime; uint256 futureATime; // fee calculation uint256 swapFee; uint256 adminFee; uint256 defaultWithdrawFee; LPTokenGuarded lpToken; // contract references for all tokens being pooled IERC20[] pooledTokens; // multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10 uint256[] tokenPrecisionMultipliers; // the pool balance of each token, in the token's precision // the contract's actual token balance might differ uint256[] balances; mapping(address => uint256) depositTimestamp; mapping(address => uint256) withdrawFeeMultiplier; } // Struct storing variables used in calculations in the // calculateWithdrawOneTokenDY function to avoid stack too deep errors struct CalculateWithdrawOneTokenDYInfo { uint256 d0; uint256 d1; uint256 newY; uint256 feePerToken; uint256 preciseA; } // Struct storing variables used in calculation in addLiquidity function // to avoid stack too deep error struct AddLiquidityInfo { uint256 d0; uint256 d1; uint256 d2; uint256 preciseA; } // Struct storing variables used in calculation in removeLiquidityImbalance function // to avoid stack too deep error struct RemoveLiquidityImbalanceInfo { uint256 d0; uint256 d1; uint256 d2; uint256 preciseA; } // the precision all pools tokens will be converted to uint8 public constant POOL_PRECISION_DECIMALS = 18; // the denominator used to calculate admin and LP fees. For example, an // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR) uint256 private constant FEE_DENOMINATOR = 10**10; // Max swap fee is 1% or 100bps of each swap uint256 public constant MAX_SWAP_FEE = 10**8; // Max adminFee is 100% of the swapFee // adminFee does not add additional fee on top of swapFee // Instead it takes a certain % of the swapFee. Therefore it has no impact on the // users but only on the earnings of LPs uint256 public constant MAX_ADMIN_FEE = 10**10; // Max withdrawFee is 1% of the value withdrawn // Fee will be redistributed to the LPs in the pool, rewarding // long term providers. uint256 public constant MAX_WITHDRAW_FEE = 10**8; // Constant value used as max loop limit uint256 private constant MAX_LOOP_LIMIT = 256; // Constant values used in ramping A calculations uint256 public constant A_PRECISION = 100; uint256 public constant MAX_A = 10**6; uint256 private constant MAX_A_CHANGE = 2; uint256 private constant MIN_RAMP_TIME = 14 days; /*** VIEW & PURE FUNCTIONS ***/ /** * @notice Return A, the amplification coefficient * n * (n - 1) * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter */ function getA(Swap storage self) external view returns (uint256) { return _getA(self); } /** * @notice Return A, the amplification coefficient * n * (n - 1) * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter */ function _getA(Swap storage self) internal view returns (uint256) { return _getAPrecise(self).div(A_PRECISION); } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function getAPrecise(Swap storage self) external view returns (uint256) { return _getAPrecise(self); } /** * @notice Calculates and returns A based on the ramp settings * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function _getAPrecise(Swap storage self) internal view returns (uint256) { uint256 t1 = self.futureATime; // time when ramp is finished uint256 a1 = self.futureA; // final A value when ramp is finished if (block.timestamp < t1) { uint256 t0 = self.initialATime; // time when ramp is started uint256 a0 = self.initialA; // initial A value when ramp is started if (a1 > a0) { // a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0) return a0.add( a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0)) ); } else { // a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0) return a0.sub( a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0)) ); } } else { return a1; } } /** * @notice Retrieves the timestamp of last deposit made by the given address * @param self Swap struct to read from * @return timestamp of last deposit */ function getDepositTimestamp(Swap storage self, address user) external view returns (uint256) { return self.depositTimestamp[user]; } /** * @notice Calculate the dy, the amount of selected token that user receives and * the fee of withdrawing in one token * @param account the address that is withdrawing * @param tokenAmount the amount to withdraw in the pool's precision * @param tokenIndex which token will be withdrawn * @param self Swap struct to read from * @return the amount of token user will receive and the associated swap fee */ function calculateWithdrawOneToken( Swap storage self, address account, uint256 tokenAmount, uint8 tokenIndex ) public view returns (uint256, uint256) { uint256 dy; uint256 newY; (dy, newY) = calculateWithdrawOneTokenDY(self, tokenIndex, tokenAmount); // dy_0 (without fees) // dy, dy_0 - dy uint256 dySwapFee = _xp(self)[tokenIndex] .sub(newY) .div(self.tokenPrecisionMultipliers[tokenIndex]) .sub(dy); dy = dy .mul( FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account)) ) .div(FEE_DENOMINATOR); return (dy, dySwapFee); } /** * @notice Calculate the dy of withdrawing in one token * @param self Swap struct to read from * @param tokenIndex which token will be withdrawn * @param tokenAmount the amount to withdraw in the pools precision * @return the d and the new y after withdrawing one token */ function calculateWithdrawOneTokenDY( Swap storage self, uint8 tokenIndex, uint256 tokenAmount ) internal view returns (uint256, uint256) { require( tokenIndex < self.pooledTokens.length, "Token index out of range" ); // Get the current D, then solve the stableswap invariant // y_i for D - tokenAmount uint256[] memory xp = _xp(self); CalculateWithdrawOneTokenDYInfo memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0); v.preciseA = _getAPrecise(self); v.d0 = getD(xp, v.preciseA); v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(self.lpToken.totalSupply())); require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available"); v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1); uint256[] memory xpReduced = new uint256[](xp.length); v.feePerToken = _feePerToken(self); for (uint256 i = 0; i < self.pooledTokens.length; i++) { uint256 xpi = xp[i]; // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY // else dxExpected = xp[i] - (xp[i] * d1 / d0) // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR xpReduced[i] = xpi.sub( ( (i == tokenIndex) ? xpi.mul(v.d1).div(v.d0).sub(v.newY) : xpi.sub(xpi.mul(v.d1).div(v.d0)) ).mul(v.feePerToken).div(FEE_DENOMINATOR) ); } uint256 dy = xpReduced[tokenIndex].sub( getYD(v.preciseA, tokenIndex, xpReduced, v.d1) ); dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]); return (dy, v.newY); } /** * @notice Calculate the price of a token in the pool with given * precision-adjusted balances and a particular D. * * @dev This is accomplished via solving the invariant iteratively. * See the StableSwap paper and Curve.fi implementation for further details. * * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) * x_1**2 + b*x_1 = c * x_1 = (x_1**2 + c) / (2*x_1 + b) * * @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details. * @param tokenIndex Index of token we are calculating for. * @param xp a precision-adjusted set of pool balances. Array should be * the same cardinality as the pool. * @param d the stableswap invariant * @return the price of the token, in the same precision as in xp */ function getYD( uint256 a, uint8 tokenIndex, uint256[] memory xp, uint256 d ) internal pure returns (uint256) { uint256 numTokens = xp.length; require(tokenIndex < numTokens, "Token not found"); uint256 c = d; uint256 s; uint256 nA = a.mul(numTokens); for (uint256 i = 0; i < numTokens; i++) { if (i != tokenIndex) { s = s.add(xp[i]); c = c.mul(d).div(xp[i].mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } } c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens)); uint256 b = s.add(d.mul(A_PRECISION).div(nA)); uint256 yPrev; uint256 y = d; for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { yPrev = y; y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d)); if (y.within1(yPrev)) { return y; } } revert("Approximation did not converge"); } /** * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A. * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality * as the pool. * @param a the amplification coefficient * n * (n - 1) in A_PRECISION. * See the StableSwap paper for details * @return the invariant, at the precision of the pool */ function getD(uint256[] memory xp, uint256 a) internal pure returns (uint256) { uint256 numTokens = xp.length; uint256 s; for (uint256 i = 0; i < numTokens; i++) { s = s.add(xp[i]); } if (s == 0) { return 0; } uint256 prevD; uint256 d = s; uint256 nA = a.mul(numTokens); for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { uint256 dP = d; for (uint256 j = 0; j < numTokens; j++) { dP = dP.mul(d).div(xp[j].mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // dP = dP * D * D * D * ... overflow! } prevD = d; d = nA.mul(s).div(A_PRECISION).add(dP.mul(numTokens)).mul(d).div( nA.sub(A_PRECISION).mul(d).div(A_PRECISION).add( numTokens.add(1).mul(dP) ) ); if (d.within1(prevD)) { return d; } } // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()` // function which does not rely on D. revert("D does not converge"); } /** * @notice Get D, the StableSwap invariant, based on self Swap struct * @param self Swap struct to read from * @return The invariant, at the precision of the pool */ function getD(Swap storage self) internal view returns (uint256) { return getD(_xp(self), _getAPrecise(self)); } /** * @notice Given a set of balances and precision multipliers, return the * precision-adjusted balances. * * @param balances an array of token balances, in their native precisions. * These should generally correspond with pooled tokens. * * @param precisionMultipliers an array of multipliers, corresponding to * the amounts in the balances array. When multiplied together they * should yield amounts at the pool's precision. * * @return an array of amounts "scaled" to the pool's precision */ function _xp( uint256[] memory balances, uint256[] memory precisionMultipliers ) internal pure returns (uint256[] memory) { uint256 numTokens = balances.length; require( numTokens == precisionMultipliers.length, "Balances must match multipliers" ); uint256[] memory xp = new uint256[](numTokens); for (uint256 i = 0; i < numTokens; i++) { xp[i] = balances[i].mul(precisionMultipliers[i]); } return xp; } /** * @notice Return the precision-adjusted balances of all tokens in the pool * @param self Swap struct to read from * @param balances array of balances to scale * @return balances array "scaled" to the pool's precision, allowing * them to be more easily compared. */ function _xp(Swap storage self, uint256[] memory balances) internal view returns (uint256[] memory) { return _xp(balances, self.tokenPrecisionMultipliers); } /** * @notice Return the precision-adjusted balances of all tokens in the pool * @param self Swap struct to read from * @return the pool balances "scaled" to the pool's precision, allowing * them to be more easily compared. */ function _xp(Swap storage self) internal view returns (uint256[] memory) { return _xp(self.balances, self.tokenPrecisionMultipliers); } /** * @notice Get the virtual price, to help calculate profit * @param self Swap struct to read from * @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS */ function getVirtualPrice(Swap storage self) external view returns (uint256) { uint256 d = getD(_xp(self), _getAPrecise(self)); uint256 supply = self.lpToken.totalSupply(); if (supply > 0) { return d.mul(10**uint256(ERC20(self.lpToken).decimals())).div(supply); } return 0; } /** * @notice Calculate the new balances of the tokens given the indexes of the token * that is swapped from (FROM) and the token that is swapped to (TO). * This function is used as a helper function to calculate how much TO token * the user should receive on swap. * * @param self Swap struct to read from * @param tokenIndexFrom index of FROM token * @param tokenIndexTo index of TO token * @param x the new total amount of FROM token * @param xp balances of the tokens in the pool * @return the amount of TO token that should remain in the pool */ function getY( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 x, uint256[] memory xp ) internal view returns (uint256) { uint256 numTokens = self.pooledTokens.length; require( tokenIndexFrom != tokenIndexTo, "Can't compare token to itself" ); require( tokenIndexFrom < numTokens && tokenIndexTo < numTokens, "Tokens must be in pool" ); uint256 a = _getAPrecise(self); uint256 d = getD(xp, a); uint256 c = d; uint256 s; uint256 nA = numTokens.mul(a); uint256 _x; for (uint256 i = 0; i < numTokens; i++) { if (i == tokenIndexFrom) { _x = x; } else if (i != tokenIndexTo) { _x = xp[i]; } else { continue; } s = s.add(_x); c = c.mul(d).div(_x.mul(numTokens)); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } c = c.mul(d).mul(A_PRECISION).div(nA.mul(numTokens)); uint256 b = s.add(d.mul(A_PRECISION).div(nA)); uint256 yPrev; uint256 y = d; // iterative approximation for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) { yPrev = y; y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d)); if (y.within1(yPrev)) { return y; } } revert("Approximation did not converge"); } /** * @notice Externally calculates a swap between two tokens. * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get */ function calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256 dy) { (dy, ) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx); } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get * @return dyFee the associated fee */ function _calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) internal view returns (uint256 dy, uint256 dyFee) { uint256[] memory xp = _xp(self); require( tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "Token index out of range" ); uint256 x = dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]).add( xp[tokenIndexFrom] ); uint256 y = getY(self, tokenIndexFrom, tokenIndexTo, x, xp); dy = xp[tokenIndexTo].sub(y).sub(1); dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR); dy = dy.sub(dyFee).div(self.tokenPrecisionMultipliers[tokenIndexTo]); } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of * LP tokens * * @param account the address that is removing liquidity. required for withdraw fee calculation * @param amount the amount of LP tokens that would to be burned on * withdrawal * @return array of amounts of tokens user will receive */ function calculateRemoveLiquidity( Swap storage self, address account, uint256 amount ) external view returns (uint256[] memory) { return _calculateRemoveLiquidity(self, account, amount); } function _calculateRemoveLiquidity( Swap storage self, address account, uint256 amount ) internal view returns (uint256[] memory) { uint256 totalSupply = self.lpToken.totalSupply(); require(amount <= totalSupply, "Cannot exceed total supply"); uint256 feeAdjustedAmount = amount .mul( FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, account)) ) .div(FEE_DENOMINATOR); uint256[] memory amounts = new uint256[](self.pooledTokens.length); for (uint256 i = 0; i < self.pooledTokens.length; i++) { amounts[i] = self.balances[i].mul(feeAdjustedAmount).div( totalSupply ); } return amounts; } /** * @notice Calculate the fee that is applied when the given user withdraws. * Withdraw fee decays linearly over 4 weeks. * @param user address you want to calculate withdraw fee of * @return current withdraw fee of the user */ function calculateCurrentWithdrawFee(Swap storage self, address user) public view returns (uint256) { uint256 endTime = self.depositTimestamp[user].add(4 weeks); if (endTime > block.timestamp) { uint256 timeLeftover = endTime.sub(block.timestamp); return self .defaultWithdrawFee .mul(self.withdrawFeeMultiplier[user]) .mul(timeLeftover) .div(4 weeks) .div(FEE_DENOMINATOR); } return 0; } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param self Swap struct to read from * @param account address of the account depositing or withdrawing tokens * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return if deposit was true, total amount of lp token that will be minted and if * deposit was false, total amount of lp token that will be burned */ function calculateTokenAmount( Swap storage self, address account, uint256[] calldata amounts, bool deposit ) external view returns (uint256) { uint256 numTokens = self.pooledTokens.length; uint256 a = _getAPrecise(self); uint256 d0 = getD(_xp(self, self.balances), a); uint256[] memory balances1 = self.balances; for (uint256 i = 0; i < numTokens; i++) { if (deposit) { balances1[i] = balances1[i].add(amounts[i]); } else { balances1[i] = balances1[i].sub( amounts[i], "Cannot withdraw more than available" ); } } uint256 d1 = getD(_xp(self, balances1), a); uint256 totalSupply = self.lpToken.totalSupply(); if (deposit) { return d1.sub(d0).mul(totalSupply).div(d0); } else { return d0.sub(d1).mul(totalSupply).div(d0).mul(FEE_DENOMINATOR).div( FEE_DENOMINATOR.sub( calculateCurrentWithdrawFee(self, account) ) ); } } /** * @notice return accumulated amount of admin fees of the token with given index * @param self Swap struct to read from * @param index Index of the pooled token * @return admin balance in the token's precision */ function getAdminBalance(Swap storage self, uint256 index) external view returns (uint256) { require(index < self.pooledTokens.length, "Token index out of range"); return self.pooledTokens[index].balanceOf(address(this)).sub( self.balances[index] ); } /** * @notice internal helper function to calculate fee per token multiplier used in * swap fee calculations * @param self Swap struct to read from */ function _feePerToken(Swap storage self) internal view returns (uint256) { return self.swapFee.mul(self.pooledTokens.length).div( self.pooledTokens.length.sub(1).mul(4) ); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) external returns (uint256) { require( dx <= self.pooledTokens[tokenIndexFrom].balanceOf(msg.sender), "Cannot swap more than you own" ); // Transfer tokens first to see if a fee was charged on transfer uint256 beforeBalance = self.pooledTokens[tokenIndexFrom].balanceOf( address(this) ); self.pooledTokens[tokenIndexFrom].safeTransferFrom( msg.sender, address(this), dx ); // Use the actual transferred amount for AMM math uint256 transferredDx = self .pooledTokens[tokenIndexFrom] .balanceOf(address(this)) .sub(beforeBalance); (uint256 dy, uint256 dyFee) = _calculateSwap( self, tokenIndexFrom, tokenIndexTo, transferredDx ); require(dy >= minDy, "Swap didn't result in min tokens"); uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div( self.tokenPrecisionMultipliers[tokenIndexTo] ); self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add( transferredDx ); self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub( dyAdminFee ); self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy); emit TokenSwap( msg.sender, transferredDx, dy, tokenIndexFrom, tokenIndexTo ); return dy; } /** * @notice Add liquidity to the pool * @param self Swap struct to read from and write to * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * @param merkleProof bytes32 array that will be used to prove the existence of the caller's address in the list of * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored. * @return amount of LP token user received */ function addLiquidity( Swap storage self, uint256[] memory amounts, uint256 minToMint, bytes32[] calldata merkleProof ) external returns (uint256) { require( amounts.length == self.pooledTokens.length, "Amounts must match pooled tokens" ); uint256[] memory fees = new uint256[](self.pooledTokens.length); // current state AddLiquidityInfo memory v = AddLiquidityInfo(0, 0, 0, 0); if (self.lpToken.totalSupply() != 0) { v.d0 = getD(self); } uint256[] memory newBalances = self.balances; for (uint256 i = 0; i < self.pooledTokens.length; i++) { require( self.lpToken.totalSupply() != 0 || amounts[i] > 0, "Must supply all tokens in pool" ); // Transfer tokens first to see if a fee was charged on transfer if (amounts[i] != 0) { uint256 beforeBalance = self.pooledTokens[i].balanceOf( address(this) ); self.pooledTokens[i].safeTransferFrom( msg.sender, address(this), amounts[i] ); // Update the amounts[] with actual transfer amount amounts[i] = self.pooledTokens[i].balanceOf(address(this)).sub( beforeBalance ); } newBalances[i] = self.balances[i].add(amounts[i]); } // invariant after change v.preciseA = _getAPrecise(self); v.d1 = getD(_xp(self, newBalances), v.preciseA); require(v.d1 > v.d0, "D should increase"); // updated to reflect fees and calculate the user's LP tokens v.d2 = v.d1; if (self.lpToken.totalSupply() != 0) { uint256 feePerToken = _feePerToken(self); for (uint256 i = 0; i < self.pooledTokens.length; i++) { uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0); fees[i] = feePerToken .mul(idealBalance.difference(newBalances[i])) .div(FEE_DENOMINATOR); self.balances[i] = newBalances[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); newBalances[i] = newBalances[i].sub(fees[i]); } v.d2 = getD(_xp(self, newBalances), v.preciseA); } else { // the initial depositor doesn't pay fees self.balances = newBalances; } uint256 toMint; if (self.lpToken.totalSupply() == 0) { toMint = v.d1; } else { toMint = v.d2.sub(v.d0).mul(self.lpToken.totalSupply()).div(v.d0); } require(toMint >= minToMint, "Couldn't mint min requested"); // mint the user's LP tokens self.lpToken.mint(msg.sender, toMint, merkleProof); emit AddLiquidity( msg.sender, amounts, fees, v.d1, self.lpToken.totalSupply() ); return toMint; } /** * @notice Update the withdraw fee for `user`. If the user is currently * not providing liquidity in the pool, sets to default value. If not, recalculate * the starting withdraw fee based on the last deposit's time & amount relative * to the new deposit. * * @param self Swap struct to read from and write to * @param user address of the user depositing tokens * @param toMint amount of pool tokens to be minted */ function updateUserWithdrawFee( Swap storage self, address user, uint256 toMint ) external { _updateUserWithdrawFee(self, user, toMint); } function _updateUserWithdrawFee( Swap storage self, address user, uint256 toMint ) internal { // If token is transferred to address 0 (or burned), don't update the fee. if (user == address(0)) { return; } if (self.defaultWithdrawFee == 0) { // If current fee is set to 0%, set multiplier to FEE_DENOMINATOR self.withdrawFeeMultiplier[user] = FEE_DENOMINATOR; } else { // Otherwise, calculate appropriate discount based on last deposit amount uint256 currentFee = calculateCurrentWithdrawFee(self, user); uint256 currentBalance = self.lpToken.balanceOf(user); // ((currentBalance * currentFee) + (toMint * defaultWithdrawFee)) * FEE_DENOMINATOR / // ((toMint + currentBalance) * defaultWithdrawFee) self.withdrawFeeMultiplier[user] = currentBalance .mul(currentFee) .add(toMint.mul(self.defaultWithdrawFee)) .mul(FEE_DENOMINATOR) .div(toMint.add(currentBalance).mul(self.defaultWithdrawFee)); } self.depositTimestamp[user] = block.timestamp; } /** * @notice Burn LP tokens to remove liquidity from the pool. * @dev Liquidity can always be removed, even when the pool is paused. * @param self Swap struct to read from and write to * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @return amounts of tokens the user received */ function removeLiquidity( Swap storage self, uint256 amount, uint256[] calldata minAmounts ) external returns (uint256[] memory) { require(amount <= self.lpToken.balanceOf(msg.sender), ">LP.balanceOf"); require( minAmounts.length == self.pooledTokens.length, "minAmounts must match poolTokens" ); uint256[] memory amounts = _calculateRemoveLiquidity( self, msg.sender, amount ); for (uint256 i = 0; i < amounts.length; i++) { require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]"); self.balances[i] = self.balances[i].sub(amounts[i]); self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]); } self.lpToken.burnFrom(msg.sender, amount); emit RemoveLiquidity(msg.sender, amounts, self.lpToken.totalSupply()); return amounts; } /** * @notice Remove liquidity from the pool all in one token. * @param self Swap struct to read from and write to * @param tokenAmount the amount of the lp tokens to burn * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @return amount chosen token that user received */ function removeLiquidityOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount ) external returns (uint256) { uint256 totalSupply = self.lpToken.totalSupply(); uint256 numTokens = self.pooledTokens.length; require( tokenAmount <= self.lpToken.balanceOf(msg.sender), ">LP.balanceOf" ); require(tokenIndex < numTokens, "Token not found"); uint256 dyFee; uint256 dy; (dy, dyFee) = calculateWithdrawOneToken( self, msg.sender, tokenAmount, tokenIndex ); require(dy >= minAmount, "dy < minAmount"); self.balances[tokenIndex] = self.balances[tokenIndex].sub( dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR)) ); self.lpToken.burnFrom(msg.sender, tokenAmount); self.pooledTokens[tokenIndex].safeTransfer(msg.sender, dy); emit RemoveLiquidityOne( msg.sender, tokenAmount, totalSupply, tokenIndex, dy ); return dy; } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. * * @param self Swap struct to read from and write to * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @return actual amount of LP tokens burned in the withdrawal */ function removeLiquidityImbalance( Swap storage self, uint256[] memory amounts, uint256 maxBurnAmount ) public returns (uint256) { require( amounts.length == self.pooledTokens.length, "Amounts should match pool tokens" ); require( maxBurnAmount <= self.lpToken.balanceOf(msg.sender) && maxBurnAmount != 0, ">LP.balanceOf" ); RemoveLiquidityImbalanceInfo memory v = RemoveLiquidityImbalanceInfo( 0, 0, 0, 0 ); uint256 tokenSupply = self.lpToken.totalSupply(); uint256 feePerToken = _feePerToken(self); uint256[] memory balances1 = self.balances; v.preciseA = _getAPrecise(self); v.d0 = getD(_xp(self), v.preciseA); for (uint256 i = 0; i < self.pooledTokens.length; i++) { balances1[i] = balances1[i].sub( amounts[i], "Cannot withdraw more than available" ); } v.d1 = getD(_xp(self, balances1), v.preciseA); uint256[] memory fees = new uint256[](self.pooledTokens.length); for (uint256 i = 0; i < self.pooledTokens.length; i++) { uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0); uint256 difference = idealBalance.difference(balances1[i]); fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR); self.balances[i] = balances1[i].sub( fees[i].mul(self.adminFee).div(FEE_DENOMINATOR) ); balances1[i] = balances1[i].sub(fees[i]); } v.d2 = getD(_xp(self, balances1), v.preciseA); uint256 tokenAmount = v.d0.sub(v.d2).mul(tokenSupply).div(v.d0); require(tokenAmount != 0, "Burnt amount cannot be zero"); tokenAmount = tokenAmount.add(1).mul(FEE_DENOMINATOR).div( FEE_DENOMINATOR.sub(calculateCurrentWithdrawFee(self, msg.sender)) ); require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount"); self.lpToken.burnFrom(msg.sender, tokenAmount); for (uint256 i = 0; i < self.pooledTokens.length; i++) { self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]); } emit RemoveLiquidityImbalance( msg.sender, amounts, fees, v.d1, tokenSupply.sub(tokenAmount) ); return tokenAmount; } /** * @notice withdraw all admin fees to a given address * @param self Swap struct to withdraw fees from * @param to Address to send the fees to */ function withdrawAdminFees(Swap storage self, address to) external { for (uint256 i = 0; i < self.pooledTokens.length; i++) { IERC20 token = self.pooledTokens[i]; uint256 balance = token.balanceOf(address(this)).sub( self.balances[i] ); if (balance != 0) { token.safeTransfer(to, balance); } } } /** * @notice Sets the admin fee * @dev adminFee cannot be higher than 100% of the swap fee * @param self Swap struct to update * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(Swap storage self, uint256 newAdminFee) external { require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high"); self.adminFee = newAdminFee; emit NewAdminFee(newAdminFee); } /** * @notice update the swap fee * @dev fee cannot be higher than 1% of each swap * @param self Swap struct to update * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(Swap storage self, uint256 newSwapFee) external { require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high"); self.swapFee = newSwapFee; emit NewSwapFee(newSwapFee); } /** * @notice update the default withdraw fee. This also affects deposits made in the past as well. * @param self Swap struct to update * @param newWithdrawFee new withdraw fee to be applied */ function setDefaultWithdrawFee(Swap storage self, uint256 newWithdrawFee) external { require(newWithdrawFee <= MAX_WITHDRAW_FEE, "Fee is too high"); self.defaultWithdrawFee = newWithdrawFee; emit NewWithdrawFee(newWithdrawFee); } /** * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_ * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param self Swap struct to update * @param futureA_ the new A to ramp towards * @param futureTime_ timestamp when the new A should be reached */ function rampA( Swap storage self, uint256 futureA_, uint256 futureTime_ ) external { require( block.timestamp >= self.initialATime.add(1 days), "Wait 1 day before starting ramp" ); require( futureTime_ >= block.timestamp.add(MIN_RAMP_TIME), "Insufficient ramp time" ); require( futureA_ > 0 && futureA_ < MAX_A, "futureA_ must be > 0 and < MAX_A" ); uint256 initialAPrecise = _getAPrecise(self); uint256 futureAPrecise = futureA_.mul(A_PRECISION); if (futureAPrecise < initialAPrecise) { require( futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise, "futureA_ is too small" ); } else { require( futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE), "futureA_ is too large" ); } self.initialA = initialAPrecise; self.futureA = futureAPrecise; self.initialATime = block.timestamp; self.futureATime = futureTime_; emit RampA( initialAPrecise, futureAPrecise, block.timestamp, futureTime_ ); } /** * @notice Stops ramping A immediately. Once this function is called, rampA() * cannot be called for another 24 hours * @param self Swap struct to update */ function stopRampA(Swap storage self) external { require(self.futureATime > block.timestamp, "Ramp is already stopped"); uint256 currentA = _getAPrecise(self); self.initialA = currentA; self.futureA = currentA; self.initialATime = block.timestamp; self.futureATime = block.timestamp; emit StopRampA(currentA, block.timestamp); } }
// SPDX-License-Identifier: MIT // https://etherscan.io/address/0xC28DF698475dEC994BE00C9C9D8658A548e6304F#code pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "../interfaces/ISwapGuarded.sol"; /** * @title Liquidity Provider Token * @notice This token is an ERC20 detailed token with added capability to be minted by the owner. * It is used to represent user's shares when providing liquidity to swap contracts. */ contract LPTokenGuarded is ERC20Burnable, Ownable { using SafeMath for uint256; // Address of the swap contract that owns this LP token. When a user adds liquidity to the swap contract, // they receive a proportionate amount of this LPToken. ISwapGuarded public swap; // Maps user account to total number of LPToken minted by them. Used to limit minting during guarded release phase mapping(address => uint256) public mintedAmounts; /** * @notice Deploys LPToken contract with given name, symbol, and decimals * @dev the caller of this constructor will become the owner of this contract * @param name_ name of this token * @param symbol_ symbol of this token * @param decimals_ number of decimals this token will be based on */ constructor( string memory name_, string memory symbol_, uint8 decimals_ ) public ERC20(name_, symbol_) { _setupDecimals(decimals_); swap = ISwapGuarded(_msgSender()); } /** * @notice Mints the given amount of LPToken to the recipient. During the guarded release phase, the total supply * and the maximum number of the tokens that a single account can mint are limited. * @dev only owner can call this mint function * @param recipient address of account to receive the tokens * @param amount amount of tokens to mint * @param merkleProof the bytes32 array data that is used to prove recipient's address exists in the merkle tree * stored in the allowlist contract. If the pool is not guarded, this parameter is ignored. */ function mint( address recipient, uint256 amount, bytes32[] calldata merkleProof ) external onlyOwner { require(amount != 0, "amount == 0"); // If the pool is in the guarded launch phase, the following checks are done to restrict deposits. // 1. Check if the given merkleProof corresponds to the recipient's address in the merkle tree stored in the // allowlist contract. If the account has been already verified, merkleProof is ignored. // 2. Limit the total number of this LPToken minted to recipient as defined by the allowlist contract. // 3. Limit the total supply of this LPToken as defined by the allowlist contract. if (swap.isGuarded()) { IAllowlist allowlist = swap.getAllowlist(); require( allowlist.verifyAddress(recipient, merkleProof), "Invalid merkle proof" ); uint256 totalMinted = mintedAmounts[recipient].add(amount); require( totalMinted <= allowlist.getPoolAccountLimit(address(swap)), "account deposit limit" ); require( totalSupply().add(amount) <= allowlist.getPoolCap(address(swap)), "pool total supply limit" ); mintedAmounts[recipient] = totalMinted; } _mint(recipient, amount); } /** * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including * minting and burning. This ensures that swap.updateUserWithdrawFees are called everytime. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal override(ERC20) { super._beforeTokenTransfer(from, to, amount); swap.updateUserWithdrawFee(to, amount); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/Context.sol"; import "./ERC20.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20Burnable is Context, ERC20 { using SafeMath for uint256; /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance"); _approve(account, _msgSender(), decreasedAllowance); _burn(account, amount); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "./IAllowlist.sol"; interface ISwapGuarded { // pool data view functions function getA() external view returns (uint256); function getAllowlist() external view returns (IAllowlist); function getToken(uint8 index) external view returns (IERC20); function getTokenIndex(address tokenAddress) external view returns (uint8); function getTokenBalance(uint8 index) external view returns (uint256); function getVirtualPrice() external view returns (uint256); function isGuarded() external view returns (bool); // min return calculation functions function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view returns (uint256); function calculateRemoveLiquidity(uint256 amount) external view returns (uint256[] memory); function calculateRemoveLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 availableTokenAmount); // state modifying functions function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline, bytes32[] calldata merkleProof ) external returns (uint256); function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external returns (uint256[] memory); function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external returns (uint256); function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external returns (uint256); // withdraw fee update function function updateUserWithdrawFee(address recipient, uint256 transferAmount) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/cryptography/MerkleProof.sol"; import "../interfaces/IAllowlist.sol"; /** * @title Allowlist * @notice This contract is a registry holding information about how much each swap contract should * contain upto. Swap.sol will rely on this contract to determine whether the pool cap is reached and * also whether a user's deposit limit is reached. */ contract Allowlist is Ownable, IAllowlist { using SafeMath for uint256; // Represents the root node of merkle tree containing a list of eligible addresses bytes32 public merkleRoot; // Maps pool address -> maximum total supply mapping(address => uint256) private poolCaps; // Maps pool address -> maximum amount of pool token mintable per account mapping(address => uint256) private accountLimits; // Maps account address -> boolean value indicating whether it has been checked and verified against the merkle tree mapping(address => bool) private verified; event PoolCap(address indexed poolAddress, uint256 poolCap); event PoolAccountLimit(address indexed poolAddress, uint256 accountLimit); event NewMerkleRoot(bytes32 merkleRoot); /** * @notice Creates this contract and sets the PoolCap of 0x0 with uint256(0x54dd1e) for * crude checking whether an address holds this contract. * @param merkleRoot_ bytes32 that represent a merkle root node. This is generated off chain with the list of * qualifying addresses. */ constructor(bytes32 merkleRoot_) public { merkleRoot = merkleRoot_; // This value will be used as a way of crude checking whether an address holds this Allowlist contract // Value 0x54dd1e has no inherent meaning other than it is arbitrary value that checks for // user error. poolCaps[address(0x0)] = uint256(0x54dd1e); emit PoolCap(address(0x0), uint256(0x54dd1e)); emit NewMerkleRoot(merkleRoot_); } /** * @notice Returns the max mintable amount of the lp token per account in given pool address. * @param poolAddress address of the pool * @return max mintable amount of the lp token per account */ function getPoolAccountLimit(address poolAddress) external view override returns (uint256) { return accountLimits[poolAddress]; } /** * @notice Returns the maximum total supply of the pool token for the given pool address. * @param poolAddress address of the pool */ function getPoolCap(address poolAddress) external view override returns (uint256) { return poolCaps[poolAddress]; } /** * @notice Returns true if the given account's existence has been verified against any of the past or * the present merkle tree. Note that if it has been verified in the past, this function will return true * even if the current merkle tree does not contain the account. * @param account the address to check if it has been verified * @return a boolean value representing whether the account has been verified in the past or the present merkle tree */ function isAccountVerified(address account) external view returns (bool) { return verified[account]; } /** * @notice Checks the existence of keccak256(account) as a node in the merkle tree inferred by the merkle root node * stored in this contract. Pools should use this function to check if the given address qualifies for depositing. * If the given account has already been verified with the correct merkleProof, this function will return true when * merkleProof is empty. The verified status will be overwritten if the previously verified user calls this function * with an incorrect merkleProof. * @param account address to confirm its existence in the merkle tree * @param merkleProof data that is used to prove the existence of given parameters. This is generated * during the creation of the merkle tree. Users should retrieve this data off-chain. * @return a boolean value that corresponds to whether the address with the proof has been verified in the past * or if they exist in the current merkle tree. */ function verifyAddress(address account, bytes32[] calldata merkleProof) external override returns (bool) { if (merkleProof.length != 0) { // Verify the account exists in the merkle tree via the MerkleProof library bytes32 node = keccak256(abi.encodePacked(account)); if (MerkleProof.verify(merkleProof, merkleRoot, node)) { verified[account] = true; return true; } } return verified[account]; } // ADMIN FUNCTIONS /** * @notice Sets the account limit of allowed deposit amounts for the given pool * @param poolAddress address of the pool * @param accountLimit the max number of the pool token a single user can mint */ function setPoolAccountLimit(address poolAddress, uint256 accountLimit) external onlyOwner { require(poolAddress != address(0x0), "0x0 is not a pool address"); accountLimits[poolAddress] = accountLimit; emit PoolAccountLimit(poolAddress, accountLimit); } /** * @notice Sets the max total supply of LPToken for the given pool address * @param poolAddress address of the pool * @param poolCap the max total supply of the pool token */ function setPoolCap(address poolAddress, uint256 poolCap) external onlyOwner { require(poolAddress != address(0x0), "0x0 is not a pool address"); poolCaps[poolAddress] = poolCap; emit PoolCap(poolAddress, poolCap); } /** * @notice Updates the merkle root that is stored in this contract. This can only be called by * the owner. If more addresses are added to the list, a new merkle tree and a merkle root node should be generated, * and merkleRoot should be updated accordingly. * @param merkleRoot_ a new merkle root node that contains a list of deposit allowed addresses */ function updateMerkleRoot(bytes32 merkleRoot_) external onlyOwner { merkleRoot = merkleRoot_; emit NewMerkleRoot(merkleRoot_); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev These functions deal with verification of Merkle trees (hash trees), */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { bytes32 proofElement = proof[i]; if (computedHash <= proofElement) { // Hash(current computed hash + current element of the proof) computedHash = keccak256(abi.encodePacked(computedHash, proofElement)); } else { // Hash(current element of the proof + current computed hash) computedHash = keccak256(abi.encodePacked(proofElement, computedHash)); } } // Check if the computed hash (root) is equal to the provided root return computedHash == root; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "./OwnerPausable.sol"; import "./SwapUtilsGuarded.sol"; import "../MathUtils.sol"; import "./Allowlist.sol"; /** * @title Swap - A StableSwap implementation in solidity. * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins) * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens * in desired ratios for an exchange of the pool token that represents their share of the pool. * Users can burn pool tokens and withdraw their share of token(s). * * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets * distributed to the LPs. * * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which * stops the ratio of the tokens in the pool from changing. * Users can always withdraw their tokens via multi-asset withdraws. * * @dev Most of the logic is stored as a library `SwapUtils` for the sake of reducing contract's * deployment size. */ contract SwapGuarded is OwnerPausable, ReentrancyGuard { using SafeERC20 for IERC20; using SafeMath for uint256; using MathUtils for uint256; using SwapUtilsGuarded for SwapUtilsGuarded.Swap; // Struct storing data responsible for automatic market maker functionalities. In order to // access this data, this contract uses SwapUtils library. For more details, see SwapUtilsGuarded.sol SwapUtilsGuarded.Swap public swapStorage; // Address to allowlist contract that holds information about maximum totaly supply of lp tokens // and maximum mintable amount per user address. As this is immutable, this will become a constant // after initialization. IAllowlist private immutable allowlist; // Boolean value that notates whether this pool is guarded or not. When isGuarded is true, // addLiquidity function will be restricted by limits defined in allowlist contract. bool private guarded = true; // Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool. // getTokenIndex function also relies on this mapping to retrieve token index. mapping(address => uint8) private tokenIndexes; /*** EVENTS ***/ // events replicated from SwapUtils to make the ABI easier for dumb // clients event TokenSwap( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity( address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply ); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); event RampA( uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime ); event StopRampA(uint256 currentA, uint256 time); /** * @notice Deploys this Swap contract with given parameters as default * values. This will also deploy a LPToken that represents users * LP position. The owner of LPToken will be this contract - which means * only this contract is allowed to mint new tokens. * * @param _pooledTokens an array of ERC20s this pool will accept * @param decimals the decimals to use for each pooled token, * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS * @param lpTokenName the long-form name of the token to be deployed * @param lpTokenSymbol the short symbol for the token to be deployed * @param _a the amplification coefficient * n * (n - 1). See the * StableSwap paper for details * @param _fee default swap fee to be initialized with * @param _adminFee default adminFee to be initialized with * @param _withdrawFee default withdrawFee to be initialized with * @param _allowlist address of allowlist contract for guarded launch */ constructor( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, uint256 _withdrawFee, IAllowlist _allowlist ) public OwnerPausable() ReentrancyGuard() { // Check _pooledTokens and precisions parameter require(_pooledTokens.length > 1, "_pooledTokens.length <= 1"); require(_pooledTokens.length <= 32, "_pooledTokens.length > 32"); require( _pooledTokens.length == decimals.length, "_pooledTokens decimals mismatch" ); uint256[] memory precisionMultipliers = new uint256[](decimals.length); for (uint8 i = 0; i < _pooledTokens.length; i++) { if (i > 0) { // Check if index is already used. Check if 0th element is a duplicate. require( tokenIndexes[address(_pooledTokens[i])] == 0 && _pooledTokens[0] != _pooledTokens[i], "Duplicate tokens" ); } require( address(_pooledTokens[i]) != address(0), "The 0 address isn't an ERC-20" ); require( decimals[i] <= SwapUtilsGuarded.POOL_PRECISION_DECIMALS, "Token decimals exceeds max" ); precisionMultipliers[i] = 10 ** uint256(SwapUtilsGuarded.POOL_PRECISION_DECIMALS).sub( uint256(decimals[i]) ); tokenIndexes[address(_pooledTokens[i])] = i; } // Check _a, _fee, _adminFee, _withdrawFee, _allowlist parameters require(_a < SwapUtilsGuarded.MAX_A, "_a exceeds maximum"); require(_fee < SwapUtilsGuarded.MAX_SWAP_FEE, "_fee exceeds maximum"); require( _adminFee < SwapUtilsGuarded.MAX_ADMIN_FEE, "_adminFee exceeds maximum" ); require( _withdrawFee < SwapUtilsGuarded.MAX_WITHDRAW_FEE, "_withdrawFee exceeds maximum" ); require( _allowlist.getPoolCap(address(0x0)) == uint256(0x54dd1e), "Allowlist check failed" ); // Initialize swapStorage struct swapStorage.lpToken = new LPTokenGuarded( lpTokenName, lpTokenSymbol, SwapUtilsGuarded.POOL_PRECISION_DECIMALS ); swapStorage.pooledTokens = _pooledTokens; swapStorage.tokenPrecisionMultipliers = precisionMultipliers; swapStorage.balances = new uint256[](_pooledTokens.length); swapStorage.initialA = _a.mul(SwapUtilsGuarded.A_PRECISION); swapStorage.futureA = _a.mul(SwapUtilsGuarded.A_PRECISION); swapStorage.initialATime = 0; swapStorage.futureATime = 0; swapStorage.swapFee = _fee; swapStorage.adminFee = _adminFee; swapStorage.defaultWithdrawFee = _withdrawFee; // Initialize variables related to guarding the initial deposits allowlist = _allowlist; guarded = true; } /*** MODIFIERS ***/ /** * @notice Modifier to check deadline against current timestamp * @param deadline latest timestamp to accept this transaction */ modifier deadlineCheck(uint256 deadline) { require(block.timestamp <= deadline, "Deadline not met"); _; } /*** VIEW FUNCTIONS ***/ /** * @notice Return A, the amplification coefficient * n * (n - 1) * @dev See the StableSwap paper for details * @return A parameter */ function getA() external view returns (uint256) { return swapStorage.getA(); } /** * @notice Return A in its raw precision form * @dev See the StableSwap paper for details * @return A parameter in its raw precision form */ function getAPrecise() external view returns (uint256) { return swapStorage.getAPrecise(); } /** * @notice Return address of the pooled token at given index. Reverts if tokenIndex is out of range. * @param index the index of the token * @return address of the token at given index */ function getToken(uint8 index) public view returns (IERC20) { require(index < swapStorage.pooledTokens.length, "Out of range"); return swapStorage.pooledTokens[index]; } /** * @notice Return the index of the given token address. Reverts if no matching * token is found. * @param tokenAddress address of the token * @return the index of the given token address */ function getTokenIndex(address tokenAddress) external view returns (uint8) { uint8 index = tokenIndexes[tokenAddress]; require( address(getToken(index)) == tokenAddress, "Token does not exist" ); return index; } /** * @notice Reads and returns the address of the allowlist that is set during deployment of this contract * @return the address of the allowlist contract casted to the IAllowlist interface */ function getAllowlist() external view returns (IAllowlist) { return allowlist; } /** * @notice Return timestamp of last deposit of given address * @return timestamp of the last deposit made by the given address */ function getDepositTimestamp(address user) external view returns (uint256) { return swapStorage.getDepositTimestamp(user); } /** * @notice Return current balance of the pooled token at given index * @param index the index of the token * @return current balance of the pooled token at given index with token's native precision */ function getTokenBalance(uint8 index) external view returns (uint256) { require(index < swapStorage.pooledTokens.length, "Index out of range"); return swapStorage.balances[index]; } /** * @notice Get the virtual price, to help calculate profit * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS */ function getVirtualPrice() external view returns (uint256) { return swapStorage.getVirtualPrice(); } /** * @notice Calculate amount of tokens you receive on swap * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell. If the token charges * a fee on transfers, use the amount that gets transferred after the fee. * @return amount of tokens the user will receive */ function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256) { return swapStorage.calculateSwap(tokenIndexFrom, tokenIndexTo, dx); } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param account address that is depositing or withdrawing tokens * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return token amount the user will receive */ function calculateTokenAmount( address account, uint256[] calldata amounts, bool deposit ) external view returns (uint256) { return swapStorage.calculateTokenAmount(account, amounts, deposit); } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of LP tokens * @param account the address that is withdrawing tokens * @param amount the amount of LP tokens that would be burned on withdrawal * @return array of token balances that the user will receive */ function calculateRemoveLiquidity(address account, uint256 amount) external view returns (uint256[] memory) { return swapStorage.calculateRemoveLiquidity(account, amount); } /** * @notice Calculate the amount of underlying token available to withdraw * when withdrawing via only single token * @param account the address that is withdrawing tokens * @param tokenAmount the amount of LP token to burn * @param tokenIndex index of which token will be withdrawn * @return availableTokenAmount calculated amount of underlying token * available to withdraw */ function calculateRemoveLiquidityOneToken( address account, uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 availableTokenAmount) { (availableTokenAmount, ) = swapStorage.calculateWithdrawOneToken( account, tokenAmount, tokenIndex ); } /** * @notice Calculate the fee that is applied when the given user withdraws. The withdraw fee * decays linearly over period of 4 weeks. For example, depositing and withdrawing right away * will charge you the full amount of withdraw fee. But withdrawing after 4 weeks will charge you * no additional fees. * @dev returned value should be divided by FEE_DENOMINATOR to convert to correct decimals * @param user address you want to calculate withdraw fee of * @return current withdraw fee of the user */ function calculateCurrentWithdrawFee(address user) external view returns (uint256) { return swapStorage.calculateCurrentWithdrawFee(user); } /** * @notice This function reads the accumulated amount of admin fees of the token with given index * @param index Index of the pooled token * @return admin's token balance in the token's precision */ function getAdminBalance(uint256 index) external view returns (uint256) { return swapStorage.getAdminBalance(index); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice Swap two tokens using this pool * @param tokenIndexFrom the token the user wants to swap from * @param tokenIndexTo the token the user wants to swap to * @param dx the amount of tokens the user wants to swap from * @param minDy the min amount the user would like to receive, or revert. * @param deadline latest timestamp to accept this transaction */ function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.swap(tokenIndexFrom, tokenIndexTo, dx, minDy); } /** * @notice Add liquidity to the pool with given amounts during guarded launch phase. Only users * with valid address and proof can successfully call this function. When this function is called * after the guarded release phase is over, the merkleProof is ignored. * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * @param deadline latest timestamp to accept this transaction * @param merkleProof data generated when constructing the allowlist merkle tree. Users can * get this data off chain. Even if the address is in the allowlist, users must include * a valid proof for this call to succeed. If the pool is no longer in the guarded release phase, * this parameter is ignored. * @return amount of LP token user minted and received */ function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline, bytes32[] calldata merkleProof ) external nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.addLiquidity(amounts, minToMint, merkleProof); } /** * @notice Burn LP tokens to remove liquidity from the pool. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @dev Liquidity can always be removed, even when the pool is paused. * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amounts of tokens user received */ function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external nonReentrant deadlineCheck(deadline) returns (uint256[] memory) { return swapStorage.removeLiquidity(amount, minAmounts); } /** * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param tokenAmount the amount of the token you want to receive * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @param deadline latest timestamp to accept this transaction * @return amount of chosen token user received */ function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.removeLiquidityOneToken( tokenAmount, tokenIndex, minAmount ); } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @param deadline latest timestamp to accept this transaction * @return amount of LP tokens burned */ function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return swapStorage.removeLiquidityImbalance(amounts, maxBurnAmount); } /*** ADMIN FUNCTIONS ***/ /** * @notice Updates the user withdraw fee. This function can only be called by * the pool token. Should be used to update the withdraw fee on transfer of pool tokens. * Transferring your pool token will reset the 4 weeks period. If the recipient is already * holding some pool tokens, the withdraw fee will be discounted in respective amounts. * @param recipient address of the recipient of pool token * @param transferAmount amount of pool token to transfer */ function updateUserWithdrawFee(address recipient, uint256 transferAmount) external { require( msg.sender == address(swapStorage.lpToken), "Only callable by pool token" ); swapStorage.updateUserWithdrawFee(recipient, transferAmount); } /** * @notice Withdraw all admin fees to the contract owner */ function withdrawAdminFees() external onlyOwner { swapStorage.withdrawAdminFees(owner()); } /** * @notice Update the admin fee. Admin fee takes portion of the swap fee. * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(uint256 newAdminFee) external onlyOwner { swapStorage.setAdminFee(newAdminFee); } /** * @notice Update the swap fee to be applied on swaps * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(uint256 newSwapFee) external onlyOwner { swapStorage.setSwapFee(newSwapFee); } /** * @notice Update the withdraw fee. This fee decays linearly over 4 weeks since * user's last deposit. * @param newWithdrawFee new withdraw fee to be applied on future deposits */ function setDefaultWithdrawFee(uint256 newWithdrawFee) external onlyOwner { swapStorage.setDefaultWithdrawFee(newWithdrawFee); } /** * @notice Start ramping up or down A parameter towards given futureA and futureTime * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param futureA the new A to ramp towards * @param futureTime timestamp when the new A should be reached */ function rampA(uint256 futureA, uint256 futureTime) external onlyOwner { swapStorage.rampA(futureA, futureTime); } /** * @notice Stop ramping A immediately. Reverts if ramp A is already stopped. */ function stopRampA() external onlyOwner { swapStorage.stopRampA(); } /** * @notice Disables the guarded launch phase, removing any limits on deposit amounts and addresses */ function disableGuard() external onlyOwner { guarded = false; } /** * @notice Reads and returns current guarded status of the pool * @return guarded_ boolean value indicating whether the deposits should be guarded */ function isGuarded() external view returns (bool) { return guarded; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor () internal { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/Pausable.sol"; /** * @title OwnerPausable * @notice An ownable contract allows the owner to pause and unpause the * contract without a delay. * @dev Only methods using the provided modifiers will be paused. */ contract OwnerPausable is Ownable, Pausable { /** * @notice Pause the contract. Revert if already paused. */ function pause() external onlyOwner { Pausable._pause(); } /** * @notice Unpause the contract. Revert if already unpaused. */ function unpause() external onlyOwner { Pausable._unpause(); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor () internal { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; /** * @title Generic ERC20 token * @notice This contract simulates a generic ERC20 token that is mintable and burnable. */ contract GenericERC20 is ERC20, Ownable { /** * @notice Deploy this contract with given name, symbol, and decimals * @dev the caller of this constructor will become the owner of this contract * @param name_ name of this token * @param symbol_ symbol of this token * @param decimals_ number of decimals this token will be based on */ constructor( string memory name_, string memory symbol_, uint8 decimals_ ) public ERC20(name_, symbol_) { _setupDecimals(decimals_); } /** * @notice Mints given amount of tokens to recipient * @dev only owner can call this mint function * @param recipient address of account to receive the tokens * @param amount amount of tokens to mint */ function mint(address recipient, uint256 amount) external onlyOwner { require(amount != 0, "amount == 0"); _mint(recipient, amount); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; // solhint-disable avoid-low-level-calls // solhint-disable no-inline-assembly // Audit on 5-Jan-2021 by Keno and BoringCrypto // WARNING!!! // Combining BoringBatchable with msg.value can cause double spending issues // https://www.paradigm.xyz/2021/08/two-rights-might-make-a-wrong/ contract BaseBoringBatchable { /// @dev Helper function to extract a useful revert message from a failed call. /// If the returned data is malformed or not correctly abi encoded then this call can fail itself. function _getRevertMsg(bytes memory _returnData) internal pure returns (string memory) { // If the _res length is less than 68, then the transaction failed silently (without a revert message) if (_returnData.length < 68) return "Transaction reverted silently"; assembly { // Slice the sighash. _returnData := add(_returnData, 0x04) } return abi.decode(_returnData, (string)); // All that remains is the revert string } /// @notice Allows batched call to self (this contract). /// @param calls An array of inputs for each call. /// @param revertOnFail If True then reverts after a failed call and stops doing further calls. // F1: External is ok here because this is the batch function, adding it to a batch makes no sense // F2: Calls in the batch may be payable, delegatecall operates in the same context, so each call in the batch has access to msg.value // C3: The length of the loop is fully under user control, so can't be exploited // C7: Delegatecall is only used on the same contract, so it's safe function batch(bytes[] calldata calls, bool revertOnFail) external payable { for (uint256 i = 0; i < calls.length; i++) { (bool success, bytes memory result) = address(this).delegatecall( calls[i] ); if (!success && revertOnFail) { revert(_getRevertMsg(result)); } } } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "../Swap.sol"; import "./MetaSwapUtils.sol"; /** * @title MetaSwap - A StableSwap implementation in solidity. * @notice This contract is responsible for custody of closely pegged assets (eg. group of stablecoins) * and automatic market making system. Users become an LP (Liquidity Provider) by depositing their tokens * in desired ratios for an exchange of the pool token that represents their share of the pool. * Users can burn pool tokens and withdraw their share of token(s). * * Each time a swap between the pooled tokens happens, a set fee incurs which effectively gets * distributed to the LPs. * * In case of emergencies, admin can pause additional deposits, swaps, or single-asset withdraws - which * stops the ratio of the tokens in the pool from changing. * Users can always withdraw their tokens via multi-asset withdraws. * * MetaSwap is a modified version of Swap that allows Swap's LP token to be utilized in pooling with other tokens. * As an example, if there is a Swap pool consisting of [DAI, USDC, USDT], then a MetaSwap pool can be created * with [sUSD, BaseSwapLPToken] to allow trades between either the LP token or the underlying tokens and sUSD. * Note that when interacting with MetaSwap, users cannot deposit or withdraw via underlying tokens. In that case, * `MetaSwapDeposit.sol` can be additionally deployed to allow interacting with unwrapped representations of the tokens. * * @dev Most of the logic is stored as a library `MetaSwapUtils` for the sake of reducing contract's * deployment size. */ contract MetaSwap is Swap { using MetaSwapUtils for SwapUtils.Swap; MetaSwapUtils.MetaSwap public metaSwapStorage; uint256 constant MAX_UINT256 = 2**256 - 1; /*** EVENTS ***/ // events replicated from SwapUtils to make the ABI easier for dumb // clients event TokenSwapUnderlying( address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); /** * @notice Get the virtual price, to help calculate profit * @return the virtual price, scaled to the POOL_PRECISION_DECIMALS */ function getVirtualPrice() external view virtual override returns (uint256) { return MetaSwapUtils.getVirtualPrice(swapStorage, metaSwapStorage); } /** * @notice Calculate amount of tokens you receive on swap * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell. If the token charges * a fee on transfers, use the amount that gets transferred after the fee. * @return amount of tokens the user will receive */ function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view virtual override returns (uint256) { return MetaSwapUtils.calculateSwap( swapStorage, metaSwapStorage, tokenIndexFrom, tokenIndexTo, dx ); } /** * @notice Calculate amount of tokens you receive on swap. For this function, * the token indices are flattened out so that underlying tokens are represented. * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell. If the token charges * a fee on transfers, use the amount that gets transferred after the fee. * @return amount of tokens the user will receive */ function calculateSwapUnderlying( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view virtual returns (uint256) { return MetaSwapUtils.calculateSwapUnderlying( swapStorage, metaSwapStorage, tokenIndexFrom, tokenIndexTo, dx ); } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return token amount the user will receive */ function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view virtual override returns (uint256) { return MetaSwapUtils.calculateTokenAmount( swapStorage, metaSwapStorage, amounts, deposit ); } /** * @notice Calculate the amount of underlying token available to withdraw * when withdrawing via only single token * @param tokenAmount the amount of LP token to burn * @param tokenIndex index of which token will be withdrawn * @return availableTokenAmount calculated amount of underlying token * available to withdraw */ function calculateRemoveLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex ) external view virtual override returns (uint256) { return MetaSwapUtils.calculateWithdrawOneToken( swapStorage, metaSwapStorage, tokenAmount, tokenIndex ); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice This overrides Swap's initialize function to prevent initializing * without the address of the base Swap contract. * * @param _pooledTokens an array of ERC20s this pool will accept * @param decimals the decimals to use for each pooled token, * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS * @param lpTokenName the long-form name of the token to be deployed * @param lpTokenSymbol the short symbol for the token to be deployed * @param _a the amplification coefficient * n * (n - 1). See the * StableSwap paper for details * @param _fee default swap fee to be initialized with * @param _adminFee default adminFee to be initialized with */ function initialize( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress ) public virtual override initializer { revert("use initializeMetaSwap() instead"); } /** * @notice Initializes this MetaSwap contract with the given parameters. * MetaSwap uses an existing Swap pool to expand the available liquidity. * _pooledTokens array should contain the base Swap pool's LP token as * the last element. For example, if there is a Swap pool consisting of * [DAI, USDC, USDT]. Then a MetaSwap pool can be created with [sUSD, BaseSwapLPToken] * as _pooledTokens. * * This will also deploy the LPToken that represents users' * LP position. The owner of LPToken will be this contract - which means * only this contract is allowed to mint new tokens. * * @param _pooledTokens an array of ERC20s this pool will accept. The last * element must be an existing Swap pool's LP token's address. * @param decimals the decimals to use for each pooled token, * eg 8 for WBTC. Cannot be larger than POOL_PRECISION_DECIMALS * @param lpTokenName the long-form name of the token to be deployed * @param lpTokenSymbol the short symbol for the token to be deployed * @param _a the amplification coefficient * n * (n - 1). See the * StableSwap paper for details * @param _fee default swap fee to be initialized with * @param _adminFee default adminFee to be initialized with */ function initializeMetaSwap( IERC20[] memory _pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 _a, uint256 _fee, uint256 _adminFee, address lpTokenTargetAddress, ISwap baseSwap ) external virtual initializer { Swap.initialize( _pooledTokens, decimals, lpTokenName, lpTokenSymbol, _a, _fee, _adminFee, lpTokenTargetAddress ); // MetaSwap initializer metaSwapStorage.baseSwap = baseSwap; metaSwapStorage.baseVirtualPrice = baseSwap.getVirtualPrice(); metaSwapStorage.baseCacheLastUpdated = block.timestamp; // Read all tokens that belong to baseSwap { uint8 i; for (; i < 32; i++) { try baseSwap.getToken(i) returns (IERC20 token) { metaSwapStorage.baseTokens.push(token); token.safeApprove(address(baseSwap), MAX_UINT256); } catch { break; } } require(i > 1, "baseSwap must pool at least 2 tokens"); } // Check the last element of _pooledTokens is owned by baseSwap IERC20 baseLPToken = _pooledTokens[_pooledTokens.length - 1]; require( LPToken(address(baseLPToken)).owner() == address(baseSwap), "baseLPToken is not owned by baseSwap" ); // Pre-approve the baseLPToken to be used by baseSwap baseLPToken.safeApprove(address(baseSwap), MAX_UINT256); } /** * @notice Swap two tokens using this pool * @param tokenIndexFrom the token the user wants to swap from * @param tokenIndexTo the token the user wants to swap to * @param dx the amount of tokens the user wants to swap from * @param minDy the min amount the user would like to receive, or revert. * @param deadline latest timestamp to accept this transaction */ function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external virtual override nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return MetaSwapUtils.swap( swapStorage, metaSwapStorage, tokenIndexFrom, tokenIndexTo, dx, minDy ); } /** * @notice Swap two tokens using this pool and the base pool. * @param tokenIndexFrom the token the user wants to swap from * @param tokenIndexTo the token the user wants to swap to * @param dx the amount of tokens the user wants to swap from * @param minDy the min amount the user would like to receive, or revert. * @param deadline latest timestamp to accept this transaction */ function swapUnderlying( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external virtual nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return MetaSwapUtils.swapUnderlying( swapStorage, metaSwapStorage, tokenIndexFrom, tokenIndexTo, dx, minDy ); } /** * @notice Add liquidity to the pool with the given amounts of tokens * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * @param deadline latest timestamp to accept this transaction * @return amount of LP token user minted and received */ function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external virtual override nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return MetaSwapUtils.addLiquidity( swapStorage, metaSwapStorage, amounts, minToMint ); } /** * @notice Remove liquidity from the pool all in one token. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param tokenAmount the amount of the token you want to receive * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @param deadline latest timestamp to accept this transaction * @return amount of chosen token user received */ function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external virtual override nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return MetaSwapUtils.removeLiquidityOneToken( swapStorage, metaSwapStorage, tokenAmount, tokenIndex, minAmount ); } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. Withdraw fee that decays linearly * over period of 4 weeks since last deposit will apply. * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @param deadline latest timestamp to accept this transaction * @return amount of LP tokens burned */ function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external virtual override nonReentrant whenNotPaused deadlineCheck(deadline) returns (uint256) { return MetaSwapUtils.removeLiquidityImbalance( swapStorage, metaSwapStorage, amounts, maxBurnAmount ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "../../MathUtils.sol"; contract TestMathUtils { using MathUtils for uint256; function difference(uint256 a, uint256 b) public pure returns (uint256) { return a.difference(b); } function within1(uint256 a, uint256 b) public pure returns (bool) { return a.within1(b); } }
{ "optimizer": { "enabled": true, "runs": 10000 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "metadata": { "useLiteralContent": true } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldPoolAddress","type":"address"},{"components":[{"internalType":"address","name":"newPoolAddress","type":"address"},{"internalType":"contract IERC20","name":"oldPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20","name":"newPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"indexed":false,"internalType":"struct GeneralizedSwapMigrator.MigrationData","name":"mData","type":"tuple"}],"name":"AddMigrationData","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"migrator","type":"address"},{"indexed":true,"internalType":"address","name":"oldPoolAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldLPTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newLPTokenAmount","type":"uint256"}],"name":"Migrate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"address","name":"oldPoolAddress","type":"address"},{"components":[{"internalType":"address","name":"newPoolAddress","type":"address"},{"internalType":"contract IERC20","name":"oldPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20","name":"newPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"internalType":"struct GeneralizedSwapMigrator.MigrationData","name":"mData","type":"tuple"},{"internalType":"bool","name":"overwrite","type":"bool"}],"name":"addMigrationData","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"calls","type":"bytes[]"},{"internalType":"bool","name":"revertOnFail","type":"bool"}],"name":"batch","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"oldPoolAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minAmount","type":"uint256"}],"name":"migrate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"migrationMap","outputs":[{"internalType":"address","name":"newPoolAddress","type":"address"},{"internalType":"contract IERC20","name":"oldPoolLPTokenAddress","type":"address"},{"internalType":"contract IERC20","name":"newPoolLPTokenAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"rescue","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b50600061001b61006a565b600080546001600160a01b0319166001600160a01b0383169081178255604051929350917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908290a35061006e565b3390565b611c3b8061007d6000396000f3fe60806040526004361061007b5760003560e01c8063d2423b511161004e578063d2423b5114610102578063e36ad77e14610115578063f2fde38b14610144578063fc22d0e5146101645761007b565b80634fdf5d1d146100805780636f731330146100a2578063715018a6146100c25780638da5cb5b146100d7575b600080fd5b34801561008c57600080fd5b506100a061009b366004611484565b610191565b005b3480156100ae57600080fd5b506100a06100bd366004611241565b61026e565b3480156100ce57600080fd5b506100a06107a4565b3480156100e357600080fd5b506100ec610845565b6040516100f991906115d3565b60405180910390f35b6100a061011036600461133c565b610854565b34801561012157600080fd5b50610135610130366004611225565b610917565b6040516100f993929190611625565b34801561015057600080fd5b506100a061015f366004611225565b610948565b34801561017057600080fd5b5061018461017f366004611308565b610a20565b6040516100f99190611ab4565b610199610d21565b6001600160a01b03166101aa610845565b6001600160a01b0316146101d95760405162461bcd60e51b81526004016101d09061189b565b60405180910390fd5b61026a81836001600160a01b03166370a08231306040518263ffffffff1660e01b815260040161020991906115d3565b60206040518083038186803b15801561022157600080fd5b505afa158015610235573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102599190611548565b6001600160a01b0385169190610d25565b5050565b610276610d21565b6001600160a01b0316610287610845565b6001600160a01b0316146102ad5760405162461bcd60e51b81526004016101d09061189b565b806102ee576001600160a01b038381166000908152600160208190526040909120015416156102ee5760405162461bcd60e51b81526004016101d09061183e565b60208201516001600160a01b03166103185760405162461bcd60e51b81526004016101d0906118d0565b60408201516001600160a01b03166103425760405162461bcd60e51b81526004016101d0906117d0565b60005b60208160ff16101561057c576040517f82b866000000000000000000000000000000000000000000000000000000000081526000906001600160a01b038616906382b8660090610399908590600401611af4565b60206040518083038186803b1580156103b157600080fd5b505afa9250505080156103e1575060408051601f3d908101601f191682019092526103de91810190611468565b60015b6104105760008260ff16116104085760405162461bcd60e51b81526004016101d090611716565b506000610413565b90505b83516040517f82b866000000000000000000000000000000000000000000000000000000000081526001600160a01b03909116906382b866009061045b908590600401611af4565b60206040518083038186803b15801561047357600080fd5b505afa9250505080156104a3575060408051601f3d908101601f191682019092526104a091810190611468565b60015b61050a5760008260ff16116104ca5760405162461bcd60e51b81526004016101d090611716565b6001600160a01b0381161580156104e857508360600151518260ff16145b6105045760405162461bcd60e51b81526004016101d090611807565b5061057c565b806001600160a01b0316826001600160a01b0316148015610556575084606001518360ff168151811061053957fe5b60200260200101516001600160a01b0316826001600160a01b0316145b6105725760405162461bcd60e51b81526004016101d090611807565b5050600101610345565b506001600160a01b03808416600090815260016020818152604092839020865181549086167fffffffffffffffffffffffff000000000000000000000000000000000000000091821617825582880151938201805494871694821694909417909355928601516002840180549190951692169190911790925560608401518051859361060f9260038501929101906110b8565b50505060208201516040517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b039091169063095ea7b39061067f9086907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90600401611648565b602060405180830381600087803b15801561069957600080fd5b505af11580156106ad573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d1919061144c565b5060005b82606001515181101561075d5761071c83600001516000856060015184815181106106fc57fe5b60200260200101516001600160a01b0316610dad9092919063ffffffff16565b61075583600001517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff856060015184815181106106fc57fe5b6001016106d5565b50826001600160a01b03167f3a4863f22c4536b6b3a7e8989396b0b2f9c10de870d877ec333df6cfec568d30836040516107979190611a2f565b60405180910390a2505050565b6107ac610d21565b6001600160a01b03166107bd610845565b6001600160a01b0316146107e35760405162461bcd60e51b81526004016101d09061189b565b600080546040516001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055565b6000546001600160a01b031690565b60005b8281101561091157600060603086868581811061087057fe5b90506020028101906108829190611b02565b6040516108909291906115a7565b600060405180830381855af49150503d80600081146108cb576040519150601f19603f3d011682016040523d82523d6000602084013e6108d0565b606091505b5091509150811580156108e05750835b15610907576108ee81610e89565b60405162461bcd60e51b81526004016101d09190611686565b5050600101610857565b50505050565b60016020819052600091825260409091208054918101546002909101546001600160a01b0392831692918216911683565b610950610d21565b6001600160a01b0316610961610845565b6001600160a01b0316146109875760405162461bcd60e51b81526004016101d09061189b565b6001600160a01b0381166109ad5760405162461bcd60e51b81526004016101d0906116b9565b600080546040516001600160a01b03808516939216917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b6000610a2a611135565b6001600160a01b0380861660009081526001602081815260409283902083516080810185528154861681529281015485168383015260028101549094168284015260038401805484518184028101840190955280855292949360608601939092830182828015610ac357602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610aa5575b5050509190925250505060208101519091506001600160a01b0316610afa5760405162461bcd60e51b81526004016101d0906119f8565b6020810151610b14906001600160a01b0316333087610ef1565b6060856001600160a01b03166331cd52b08684606001515167ffffffffffffffff81118015610b4257600080fd5b50604051908082528060200260200182016040528015610b6c578160200160208202803683370190505b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610bac93929190611abd565b600060405180830381600087803b158015610bc657600080fd5b505af1158015610bda573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610c0291908101906113bc565b9050600082600001516001600160a01b0316634d49e87d83877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610c5a93929190611661565b602060405180830381600087803b158015610c7457600080fd5b505af1158015610c88573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cac9190611548565b6040840151909150610cc8906001600160a01b03163383610d25565b866001600160a01b0316336001600160a01b03167fd616b8856fa5febbdb06f07dd8d624380d02864619f3b796002f43bc36a4d1bc8884604051610d0d929190611ae6565b60405180910390a3925050505b9392505050565b3390565b610da88363a9059cbb60e01b8484604051602401610d44929190611648565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152610f12565b505050565b801580610e4e57506040517fdd62ed3e0000000000000000000000000000000000000000000000000000000081526001600160a01b0384169063dd62ed3e90610dfc90309086906004016115e7565b60206040518083038186803b158015610e1457600080fd5b505afa158015610e28573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e4c9190611548565b155b610e6a5760405162461bcd60e51b81526004016101d09061199b565b610da88363095ea7b360e01b8484604051602401610d44929190611648565b6060604482511015610ecf575060408051808201909152601d81527f5472616e73616374696f6e2072657665727465642073696c656e746c790000006020820152610eec565b60048201915081806020019051810190610ee991906114bc565b90505b919050565b610911846323b872dd60e01b858585604051602401610d4493929190611601565b6060610f67826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316610fa19092919063ffffffff16565b805190915015610da85780806020019051810190610f85919061144c565b610da85760405162461bcd60e51b81526004016101d09061193e565b6060610fb08484600085610fb8565b949350505050565b606082471015610fda5760405162461bcd60e51b81526004016101d090611773565b610fe385611079565b610fff5760405162461bcd60e51b81526004016101d090611907565b60006060866001600160a01b0316858760405161101c91906115b7565b60006040518083038185875af1925050503d8060008114611059576040519150601f19603f3d011682016040523d82523d6000602084013e61105e565b606091505b509150915061106e82828661107f565b979650505050505050565b3b151590565b6060831561108e575081610d1a565b82511561109e5782518084602001fd5b8160405162461bcd60e51b81526004016101d09190611686565b828054828255906000526020600020908101928215611125579160200282015b8281111561112557825182547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b039091161782556020909201916001909101906110d8565b5061113192915061115b565b5090565b604080516080810182526000808252602082018190529181019190915260608082015290565b5b808211156111315780547fffffffffffffffffffffffff000000000000000000000000000000000000000016815560010161115c565b803561119d81611bdf565b92915050565b600082601f8301126111b3578081fd5b81356111c66111c182611b93565b611b6c565b8181529150602080830190848101818402860182018710156111e757600080fd5b60005b8481101561120f5781356111fd81611bdf565b845292820192908201906001016111ea565b505050505092915050565b803561119d81611bf7565b600060208284031215611236578081fd5b8135610d1a81611bdf565b600080600060608486031215611255578182fd5b833561126081611bdf565b9250602084013567ffffffffffffffff8082111561127c578384fd5b908501906080828803121561128f578384fd5b6112996080611b6c565b6112a38884611192565b81526112b28860208501611192565b60208201526112c48860408501611192565b60408201526060830135828111156112da578586fd5b6112e6898286016111a3565b6060830152508094505050506112ff856040860161121a565b90509250925092565b60008060006060848603121561131c578283fd5b833561132781611bdf565b95602085013595506040909401359392505050565b600080600060408486031215611350578283fd5b833567ffffffffffffffff80821115611367578485fd5b818601915086601f83011261137a578485fd5b813581811115611388578586fd5b876020808302850101111561139b578586fd5b602092830195509350508401356113b181611bf7565b809150509250925092565b600060208083850312156113ce578182fd5b825167ffffffffffffffff8111156113e4578283fd5b8301601f810185136113f4578283fd5b80516114026111c182611b93565b818152838101908385018584028501860189101561141e578687fd5b8694505b83851015611440578051835260019490940193918501918501611422565b50979650505050505050565b60006020828403121561145d578081fd5b8151610d1a81611bf7565b600060208284031215611479578081fd5b8151610d1a81611bdf565b60008060408385031215611496578182fd5b82356114a181611bdf565b915060208301356114b181611bdf565b809150509250929050565b6000602082840312156114cd578081fd5b815167ffffffffffffffff808211156114e4578283fd5b818401915084601f8301126114f7578283fd5b815181811115611505578384fd5b6115186020601f19601f84011601611b6c565b915080825285602082850101111561152e578384fd5b61153f816020840160208601611bb3565b50949350505050565b600060208284031215611559578081fd5b5051919050565b6000815180845260208085019450808401835b8381101561158f57815187529582019590820190600101611573565b509495945050505050565b6001600160a01b03169052565b6000828483379101908152919050565b600082516115c9818460208701611bb3565b9190910192915050565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b6001600160a01b039384168152919092166020820152604081019190915260600190565b6001600160a01b0393841681529183166020830152909116604082015260600190565b6001600160a01b03929092168252602082015260400190565b6000606082526116746060830186611560565b60208301949094525060400152919050565b60006020825282518060208401526116a5816040850160208701611bb3565b601f01601f19169190910160400192915050565b60208082526026908201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160408201527f6464726573730000000000000000000000000000000000000000000000000000606082015260800190565b6020808252602c908201527f4661696c656420746f2067657420746f6b656e7320756e6465726c79696e672060408201527f536164646c6520706f6f6c2e0000000000000000000000000000000000000000606082015260800190565b60208082526026908201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60408201527f722063616c6c0000000000000000000000000000000000000000000000000000606082015260800190565b6020808252601a908201527f6e6577506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601b908201527f4661696c656420746f206d6174636820746f6b656e73206c6973740000000000604082015260600190565b60208082526028908201527f63616e6e6f74206f7665727772697465206578697374696e67206d696772617460408201527f696f6e2064617461000000000000000000000000000000000000000000000000606082015260800190565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b6020808252601a908201527f6f6c64506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601d908201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604082015260600190565b6020808252602a908201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60408201527f6f74207375636365656400000000000000000000000000000000000000000000606082015260800190565b60208082526036908201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60408201527f20746f206e6f6e2d7a65726f20616c6c6f77616e636500000000000000000000606082015260800190565b6020808252601a908201527f6d6967726174696f6e206973206e6f7420617661696c61626c65000000000000604082015260600190565b6000602080835260a083016001600160a01b038086511683860152808387015116604086015280604087015116606086015250606085015160808086015281815180845260c08701915084830193508592505b80831015611aa957611a9582855161159a565b928401926001929092019190840190611a82565b509695505050505050565b90815260200190565b600084825260606020830152611ad66060830185611560565b9050826040830152949350505050565b918252602082015260400190565b60ff91909116815260200190565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112611b36578283fd5b83018035915067ffffffffffffffff821115611b50578283fd5b602001915036819003821315611b6557600080fd5b9250929050565b60405181810167ffffffffffffffff81118282101715611b8b57600080fd5b604052919050565b600067ffffffffffffffff821115611ba9578081fd5b5060209081020190565b60005b83811015611bce578181015183820152602001611bb6565b838111156109115750506000910152565b6001600160a01b0381168114611bf457600080fd5b50565b8015158114611bf457600080fdfea2646970667358221220e04c9d6453b449fd3b81fcd0a5e8e0cda21cbb0d4f093ce8a1c67de4b844424e64736f6c634300060c0033
Deployed Bytecode
0x60806040526004361061007b5760003560e01c8063d2423b511161004e578063d2423b5114610102578063e36ad77e14610115578063f2fde38b14610144578063fc22d0e5146101645761007b565b80634fdf5d1d146100805780636f731330146100a2578063715018a6146100c25780638da5cb5b146100d7575b600080fd5b34801561008c57600080fd5b506100a061009b366004611484565b610191565b005b3480156100ae57600080fd5b506100a06100bd366004611241565b61026e565b3480156100ce57600080fd5b506100a06107a4565b3480156100e357600080fd5b506100ec610845565b6040516100f991906115d3565b60405180910390f35b6100a061011036600461133c565b610854565b34801561012157600080fd5b50610135610130366004611225565b610917565b6040516100f993929190611625565b34801561015057600080fd5b506100a061015f366004611225565b610948565b34801561017057600080fd5b5061018461017f366004611308565b610a20565b6040516100f99190611ab4565b610199610d21565b6001600160a01b03166101aa610845565b6001600160a01b0316146101d95760405162461bcd60e51b81526004016101d09061189b565b60405180910390fd5b61026a81836001600160a01b03166370a08231306040518263ffffffff1660e01b815260040161020991906115d3565b60206040518083038186803b15801561022157600080fd5b505afa158015610235573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102599190611548565b6001600160a01b0385169190610d25565b5050565b610276610d21565b6001600160a01b0316610287610845565b6001600160a01b0316146102ad5760405162461bcd60e51b81526004016101d09061189b565b806102ee576001600160a01b038381166000908152600160208190526040909120015416156102ee5760405162461bcd60e51b81526004016101d09061183e565b60208201516001600160a01b03166103185760405162461bcd60e51b81526004016101d0906118d0565b60408201516001600160a01b03166103425760405162461bcd60e51b81526004016101d0906117d0565b60005b60208160ff16101561057c576040517f82b866000000000000000000000000000000000000000000000000000000000081526000906001600160a01b038616906382b8660090610399908590600401611af4565b60206040518083038186803b1580156103b157600080fd5b505afa9250505080156103e1575060408051601f3d908101601f191682019092526103de91810190611468565b60015b6104105760008260ff16116104085760405162461bcd60e51b81526004016101d090611716565b506000610413565b90505b83516040517f82b866000000000000000000000000000000000000000000000000000000000081526001600160a01b03909116906382b866009061045b908590600401611af4565b60206040518083038186803b15801561047357600080fd5b505afa9250505080156104a3575060408051601f3d908101601f191682019092526104a091810190611468565b60015b61050a5760008260ff16116104ca5760405162461bcd60e51b81526004016101d090611716565b6001600160a01b0381161580156104e857508360600151518260ff16145b6105045760405162461bcd60e51b81526004016101d090611807565b5061057c565b806001600160a01b0316826001600160a01b0316148015610556575084606001518360ff168151811061053957fe5b60200260200101516001600160a01b0316826001600160a01b0316145b6105725760405162461bcd60e51b81526004016101d090611807565b5050600101610345565b506001600160a01b03808416600090815260016020818152604092839020865181549086167fffffffffffffffffffffffff000000000000000000000000000000000000000091821617825582880151938201805494871694821694909417909355928601516002840180549190951692169190911790925560608401518051859361060f9260038501929101906110b8565b50505060208201516040517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b039091169063095ea7b39061067f9086907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90600401611648565b602060405180830381600087803b15801561069957600080fd5b505af11580156106ad573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d1919061144c565b5060005b82606001515181101561075d5761071c83600001516000856060015184815181106106fc57fe5b60200260200101516001600160a01b0316610dad9092919063ffffffff16565b61075583600001517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff856060015184815181106106fc57fe5b6001016106d5565b50826001600160a01b03167f3a4863f22c4536b6b3a7e8989396b0b2f9c10de870d877ec333df6cfec568d30836040516107979190611a2f565b60405180910390a2505050565b6107ac610d21565b6001600160a01b03166107bd610845565b6001600160a01b0316146107e35760405162461bcd60e51b81526004016101d09061189b565b600080546040516001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055565b6000546001600160a01b031690565b60005b8281101561091157600060603086868581811061087057fe5b90506020028101906108829190611b02565b6040516108909291906115a7565b600060405180830381855af49150503d80600081146108cb576040519150601f19603f3d011682016040523d82523d6000602084013e6108d0565b606091505b5091509150811580156108e05750835b15610907576108ee81610e89565b60405162461bcd60e51b81526004016101d09190611686565b5050600101610857565b50505050565b60016020819052600091825260409091208054918101546002909101546001600160a01b0392831692918216911683565b610950610d21565b6001600160a01b0316610961610845565b6001600160a01b0316146109875760405162461bcd60e51b81526004016101d09061189b565b6001600160a01b0381166109ad5760405162461bcd60e51b81526004016101d0906116b9565b600080546040516001600160a01b03808516939216917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a3600080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b6000610a2a611135565b6001600160a01b0380861660009081526001602081815260409283902083516080810185528154861681529281015485168383015260028101549094168284015260038401805484518184028101840190955280855292949360608601939092830182828015610ac357602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610aa5575b5050509190925250505060208101519091506001600160a01b0316610afa5760405162461bcd60e51b81526004016101d0906119f8565b6020810151610b14906001600160a01b0316333087610ef1565b6060856001600160a01b03166331cd52b08684606001515167ffffffffffffffff81118015610b4257600080fd5b50604051908082528060200260200182016040528015610b6c578160200160208202803683370190505b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610bac93929190611abd565b600060405180830381600087803b158015610bc657600080fd5b505af1158015610bda573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610c0291908101906113bc565b9050600082600001516001600160a01b0316634d49e87d83877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518463ffffffff1660e01b8152600401610c5a93929190611661565b602060405180830381600087803b158015610c7457600080fd5b505af1158015610c88573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cac9190611548565b6040840151909150610cc8906001600160a01b03163383610d25565b866001600160a01b0316336001600160a01b03167fd616b8856fa5febbdb06f07dd8d624380d02864619f3b796002f43bc36a4d1bc8884604051610d0d929190611ae6565b60405180910390a3925050505b9392505050565b3390565b610da88363a9059cbb60e01b8484604051602401610d44929190611648565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152610f12565b505050565b801580610e4e57506040517fdd62ed3e0000000000000000000000000000000000000000000000000000000081526001600160a01b0384169063dd62ed3e90610dfc90309086906004016115e7565b60206040518083038186803b158015610e1457600080fd5b505afa158015610e28573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e4c9190611548565b155b610e6a5760405162461bcd60e51b81526004016101d09061199b565b610da88363095ea7b360e01b8484604051602401610d44929190611648565b6060604482511015610ecf575060408051808201909152601d81527f5472616e73616374696f6e2072657665727465642073696c656e746c790000006020820152610eec565b60048201915081806020019051810190610ee991906114bc565b90505b919050565b610911846323b872dd60e01b858585604051602401610d4493929190611601565b6060610f67826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316610fa19092919063ffffffff16565b805190915015610da85780806020019051810190610f85919061144c565b610da85760405162461bcd60e51b81526004016101d09061193e565b6060610fb08484600085610fb8565b949350505050565b606082471015610fda5760405162461bcd60e51b81526004016101d090611773565b610fe385611079565b610fff5760405162461bcd60e51b81526004016101d090611907565b60006060866001600160a01b0316858760405161101c91906115b7565b60006040518083038185875af1925050503d8060008114611059576040519150601f19603f3d011682016040523d82523d6000602084013e61105e565b606091505b509150915061106e82828661107f565b979650505050505050565b3b151590565b6060831561108e575081610d1a565b82511561109e5782518084602001fd5b8160405162461bcd60e51b81526004016101d09190611686565b828054828255906000526020600020908101928215611125579160200282015b8281111561112557825182547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b039091161782556020909201916001909101906110d8565b5061113192915061115b565b5090565b604080516080810182526000808252602082018190529181019190915260608082015290565b5b808211156111315780547fffffffffffffffffffffffff000000000000000000000000000000000000000016815560010161115c565b803561119d81611bdf565b92915050565b600082601f8301126111b3578081fd5b81356111c66111c182611b93565b611b6c565b8181529150602080830190848101818402860182018710156111e757600080fd5b60005b8481101561120f5781356111fd81611bdf565b845292820192908201906001016111ea565b505050505092915050565b803561119d81611bf7565b600060208284031215611236578081fd5b8135610d1a81611bdf565b600080600060608486031215611255578182fd5b833561126081611bdf565b9250602084013567ffffffffffffffff8082111561127c578384fd5b908501906080828803121561128f578384fd5b6112996080611b6c565b6112a38884611192565b81526112b28860208501611192565b60208201526112c48860408501611192565b60408201526060830135828111156112da578586fd5b6112e6898286016111a3565b6060830152508094505050506112ff856040860161121a565b90509250925092565b60008060006060848603121561131c578283fd5b833561132781611bdf565b95602085013595506040909401359392505050565b600080600060408486031215611350578283fd5b833567ffffffffffffffff80821115611367578485fd5b818601915086601f83011261137a578485fd5b813581811115611388578586fd5b876020808302850101111561139b578586fd5b602092830195509350508401356113b181611bf7565b809150509250925092565b600060208083850312156113ce578182fd5b825167ffffffffffffffff8111156113e4578283fd5b8301601f810185136113f4578283fd5b80516114026111c182611b93565b818152838101908385018584028501860189101561141e578687fd5b8694505b83851015611440578051835260019490940193918501918501611422565b50979650505050505050565b60006020828403121561145d578081fd5b8151610d1a81611bf7565b600060208284031215611479578081fd5b8151610d1a81611bdf565b60008060408385031215611496578182fd5b82356114a181611bdf565b915060208301356114b181611bdf565b809150509250929050565b6000602082840312156114cd578081fd5b815167ffffffffffffffff808211156114e4578283fd5b818401915084601f8301126114f7578283fd5b815181811115611505578384fd5b6115186020601f19601f84011601611b6c565b915080825285602082850101111561152e578384fd5b61153f816020840160208601611bb3565b50949350505050565b600060208284031215611559578081fd5b5051919050565b6000815180845260208085019450808401835b8381101561158f57815187529582019590820190600101611573565b509495945050505050565b6001600160a01b03169052565b6000828483379101908152919050565b600082516115c9818460208701611bb3565b9190910192915050565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b6001600160a01b039384168152919092166020820152604081019190915260600190565b6001600160a01b0393841681529183166020830152909116604082015260600190565b6001600160a01b03929092168252602082015260400190565b6000606082526116746060830186611560565b60208301949094525060400152919050565b60006020825282518060208401526116a5816040850160208701611bb3565b601f01601f19169190910160400192915050565b60208082526026908201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160408201527f6464726573730000000000000000000000000000000000000000000000000000606082015260800190565b6020808252602c908201527f4661696c656420746f2067657420746f6b656e7320756e6465726c79696e672060408201527f536164646c6520706f6f6c2e0000000000000000000000000000000000000000606082015260800190565b60208082526026908201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60408201527f722063616c6c0000000000000000000000000000000000000000000000000000606082015260800190565b6020808252601a908201527f6e6577506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601b908201527f4661696c656420746f206d6174636820746f6b656e73206c6973740000000000604082015260600190565b60208082526028908201527f63616e6e6f74206f7665727772697465206578697374696e67206d696772617460408201527f696f6e2064617461000000000000000000000000000000000000000000000000606082015260800190565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b6020808252601a908201527f6f6c64506f6f6c4c50546f6b656e41646472657373203d3d2030000000000000604082015260600190565b6020808252601d908201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604082015260600190565b6020808252602a908201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60408201527f6f74207375636365656400000000000000000000000000000000000000000000606082015260800190565b60208082526036908201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60408201527f20746f206e6f6e2d7a65726f20616c6c6f77616e636500000000000000000000606082015260800190565b6020808252601a908201527f6d6967726174696f6e206973206e6f7420617661696c61626c65000000000000604082015260600190565b6000602080835260a083016001600160a01b038086511683860152808387015116604086015280604087015116606086015250606085015160808086015281815180845260c08701915084830193508592505b80831015611aa957611a9582855161159a565b928401926001929092019190840190611a82565b509695505050505050565b90815260200190565b600084825260606020830152611ad66060830185611560565b9050826040830152949350505050565b918252602082015260400190565b60ff91909116815260200190565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112611b36578283fd5b83018035915067ffffffffffffffff821115611b50578283fd5b602001915036819003821315611b6557600080fd5b9250929050565b60405181810167ffffffffffffffff81118282101715611b8b57600080fd5b604052919050565b600067ffffffffffffffff821115611ba9578081fd5b5060209081020190565b60005b83811015611bce578181015183820152602001611bb6565b838111156109115750506000910152565b6001600160a01b0381168114611bf457600080fd5b50565b8015158114611bf457600080fdfea2646970667358221220e04c9d6453b449fd3b81fcd0a5e8e0cda21cbb0d4f093ce8a1c67de4b844424e64736f6c634300060c0033
Deployed Bytecode Sourcemap
537:4971:34:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5374:132;;;;;;;;;;-1:-1:-1;5374:132:34;;;;;:::i;:::-;;:::i;:::-;;1496:2198;;;;;;;;;;-1:-1:-1;1496:2198:34;;;;;:::i;:::-;;:::i;1717:145:10:-;;;;;;;;;;;;;:::i;1085:85::-;;;;;;;;;;;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;1736:368:56;;;;;;:::i;:::-;;:::i;863:53:34:-;;;;;;;;;;-1:-1:-1;863:53:34;;;;;:::i;:::-;;:::i;:::-;;;;;;;;;:::i;2011:240:10:-;;;;;;;;;;-1:-1:-1;2011:240:10;;;;;:::i;:::-;;:::i;3942:1218:34:-;;;;;;;;;;-1:-1:-1;3942:1218:34;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;5374:132::-;1308:12:10;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;;;;;;;;;5445:54:34::1;5464:2;5468:5;-1:-1:-1::0;;;;;5468:15:34::1;;5492:4;5468:30;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;-1:-1:-1::0;;;;;5445:18:34;::::1;::::0;:54;:18:::1;:54::i;:::-;5374:132:::0;;:::o;1496:2198::-;1308:12:10;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;1671:9:34::1;1666:233;;-1:-1:-1::0;;;;;1729:28:34;;::::1;1812:1;1729:28:::0;;;:12:::1;:28;::::0;;;;;;;:50:::1;::::0;::::1;1721:93:::0;1696:192:::1;;;;-1:-1:-1::0;;;1696:192:34::1;;;;;;;:::i;:::-;1937:27;::::0;::::1;::::0;-1:-1:-1;;;;;1929:50:34::1;1908:123;;;;-1:-1:-1::0;;;1908:123:34::1;;;;;;;:::i;:::-;2070:27;::::0;::::1;::::0;-1:-1:-1;;;;;2062:50:34::1;2041:123;;;;-1:-1:-1::0;;;2041:123:34::1;;;;;;;:::i;:::-;2180:7;2175:962;2197:2;2193:1;:6;;;2175:962;;;2258:33;::::0;;;;2220:20:::1;::::0;-1:-1:-1;;;;;2258:30:34;::::1;::::0;::::1;::::0;:33:::1;::::0;2289:1;;2258:33:::1;;;:::i;:::-;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;-1:-1:-1::0;2258:33:34::1;::::0;;::::1;;::::0;;::::1;-1:-1:-1::0;;2258:33:34::1;::::0;::::1;::::0;;;::::1;::::0;;::::1;::::0;::::1;:::i;:::-;;;2254:268;;2414:1;2410;:5;;;2402:62;;;;-1:-1:-1::0;;;2402:62:34::1;;;;;;;:::i;:::-;-1:-1:-1::0;2505:1:34::1;2254:268;;;2356:5:::0;-1:-1:-1;2254:268:34::1;2546:20:::0;;2540:39:::1;::::0;;;;-1:-1:-1;;;;;2540:36:34;;::::1;::::0;::::1;::::0;:39:::1;::::0;2577:1;;2540:39:::1;;;:::i;:::-;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;-1:-1:-1::0;2540:39:34::1;::::0;;::::1;;::::0;;::::1;-1:-1:-1::0;;2540:39:34::1;::::0;::::1;::::0;;;::::1;::::0;;::::1;::::0;::::1;:::i;:::-;;;2536:591;;2869:1;2865;:5;;;2857:62;;;;-1:-1:-1::0;;;2857:62:34::1;;;;;;;:::i;:::-;-1:-1:-1::0;;;;;2966:26:34;::::1;::::0;:54;::::1;;;;3001:5;:12;;;:19;2996:1;:24;;;2966:54;2937:152;;;;-1:-1:-1::0;;;2937:152:34::1;;;;;;;:::i;:::-;3107:5;;;2536:591;2674:5;-1:-1:-1::0;;;;;2650:30:34::1;:12;-1:-1:-1::0;;;;;2650:30:34::1;;:98;;;;;2732:5;:12;;;2745:1;2732:15;;;;;;;;;;;;;;;;-1:-1:-1::0;;;;;2708:40:34::1;:12;-1:-1:-1::0;;;;;2708:40:34::1;;2650:98;2621:196;;;;-1:-1:-1::0;;;2621:196:34::1;;;;;;;:::i;:::-;2580:252;-1:-1:-1::0;2201:3:34::1;;2175:962;;;-1:-1:-1::0;;;;;;3165:28:34;;::::1;;::::0;;;:12:::1;:28;::::0;;;;;;;;:36;;;;;;::::1;::::0;;;::::1;;::::0;;;;::::1;::::0;;;::::1;::::0;;;;::::1;::::0;;::::1;::::0;;;::::1;::::0;;;;;::::1;::::0;::::1;::::0;::::1;::::0;;;;;::::1;::::0;::::1;::::0;;;::::1;::::0;;;::::1;::::0;::::1;::::0;;;3196:5;;3165:36:::1;::::0;::::1;::::0;::::1;::::0;;::::1;::::0;::::1;:::i;:::-;-1:-1:-1::0;;;3293:27:34::1;::::0;::::1;::::0;:64:::1;::::0;;;;-1:-1:-1;;;;;3293:35:34;;::::1;::::0;::::1;::::0;:64:::1;::::0;3329:14;;847:10:::1;::::0;3293:64:::1;;;:::i;:::-;;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;3435:9;3430:203;3454:5;:12;;;:19;3450:1;:23;3430:203;;;3494:52;3522:5;:20;;;3544:1;3494:5;:12;;;3507:1;3494:15;;;;;;;;;;;;;;-1:-1:-1::0;;;;;3494:27:34::1;;;:52;;;;;:::i;:::-;3560:62;3588:5;:20;;;847:10;3560:5;:12;;;3573:1;3560:15;;;;;;;:62;3475:3;;3430:203;;;;3665:14;-1:-1:-1::0;;;;;3648:39:34::1;;3681:5;3648:39;;;;;;:::i;:::-;;;;;;;;1496:2198:::0;;;:::o;1717:145:10:-;1308:12;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;1823:1:::1;1807:6:::0;;1786:40:::1;::::0;-1:-1:-1;;;;;1807:6:10;;::::1;::::0;1786:40:::1;::::0;1823:1;;1786:40:::1;1853:1;1836:19:::0;;;::::1;::::0;;1717:145::o;1085:85::-;1131:7;1157:6;-1:-1:-1;;;;;1157:6:10;1085:85;:::o;1736:368:56:-;1826:9;1821:277;1841:16;;;1821:277;;;1879:12;1893:19;1924:4;1960:5;;1966:1;1960:8;;;;;;;;;;;;;;;;;;:::i;:::-;1916:66;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1878:104;;;;2001:7;2000:8;:24;;;;;2012:12;2000:24;1996:92;;;2051:21;2065:6;2051:13;:21::i;:::-;2044:29;;-1:-1:-1;;;2044:29:56;;;;;;;;:::i;1996:92::-;-1:-1:-1;;1859:3:56;;1821:277;;;;1736:368;;;:::o;863:53:34:-;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;;;;863:53:34;;;;;;;;;;:::o;2011:240:10:-;1308:12;:10;:12::i;:::-;-1:-1:-1;;;;;1297:23:10;:7;:5;:7::i;:::-;-1:-1:-1;;;;;1297:23:10;;1289:68;;;;-1:-1:-1;;;1289:68:10;;;;;;;:::i;:::-;-1:-1:-1;;;;;2099:22:10;::::1;2091:73;;;;-1:-1:-1::0;;;2091:73:10::1;;;;;;;:::i;:::-;2200:6;::::0;;2179:38:::1;::::0;-1:-1:-1;;;;;2179:38:10;;::::1;::::0;2200:6;::::1;::::0;2179:38:::1;::::0;::::1;2227:6;:17:::0;;;::::1;-1:-1:-1::0;;;;;2227:17:10;;;::::1;::::0;;;::::1;::::0;;2011:240::o;3942:1218:34:-;4066:7;4102:26;;:::i;:::-;-1:-1:-1;;;;;4131:28:34;;;;;;;:12;:28;;;;;;;;;4102:57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;4131:28;4102:57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;;;;4102:57:34;;;;;;;;;;;;;;;;-1:-1:-1;;;4102:57:34;;;;-1:-1:-1;;;4198:27:34;;;;4102:57;;-1:-1:-1;;;;;;4190:50:34;4169:123;;;;-1:-1:-1;;;4169:123:34;;;;;;;:::i;:::-;4376:27;;;;:125;;-1:-1:-1;;;;;4376:44:34;4434:10;4466:4;4485:6;4376:44;:125::i;:::-;4558:24;4591:14;-1:-1:-1;;;;;4585:37:34;;4636:6;4670:5;:12;;;:19;4656:34;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;4656:34:34;;847:10;4585:140;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;4585:140:34;;;;;;;;;;;;:::i;:::-;4558:167;;4785:20;4814:5;:20;;;-1:-1:-1;;;;;4808:40:34;;4862:7;4883:9;847:10;4808:119;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;4985:27;;;;4785:142;;-1:-1:-1;4985:66:34;;-1:-1:-1;;;;;4985:40:34;5026:10;4785:142;4985:40;:66::i;:::-;5087:14;-1:-1:-1;;;;;5067:57:34;5075:10;-1:-1:-1;;;;;5067:57:34;;5103:6;5111:12;5067:57;;;;;;;:::i;:::-;;;;;;;;5141:12;-1:-1:-1;;;3942:1218:34;;;;;;:::o;598:104:26:-;685:10;598:104;:::o;704:175:19:-;786:86;806:5;836:23;;;861:2;865:5;813:58;;;;;;;;;:::i;:::-;;;;-1:-1:-1;;813:58:19;;;;;;;;;;;;;;;;;;;;;;;;;;;786:19;:86::i;:::-;704:175;;;:::o;1348:613::-;1713:10;;;1712:62;;-1:-1:-1;1729:39:19;;;;;-1:-1:-1;;;;;1729:15:19;;;;;:39;;1753:4;;1760:7;;1729:39;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;:44;1712:62;1704:150;;;;-1:-1:-1;;;1704:150:19;;;;;;;:::i;:::-;1864:90;1884:5;1914:22;;;1938:7;1947:5;1891:62;;;;;;;;;:::i;600:515:56:-;696:13;861:2;840:11;:18;:23;836:67;;;-1:-1:-1;865:38:56;;;;;;;;;;;;;;;;;;;836:67;1003:4;990:11;986:22;971:37;;1045:11;1034:33;;;;;;;;;;;;:::i;:::-;1027:40;;600:515;;;;:::o;885:203:19:-;985:96;1005:5;1035:27;;;1064:4;1070:2;1074:5;1012:68;;;;;;;;;;:::i;2967:751::-;3386:23;3412:69;3440:4;3412:69;;;;;;;;;;;;;;;;;3420:5;-1:-1:-1;;;;;3412:27:19;;;:69;;;;;:::i;:::-;3495:17;;3386:95;;-1:-1:-1;3495:21:19;3491:221;;3635:10;3624:30;;;;;;;;;;;;:::i;:::-;3616:85;;;;-1:-1:-1;;;3616:85:19;;;;;;;:::i;3581:193:25:-;3684:12;3715:52;3737:6;3745:4;3751:1;3754:12;3715:21;:52::i;:::-;3708:59;3581:193;-1:-1:-1;;;;3581:193:25:o;4608:523::-;4735:12;4792:5;4767:21;:30;;4759:81;;;;-1:-1:-1;;;4759:81:25;;;;;;;:::i;:::-;4858:18;4869:6;4858:10;:18::i;:::-;4850:60;;;;-1:-1:-1;;;4850:60:25;;;;;;;:::i;:::-;4981:12;4995:23;5022:6;-1:-1:-1;;;;;5022:11:25;5042:5;5050:4;5022:33;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;4980:75;;;;5072:52;5090:7;5099:10;5111:12;5072:17;:52::i;:::-;5065:59;4608:523;-1:-1:-1;;;;;;;4608:523:25:o;726:413::-;1086:20;1124:8;;;726:413::o;7091:725::-;7206:12;7234:7;7230:580;;;-1:-1:-1;7264:10:25;7257:17;;7230:580;7375:17;;:21;7371:429;;7633:10;7627:17;7693:15;7680:10;7676:2;7672:19;7665:44;7582:145;7772:12;7765:20;;-1:-1:-1;;;7765:20:25;;;;;;;;:::i;-1:-1:-1:-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;5:130;72:20;;97:33;72:20;97:33;:::i;:::-;57:78;;;;:::o;555:752::-;;687:3;680:4;672:6;668:17;664:27;654:2;;-1:-1;;695:12;654:2;742:6;729:20;764:95;779:79;851:6;779:79;:::i;:::-;764:95;:::i;:::-;887:21;;;755:104;-1:-1;931:4;944:14;;;;919:17;;;1033;;;1024:27;;;;1021:36;-1:-1;1018:2;;;1070:1;;1060:12;1018:2;1095:1;1080:221;1105:6;1102:1;1099:13;1080:221;;;2424:6;2411:20;2436:48;2478:5;2436:48;:::i;:::-;1173:65;;1252:14;;;;1280;;;;1127:1;1120:9;1080:221;;;1084:14;;;;;647:660;;;;:::o;2063:124::-;2127:20;;2152:30;2127:20;2152:30;:::i;4419:241::-;;4523:2;4511:9;4502:7;4498:23;4494:32;4491:2;;;-1:-1;;4529:12;4491:2;85:6;72:20;97:33;124:5;97:33;:::i;4667:633::-;;;;4833:2;4821:9;4812:7;4808:23;4804:32;4801:2;;;-1:-1;;4839:12;4801:2;85:6;72:20;97:33;124:5;97:33;:::i;:::-;4891:63;-1:-1;5019:2;5004:18;;4991:32;5043:18;5032:30;;;5029:2;;;-1:-1;;5065:12;5029:2;5147:22;;;;3291:4;3270:19;;;3266:30;3263:2;;;-1:-1;;3299:12;3263:2;3327:20;3291:4;3327:20;:::i;:::-;3439:49;3484:3;3460:22;3439:49;:::i;:::-;3421:16;3414:75;3600:64;3660:3;5019:2;3640:9;3636:22;3600:64;:::i;:::-;5019:2;3586:5;3582:16;3575:90;3776:64;3836:3;3743:2;3816:9;3812:22;3776:64;:::i;:::-;3743:2;3762:5;3758:16;3751:90;4833:2;3921:9;3917:18;3904:32;5043:18;3948:6;3945:30;3942:2;;;-1:-1;;3978:12;3942:2;4023:89;4108:3;4099:6;4088:9;4084:22;4023:89;:::i;:::-;4833:2;4009:5;4005:16;3998:115;;5085:94;;;;;;5234:50;5276:7;3743:2;5256:9;5252:22;5234:50;:::i;:::-;5224:60;;4795:505;;;;;:::o;5307:491::-;;;;5445:2;5433:9;5424:7;5420:23;5416:32;5413:2;;;-1:-1;;5451:12;5413:2;85:6;72:20;97:33;124:5;97:33;:::i;:::-;5503:63;5603:2;5642:22;;4208:20;;-1:-1;5711:2;5750:22;;;4208:20;;5407:391;-1:-1;;;5407:391::o;5805:538::-;;;;5969:2;5957:9;5948:7;5944:23;5940:32;5937:2;;;-1:-1;;5975:12;5937:2;6033:17;6020:31;6071:18;;6063:6;6060:30;6057:2;;;-1:-1;;6093:12;6057:2;6205:6;6194:9;6190:22;;;299:3;292:4;284:6;280:17;276:27;266:2;;-1:-1;;307:12;266:2;350:6;337:20;6071:18;369:6;366:30;363:2;;;-1:-1;;399:12;363:2;494:3;443:4;;478:6;474:17;435:6;460:32;;457:41;454:2;;;-1:-1;;501:12;454:2;443:4;431:17;;;;-1:-1;6113:109;-1:-1;;6295:22;;2127:20;2152:30;2127:20;2152:30;:::i;:::-;6267:60;;;;5931:412;;;;;:::o;6350:392::-;;6490:2;;6478:9;6469:7;6465:23;6461:32;6458:2;;;-1:-1;;6496:12;6458:2;6547:17;6541:24;6585:18;6577:6;6574:30;6571:2;;;-1:-1;;6607:12;6571:2;6694:22;;1454:4;1442:17;;1438:27;-1:-1;1428:2;;-1:-1;;1469:12;1428:2;1509:6;1503:13;1531:80;1546:64;1603:6;1546:64;:::i;1531:80::-;1639:21;;;1696:14;;;;1671:17;;;1785;;;1776:27;;;;1773:36;-1:-1;1770:2;;;-1:-1;;1812:12;1770:2;-1:-1;1838:10;;1832:217;1857:6;1854:1;1851:13;1832:217;;;4356:13;;1925:61;;1879:1;1872:9;;;;;2000:14;;;;2028;;1832:217;;;-1:-1;6627:99;6452:290;-1:-1;;;;;;;6452:290::o;6749:257::-;;6861:2;6849:9;6840:7;6836:23;6832:32;6829:2;;;-1:-1;;6867:12;6829:2;2275:6;2269:13;2287:30;2311:5;2287:30;:::i;7013:293::-;;7143:2;7131:9;7122:7;7118:23;7114:32;7111:2;;;-1:-1;;7149:12;7111:2;2595:6;2589:13;2607:48;2649:5;2607:48;:::i;7313:396::-;;;7449:2;7437:9;7428:7;7424:23;7420:32;7417:2;;;-1:-1;;7455:12;7417:2;2424:6;2411:20;2436:48;2478:5;2436:48;:::i;:::-;7507:78;-1:-1;7622:2;7661:22;;72:20;97:33;72:20;97:33;:::i;:::-;7630:63;;;;7411:298;;;;;:::o;7716:362::-;;7841:2;7829:9;7820:7;7816:23;7812:32;7809:2;;;-1:-1;;7847:12;7809:2;7898:17;7892:24;7936:18;;7928:6;7925:30;7922:2;;;-1:-1;;7958:12;7922:2;8045:6;8034:9;8030:22;;;2781:3;2774:4;2766:6;2762:17;2758:27;2748:2;;-1:-1;;2789:12;2748:2;2829:6;2823:13;7936:18;29466:6;29463:30;29460:2;;;-1:-1;;29496:12;29460:2;2851:65;7841:2;-1:-1;;2774:4;29554:6;29550:17;29546:33;29627:15;2851:65;:::i;:::-;2842:74;;2936:6;2929:5;2922:21;3040:3;7841:2;3031:6;2964;3022:16;;3019:25;3016:2;;;-1:-1;;3047:12;3016:2;3067:39;3099:6;7841:2;2998:5;2994:16;7841:2;2964:6;2960:17;3067:39;:::i;:::-;-1:-1;7978:84;7803:275;-1:-1;;;;7803:275::o;8085:263::-;;8200:2;8188:9;8179:7;8175:23;8171:32;8168:2;;;-1:-1;;8206:12;8168:2;-1:-1;4356:13;;8162:186;-1:-1;8162:186::o;9802:690::-;;9995:5;30108:12;30916:6;30911:3;30904:19;30953:4;;30948:3;30944:14;10007:93;;30953:4;10171:5;29789:14;-1:-1;10210:260;10235:6;10232:1;10229:13;10210:260;;;10296:13;;17405:37;;8721:14;;;;30654;;;;10257:1;10250:9;10210:260;;;-1:-1;10476:10;;9926:566;-1:-1;;;;;9926:566::o;11204:146::-;-1:-1;;;;;31849:54;11280:65;;11274:76::o;17688:291::-;;32452:6;32447:3;32442;32429:30;32490:16;;32483:27;;;32490:16;17832:147;-1:-1;17832:147::o;17986:271::-;;11001:5;30108:12;11112:52;11157:6;11152:3;11145:4;11138:5;11134:16;11112:52;:::i;:::-;11176:16;;;;;18120:137;-1:-1;;18120:137::o;18264:222::-;-1:-1;;;;;31849:54;;;;8810:37;;18391:2;18376:18;;18362:124::o;18493:333::-;-1:-1;;;;;31849:54;;;8810:37;;31849:54;;18812:2;18797:18;;8810:37;18648:2;18633:18;;18619:207::o;18833:444::-;-1:-1;;;;;31849:54;;;8810:37;;31849:54;;;;19180:2;19165:18;;8810:37;19263:2;19248:18;;17405:37;;;;19016:2;19001:18;;18987:290::o;19284:504::-;-1:-1;;;;;31849:54;;;8810:37;;31849:54;;;19676:2;19661:18;;11280:65;31849:54;;;19774:2;19759:18;;11280:65;19497:2;19482:18;;19468:320::o;19795:333::-;-1:-1;;;;;31849:54;;;;8810:37;;20114:2;20099:18;;17405:37;19950:2;19935:18;;19921:207::o;20135:592::-;;20368:2;20389:17;20382:47;20443:108;20368:2;20357:9;20353:18;20537:6;20443:108;:::i;:::-;20630:2;20615:18;;17405:37;;;;-1:-1;20713:2;20698:18;17405:37;20435:116;20339:388;-1:-1;20339:388::o;20734:310::-;;20881:2;20902:17;20895:47;11665:5;30108:12;30916:6;20881:2;20870:9;20866:18;30904:19;11759:52;11804:6;30944:14;20870:9;30944:14;20881:2;11785:5;11781:16;11759:52;:::i;:::-;32889:2;32869:14;-1:-1;;32865:28;11823:39;;;;30944:14;11823:39;;20852:192;-1:-1;;20852:192::o;21051:416::-;21251:2;21265:47;;;12099:2;21236:18;;;30904:19;12135:34;30944:14;;;12115:55;12204:8;12190:12;;;12183:30;12232:12;;;21222:245::o;21474:416::-;21674:2;21688:47;;;12483:2;21659:18;;;30904:19;12519:34;30944:14;;;12499:55;12588:14;12574:12;;;12567:36;12622:12;;;21645:245::o;21897:416::-;22097:2;22111:47;;;12873:2;22082:18;;;30904:19;12909:34;30944:14;;;12889:55;12978:8;12964:12;;;12957:30;13006:12;;;22068:245::o;22320:416::-;22520:2;22534:47;;;13257:2;22505:18;;;30904:19;13293:28;30944:14;;;13273:49;13341:12;;;22491:245::o;22743:416::-;22943:2;22957:47;;;13592:2;22928:18;;;30904:19;13628:29;30944:14;;;13608:50;13677:12;;;22914:245::o;23166:416::-;23366:2;23380:47;;;13928:2;23351:18;;;30904:19;13964:34;30944:14;;;13944:55;14033:10;14019:12;;;14012:32;14063:12;;;23337:245::o;23589:416::-;23789:2;23803:47;;;23774:18;;;30904:19;14350:34;30944:14;;;14330:55;14404:12;;;23760:245::o;24012:416::-;24212:2;24226:47;;;14655:2;24197:18;;;30904:19;14691:28;30944:14;;;14671:49;14739:12;;;24183:245::o;24435:416::-;24635:2;24649:47;;;14990:2;24620:18;;;30904:19;15026:31;30944:14;;;15006:52;15077:12;;;24606:245::o;24858:416::-;25058:2;25072:47;;;15328:2;25043:18;;;30904:19;15364:34;30944:14;;;15344:55;15433:12;15419;;;15412:34;15465:12;;;25029:245::o;25281:416::-;25481:2;25495:47;;;15716:2;25466:18;;;30904:19;15752:34;30944:14;;;15732:55;15821:24;15807:12;;;15800:46;15865:12;;;25452:245::o;25704:416::-;25904:2;25918:47;;;16116:2;25889:18;;;30904:19;16152:28;30944:14;;;16132:49;16200:12;;;25875:245::o;26127:394::-;;26316:2;;26337:17;26330:47;16479:14;26305:9;16479:14;-1:-1;;;;;31860:42;16570:16;16564:23;31849:54;26316:2;26305:9;26301:18;8810:37;31860:42;26316:2;16745:5;16741:16;16735:23;31849:54;16827:14;26305:9;16827:14;11280:65;31860:42;16827:14;16931:5;16927:16;16921:23;31849:54;17013:14;26305:9;17013:14;11280:65;;17013:14;17102:5;17098:16;17092:23;16488:4;;26305:9;17135:14;17128:38;17181:118;9231:5;30108:12;30916:6;30911:3;30904:19;30944:14;26305:9;30944:14;9243:83;;26316:2;9412:5;29789:14;9424:21;;-1:-1;9457:10;;9451:290;9476:6;9473:1;9470:13;9451:290;;;8458:61;8515:3;9543:6;9537:13;8458:61;:::i;:::-;30654:14;;;;9498:1;9491:9;;;;;8539:14;;;;9451:290;;;-1:-1;26383:128;26287:234;-1:-1;;;;;;26287:234::o;26528:222::-;17405:37;;;26655:2;26640:18;;26626:124::o;26757:592::-;;17435:5;17412:3;17405:37;26990:2;27108;27097:9;27093:18;27086:48;27148:108;26990:2;26979:9;26975:18;27242:6;27148:108;:::i;:::-;27140:116;;17435:5;27335:2;27324:9;27320:18;17405:37;26961:388;;;;;;:::o;27356:333::-;17405:37;;;27675:2;27660:18;;17405:37;27511:2;27496:18;;27482:207::o;27696:214::-;32065:4;32054:16;;;;17641:35;;27819:2;27804:18;;27790:120::o;27917:506::-;;;28052:11;28039:25;28103:48;28127:8;28111:14;28107:29;28103:48;28083:18;28079:73;28069:2;;-1:-1;;28156:12;28069:2;28183:33;;28237:18;;;-1:-1;28275:18;28264:30;;28261:2;;;-1:-1;;28297:12;28261:2;28142:4;28325:13;;-1:-1;28111:14;28357:38;;;28347:49;;28344:2;;;28409:1;;28399:12;28344:2;28007:416;;;;;:::o;28430:256::-;28492:2;28486:9;28518:17;;;28593:18;28578:34;;28614:22;;;28575:62;28572:2;;;28650:1;;28640:12;28572:2;28492;28659:22;28470:216;;-1:-1;28470:216::o;28693:319::-;;28867:18;28859:6;28856:30;28853:2;;;-1:-1;;28889:12;28853:2;-1:-1;28934:4;28922:17;;;28987:15;;28790:222::o;32525:268::-;32590:1;32597:101;32611:6;32608:1;32605:13;32597:101;;;32678:11;;;32672:18;32659:11;;;32652:39;32633:2;32626:10;32597:101;;;32713:6;32710:1;32707:13;32704:2;;;-1:-1;;32590:1;32760:16;;32753:27;32574:219::o;32906:117::-;-1:-1;;;;;32993:5;31849:54;32968:5;32965:35;32955:2;;33014:1;;33004:12;32955:2;32949:74;:::o;33030:111::-;33111:5;31648:13;31641:21;33089:5;33086:32;33076:2;;33132:1;;33122:12
Swarm Source
ipfs://e04c9d6453b449fd3b81fcd0a5e8e0cda21cbb0d4f093ce8a1c67de4b844424e
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.